J. 2 2296. JZ9BED

DAD

rt

THE ASTROPHYSICAL JOURNAL, 296:299-309, 1985 September 15
© 1985. The American Astronomical Society. All rights reserved. Printed in U.S.A.

VIRIALIZATION IN N-BODY MODELS OF THE EXPANDING UNIVERSE. 1. ISOLATED PAIRS

AuGusT E. EVRARD AND AMOS YAHIL'
Astronomy Program, State University of New York at Stony Brook; and Institute of Astronomy, University of Cambridge
Received 1984 October 22; accepted 1985 March 15

ABSTRACT

The degree of virialization of isolated pairs of galaxies is investigated in the N-body simulations of Efsta-
thiou and Eastwood for open (Q, = 0.1) and critical (Q, = 1.0) universes, utilizing the three-dimensional infor-
mation available for both position and velocity. Roughly half of the particles in the models form isolated pairs
whose dynamics is dominated by their own two-body force. Three-quarters or more of these pairs are bound,
and this ensemble of bound isolated pairs is found to yield excellent mass estimates upon application of the
virial theorem. Contamination from unbound pairs introduces error factors smaller than 2 in mass estimates,
and these errors can be corrected by simple methods. Orbits of bound pairs are highly eccentric, but this does
not lead to serious selection effects in orbital phases, since these are uniformly distributed. The relative veloc-
ity of these pairs of mass points shows a Keplerian falloff with separation, contrary to observational evidence
for real galaxies. All the above results are independent of the value of Q,, but may be sensitive to initial

conditions and the point-mass nature of the particles.

Subject headings: cosmology — galaxies: clustering — numerical methods

I. INTRODUCTION

The suggestion that galaxies possessed massive unseen halos
which extended well beyond their visible range (Ostriker,
Peebles, and Yahil 1974; Einasto, Kaasik, and Saar 1974) has
led to intense interest in the determination of galactic masses.
Optical measurements have now firmly established that the
rotation curves of galaxies are flat out to the Holmberg radius
(Rubin, Ford, and Thonnard 1980). Radio measurements have
extended rotation curves beyond the Holmberg radius, but
there have been some questions about warping and observa-
tional difficulties (see the review by Bosma 1983). In any event,
no definite Keplerian falloff has been seen, and the evidence is
consistent with a flat rotation curve throughout the observed
range of galactocentric radii. Hence, there is indeed more mass
in the outer parts of galaxies than is indicated by the light
distribution.

In order to extend the mapping of the mass distribution to
larger radii, it is necessary to study binary galaxies, or groups
and clusters. Binary galaxies have always played an important
role in the determination of galactic masses. Recent work
(Turner 1976a, b; Peterson 1979a, b; Karachentsev 1981a—d;
Rivolo and Yahil 1981; White et al. 1983; Tifft 1985) has con-
centrated on obtaining unbiased samples, and extending the
measurements to larger separations, up to 700 kpc
(throughout this paper we assume H, = 50 km s~ !). The rela-
tive velocity of the binaries shows no Keplerian falloff with
separation, suggesting that galaxies extend out to those dis-
tances.

In addition to difficulties encountered when working in red-
shift space, actual determinations of binary masses are hin-
dered by our ignorance of their dynamics (cf. Turner 1976b;
Peterson 1979b; White et al. 1983; Sharp 1984). It is not
known to what extent the two-body force dominates the rela-
tive acceleration of galaxy pairs designated as binaries accord-
ing to some algorithm. Even if it is known that the two-body
force dominates, the distribution of eccentricities in the select-
ed sample, as well as the uniformity of orbital phases, must in
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practice also be known. Indeed, Burbidge (1975) has argued
that most binaries might not even be bound, and their relative
velocities might simply be a measure of the velocity dispersion
of field galaxies. The hope that bound binaries might be identi-
fied by larger relative velocities than field galaxies (Yahil 1977)
has not been realized; field galaxies show a velocity dispersion
at least as large as that of isolated binaries (Rivolo and Yahil
1981 ; Davis and Peebles 1983; Bean et al. 1983).

