
Some Economics of Market-based Distributed Scheduling

William E. Walsh Michael P. Wellman Peter R. Wurman

Je�rey K. MacKie-Mason

University of Michigan, Ann Arbor, USA

f wew, wellman, pwurman, jmm g@umich.edu

October 1, 1997

Abstract

Market mechanisms solve distributed scheduling problems by allocating the scheduled re-

sources according to market prices. We model distributed scheduling as a discrete resource

allocation problem, and demonstrate the applicability of economic analysis to this framework.

Drawing on results from the literature, we discuss the existence of equilibrium prices for some

general classes of scheduling problems, and the quality of equilibrium solutions. We then present

two protocols for implementing market solutions, and analyze their computational and economic

properties.

1 Introduction

Solving scheduling problems with and for distributed computing systems presents particular chal-

lenges attributable to the distributed nature of the computation. System modules may represent

independent entities with con
icting and competing scheduling requirements, and may possess lo-

calized information relevant to their tasks. To recognize this independence, we treat the modules

as agents, ascribing each of them autonomy to decide how to deploy resources under their control

in service of their interests. Within this model, a distributed scheduling method can be analyzed

according to how well it exhibits the following properties:

� Decisions are made by self-interested agents with local (private) information.

� The method requires minimal communication overhead.

� Agents can make e�ective choices without knowing the private information and strategies of

other agents.

� Solutions are e�cient in that they do not waste resources. If there is some way to make

some agent(s) better o� without harming others, it should be done. A solution that cannot be

improved in this way is called Pareto optimal.

In some settings, it might be appropriate to adopt some stronger optimality criteria, based on a

judgment about social value of the various agents.

Straightforward scheduling policies|such as �rst-come �rst-served, shortest-job-�rst, priority-

�rst, and combinations thereof|do not generally possess these properties. For example, queue-

position schemes are insensitive to relative value based on the substance of the task being performed.

On the other hand, priority-based schemes beg the question of how to set priorities so that desirable

1

results follow. If self-interested agents are free to set their own priorities, then without some incentive

to the contrary, they will specify maximum priority for whatever they are interested in.

Citing such limitations, several have proposed that distributed resource allocation problems

be solved via market mechanisms [4], an approach we have called market-oriented programming

(MOP) [20]. In MOP, we de�ne agent activities in terms of resources required and produced,

reducing an agent's decision problem to evaluating the tradeo�s of acquiring di�erent resources.

These tradeo�s are represented in terms of market prices, which de�ne a common scale of value

across the various resources. The problem for designers of computational markets is to specify the

con�guration of resources traded (formally designated goods in the market), and the mechanism by

which agent interactions determine prices.

Markets can provide several advantages for distributed scheduling:

� Markets are naturally distributed. Agents make their own decisions about how to bid based

on the prices and their own relative valuations of the goods.

� Communication is limited to the exchange of bids and prices between agents and the market

mechanism. In particular settings, it can be shown that price systems minimize the dimen-

sionality of messages required to determine e�cient allocations [7].

� In some well-characterized situations we can achieve Pareto and system optima (or come within

some tolerance of optimal).

� Since agents must back their representations with exchange o�ers, there is substantial dis-

incentive to claiming that a task is more important than it is. As we see below, in some

circumstances we can ensure that truthfully reporting private information is an optimal strat-

egy.

Of course, all of these bene�ts do not automatically accrue as a result of setting up a market-like

environment. Prior work applying market-inspired mechanisms to scheduling [2, 18, 19] and other

distributed computing problems [15] has produced promising empirical results. Understanding the

scope of these methods, and developing a general design methodology for computational markets,

however, requires an analytical characterization of their properties. In our own MOP work, we have

adopted the framework of general equilibrium theory [9], and have found that our computational

markets behave predictably when conditions of the theory are met [11, 20]. We have also applied the

approach to discrete optimization problems|where the conditions guaranteeing desirable outcomes

are not satis�ed|and have found (not surprisingly) that the methods sometimes work, and other

times break down [21].

Since scheduling problems very often involve discrete (indivisible) resource units, we have under-

taken to analyze directly the behavior of computational market mechanisms for such problems. We

start by de�ning a general class of discrete allocation problems, and characterizing some distinctions

particularly meaningful in the scheduling domain. Fortunately, some recent results in economic

theory bear directly on these problem classes. We report and discuss some of these results in the

sequel, along with our own extensions and analysis.

