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ABSTRACT

We use a representative sample of 65 galaxy clusters observed with the Einstein

IPC to constrain the range of cluster X{ray morphologies. We develop and apply

quantitative and reproducible measures to constrain the intrinsic distributions of (i)

emission weighted centroid variation w

~x

, (ii) emission weighted axial ratio �, (iii)

emission weighted orientation �

o

, and (iv) measures of the radial fall{o�, � and �.

For each cluster we use a Monte{Carlo procedure to determine the e�ects of Poisson

noise, detector imperfections, and foreground/background X{ray point sources.

We then use the range of cluster X{ray morphologies to constrain three generic

cosmological models (
=1, 


o

=0.2, and 


o

=0.2 & �

o

=0.8). For each of these mod-

els, we evolve eight sets of Gaussian random initial conditions consistent with an

e�ective power spectrum P (k) / k

�1

on cluster scales. Using this sample of 24

numerical cluster simulations which include gravity and gas physics (but no cooling

or ejection from galaxies), we compare the X{ray morphologies of the observed and

simulated clusters. Speci�cally, we build arti�cial ensembles with the same distribu-

tions in the number of cluster photons, X{ray temperature, and cluster redshift as

the Einstein ensemble; we then compare the observed and simulated distributions in

w

~x

, �, and �.

The comparisons indicate that: (i) these three morphological characteristics are

sensitive to the underlying cosmological model, and (ii) galaxy clusters with the

observed range of X{ray morphologies are very unlikely in low 


0

cosmologies. The

analysis favors the 
=1 model, though some discrepancies remain. We discuss the

e�ects of changing the initial conditions and of including additional physics in the

simulations.

Subject headings: cosmology: theory | galaxies: clustering | hydrodynamics |

intergalactic medium | methods: numerical | X{rays: galaxies

1. INTRODUCTION

Over the past decade, studies have provided ample evidence that a signi�cant fraction

of galaxy clusters have undergone recent growth (Geller & Beers 1982, Dressler & Shect-

man 1988, Forman & Jones 1990). Analytic work by Richstone, Loeb, & Turner (1992)

demonstrates that the present epoch dynamical state of galaxy clusters is sensitive to the

cosmological density parameter 


0

. We have previously shown that the structure of the
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X{ray emitting gas in clusters reects this dependence (Evrard et al. 1993). Thus cluster

X{ray morphologies provide an important cosmological constraint.

Here we use quantitative and reproducible measures of cluster X{ray morphology for a

representative sample of galaxy clusters to evaluate these cosmological constraints. We �rst

develop and test measures of the cluster centroid variation w

~x

(Mohr, Fabricant, & Geller

1993; hereafter MFG93), the axial ratio �, the orientation �

o

, and the measures of radial

fall{o�, � and �. We apply these measures to a representative sample of cluster X{ray

observations to determine the intrinsic cluster distribution in these quantities (x2). Finally,

we directly compare the morphologies of observed clusters to a set of clusters simulated within

three di�erent cosmological models; we use the results to place cosmological constraints

(x3). x4 contains a summary and further discussion of the results. (A Hubble parameter of

H

0

= 50 h

�1

50

km s

�1

Mpc

�1

is assumed throughout.)

2. THE MORPHOLOGIES OF OBSERVED CLUSTERS

This section is a description of the measures of cluster X{ray morphology. We include a

discussion of the observational sample taken from the Einstein archive, and a brief review of

the standard IPC reduction procedure. Case by case, we provide the measurement details of

four morphological characteristics: (i) the centroid variation w

~x

, (ii) the axial ratio �, (iii)

the orientation �

o

, and (iv) two measures of the radial fall{o�, � and �. We review the tests

of our measurement accuracy and display the results.

Figure 1: Completeness of the Einstein sample. Col-

umn 1 contains distributions of 2{10 keV X{ray lu-

minosity for (bottom) the 55 members of the ux

limited Edge et al. (1990) sample and (top) the

58 Einstein clusters with published luminosities (Edge

et al. 1990, David et al. 1992). The dashed lines

in the upper plot form the distribution for the 41 of

58 Einstein clusters contained in the Edge et al. ux

limited sample. Column 2 contains an analogous ar-

rangement of the distributions in X{ray temperature.

The KS test demonstrates that there is a reasonable

probability that these three samples are drawn from

the same parent distribution.

2.1 THE CLUSTER SAMPLE

Cluster X{ray morphologies are quite varied. To probe the full range of morphologies it

is imperative to have a large, representative sample of high signal{to{noise cluster images.

In the near future the ROSAT public archive will be a valuable resource in this regard.

For the present study we extract and reduce Einstein Imaging Proportional Counter (IPC)

images of 65 galaxy clusters. We choose these particular clusters in an attempt to construct
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a representative sample and because they are among the best cluster images obtained with

the IPC. Our ensemble of observations contains images with from 10

3

to 2 � 10

5

cluster

photons; the median number of cluster photons per image is �5000. Because this cluster

sample is not manifestly complete with respect to volume or ux limits, we evaluate the

e�ects of incompleteness by comparing the sample to the X{ray ux limited sample of 55

clusters constructed by Edge et al. (1990).

Of our 65 clusters, 58 have published 2{10 keV X{ray luminosities (L

X

) and X{ray tem-

peratures (T

X

) (Edge et al. 1990; David et al. 1992). 41 of these 58 clusters are in the Edge et

al. sample. Figure 1 compares the distributions in L

X

(left column) and T

X

(right column)

of our ensemble (top) with the Edge sample (bottom). A �rst glance at the distributions

may lead to the conclusion that the entire Einstein sample has more low luminosity and low

temperature clusters than both the Edge sample and the Einstein subsample. However, the

KS test demonstrates that the di�erences in these distributions are all consistent with sta-

tistical uctuations. For each combination we include the KS parameter D and the implied

probability that the two distributions are consistent. For T

X

: Edge/Ein58 D=0.16 (45%),

Edge/Ein41 D=0.10 (98%), Ein41/Ein58 D=0.15 (69%). For L

X

: Edge/Ein58 D=0.21

(15%), Edge/Ein41 D=0.14 (71%), Ein41/Ein58 D=0.15 (67%). On the basis of these re-

sults, the L

X

and T

X

distributions for both the entire Einstein sample of 58 clusters and

the Einstein subsample of 41 clusters are indistinguishable from an X{ray ux limited sam-

ple.

Naturally, we would like to have images of comparable quality and depth for all 65

clusters. However, variations in exposure time and surface brightness within our sample

complicate our goal of extracting the intrinsic range of cluster morphologies. Using mor-

phological measures which are most sensitive to the bright cluster cores reduces sensitivity

to these sample variations. Each of our measures (except for the radial fall{o�) is emission

weighted and therefore most sensitive to the highest signal{to{noise regions of the X{ray

images. Our measures are relatively insensitive to the inclusion or exclusion of outer cluster

regions. Indeed, for a cluster with the mean radial behavior (� = 0:65), the emission weight-

ing scheme outside the cluster core is essentially a radial weighting by R

�2

where R is the

projected distance from the peak in the X{ray surface brightness.

2.2 IMAGE REDUCTION

We �lter the observation to produce a 0.3 to 3.5 keV X{ray image blocked from the

original 8

00

pixels to 16

00

pixels. We then subtract an approximation to the image background

using a scaled Deep Survey background map; the background is scaled using either the

observation livetime or the X{ray ux in regions of the image outside the cluster. Then we

apply corrections for telescope vignetting and small scale IPC non{linearities (see Soltan &

Fabricant (1990) and MFG93 for a discussion of the small scale correction). Finally, we block

the image to 32

00

pixels and smooth with a Gaussian of 1.5

0

FWHM. The resulting image has

a spatial resolution of 2.4

0

FWHM. Our analysis of these images is con�ned to the detector

region within the IPC ribs.
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2.3 CENTROID VARIATION

We analyze each X{ray image in annuli of constant width (1.07

0

) and increasing radius;

as described below, these annuli are not concentric. Because an a priori choice of image

center biases the results and the cluster centroid often varies as a function of scale, the

�rst step in the analysis is de�ning a cluster center for each annulus. We use a simplex

minimization routine (Press et al. 1988) to �nd the annulus position which minimizes the

distance between the annulus centroid ~x and the geometric center of the annulus. ~x is the

intensity weighted �rst moment of the annulus

~x =

 

1

N

X

i

n

i

x

i

;

1

N

X

i

n

i

y

i

!

where N =

X

i

n

i

; (2:1)

n

i

is the number of photons in pixel i and the summation occurs over all pixels within the

annulus. This minimization is roughly analogous to balancing a donut on an anthill{ the

�nal position of the donut is the position which brings the plane de�ned by the donut as

nearly parallel to the ground as the anthill allows (see MFG93 for more details). Once the

appropriate annulus position is determined, we use the centroid ~x calculated at that position

as the image centroid for that annulus radius.