To further our understanding of the underlying dynamics of
binary galaxies, we have examined the N-body simulations of
Efstathiou and Eastwood (1981, hereafter EE). These simula-
tions contain 20,000 equal point masses, describing the evolu-
tion of structure in universes with Q, = 0.1 and Q, = 1.0,
starting from a cold Poisson distribution at redshifts ~20 and
~ 10, respectively. Using the three-dimensional information in
the simulation, available by the courtesy of Dr. Efstathiou, we
seek to establish what fraction of isolated pairs are indeed
bound by their mutual attraction, and how accurately mass
estimates can be made through application of the virial
theorem. The hope is that the answers to these questions,
determined within the context of the models, will carry over to
more realistic models, and to the real universe. A companion
paper (Evrard and Yahil 1985, hereafter Paper II) examines
virial analyses of samples of all pairs, which are dominated by
the nonisolated pairs.

No attempt is made here to consider projection effects. First,
projection effects can be calculated only in the context of a
specific survey, after the luminosity function and apparent
magnitude completeness function have been determined.
Second, the simulations only partially take into account the
finite extent of galaxies by softening the two-body force at
short separations (see § Ila below). As a result, binaries with
separations exceeding ~200 kpc show a Keplerian falloff of
relative velocity with separation, contrary to observational evi-
dence. Third, the simulation is limited to equal point masses,
and we do not know what effect unequal point masses would
have. We have therefore shied away from a detailed compari-
son of the model with observations, and consider it instead in
its own right.
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The structure of the paper is as follows. The models are
described in § II, including the question of scaling the model to
the real universe and the method of extracting pair samples.
Section III is devoted to a reformulation of the classical virial
theorem in an expanding universe, by explicitly subtracting out
the underlying Hubble expansion. The results of our investiga-
tion are presented in § IV, followed by a discussionin § V.

II. MODELS

a) Description

We utilize the final configurations of the 20,000-body galaxy
clustering simulations of EE for both an open universe, (Q, =
0.1) and a critically dense universe (Q, = 1.0). The initial condi-
tions, except density, are identical for both models. At the start
of the integration, 20,000 equal mass points are distributed
with a Poissonian power spectrum (| 5, | cc k", with n = 0) and
zero peculiar velocities. Edges of the cube are handled by
periodic boundary conditions. The particles are assumed to
interact only through Newtonian gravity of point masses, i.e.,
the galaxies are assumed to have formed prior to the epoch at
which the integration is begun. The method of integration is
the particle-particle/particle-mesh (P3M) scheme (Hockney
and Eastwood 1981), which divides the force on a particle into
a long-range smooth component and a small-scale fluctuating
component. This method possesses extensive dynamic range,
being able to track both the flow of large-scale matter currents,
and the two-body orbit of an isolated binary, for a large
number (~10%) of particles (see Efstathiou et al. 1985 for a
comparison of N-body integration methods). It is thus capable
of producing accurate statistics of local dynamical properties.

In order to mimic the finite extent of galaxies, and to reduce
the computational effort of tracking close binaries, the gravita-
tional force is softened at separations smaller than a softening
radius d,,, which is held fixed in comoving coordinates at d,, =
0.0024 in units of the cube length. Using the scaling relations
presented in § IIb below, this corresponds to 440 kpc at the
present epoch. The softened force deviates significantly from an
inverse square law at separations r < d,/2 =~ 200 kpc. Note
that this force is conservative, implying that collisions between
overlapping galaxies are elastic. There are currently no reliable
methods for modeling inelastic, tidal behavior between pairs of
galaxies in N-body systems with such large numbers of par-
ticles.

The models are evolved until the cosmological scale factor
has increased by factors of 19.2 for Q, = 0.1 and 9.9 for Q, =
1.0. Unfortunately, for the Poissonian initial distribution these
expansion factors are insufficient to allow the formation of
superclusters such as are observed in the real universe at the
present epoch, containing rich clusters having at least ~ 100
galaxies at density contrasts dp/p, ~ 10*. Instead, as noted by
Davis and Peebles (1983), smaller groups and clusters form,
which are only loosely coupled to one another. Accordingly,
the two-point correlation function has a steeper slope than
observed, with y in the range 2-3. We feel that detailed large-
scale agreement is not a prerequisite for undertaking the
present study of principally small-scale behavior.

b) Scaling
The EE N-body calculation uses the dimensionless normal-
ization G = m = L = 1, where G is the gravitational constant,
m is the mass of each particle, and L is the comoving length of
the integration cube, equated to the proper length at the start
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of the integration. In converting these to dimensional scales
appropriate to galaxies, we use G and the Hubble constant at
the present epoch H, (taken to be 50 km s~* Mpc™?) to scale
two of the three dimensions. For a given Q, this establishes the
mean density of the universe, p, . The third dimension is scaled
by assigning a mean intergalactic separation, or, alternatively,
the mass of a galaxy.