In the next section, we motivate the work with a concrete example of a simple factory scheduling

problem. In Section 3, we provide a formal economic model of a general version of the problem,

and in Section 4 we relate some equilibrium and optimality properties associated with the problem.

In Section 5, we describe and analyze two market protocols for solving the problem. Finally, we

consider future work in Section 6.

2 A Factory Scheduling Economy

Consider a factory with an unscheduled day shift. There are eight one-hour time slots, labeled

9:00 to 16:00 according to their respective end times. Slots can be allocated for the production of

2

Agent 2
value = $16
length = 2hr
deadline = 11:00

$6.25 9:00

$6.25 10:00

$6.25 11:00

$3.25 12:00

$3.25 13:00

$3.25 14:00

$3.25 15:00

$3.25 16:00

Time Span = 1 day

Reserve Price = $3/hr

Factory
Agent 1

value = $10
length = 2hr
deadline = 12:00

Agent 3
value = $6
length = 1hr
deadline = 11:00

Agent 4
value = $14.5
length = 4hr
deadline = 16:00

Figure 1: A factory scheduling economy. Lines connecting the agents to time slots represent one

feasible allocation.

customer orders. The factory has a reserve price for each time slot, representing the minimum price

that the factory is willing to accept in exchange for that time slot.

Each customer agent has one job it wants completed. An agent's job is de�ned by its duration

(length), its deadline, and the value (expressed in dollars) the agent places on the job. An agent is

willing to spend up to this value to complete its job. To do so, the agent must acquire a number

of slots no less than the length (not necessarily contiguous), no later than the deadline. The agent

gets no value if its job cannot be completed before its deadline. The value of a solution is the sum

of values of the agents holding the goods: the reserve price for each time slot that was not sold, plus

the value associated with each customer agent that meets its job deadline.

Example 1 The agents are shown in Figure 1.1 Since the sum of lengths exceeds available factory

time, it is not possible for all of the agents to produce their orders. The allocation depicted in

Figure 1 represents a system optimum.

Given an assignment of prices to goods, we can de�ne an agent's optimal choice as a set of slots

that complete the job at the minimum cost, or the empty set if the job costs more than its value.

The reader can verify that at the prices shown in Figure 1, each agent makes a locally optimal choice

in the globally optimal allocation.

3 Formal Model of the Scheduling Economy

A general discrete resource allocation problem consists of:

� G, a set of n discrete goods,

� A, a set of m agents, and ? representing the seller or null agent,

� prices p = hp1; : : : ; pni.

Agent j gets value vj(X) (measured in price units) if it acquires the set of goods X , X � G.

1An interactive online demonstration of this the ascending auction (Section 5.1) applied to this example can be

found at http://auction.eecs.umich.edu/FactoryDemoDocs/factory-demo.html.

3

Let Hj(p) denote the maximum surplus value achievable by agent j at prices p. That is,

Hj(p) � max
X�G

"
vj(X)�

X
i2X

pi

#
:

A solution is a mapping f : G ! A [f?g, indicating which agent, if any, gets each good. Let

F j � fijf(i) = jg denote the set of goods allocated to agent j and F? � fijf(i) = ?g denote the

set of unallocated goods in f .

The reserve value of good i is qi. Intuitively, the reserve value denotes the value to the owner, or

the \system", of not allocating the good to one of the agents. Di�erent time slots could potentially

have di�erent reserve values; for instance, it might be more expensive to produce during evening

hours due to overtime pay.

The value of a solution, v(f), is the sum of the agent values achieved and the reserve value of

goods not used by agents,

v(f) �
X
i2F?

qi +

mX
j=1

vj(F
j):

We measure the value of a solution ex post, that is, conditional on knowing all agents' valuations.2

A solution is optimal if no other solution has higher value.

In Section 5 we present market protocols for this very general resource allocation problem. How-

ever, the theoretical results and examples we present focus on particular classes of scheduling prob-

lems where each agent has one job to complete. For these problems, we associate each agent j with

a job length �j and one or more deadlines d1j ; : : : ; d
Kj

j . The value vj(X) of a set of goods X is

determined by the earliest deadline dkj such that X includes at least �j time slots no later than dij .