The annulus radius is increased and the identical prescription followed until measure-

ments cover the useful portion of the X{ray image (determined by the IPC ribs and any

bright point sources). Thus we extract a radial function in the centroid ~x. To examine the

variation in this function while minimizing the noise introduced by the low signal{to{noise

region of the image, we calculate an emission weighted centroid variation over the region

of the image which satis�es a mean signal{to{noise constraint (




S

N

�

> 5 where




S

N

�

is the

mean signal to noise of all the pixels within the annulus). Speci�cally, the emission weighted

centroid variation is

w

2

~x

=

0

@

X

j

N

j

1

A

�1

X

j

N

j

(~x

j

� h~xi)

2

(2:2)

where the summation occurs over all annuli with




S

N

�

> 5, N

j

is the number of photons

within the annulus j, and h~xi is the emission weighted average centroid of the image.

We take a Monte{Carlo approach to determine the signi�cance of the centroid variation.

We ask, \Is the centroid variation we detect consistent with variations introduced by Poisson

noise, foreground/background point sources and detector imperfections?" To answer this

question, we �rst �t our cluster image to a symmetric � model of the form

I(x; y) = I

0

 

1 +

�

x

R

c

�

2

+

�

y

�R

c

�

2

!

1

2

�3�

(2:3)

where I

0

, R

c

, � and � are the normalization, core radius, axial ratio and radial fall{o�.

Two other free parameters, a cluster orientation angle and emission center on the IPC, are
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included because the detector response varies over its face. This � model has no intrinsic

centroid variation.

We then simulate an observation of this model, including X{ray background, Poisson

noise, detector response variations and randomly positioned point sources consistent with

the EMSS logN{log S distribution (Gioia et al. 1990; see MFG93 for details). We reduce the

simulated image (\�{image" hereafter) just as we reduce the original image and carry out the

measurements described above. By reimaging the � model from 200 to 1000 times we build

up a sample of �{images with a range of morphologies (and centroid variations) due solely

to non{cluster e�ects. We use this distribution of centroid variations in two di�erent ways:

(i) we use the mean of the distribution




w

2

~x

�

MC

to correct the centroid variation measured

in the original image for the Poisson, point source and instrumental contributions (w

2

~x

=

w

2

meas

�




w

2

~x

�

MC

where w

2

meas

and w

2

~x

are the original and corrected centroid variations) and

(ii) we use the width of the Monte{Carlo distribution as one component of the uncertainty

in the centroid variation.

The value of w

~x

depends on the region of the cluster used to calculate it (as discussed

later, the orientation, axial ratio, and radial fall{o� share this characteristic). This depen-

dence can be produced by a cluster cooling ow located o� center with respect to the large

scale structure of the cluster. In this case the cluster centroid would vary signi�cantly near

the cluster core and then vary little outside the core. Thus, w

~x

would decrease as we included

more and more annuli from the outer regions of the cluster. Because the centroid variation

depends on the radial scale of the measurement, the choice of an appropriate scale is cru-

cial. Here we interpret a centroid variation as an indicator of dynamical youth (MFG93,

Mohr & Evrard, 1994). Thus, we take the radius where w

~x

reaches maximum signi�cance

(maxfw

~x

=�

w

g, where �

w

is the centroid variation uncertainty).

In x3 we demonstrate that clusters simulated with an Einstein{deSitter cosmological

model have morphologies very similar to observed clusters. Thus these cluster simulations

provide an ideal medium to test our measurement accuracy. We compare measurements

made on perfect images of the simulated clusters (no instrumental e�ects or Poisson noise)

with the measurements made on arti�cial IPC images of these clusters (see x3 for details

about these arti�cial images). In particular, we use a sample of more than 200 cluster images

with distributions in signal{to{noise and spatial scale similar to those of the Einstein IPC

sample.

Figure 2 contains the results of these comparisons. The �rst column contains a measure of

the accuracy of w

~x

; the top row contains a plot of the fractional error as a function of the real

value. For a centroid variation w

~x

< 0:3

0

, the accuracy decreases because of the resolution and

noise characteristics of our image ensemble (and because we plot the fractional error which

is proportional to w

~x

�1

). The large number of photons in a typical image (�5000) allows

us to extract variations which are �

1

3

the resolution scale of the images. Greater resolution

would require either IPC images with signi�cantly more cluster photons or an instrument

with improved imaging and background characteristics (e.g. the ROSAT PSPC). The bias for
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Centroid Variation Axial Ratio Orientation

Figure 2: Measurement

accuracy evaluated using

a set of over 200 arti�cial

IPC images. The �rst

row contains (from left to

right) (i) the fractional

error in the centroid

variation (�w=w

real

=

(w

~x

� w

real

)=w

real

) ver-

sus the real centroid vari-

ation w

real

, (ii) the frac-

tional error in the ax-

ial ratio (��=�

real

=

(�

meas

��

real

)=�

real

) ver-

sus the measured axial

ratio �

meas

, and (iii) the

absolute error in the ori-

entation angle (�� in de-

grees) versus the mea-

sured axial ratio �

meas

.

The mean errors for

the three parameters are

h�w=w

real

i = �7:6% (for all w

real

> 0:3

0

), h��=�

real

i = �0:7%, and h��i = �0:85

�

. The second row

contains the histogram of scaled errors (� = �=�, where � is the error and � is the uncertainty) for each

measured parameter. The best Gaussian �ts to the � distributions have the widths �

w

= 1:34, �

�

= 0:73,

and �

�

= 1:49. For each parameter we use these widths to correct our uncertainties in order to obtain a �

distribution of nominal width.

images with w

real

> 0:3

0

is h�w=w

real

i = �7:6%; on average we tend to underestimate the

magnitude of the centroid variation. This bias results from our method of correcting for the

Poisson and instrumental contributions to w

meas

. As described above, we postulate that the

measured centroid variation has an intrinsic and a noise component: w

2

meas

= w

2

~x

+




w

2

~x

�

MC

.

This approximation works well at large centroid variation but leads to an underestimate

for small variations. Clearly, Poisson noise and instrumental e�ects can also mask a cluster

centroid variation!

The bottom row of the �rst column of Figure 2 contains a scaled error distribution for

all images (� = �=� where � is the measurement error and � is the measurement uncer-

tainty). We obtain this distribution by including three contributions in the centroid variation

uncertainty: (i) the width of the Monte{Carlo distribution of w

~x

, (ii) the formal uncertain-

ties which follow directly from Equation 2.1 and Equation 2.2, and (iii) a 10% fractional

uncertainty which accounts for the uncertainties in the IPC response. This at 10% frac-

tional uncertainty removes the outliers in our scaled error distribution. A Gaussian �t to

the � distribution demonstrates that we underestimate the uncertainties by 34% (the best

�t � = 1:34). We increase all w

~x

uncertainties by 34% to correct for this underestimate.

Unfortunately, it is not possible to extract a centroid variation from all 65 cluster images.

Table 1 lists w

~x

for 46 clusters and the maximumcentroid shift �~x within the




S

N

�

> 5 region

for 58 clusters. The table contains the centroid variation and uncertainty in arcmin (w

~x

[

0

]
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Centroid Variation Axial Ratio Radial Fall{o�

Figure 3: X{ray

morphologies of observed

clusters. From left to

right is (i) the distribu-

tion of emission weighted

centroid variation w

�x

in

kpc for a sample of 43

clusters, (ii) the distribu-

tion of emission weighted

axial ratios � for a sam-

ple of 51 clusters and (iii)

the distribution of radial

fall{o� � for 48 clusters. The mean and root mean square width of the three distributions are: a) hw

�x

i = 41:3

kpc and RMS

w

= 47:4 kpc, b) h�i = 0:80 and RMS

�

= 0:12, and c) h�i = 0:65 and RMS

�

= 0:16. The

dashed line histogram in the � distribution contains 38 clusters. The 13 clusters removed from the original

sample have central cooling times signi�cantly less than 10

10

years (Edge, Stewart, & Fabian 1992, Stewart

et al. 1984).

and �

w

), the centroid variation and uncertainty in h

�1

50

kpc (w

~x

[kpc] and �

w

), the radius (in

arcmin) of the maximally signi�cant w

~x

measurement (R[

0

]), and the maximumcentroid shift

(�~x). Clusters with a \-" entry have centroid variations consistent with zero (where




w

2

~x

�

MC

is greater than w

2

meas

). A \�" marks those cluster where the




S

N

�

> 5 region is too small

to make a meaningful w

~x

measurement, and a \p" marks clusters with bright point sources

near their emission peaks, making w

~x

di�cult to measure with the Einstein IPC. (The higher

resolution ROSAT PSPC images of these clusters may allow accurate measurements after

point source removal.) 43 of these 46 clusters have measured L

X

and T

X

. A KS test

demonstrates that this sample of 43 clusters is statistically indistinguishable from the ux

limited sample of Edge et al. (T

X

: D=0.20 (28%), L

X

: D=0.23 (15%)). Figure 3 shows the

distribution of w

~x

. The mean and root mean square width of this distribution are hw

~x

i = 41:3

kpc and RMS

w

= 47:4 kpc. Notes on individual measurements are in Appendix A.

Because the centroid variation is a signature of dynamical youth, we can use these

measurements to examine the fraction of substructure in galaxy cluster cores. Of the 46

clusters with measured w

~x

, 71% have centroid variations which are at least 3�

w

from zero;

48% have centroids variations which are at least 5�

w

from zero. The Monte{Carlo method

we use to determine the uncertainties in our measurements also gives us the probability

that the measured centroid variation in a cluster is merely due to Poisson noise, detector

imperfections, and X{ray point sources. The probability that w

~x

is due to an intrinsic,

cluster centroid variation is > 99:9% in 46% of the sample and is > 99% in 61% of the

sample. Thus, we conclude that the IPC images of these 46 clusters provide evidence for

core substructure in from 50% to 70% of the sample, depending on the con�dence criterion

adopted.