Observationally, the mean intergalactic separation can be
defined only for galaxies brighter than some limiting absolute
magnitude M,, since the luminosity function has been
observed to converge only at very faint (dwarf) luminosities
(Sandage, Binggeli, and Tammann 1985). For a typical Schech-
ter luminosity function,

(M) = cxPe™, (1

where x(M) = 10~ %-+M~M0) and the parameters, M, = —20.7,
c=245x10"% Mpc™3, and B =0, are taken from the
analysis of the Revised Shapley-Ames Catalog (RSA)
(Tammann, Yahil, and Sandage 1979; Yahil, Sandage, and
Tammann 1980), we can evaluate the mass per galaxy to be

M = 2.6 x 10"*Qy/Ei (x,) Mo, @)

where x, = x(M ), and Ei (x,) is the exponential integral of this
variable. In order to avoid the difficulty of assigning equal
masses to dwarfs and regular galaxies, we have set the cutoff

magnitude at M, = —19. This gives a mass per galaxy of
Mg, =22 x 101°Q, M, , 3)
and establishes the length of the computational cube? to be
L =185 Mpc. 4)

Because of the exponential integral in equation (2), any reason-
ably dimmer cutoff would yield a mass and length differing by
only a small factor.

¢) Pair Samples

The main sample we use in this study, and in the study of all
pairs (Paper II), consists of pairs having comoving separations
x < 0.001 (proper distance r < 1.85 Mpc). In order to reduce
the total pair count to a more manageable size, we eliminated
all pairs with either member within a distance of 0.1 from any
of the simulation boundaries. This excludes roughly half the
total volume, leaving us with a total pair count of 18,231 for
Q, = 0.1 and 35,022 for Q, = 1.0.

In order to determine the relative acceleration and degree of
isolation of a pair having separation x, we need to identify
surrounding neighbors, including those whose separation from
the pair is larger than x. We have therefore constructed an
extended sample consisting of all pairs having comoving
separations x < 0.05 (r < 9.3 Mpc), for which at least one
member lies within the inner (0.8)° region. Using this set, we
generate a list of neighbors for each pair of the main sample.

The relative acceleration of a pair of particles consists of its
direct two-body force, augmented by the collective sum of the
tidal forces exerted by their neighbors. If the contribution of
the neighbors to the tidal force is added up in order of increas-
ing distance from the pair, one finds quick convergence once
this distance is somewhat larger than the separation of the pair.
We calculate the tidal force using the list of pairs from the

2 Unless otherwise noted, all proper distances quoted are at the present
epoch.
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extended sample, thus guaranteeing that we include all par-
ticles whose distance from the nearest member of the pair is at
least 5 times greater than the separation of the pair (and in
most cases the cutoff distance is much larger than that). This
provides adequate convergence.

The isolation parameter y is defined for each pair i, j as

y =min (xy, X;)/X;; )

where k runs over all the neighbors of the pair. Pairs are
termed isolated if y > 1, i.e,, if the members the pair are each
other’s nearest neighbors, and nonisolated if y < 1. Observa-
tional selections of binary galaxies on the sky have typically
employed stricter isolation criteria (e.g., Turner 1976a).

III. VIRIAL THEOREM IN THE EXPANDING UNIVERSE

The application of the virial theorem in cosmology is rife
with uncertainty, caused mainly by the fact that most dynami-
cal systems are not completely decoupled from the expanding
substratum of the universe. The centers of clusters may be
“virialized,” i.e., in hydrostatic equilibrium, but the classical
virial theorem is an integral relation between kinetic and gravi-
tational energies over an entire system. When attempting to
apply the classical virial theorem over the “entire” cluster,
however, one runs into the practical difficulty of identifying its
edge, and the dynamical difficulty of continual inflow into the
cluster. Hence the coupling to the rest of the universe.