For convenience we represent the time slots as integers and de�ne the earliest time slot to be 1.

If �j = 1 for all j, we call the scheduling problem single unit. Problems violating this constraint

are multiple unit. If each agent j has a single deadline (Kj = 1, we call the problem �xed deadline.

If Kj > 1 for some j (i.e., j accrues greater value for �nishing the job sooner), then we call the

problem variable deadline.

4 Equilibrium and Optimality in the Scheduling Economy

De�nition 1 A solution f is in equilibrium at prices p i�

1. For all j such that Hj(p) > 0, vj(F
j)�

P
i2F j pi = Hj(p).

2. For all j such that Hj(p) < 0,
P

i2F j pi = 0.

3. For all j such that Hj(p) = 0, one of the �rst two consequents above holds.

4. For all i 2 F?, pi � qi.

5. For all i 62 F?, pi � qi.

Intuitively, this de�nition states that supply equals demand at equilibrium. Equilibria sometime

exist, and are generally not unique. Consider Example 1. The solution shown, with only agent 3

receiving no goods, is in equilibrium at the set of prices suggested, with slots 9:00, 10:00, and 11:00

each having a price of $6.25, and all other slots having a price of $3.25. This equilibrium solution

has value $40.50, which is optimal. Indeed it had to be, as demonstrated by the following result.

2It is sometimes useful to measure the value of a solution ex ante, that is, with respect to the expectation of agent

valuations.

4

Name Job Length Deadline Value

Agent 1 2 2 $3

Agent 2 1 2 $2

Table 1: A Problem with no equilibrium.

Theorem 1 For the general discrete resource allocation problem, if there exists a p such that f is

in equilibrium at p, then f is an optimal solution.

Proof. See [3]. 2

This result con�rms the usual consequence of competitive equilibrium: that no further gains

from trade are possible and so the result is Pareto e�cient. Since we assume that agent values are

expressible in price units, Pareto optimality corresponds to global optimality.

Example 2 There are two agents as described in Table 1, and the reserve price of each good is zero.

The optimal solution, f(1) = f(2) = 1, is not in equilibrium at any prices, and indeed no

equilibrium exists in this case. If p were in equilibrium, then p1 > $2 and p2 > $2, otherwise agent 2

would demand one of the goods. But if these inequalities hold then agent 1 would not demand the

two time slots it requires.

In this example, the nonexistence of equilibrium prices is due to complementarities in agent

preferences. Agent 1's preference for the two time slots are complementary because it values one i�

if it has the other. Complementarities cannot arise in the single-unit scheduling problem.

Theorem 2 Any optimal solution to the single-unit scheduling problem (�xed or variable deadline)

is supported by a price equilibrium.

Proof. If there is a set of prices p that supports an equilibrium then p supports an equilibrium for

any optimal allocation [3, 6]. The single-unit scheduling problem always has a price equilibrium [14].

2

Together, Theorems 1 and 2 establish that a solution to the single-unit scheduling problem is

optimal i� it is supported by a price equilibrium. Example 2 demonstrates that relaxing the single-

unit restriction immediately leads to the possibility that an equilibrium will not exist.

In addition to the single-unit restriction of Theorem 2, we can identify a few other conditions

that guarantee the existence of equilibrium. If all agents have separable preferences over goods then

an equilibrium exists.3 Separable preferences is a su�cient condition for gross substitutability|if the

price for one good goes up, demand does not go down for any other good|which in turn guarantees

the existence of equilibrium [8]. Bikhchandani and Mamer [3] present some other technical conditions

for existence of equilibrium, which are not immediately expressible in scheduling terms.

5 Market Protocols

A protocol consists of a mechanism, along with agent bidding policies. The mechanisms we consider

are generically called auctions. McAfee and McMillan provide the following de�nition [10]:

An auction is a market institution with an explicit set of rules determining resource

allocation and prices on the basis of bids from the market participants.

3Note that preferences are not separable in the multiple-unit scheduling problem. However, equilibrium would

exist if agents had separable preferences for completing multiple single-unit jobs.

5

This de�nition includes the well known English open-outcry and �rst-price sealed bid auctions|

commonly used to sell art and to award procurement contracts, respectively|as well as a broad

range of other mechanisms, including �xed pricing, Dutch auction, Vickrey auction, commodities

markets, and the ascending and Generalized Vickrey auctions described in Section 5.