We include �~x because this scale is readily apparent in a contour plot of the cluster

X{ray emission. Table 1 lists the values for all clusters with at least two meaningful centroid

measurements within the




S

N

�

> 5 region of the image. We avoid using �~x for comparison of

X{ray morphologies because it is a noisier measure than w

~x

(dependent on only two centroid
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Table 1. Centroid Variation

Cluster w

~x

[

0

] �

w

R[

0

] w

~x

[kpc] �

w

�~x[

0

] Cluster w

~x

[

0

] �

w

R[

0

] w

~x

[kpc] �

w

�~x[

0

]

A85

ec

0.504 0.079 10.7 45.8 7.2 1.53 A2065

e

0.159 0.063 7.5 20.0 7.9 0.55

A119

e

0.227 0.173 6.4 17.6 13.4 0.92 A2124

m

* * 0.34

A133 0.226 0.058 6.4 23.8 6.0 0.72 A2142

ec

p p

A168 1.254 0.230 8.5 98.0 18.0 3.82 A2147

e

1.565 0.236 12.8 96.4 14.5 4.32

A262

ec

0.127 0.059 6.4 3.6 1.6 0.39 A2151 0.914 0.135 7.5 59.0 8.7 2.50

A399

e

0.610 0.109 8.5 76.9 13.5 1.91 A2199

ec

0.141 0.025 6.4 7.4 1.3 0.48

A400 0.405 0.154 8.5 16.8 6.4 1.39 A2255

e

0.174 0.064 6.4 24.6 9.1 0.74

A401

e

0.492 0.072 9.6 63.5 9.4 1.61 A2256

e

0.535 0.084 12.8 54.2 8.6 1.66

A426

ec

0.915 0.125 13.9 28.6 3.9 2.23 A2319

e

0.524 0.072 7.5 50.7 7.1 1.93

A478

ec

- - 6.4 0.19 A2410

m

0.631 0.860 6.4 88.2 120.3 2.59

A496

ec

0.392 0.066 9.6 22.6 3.8 1.03 A2420 0.197 0.059 7.5 28.8 8.6 0.77

A539 p p A2440 * * 0.12

A548 0.221 0.090 6.4 16.0 6.6 0.69 A2593 * * 0.98

A576

e

0.180 0.058 7.5 12.0 3.8 0.55 A2597

e

* * 0.14

A592

m

* * 0.38 A2626 * *

A644

e

0.464 0.079 8.5 57.6 9.9 1.33 A2634 - - 8.5 3.40

A671

m

0.145 0.044 6.4 12.7 3.9 0.47 A2657

c

0.193 0.048 6.4 13.5 3.4 1.08

A754

e

1.082 0.153 9.6 102.3 14.3 3.50 A2670 * * 0.24

A780

ec

- - 8.5 0.32 A2877

c

p p

A1060

e

0.267 0.046 8.5 5.8 0.9 0.78 A3158

e

0.376 0.063 8.5 38.7 6.6 1.24

A1367

e

0.832 0.170 12.8 27.6 5.6 3.39 A3186

m

* *

A1644

e

1.527 0.208 9.6 126.5 17.2 4.20 A3266

e

0.574 0.083 11.7 54.5 7.9 1.34

A1650

e

* * 0.24 A3376

m

0.929 0.307 9.6 73.8 24.3 3.08

A1656

e

0.429 0.066 14.9 17.3 2.7 1.25 A3391

e

- - 8.5 0.71

A1689

e

* * 0.07 A3395SW 2.531 0.341 6.4 225.1 30.3 5.96

A1736

e

0.771 0.118 9.6 62.0 9.5 2.53 A3526

ec

0.451 0.079 9.6 7.9 1.3 1.24

A1767 - - 6.4 0.46 A3532

e

* * 0.66

A1775 * * 0.16 A3667

e

1.371 0.186 7.5 126.7 17.2 1.40

A1795

ec

p p AWM7

ec

0.320 0.087 6.4 9.6 2.5 0.93

A1983

m

* * 0.23 CygA

ec

1.405 0.193 9.6 139.7 19.2 4.37

A2029

ec

p p MKW3S

ec

* * 0.07

A2052

ec

- - 6.4 0.20 3C129

e

0.413 0.121 10.7 15.8 4.7 1.39

A2063

ec

0.230 0.063 7.5 14.2 3.9 0.72

- w

~x

consistent with zero

e

member of Edge et al. sample

�




S

N

�

> 5 region too small

m

no measured X{ray temperature

p bright point source near core

c

central cooling time< 10

10

years

measurements rather than an ensemble of >4 measurements).

2.4 AXIAL RATIO

The methods of measuring the cluster axial ratio and the centroid variation are similar.

Given the correct position for an annulus, we expand the photon distribution de�ned by the

annulus in a �nite Fourier series.

I(�) =

4

X

n=0

A

n

cos n� +B

n

sinn� (2:4)

The series is truncated at n = 4 to reach a balance between execution speed and accuracy
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in the low n terms. The axial ratio comes from the coe�cients of the 2� terms:

�

�r

=

r

minor

r

major

=

�r � �r

�r + �r

� 1�

2

q

A

2

2

+B

2

2

r

dI

dr

(2:5)

A formal uncertainty for the axial ratio follows from its dependence on A

2

and B

2

and

the appropriate diagonal elements of the covariance matrix from the expansion. The �nal

uncertainty for the axial ratio at a particular radius is the sum in quadrature of the formal

uncertainty and a more realistic uncertainty based on the Monte{Carlo approach (x2.3).

The Monte{Carlo uncertainty is the RMS variation of the axial ratio over the ensemble of

�{images.

With this approach we measure the cluster axial ratio (and uncertainty) as a function of

radius. We use this function within the




S

N

�

> 5 region of the cluster image to calculate �,

the emission weighted average axial ratio.

� =

2

4

X

j

�

N

�

2

�

�

j

3

5

�1

X

j

�

N�

�r

�

2

�

�

j

(2:6)

where N=�

2

�

is the number of photons scaled by the axial ratio uncertainty in each annulus

and �

�r

is the measured axial ratio in each annulus. As for w

~x

, we use a large ensemble of

numerical cluster simulations to evaluate the accuracy of our measurements. The second

column of Figure 2 contains the results for �. The top row contains a plot of the fractional

error in � as a function of the measured axial ratio. There is no signi�cant bias in this

measurement; the mean error in the more than 200 images is h��=�

real

i = �0:2%. The

width of the best �t Gaussian to the scaled error distribution in the bottom row is �=0.73,

27% less than the nominal width. We reduce the uncertainties by 27% to correct for this

overestimate.

Columns labeled � and �

�

of Table 2 contain the list of axial ratios and uncertainties

for 57 clusters. The columns labeled R[

0

] contain the radius (in arcmin) within which we

calculate the emission weighted average. 51 of these clusters have measured L

X

and T

X

which we use to compare this sample to the ux limited sample of Edge et al. The KS test

demonstrates that this sample of 51 clusters is statistically indistinguishable from the Edge et

al. sample (T

X

: D=0.19 (31%), L

X

: D=0.24 (10%)). Figure 3 contains a histogram of � for

those 51 clusters; the mean and width of this distribution are h�i = 0:80 and RMS

�

= 0:12.

Appendix A contains a detailed discussion of individual measurements.

McMillan, Kowalski, & Ulmer (1989{ hereafter MKU) study the orientation and axial

ratio of the X{ray emission from 49 Abell clusters. They focus on the faint outer region of

the cluster image. Speci�cally, the region they use is de�ned by two isophotes: a low ux

level just above the noise and a high ux level de�ned so the entire region contains 20% of

the cluster ux. Because we emphasize the core of the X{ray emission, our results di�er

from those of MKU in cases where the morphology of the X{ray emission varies with radius.
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Table 2. Radial Fall{o�, Axial Ratio and Orientation

Cluster �

z

� �

�

�

o

�

�

R[

0

] Cluster �

z

� �

�

�

o

�

�

R[

0

]

