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Abstract 
 

Within an urbanizing landscape, land is frequently set aside for the preservation of native 

communities and species.  While land protection generally restricts immediate disturbances, 

subtle long-term effects are less well regulated.  To evaluate the biogeochemical impacts 

which urbanization in the surrounding landscape has upon protected areas, 12 protected 

forest sites in Southeastern Michigan USA were stratified in an indirect urban-rural gradient 

and evaluated for overstory composition, ground-cover, and nutrient content in soil and 

foliage.   

 

Within each site, overstory species composition and diameter at breast height were recorded, 

as were ground-cover and soil texture. Overstory basal area, total tree biomass, and foliar 

biomass were calculated.  Soil and foliar carbon and nitrogen concentration and C/N ratio 

were sampled.  Findings included a) a non-linear relationship between housing density and 

urban ecological impacts, b) an increase in housing density in the surrounding landscape 

positively correlated with an increased nitrogen concentration in forest soil, c) an increase in 

housing density positively correlated with an increase in overstory biomass. d)  the region 

was highly nitrogen-rich, with a mean soil C/N ratio of 13.4, e) overstory biomass was a 

strong control on ground-cover, far more so than was the nitrogen content in soil.  Results 

indicate that the halo of urban-ecological impacts exists in landscapes other than linear 

urban-rural gradients, and that the surrounding landscape has long-term impacts on soil and 

plant community composition in a protected area.  Further exploration is required to 

determine the precise scale at which surroundings remain impactful.    
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Introduction 
 The United States has a proud history of wilderness preservation, filled with popular 

icons such as Theodore Roosevelt, John Muir, and Aldo Leopold.  Each of these early 

conservationists actively advocated for the protection of the nation‘s endangered areas.  

Among their accomplishments were the establishment of the national monument system, the 

founding of the Sierra Club, and the popularization of environmental literature.  Due to these 

and similar efforts, wilderness protection went from a niche cause to a national ethic.  

The author Wallace Stegner (1909 - 1993) was a similarly vocal proponent in the 

early battle to preserve American wilderness.  Stegner worked to expand the national park 

system and famously fought dam construction at Dinosaur National Monument (San 

Francisco Public Library 2006).  As an indicator of the author‘s impact, his 1964 

―Wilderness Letter‖ was used to introduce the bill establishing the National Wilderness 

Preservation system.  In this work, Stegner discussed the use of ―wilderness as a genetic 

reserve, a scientific yardstick by which we may measure the world in its natural balance 

against the world in its man-made imbalance (Stegner 1969).‖  Wilderness protection was 

described as a way to defend the natural world against anthropogenic incursions.  Thanks to 

the initiative of Stegner and other early actors, the preservation of native flora and fauna is a 

primary driver behind land protection and preservation.   

Today, the World Resources Institute reports that 15.8 % of U.S. land is protected, or 

―dedicated to the protection and maintenance of biological diversity, and of natural and 

associated cultural resources, and managed through legal or other effective means (World 

Resources Institute 2002).‖  Within the protected label, the level of actual protection varies 
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widely (Joppa et al. 2008).  Protected land ranges from heavily-used city parks to restricted-

access nature reserves, and includes the entire spectrum in-between.   

This paper focuses upon protected terrestrial areas that receive relatively low levels of 

direct and recent human impact.  As high levels of human activity are associated with 

changes in ecosystems (Blair & Launer 1997; Donnelly & Marzluff 2004; Alberti 2005; 

Duguay et al. 2007), low levels of direct impact make these sites an important element of 

conservation planning (Burger & Gochfeld 1998; Piessens et al. 2005).  Yet, minimizing 

direct impacts is insufficient to fully protect many sites.  There is an increasing awareness of 

the important relationship between protected areas and their surrounding landscapes (Matlack 

1993; McKinney 2002; Pouyat et al. 2007). 

While direct anthropogenic impacts are minimized in many protected areas, indirect 

impacts from the surrounding landscape may still encumber efforts at ecosystem preservation 

(Williams et al. 2006).  Increased housing development in the rural landscape has produced 

proximate human impacts in previously isolated areas (Hansen et al. 2005).  Hydrologic, 

biogeochemical, and atmospheric resources are shared between protected areas and their 

surrounding landscapes (Forman 1995).  Modification of the surrounding landscape affects 

these shared resources and potentially impedes ecosystem conservation (Turner & Meyer 

1993; Forman 1995; Thompson & DeGraaf 2001).   

Conversion to residential land-use, which is a specific modification of the 

surrounding landscape, has previously been tied to changes in ecosystem processes (Lepers 

et al. 2005). At the extreme, urban settings have been linked to indirect impacts that include 

increased temperature, precipitation, and nutrient deposition (Botkin & Beveridge 1997; 

Gregg et al. 2003; Jenerette et al. 2006).  These and similar urban effects can extend into 
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nearby protected areas and impede the preservation of native ecosystems (McDonnell & 

Pickett 1990; Alberti 2005; McKinney 2006).  While the above correlations between 

residential land-use conversion and large-scale modifications of ecosystem processes are well 

documented, many others remain indistinct.  Accordingly, there is a documented need for 

clarified linkages between changes in surrounding land-use and altered ecosystem function 

(Niemela 1999a; Andersson 2006; McKinney 2006). 

One such void concerns the link between biogeochemical processes and urbanization.  

Pouyat (2007) argued that urbanizing areas have biogeochemical cycles that differ greatly 

from undisturbed ecosystems, but that the direction, magnitude, and extent of these 

differences are largely unknown.  Documenting these differences is essential for the 

preservation of protected areas, as biogeochemical controls affect the plant and animal life 

extant (Schlesinger 1997; Aber et al. 1998).  

To advance the understanding of biogeochemical processes in an urbanizing context, 

the present study was conducted in Southeastern Michigan, USA.  Field and laboratory 

research was designed to explore carbon (C) and nitrogen (N) biogeochemistry within 

protected areas as a function of surrounding housing density.  Vegetative components were 

also analyzed so as to explore the relationship between urbanization, carbon and nitrogen 

biogeochemistry in soils and plants, and plant community composition. 

Subtle and Obvious Effects 

Clarifying the potential pathways of influences that housing development has upon 

nearby protected areas is a first step towards understanding the interaction between 

urbanization and soil/vegetation biogeochemistry.  These pathways have previously been 

divided into ―obvious effect‖ and ―subtle effect‖ categories (Russell 1993). 
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―Obvious effects‖ constitute those human activities that have clear before and after 

components.  Within a typical park, examples include cutting paths through forests, clearing 

trees for fields, and other general management activities.  Trampling, mowing, and collecting 

biological material cause immediate change to the form and function of the protected area.  

Due to their immediacy, obvious effects demand notice even when their source is unclear.  

During the 1960s, the weakening of avian eggshells was a sufficiently obvious effect to force 

environmental managers to track down the source (Russell 1993).  While the sources were 

diffuse, the effects were obvious, and the pesticide Dichloro-Diphenyl-Trichloroethane 

(DDT) was banned.  Generally, an interested observer can discover obvious effects by 

considering the before and after states of the system.   

By contrast, the biogeochemical changes discussed in this paper are the results of 

―subtle effects‖ sensu Russell (1993).  Subtle effects normally operate at long time scales 

relative to typical observation periods.  Consequently, they cause ecosystem dynamics to be 

altered in ways that are not apparent initially because it is difficult to delineate before from 

after.  Subtle effects are commonly accepted as status quo rather than as anthropogenically 

driven changes.   

A typology has been proposed for considering four kinds of subtle effects 

(McDonnell & Pickett 1993):  (1) ―Indirect effects‖ introduce mechanisms that mediate 

currently functioning processes.  These mechanisms might include an exotic competitor into 

a forest, or a new microbe in the soil. (2) ―Historical effects‖ alter current behavior because 

of an earlier action.  A typical example is land-use change such as a farm converted to a 

forest, where the low carbon content in former farm soil can alter ecosystem behavior for 

decades. (3) ―Lagged effects‖ trigger impacts that take years to become apparent. An 
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example might be the build-up of estrogen in water supplies or chlorofluorocarbons (CFCs) 

in the atmosphere. (4) ―Unexpected actions at a distance‖ are the effects of a far-away action 

as they cascade to affect a protected area.  This might be second or third order results of a 

pollutant release or habitat destruction. 

Subtle effect classes can be used as a framework for the study of urbanization effects 

upon protected areas.  Alterations to biogeochemical cycles frequently result from mediation 

of existing ecosystem function, changes in historic land-use, compounding lagged effects, 

and distant actions.  Lacking clear before or after states, biogeochemical changes can be 

pernicious, yet rarely inspire action.  No single event serves as a catalyst for management 

activity.  Further, biogeochemical changes are difficult to directly mitigate because of their 

scale, pervasiveness, and lack of controls on dominant drivers.  Of particular concern, subtle 

effects can occur even as the protecting agency follows traditional best management 

practices.  As will be shown in this paper, urbanization can subtly alter the biogeochemistry 

of a protected area even while other more obvious impacts are mitigated.   

A better understanding of subtle urban effects on biogeochemistry would enable 

improved and proactive environmental management.  At the present, the knowledge body is 

contradictory, disintegrated, and an inhibitor to effective management practices (Pickett et al. 

2001).  Further research, such as the present study, will help identify significant factors in the 

management of biogeochemical components of protected areas within the matrix of a greater 

landscape. 

Patterns of Urban Expansion 

Human demographic and dispersion patterns drive the need for a more complete 

understanding of the subtle effects of urbanization on the biogeochemistry of soil and 
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vegetation.  The global population of humans is predicted to reach 7 billion in 2012 (Edwards 

2008), with between 39% and 50% of the Earth‘s surface transformed or degraded by 

humanity (Vitousek et al. 1997).  Within the United States, the population is both growing 

and decentralizing (Hansen et al. 2005; United States Census Bureau 2008), and more 

widespread urbanization expected to follow (Alberti 2005).  Trends indicate population 

movement away from metropolitan centers and into low-density suburban and exurban 

developments (Hansen et al. 2005).  Combined with tendencies towards larger residential lots 

and longer commutes (Vesterby & Heimlich 1991; Bram & McKay 2005), the extended 

national footprint of development guarantees human proximity for all but the most isolated 

protected areas. 

In the year 1950, only 6% of counties in the conterminous United States (289,904 

km
2
) were developed at a density of forty acres or less per home (Brown et al. 2005). By the 

year 2000, counties with densities of at least forty acres per home constituted 27% of the 

conterminous U.S. (1.48 x 106 km
2
) (Brown et al. 2005).  Population growth in this period 

was accommodated by expanding the number of counties with 1-40 acres per house, rather 

than adding or intensifying urban counties (less than 1 acre / house).  Consequently, in the 

year 2000, more than 50% of the population resided in low-density urban areas (Hansen et al. 

2005).  The rapid growth of low-density development has increased the number of natural 

areas with proximal human impact (Forys & Allen 2005; Theobald 2005).  

Southeastern Michigan exemplifies the dispersion of the United States population 

across the landscape. According to US Census Bureau Data, in the 10 Michigan counties that 

comprise the Detroit, Ann Arbor, and Flint metropolitan areas, total households increased 

from 1.92 million to 2.08 million between 1990 and 2000. Although regional population 
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increased, the total number of households residing in the four major cities declined from 

494,374 to 455,099.  The disparity between the increase in regional population and the 

decrease in city population represents a shift from urban centers to lower density 

developments (Brown et al. 2008).  Similar dispersal patterns are occurring across the 

country (Brown et al. 2005). 

Patterns of housing development are significant to the present study due to the  

complex suite of biogeochemical effects associated with urbanization (Pouyat et al. 2007).  

Pouyat (2007) argued that the current understanding of factors affecting regional scale 

biogeochemical cycles is incomplete.  Specifically, the intricate relationship between 

urbanization and nitrogen in soil and vegetation is difficult to predict (Groffman et al. 2004; 

Groffman et al. 2006).  In response, the present study focuses upon the connection between 

urbanization and patterns of nitrogen in soil and vegetation at the landscape scale.  

The remainder of the introduction discusses the relationship between the 

biogeochemical nitrogen cycle, human, and plant communities.  A conceptual framework is 

provided concerning the movement of nitrogen from the surrounding landscape into a 

protected area, and the potential subsequent alterations of protected plant communities.  

Ultimately, anthropogenic nitrogen contributions are connected to urbanization. 

Nitrogen – An Anthropogenic Pollutant 

Human actions, such as housing development, are thought to alter landscape-level 

biogeochemical nitrogen (N) cycles (Galloway et al. 2003).  Nitrogen is frequently the 

limiting element in terrestrial ecosystems (Vitousek et al. 1997), and N availability is often a 

determinant of ecosystem composition and productivity (Marshall & Porter 1991; Freedman 

et al. 1996; Schlesinger 1997).  N limitations exist because the N available through natural 
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means such as atmospheric deposition or biological N fixation is significantly below the 

potential uptake of most terrestrial systems (Asner et al. 1997). 

Human actions can contribute N to previously N-limited systems (Vitousek et al. 

1997), with artificial nitrogen fixation and fossil fuel combustion contributing to an 

unprecedented accumulation of reactive N in the environment (Galloway et al. 2003).  

Worldwide, annual reactive N production from fertilizer manufacture (the Haber-Bosch 

process) is approximately 100 Tg, with annual vehicle, power plant, and related emissions 

estimated at an additional 25 Tg (Galloway et al. 2003).  In total, human contributions have 

roughly doubled the annual rate of nitrogen inserted into the terrestrial nitrogen cycle (Asner 

et al. 1997; Vitousek et al. 1997).   

Denitrification, or the process through which N is converted to a gaseous form, has 

not increased at a rate equivalent to artificial nitrogen fixation (Galloway et al. 2003).  With 

total N fixation and denitrification no longer equivalent, excess reactive N now accumulates 

in some environmental reservoirs (Galloway et al. 2003).  Through hydrologic pathways such 

as surface runoff and subsurface leaching, excess nitrogen can reach and accumulate in 

systems downstream from terrestrial systems that receive anthropogenic N inputs (Aerts & 

Berendse 1988; Ju et al. 2004; Fisher et al. 2007).  Introduction of N from the surrounding 

landscape to nitrogen-limited protected areas is a serious concern (Aber et al. 1989; Aber et 

al. 1995).  As an example of this concern, the United States Environmental Protection 

Agency classifies reactive N as a pollutant due to its contribution towards ―nutrient overload‖ 

in terrestrial systems (US EPA 2008).     

  The accumulation of N in unintended environmental locations such as protected 

areas is a significant and subtle human impact.  Carbon accumulation in soil and vegetation is 
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partially dependent upon nitrogen availability (Marshall & Porter 1991; Hungate et al. 2006).  