In order to place greater structure on the space of mechanisms, and also to provide a common

interface to agents, we de�ne a somewhat restricted, but still very general auction protocol.

1. Agents send bids to the mechanism to indicate their willingness to exchange goods.

2. Price quotes may be posted by the auction to provide highly summarized information about

the system-wide value of goods.

3. The auction determines an allocation and noti�es the agents as to who purchases what from

whom at what price.

The above sequence may be performed once or iterated a number of times.

Auctions can be di�erentiated by a number of parameterized values including, but not limited

to: matching algorithm, price determination algorithm, intermediate price information revealed,

whether bids are publicly revealed, and the timing of matching, information revelation, and other

events. We have built the Michigan Internet AuctionBot [22, 1], an online auction server that

operates as a research and development platform for creating and experimenting with auction-based

economies. The AuctionBot provides interfaces for human and software agents to easily create and

bid in auctions. Currently the AuctionBot supports a number of di�erent types of auctions, including

the ascending auction protocol described in Section 5.1.

In order to analyze an auction we must consider the agents' presumed bidding policies, which

in turn are based on our model of their beliefs and preferences. With some auctions we are able to

determine analytically that a particular bidding policy is the Bayes-Nash equilibrium or even the

dominant strategy. With other auctions we rely on experimentation and rules of thumb based on

economic principles to determine reasonable bidding policies.

The auction mechanisms we discuss are distributed in the sense that each agent calculates its

own bid function, based on local information. The ascending auction can be further distributed in

that allocation for each good can be computed separately.

In the following sections we present two auctions and associated bidding policies. These demon-

strate the tradeo�s between solution quality under di�erent problem restrictions, computational

cost, and the degree that the mechanism can be distributed.

5.1 Ascending Auction

The ascending auction protocol is de�ned for the general discrete resource allocation problem. A

separate auction is run for each good. Agents submit successively higher bids to an auction and

the auction immediately reports a price quote to all interested agents. When the bidding stops, the

auction allocates its respective good to the highest bidder at the price the agent bid, or the good is

retained by the seller if there are no bids.

5.1.1 Bidding Rules for the Ascending Auction

The current bid price in the auction for good i, denoted �i, is the current highest bid in the auction

and is unde�ned if no bids have been submitted to the auction yet. If �i is de�ned, the current ask

price, denoted �i, is �i + �, for some �xed �, otherwise it is qi.

An agent can bid �i for good i. Agents are not allowed to withdraw bids. An agent may replace

its bid with another, but the new bid must be at the current ask price. These rules guarantee that

prices do not decrease and that the bidding process will stop.

6

Name Job Length Deadline Value

Agent 1 2 2 $20

Agent 2 2 3 $8

Agent 3 1 3 $2

Table 2: A multiple-unit ascending auction example.

5.1.2 Bidding Policy for the Ascending Auction

When an agent j enters the market, it identi�es the set of goods X that maximizes its utility, given

the current ask prices. If it the cost is less than vj(X), the agent places a bid for each good at its

ask price, otherwise it declines to participate in the market.

As other agents continue to bid, agent j may lose some of its bids. When this occurs, j bids the

ask price on the set of goods that maximizes its utility, assuming that it must pay for the goods it

is currently winning. Agent j continues to bid this way so long as it can maintain winning bids for

a set of goods X 0 for a total cost of no more than vj(X
0), at which point it stops bidding.

This bidding strategy is reasonable and fairly simple. It is optimal for the single-unit problem

because the ascending auction exhibits the no regret property with this restriction [3]. That is,

bidders do not wish to change their bids after observing other agents bids during the auction.

However, we do not claim that this strategy is optimal for the multiple-unit scheduling problem.

But regardless of the bidding strategy, the no regret property does not hold for the ascending auction

in multiple-unit case [3].

5.1.3 Analysis of the Ascending Auction

We de�ne the price pi of good i as the price payed for i. Thus it is �i if it is de�ned, otherwise qi.

It is possible that the ascending auction can miss an equilibrium of a multiple-unit scheduling

economy by an arbitrarily large amount.

Example 3 The bid increment is � = $1 and the reserve prices are zero. The agents are described

in Table 2.