A85

ec

0.592 0.910 0.011 -11 4 5.3 A2065

e

0.767 0.764 0.031 -27 2 8.5

A119

e

0.735 0.791 0.066 2 8 10.7 A2124

m

0.512 0.830 0.120 -3 26 4.3

A133 0.659 0.915 0.027 -4 10 6.4 A2142

ec

0.888

A168 0.506 0.108 -15 8 8.5 A2147

e

0.558 0.092 -2 10 10.7

A262

ec

0.521 0.835 0.041 39 5 9.6 A2151 0.910 0.042 -56 7 6.4

A399

e

0.578 0.854 0.039 16 5 8.5 A2199

ec

0.594 0.823 0.019 35 2 11.7

A400 0.680 0.079 16 8 8.5 A2255

e

0.838 0.855 0.036 -80 13 9.6

A401

e

0.627 0.798 0.022 23 4 9.6 A2256

e

0.738 0.019 -64 2 12.8

A426

ec

0.485 0.911 0.006 69 1 13.9 A2319

e

0.622 0.828 0.022 -27 2 12.8

A478

ec

0.668 0.855 0.018 42 5 6.4 A2410

m

72 2 6.4

A496

ec

0.641 0.877 0.018 -11 4 10.7 A2420 0.882 0.853 0.033 61 7 7.5

A539 0.561 A2440 37 10 4.3

A548 0.489 0.886 0.054 20 10 7.5 A2593 0.536 0.817 0.106 -7 29 5.3

A576

e

0.641 0.798 0.031 15 10 9.6 A2597

e

0.870 0.934 0.029 -51 14 4.3

A592

m

0.569 0.862 0.050 -78 13 5.3 A2626 0.885 0.822 0.064 14 20 3.2

A644

e

0.735 0.822 0.019 9 2 8.5 A2634 0.651 0.528 0.131 36 7 8.5

A671

m

0.743 0.917 0.029 36 23 6.4 A2657

c

0.597 0.887 0.030 90 5 6.4

A754

e

0.579 0.042 -87 2 10.7 A2670 0.681 0.916 0.047 -50 28 4.3

A780

ec

0.681 0.915 0.014 -22 4 8.5 A2877

c

0.472

A1060

e

0.632 0.927 0.022 5 11 13.9 A3158

e

0.667 0.804 0.035 -72 4 8.5

A1367

e

0.584 0.050 -35 4 12.8 A3186

m

0.630 0.904 0.083 -60 53 3.2

A1644

e

0.448 0.893 0.031 69 11 6.4 A3266

e

1.343 0.796 0.026 68 4 12.8

A1650

e

0.788 0.807 0.029 -6 5 5.3 A3376

m

0.783 0.339 0.107 76 5 9.6

A1656

e

0.760 0.806 0.016 80 2 14.9 A3391

e

0.523 0.613 0.068 65 4 8.5

A1689

e

0.833 0.888 0.023 26 7 5.3 A3395SW 0.463 0.068 -57 12 4.3

A1736

e

0.580 0.852 0.040 -82 22 9.6 A3395NE 0.572 0.096 -60 14 4.3

A1767 0.614 0.859 0.050 24 17 6.4 A3526

ec

0.395 0.832 0.018 -89 2 9.6

A1775 0.652 0.950 0.042 -57 31 4.3 A3532

e

0.573 0.791 0.069 42 35 5.3

A1795

ec

0.674 A3667

e

0.537 0.601 0.033 -53 2 7.5

A1983

m

0.610 0.844 0.041 -69 32 4.3 AWM7

ec

0.460 0.665 0.089 -83 7 7.5

A2029

ec

0.685 CygA

ec

0.523 0.882 0.025 -35 4 8.5

A2052

ec

0.562 0.802 0.039 31 5 6.4 MKW3S

ec

0.633 0.917 0.029 86 17 5.3

A2063

ec

0.637 3C129

e

0.769 0.068 85 7 11.7

c

central cooling time < 10

10

years

e

member of Edge et al. sample

z

�'s accurate to 17%

m

no measured X{ray temperature

The measurements on three clusters make the di�erences abundantly clear: (i) the X{ray

emission in Abell 754 is very attened near the core and becomes more circular outside the

core (� = 0:579 versus �

MKU

= 0:820); (ii) Abell 548 is more circular near the core than

outside the core (� = 0:886 versus �

MKU

= 0:506; and (iii) Abell 2052 has a roughly constant

axial ratio (� = 0:802 versus �

MKU

= 0:807).

2.5 ORIENTATION

We also extract the cluster orientation from the Fourier expansion of the photon distri-

bution within the annulus.

�

�r

=

1

2

tan

�1

�

B

2

A

2

�

(2:7)

We combine the formal and Monte{Carlo errors exactly as we do for the axial ratio.
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Many clusters have orientations which vary as a function of radius. We combine the

cluster orientation as a function of radius to produce an emission weighted average orientation

�

o

within the




S

N

�

> 5 region of the cluster image.

�

o

=

2

4

X

j

(N�

�r

)

j

3

5

�1

X

j

(N�

�r

)

j

(2:8)

where N is the number of photons within each annulus. As with w

~x

and �, we use cluster

simulations to test our accuracy; the third column of Figure 2 shows the test results for �

o

.

The top row in the column shows the absolute error of each measurement as a function of

the measured cluster ellipticity. As expected, the orientation error is larger for more circular

clusters; there is no evidence of a measurement bias (h��i = �0:85

�

). The bottom row

contains a distribution of scaled errors. The best �t Gaussian is centered near zero with an

excess width of 49% (�

�

=1.49). Thus, we conclude that the orientation measurement is unbi-

ased, but the uncertainties are underestimated. We increase all our orientation uncertainties

by 49% to correct for this underestimate.

Columns labeled �

o

and �

�

of Table 2 list the orientation angles and uncertainties for

59 clusters. Columns labeled R[

0

] contain the radius (in arcmin) within which we calculate

the emission weighted average. Appendix A contains a detailed discussion of the individual

measurements. Two clusters have variations in orientation or isophote twisting above the 3�

level. These two clusters are A426 (RMS

�

= 33:1

�

, �

RMS

= 2:4

�

) and A119 (RMS

�

= 37:0

�

,

�

RMS

= 9:7

�

). In the case of an equilibrium system this twisting would be evidence of

triaxiality; however, in these two cases there is evidence of departures from equilibrium. The

centroid of the cooling ow region of A426 and the centroid of the outer region of the cluster

are signi�cantly di�erent (see Table 1 and MFG93). In A119, the surface brightness pro�le

is inconsistent with that produced by a single mass clump. Fabricant et al. (1993) show

that a multi{clump model suggested by the galaxy distribution produces an X{ray surface

brightness pro�le consistent with the IPC image.

Rhee & Latour (1991) analyze the X{ray orientations of 26 Abell clusters. They focus

on the entire X{ray image, using the largest circular region centered on the peak of the

X{ray emission which is not a�ected by the ribs. There are 11 measurements which appear

in Rhee & Latour and Table 2. Although the measurement region generally di�ers slightly

(Rhee & Latour typically include regions which do not satisfy our signal{to{noise constraint),

the values generally agree; the scaled di�erence distribution � = (�

0

� �

RL

)=� has a mean

h�i = �0:04 and a width RMS

�

= 1:2. MKU measure orientations for 49 Abell clusters.

Because of the di�erent region used (see previous discussion), the orientations measured by

MKU should be consistent with our measurements only in clusters where there is no isophote

twisting.

2.6 RADIAL FALL{OFF: � AND �

There have been many attempts to understand the relationship between the radial dis-

tribution of the X{ray emitting gas and the radial distribution of galaxies (Abramopoulos
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& Ku 1983; Jones & Forman 1984). Because both the gas and the galaxies respond to the

same gravitational potential, the Euler equation for the gas and the Jeans equation for the

galaxies imply a relationship between the radial distributions of the two cluster components

in an equilibrium system. If the King approximation to the isothermal sphere describes the

galaxy distribution (�

gal

/ r

�3

outside the core), � describes the radial distribution of the

gas (�

gas

/ r

�3�

, where � =

kT

�m

p

�

2

, T is the gas temperature, � is the galaxy velocity

dispersion, and �m

p

is the mass of the average gas particle). Where the X{ray emissivity

� / �

2

gas

(e.g. thermal bremsstrahlung), this � prescription implies a cluster X{ray surface

brightness pro�le of the form in Equation 2.3.

Some clusters in our ensemble are not well �t by this � model. However, the radial

behavior of the cluster is an important morphological parameter. Thus, we examine two

consistent approaches to measuring the radial fall{o�. We measure � by �rst azimuthally

averaging around the peak in the X-ray surface brightness to a radius of 16

0

(this includes

the region within the IPC ribs for clusters located in the center of the �eld); we exclude

point sources, the IPC ribs and outer regions, and separated subclumps (see Appendix A).

We use the smoothed images to de�ne this peak, but then produce the radial pro�le from

the unsmoothed image (PSF has FWHM� 1:5

0

). The uncertainty in the surface brightness

at a particular radius follows from the uncertainties in the image pixels which determine the

value. We then �nd the parameter values which minimize the �

2

in the �t of the measured

radial pro�le to a spherical � model.

We require a con�dence limit of 5% for the �

2

�t. In some clusters (often the ones

with the highest quality images) this �t criterion is not met over the entire radial pro�le.

This departure is sometimes caused by a cooling ow in the cluster core; previous �{�tting

studies typically exclude these ow regions (Jones & Forman 1984). Because the X{ray image

provides no clear boundary between the bright inner core and the outer regions, we de�ne an

objective core exclusion procedure. We exclude inner points in the radial pro�le until the �t

to the remaining points has at least a 5% probability of consistency. Following this procedure

we include �ts to all clusters except those where (i) the core radius is comparable to the IPC

�eld of view, (ii) the cluster is too complex to warrant radial averaging, or (iii) we exclude

so many inner points to get an acceptable �t that the constraints on the �t parameters are

unacceptably weak.

Figure 4: The accuracy of two di�erent radial fall{

o� parameters, � and �: From left to right the

plots are (i) the fractional error in � measurements

as a function of �

real

and (ii) the fractional error

in the mean fall{o� � versus �

real

. The width in

the � error distribution is RMS

�

= 17% and the

bias is h��=�

real

i = �1:6%. The width in the

� distribution is RMS

�

= 7:5% and the bias is

h��=�

real

i = 0:2%.