When additional N is available, N-limited vegetation often use it to increase primary 

productivity and amass additional carbon (Hungate et al. 2006). Limited nitrogen availability 

can inhibit both maximum photosynthetic rates and biomass accumulation in plants (Luo et 

al. 2004; Finzi et al. 2006; Bown et al. 2007).  In an N-limited system, the rate of carbon 

fixation is thus linked to nitrogen availability (Vitousek & Howarth 1991; Asner et al. 1997; 

Aber et al. 1998; Kees-Jan van Groenigen et al. 2006). Correspondingly, stoichiometric C/N 

ratios in soil and vegetation are typically higher in N-poor systems than in N-rich systems 

(Marshall & Porter 1991; Gundersen et al. 1998b; Currie 1999; Blodgett et al. 2005; Pardo et 

al. 2006).   

Nitrogen Dynamics within Protected Systems 

Free reactive nitrogen poses a number of potential threats to protected ecosystems.  

As examples of threats, the effects of nitrogen upon community composition, resilience to 

exotic species and productivity are described below.  These threats are presented as 

exemplars of the kinds of subtle effects which may counteract the aims of land protection 

agencies. 

Within a protected system, N availability is a partial determinant of the growth rate of 

individual vegetative species (Olde Venterink et al. 2001; Henry et al. 2005; Kobe 2006), and 

of the species‘ consequent abilities to effectively compete (Lowe et al. 2003; Hangs et al. 

2004).  Plant species differ in their respective abilities to use additional N, with species that 

derive the greatest benefit being given a competitive advantage when anthropogenic N is 

introduced to a system (Hooper & Vitousek 1998; Olde Venterink et al. 2003).  This 

advantage can allow high N utilizers to outcompete species that derive little benefit from 
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additional N, and can result in an N loaded system with an altered composition relative to the 

previously N-deficient system (Vaitkus et al. 1993; Wedin & Tilman 1996).  Significantly, 

because the species that benefit from excess N are not necessarily the species that currently 

dominate, N addition can change the prominence of species within an ecosystem (Vitousek et 

al. 1997; Bernhardt-Römermann et al. 2007).  This process can be abetted by accompanying 

changes in species specific biomass, which modify relative competitive capabilities (Aerts & 

Berendse 1988; Hager 2004). 

As an example of nitrogen-driven community change, low terrestrial nitrogen levels 

were found to favor selection of short stature plants and perennials in Minnesota grasslands, 

while higher nitrogen levels led to the dominance of long-lived herbaceous and woody 

species (Tilman 1987).  As shown in this example, N addition can alter plant community 

composition.  In a protected area receiving nitrogen inputs from the surrounding landscape, 

such changes in composition could act counter to the goals of the managing agency.   

Additional N inputs pose a second threat to protected ecosystems by potentially 

enabling the establishment of non-native species. Presence of exotic species is frequently 

correlated with high levels of soil nitrogen (Huenneke et al. 1990; Stohlgren et al. 1999). 

While the correlation between exotic species and nitrogen may be driven by many factors, it 

has been suggested that unexploited resources foster potential niches for new species (Davis 

et al. 2000; Levine et al. 2003; Burns 2004).  Excess nitrogen in a protected area can open 

pathways for new species and a consequent alteration of the contained communities.  

Potential effects are varied, but degradation of the native community is a possibility (Mack et 

al. 2000). 
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The final threat discussed here, the relationship between community composition, 

nitrogen, and altered net productivity, is a complex issue with ongoing research (Mittelbach 

2001; Kahmen et al. 2005; Kahmen et al. 2006; Ashton et al. 2008).  While the above 

paragraphs have emphasized that N inputs are frequently associated with increased 

productivity in specific species (Niinemets & Kull 2005), a plant community whose 

composition is altered by additional N inputs may also undergo a net loss in productivity.  

Whether the productivity loss is attributed to a decrease in biodiversity (Tilman et al. 1997; 

Hector et al. 1999), loss of the most productive species (Symstad et al. 1998), or other factors 

(Cardinale et al. 2007), nitrogen inputs can correlate with decreased total productivity.  In 

turn, decreasing a particular community‘s productivity can have effects including alteration 

of nearby community compositions and cascading extirpations of plant species (Freedman et 

al. 1996; Symstad et al. 1998; Wardle et al. 2004).  N inputs, and their frequently surprising 

effects upon ecosystem composition and productivity, may cause undesirable changes within 

a protected area.    

The three ―threats‖ discussed here demonstrate how nitrogen can subtly counter the 

actions of land conservation agencies.  Distant releases of nitrogen mediate ecosystem 

processes within the protected areas, while historic effects play a strong role in determining 

the potential interplay between additional N and current dynamics.  A general lack of data on 

before states makes it difficult to decide whether an ecosystem has entered the after phase.  

Further, knowledge and data challenges make it difficult to even characterize differences 

between ostensible before and after phases.  Fortunately, additional exploration of the 

relationship between nitrogen, carbon and urbanization is being conducted in a number of 

different contexts.  
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Biogeochemical Cycles in Urban Areas 

Past research has indicated that proper management of soil and vegetation 

biogeochemistry near dense population centers needs to incorporate factors which are distinct 

from management in isolated protected areas (Niemela 1999a). Similarly, a recent review of 

long-term urban-rural gradient research concluded that greater emphasis needed to be put 

upon building an anthropocentric model of biogeochemical controls (Kaye et al. 2006).  An 

anthropocentric model of biogeochemistry, which could include factors such as impervious 

surface proliferation, urban atmospheric chemistry, and human-driven landscaping, might 

produce more significant predictions of soil nitrogen and carbon content in an urban context 

than traditional natural control models (Kaye et al. 2006).  As discussed in this paper, the 

aggregate behavior of such built-environment controls could potentially be summarized by a 

landscape scale variable such as housing density.  

The potentially significant effects of nitrogen on unmanaged ecosystems, along with 

increased human presence near protected areas, have fueled a number of long-term 

ecological studies on the effects of urbanization on biogeochemical cycles (Pouyat 1997; 

Baker et al. 2001; Groffman et al. 2004). These studies have been largely inconclusive 

regarding the interaction between urbanization in the surrounding landscape and nitrogen 

dynamics within protected areas (Groffman et al. 2006).  While there has been consistent 

correlation between increased urbanization and increased N mineralization, in each case the 

results have been discounted due to confounding variables.  Along the New York urban-rural 

gradient, a positive correlation between population density and N mineralization in forest 

stands was discounted due to earthworm activity (Pouyat 1997).  Similarly, a positive 

correlation between net N mineralization and urban land-use in North Carolina was criticized 

for insufficiently accounting for urban heat island effects (Groffman et al. 2006; Pavao-



13 

 

Zuckerman & Coleman 2006).  Confounding variables, which are an inherent part of 

landscape-scale ecological research, have complicated the interpretation of urban-rural 

gradient research results. 

While the same ecological processes govern urban and rural biogeochemical cycles, 

the relative importance of the processes differs along the urban-rural spectrum (Niemela 

1999b).  As an example, Groffman (2006) suggested that forest community composition and 

soil-atmosphere fluxes were more strongly influenced by exposure to urban atmospheric 

chemistry than by natural system controls (geology and soil parent material).  Similarly, 

Pouyat (2007) reported that urban controls on soil moisture are significant predictors of N 

storage.  The relative weighting of urban and natural controls along the urban-rural spectrum 

is an area of unexplored interest (Pickett et al. 2001), with consistent patterns of correlation 

between urbanization and nutrient biogeochemistry in soil and vegetation as an elusive goal 

(Pouyat et al. 2007). 

This paper asks the broad question, ―How does urbanization correlate with 

differences in soil nutrient chemistry and plant communities in protected areas?‖  It explores 

land-cover differences as a surrogate of urbanization, and questions whether higher housing 

density in the surrounding landscape correlates with increased nitrogen accumulation in 

protected areas.  Ultimately, it asks, ―Are protection efforts, which are generally geared 

towards inhibiting ‗obvious‘ destruction of ecosystems, being thwarted by the ‗subtle‘ effects 

of biogeochemical cycle alterations?‖ 
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Research Questions 

Points of Interest 

The research questions for this study were designed to address aspects of the 

relationship between urbanization and terrestrial nitrogen accumulation that have not yet 

been explored by the field.  Five points of differentiation from previous research were 

incorporated:  (a) geography, (b) built landscape structure, (c) measure of urbanization, (d) 

definition of protected area, and (e) choice of plant community measures. 

Southeastern Michigan‘s particular combination of housing development patterns, 

terrestrial ecosystems, and climate differentiate this study‘s geography from previous urban-

rural gradient studies.  A state-wide literature search on urban-rural nutrient studies returned 

only 10 results, of which the majority were concerned with aquatic systems.
1
  The omission 

of urbanization factors occurs despite more than one hundred papers published on nitrogen 

cycling in Michigan forests.
2
  A brief review of relevant Michigan forest studies reinforces 

the knowledge gap; the preponderance of forest nitrogen studies were conducted in the rural 

northern portion of the state (Zak et al. 1989; Zak & Pregitzer 1990; Stottlemyer & 

Toczydlowski 1999), rather than the more densely populated southern portion.  Southeastern 

Michigan was conceived as an integral part of the current study, with its geography likely to 

provide new comparative data on both urbanization effects and regional nitrogen trends.  

As the nitrogen cycle is locally self-similar, the distance between Southeastern 

Michigan and previous urban-rural studies is a valuable asset.  The established long-term 

urban-rural research sites (Maryland, New York / Connecticut, and Arizona) are 1,000 – 

3,000 km from the region.  Further, a literature search indicates that few relevant studies have 

                                                 
1
 ISI Web of Science search (5/15/08) on the terms ―Michigan,‖ ―urban,‖ and ―nitrogen.‖ 

2
 ISI Web of Science search (5/15/08) on the terms ―Michigan,‖ ―forest,‖ and ―nitrogen.‖ 
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occurred in the states neighboring Michigan, such as Ohio and Indiana.  As a result, 

biogeochemical research in Southeastern Michigan is distinguished from previous work by 

regional characteristics such as temperature and precipitation.  Michigan‘s mean monthly 

temperature ranges more widely than those of many other states (-10 °C to 29 °C), while the 

area receives an abundance of precipitation (79 cm annually) (Carpenter & Provorse 1998).  

Major soil order also differs between Michigan and other states.  Southern Michigan is 

primarily covered in Alfisols, which differentiates it from Maryland (Ultisols), New York 

(Inceptisols), and Arizona (Aridisols and Entisols) (National Resources Conservation Service 

2008).   

Due to locally distinctive temperature, geology, and precipitation factors, the 

biological components of the nitrogen cycle also differ between Michigan and other states.  

Southeastern Michigan has plant, animal, and microbial communities distinguished from 

those at the long- term research sites.  To sum, Southeastern Michigan‘s particular set of 

nitrogen cycling factors have not yet been subject to a detailed urban-rural comparative 

study, with the differences sufficient to merit independent study of a biogeochemical urban-

rural gradient in the region.       

Southeastern Michigan‘s built landscape structure also differentiates this study from 

previous studies.  Population density ranges from fewer than 40 people / km
2
 in Saline 

Township to 2,647 people / km
2 

in portions of Detroit (US Census Bureau 2008).  The New 

York study region had a similar but narrower range of densities, ranging from 10 people / 

km
2
 in Litchfield, CT to 1,000 people / km

2
 in Westchester, NY (Pouyat 1997).  

Distinguishing the structure of the two regions, the NY population gradient flowed smoothly 

from urban to rural while the Michigan population density changes more abruptly.  New 
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York features an urban core surrounded by irregular rings of diminishing development 

(McDonnell & Pickett 1990).  A 20 km x 130 km belt transect originating near the city 

captured uniform population density across its width, as well as a linear relationship between 

population density and distance from the urban center.  By contrast, Southeastern Michigan 

features a cluster of three distinct population centers (Detroit, Flint, and Ann Arbor) with 

severe and spatially complex population gradients between urban and rural areas.  The rings 

of development surrounding each urban core stand in contrast to the traditional linear 

gradient. 

 The pattern of population dispersion in Southeastern Michigan suggests questions 

about the applicability of traditional urban-ecological effects to a new landscape paradigm.  It 

is unclear whether many ecological impacts related to the urban halo can originate from 

population centers smaller than those in past urban-rural gradient studies.  Similarly, it is 

unclear how urban-ecological effects manifest during a non-linear transition from urban to 

rural extremes.  Southeastern Michigan features concentrated urban areas surrounded by a 

rapid transition to a generally low-density landscape (Liu & Rogers 2007; Southeastern 

Michigan Council of Governments 2008).  The unique urban-rural scale and structure in the 

region guided the questions and methods in this study. 

The precise landscape structure is partially attributable to the chosen measure of 

urbanization.  Previous research has concentrated on measures such as governing township 

classification (as rural, suburban, or urban) or population density (Pouyat 1997; Pavao-

Zuckerman & Coleman 2005).  To integrate this study with previous and ongoing University 

of Michigan research on regional land-cover/land-use, the inverse of housing density (land 

acres / housing unit) was used as the measure of urbanization.  Housing density is generally 
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considered a better measure of settlement area than population count (Zhao et al. 2007). 

Further, this metric allows for future comparisons with the widest portion of the country over 

the greatest time-period (Brown et al. 2005).  Using this metric, questions were structured to 

consider fewer mean acres per housing unit as a proxy for greater urbanization. 

 Among the primary goals for this study was quantification of the effects of 

surrounding housing density on biogeochemical components within protected areas.  

Consequently, the working definition of protected areas excluded sites with active 

management, so as to avoid management actions which could potentially confound site 

observations.  As a further control, protected areas were defined to have a relatively uniform 

and minimal level of recreational use. 

  Forests were chosen as the ecosystem study unit.  As the region‘s unmanaged 

grasslands typically succeed into forests (Kimmins 1987), using mature hardwood forests 

guaranteed some homogeneity in site treatment and history.  Further, there is a previously 

noted body of literature on nitrogen cycling within Michigan‘s forests.  By focusing upon 

forests, soil and plant nitrogen content within research sites could be compared to reference 

data. 

Lastly, this study is differentiated from previous studies through its integration of 

plant community measures at both overstory and ground-cover levels. Ecosystem 

accumulation of N is mediated by interactions among soil, slowly changing vegetation 

(overstory), and rapidly changing vegetation (ground-cover).  The role of the overstory in the 

nitrogen cycle has been well established, with documented linkages between N storage in 

overstory biomass, N withdrawal from soil, and N return through decay (Finzi et al. 1998; 

Fisk et al. 2002; Talbot & Finzi 2008).  As is common in biogeochemical research (Côté et 
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al. 2000; Lovett et al. 2004; Sariyildiz et al. 2005), the current study‘s questions include 

measures of overstory components.  However, this study goes further and investigates 

ground-cover components.  Ground-cover is included because its role in biogeochemical 

cycling is comparatively poorly understood (Small & McCarthy 2005). 

Previous research has suggested several reasons for including ground-cover measures 

in a biogeochemistry study.  Several studies have established the importance of ground-cover 

to nutrient retention (Guntenspergen & Levenson 1997; Compton et al. 1998; Guirado et al. 

