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ABSTRACT

A previous investigation of the virialization of isolated pairs of galaxies, by testing the end product of the
N-body simulations of Efstathiou and Eastwood, is extended to include all pairs, regardless of isolation. It is
found that the nonisolated pairs do not satisfy the classical virial theorem as well as isolated pairs, but masses
can be estimated to an accuracy of factors of 1.5 for the Q, = 0.1 model and 2 for the Q, = 1.0 model, over a
range of separations 25 < Hyr < 100 km s~ !, Peebles’s “cosmic virial theorem” is found to give mass esti-
mates to somewhat better accuracy on the same scales. The calculation of the relative acceleration between
pairs of mass points in the model from the three-point correlation function, using its empirical relation to the
two-point correlation function, is shown to be valid to an accuracy of a factor ~1.5. Therefore, if the same
results hold for the real universe, estimates of Q, based on such virial analyses should be accurate to better
than a factor of 2. Comparison with observations then leads to the conclusion that Q, < 1.

A direct comparison of the relative velocity dispersion of pairs of mass points in the model with the
observed dispersion of galaxies also favors an open universe. Furthermore, as long as the mass is distributed

as the galaxies, it is unlikely that this conclusion will be altered by more elaborate and realistic models.
Subject headings: cosmology — galaxies: clustering — numerical methods

I. INTRODUCTION

In regions of space that can be considered to be in hydro-
static equilibrium, mass estimates are obtained from the equa-
tion of hydrostatic equilibrium, or some integral of it. This
method can be applied in the standard way to isolated bodies,
such as globular clusters, but its application in cosmology is
somewhat problematic. Material continues to rain in on clus-
ters after their centers have collapsed (Gunn and Gott 1972),
and the new arrivals in fact constitute the bulk of the matter in
clusters (Rivolo and Yahil 1983).

Over the past decade or so there has been considerable
effort, pioneered by Peebles (1973), to study the dynamics of
clustering in the universe through the positional and velocity
correlations of random (nonisolated) pairs of galaxies. This line
of investigation complements the direct study of well-defined
entities, such as isolated binary galaxies and groups and clus-
ters. The aim is to avoid the difficult question of the extent of
clusters, and the degree of their separation from the rest of the
universe, by treating clustering as a statistical process.

There has been an extensive observational effort to deter-
mine the positional two-point, three-point, and four-point cor-
relation functions (Groth and Peebles 1977; Fry and Peebles
1978; Davis and Peebles 1983; Bean et al. 1983; and references
therein to earlier work). Unfortunately, it is very difficult to
extract from the positional information alone unique dynami-
cal consequences, as N-body models of the expanding universe
have repeatedly shown (e.g., Gott, Turner, and Aarseth 1979;
Efstathiou and Eastwood 1981; Frenk, White, and Davis
1983). Attention has therefore focused on velocity data for
dynamical discrimination. Global energy theorems or esti-
mates (Irvine 1961, 1965; Layzer 1963; Dmitriev and
Zel'dovich 1964; Fall 1975; Saslaw and Aarseth 1982) are as
yet of little practical interest for statistical studies, because the
total peculiar kinetic energy is dominated by large-scale
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streaming motions, which are difficult to measure observa-
tionally.

Peebles (1976a, b) has argued that for small separations
dynamical equilibrium should be expected. Therefore, the rela-
tive force between pairs of galaxies, i.e., the sum of the direct
two-body force and the tidal force due to all other galaxies,
must be balanced by a pressure gradient induced by the rela-
tive velocity dispersion. This hypothesis of local dynamical
equilibrium has been dubbed the “cosmic virial theorem”
(CVT). Furthermore, except for a normalization constant,
which is proportional to the cosmological density parameter
Q,, the mean tidal force between pairs of galaxies can be calcu-
lated from the three-point correlation function. It is therefore
possible to determine this normalization constant, and hence
Q,, by measuring the relative velocity dispersion of pairs of
galaxies. However, the application of the CVT to the determi-
nation of Q, has been somewhat problematic (see § ITI below).