Here again we use the cluster simulations to test the accuracy of the � measurements.
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We compare the � values for more than 200 pure images with the � values for the arti�cial

IPC images (Figure 4 column 1). Clearly, the uncertainty in the measured �'s is quite high;

although there is no compelling evidence (except perhaps for � > 1:2) for a measurement

bias (h��=�

real

i = �1:6%), the scatter is quite large (RMS

�

= 17%). This scatter is related

to the correlation between the core radius R

c

and the radial fall{o� � (large R

c

favors steeper

�! A3266 has a large � probably because of the large core radius from an ongoing merger)

and to the limited extent of the IPC �eld. The Poisson noise and instrumental imperfections

a�ect � by (i) slightly shifting the peak in the X{ray surface brightness which results in an

increase in R

c

and (ii) introducing uncertainties in the radial pro�le which are largest for the

lowest surface brightness (outermost) regions. We underestimate the �'s in the clusters with

large �

real

in Figure 4 because the pure images are not well �t by the �{model. Therefore,

the cores are excluded in achieving a decent �t to the idealized radial pro�les. In the arti�cial

IPC images of these clusters, the Poisson noise introduces large enough uncertainties in the

radial pro�les that the entire pro�le (including the core) is a good �t to the �{model in each

case. So, in the pure images we have large R

c

and �, while in the arti�cial IPC images we

have smaller R

c

and �. There is only one obvious �x for this problem: a genuinely accurate

� �t requires reasonable signal{to{noise in the surface brightness pro�le well outside the true

core.

Even with the problems associated with �, we include measured �'s because of the

historically attributed physical signi�cance. (We do not include the core radii because there

are additional problems associated with measuring them.) Columns labeled � of Table 2

contain a list of 54 radial fall{o� values (accurate to 17%). 48 of these values are for

clusters with measured L

X

and T

X

. The KS test comparison of this sample with the Edge

et al. ux limited sample shows that the two samples are statistically indistinguishable (T

X

:

D=0.18 (40%), L

X

: D=0.20 (25%)). Figure 3 contains a histogram of the � values for this

representative sample of clusters. The mean and width of this distribution are h�i = 0:65

and RMS

�

= 0:16. The speci�cs of individual measurements are in Appendix A.

Jones & Forman (1984) determine the most likely range of � for 46 clusters observed

with Einstein and are currently completing work on a sample of more than 300 IPC cluster

observations (Jones & Forman 1994). 24 � measurements appear in both the Jones & Forman

(1984) work and Table 2, and the agreement is generally good. Using the mean of the two

Jones & Forman �'s as the best �t value and the di�erence as � 4�, we calculate the o�set

between our values and their values h� � �

JF

i = �0:03. The width of the scaled di�erence

distribution � = (� � �

JF

)=� is RMS

�

= 0:75. Some of the discrepancies between the two

measurements is undoubtedly caused by di�erences in our cooling{ow exclusion strategy.

Jones & Forman exclude inner bins until \a minimum in �

2

is reached", while we exclude

bins until there is at least a 5% probability that the �t and data are consistent.

The large scatter in the � measurements and the �{R

c

correlation lead us to search for

an alternative method of comparing the mean fall{o� within the same physical region of

two di�erent clusters. We �t the mean radial fall{o� � within some speci�ed cluster region.
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Speci�cally, we �t a line in log space: log(I) = a� (2� � 1) log(R) where a is the intercept

and � is the slope. Note that although a power law is not generally a good �t to the cluster

radial pro�le (near the core), �tting a power law over a particular region (which can include

the core) is a reasonable method of determining the mean fall{o� in the surface brightness

pro�le. Figure 4 contains a test of this approach using more than 200 arti�cial cluster images.

The fractional error is plotted against the true value. We �nd no bias (h��=�

real

i = 0:2%)

and the scatter in � (RMS

�

= 7:5%) is much smaller than the scatter in �. Because of the

improved scatter, we use � in x3 to directly compare the radial behavior of cluster ensembles

over the same physical scale.

3. THE MORPHOLOGY{COSMOLOGY CONNECTION

We use our ensembles of observed and simulated clusters to constrain three preferred

cosmological models. For each cosmological model we ask, \Is it possible for the clusters we

observe today to develop in a universe described by this cosmological model?" Because it

is impossible to remove the observational e�ects from the observed clusters, we introduce

these e�ects into the simulated data. We construct an ensemble of 24 cluster simulations (8

sets of initial conditions evolved in three di�erent models{ the same simulations discussed

in Evrard et al. 1993) from which we extract arti�cially observed ensembles similar to the

observed cluster ensemble.

Our observed sample consists of 52 clusters with measured X{ray temperatures and lumi-

nosities. We exclude 5 clusters because of their low redshifts (A426, A3526, A1060, AWM7,

and A1367). We �rst describe the simulations in detail and then turn to the procedure for

comparing the simulated clusters with the observed clusters. A discussion of the results and

the cosmological constraints follows.

3.1 THE CLUSTER SIMULATIONS

We employ a set of 24 simulations comprised of three sets of eight random density

�elds. The three sets correspond to three di�erent assumptions for the underlying cosmology.

The models we investigate are: (i) a biased, Einstein{deSitter universe with normalization

�

8

= 0:59 (where �

8

�




(��=�)

2

�

1=2

on an 16h

�1

50

Mpc scale); (ii) an unbiased (�

8

= 1:0),

open universe with 


o

= 0:2 and (iii) an unbiased, low density model with 


o

= 0:2 and

�

o

= 0:8.

A cold dark matter power spectrum with � = 
h = 0:5 is used to generate initial

displacement �elds on a 32

3

spatial grid as in Efstathiou et al. (1985). The periodic grid

models a comoving cube of space with length L. To sample a range of cluster richness, we

evolve two random realizations from four di�erent box lengths L = 30, 40, 50 and 60 Mpc.

The initial density �eld is constrained using the method of Bertschinger (1987) in order to

form a signi�cant cluster within the volume. The applied constraint is that the density �eld �

at the center of the volume, when �ltered with a Gaussian spatial �lterW (r) / exp�r

2

=2r

2

f

with r

f

= 0:2L, take on a present, unbiased, linearly evolved value of �

o

= 3:0. This

corresponds to perturbations 2:5 � 5 times the RMS amplitude over the range of box sizes.
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The P3MSPH algorithm (Evrard 1988) is used to propagate the initial, linear density

�elds to their present, deeply non{linear states. Two sets of 32

3

particles, coupled by gravity,

represent the dark matter and baryonic uids. The baryons are approximated as an ideal,

 = 5=3 gas with constant mean molecular weight � = 0:6 appropriate for a fully ionized,

primordial plasma. The thermal energy changes adiabatically and as a result of shocks

generated in regions of converging ow. A cosmic baryon fraction 


b

= 0:1 is assumed for

all the cosmologies. This approach allows for some amount of collisionless dark matter in

each model.

Gravity is softened with a pairwise, Plummer potential �(r) = �1=(r

2

+ "

2

)

1=2

(in units

where G = m = 1) with " = 0:0023L kept �xed in the comoving frame. The smoothed

particle hydrodynamic (SPH) method entails the use of a smoothing kernel W (r; h

i

) which

we take to be a Gaussian W (r; h

i

) = (�h

i

)

�3=2

exp�r

2

=h

2

i

. The hydrodynamic smoothing

length h

i

for particle i is varied to keep

4�

3

�

i

h

3

i

= c

1

(3:1)

with c

1

= 8�. Because 95% of the kernel's weight falls within 2h

i

, there are roughly 200

particles within the domain of hydrodynamic inuence of each particle. It is straightforward

to show that the Gaussian kernel is similar to the B-spline employed by Hernquist & Katz

(1989) and others with a modest rescaling of h (Evrard, Feldman & Watkins 1994). The

smoothing length cannot increase beyond a value h

max

= 0:025L, a value derived as a �xed

fraction of the P3M short range force cell size. An absolute lower bound on h

i

of 0:5" is

imposed. In addition, each particle's value of h

i

is subject to a lower bound derived from the

Courant condition (see Evrard 1988). In practice, the timestep is set small enough and the

mass resolution is modest enough that this bound does not come into play. The minimum h

i

achieved is comparable to ". The `e�ective' resolution of the runs is approximately 0:005L.

The initial displacement �elds are normalized so that a growth factor of 16 is required

to recover the original, unbiased spectrum. For the biased, 
=1 models, the initial state

corresponds to a redshift z

i

= 9. For the low density models, the initial state corresponds to

redshifts z

i

= 47:5 (


o

=0.2) and 23:0 (


o

=0.2 & �

o

=0.8). The code uses a �xed timestep to

advance the particles, with 750, 1400 and 900 steps used for the 
=1, 


o

=0.2 and 


o

=0.2

& �

o

=0.8 runs, respectively. Energy in the Layzer{Irvine equation (Efstathiou et al. 1985)

is conserved to typically better than 1% for the 
=1 runs and � 5% for the low density

models. Because the di�erence equations for the gas are not accurate to second order, errors

in the baryonic energy are larger than those of the dark matter.