2006).  Others have suggested that effective ecosystem management requires an 

understanding of the understory response to changing nutrient conditions (Guntenspergen & 

Levenson 1997; Burton et al. 2005; Duguay et al. 2007).  Still others worry that the low lying 

community could be rapidly altered by changes in soil N (Small & McCarthy 2005).  To 

investigate these gaps in knowledge, the research questions in the present study incorporate 

the biogeochemical interactions between overstory, understory, and soil.  Correlation 

between ground-cover presence and N concentration in soil and foliage is explored. 
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Questions and Hypotheses 

Q1:  Does surrounding housing density affect the nitrogen concentration and C/N ratio in the 

soil and plants in an unmanaged forest site? 

 

H1,1:  With greater housing density around a site, the soil nitrogen concentration will be 

proportionally greater.  

 

Higher housing densities provide many mechanisms that could potentially drive such 

a difference. These include greater heat and precipitation near urban centers, with 

resulting higher rates of litter decomposition and N mineralization, fertilizer use by 

residents, and surface runoff from impervious surfaces.  While these mechanisms will 

not be individually tested for causation, they provide plausible grounds for expecting 

the aggregate effect hypothesized.   

(Botkin & Beveridge 1997; Pouyat 1997; Pavao-Zuckerman & Coleman 2005; 

Groffman et al. 2006; Pouyat et al. 2007) 

 

H1,2:   The stoichiometric C/N ratio in surface soil will be lower in areas with higher 

surrounding housing densities.  

 

Over time, a greater accumulation of soil nitrogen through immobilization is expected 

than any attendant increase in soil carbon.   

 

H1,3:   If soils with higher surrounding housing densities are found to have increased N 

content relative to soils with lower surrounding housing densities, then the woody 

plant tissues at the higher density site will show a lower average C/N ratio.   

 

As the nitrogen is taken in by the plant, the change in plant tissue chemistry may be 

the only manifestation of the increased nitrogen that was once in the soil.  Plants will 

utilize the additional available nitrogen through luxury uptake (Schlesinger 1997).   

 

H1,4:   The influence of housing density will be a significant predictor of soil nitrogen 

chemistry, but will not be more significant than natural controls such as parent 

geology or wetness.  Many studies have found that urban presence is a significant but 

secondary mechanism (Groffman et al. 2006; Pouyat et al. 2007). 

 

  



20 

 

Q2:  Through a decreased C:N ratio in the soil, does surrounding housing density affect plant 

community composition below 1m in height? 

 

H2,1:   If higher N concentration is found in soil with higher surrounding housing density, 

then the plant community composition in urban areas will have a higher percentage of 

herbaceous cover.  In quantifying percent cover of plants in functional groups in the 

ground-cover layer (< 1m height), there will be statistically significant increases in 

forbs and grass relative to woody plants. 

 

Looking at an old field, previous studies found that biomass of herbaceous species 

increased proportionally to nitrogen addition (Tilman 1987).  In a forest, assuming the 

amount of understory light is kept constant between sites, increased nitrogen 

availability should increase herbaceous biomass.  

 

Q3:  Does surrounding housing density, through an increased N concentration in soil, affect 

the composition of the overstory woody plant community? 

 

H3,1:     If higher N concentration is found in soil with higher surrounding housing density, 

lower diversity in woody plants will be observed.  

 

Tilman (1987) found that plots receiving high rates of nitrogen addition were 

dominated by long-lived herbaceous species and woody species that are taller at 

maturity.  Similarly, Groffman (2006) argued that forest community composition and 

soil atmosphere fluxes are more strongly influenced by exposure to urban 

atmospheric chemistry than by natural system controls.     

 

In a high N availability environment, woody species will be biased towards those 

species that are capable of thriving in the stresses placed by the urban environment 

and will be dominated by a few species.   

 

Q4:  Woody plants in urban ecosystems have been found to more rapidly accumulate biomass 

than equivalent plants in a rural setting (Gregg et al. 2003). Does this occur in the spatially 

complex urban-rural gradient of Southeastern Michigan?  Is the overstory woody biomass 

related to nitrogen content in soil?  

 

H4,1:   Urban sites will show greater woody biomass as a result of relatively higher nitrogen 

accumulation.  Regardless of stand age, forest areas with high surrounding housing 

densities will have a larger total woody plant biomass as calculated through 

allometry.  This biomass difference will correlate with higher levels of nitrogen 

content in soil. 

 

H4,2: Plant community composition will be more highly influenced by urban controls 

(location relative to surrounding housing density) than natural controls (calculated 

soil wetness or texture) (Niemela 1999a; Groffman et al. 2006; Kaye et al. 2006).   
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Methods  

Site Selection 

As discussed above, the study was conducted in a subsection of Southeastern 

Michigan, USA (Figure 1).  Within Southeastern Michigan, six counties totaling 10,522 km
2
 

(Jackson, Livingston, Macomb, Oakland, Washtenaw, and Wayne) were selected as the 

formal study area.  This study area contains the urban centers of Detroit (population 

918,849), Ann Arbor (population 114,024) and Jackson (population 36,316), as well as large 

expanses of medium and low density development (US Census Bureau 2008).  The urban 

center of Flint (population 124,943) was excluded from this study.  Factors contributing to 

the selection of the specific study area included the ability to traverse the region in a single 

day, the wide range of housing densities present, and the suitability of the contained 

protected areas.  

Previous research by the non-governmental organization Ducks Unlimited produced a 

geographic information system (GIS) database of Conservation and Recreation Lands 

(CARL) in the Great Lakes States of Michigan, Indiana, Ohio, and Illinois (Wilcox & 

Macleod 2008). In Michigan, the CARL database contains land owned by public entities, 

private land protected by conservation organizations, and public and private land with 

conservation easements.  Within the project boundaries, the CARL database designates 886 

km
2
 (8.4%) as conservation or recreation lands (Figure 2).  Golf courses and athletic fields 

are included in this number alongside information on forests, wetlands, and other traditional 

conservation areas. 

 To calculate the housing density in the landscape surrounding a CARL area, Census 

2000 block groups were imposed upon the study area (US Census Bureau 2008).  With the 
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large extent of the project area, block group resolution offered an advantageous compromise 

between high detail and rapid computer processing.  Additionally, block groups are the finest 

resolution for which the US Census Bureau publishes long form survey information. This 

allowed for the potential inclusion of demographic data in future analyses.  Finally, census 

block groups have been used in several other relevant studies in the School of Natural 

Resources and Environment, thereby allowing cross-pollination between data resources. 

 Based on Taylor (2008), housing density was operationally defined as mean land 

acres per housing unit (LA/HU).  This proxy for housing density is inverted in that a smaller 

value indicates a greater urban presence.  Using land area, as opposed to total area, allowed 

for better comparison of the developed landscape in a region with widespread hydrologic 

resources. To calculate land area, hydrologic feature data were acquired from the Michigan 

Geographic Data Library (Michigan Center for Geographic Information 2008).  The 

hydrologic features within each block group were then subtracted from that block group‘s 

total area in order to produce land area.  Total housing units in each census block group were 

acquired from Census 2000 data. LA/HU was calculated by dividing land acres by housing 

units in each census block group. 

 Including protected areas within the ―land area‖ metric distinguished it from a 

measure of developable land (Wolman et al. 2005; Taylor et al. 2007). Wolman (2005) 

identified a number of biases associated with the inclusion of non-developable land in a 

metric of urbanization, but noted the challenges inherent in identifying subjective 

development metrics such as topography, soil properties, hydrology, and zoning.  Given that 

these physical and socio-political properties are not easily identified in a comprehensive 

manner, the simple metric of land area was used. 
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 Based on Taylor (2008), each census block group was classified into one of four 

categories of housing density (Table 1).  Each CARL area was assigned a mean LA/HU 

based on the census block group it overlaid.  When a CARL area crossed into several census 

block groups, the CARL area was split and each portion was assigned the value of the census 

block group which it directly overlaid.   

CARL areas, coded by LA/HU, were compiled into a list of sites that potentially 

contained patches of mature contiguous forest larger than one hectare (10,000 m
2
).  Sites 

were selected so as to avoid ―obvious‖ anthropogenic impacts such as management or heavy 

use.  State and federally managed sites were removed in order to avoid potential access 

delays. The resulting site list contained approximately two hundred forest sites which were 

managed by non-governmental organizations or local governments.   

Satellite photographs were used to examine the remaining sites for contiguous and 

mature forests with proximate road access (Google 2008).  Site managers were contacted and 

questioned about specific management practices and usage trends at the sites.  

Comprehensive landscape-altering actions such as mowing, controlled burns, or removal of 

vegetation disqualified a site.  Large conservation areas where management activities were 

restricted to a region distant from the proposed research plot were allowed.  Ultimately, a 

final list of 30 sites was produced. 

From the final list, sites were visited in order to confirm the remotely sensed 

information and determine a set of appropriate research locations for an indirect urban-rural 

gradient (McDonnell et al. 1993).  An indirect gradient is traditionally used when underlying 

factors cannot be ordinated by linear distance, but are rather grouped by ecosystem, 

population, or other landscape parameters.  Three CARL areas were selected in each of the 
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housing density classes (Figure 3).  Field work at these sites was conducted between June 1 

and July 27, 2007.    

Plot Design 

A single 20 m x 50 m research plot was established in each site. Within the site, plots 

were located in edge locations in order to focus on the potential effects of the surrounding 

landscape.  Because the experiment tested the influence of the exterior urban matrix, elevated 

nitrogen levels were expected to be most likely detected in the soil and vegetation at the edge 

of a site.  If elevated nitrogen was found in these locations, future research could be designed 

for interior portions of the forest.  

At each site, a point 10 meters from the forest‘s southern edge was identified.  If the 

southern edge was inaccessible, the eastern edge was used, followed by the western.  Due to 

its diminished relative quantity of sunlight, northern forest edge was never used.  Forest was 

defined by a minimum standard of closed tree canopy and touching crown branches of 

adjacent trees.  Large expanses of sky could not be visible through the forest canopy, 

however due to the large size of the plots and the edge location, occasional holes in the 

canopy were possible. Starting with the marked 10 m point, a 50 m transect was run parallel 

to the forest edge.  This transect determined the exterior border of the research plot.  From 

this line, the remainder of the 20 m x 50 m research plot was constructed.   

A qualitative description was recorded of each site and the immediately surrounding 

landscape (Appendix 1).  This included topography, surrounding features, location within the 

site, and photographs.  A GPS unit was used to record the spatial coordinates of the four plot 

corners.  



25 

 

Site Measures 

  In order to avoid trampling, ground-cover was sampled first.  This was followed by 

woody plant identification, soil sample collection, and leaf tissue collection. 

Based on Bonham (1989), the ground-cover was operationally defined as the 

percentage of ground surface covered by living plant material between the ground and a 

plane 1 m in height.  Within the category of living plant material, the operational definition 

included trunks and stems of vegetation which exceeded 1 m in total height.  Bare ground 

and ground level obstructions were also recorded.  Plot design was adapted from the 

Modified-Whittaker plot design (Stohlgren et al. 1995).  As ground-cover can be interpreted 

differently depending upon measurement technique (Stohlgren et al. 1998), three different 

methods were used for recording ground-cover.  Ten 5 m x 1 cm transects were set up in the 

center of the plot, ten 1 m
2
 (.5 m x 2 m) subplots were set up along the plot borders, and two 

10 m
2
 (5 m x 2 m) subplots were set in opposite plot corners (Figure 4).  Within their zones, 

1 m
2
 subplots

 
and 5 m transects were distributed through a stratified random technique.  Data 

were collected on grass, sedge, woody plant, forbs, and obstructed cover using standard 

methods (Bonham 1989). 

Each of the 1 m
2  

subplots was observed using a pvc frame with border markings 

delineating 1% squares.  A hypothetical 1 m column extending upwards from ground level in 

each 1% square was evaluated for presence or absence of each cover type.  If a cover type 

existed within a 1 m x 1% column, then the area received presence credit for that cover type.  

This was done for each cover type in each 1% square.  Cover types were collated by subplot, 

and rounded to the nearest 5%.  The 10 m
2
 subplots were measured by applying the 1 m

2
 

frame ten times. The 5 m x 1 cm x 1 m transects were measured using a similar technique, 
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but with a 1 cm horizontal resolution.  Each cover was separately quantified, which resulted 

in an aggregate percent cover that frequently exceeded 100%. 

Following Bonham (1989), specific methods were used in the calculation of each 

cover type.  Examples include counting visible roots as woody plants and gathering grass so 

that only the base of each grass clump was measured.  Other than grass, plants were 

measured as they lay, so horizontally growing plants generally counted for a greater 

percentage of cover than an equivalently sized vertically growing plant.  Obstructions were 

counted only if the ground on a complete (or nearly complete) 1% square was blocked.  Bare 

ground was recorded if no other cover type was present in a 1 m by 1% column.   

 Once ground-cover measures were completed, all trees in the research plot with a 

diameter at breast height (DBH) greater than 1 cm were identified to genus.  Using genus, 

rather than species enabled a more rapid assessment of woody plant diversity with little loss 

in fidelity (Balmford et al. 1996a; Balmford et al. 1996b).   Following common practice, 

breast height measurement of trees was recorded at 1.39 meters from the ground (Bonham 

1989).  Trunks that split below breast height were recorded as two separate trees.   

At each site, leaf samples from approximately twenty trees were acquired.  A leaf 

sample constituted 5-10 healthy sun leaves from a measured tree.  Samples were clipped 

using pruning shears attached to a two meter pole.  Efforts were made to ensure that leaf 

sample composition reflected site composition, but there were some difficulties with genera 

such as Juglans (walnut) and Quercus (oak) which frequently had no leaves within reach.  

Leaf samples were labeled by genus, site, and sample number, and then placed into 

individual kraft paper bags.  
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Four stratified soil samples were taken at each site.  The plot was divided into 4 

segments along the 50 m axis, and soil samples were taken at typical locations within each 

segment.   Soil sample locations were always within 3 m of a tree trunk.  Woody debris and 

leaf litter was cleared from the forest floor, and a 3 cm x 17 cm (width x depth) sample was 

removed from the ground.  The sample was placed in an airtight plastic container, and 

labeled with site, sample number, and geographic coordinates. 

Analysis of Field Samples  

Leaf and soil samples were oven dried immediately following collection. Leaf 

samples were dried in a forced air oven at 67° C, while soil was dried in a gravity convection 

oven at 105° C.  Samples were then stored in a climate controlled room for up to two months 

until all field work had been completed.  At the mid-point of field work (July 1, 2007), all 

leaves were redried to 67° C.  Post drying, soil samples were sieved through a 2 mm filter.    

To account for the confounding effects of texture on the nitrogen content of soil (Côté 

et al. 2000), soil samples were analyzed for texture using standard hydrometer methods (Gee 

& Bauder 1986).  According to the United States General Soil Map (STATSGO2), the study 

region varies in soil class, with portions composed of Erie-Huron Lake Plain, Southern 

Michigan and Northern Indiana Drift Plain, and Indiana and Ohio Till Plain (Figure 5) 

(National Resources Conservation Service 2008). 