For isolated pairs it may seem that the classical approach of
the virial theorem would be adequate. However, when we take
a snapshot of the universe at a given epoch, we do not know
what fraction of the isolated pairs are still in their initial orbit,
and hence affected by the Hubble flow. We have therefore
sought to redefine the virial theorem in a manner that sub-
tracts out the effects of the underlying Hubble expansion.

Consider the time derivative of the scalar product of the
separation of a pair r;; and their relative peculiar velocity u;;,

dry* wp)/dt =iy w + vy - iy (6

The equation of motion for the peculiar velocity can be written
in the form

w;=—Hu;+g;, @)

where g;; is the excess relative acceleration of the pair, i.e., the
full relative acceleration minus the contribution of the smooth
cosmological substratum. So, using equation (7) in equation
(6), along with the defining relation between peculiar and
proper velocity, yields

d(rij'uij)/dt=ui2j+r,~j°g,~j. (8)

This equation is not as trivial as might seem at first glance,
because u;; # F;;, and g;; # ;;, but the extra terms cancel.
Equation (8) is the natural generalization of the similar relation
for proper coordinates. Its advantage over the latter is that the
effects of the Hubble expansions have been explicitly sub-
tracted out, and it can therefore be applied equally well in a
domain of separations where the Hubble velocity is compa-
rable to the peculiar velocity. This application follows the same
reasoning as is used for the more familiar versions of the virial
theorem in classical mechanics, arguing that if the time average
of the left-hand side of equation (8) is zero, then the time
average of the right-hand side must also be zero, and hence

<ui2j = —<"ij : gij> . 9)
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In practice the time average needs to be replaced with an
ensemble average over many pairs. In order for this substitu-
tion to be valid, we need to be assured that (1) the orbits are
finite, and there is no net expansion or contraction, and (2) our
sample is a fair sample of orbital phases. Note that equation (8)
is a general identity, and hence under assumptions 1 and 2 its
corollary, equation (9), applies equally well to isolated or non-
isolated pairs. The case of nonisolated pairs is treated in
Paper II

IV. RESULTS
a) Does the Two-Body Force Dominate in Isolated Binaries?

In Figure 1 we present the mean ratio {(g;;) between the
collective tidal force on a pair in the main sample and its
two-body force,

qij =

;(gik—gjk) /lgijl > (10)
where k runs over all neighbors of the pair out to the limiting
extended separation x = 0.05. Note that the collective force of
distant neighbors represents only a small fractional pertur-
bation on the two-body force for pairs with y > 3. Even those
less isolated, with 1 < y < 3, have {g;;> < 0.5 in both models.
In contrast, the force between nonisolated pairs (y < 1) is
dominated by the collective effect of neighbors, with {g;;> as
large as 30.

Encouraged by the finding that the two-body force domi-
nates the relative acceleration of isolated pairs, we have
allowed ourselves to use all the isolated pairs in the extended
sample for the statistical tests in this paper. We have thus
enlarged our isolated sample to separations x < 0.05
(r < 9.3 Mpc), although the number of isolated pairs with wide
separations is not very large.

b) Are Isolated Pairs Bound?

For isolated pairs whose dynamics is dominated by their
own self-interaction, we can make the distinction between
bound and unbound pairs by measuring the energy of the
two-body system in its center-of-mass frame:

E=v%/4+ V(r), (11

Figure 2 shows a histogram of the sample broken into
bound (shaded) and unbound (unshaded) portions as a function
of separation. Unbound pairs constitute only 15% of the pairs
for the Q, = 0.1 model, and 26% for the Q, = 1.0 model. The
fraction of unbound pairs is sensibly larger at larger separa-
tions.

We can estimate the separation beyond which we would
expect isolated pairs to be unbound by solving equation (11)
for the limiting case E = 0. Starting at the big bang, t = 0, with
separation r = 0, one finds that, at the present epoch t,, the
separation of pairs with zero total energy is

44 Mpc, Q,=0.1
7.7 Mpc, Q,=1.0, (12)

where we have ignored the softening of the two-body force.
These estimates are in good agreement with the maximum
radial extent of the bound pairs in Figure 2.