3.2 COMPARING OBSERVED AND SIMULATED CLUSTERS

For each Einstein cluster observation we extract a similar observation of a simulated

cluster from each of the cosmological models (see Figure 5). Speci�cally, for each of the

52 Einstein clusters we (i) choose one of the eight sets of initial conditions, (ii) scale the

three (one for each cosmological model) present epoch con�gurations for the particular initial
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Einstein IPC 
=1 


o

=0.2 


o

=0.2 & �

o

=0.8

Figure 5: Contour maps of Einstein IPC images of 4 Abell clusters and the arti�cial IPC images of cluster

simulations. From the left to right the columns are (i) Einstein IPC images, (ii) arti�cial IPC images of


=1 cluster simulations, (iii) arti�cial images of 


o

=0.2 simulations, and (iv) arti�cial images of 


o

=0.2 &

�

o

=0.8 simulations. From top to bottom the clusters are (i) Abell 496, (ii) Abell 644, (iii) Abell 1644, and

(iv) Abell 2256. In producing the arti�cial IPC images of cluster simulations, we image the simulations at

the same redshift as the associated Abell cluster. Contours are spaced by factors of 1.5 in surface brightness.

For each image, the surface brightness of the bottom contour is the mean surface brightness in the outermost

annulus which satis�es the




S

N

�

> 5 constraint.

conditions so that the X{ray emitting gas in the three simulations has the same temperature

as the gas in the observed cluster, (iii) choose a random observing direction and then (iv)

image each present epoch con�guration (Evrard 1990) at the same redshift as the observed

cluster (for H

0

= 50 km s

�1

Mpc

�1

). The scaling conserves the mean density within the

simulation volume while changing the temperature: T ! T subject to constant M=R

3

implies the scale change R!

p

R. For the entire ensemble of simulated images, the spatial
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scaling

p

 varies from 0.6 to 2.9 with median values 1.1 for the 
=1 models, 1.2 for the




o

=0.2 models, and 1.5 for the 


o

=0.2 & �

o

=0.8 models. Because of the di�erences in

cluster X{ray luminosity (for the default scaling, the low 


o

models produce more luminous

clusters), we select the observation time for each model so that the number of photons in the

region of interest is identical for all four ensembles. In this way we produce four ensembles

(1 observed and 3 arti�cial) of cluster observations which are homogeneous in three respects;

each ensemble has identical distributions in (i) gas temperature, (ii) spatial scale, and (iii)

number of cluster photons within the region of interest. This approach isolates the di�erences

in cluster morphology.

Centroid Var Axial Ratio Radial Fall{o�

Figure 6: Comparing X{ray Morphologies.

From left to right each column contains

normalized distributions of (i) the emission

weighted centroid variation w

~x

in h

�1

50

kpc (ii)

the emission weighted axial ratio �, and (iii)

the radial fall{o� �. From top to bottom

the rows correspond to the following cosmo-

logical models: (i) 


o

=0.2, (iii) 


o

=0.2 &

�

o

=0.8, and (iii) 
=1. The bottom row is

the Einstein IPC sample. Table 3 lists the

mean and width of these distributions.

To increase the sample size and fully probe the morphological characteristics of the

simulations, we cycle through the 52 Einstein IPC observations 5 times, producing a total of

260 di�erent comparison{sets of cluster observations. Each set consists of one Einstein IPC

observation and arti�cial observations of the same initial density �eld evolved in each of the

three cosmological models (note that because we only use 52 Einstein images, each of the
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IPC images appears 5 times). We then reduce and analyze the arti�cial images as though

they were normal IPC observations. We compare the X{ray morphologies of the 4 ensembles

of 260 images using three di�erent parameters: the emission weighted centroid variation

w

~x

, the emission weighted axial ratio �, and the radial fall{o� �. Figure 6 contains the

distributions in these three parameters. In making these comparisons we treat each set of

4 images as a unit to preserve the ensemble similarities in T

X

, z, and photon number; if

making a measurement on any one of the 4 images is impeded then we exclude the entire

set (For example, from Table 1 it is clear that A2142 has no w

~x

measurement because of a

central point source. Rather than just excluding the cluster w

~x

for A2142, we exclude all 5

A2142 comparison sets{4 images each.).

3.3 THE DISTRIBUTION OF CENTROID VARIATION

The �rst column of Figure 6 contains the distribution in w

~x

for the four samples of cluster

images. For the observed clusters and the 
=1 simulations we calculate w

~x

starting from an

inner radius of 4

0

, but for the 


o

=0.2 and 


o

=0.2 & �

o

=0.8 simulations we exclude those

innermost annuli with radii smaller than the scale of one \e�ective" resolution length. This

is necessary because the cluster cores in the low 


0

models have evolved to central densities

so high that corresponding cooling times are less than a Hubble time. Because the present

simulations do not include radiative cooling, the innermost cores of the low 


0

simulations

are non{physical and must be excluded. (Calculating w

~x

with these bright cores included

tends to increase the di�erences between the w

~x

's measured in the 
=1 model and the low




0

models.) Clearly, clusters with large centroid variations are much more probable in the

observed sample and the 
=1 model than in the two low 


0

models. KS test results indicate

that the 
=1 model and the observed sample are marginally consistent, and that the two

low 


0

distributions are marginally consistent. All other combinations di�er signi�cantly.

Because a sizable centroid variation is a signature of dynamical youth (MFG93, Mohr &

Evrard 1994), it is no surprise that these distributions reect the di�erences in the merger

histories of the three models. As predicted by Richstone, Loeb, & Turner (1992), the clusters

evolving in the 
=1 model are more likely to experience signi�cant growth at late times than

those evolving in the low 


0

models. The similarity between the 
=1 distribution and the

observed cluster distribution suggests similarities in the evolutionary histories of these two

ensembles: both the observed and the simulated clusters have a high probability of late{time

growth.

3.4 THE DISTRIBUTION OF AXIAL RATIO

The second column of Figure 6 shows the striking di�erences in the distributions of �.

As with the centroid variations, we exclude one \e�ective" resolution length from the cores

of the low 


0

clusters. The absence of late{time mergers in the two low 


o

models produces

predominantly spherical clusters at the present epoch (


o

=0.2: h�i = 0:95; 


o

=0.2 & �

o

=0.8:

h�i = 0:91). The higher probability of late{time mergers in the 
=1 models results in more

highly attened clusters thus reducing the average axial ratio (h�i = 0:70). The sample
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of Einstein clusters (h�i = 0:80) lies intermediate between the 
=1 model and the two low




o

models. A KS test indicates that all four distributions di�er signi�cantly.

The physics not included in the numerical simulations (e.g. gas cooling) will undoubtedly

a�ect the distributions of �. For example, no cooling ows can form in the simulations, but

observed cooling ows are characterized by circularly symmetric peaks in the X{ray surface

brightness. Such a ow tends to weight the distribution of axial ratio toward 1 (especially

for an emission weighted axial ratio). We examine this e�ect using X{ray images of observed

clusters (see Figure 3). Of the 51 clusters included in the Figure 3 � distribution, 44 have

been analyzed for the presence of cooling ows (Edge, Stewart, & Fabian 1992, Stewart et

al. 1984). 13 of these 44 clusters have central cooling times which are signi�cantly less than

10

10

years (these clusters are marked with a

c

in Table 1 and Table 2). The dashed lines in

Figure 3 show the � distribution after the removal of these cooling ow clusters. With one

exception, the clusters containing de�nite cooling ows fall in the region �> 0:8 (the region

with fewer clusters in the 
=1 model).

On the other hand, recent cluster mergers tend to weight the distribution toward the

highly attened end. The simulations do follow cluster mergers properly, so including cooling

in the simulations would shift the � distribution toward 1. Such a shift would make the 
=1

model more consistent with the observed clusters. Because the 


o

=0.2 and 


o

=0.2 & �

o

=0.8

models have � distributions which are already more spherical than observed clusters, adding

cooling would not signi�cantly improve their match to observed clusters.

Table 3. Mean (and RMS) of w

~x

, �, and � Distributions

Parameter Einstein 
=1 


o

=0.2 & �

o

=0.8 


o

=0.2

w

~x

[kpc] 50.1 (49.2) 30.4 (39.3) 6.6 (8.8) 5.4 (7.9)

� 0.80 (0.12) 0.70 (0.17) 0.91 (0.07) 0.95 (0.02)

� 1.75 (0.32) 1.82 (0.36) 2.68 (0.27) 2.88 (0.36)

3.5 THE DISTRIBUTION OF RADIAL FALL-OFF

The third column in Figure 6 contains the normalized � distributions for the four en-

sembles. The �t region for � is determined separately for each of the 260 comparisons. In

each case the inner boundary is the larger of the \e�ective" resolution lengths for the 


o

=0.2

and 


o

=0.2 & �

o

=0.8 models; the same core region is excluded from all four clusters within

each of the 260 comparisons. As with the �'s and w

~x

's, the radial fall{o� � neatly separates

the low 


0

simulations from the 
=1 models and the observed clusters. The radial pro�les

of the low 


0

clusters are signi�cantly steeper. A KS test indicates that the � distributions

of the 
=1 clusters and observed clusters are marginally consistent.

It is not possible to make the low 


0

clusters consistent with observed clusters by chang-

ing the slope of the power spectrum (Crone, Evrard, & Richstone 1994); however, gas physics

excluded from the simulations may signi�cantly a�ect the cluster radial fall{o�. Metzler &

Evrard (1994) investigate the e�ects of gas ejection from galaxies in a series of simulations.