Soil and leaf samples were analyzed for carbon and nitrogen content by dry 

combustion in a Carlo Erba NC 2500 elemental analyzer attached to a Thermoquest-Finnigan 

mass spectrometer.  To prepare the samples, leaves were ground in a Wiley mill and soil was 

ground in a ball mill.  Ground samples were weighed and placed in tins for incineration.  
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Leaf and soil samples were processed in separate runs.  Excluding duplicates, 241 leaf 

samples and 48 soil samples were analyzed. 

 Total foliar carbon and nitrogen at each site was calculated using C and N 

concentrations and allometric equations (Williams & McClenahen 1984; Boerner & Kost 

1986; Harrington et al. 1989; Perala & Alban 1993; Ter-Mikaelian & Korzukhin 1997; 

Martin et al. 1998; Singh 1998; Chifflot et al. 2006; Jenkins et al. 2007).  In order to use 

species specific allometric equations with genus-level data, US Forest Service Forest 

Inventory and Analysis Program data on stem count were acquired for the study region 

(USDA Forest Service 2006).  The most prevalent three species of each genus were 

identified, as well as their relative proportions of the genus‘ stem count.  Allometric 

equations were identified for each species, and the foliar biomass of each field-measured tree 

was calculated with each equation.  A composite foliar biomass was then created for each 

tree by proportionally weighting the species specific foliar weights by the species‘ 

prevalence.  Foliar mass was summed by genus at each site.  

At each site, leaf sample carbon and nitrogen concentrations were averaged by genus.   

Expressed as a mass percentage, these values were multiplied by the foliar mass of that genus 

and summed to produce total foliar carbon and nitrogen at each site.  C/N ratio was then 

calculated for each site. If a particular site was missing a leaf sample, the average value for 

that genus from all other sites was used.  Juglans, of which there were no leaf samples, had 

carbon and nitrogen values calculated as an average of other members of the family Fagales 

(Carya + Quercus).  For a few small shrubs with negligible biomass, leaf values were treated 

as the respective site‘s average. 
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Allometric whole tree biomass was calculated in a similar manner, but whole tree 

biomass equations were used rather than foliar biomass equations. 

 

Topographic Analyses 

After determining precise plot location, GIS analyses were conducted on the 

landscape surrounding each plot.  Housing density was examined at several scales, and 

topographic variables such as elevation, surface flow accumulation and aspect were 

calculated. 

Housing density in the landscape surrounding each site was recalculated at several 

scales.  In initial calculations, each CARL area had been attributed the housing density of the 

census block group which it overlaid (point value).  If neighboring census block groups 

differed in housing density, sites which were located near a census block group border may 

not have been well represented by the point value calculation. 

A more nuanced housing density was calculated after precise locations of sites were 

known. Using GPS plot locations, point values were compared to area weighted averages of 

the census blocks groups within circles of 100 m, 1,000 m, and 10,000 m radii from a plot‘s 

centroid.  This analysis, conducted in STIS 1.62 (Terraseer 2008), revealed whether a site‘s 

point value was representative of the surrounding landscape.  As an example, if the landscape 

surrounding a site contained census block groups with greater housing densities than the 

block group containing the site, a larger scale calculation produced a higher density.  This 

analysis was most significant to those sites which were located near the border of a census 

block group.  By recalculating housing density at several scales, a more representative 

depiction of sites was created.  The reweighting still does not truly account for housing 
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density, as census block groups are themselves averages, but does provide a more complete 

picture of the variability in housing density around each site.   

 Using 30 m resolution digital elevation maps (DEMs) acquired from the Michigan 

Geographic Data Library, elevation, aspect and topographic index of wetness were calculated 

in ArcGIS 9.2 (Figure 6) (ESRI 2007; Michigan Center for Geographic Information 2008). 

Site elevation and aspect were calculated by averaging elevation values within a 100 m 

radius of the plot centroid.  To avoid circular math issues while averaging aspect, appropriate 

procedures were followed (Davis 1986). 

Calculating topographic index of wetness (w) allowed relative comparison of surface 

runoff received by each site.  Wetness was calculated as a function of upward catchment area 

(Ax) and slope (𝛽) as in eq. 1 (Beven & Kirby 1979).   

  

 𝑤 = loge⁡(𝐴𝑥/ tan𝛽 )     (eq. 1)    

   

 

The wetness calculation was processed in ArcGIS 9.2.  Catchment area was derived using the 

flow accumulation function according to the steps outlined in the program documentation 

(ESRI 2007).  Slope was derived from the DEM and sinks were removed from the DEM 

before flow accumulation was processed.   

Loge Transformation of Housing Density Proxy 

The categorical classification scheme used for housing density (Table 1), which was 

designed to recognize distinctions in urbanization, has categories with progressively wider 

ranges of density.  With an equivalent number of research sites in each density category, the 

non-linear scheme produced a research site distribution which is skewed towards the densest 
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end of the histogram. Consequently, a histogram of land acres per housing unit by research 

site indicates a left skew (Figure 7). 

  To normalize the distribution of sites, a loge transformation was used on the housing 

density variable (Figure 7).  Three factors argued for this transformation.  First, the left skew 

in the sites‘ housing density distribution does not match the assumed normal distribution for 

the dependent variables. Bivariate linear regression assumes equivalent distributions for all 

variables (assumption of linearity).  Second, without transformation, the rural sites 

disproportionately leverage the regression.  Lastly, a linear relationship between acres per 

housing unit and biogeochemical variables is intuitively unlikely.  The change from 40 to 39 

acres per unit is visually less dramatic on the landscape than the change from 2 acres per unit 

to 1.    

A loge transformation of LA/HU reduces the left skew and resolves the three issues 

discussed above by improving the fit between the variables‘ distributions, reducing leverage, 

and producing a more intuitively plausible relationship. 

As a note, trend lines show that the average (100 m, 1,000 m, 10,000 m scale) LA/HU 

at each site generally maintained the ordinal relationship calculated by a 100 m radius 

(Figure 8). This simplifies analysis, as a site presumed to be embedded in a landscape of 

relatively higher housing density generally maintains that ordinal position relative to other 

sites even as the scale of calculation increases. 

Statistical Methods 

Three statistical models were used to evaluate study results. Moran‘s I was calculated 

to evaluate spatial autocorrelation of sites.  Summary linear regressions were used to test 

statistical hypotheses, and a linear mixed model was used to compare contributing factors.  
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Together, the statistical models illustrate correlations between site features and the 

surrounding landscape. 

The study sites were evaluated for a factor which was spatially affecting the entire 

landscape.  Example factors include landscape scale gradients such as soil or elevation which 

affect N concentration in soil.  Evidence of a whole landscape control might manifest as a 

combination of highly similar nearby sites and highly dissimilar distant sites (spatial 

autocorrelation).   Most importantly, a test of spatial autocorrelation can identify whether an 

unaccounted factor is causing spatial similarity.   

Moran‘s I is a commonly used measure of spatial correlation (Moran 1950; H. 

Kelejian & Prucha 2001).  Global Moran‘s I measures overall spatial correlation, while local 

Moran‘s I is used to detect local spatial autocorrelation by breaking the global form into 

contributions from each location (AvRuskin et al. 2004).  Using tests of global and local 

Moran‘s I, spatial correlation between data points can be evaluated.  Tests of Moran‘s I were 

run in STIS 1.62 on mean % N in soil, C/N ratio in soil, % N in foliage, and C/N ratio in 

foliage (Terraseer 2008).  An inverse distance weighted matrix was used. 

All remaining statistical analyses were run in SPSS 15.0 (SPSS 2007).  Hypotheses 

relating to site means were tested with summary linear regressions.  In order to incorporate 

the internal variability in measures that were taken repeatedly at a single site (such as soil N 

concentration), an additional multi-tiered analysis was pursued through a linear mixed model.  

By using a tiered approach like a linear mixed model, estimates of standard error are 

improved and rates of Type I errors are decreased as compared to a summary regression 

(Breslow & Clayton 1993; McCulloch 2003).  Akaike‘s Information Criterion (AIC), rather 

than R
2
, is typically used to compare relative performance of linear mixed models (Vonesh et 
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al. 1996).  Significant differences in linear mixed model performance were measured through 

chi-squared goodness of fit tests. 

The linear mixed model was run with heterogeneous compound symmetry 

covariance.  This model structure is used with data sets that have non-constant variance 

between a grouping variable, but constant correlation within that grouping variable (SPSS 

2007).  In this dataset, the model structure implies that the relationship between sites varies, 

but within each site the samples share the same variance structure.   

When comparing models, ―intercept-only‖ or ―null model‖ refers to a model with no 

independent variables other than a constant. 

Analysis of Vegetation Datasets 

 Three ground-cover datasets were produced (1 m
2
 plots, 10 m

2
 plots, and 5 m x 1 cm 

transects).  This dataset structure necessitated aggregation for a comprehensive analysis of 

each internally heterogeneous site.  For regression analysis, datasets were given equal 

weighting and averaged at each site.  For linear mixed model analysis, individual 

observations were standardized so that each dataset was given equivalent weight.   

Woody plant community composition was studied along size and composition axes.  

In terms of size, the above-ground biomass, foliar biomass, and basal area of each site were 

calculated through allometry.  These data points, along with the number of trees, illustrate the 

physical size and maturity of a site. 

To evaluate composition, the Shannon Diversity Index was calculated for each site.  

This index allows for the examination of both the species richness and relative abundance at 

each site.  Together, the size and composition dimensions allow for a relatively complete 

portrayal of the woody plant composition at a site.  The Shannon Diversity Index was 
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calculated from genus-level data.  While using genus-level data has been shown to lead to an 

decrease in measured diversity, the relative diversity estimations can prove useful (Guerold 

2000).   The Shannon diversity index is normally expressed as (Morin 1999):  

 

(𝐻′ = − 𝑝𝑖 loge 𝑝𝑖
𝑆
𝑖=1 )    (eq. 2)     

 

 

Where, S is the species richness or count (or in this case, genus richness), and Pi is the 

relative proportion of individuals of a species (or in this case genus) to the total number of 

individuals in the community.   
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Results 

Relationship between Loge LA/HU and N concentration in Soil 

 Nearby sites did not possess significantly more similar soil N concentrations than 

distant sites (Moran‘s I = -0.16, p = 0.16). It can be concluded that factors other than a single 

continuous landscape-scale gradient affect the N concentration in soil.  Similarly, no 

statistically significant clusters of sites were found with similar N concentrations in soil  

Results indicate that protected areas with higher housing density in the surrounding 

landscape had higher soil nitrogen concentrations (Figure 9).  While a summary regression 

showed this relationship (R
2 

= 0.26) was significant only to α = 0.10, a linear mixed model 

showed that incorporating housing density significantly improved the model (p < 0.01) over 

the null model.  Relatively higher housing density in the surrounding landscape was a 

significant indicator of increased N concentration in soil.   

The effect of housing density in the surrounding landscape upon soil nitrogen 

concentration may depend upon soil texture (Figure 10).  Lower sand content in soil 

indicated a stronger relationship between housing density in the surrounding landscape and 

soil N concentration (R
2 

= 0.47, p = 0.01).   While the interaction of housing density and soil 

texture is worthy of further exploration, linear mixed models featuring an interaction term did 

not perform significantly better than models featuring housing density alone (χ
 2

 goodness of 

fit test, p = 0.15). 

Stoichiometric C/N Ratio in Soil 

The study region possessed a mean soil C/N ratio (by mass) of 13.43 with a standard 

deviation of 1.59.  Only one of the 48 soil samples had a C/N ratio which exceeded 18 

(Figure 11).  Housing density in the surrounding landscape was not a significant control of 

stoichiometric C/N ratio in forest soil (Table 4).   
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While model performance was best at the 1,000 m scale, model results for both N 

concentration and stoichiometric C/N ratio in soil indicated there was little difference in 

model performance when density was calculated at either the 100 m or 1,000 m scale (Table 

4).  Consequently, all further analyses were conducted at the 1,000 m scale. 

Foliar Nitrogen Concentration and C/N ratio  

The housing density in the surrounding landscape did not have a significant effect on 

foliar nitrogen content in Southeastern Michigan protected areas.  There was little 

relationship between loge LA/HU and foliar nitrogen concentration (R
2
 = 0.11 p = 0.30) or 

C/N ratio (R
2
 = 0.06. p = 0.46).  Similarly, the relationship between soil nitrogen 

concentration and foliar C/N ratio was insignificant (Table 5).   

Comparison between Housing Density and Geologic/Topographic Controls 

 While higher housing density in the surrounding landscape generally indicated 

higher mean soil nitrogen concentration in a protected area, geologic and topographic (GT) 

factors were generally better predictors of the same (Table 6, Figure 12).  As an example, 

sites at higher elevations generally had lower soil mean nitrogen concentrations (R
2 

= 0.52, p 

< 0.01), and elevated sites with high sand content tended to have the lowest mean nitrogen 

concentrations (R
2
 = 0.82, p < 0.01). Elevation derived variables such as aspect and 

topographic index of wetness were also significant predictors of mean soil nitrogen 

concentrations in a protected area, with wetter sites likely to have higher mean nitrogen 

concentrations in soil.        

  While the GT variables were generally better predictors of mean site nitrogen 

concentration, housing density and GT based models performed equally well when 
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considering all soil samples at a site (AIC of 137 vs. 140, Table 6).  When internal site 

variability is considered, GT variables and housing density are roughly equivalent predictors.   

The landscape structure did not control soil C/N ratios, as soil C/N ratios were 

uncorrelated to GT variables (Table 6).  Housing density and GT variables were equally poor 

predictors of soil C/N ratio. 

Surrounding Housing Density and Ground-cover 

In Southeastern Michigan protected areas with controlled management and use, the 

surrounding housing density did not have a significant effect on ground-cover (Table 7).  

This statement is limited to the ground-cover categories of woody plants, forbs, and bare 

ground, as little grass or sedge was encountered during fieldwork.  No significant 

relationships were found between ground-cover and soil N concentration.      

Regardless of soil nitrogen concentration or C/N ratio, results showed that overstory 

biomass was a strong control on ground-cover composition (Figure 13).  While not included 

in the hypotheses, an increase in site overstory biomass correlated with an increase in bare 

ground (R
2 

= 0.67, p < 0.01) and a decrease in woody plant ground-cover (R
2  

= 0.37, p = 

.04). 

Housing Density and Overstory Woody Plant Composition 

Sites varied in overstory woody plant characteristics such as stem count, basal area and 

biomass (Figure 14).  The majority of sites (7) possessed stem counts of 150 to 200 trees.  

When the site with the fewest stems and lowest biomass is excluded, protected areas 

surrounded by lower density housing have predictably lower total overstory biomass (R
2 

= 

0.60, p < 0.01) and basal area (R
2 

= 0.44, p = 0.03).  . 
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Contrary to the mechanism proposed in the hypotheses, nitrogen concentration in soil 

may not be the driver behind the relatively higher overstory biomass at urban sites.  While 

nitrogen concentration in the soil was found to be higher at sites with greater housing density 

in the surrounding landscape, the relationship between biomass and soil nitrogen 

concentration is statistically insignificant (R
2 

= 0.02, p = 0.72).   