Clearly, we do not expect the ensemble of unbound pairs to
satisfy the virial theorem, since the finite ‘orbit condition is
violated. We turn now to verifying whether the ensemble of

rze = 3(Gmtd)!? = {
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F1G. 1.—Ratio of the collective to the two body force (eq. [10]) for all pairs in the main sample. Symbols correspond to different ranges of isolation parameter y:
0.0 < y <025 (plus signs); 0.25 <y < 0.5 (squares); 0.5 <y < 0.75 (asterisks); 0.75 <y < 1.0 (stars); 1.0 <y < 1.5 (circles); 1.5 <y < 3.0 (crosses); y > 3.0

(triangles).

bound, isolated pairs is a good candidate for virial analysis, by
examining the two requirements posed at the end of § III
above.

¢) Are Isolated Pairs a Fair Ensemble for the Virial Theorem?

Binaries in initially cold N-body models such as these tend
to have very eccentric orbits (Gott et al. 1979). This is shown
dramatically in Figure 3, in which we plot scatter diagrams of
the eccentricity against separation, along with a histogram of
eccentricities. The eccentricity is determined from the relative
separation and velocity of the pair, assuming it to be governed
by the Newtonian two-body force alone. This is a very good
approximation in the case of isolated pairs, except that the

eccentricity loses meaning for r < d,,, where the softened force
deviates from the Newtonian one. For that reason we have
excluded pairs with such small separations from Figure 3.

With such strongly eccentric orbits, the question naturally
arises whether or not there might be a selection effect, such that
a significant number of pairs are included in the “isolated ”
category only in the part of their orbit in which they are close
to perigalacticon, and are deemed “nonisolated ” when closer
to apgalacticon. An additional question is whether or not a
significant fraction of the pairs are in their initial infall toward
each other, such as is apparently the case with M31 and the
Galaxy.

In Figure 4 we plot the radial relative velocity of the bound
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Fi6. 2—Histogram of isolated pair counts against separation. Bound pairs are shaded. Most unbound pairs are found at wider separations.

isolated pairs against their separation (cf. the similar diagram
presented by Rivolo and Yahil 1983 for simulations of rich
clusters). It is immediately seen that the pairs with separations
larger than about 1.0-1.1 Mpc for Q, = 0.1 and 1.7-1.8 Mpc
for Q, = 1.0 are in their initial infall, but at shorter separations
we already have some galaxies that have had at least one
rebound.

For separations that are smaller than the observed
maximum extent after rebound, taken to be 1.0 Mpc (Q, = 0.1)
and 1.7 Mpc (Q, = 1.0), there are both outgoing and ingoing
pairs, and orbital phases are therefore expected to be more
homogeneously distributed. This is indeed seen to be the case
in Figure 5, in which we plot a scatter diagram of the orbital
phase against separation, along with a histogram for phases of
pairs with separations less than the above limits. Again, we
need to exclude separations smaller than d,,, where we cannot
employ Newtonian two-body physics. This exclusion appears

to be the cause of the diminution of phases close to zero (and 1)
in the Q, = 0.1 model, but the effect is not large.

We conclude that these isolated bound pairs are good candi-
dates for the virial theorem, provided that pairs whose separa-
tion exceeds that of the maximum extent of rebounding
galaxies are excluded. Precisely the same conclusion was
reached by Rivolo and Yahil (1983) in the case of rich clusters.
We therefore turn next to test the validity of the virial theorem
for this sample.

d) Isthe Virial Theorem Satisfied for Isolated Pairs?

In Figure 6 we plot the mean square relative peculiar veloc-
ity of the bound isolated pairs (normalized to one dimension)
as a function of separation. Both the radial and the tangential
square components are presented, with the high eccentricity of
the orbit manifested by the higher radial components. Also
shown are the directly measured values of —r;; * g;;/3. In addi-
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F1G. 3.—Scatter plot of orbital eccentricities vs. pair separation along with a histogram of eccentricities for bound isolated pairs. (Note histogram scale on top of
graph.) Pairs with separations r < d,, are excluded because of force softening on these scales.

tion, the plots include the pure two-body value of this latter
quantity, showing explicitly how small is the effect of the col-
lective force of neighbors.

Figure 6 shows a flat velocity distribution for separations
smaller than ~4d,, =~ 200 kpc, but a clear Keplerian falloff at
larger separations. The one-dimensional rms relative velocity
at small separations is 150 km s~ ! for the Q, = 0.1 model and
500 km s~ ! for the Q, = 1.0 model. This may be compared
with the observational determinations of ~100 km s~ ! (see
references cited in § I), but such direct comparison should be
viewed with caution—the Keplerian falloff in the models

beyond 2200 kpc is not seen in the data for projected separa-
tions < 700 kpc.