They produce an ensemble of initial density perturbations consistent with standard, 
=1
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Figure 7: We demonstrate the e�ects of ejection from galaxies on the cluster

radial fall{o� using cluster simulations which include gas ejection (Metzler &

Evrard, 1994). The histograms contain the results of �{�ts to idealized images

of 47 di�erent clusters. The top histogram is the radial fall{o� for those clusters

evolved with ejection from galaxies (h�i = 0:65), and the bottom histogram

contains the radial fall{o� for the identical clusters evolved without ejection

(h�i = 0:87).

CDM constrained to form clusters in a range of box sizes. They then evolve each set of these

initial conditions twice. In the �rst set of simulations they simply evolve the baryonic and

dark matter components as described in x3:1. In the second set of simulations they investi-

gate ejection from galaxies by (i) replacing 2.5� density peaks on galaxy scales (5�10

11

M

�

)

with single, massive, dark matter particles and (ii) modeling continuous gas ejection from

galaxies with the discreet ejection of hot gas particles from galaxies over time. They explore

the maximal e�ect of ejection from galaxies by following an extreme ejection model: constant

ejection totalling half the galaxy mass from z=4 to the present epoch. In Figure 7 we plot

the histograms of radial fall{o� � for the clusters evolved without ejection (bottom) and

those evolved with ejection (top). The clusters evolved with no ejection (h�i = 0:87) have

gas distributions which fall o� more steeply than the same clusters evolved with ejection

(h�i = 0:65); the � distribution of the clusters evolved with ejection is very similar to the

intrinsic � distribution of observed clusters (see Figure 3).

The Metzler & Evrard simulations demonstrate that gas ejection can signi�cantly de-

crease the radial fall-o� of the ICM density. Since the models employ a fairly extreme ejection

history for galaxies, a more realistic case would introduce a smaller e�ect. Figure 6 shows

the di�erence in the average value of the mean slope parameter � between the observations

and models is �5% for 
=1 and �40% for low 


0

. Ejection at a level higher than that em-

ployed by Metzler & Evrard may be advocated to make the pro�le slopes for the low density

runs consistent, while a more modest level of energy input from galaxies would bring the


=1 runs into agreement with the observations. At any rate, because the bulk of ejection

in the low 


o

models would occur at very high redshift, it would not be able to alter the

isophote shifts or axial ratios of the present day X{ray images. The low 


0

models would

still disagree with the observations on these measures.

3.6 THE EMISSION WEIGHTING AND CORE EXCLUSION

To ensure that the morphological di�erences between the low 


0

clusters and the 
=1
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clusters are properly reected in Figure 6, we test whether our methods of emission weighting

and core exclusion (in the low 


0

clusters) introduce measurement bias. To test emission

weighting, we calculate w

~x

and � for the entire ensemble of 


o

=0.2 & �

o

=0.8 and 
=1

simulations both with and without emission weighting. Speci�cally, we set N = 1 in Equa-

tion 2.2 and Equation 2.6 and recalculate the values. The comparison of more than 400

measurements for the 
=1 and 


o

=0.2 & �

o

=0.8 simulations reveals that the mean change

in axial ratio � is 0.2% for the 


o

=0.2 & �

o

=0.8 clusters and 0.5% for the 
=1 clusters.

The mean change in w

~x

is 0.016 arcmin for the 


o

=0.2 & �

o

=0.8 clusters and 0.020 arcmin

for the 
=1 clusters (compared to the median uncertainty for the Einstein cluster sample of

0.083 arcmin). Clearly these changes are insigni�cant when compared to the large di�erences

reected in the Figure 6 histograms.

Measurements on the low 


0

clusters are bounded on the interior by the unresolved core

and on the exterior by the




S

N

�

> 5 constraint. To determine whether w

~x

and � are sensitive

to the exact size of the excluded core, we double the core and compare the measurements.

The arti�cial IPC image produced from each simulated cluster is exposed to obtain the

same number of cluster photons; therefore, doubling the diameter of the exclusion region

increases the 


o

=0.2 & �

o

=0.8 observing times. Because of the increased observing times,

the




S

N

�

> 5 constraint is satis�ed to larger radii. We �nd that for the 


o

=0.2 & �

o

=0.8

simulations, increasing the size of the core exclusion region by a factor of two results in a mean

change in w

~x

of 0.026 arcmin and a mean change in � of 0.5%. Clearly, the morphological

measurements for this ensemble of low 


0

clusters are not signi�cantly a�ected by our core

exclusion procedure.

4. CONCLUSION

We assemble a representative sample of 65 Einstein IPC cluster images to quantify the

range of cluster X{ray morphologies. For each cluster we measure the emission weighted

centroid variation (w

~x

), the emission weighted axial ratio (�), the emission weighted ori-

entation (�

o

), and the radial fall{o� parameters, � and �. We employ a Monte{Carlo

approach to account for the e�ects of Poisson noise, instrumental imperfections, and fore-

ground/background X{ray point sources. With the cluster simulations described in x3 we

evaluate the measurement accuracy (Figure 2 & Figure 4). We list the measurements on each

cluster (Table 1 & Table 2) and construct histograms (Figure 3) of the intrinsic distributions

in w

~x

, �, and �. This set of morphological measures is sensitive to the cosmological density

parameter 
. The w

~x

measurements indicate that from 50% to 70% of clusters exhibit core

substructure, depending on the adopted con�dence limit.

We use the X{ray morphologies of observed and simulated clusters to place cosmological

constraints. With the combined N{body/SPH code P3MSPH (Evrard 1988), we evolve eight

di�erent initial density �elds (sampled from an 
h = 0:5 CDM spectrum) according to 3

di�erent underlying cosmological models: (i) 
=1, �

8

=0.59; (ii) 


o

=0.2, �

8

=1; and (iii)




o

=0.2 & �

o

=0.8, �

8

=1. These 24 simulations are the same ones analyzed by Evrard et al.

(1994). Following a comparison method designed to isolate the cosmological parameters, we
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use 52 of the Einstein cluster images to compare the range of observed and simulated cluster

morphologies. We demonstrate that (i) w

~x

, �, and � neatly separate clusters evolved in low




0

models from those evolved in 
=1 models (see also Evrard et al. 1994), and (ii) clusters

like those we observe today are very rare in low 


0

universes.

How general are these results? Can any low 


0

model reproduce the observed complexity

of the X{ray images of real clusters? For the case of bottom{up Gaussian initial density �elds,

we suspect the answer is no. The reason is that merging is the most natural mechanism

capable of generating asymmetric isophote structure in the ICM, and the present merging

frequency of clusters is much more sensitive to the density parameter than to the shape

of the power spectrum on cluster scales (e.g. Lacey & Cole 1993). Increasing 


0

is the

most natural way to increase the merger frequency and thereby produce a higher fraction of

distorted X{ray images. This point is sharpened by the fact that we do not have complete

freedom in specifying the shape of the power spectrum on cluster scales. The abundance of

clusters as a function of X{ray temperature implies an e�ective spectral index n between

�1 and �2 (Henry & Arnaud 1991), and this range is consistent with power spectra derived

from large{scale galaxy catalogues (Vogeley et al. 1992; Fisher et al. 1993; Feldman, Kaiser

& Peacock 1994).

How might the low 


0

models be saved? We have seen that energy ejection from galaxies

can atten the gas density pro�le. However, it is unclear whether a realistic level of ejection

can produce an e�ect large enough to bring the � and � measurements into agreement

with observations. One might attempt to �x the axial ratios for the low density models

by appealing to a higher dark matter fraction (presently 50% in our models) which could

make the underlying cluster potentials more aspherical. However, the clusters would still be

dynamically old, so the isophotes, even if less spherical, would retain their symmetric nature.

Thus the centroid variation w

~x

would continue to present a strong constraint. To address

these questions directly, we intend to pursue experiments of speci�c low density models in

the near future.

Other recent attempts to constrain 


0

from cluster properties also disfavor low density

models. Matching the mean velocity dispersion of rich clusters with 


0

=0:2 requires �

8

'

1:25 � 1:58, implying galaxies are anti{biased with respect to the total mass content of the

universe (Lilje 1992; White, Efstathiou & Frenk 1993). The strong increase in the fraction of

blue galaxies in moderate redshift clusters (the \Butcher{Oemler e�ect") is also di�cult to

explain in a low density universe (Kau�mann 1994). A recent paper by de Theije, Katgert &

van Kampen (1994) presents a possible exception to this trend. They �nd the ellipticities of

the galaxy distributions within Abell clusters to be somewhat rounder than those found in

their 
=1 simulations. However, they did not yet have a complete set of low 


0

simulations

to compare against the observations. In general, any evidence for recent evolution or merging

in the cluster population tends to disfavor low 


o

. With improved optical and X{ray data

combined with detailed numerical simulations, speci�c cases of recently merged clusters are

becoming more apparent. Examples include A2256 (Fabricant, Kent, & Kurtz 1989; Briel &
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Henry 1994), A754 (Fabricant et al. 1986, Zabludo� & Zaritsky 1994) and Coma (Burns et

al. 1994).
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APPENDIX A

In this appendix we list the details associated with measurements on speci�c Einstein IPC cluster im-

ages. Reductions for those clusters not listed follow the standard procedure described in the text. We de�ne

a set of guidelines and attempt to apply them uniformly to all cluster images. In measuring the cluster

radial fall{o�, these guidelines include (i) excluding well separated subclumps from the radial pro�le where

possible, (ii) avoiding radial averaging for those clusters which are very complex, (iii) excluding point sources

from the radial pro�le, and (iv) truncating the radial pro�le well before the IPC ribs. For w

~x

these guidelines

are (i) excluding regions with bright point sources (the fainter, less obvious point sources are accounted for

with a Monte{Carlo procedure), (ii) including subclumps except in those cases where there is independent

evidence that the subclump is a chance superposition and not dynamically related to the main cluster, and

(iii) avoiding those clusters where the




S

N

�

> 5 region is so small that fewer than 4 centroids are measured.