 In terms of composition, 2,027 trees were identified across the study region.  The 

trees possessed a mean dbh of 9.82 cm and a standard deviation of 12.22 cm (Figure 15).  

While 24 total genera were encountered, the three genera Acer, Carya and Quercus 

accounted for 83.7% of total biomass and 74.1% of total basal area.  Stem count was 

dominated by Prunus, Quercus, Ostrya, and Acer, which accounted for 67.3% of total trees.  

In eleven genera, less than 25 stems (1% of total) were encountered.  Rhamnus and Robinea 

featured the highest foliar nitrogen content (Table 8).  

Surrounding housing density does not significantly affect site woody plant diversity 

through an increased N concentration in soil.  The mean Shannon index (calculated by genus) 

for the twelve sites was 1.52, with a standard deviation of 0.44 (Figure 16).  Correlation 

between Shannon index and N concentration in soil was poor (R = 0.06, p = 0.86), as was the 

correlation between Shannon index and loge LA/HU (R = 0.24, p = 0.45).    

In this subset of protected areas, diversity appeared to be controlled by tree count and 

foliar chemistry.   Shannon index was best predicted by a regression model including the 

variables: number of trees, foliar N concentration, foliar C concentration, and foliar C/N ratio 

(Adjusted R
2 

= 0.56, p = 0.04).  Given that foliar chemistry and number of trees are 

statistically uncorrelated with housing density, housing density in the surrounding landscape 

has little effect on Shannon index.    
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Discussion 

Nitrogen Content in Forest Soil and Housing Density in the Surrounding Landscape 

As seen above, a statistically significant positive correlation was found between soil 

N concentration in protected areas and the housing density in the surrounding landscape.  

Current study results showing predictably altered soil N concentrations along an urban-rural 

gradient are consistent with previous research corresponding urban land-cover with increased 

N mineralization in Arizona, Maryland, New York, and North Carolina (Pouyat 1997; Zhu & 

Carreiro 2004; Hope et al. 2005; Pavao-Zuckerman & Coleman 2005; Szlavecz et al. 2006).  

While the present study did not measure N mineralization, increased N concentrations are 

consistent with increased N mineralization (Aber et al. 1995), especially in the presence of 

low forest soil C/N ratios (Gundersen et al. 1998a; Gundersen et al. 1998b).  Current study 

results, which were based upon census block group housing densities, support the impact of 

landscape-level anthropogenic controls on soil nitrogen content within protected areas.  

Current study results question arguments that surrounding urban land-use has an 

unpredictable effect on forest soil N dynamics (Groffman et al. 2006). While supporting the 

role of geologic and topographic factors as an important determinant of N dynamics, current 

study results reinforce the correlation between urban presence in the surrounding landscape 

and increased soil N content.  A consistent but weak empirical association is consistently 

found between surrounding urban land-cover and predictably altered N dynamics. 

Comparison between Housing Density and Geologic/Topographic Controls 

While the current study found a relationship between housing density and soil 

nitrogen concentration, results indicated a general preference for geologic and topographic 

(GT) variables when predicting soil nitrogen concentration.  GT factors generally explained a 

greater portion of the data than housing density alone.  Incorporating both GT and 
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urbanization factors (such as loge LA/HU x % sand) anecdotally improved predictive 

abilities, but did not produce a statistically significant improvement.   

The general preference for GT models is consistent with other research in the field 

(Groffman et al. 2006; Pouyat et al. 2007).  As a proxy for ecosystem process, GT controls 

were generally simpler to understand and correlated more directly with mechanistic 

explanations.  For example, the flow of nitrogen-filled runoff is a mechanistic hypothesis for 

the correlation between elevation and N concentration in soil. By contrast, housing density-

based variables were generally more complex surrogates for a host of factors.  The urban heat 

island, surrounding impervious surfaces, fertilizer use, agricultural abandonment, 

biogeochemical hotspots and other urban correlates are all wrapped into a single proxy 

variable.  The aggregate approach is an interesting phenomenon, but is mechanistically 

unclear.  

 Current study results indicated significant correlations between housing density in 

the surrounding landscape and ecosystem responses (increased N concentration in soil and 

increased overstory biomass) and beg questions about the particular component of 

surrounding urban land-cover that drives the response.  Future research should investigate 

whether the same mechanism operates at every site, or whether the conglomeration of 

different mechanisms tends to act in certain fashion.  The McDonnell (1993) framework is 

useful for future disaggregation of these variables.  Breaking subtle urban biogeochemical 

effects into the mechanistic categories of ―indirect effects,‖ ―historical effects,‖ ―lagged 

effects,‖ or ―unexpected actions at a distance‖ may provide further insight.  A single of these 

framework effects may be dominant. 
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Nitrogen Availability in the Study Region 

While a large number of sites (12) were sampled in the current study, soil 

stoichiometric C/N ratios were uniformly low.  As previously stated, mean soil C/N ratio for 

the study region was 13.43 with a standard deviation of 1.53 (Figure 11).  The recorded range 

of values was narrow with no sample C/N ratio above 19 or below 11.  Soil C/N ratios at this 

low level are potentially problematic, as they frequently indicate nitrate leaching (Gundersen 

et al. 1998b). While direct comparison between studies is hampered by differences in soil 

horizons sampled and sampling technique, Gundersen (1998b) argued that nitrogen 

saturation begins when forest floor C/N ratio is below 25.  Correspondingly, it can be 

inferred that forest soil in Southeastern Michigan is highly N-rich relative to carbon content.   

Current study results are consistent with results from Michigan and other areas of the 

northeastern United States.  As a reminder, current study soil sampling technique excluded 

the high C/N ratio leaf litter layer, and combined Oe, Oa and upper mineral soil to a depth of 

17 cm.  By comparison, in Oe horizon samples, a mean soil C/N ratio of 20.6 was found in 

Northern Lower Michigan forests (Zak & Pregitzer 1990).  Similarly, in the White Mountain 

Region of New Hampshire, a mean C/N ratio of 18.5 was found in the upper mineral soil 

(Bohlen et al. 2001).  A third set of results from a Northern Connecticut forest possessed a 

mean C/N ratio of 17.1 (sample from forest floor to 15 cm in depth) (Finzi et al. 1998).  

While Southeastern Michigan forest soil appears to be quite nitrogen-rich, the differences in 

soil C/N ratio can be partially explained by differences in sampling methodologies between 

studies.  In summation, the mean soil C/N ratio of 13.43 found in the present study is low but 

plausible in the context of northeastern forests. 

 In terms of study results, consistently low soil C/N ratios may partially obscure the 

hypothesized soil differences between urban and rural areas.  Additional biogeochemical 
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distinctions driven by the landscape may be hidden by the uniformly nitrogen-rich soil.  As a 

second concern, with a set of already nitrogen-rich study sites, limited retention of nitrogen 

inputs from the surrounding landscape to the protected area is expected (De Schrijver et al. 

2008).  Once the soil C/N ratio drops beneath a critical point, nitrification tends to increase, 

thereby making N mobile and more easily lost from the system (Currie 1999).  While a 

certain housing density may correlate with greater N inputs to a protected area, the inputs 

may not accumulate within the already N-rich soil at the site.   

Regionally low soil C/N ratios are a challenge for both terrestrial and aquatic 

management.  As discussed in the introduction, high nitrogen availability has implications for 

terrestrial community composition.  N availability is a partial determinant of the growth rate 

of individual vegetative species (Olde Venterink et al. 2001; Henry et al. 2005; Kobe 2006), 

and their ability to effectively compete (Lowe et al. 2003; Hangs et al. 2004).  Consequently, 

the currently N-loaded forest systems in Southeastern Michigan may be altering in 

composition relative to the previously N-deficient systems.  Changes in relative prominence 

of species, and incursion of new species are both possibilities (Huenneke et al. 1990; 

Stohlgren et al. 1999), as is degradation of the native communities (Mack et al. 2000).  Over 

extended periods of time, N leaching and runoff can affect regional water supplies by 

stripping nutrients from forest soils, acidifying water sources and altering aquatic community 

composition (Lovett et al. 2002).  Hypoxic and eutrophic regions, which may eventually 

result from high quantities of additional aquatic nutrients, are an issue of long-term concern.   

Immediate management options to mitigate low C/N ratios in forest soils are not 

obvious.  With the wide extent of nitrogen-rich soils and relatively low levels of carbon and 

organic matter in the soil, few direct actions are available.  As a first step, additional linkages 



43 

 

between regional sources of nitrogen and forest soils must be identified.  While this study 

examined intra-region differences in nitrogen concentration, there are also larger scale factors 

affecting Southeastern Michigan.  As an example, Southeastern Michigan receives among the 

highest rates of inorganic nitrogen deposition in the country (> 7 kg/ha), with recent trends 

indicating that these rates are level or increasing through time (National Atmospheric 

Deposition Program 2008).  Excessive use of agricultural fertilizer is also a potential source 

of free reactive N.  While the region has rapidly converted agricultural land to residential use, 

significant agricultural lands remain (Brown 2003).  A comprehensive state-wide assessment 

of hydrologic nutrient movement is a potential direction for future research.  While 

catchment-scale research has been conducted (Bosch & Allan 2008), a larger scale 

understanding of nitrogen sources and movement within the state will enable better 

management of soil nutrient properties.  

The Effects of Time and Agricultural Abandonment 

Historical effects sensu McDonnell and Pickett (1993) may contribute to regionally 

low forest soil C/N ratios, as well as partially explain the relationship between housing 

density in the surrounding landscape and soil N concentration.  Agricultural use, which was 

historically prevalent in the region (Brown 2003), typically corresponds with a long term 

diminishment of soil carbon content (Knops & Tilman 2000).  With carbon content a major 

factor contributing to nitrogen retention in soil (Currie 1999), date of agricultural 

abandonment thus influences soil nitrogen content and C/N ratio.     

Present day forests in Southeastern Michigan were frequently grown on previous 

agricultural fields (Brown 2003; Botti & Moore 2006), and are a product of that agricultural 

legacy.  Relevant to study results, an agricultural field at the time of abandonment generally 
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has drastically reduced carbon relative to control fields.  As an example, a Minnesota sand 

plains study showed that an average abandoned agricultural field has 89% less carbon at the 

time of abandonment than an uncultivated control field (Knops & Tilman 2000).  The carbon 

depletion effects are long lasting, with a typical 50-year abandoned agricultural field 

possessing highly reduced (≈ 30%) carbon content in soil as compared to uncultivated areas 

(Kalisz 1986; Compton et al. 1998).   While the timing is dependent on vegetation, soils and 

climate, near complete recovery of carbon is predicted to take several hundred years (Knops 

& Tilman 2000). 

The documented relationship between soil carbon and agricultural history, along with 

present study results indicating a strong correlation between soil carbon and nitrogen (R = 

0.94, p < 0.01), suggest that protected areas with higher housing density in the surrounding 

landscape may have gone through an earlier process of agricultural abandonment.  

Supporting the idea of systemic differences in date of agricultural abandonment, Wisconsin 

data from the years 1938 - 1992 demonstrated a high correlation between population density 

and conversion from crop land to grassland (Burgi & Turner 2002).  A similar Massachusetts 

study indicated that the smaller agricultural plots near town centers were generally 

abandoned earlier than larger rural farms (Foster 1992).  While geophysical characteristics 

play a part (Foster et al. 1998), farm sites near urban centers in both New England the 

Midwest frequently went through an earlier process of agricultural abandonment. 

Regional forest soil C/N ratios may be similarly driven by an interaction between 

previous agricultural intensity and stand age.  In areas with agricultural histories similar to 

Southeastern Michigan, stand age (as a surrogate for time since agricultural abandonment) 

has been shown to positively correlate with increased soil C/N ratios (Compton et al. 1998).   
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 Date of agricultural abandonment would also presumably affect the quantity of 

overstory biomass, which was the other significant correlate with housing density.  The 

relationship between overstory biomass and date of agricultural abandonment is intuitively 

due to the positive relationship between total stand biomass and stand age (Le Toan et al. 

1992).  However, as a second contributor, old field biomass is highly correlated to N-pool 

size (Zak et al. 1990).  As discussed, N pool sizes are dependent upon soil carbon pools, 

which are in turn dependent upon temporal distance from agricultural abandonment. Soil 

carbon, soil nitrogen and plant biomass can thus form a positive feedback loop whose 

intensity increases through time (Aber et al. 1998).  

 Returning to the questions posed in this study, it is unclear whether urban sites 

receive higher external inputs of N from the surrounding landscape as compared to rural 

sites, or whether they are simply older forests. This analysis requires further exploration to 

disentangle site history and landscape-level factors.  When considering mechanism, date of 

agricultural abandonment may be considered as a parallel hypothesis to the nitrogen mobility 

hypotheses discussed in the introduction.   

Nitrogen Content in Woody Plant Foliar Chemistry  

As discussed in the introduction, foliar nitrogen content is used as an indicator for 

many processes.  There are positive correlations between foliar nitrogen and N deposition 

rates (McNeil et al. 2007), maximum photosynthetic rates (Kobe 2006) and carbon uptake 

(Elvir et al. 2006).   

Chemical analysis of present study leaf samples suggests that foliar nitrogen 

concentrations are relatively high in the region (Table 8).  Averaged by site, mean nitrogen 

concentration across all overstory foliage is 2.14%. Averaged by sample, mean foliar N 
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concentration in the prevalent genera of maple (Acer) and oak (Quercus) were respectively 

1.94% and 2.16%.  While comparing foliar chemistry across sites is challenging, a number of 

regional foliar surveys provide the opportunity. A New Hampshire study of a diverse set of 

nitrogen-rich hardwood plots reported a range of mean foliar nitrogen concentrations from 

1.61% to 2.36% (Ollinger et al. 2002).  Research on high fertility Northern Michigan 

hardwood sites reported red oak (Quercus rubra) samples with a mean N concentration of 

2.84% and red maple (Acer rubrum) samples with a mean N concentration of 1.88% (Kobe 

2006).  A third study in the nitrogen-rich Adirondack Mountains (New York) found mean 

foliar N concentrations that ranged from 2.50% to 2.96% in hardwoods, with Red Maple 

foliar N concentration at 2.50% (McNeil et al. 2007).  Mean foliar nitrogen concentrations in 

the current study were similar to these other N-rich sites, indicating overall high levels of 

nitrogen in the Southeastern Michigan forest overstory. 

While the present study found poor correlation between foliar and soil nitrogen 

content (Table 5), the high N concentration in foliage indicated that the regionally high soil N 

concentration affected the woody plants.  The uniformly high nitrogen concentrations in soil 

and vegetation may present insufficient variation for a complete analysis of correlation 

between the two.  Alternatively, the poor correlation between foliar and soil nutrient 

concentrations can potentially be attributed to a number of factors, including the 

heterogeneous woody plant communities between sites (Tanner et al. 1998).  The movement 

of soil-based N to foliage is known to differ by species and stand age (Magill et al. 2004; 

Bond-Lamberty et al. 2006), with changes in foliar chemistry tending to lag behind changes 

in soil chemistry (Aber et al. 1995; Bowman et al. 2003; Magill et al. 2004). The 
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insignificant correlation between foliar and soil nitrogen may be an artifact of aggregate lags 

in N uptake that differ between sites.   