In Figure 7 we plot the mass estimator, the cumulative ratio
(ui2j>/< —F; * 8, as a function of separation. The ratio is seen
to be higher than unity for small separations, where most pairs
are near perigalacticon, and, in fact, within the softened part of
the two-body force, but converges to unity around r; = d,,,
and remains at that value. The inclusion of pairs which are on
their initial infall makes little difference to the cumulative ratio,
because of the small number of bound systems at these larger
separations. The final dimensionless mass estimates deter-
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F1G. 4—Scatter plot of radial velocity vs. separation for bound isolated pairs. The “ tail ” of pairs is just separating out of the Hubble flow (solid line: v, = Hqr).

mined from the asymptotic ratios are 0.93 for the Q, = 0.1
model and 1.02 for the Q, = 1.0 model, with statistical uncer-
tainties of a few percent in both numbers. This should be
viewed as excellent agreement.

In real applications, of course, it is all but impossible to
identify bound isolated pairs. The observed sample will be
contaminated by unbound pairs, which will tend to increase
the ratio {u)/{—r;* g;>. It is therefore interesting to
measure the error which the unbound pairs introduce into the
virial estimates.

Repeating the above analysis using the entire sample of
isolated pairs, including the unbound ones, results in {u?)/
{—r;;* g;;» reaching an asymptotic value ~ 1.2 for the Q, = 0.1

model and ~2.2 for the Q, = 1.0 model. To see how well this
error can be minimized, we have tested an iterative process for
determining masses. One starts by using the mass estimate
derived from the whole sample of isolated pairs to determine
orbital energies for each pair. One then repeats the mass esti-
mate using only those pairs which are bound by this zeroth-
order mass. The process is repeated until convergence. We find
rapid convergence (within ~ 5 iterations) from the initial values
of 1.2 and 2.2 above to final estimates of 0.92 (2, = 0.1) and 1.2
(Q, = 1.0). A simpler way to eliminate contamination from
unbound pairs is to employ a stricter isolation criterion. By
excluding pairs with isolations y < 2, where most of the
unbound pairs can be found, we obtain mass estimates of 0.95

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985ApJ...296..299E

J. 2 2296. JZ9BED

DAD

I'I_

306 EVRARD AND YAHIL

Vol. 296
50 100

r (Mpc)

F1G. 5.—Scatter plot of orbital phases vs. separation along with a histogram of phases for bound isolated pairs. Times ¢t = 0, T correspond to perigalacticon.
Pairs with separations r < d,, are excluded as in Fig. 3. Also, only pairs with r < 1.0 Mpc (Q, = 0.1) and r < 1.7 Mpc (Q, = 1.0) are used in the histogram to

eliminate any bias from pairs just beginning their initial infall.

in the Q, = 0.1 model and 1.5 in the Q, = 1.0 model. Further
exclusion of unbound pairs by iteration gives final mass esti-
mates of 0.86 and 1.04, respectively.

V. DISCUSSION

We have shown that nearly half of the point masses in the
EE N-body simulations double up to form isolated pairs (each
other’s nearest neighbors), whose dynamics is dominated by
their own two-body force. More than three-quarters of these

pairs are bound in very eccentric orbits. The high eccentricity
means that most pairs should be found near apgalacticon, but
this does not imply serious selection effects in orbital phases,
since we have found these to be uniformly distributed.

As expected from the boundedness and uniformity of pairs’
orbital phases, the ensemble of bound isolated pairs satisfies
the virial theorem nearly exactly. Mass estimates are accurate
to within 7% for the Q, = 0.1 model and 2% for Q, = 1.0,
statistical uncertainty being of this order. Contamination from
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Fic. 6.—Mean square relative peculiar velocity components (crosses), radial components (inverted triangles), and tangential components (squares) plotted vs.
separation for bound isolated pairs. The smooth curve is the normalized virial variable —r -g,,/3, with g the softened two-body acceleration, while the more jagged
curve is similar but with the full N-body acceleration g measured from the simulation. Statistical error bars are plotted on the mean velocity components only.

unbound pairs introduced errors smaller than a factor of 2 in
mass estimates, and these errors can be readily corrected by
simple methods.