Although there are a number of equilibrium price sets (one of which is p1 = $8, p2 = $8, and

p3 = $1), the ascending auction may not �nd an equilibrium. Agent 2 would bid up good 3 until

�3 > $2 while it and agent 1 both bid up the prices on 1 and 2. The reader can verify that any

equilibrium must have agent 3 winning good 3 at a price no greater than $2.

In the multiple-unit scheduling problem, the ascending auction can produce allocations that are

arbitrarily far from optimal.

Example 4 There are two agents as shown in Table 3. Reserve prices are q1 = $1 and q2 = $9,

and the bid increment is � = $1.

If agent 2 places its bids �rst, it will bid $1 for 1 and $9 for 2. Agent 1 will then bid $2 for 1. The

bidding will stop with good 1 allocated to agent 1 and good 2 allocated to agent 2. This solution has

a value of $3 yet the optimal solution, with 2 unallocated, has a value of $12. It is easy to see|by

increasing q2 and v2 by the same value|that the ascending auction can produce a solution that is

arbitrarily far from optimal.

If we restrict each agent's requirement to a single time slice, then by Theorem 2 an equilibrium

exists. However, the ascending auction protocol is not guaranteed to reach an equilibrium even with

this restriction. Consider the following economy.

7

Name Job Length Deadline Value

Agent 1 1 1 $3

Agent 2 2 2 $11

Table 3: A suboptimal multiple-unit ascending auction example.

Name Job Length Deadline Value

Agent 1 1 2 $6

Agent 2 1 3 $7

Table 4: A single-unit ascending auction example.

Example 5 The bid increment is � = $1. The reserve prices are q1 = $4, q2 = $3, and q3 = $3.

The agents are described in Table 4.

It is possible that agent 2 may bid �rst for 2. Then �2 = $4. Agent 1 will then bid $4 for

either 1 or 2. If it bids for 1 then the bidding will stop and agent 1 will win 1 for $4 and agent 2

will win 2 for $3. But since p2 = $3 < p1, agent 1 would maximize its surplus by demanding 2.

However, the bidding rules prohibit any readjustment towards an equilibrium. The auction does not

allow agent 1 to withdraw its bid for 1, and hence the �nal allocation violates condition 1 of the

de�nition of equilibrium.

It is not hard to see that the potential failure to reach equilibrium can be demonstrated for any

positive value of �, no matter how small. Nevertheless, unlike the multiple-unit problem, we can

bound the distance from the equilibrium price vector by �.

Theorem 3 For the variable-deadline, single-unit scheduling problem, the �nal price of any good

determined by ascending auction protocol will di�er from the unique minimum equilibrium price by

at most ��, where � = min(n;m).

Proof. See [5]. 2

Consider again Example 5. The solution shown has a value of $16. If agent 1 had received

good 2 and agent 2 had received good 3 then the value of the solution would be $17, which is

optimal. Although the ascending auction protocol does not guarantee the optimal solution even

when agents are restricted to requiring a single good, the error from optimum is bounded by �.

Theorem 4 The ascending auction protocol with a given � produces a solution to the variable-

deadline, single-unit scheduling problem that is suboptimal by at most m��, where � = min(n;m).

Proof. Let f be the allocation reached by the ascending auction and let f� be an optimal

allocation. pi is the price found for i in the ascending auction, and p�i be the unique minimum

equilibrium price for i. Let ei = p�i � pi. From Theorem 3 we know that j ei j� ��.

Let F j and F �j be the set of goods allocated to agent j in f and f�, respectively. Let U and

U�be the set of goods unallocated in f and f� , respectively. Similarly, B and B�represent the goods

allocated to agents in f and f� . It follows that B nB� � U� nU , and vice versa. To get the error,

we can subtract the value of the �nal allocation from the optimal allocation.

v(f�)� v(f) = (
X
i2U�

qi +

mX
j=1

vj(F
�j))� (

X
i2U

qi +

mX
j=1

vj(F
j))

=
X

i2U�nU

qi �
X

i2UnU�

qi +

mX
j=1

vj(F
�j)�

mX
j=1

vj(F
j): (1)

8

The agents' strategy implies that when the ascending auction stops,

mX
j=1

vj(F
j)�

X
i2B

pi �

mX
j=1

vj(F
�j)�

X
i2B�

�i �

mX
j=1

vj(F
�j)�

X
i2B�

pi

mX
j=1

vj(F
�j)�

mX
j=1

vj(F
j) �

X
i2B�

pi �
X
i2B

pi

=
X

i2B�nB

pi �
X

i2BnB�

pi

=
X

i2UnU�

pi �
X

i2U�nU

pi: (2)