 The high nitrogen availability to woody plants has implications for regional carbon 

storage.  Woody plant biomass accumulation has been positively correlated with nitrogen 

availability (Magill et al. 2004), with foliar nitrogen content a leading indicator of maximum 

photosynthetic rate (Kobe 2006).  The high carbon storage potential of Southeastern 

Michigan is worthy of further exploration. 

Surrounding Housing Density and Ground-cover 

Previous research has established the role of canopy closure in determining 

understory composition in forests and woodlands (Zavitkovski 1976; Pieper 1990).  On a 

related note, canopy closure has been shown to correlate with overstory basal area (Alaback 

1982; Lewis 1989), which is in turn proportional to overstory biomass (Chiba 1998).  

Building on these findings, present study results indicate that overstory biomass was more 

influential than soil nitrogen content in determining ground-cover establishment and growth 

in Southeastern Michigan forests (Figure 13).  This relationship may be attributable to the 

correlation between overstory biomass and canopy closure.    

The use of overstory biomass, which is often remotely sensed (Van Tuyl et al. 2005; 

Broadbent et al. 2008), as an estimator of ground-cover offers potential future benefits.  

Ground-cover is known to affect soil nutrient retention, erosion, and other important factors 

(Nearing et al. 2005; Olde Venterink et al. 2006).  The use of biomass as a remotely sensed 

proxy for ground-cover may offer low-cost methods for large-scale, low-resolution 

vegetation surveys. 
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The strong relationship found between overstory biomass and ground-cover may be 

partially attributable to regionally high nitrogen availability.  With nitrogen-rich soil, 

alternative resource limitations may have greater effect.  Further investigation into the 

relationship between nitrogen, biomass, and ground-cover is warranted in an area with a 

wider range of soil nitrogen content than that of the current study.  Additionally, while 

present study plots were exclusively placed under closed canopy, future research should 

include explicit canopy measures such as overstory leaf area, canopy closure and light 

penetration. Controlling for these variables in future studies could provide additional insight 

into the relationship between overstory biomass, forest ground-cover and soil nitrogen 

content.       

Overstory Composition 

In a temperate forest, Shannon index typically ranges from 1.5 to 3, with higher 

values indicating a more even distribution of individuals among species (Singh 2005).  The 

current study data exhibit lower values which are consistent with genera-level usage of the 

Shannon index (mean of 1.52) (Guerold 2000), and which are consistent with the genus 

composition of the oak-savanna and oak-hickory communities prevalent in the region 

(Barnes & Wagner 2003).  The Poisson distribution of the index values between urban and 

rural sites is notable, as it implies that the study sites at each end of the urban-rural spectrum 

have similar diversity among woody plants.  Present study control of disturbance, normally 

an urban correlate that affects diversity (Blair 1996; Blair & Launer 1997; Burton et al. 

2005), is supported by this Poisson distribution. 

As with other measures, interpretation of overstory composition data may be biased 

due to the region‘s high nitrogen availability.  All sites in this study may be undergoing 
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biogeochemically driven composition changes, but without any N-poor local sites, no 

comparative composition controls are available.  Plant species with low N tolerance may 

have already been completely extirpated from the region.   

Conclusions: Indirect Urban Gradients, Non-Linear Relationships and Scale 

Study results indicate that the fragmented urban landscape of Southeastern Michigan 

demonstrated a parallel increase between nitrogen concentration in forest soil and housing 

density in the surrounding landscape.  This correlation is similar to the correlation between 

urban land cover and increased N mineralization found in the linear urban-rural gradients in 

New York, Maryland and Arizona (Pouyat 1997; Zhu & Carreiro 2004; Hope et al. 2005; 

Szlavecz et al. 2006).  While confounding factors have enabled criticism of these previous 

studies (Groffman et al. 2006), the current study highlights a pattern of predictably increased 

nitrogen content in protected areas with greater surrounding urban presence.  An increase in 

overstory biomass proportional to the loge LA/HU of the urban areas, not noted by other 

studies, was also found.     

Southeastern Michigan is a nitrogen-rich landscape, with low C/N ratios and high 

nitrogen concentrations in both soil and foliage.  In a region with such high nitrogen 

availability, forest ground-cover was proportional to overstory biomass, and likely controlled 

by canopy closure rather than nitrogen limitations.  The nitrogen-rich soil also poses long-

term concerns for terrestrial and aquatic ecosystem management.    

Questions of scale remain.  Spatially, the current study demonstrates that an indirect 

gradient sensu McDonnell and Pickett (1993) is an appropriate tool for the study of 

biogeochemistry along an urban-rural spectrum.  Housing density at the census block group 

scale was found to be relevant to an ecosystem, both in terms of soil nitrogen content and 
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overstory biomass.  Urban effects were thus found to be correlated to the local surroundings, 

rather than simply correlating to distance from an urban core as in a linear belt transect.  In 

terms of the relationship between housing density and related changes in the environment, 

the non-linear (loge) relationship between LA/HU and biogeochemical properties suggests 

that the first few housing units in an area are the most impactful, but it is unclear whether this 

is a universal relationship or attributable to some unique feature of the Southeastern 

Michigan landscape.   This tension between local population centers and large scale urban 

effects will require further investigation as the population of the United States continues to 

deconcentrate across the landscape.    
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Appendix:  Site Descriptions 
 

Visited:   6/1/2007 

Name:  Edwin S. George Reserve 

City:    Putnam.   

Class:  Urban 

Contact:   Earl Werner, Director 

 

Official Description:   

―Since 1930, the University of Michigan has maintained the Edwin S. George 

Reserve (ESG) for the purposes of providing research and education opportunities in the 

natural sciences and preserving the native flora and fauna. The ESGR is a 525-hectare fenced 

preserve located in Livingston County, Michigan (about 25 km Northwest of Ann Arbor), 

which was presented to the University as a gift by Edwin S. George in 1930.  The ESGR is 

characterized by a rugged moraine and basin topography supporting a rich fauna and flora.  

The ESGR is administered by the Department of Ecology and Evolutionary Biology at the 

University of Michigan.‖ 

 

Notes: 

The ESG is gated, open only to researchers, and the vegetation is not managed.  It 

features numerous wet areas, as well as significant forests and fields.  The site at the ESG 

was located off the main road, near the map section labeled E-15, South Woods.  It was 

located at the top of a hill, about a 5 minute hike off Crane Pond road.  The forest looked like 

an early successional forest, primarily composed of cherry, hickory, and oak.  Likely, the tree 

line was advancing over the old field that was to the south.  This plot was slightly farther 

from the border of the reserve than our typical site (almost 50 meters), but started at 12 

meters from the closure of the canopy on the south side.   

Site was at the top of a hill, and fell off quickly on the north and west sides.  Area 

farther north was heavily dominated by grass, whereas there was little in our plot.  4 square 

meters in the plot were taken by an abandoned collection pit from the mid-1990‘s.  We were 

told by Director Earl Werner and former Director Ron Nussbaum that it was likely left from 

Burt Barnes‘ oak collection project, and that it was ―highly unlikely‖ that any chemical had 

been added to the environment.  Ground-cover here was moderate, with a high percentage of 

forbs. 

 

Visited:   6/6/2007 

Name:  Black Pond Woods 

City:    Ann Arbor 

Class:  Suburban 

Contact: Lara Treemore-Spears, Department of Natural Area Protection   

 

Official description:    

―Black Pond Woods (BPW) is a 34-acre woodland on the north side of the city off 

Traver Rd. It is bordered by Leslie Golf Course on its east side, and it is located north of the 

Leslie Science Center. Parking is available in the Leslie Science Center parking lot. No 

facilities are available in this undeveloped park.  The trails wind through the woods of oak, 
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hickory, maple and dogwood. The spring wildflowers offer a terrific show. Black pond is a 

vernal or seasonal pond, and its murky waters support a variety of wildlife both terrestrial 

and aquatic.‖ 

 

Notes: 

BPW is a heavily trafficked park, with constant dog-walkers and joggers on the trails.  

Vegetation in the southernmost portions is fairly scrubby.  To reach a site with suitable 

canopy, we traveled to the east side, and oriented the plot with 50m traveling north/south.  

The plot was located just south of the water featured in the northeastern quadrant.  The 

eastern canopy line bordered the golf course.  There were significant topographic changes 

over the course the plot, with the southern side highly elevated relative to the center, and the 

northern side at a mid height.  The plot fell off to the east. 

North of BPW, Leslie park is located, and south of BPW, the Leslie Science Center is 

located.  West, houses are found.  Management in BPW is inconsistent.  In certain areas near 

the south side, fire has been used to reduce the quantity of scrub and garlic mustard.  Garlic 

mustard pulls have also taken place.  We saw little evidence of management activity in the 

area in which we worked.  We noted four stumps, which were likely buckthorn, that had been 

cut several years prior.  Otherwise, management was minimal in the remote, near the golf 

course area.  This location had the most undergrowth of any area in which we worked. 

 

Visited:   6/13/2007 

Name:  Pittsfield Preserve 

City:  Pittsfield 

Class:  Exurban 

Contact:  Dan Cooperider, Director of Parks and Recreation 
 

Official description:  

―In late April, 2002, Pittsfield Charter Township completed the purchase of 535 acres 

of new parkland, located north of Michigan Ave., and bounded by Morgan, Marton, and Platt 

Road. This township acquisition, historic in both its size and richness of natural features, 

straddles two watersheds--the Huron River, and the Saline River, a tributary of the River 

Raisin. The park holds a Great Blue Heron colony of over 40 nests, a buttonbush swamp 

harboring threatened species, and numerous small wetlands, woods and meadows. The new 

parkland surrounds the township's previously acquired P.G. Palmer Park, 39 acres of 

woodland, wetlands, and open field, and the Morgan Road pump station, on 20 acres of 

mature woods. The Park Commission is working to create a master plan for the new park, 

incorporating  trails and nature observation, and facilities for active recreation.‖ 

 

Notes: 

We worked in the eastern area bordering US-12.  This area is likely wet for a portion 

of the year.  Area was flat, heavily mosquitoed, and full of ground-cover.  Virginia creeper 

was a heavy presence.  We parked on US-12, and moved 10m into the woods. 

No management has taken place since the 2002 purchase, and based on the looks of 

the area, it is unlikely that significant management activities took place in the time 

immediately preceding.  There were no paths, and no visitors were seen.  While the area is 

open to the public, the lack of trails and parking, along with the mosquitoes, likely 
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discourage most prospective attendees.  Because of the proximity to the road, access was 

really easy. 

 

Visited:   6/18/2007 

Name:  Valley Woods 

City:  Southfield 

Class:  Urban 

Contact:  Merrie Carlock, Park Planner 
 

Official Description 

None 

 

Notes: 

Valley Woods Nature Preserve is split in half (east/west) by a river and thirds 

(north/south) by roads.  It has been a city park since 1972.  After more than an hour of 

exploring the riverbanks, we were unable to find a suitable site on the east side of the river, 

where the primary paths are located.  We noticed suitable woods on the west bank, and after 

parking in an architect‘s parking lot, we explored the area behind several of the businesses.  

We found one of the few areas with sufficient cover behind an abandoned building, in an 

area that was littered with trash from the dumpsters that were located directly west and above 

the site.  A 18m by 2m strip of the plot was bare due to some kind of spilled waste (possibly 

antifreeze or salt.  We entered the site by trespassing across the abandoned building, and then 

descended into the site.  The site descended relatively sharply to the east.  As a result of site 

conditions, we were within 10m of the western canopy opening, and received additional light 

from the north and south.  We were less than 60m from a road, and 10-15m from private 

property. 

Given those caveats, there was little active management in our portion of the park.  

Merrie Carlock indicated that there had been buckthorn and garlic mustard removal in Valley 

Woods.  Given that we saw areas covered with mature stands of each, it is unlikely that any 

management activities had taken place in this area.  Because of its topography/isolation, 

many large trees were located in the area.  We saw deer, and encountered few mosquitoes.  

We were not located near paths, and while we saw evidence of human activity (trash), we did 

not see any other people near our site. 

   

Visited:   6/22/2007 

Name:  Lefurge Woods Preserve  

City:  Superior  

Class:  Rural 

Contact:  Scott Tyrell, Stewardship Coordinator, Southeastern Michigan Land 

Conservancy. 

 

Official Description: 

―Over the course of 12 years, the Conservancy made five land purchases to 

consolidate 325 acres of farm land and natural habitat along Prospect Road in Superior 

Township. LeFurge Woods Nature Preserve now protects a wonderful cross section of 

southern Michigan habitat types. Trails wind throughout wetlands, meadows, agricultural 
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lands, and, of course, wonderfully preserved LeFurge Woods to allow visitors some of the 

best wildlife viewing in the Detroit-Ann Arbor region.‖  

 

Notes: 

Lefurge featured the most difficult access of any forest region in which we worked.  

We needed to acquire a gate key, and then in order to reach a southern edge, we hiked more 

than 20 minutes through a field and then the woods.  The woods feature no paths. We saw no 

visitors.  The southern border ended in a meadow, while the nearby western border 

terminated in a farmer‘s field.  

The terrain was flat, and the area was relatively high quality.  Virginia creeper was 

present in quantity.  Invasive species removal had taken place in the northern area of the 

preserve, but none had taken place in the southwestern corner in which we worked.  Scot 

Tyrell attributed the low levels of ground-cover and leaf litter to an extremely high presence 

of worms. 

 

Visited:   6/28/2007 

Name:  Osborne Mill Preserve 

City:  Ann Arbor/Scio 

Class:  Exurban 

Contact:  Faye Stoner, Parks Naturalist, Washtenaw County Parks 

 

Official Description:   

―A simple road junction marks the edge of a hidden gem among County Park 

properties, one with an unusually rich natural history. The 39-acre Osborne Mill Preserve lies 

along an oxbow of the Huron River just south of Delhi Metropark. Osborne Mill‘s 

unassuming entrance is located on East Delhi Road just south of the West Delhi Road 

junction.  