The “cold starts” used in the models favor the formation of
long-lived binaries. N-body models with “warm starts” will
produce a considerably smaller fraction of bound objects (Gott
et al. 1979). Rivolo and Yahil (1981) found that 348 out of 864
galaxies, or roughly 40% of all galaxies in the RSA sample,
were members of pairs with projected isolation parameters
s > 1.5. (This corresponds roughly to y > 1 because they mea-
sured neighbor distances from the centroid of the pair.) This is
interestingly close to the fraction ~50% found in the simula-
tions, lending some support to the “cold start” scenario, but
nothing more detailed can be said without including the effects
of projection in analyzing the models.

We also find it interesting that the fraction of points in iso-
lated pairs is nearly the same in both models. The explanation
for this lies in the initial particle distribution, which is the same
in both models. Suppose that pairs whose initial separation
was smaller than some critical fraction f of the mean interpar-
ticle distance tended to be dominated from the start by their
two-body force, and remained binaries thereafter. (Again, it is
the lack of initial thermal velocities which allows such a sim-
plistic view.) The Poisson probability for not having a neighbor
within a fraction f of the mean interparticle separation is
exp (—f3). Since ~50% of the particles seem to satisfy this
condition, it follows that f = [—In (0.5)]'/ = 0.89. Thus, in a
statistical sense, particles that initially find a neighbor within
about 90% of the mean interparticle spacing tend to stick to it.
This fraction is the same in both models because the strength
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FIG. 7—Mass estimates obtained from the cumulative values of the virial ratio <u?»/{ —r * g> for bound only and for all (bound + unbound) isolated pairs.
Bound isolated pairs yield extremely accurate masses. Contamination from unbound pairs affects mass estimates by a factor of roughly 2 in the critical model and by

only 30% in the open case.

of the collective relative to the two-body forces is independent
of the mass of the individual objects.

This point of view also explains the highly eccentric orbits of
bound isolated pairs. The members of a bound pair of par-
ticles, which is initially dominated by its two-body force, will
recede from the Hubble expansion, fall radially toward each
other, and remain in an orbit with e ~ 1, unless strongly per-
turbed by neighbors. Moreover, if initial peculiar velocities
were assigned to correspond to a purely growing gravitational
instability, as they should if tidal forces between neighboring
protogalaxies were negligible during the epoch of galaxy for-
mation, then the tendency to form eccentric binaries would be

even stronger, since the peculiar motion of the members of a
close pair would be in the direction of infall toward each other.

The distinct possibility that the members of isolated pairs of
galaxies may fall radially toward each other, and perhaps
collide, suggests that N-body models with more realistic
galaxy-galaxy interactions, including tidal effects and mergers,
are imperative in order better to model the properties of real
binary galaxies, and to reproduce the observed statistical dis-
tributions of binary characteristics. This conclusion is
strengthened by the discrepancy between the Keplerian falloff
of relative velocity with separation in the models and the flat
relationship in the observational data.
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Simulations of galaxy collisions (see reviews by Tremaine
1981; Alladin and Narasimhan 1983; White 1983) show that
the transfer of a pair’s orbital energy into internal energy of the
individual galaxies is quite significant, often resulting in
capture or merger. Barnes (1984, 1985) has examined virial
mass estimates for small groups with galaxies modeled as
heavy “core” particles immersed in a background made up of
many light “halo” particles, and found significant underesti-
mation of the total group mass after only a few evolutionary
time scales. Dynamical friction rapidly draws the core particles
toward the center of the group, shrinking their mean radius,
while their velocities remain roughly constant. Thus, the esti-
mated mass M ~ RV? decreases as the system evolves. A
similar effect is expected to be manifested in binary systems
possessing a core-halo structure, although its magnitude will
depend heavily on the assumed extent and other characteristics
of the halo. (Note that dynamical friction can still occur
between two galaxies even if their halos are not overlapping
[Tremaine and Weinberg 1984].)

VIRIALIZATION IN N-BODY MODELS. L
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It is reassuring to find that, for the simple system studied
here made up of equal mass particles interacting with a soft-
ened 1/r potential, virial mass estimates are extremely accurate.
There remains the problem of understanding “virialization”
for a system of extended objects interacting with excitable
internal degrees of freedom.
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