Goods that were bought in f� must have minimum equilibrium prices greater than or equal to

their reserve prices

X
i2U�nU

qi �
X

i2U�nU

p�i =
X

i2U�nU

(pi + ei): (3)

Goods that were unallocated in f� must have minimum equilibrium prices less than or equal to

their reserve prices

X
i2UnU�

qi �
X

i2UnU�

p�i =
X

i2UnU�

(pi + ei): (4)

Substituting 2, 3, and 4 into 1 gives

v(f�)� v(f) �
X

i2U�nU

(pi + ei)�
X

i2UnU�

(pi + ei) +
X

i2UnU�

pi �
X

i2U�nU

pi

=
X

i2U�nU

(ei)�
X

i2UnU�

(ei):

The total error is maximized when (U� n U) [(U n U�) contains all of the goods, ei = ke for

all i 2 U� n U and ei = ��� for all i 2 U n U�. This gives an upper bound on the total error,

v(f�)� v(f) = m��.

This makes intuitive sense. It means that each good that was allocated in one solution and

unallocated in the other can subtract at most �� from the total value. 2

The computation of the clearing and price quotes is trivial in the ascending auction. The com-

munications costs dominate the run time, which is inversely proportional with �. Hence, in choosing

the value for � we decide how we wish to trade o� optimality with communication e�ciency.

5.2 Generalized Vickrey Auction

The ascending auction performs well for single-unit allocation problems. At the end of Section 3 we

noted that a single-unit problem is only one su�cient condition for a price equilibrium allocation

to exist. However, even when price equilibria exist for a multiple-unit problem, the ascending

auction may not �nd an equilibrium; see Example 4. Further, as Example 2 demonstrates, any

9

scheduling problems have an optimal, value-maximizing allocation that is not supportable by any

price equilibrium, but the ascending auction allocates based on price.

The Generalized Vickrey Auction (GVA) [16] can implement optimal allocations in a broad

class of scheduling problems. The GVA works for problems with multiple goods, multiple units,

requirements contingencies, and externalities (i.e., values for one agent that depend on the allocations

obtained by other agents). The GVA is not a price allocation, and thus can obtain optimality in

problems for which a price equilibrium does not exist.

The GVA is a direct revelation mechanism. Agents declare their requirements and valuations in

their bids. The auction mechanism then returns an allocation, and a vector of positive or negative

payments to be made to the agents. The payments are designed so that truthful revelation of

valuations is the dominant bidding policy.

5.2.1 Bidding Policy for the GVA

Recall that vj is agent j's actual value function. Each agent announces v̂j , its alleged value function.

The circum
exes are used to indicate that the agent is not constrained to be truthful, i.e., it may

be that v̂j 6= vj .

5.2.2 Optimality Analysis of the GVA

Recall that a solution is a mapping f , and the value of a solution is given by v(f). The auction

mechanism:

1. Computes a solution,

f� = argmax
f

X
i2F?

qi +

mX
j=1

v̂j(F
j): (5)

2. Computes payments to agents,

Vj �W�j(f
�)� Pj(v̂�j);

where

W�j(f
�) =

X
s6=j

v̂s(F
�j) (6)

Pj(v̂�j) = ~Pj(v̂�j) = max
f

X
i2F?

qi +
X
s6=j

v̂s(F
s): (7)

The W�j function returns the total reported value for all agents other than j at the solution

f�. The GVA is incentive-compatible for any Pj(v̂�j) that is an arbitrary function of the

other agents' reported value functions, independent of agent j's reported preferences. ~Pj is a

speci�c, convenient payment.

Theorem 5 If there exists a solution f� to problem (5), and if vj(F
�j) + Vj � 0, then agents

truthfully report their value functions (v̂j = vj 8j), and f
� is an optimal solution.

10

Proof. See [16]. 2

The intuition generalizes Vickrey's original [17] result. An agent receives vj(F
j)+Vj = vj(F

j)+

W�j�Pj , from the value of its allocation and the payment from the auction. The auction mechanism

chooses the solution f� to maximize v̂j(F
j)+W�j . Therefore, if the agent bids truthfully (v̂j = vj),

it receives the auction mechanism's maximand less a function (Pj) that is una�ected by agent j's

bid. Clearly the agent can do no better than to tell the truth and receive the full maximand of the

auction mechanism.