―Parks Naturalist Catherine Marquardt recently conducted a detailed assessment of 

plant and animal communities at Osborne (see ―Natural Features Inventories‖, Winter 2004-

2005). Her work revealed a rich interaction of ecosystems, comprising both dry upland and 

wet floodplain habitats of forest, prairie, and meadow. The drier soils of the uplands contain 

plant communities that are distinct from the moisture-tolerant species of the lower floodplain 

zone. The upland forest contains taller ―overstory‖ trees layered above smaller ―understory‖ 

trees and shrubs. The overstory species include Shagbark hickory (Carya ovata), Shingle oak 

(Quercus imbricaria), and the unusual Chinkapin oak (Quercus muehlenbergii); the 

understory layer includes Flowering dogwood (Cornus Florida) and Downy serviceberry 

(Amelanchier arborea). All of these tree species exhibit wonderful fall colors, and the oak 

acorns, hickory nuts, and serviceberries provide food for wildlife. Many broad-leaved 

herbaceous plants (or forbs) are found in areas where the understory is less dense, such as 

Twinleaf (Jeffersonia diphylla), a Michigan Species of Special Concern. The northern tip of 

Osborne is a remnant of tallgrass prairie habitat containing native species such as Big 

bluestem (Andropogon gerardii) and an abundance of Goldenrods (Solidago spp.). The 

southeast end is a wet meadow dominated by sedges (Carex spp.), Joe-pye weed (Eupatorium 

maculatum), Marsh fern (Thelypteris palustris), and Marsh bellflower (Campanula 

aparinoides). Along the river to the south is a small stand of floodplain forest containing 
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Black willow (Salix nigra), Red ash (Fraxinus pennsylvanica), and even Honeylocust 

(Gleditsia triacanthos)—a species that is now relatively uncommon for this area.‖  

 

Notes: 

We worked just west of the water way, in the thin strip of upland forest bordering the 

floodplain forest.   In general, Osborne Mill is a relatively low quality forest that is filled 

with buckthorn, and it was difficult to find an area with sufficient overstory.  On the 

southcentral edge, we found a site that was acceptable, although it was nearer to trails than 

typical.  South of Osborne Mill is additional forest.  The Huron river is to the east, and delhi 

metropark is north. To the west and southwest, housing can be found.  Hike was 

approximately 12 minutes. 

Osborne mill‘s maintenance is under Ann Arbor parks, but no restoration work has 

taken place in the wooded areas in the park.  Main trails have been mowed, but side trails are 

dirt and unmarked.  Other than a slight gully, the terrain was relatively flat.  This was the first 

date when we saw herbaceous material starting to die, but it was only a small segment in a 

limited area and might be attributed to local conditions.  We saw 2 people over the 16 hours 

at the site. 

 

Visited:   7/1/2007 

Name:  Saginaw Forest 

City:  Scio 

Class:  Suburban 

Contact:  Debra LeFree, University of Michigan School of Natural Resources. 

  

Official Description:   

―Saginaw Forest is an 80-acre parcel of land surrounding Third Sister Lake. Access is 

from Liberty Road, which constitutes the south boundary of the property. The site is most 

distinctive because the origin of the School of Natural Resources and Environment (SNRE) 

is integrally tied to Saginaw Forest, which was purchased in 1903 for forestry operations, 

research, and instruction. Forest planting by the first students and faculty of the School 

commenced when the parcel was purchased in 1903-04, the first year of SNRE's existence. 

Planting continued up until 1937, resulting in a total of 47 acres of forest plantings of several 

tree species, both native and exotic.‖ 

 

Notes: 

We used a portion of Saginaw Forest that was to the Southeastern edge, bordering 

West Liberty Street.  Our area was more than 200 meters from the main trail and entrance.  

Cutting or collecting of plant material is forbidden by visitors.  Garlic mustard was prevalent.  

Area was exceedingly flat, and this was the first site that we were able to complete in two, as 

opposed to three, days. Cherry trees were prevalent.  We could hear visitors at the site, 

frequently with pets, but could not see them as we were far from the trails.   Conversations 

with the caretaker confirmed that there was no management of woody species, and minimal 

management of herbaceous species (1 day of volunteer pulling more than a year previous). 
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Visited:   7/11/20007 

Name:  Nan Weston Preserve 

City:  Sharon Hollow  

Class:  Rural 

Contact:  Patrick Doran, The Nature Conservancy 

  

Official Description:   

―The variety of wetland plant communities at Nan Weston Nature Preserve at Sharon 

Hollow reflects the amazing underlying geological diversity–from streams lined with silver 

maple, red ash and swamp white oak to swampy areas filled with black ash, American elm 

and yellow birch. Sandhill crane, chestnut-sided warbler, barred owl and dickcissel are a 

sampling of the birds you might see.  The Nature Conservancy allows bow hunting for white-

tail deer on this preserve to reduce an unnaturally high deer population in the area and reduce 

threats too many deer pose to our conservation targets.‖ 

―Spring peepers create an impressive display starting in late April, when the male 

frogs vocalize in an attempt to find a mate in the vernal breeding ponds. A vast variety of 

wildflowers carpet the different habitats starting in early May and flourishing throughout the 

summer. Migratory songbirds are also present in both the spring and fall. In the spring, be 

prepared for wet, muddy trails by wearing waterproof boots.‖ 

 

Notes: 

Nan Weston is a 249 acre park.  We worked just inside the park boundary, with a 

road to the north, a field to the east, trails on the western border.   We saw a single visitor 

during the two day experience.  The northeastern corner of the plot was on a downslope 

relative to the rest of the plot.  We also had more grass here than previously encountered.  

This is likely due to the exposed sun from the eastern side, as well as a slighter more open 

canopy that met our typical requirements.  According to reports (2002 Upper River Raisin 

Plan), there have been few invasive species or other management activities in Nan Weston‘s 

forest. Recent years have seen trail improvements and visitor access improvements (2006 

Nature Conservancy stewardship report). 

 

Visited:   7/16/20007 

Name:  Smith Woods 

City:  Scio Township, Village of Dexter 

Class:  Exurban 

Contact:  Allison Bishop, Community Development Manager 

  

Official description:   

―The Village's largest park, Smith Woods, is 17 acres of woodlands.  Access is 

available off Dexter Chelsea Road.  The park has some unimproved trails and backs up to the 

railroad tracks.  Parking is available inside the gate. Smith Wood is the Village's largest park. 

The 17 acre park is undeveloped, although trails have been cleared throughout the wooded 

and otherwise undisturbed land.‖ 
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Notes: 

There are wetlands throughout this wooded area.  There is also a fairly wide (maybe 

100m ) stretch of open area/water that separates this park‘s wooded edge from the road.  We 

followed the path through the wetlands, to the base of a hill.  Towards the northeast border of 

our plot, we were right next to the boundary of private property.  Overgrown, untended paths 

were prevalent in these woods.  At some point, they had likely been blazed, and then 

abandoned.  This plot was along the Southeastern side of the hill, with the north west side of 

the plot 10 or 15 feet higher than the south east.   No other visitors appeared in smith woods.   

Railroads were heard running by several times during the day. 

The clearing at the opening of Smith Woods contains several bags of trash.  Perhaps it 

is a popular dumping spot. 

 

Visited:   7/18/2007 

Name:  West Bloomfield Woods 

City:  West Bloomfield 

Class:  Suburban 

Contact: David Burley, Deputy Director, West Bloomfield Parks and Recreation 

 

Official description:   

―Though it is located in a bustling suburb only 20 miles from downtown Detroit, this 

beautiful 162-acre site could easily be mistaken for northern Michigan. Rolling hills covered 

with stately oak and hickory trees lead down into bottomland forest and wetland areas. In the 

spring, there are great carpets of white trillium and yellow trout lilies. The site is also home 

to large black walnut trees and beautiful native dogwoods. The nature preserve is the western 

trailhead of the West Bloomfield Trail Network, a 4.25-mile rails-to-trails project that 

meanders through areas of wildflowers, wetlands, woodlands, and residential communities. 

Bicycles are allowed on the trail network only. 

  ―The primary attraction of this site is the active great blue heron rookery, which is 

easily visible near the west end of the trail network. The rookery overlook features a 

permanently mounted telescope for close-up viewing of approximately 100 great blue heron 

nests. Courtship begins in March and the nesting activity continues until the young leave the 

nesting area in early July. A 2.5-mile trail (1/2 mile of which is barrier free) wanders through 

the glacially sculpted hills and valleys of the nature preserve, which is frequented by over 

100 bird species, white-tail deer, red fox, coyote, and weasels. Sightings of soaring turkey 

vultures, red-tailed hawks, and osprey are no longer rare.‖ 

 

Notes: 

Most of the accessible edge regions of the park were degraded, and did not contain 

sufficient canopy in order to set up a plot.  Ultimately, we found the best success on the far 

southern edge of the site.  Just south of the trails, and between two vernal pools, there was a 

large contiguous stretch of edge canopy off of North Red farm way.  The terrain was tilted 

slightly towards the west, but was relatively flat.  The general terrain sloped north, from the 

houses in to the preserve. We could frequently hear walkers and runners just over the ridge 

that separated the trail from our research plot.  The park naturalist, Laurel Zoet, confirmed 

that no management takes place in West Bloomfield Woods other than the maintenance of 
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trails.  If trees fall across the trail, they are chopped and thrown back in the woods.  

Numerous houses back up to the woods near our plot.  As there are no lot markings, little 

differentiated the back of house lots and the beginning of the woods. 

 

Visited:   7/20/2007 

Name:  Tenhave Woods at Quickstad Park  

City:  Royal Oak 

Class:  Urban 

Contact:   Bob Muller, Volunteer Naturalist 

 

Official Description:   

Quickstad Park is located between Normandy Road and Lexington Boulevard, several 

blocks east of Crooks. The total park acreage is 32.7, which includes the nature area, soccer 

fields, a hard surface walking path, and a dog run area. The park was dedicated on August 

29, 1955. The arboretum at Quickstad has a long history of being utilized for education, but 

even with a high school located within a quarter mile of the park, there are no known classes 

utilizing the natural area. In 1967, a 4-year-old boy was killed in the woods at Quickstad 

Park. A 15-year-old mentally impaired youth was charged but not tried in the case. Many 

citizens demanded 

the underbrush be razed. Others opposed the clearing, saying the park represented a 1,000-

year-old forest too valuable to destroy. As a compromise, the fence surrounding the Park 

went up and residents could visit the Park only by getting a key at the City offices. In 1986, 

the City reopened the park by installing two turnstile gates that would be unlocked during 

daylight hours from May to October. The park is currently open all year. Tenhave Woods is 

also a densely forested area. The park is bordered by soccer fields along the west boundary 

and residential homes surround the remaining boundaries. The canopy cover is 

approximately ninety percent. There are a few natural openings that have come about as 

large, old growth trees have fallen down in storms.  

Three stands are in the woods including:  A lowland hardwood forest which includes 

red maple, silver maple, cottonwood, American elm, and green ash. An even-aged beech-

maple stand. An even-aged oak hickory hardwood stand, which includes common tree 

species include shagbark hickory, bitternut hickory, white oak, red oak, sassafras, black 

cherry, ironwood, basswood and white ash. The recruitment of new trees in the shrub layer 

appears strongest with sugar maple and American beech trees in all stands. Emerald ash 

borers have infected and killed nearly all of the green and white ash trees within this park as 

well. Dutch elm disease has limited the size class of American elms to only small diameter 

trees. 

 

Notes: 

According to Bob Muller, ―in the south west area of the park there is a vernal pond 

that was restored to its condition of 40 years ago by removing 68 trees in the fall of 2005.  

South and north of this pond buckthorn has been cut.  There is still lot of it.  This area of the 

park was still pasture land in 1940's and before with no trees.  The south fence where there 

are houses has always been a forest this is the area you should set up.  No buckthorn or garlic 

mustard has been removed from this area.‖ 



59 

 

We worked in the southernmost part, just off the fence line, in an area in which no 

restoration work had been performed.  However, all houses in the area had rear fence gates 

that opened into the forest.  This was approximately several hundred meters away from the 

vernal pond restoration area.  A lot of young sassafras was in the area. 

 

Visited:   7/27/2007 

Name:  George W. Suarez Friendship Woods 

City:  Madison Heights 

Class:  Urban   

Contact:   Mathew Hackett, Naturalist  

 

Official Description:   

―Located in the middle of our developed community, the 37 1/2 acres of natural 

preservation known as George W. Suarez Friendship Woods leaves the patron wanting 

more.  You are sure to leave refreshed and enlightened. With such a wide variety of nature 

opportunities for people to take advantage of, we hope you take time out to explore, relax, 

and enjoy nature. The 1 1/3 miles of paved trails surrounding the Nature Center are open 7 

days a week, are perfect for a brisk walk or a casual stroll, and contain hawks, raccoons, 

squirrels, rabbits, many different wildflowers, trees, and birds.‖ 

 

Notes: 

Suarez Woods has northern and southern portions.  The northern portion is highly 

degraded.  The southern portion is generally high quality, although the recent loss of a 

significant number of ash trees has caused some changes in the composition. 

According to the naturalist ―In general, our park has one half which might be 

considered uncleared (but probably selectively cut in the 19th century), and another half 

which is pioneer growth beginning in the 1940's when it ceased to be farmland or 

neighborhood playfield.‖  The uncleared portion is the southern half in which we worked.   

The southern half is characterized by a concrete loop that cuts through the park.  It 

was estimated that the loop was at least a decade old, but there was no definite knowledge.   

Before the concrete loop, people occasionally would wander into the woods, but since its 

construction, that has ceased.  A fence surrounds the entire southern portion of the park, so 

entry is restricted to the north side.  The park was hit hard by the emerald ash borer.  

Approximately 1-2 years prior to our arrival, the park service removed all downed ash trees 

from the park.  Other than that, no maintenance operations take place in the park. Generally, 

downed trees are thrown back into the woods.  We set up on the east side of the park, with a 

north-south running transect.  There was a bit of older trash in the area.  Tenhave featured the 

single largest tree that we saw this summer. 
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Tables  
 

Table 1: Density Classification used in Study Region 

 
Housing Density Class Land Acres per Housing Unit 

Urban 0.0 – 0.59 

Suburban 0.60 – 2.99 

Exurban 3.00 – 9.99 

Rural 10+ 

(Taylor 2008) 

 

The density classification scheme was applied to each census block group in the study region.  To calculate land 

area, hydrologic feature data were acquired from the Michigan Geographic Data Library (Michigan Center for 

Geographic Information 2008).  The hydrologic features within each block group were then subtracted from that 

block group‘s total area in order to produce land area.  Total housing units in each census block group were 

acquired from Census 2000 data.  Land acres / housing unit (LA/HU) was calculated by dividing land acres by 

housing units in each census block group.  
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Table 2: Study Sites, Classes, and Locations 

 
Housing 

Density 

Site Name Municipality Abbreviation 

Urban Suarez Friendship Woods Madison Heights SFW 

Urban Tenhave Woods at Quickstad Park Royal Oak TW 

Urban Valley Woods Southfield VW 

Suburban West Bloomfield Woods Bloomfield WBW 

Suburban Saginaw Woods Scio SAG 

Suburban Black Pond Woods Ann Arbor BPW 

Exurban Smith Woods Scio Township, Village of Dexter SW 

Exurban Pittsfield Preserve Pittsfield PP 

Exurban Osborne Mill Scio OSM 

Rural E.S. George Reserve Putnam ESG 

Rural Lefurge Woods Preserve Superior LW 

Rural Nan Weston Nature Preserve Sharon Hollow NWN 

 

Housing density class is based on the previously described scheme (Table 1).  Each site was ascribed the 

density of the census block group which it directly overlaid.    
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Table 3: Relationship Between Housing Density and % N in Soil 
 

A.  Summary Linear Regressions on Mean Soil %N 

Independent Variable Coefficients (p) R
2
 Model Significance 

(p) 