For � and �

o

we (i) avoid regions containing bright point sources and (ii) exclude well separated subclumps.

Angular distances and directions are given with respect to the peak in the X{ray surface brightness.

A85: �/�: subclump to S excluded. �/�

o

: Truncated at R = 5:4

0

to exclude subclump. w

~x

: subclump included. An

extensive radial velocity study (Malumuth et al. 1992) provides evidence that 7 galaxies are associated with a

foreground group; however, the spatial distribution of these 7 galaxies is not well centered on the subclump in

the X{ray emission. Therefore, we consider the subclump to be evidence of an ongoing merger and therefore

include it in the w

~x

measurement.

A133: �/�: three point sources excluded (18

0

N, 13

0

SW, and 18

0

S). �/�

o

/w

~x

:




S

N

�

> 5 region does not include

these three point sources.

A168: �/�: cluster too complex for radial analysis. �/�

o

/w

~x

: no rib or point source contamination within




S

N

�

> 5

region.

A400: �/�: point source 15

0

S of cluster excluded. No � value included because core radius from �{�t larger than

IPC �eld of view. �/�

o

/w

~x

: point source 15

0

S of cluster is outside




S

N

�

> 5 region.

A426: �/�

o

/w

~x

: truncated at R = 13:9

0

to avoid rib contamination.

A478: �/�: excluded two point sources (10

0

NW and 25

0

NE). �/�

o

/w

~x

: no point sources within




S

N

�

> 5 region.

A539: �/�: excluded one point source (3

0

W/NW). �/�

o

/w

~x

: point source inhibits measurements.

A592: �/�: truncated at R = 13:3

0

. w

~x

:




S

N

�

> 5 region too small for measurement.

A754: �/�: point source excluded (25

0

SW). No � included because core radius is comparable to IPC �eld of view.

�/�

o

/w

~x

: no point source within




S

N

�

> 5 region.

A780: �/�: point source excluded (17

0

S/SE). �/�

o

: point source outside




S

N

�

> 5 region. w

~x

:




S

N

�

> 5 region too

small to make measurement.

A1060: �/�

o

/w

~x

: truncated at R = 13:9

0

to avoid rib contamination.

A1367: �/�: IPC �eld of view inadequate to measure �. �/�

o

/w

~x

: point source near peak in surface brightness

removed. Truncated at R = 12:8

0

to avoid rib contamination.

A1644: �/�: excluded subclump to NE. �/�

o

: truncated at R = 6:4

0

to exclude subclump. w

~x

: subclump included.

An extensive radial velocity study failed to detect a superposed subclump; therefore we consider the subclump

to be evidence of an ongoing merger.

A1650: �/�: one point source excluded (20

0

SE). w

~x

:




S

N

�

> 5 region too small for measurement.

A1656: �/�

o

/w

~x

: Analysis truncated at R = 14:9

0

to avoid rib contamination.

A1689: w

~x

:




S

N

�

> 5 region too small for measurement.

A1736: �/�: excluded two point sources (17

0

SE and 30

0

E). �/�

o

/w

~x

: point sources are exterior to the




S

N

�

> 5

region.

A1775: �/�: excluded three point sources (12

0

SE, 22

0

SE, and 25

0

S/SE). �/�

o

: point source external to




S

N

�

> 5

region. w

~x

:




S

N

�

> 5 region too small for measurement.
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A1795: �/�: excluded point source (5

0

SW). �/�

o

/w

~x

: point source inhibits accurate measurements.

A1983: w

~x

:




S

N

�

> 5 region too small for accurate measurement.

A2029: �/�: excluded two point sources (3

0

SE and 15

0

S/SW). �/�

o

/w

~x

: point source inhibits accurate measure-

ments.

A2052: �/�: excluded one point source (15

0

NW). �/�

o

/w

~x

: point source is exterior to




S

N

�

> 5 region.

A2063: �/�: excluded one point source (3

0

S/SE). �/�

o

/w

~x

: point source inhibits accurate measurement.

A2065: �/�: excluded two point sources (10

0

NW, 15

0

W). �/�

o

/w

~x

: point sources are outside




S

N

�

> 5 region.

A2124: �/�: excluded possible point source (13

0

NW). �/�

o

/w

~x

: point source outside




S

N

�

> 5 region. w

~x

:




S

N

�

> 5

region too small for measurement.

A2142: �/�: excluded two point sources (4

0

NE, 17

0

SE). �/�

o

/w

~x

: point source inhibits accurate measurement.

A2147: �/�: excluded three possible point sources (20

0

E/SE, 15

0

S/SE, 20

0

NW). No � included because no �t with

at least a 5% probability of being consistent with the data exists. �/�

o

/w

~x

: point sources lie outside




S

N

�

> 5

region.

A2151: �/�: system too complex for radial averaging. �/�

o

: truncated at R = 6:4

0

to exclude subclumps E of main

clump. w

~x

: included subclumps.

A2199: �/�: excluded one point source (18

0

NW). �/�

o

/w

~x

: point source external to




S

N

�

> 5 region.

A2255: �/�: excluded two point sources (13

0

N, 20

0

NW). �/�

o

/w

~x

: point source are outside




S

N

�

> 5 region.

A2256: �: no �{�t with at least a 5% probability of being consistent with the data exists.

A2410: �/�: too complex for radial averaging. �: complex nature made � measurement impossible. w

~x

: both clumps

but no point sources included in




S

N

�

> 5 region.

A2440: �/�: system too complex for radial averaging. �: complex nature made � measurement impossible. w

~x

:




S

N

�

> 5 region too small for measurement.

A2593: �/�: excluded two point sources (7

0

N, 15

0

SW). �/�

o

: point sources outside




S

N

�

> 5 region. w

~x

:




S

N

�

> 5

region too small for measurement.

A2597: w

~x

:




S

N

�

> 5 region too small for measurement.

A2626: �/�: excluded one point source (7

0

NE). w

~x

:




S

N

�

> 5 region too small for measurement.

A2634: �/�: excluded 2 point sources (15

0

N/NW, 23

0

S/SW) and subclump (12

0

NW). Radial velocity and pho-

tometry study provides evidence that subclump is due to background cluster (Pinkney et al. 1993). �/�

o

/w

~x

:

truncated at R = 8:5

0

to exclude background cluster and point source.

A2657: �/�: excluded two point sources (7

0

W, 15

0

SW). �/�

o

/w

~x

: truncated at R = 6:4

0

to exclude point sources.

A2670: �/�: excluded four point sources (10

0

N, 15

0

N, 15

0

E/SE, 20

0

E). �/�

o

: point sources are outside




S

N

�

> 5

region. w

~x

:




S

N

�

> 5 region too small for measurement.

A2877: �/�: excluded point source (2

0

SW). �/�

o

/w

~x

: bright point source near center of cluster makes accurate

measurements impossible.

A3158: �/�: excluded two possible point sources (15

0

S, 12

0

E/SE). �/�

o

/w

~x

: point sources are outside




S

N

�

> 5

region.

A3186: w

~x

:




S

N

�

> 5 too small for measurement.

A3266: �/�: large core radius contributes to large �.

A3376: �/�: excluded one point sources (20

0

S/SW). �/�

o

/w

~x

: no rib or point source contamination within




S

N

�

> 5

region.

A3391: �/�: excluded one point source (13

0

N/NE). �/�

o

/w

~x

: point source outside




S

N

�

> 5 region.

A3395: �/�: bimodal structure makes radial averaging pointless. �/�

o

: considered each subclump (NE and SW)

separately. w

~x

: Peak of the brighter (SW) subclump used as the true cluster center.

A3526: �/�

o

/w

~x

: truncated at R = 9:6 to avoid rib contamination.

A3532: �/�: excluded extended emission near ribs to W. w

~x

:




S

N

�

> 5 region too small for measurement.

A3667: �/�: excluded three point sources (12

0

NW, 20

0

E/SE, 15

0

S/SW). �/�

o

/w

~x

: truncated at R = 7:5

0

to avoid

point source contamination.

CygA: �/�: excluded subclump 12

0

NW. �/�

o

: truncated at R = 8:5

0

to avoid subclump. w

~x

: subclump included.

MKW3S: w

~x

:




S

N

�

> 5 region too small for measurement.

3C129: �/�: excluded one point source (15

0

N). No � because the best �t core radius is comparable to the IPC �eld

of view. �/�

o

: truncated at R = 11:7

0

to avoid point source contamination.
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