The GVA solves problems with multiple units, and problems without a price equilibrium. Ex-

ample 2 above had both features:

Example 6 (From Example 2.) If the agents truthfully report their value functions, the auction

mechanism �nds the optimal solution f�: f�(1) = f�(2) = 1. It then calculates W�1 = 0 and

W�2 = 3. Agent 1 receives total value 3+ [0� P1], and agent 2 receives 0 + [3� P2]. No untruthful

bid can increase these payo�s, so the agents bid truthfully. The condition that vj(F
j) + Vj � 0

requires that Pj � 3 for j 2 f1; 2g; otherwise, rational agents would choose not to participate in the

auction. If we use P = ~P then agent 1 makes a payment of $2, agent 2 makes a payment of $0, and

the mechanism has a revenue of $2.

5.2.3 Limitations on the GVA

Generally, we have three desired properties for a mechanism: incentive compatibility, participation,

and optimality. In our scheduling problem we can obtain all three using ~Pj from (7). The payment

function Vj(~Pj) transfers to agent j the net value increment to all other agents that results from j's

participation in the auction. Agent j's only e�ect on others is that it may get time slices that others

desire, so its participation always makes other always weakly worse o�. Thus, Vj is negative for all

j, and the auction mechanism runs a surplus.

Theorem 6 If the GVA uses the payment function W�j � ~Pj then the participation constraint will

be satis�ed and the net monetary payments to the auction mechanism will be nonnegative.

However, the problem statement assumes that the auction mechanism knows the reservation

values qi. If instead the qi are the private information of seller agents, then no mechanism can

obtain more than two out of three of the desired properties. Myerson and Satterthwaite [12] have

proven this impossibility theorem for bilateral exchange problems, some of which are scheduling

problems with seller agents.

Example 7 (Bilateral exchange.) Suppose there are two agents, S and B, and one unit of a

good, which S owns. Let S's reserve value be s and B's be b. Suppose b > s. The GVA would

induce truthful reporting of b and s, give the good to B, require B to pay s, and pay b to S. The

no-revenue-de�cit constraint would be violated for the auction mechanism.

We can always use the GVA to obtain incentive compatibility and optimality, but with an

auction de�cit, by setting, e.g., Pj = 0. Alternatively, the GVA can obtain incentive compatibility

and participation by setting a su�ciently high Pj , which, however, violates optimality because there

is ine�ciently low participation.

5.2.4 GVA Computation

As a baseline for computational e�ciency we note that Neapolitan and Naimipour [13] show that

a simple centralized greedy algorithm solves the single-unit, �xed-deadline scheduling problem op-

timally, in time �(m lgm). For the GVA, the auction mechanism must solve multiple optimization

problems to process the bids. For a single-unit, �xed-deadline problem we can use the centralized

11

algorithm. For the Pj described above, the algorithm is run once to get the optimal allocation,

then again for each agent with its bid removed to determine the price it pays. The total runtime is

�(m2 lgm). Thus, inducing preference revelation (and thereby obtaining full optimality) raises the

auction cost by at most a factor of m; this is the computational cost of distributing the problem via

the GVA.

If we remove the single-unit restriction, then any centralized algorithm that can solve the schedul-

ing problem optimally can solve the Integer Knapsack problem. Hence the multiple-unit scheduling

problem is NP-Complete.4 By the preceding argument, distributing the multiple-unit problem via

the GVA adds at most a factor of m to the computation.

6 Discussion

We have presented two market mechanisms that can compute optimal or near-optimal solutions to

the single-unit distributed scheduling problem in a computationally e�cient manner. The multiple-

unit problem is signi�cantly more di�cult and entails a sharper tradeo� among solution quality,

computational e�ciency, and the degree to which the mechanism is distributed. The computation

performed by the ascending auction is trivial, and can be distributed by goods. However we cannot

guarantee anything about the quality of solutions produced by this mechanism for the multiple-unit

problem. The GVA, by solving multiple combinatorial problems, �nds the optimal solution for this

problem.