Loge LA/HU 100 m scale -0.02 (0.09) 0.26 0.09 

Loge LA/HU 1,000 m scale -0.02 (0.08) 0.27 0.08 

Loge LA/HU 10,000 m scale -0.02 (0.13) 0.21 0.13 

    

% Sand -1.3 x10
-3

(0.17) 0.09 0.17 

    

Loge LA/HU 100 m scale x % Sand -3.3x10
-4

 (0.01) 0.48 0.01 

Loge LA/HU 1,000 m scale x % Sand -3.3x10
-4 

(0.01) 0.47 0.01 

Loge LA/HU 10,000 m scale x % Sand -4.5x10
-4 

(0.01) 0.47 0.01 

 

B.  Linear Mixed Model on Soil % N 

Independent Variables Coefficients (p) Model AIC 

(smaller is 

better form) 

χ
2
 Fit  Test:  

improvement over 

null (p value) 

Intercept Only (null) ------------ -131.47 ------------ 

    

Loge LA/HU 100 m scale -0.02 (0.01) -141.31 <  0.01 

Loge LA/HU 1,000 m scale -0.02 (0.01) -140.82 <  0.01 

Loge LA/HU 10,000 m scale -0.03 (0.03) -138.90 <  0.01 

    

% Sand -1.0x10
-3 

(0.06) -133.03 0.16 

    

Loge LA/HU 1,000 m scale,  

% Sand 

-0.02 (< 0.01), 

-8.1x10
-4 

(0.06) 

-142.44 <  0.01 

Loge LA/HU 1,000 m scale x % Sand 3.4x10
-4 

(< 0.01) -144.63 <  0.01 

 

The relationship between housing density in the surrounding landscape and soil nitrogen concentration in a 

protected area is shown using a linear regression on the site mean values, and a linear mixed model on all 

samples.  Data were derived from 12 field study plots in the present study.  Loge land acres / housing unit 

(LA/HU) is used as a proxy for housing density. Model coefficients and p values are listed for all statistical 

tests.  R
2
 and p values are listed for linear regressions, while Akaike‘s Information Criteria (AIC) allows 

relative comparison of linear mixed models.  The χ
2 
goodness of fit test indicates whether a model is a 

significant improvement over another model.  In this case, all models are compared against the null model.  
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Table 4: Relationship between Housing Density and Soil C/N ratio 

 
A.  Summary Linear Regressions on Mean Soil C/N 

Independent Variables Coefficients (p) R
2
 Model Significance (p) 

Loge LA/HU 100 m scale 0.12 (0.60) 0.03 0.60 

Loge LA/HU 1,000 m scale 0.09 (0.71) 0.01 0.71 

Loge LA/HU 10,000 m scale 0.21 (0.51) 0.04 0.51 

    

Loge LA/HU 1,000 m scale x   

% Sand 

2.1x10
-3 

(0.52) 0.04 0.52 

 

B.  Linear Mixed Model on Soil C/N 

Independent Variables Coefficients (p) Model AIC 

(smaller is 

better form) 

χ
2 
Fit  Test:  

improvement over null (p 

value) 

Intercept Only (null) ------------ 179.069 ------------ 

Loge LA/HU 1,000 m scale -0.05 (0.83) 181.037 0.98 

Loge LA/HU 1,000 m scale,  

% Sand 

-0.06 (0.79),  

-2.7x10
-3

 (0.86) 

183.022 0.98 

Loge LA/HU 1,000 m scale x  

% Sand 

2.3 x 10
-3

 (0.95) 181.066 0.99 

 

The relationship between housing density in the surrounding landscape and soil carbon / nitrogen ratio in a 

protected area is shown using a linear regression on the site mean values (A), and a linear mixed model on all 

samples (B).  Data were derived from 12 field study plots in the present study.  Loge land acres / housing unit 

(LA/HU) is used as a proxy for housing density. Model coefficients and p values are listed for all statistical 

tests.  R
2
 and p values are listed for linear regressions, while Akaike‘s Information Criteria (AIC) allows 

relative comparison of linear mixed models. The χ
2 
goodness of fit test indicates whether a model is a 

significant improvement over another model.  In this case, all models are compared against the null model.  
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Table 5: Relationship between Mean Soil and Foliar Nitrogen 

 
Independent Dependent Coefficient R

2 
p 

Soil % N Foliar % N 0.93 0.09 0.35 

Soil % N Foliar C/N Ratio -9.67 0.11 0.30 

Soil C/N Ratio Foliar % N -0.05 0.09 0.33 

Soil C/N Ratio Foliar C/N Ratio 0.58 0.18 0.17 

 

Data were derived from 12 field study plots in the present study.  Coefficients, R
2
, and p values are listed for 

linear regressions between each pair of independent and dependent variables listed.   
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Table 6: Relationship between Topographic/Geologic Controls and N in Soil 

 

A.  Linear Regressions on Mean Soil % N 

Independent Variables Coefficients (p) R
2
 Model Significance (p) 

Elevation 3.3x10
-4

 (0.01) 0.52 0.01 

Elevation,  

% Sand 

3.8x10
-4

 (< 0.01), 

-1.8x10
-3

 (< 0.01) 

0.82 < 0.01 

Wetness,  

% Sand,  

Aspect 

0.03 (0.01) 

-2.2x10
-3

(0.01) 

-1.2x10
-4

 (.199) 

0.72 0.01 

 

B.  Linear Mixed Model on Soil % N 

Independent Variables Coefficients (p) Model AIC 

(smaller is better 

form) 

Chi Squared Fit  Test:   

improvement over null  

(p value) 

Intercept Only (null) ------------ -131.467 ------------ 

    

Elevation -2.7x10
-4

 (< 0.01) -137.368 0.02 

Elevation,  

Sand 

-3.3x10
-4 

(< 0.01) 

-1.5x10
-3

 (< 0.01) 

-148.086 <  0.01 

    

Topographic Index of 

Wetness 

6.1 x10
-3

 (0.15) -131.416 0.38 

% Sand -1.0x10
-3

 (0.06) -133.030 0.17 

Aspect -3.9x10
-5

 (0.67) -129.646 0.89 

Wetness,  

% Sand,  

Aspect 

0.01 (< 0.01) 

-1.6x10
-3

 (<0.01) 

-9.9x10
-5

 (0.12) 

-138.922 0.01 

 
C.  Linear Regressions on Mean Soil C/N Ratio 

Independent Variables Coefficients (p) R
2
 Model Significance (p) 

Elevation 2.5x10
-3 

(0.44) 0.06 0.44 

Wetness,  

% Sand,  

Aspect 

-0.25 (0.29) 

0.03 (0.27) 

3.7x10
-3

 (0.26) 

0.29 0.42 

 
The relationship between topographic / geologic aspects of the surrounding landscape and soil nitrogen content 

in 12 field plots across the study region is shown. Data were derived from 12 field study plots in the present 

study.  Model coefficients and p-values are listed.   R
2
 and p values are listed for linear regressions (A and C), 

while Akaike‘s Information Criteria (AIC) allows relative comparison of linear mixed models (B). The χ
2 

goodness of fit test indicates whether a model is a significant improvement over another model.  In this case 

(B), all models are compared against the null model.  
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Table 7: Relationship between Ground-cover and Housing Density 

 
Linear Regressions upon Site Means 

Independent Variables Dependent Variable Coefficient R
2
 p 

Loge LA/HU 1,000 m scale % Bare -2.37 0.04 0.53 

Loge LA/HU 1,000 m scale % Woody 0.74 0.01 0.76 

Loge LA/HU 1,000 m scale % Forbs 1.34 0.02 0.64 

     

Soil % N % Bare -72.00 0.05 0.50 

Soil % N % Woody 108.74 0.25 0.10 

Soil % N % Forbs -17.98 0.01 0.82 

 

Data were derived from 12 field study plots in the present study.  Coefficients, R
2
 and p values are listed for 

linear regressions between each pair of independent and dependent variables listed.   
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Table 8: Foliar Chemistry Sample Summary 

 

Genus # of Samples Mean % C Mean % N Mean C/N Ratio 

Acer 42 44.55 1.94 23.85 

Aesculus 1 45.37 2.28 19.90 

Carpinus 7 44.28 1.88 23.64 

Carya 22 41.92 2.02 20.92 

Cornus 5 41.50 2.01 20.93 

Fagus 7 46.32 2.45 19.00 

Fraxinus 22 42.94 2.22 19.74 

Hammamelis 5 45.01 1.74 26.17 

Malus 6 43.28 1.53 28.71 

Ostrya 15 43.78 1.98 22.23 

Prunus 39 43.35 2.26 19.92 

Quercus 24 44.28 2.16 20.67 

Rhamnus 7 40.16 3.31 12.16 

Robinea 1 40.06 2.95 13.60 

Sassafras 2 42.98 2.62 16.46 

Tilia 11 41.98 2.59 16.45 

Ulmus 24 42.25 2.15 19.92 

Viburnum 1 42.78 2.36 18.14 

 
Foliar sample data are presented with number of samples, mean % carbon by mass, mean % nitrogen by mass 

and mean C/N ratio by mass.  Data were derived from 12 field study plots in the present study.      
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Figures 
 

Figure 1: Location of Southeastern Michigan  

 

 

Lower Michigan, with Southeastern Michigan highlighted and expanded.     

Map image from Google Maps (Google 2008). 
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Figure 2: Study Geographic Extent with County Boundaries and CARL Areas Imposed 

 
 
Map shows the Ducks Unlimited Conservation and Recreation Lands (CARL) data layer imposed upon the six 

county study region in Southeastern Michigan, USA.  County names and boundaries are shown (Michigan 

Center for Geographic Information 2008; Wilcox & Macleod 2008).  
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Figure 3: Map of Housing Density, Major Cities, and Site Locations 

 

 
Both maps show housing density (acres / unit) in census block group resolution across the study extent.  The 

names of the three major metropolitan areas are shown, as well as site locations from the current study.  Sites 

are shape coded by housing density classification (Michigan Center for Geographic Information 2008; US 

Census Bureau 2008).      
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Figure 4: Research Plot Design 

 

 

       

This research plot was placed ten meters from the edge of each site.  Ground-cover was assessed in the 1 m
2
 

plot, in the 10 m
2
 plot, and along the 5 m transect.  Woody plants were then identified for the whole plot.  Plot 

design was primarily based on Stohlgren‘s design (Stohlgren et al. 1995; Stohlgren 2007). 
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Figure 5: Soil Classes in Southeastern Michigan 

 

Research site locations are shown and overlaid upon the soil orders from across the study region.  (National 

Resources Conservation Service 2008).  
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Figure 6: Southeastern MI Elevation and Topographic Index of Wetness 

 
 
The study region‘s digital elevation map (A) and topographic index of wetness (B) are shown with research site 

locations imposed (Michigan Center for Geographic Information 2008).    
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Figure 7: Distributions of Sites across Housing Densities 

  

 

 
 
Land acres per housing unit (LA/HU) was calculated as a proxy for housing density in the landscape 

surrounding each of the 12 research sites. Abbreviated site names are as in Table 2.  A smaller value indicates a 

higher housing density.  Starting at the centroid of each plot, housing density was calculated in circles with 100 

m, 1,000 m, and 10,000 m radii.  The distribution of housing densities is left skewed when calculated at the 100 

m scale (A).  The skew persists through all scales (B).  A loge transform was performed on the data (C), which 

produced a more linear pattern.    
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Figure 8: Average Housing Densities 

 

 
An average of mean land acres per housing unit (LA/HU) at all scales (100 m, 1,000 m, 10,000 m) was 

calculated.  LA/HU is an inverse measure of density, so lower values indicate higher density.  If density were 

consistent at all scales, the line would smoothly increase from left to right. Untransformed (A) and loge LA/HU 

(B) are shown.  Site abbreviations are consistent with Table 2. 
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Figure 9: Comparison Graphs of Mean Site Soil % N and All Samples 

 

 
 

Mean soil N concentration in the 12 study sites is plotted against mean loge land acres per unit (LA/HU) in the 

surrounding landscape (A).  All samples are also shown (B).  A negative relationship (R
2 
= 0.27) was found 

between 1,000 m scale loge (acres/unit) and % N in soil, indicating that % N in soil increases with housing 

density.   
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Figure 10: N Concentration in Soil vs. Interaction of loge (LA/HU) and % Sand 
 

 
 

The effect of housing density on soil nitrogen concentration may be driven by the texture of the soil.  A linear 

regression on the site mean nitrogen concentration (not shown) shows high statistical significance (R
2 
= 0.47, p 

= .01).  In order to emphasize the internal site variability, all soil samples from the 12 study sites are shown 

here.  The housing density proxy is represented as loge land acres per housing unit (LA/HU).   
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Figure 11: Distribution of Soil C/N Across Sites and Study Area 

 

 

 

 
Mean, quartile, and standard deviation of soil C/N ratio (by mass) in the 12 study sites is shown (A).  Soil 

samples were taken by sweeping away leaf litter, then taking 17 cm deep sample.   Site abbreviations follow 

Table 2.  The study region possessed a mean C/N ratio of 13.43 with a standard deviation of 1.59 (B). 
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Figure 12: The Relationship between N content in Soil and Elevation 

 

 
Plot elevation is a strong predictor of mean site N content (R

2
 = 0.52, p < 0.01) in the twelve study sites.    
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Figure 13:  Linear Regressions between Overstory Biomass and Ground-cover 

  

 

 

Statistically significant relationships are found between overstory biomass, percent bare ground-cover (A, R
2 
= 

0.67, p < 0.01) and percent woody plant ground-cover (B, R
2 
= 0.37, p = 0.04).  The relationship between 

woody biomass and forb cover is insignificant (C, R
2
 = 0.28, p = 0.08).   An increase in overstory biomass 

correlates with an increase in bare ground-cover, and a decrease in woody ground-cover. 
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Figure 14: Relationship between Overstory and Housing Density 

 

 
Black Pond Woods (identified in A and B) has the fewest tree stems, the least biomass, and least basal area out 

of the 12 study sites.  As an outlier with less than 50% the mean stem count, it was excluded from the site 

biomass and basal area analyses.  

 

Regression lines are imposed upon plots of loge land acres per housing unit (LA/HU) versus woody plant 

overstory biomass (A, R
2
 = 0.60, p  < 0.01) and basal area (B, R

2
 = 0.44, p = 0.03).  7 of 12 sites had between 

150 and 200 tree stems (C).   
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Figure 15: Aggregate Overstory Composition Results 
  

 
  

 

 
 

 

 

2,027 tree stems were encountered in the twelve study plots.  Approximately 700 were beneath 3 cm in diameter 

at breast height (A).  Basal area was dominated by Quercus, Carya and Acer (74.1%, B).  Biomass was 

similarly composed of primarily Quercus, Carya and Acer (83.7%, C).  Many of the smaller woody plants 

dominated the stem count, including Ostrya (22.74%) and Prunus (23.68%).   
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Figure 16: Histogram of Shannon Index by Site Frequency 

 

 
Shannon index, which is a commonly used metric of biodiversity, was calculated by genus for the woody plants 

at each site. Values ranged from 0.68 to 2.17, with higher values indicating a more even distribution of genera  

among all woody plants. 
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