We view this work as the �rst important step in developing a broad framework for using markets

to solve distributed scheduling problems. In order to move forward we must identify broader classes

of scheduling problems and develop associated mechanisms such that we can e�ectively predict and

analyze the behavior of the economy. We do not expect to �nd a single mechanism that reaches

equilibrium in all situations where such equilibria exist. However we wish to develop a suite of

mechanisms that collectively cover a broad range of problems. That is, we want to be able to choose

a mechanism for a given problem and know that it will reach or come close to equilibrium when it

exists or else perform acceptably in some other respect when equilibrium does not exist.

We are exploring the theoretical aspects of market mechanisms to support our experimental work

in more complex, real-time network scheduling domains. These domains require more elaborate

models, including multiple-stage scheduling which is necessary when, for instance, data must pass

through several di�erent network nodes. We are in the process of joining our top-down economic

approach with a bottom-up analysis of network scheduling requirements.

Acknowledgments

This work was supported by a DARPA grant from the Information Survivability program.

References

[1] The Michigan Internet AuctionBot web site: http://auction.eecs.umich.edu.

[2] Albert D. Baker. Metaphor or reality: A case study where agents bid with actual costs to

schedule a factory. In Clearwater [4].

[3] Sushil Bikhchandani and John W. Mamer. Competitive equilibrium in an exchange economy

with indivisibilities. Journal of Economic Theory, 74:385{413, 1997.

4The problem can be viewed as pseudo-polynomial because it can be solved via dynamic programming in time

polynomial in the sum of all agent values.

12

[4] Scott Clearwater, editor. Market-Based Control: A Paradigm for Distributed Resource Alloca-

tion. World Scienti�c, 1995.

[5] Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auctions. Journal of

Political Economy, 94(4):863{872, 1986.

[6] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium without complementarities. Technical

report, Princeton University and University of Michigan, 1997.

[7] J. S. Jordan. The competitive allocation process is informationally e�cient uniquely. Journal

of Economic Theory, 28:1{18, 1982.

[8] A. S. Kelso and V. P. Crawford. Job matching, coalition formation, and gross substitutes.

Econometrica, 50:1483{1504, 1982.

[9] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic Theory. Oxford

University Press, New York, 1995.

[10] R. P. McAfee and John McMillan. Auctions and bidding. Journal of Economic Literature,

25:699{738, 1987.

[11] Tracy Mullen and Michael P. Wellman. A simple computational market for network informa-

tion services. In First International Conference on Multiagent Systems, pages 283{289, San

Francisco, CA, 1995.

[12] Roger B. Myerson and Mark A. Satterthwaite. E�cient maechanisms for bilateral trading.

Journal of Economic Theory, 29:265{281, 1983.

[13] R. E. Neapolitan and K. Naimipour. Foundations of Algorithms. D. C. Heath and Company,

Lexington, MA, 1996.

[14] L. S. Shapley and M. Shubik. The assignment game I: The core. International Journal of Game

Theory, 1(2):111{130, 1972.

[15] Michael Stonebraker, Robert Devine, Marcel Kornacker, Witold Litwin, Avi Pfe�er, Adam Sah,

and Carl Staelin. An economic paradigm for query processing and data migration in Mariposa.

In Third International Conference on Parallel and Distributed Information Systems, Las Vegas,

NV, 1994.

[16] Hal R. Varian and Je�rey K. MacKie-Mason. Generalized Vickrey auctions. Technical report,

Dept. of Economics, Univ. of Michigan, June 1994.

[17] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of

Finance, 16:8{37, 1961.

[18] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Je�rey O. Kephart, and Scott Stor-

netta. Spawn: A distributed computational economy. IEEE Transactions on Software Engi-

neering, February 1992.

[19] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible proportional-share

resource management. In Proceedings of the First Symposium on Operating System Design and

Implementatin, November 1994.

[20] Michael P. Wellman. A market-oriented programming environment and its application to dis-

tributed multicommodity
ow problems. Journal of Arti�cial Intelligence Research, 1:1{23,

1993.

13

[21] Michael P. Wellman. A computational market model for distributed con�guration design. AI

EDAM, 9:125{133, 1995.

[22] Peter R. Wurman, Michael P. Wellman, and William E. Walsh. The Michigan Internet Auction-

Bot: A con�gurable auction server for human and software agents. Submitted for publication,

1997.

14