In a companion paper (Evrard and Yahil 1985, hereafter
Paper I) we examined mass estimates for binary, i.e., isolated,
galaxies in the end product of the N-body simulations of Efsta-
thiou and Eastwood (1981, hereafter EE). A variation of the
classical virial theorem was used, and although the theorem
was there applied to isolated pairs, it does not require the pairs
to be isolated. Hence, if its assumptions are satisfied for all
pairs, most of which are nonisolated, then the virial relation
should hold for these pairs as well. It could then be the basis
for estimates of galactic masses and Q.

In this paper we extend the N-body investigation of Paper I
to cover all pairs, whether isolated or not, with the aim of
determining how well both the classical virial theorem and the
CVT are satisfied. The same qualifications mentioned in Paper
I apply here as well. Since the models start from cold Poisson
distributions at the relatively recent redshifts of 19.2 (Q, = 0.1)
and 99 (Q, = 1.0), there is not enough time to develop rich
clusters and surrounding superclusters as we know them in
nature. Hence, the two-point correlation function (Fig. 3
below) both is steeper than the observed one and has a shorter
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correlation length [the radius at which &(r) = 1]. In addition,
the softening of the two-body force at small separations causes
a truncation of £, which is not seen in nature (Gott and Turner
1979).

Nevertheless, the models may be studied in their own right.
Some indication may thus be obtained of the reliability of mass
estimates obtained through the use of such virial analyses in
observational programs. If, in addition, the N-body models do
bear some similarity to the real universe, the velocity disper-
sion found in them may also be compared directly with the
observed one, without recourse to virial analyses, giving a
direct estimate of Q,. In a sense, the N-body simulation itself
then becomes the virial analyzer.

In § IT we briefly discuss the classical virial theorem and
whether or not its assumptions are likely to be satisfied for
clustering galaxies in an expanding universe. Section III out-
lines Peebles’s cosmic virial theorem, and its somewhat prob-
lematic history. The results of our investigations are reported
in § IV, and the conclusions are summarized in § V.

II. CLASSICAL VIRIAL THEOREM REVISITED

In Paper I we presented a new version of the classical virial
theorem, in which the effect of the expanding cosmological
substratum was subtracted out. For any pair of mass points
the following identity holds:

d 2

dt(r u=u’+r-g, (1)
where r, u, and g are the separation, relative peculiar velocity,
and relative peculiar acceleration of the pair, respectively. If for
a sample of pairs the ensemble average of the left-hand side of
equation (1) can be shown to be zero, then one obtains the
virial theorem

u?y = —<r-g>. @

It was shown in Paper I that in the EE N-body simulations
the sample of all bound isolated pairs satisfied the assumptions
of the virial theorem, and hence its corollary, equation (2). Here
we seek to test the virial theorem for all pairs, regardless of
isolation. The concept of binding of the pair to each other loses
meaning here, since the relative acceleration is dominated by
collective forces, and not by the two-body force (see Paper I,
Fig. 1). Similarly, we cannot easily test for homogeneity in the
distribution of orbital phases, as we did for the bound isolated
pairs, because of the complex orbits resulting from the stochas-
tic nature of the accelerations of pairs. The validity of the virial
theorem can therefore be tested only by whether or not equa-
tion (2) is satisfied.

In spite of the formal difficulties in identifying a proper
ensemble for which equation (2) should be satisfied, it is pos-
sible to estimate under which conditions the left-hand or right-
hand side is definitely larger. At the centers of clusters, for
example, the velocity dispersion is high, but r - g approaches
zero in the limit r— 0. For large separations, on the other
hand, at least one of the members of the pair might be expected
to be in its initial infall toward the nearest density pertur-
bation, in which case u ~ gt,, so that

u* gt} 4nG
L T, 3
rg , 3 P lo 3)

and this quantity can clearly be less than unity if p is small
enough. The agreement between u? and —r - g, found in

Paper I to hold for isolated pairs over a significant range in
separation, is therefore not expected to hold for the non-
isolated pairs. Whether some cumulative averages of the two
quantities are going to be approximately equal will be seen in
the results of § TV.

IIl. PEEBLES’S “ COSMIC VIRIAL THEOREM ”

As mentioned in § I, Peebles (1976a, b) suggested that the
equation of hydrostatic equilibrium be applied to an ensemble
average of galaxies, which can be described by the correlation
functions. The first step is to write the equation of hydrostatic
equilibrium, which is expected to hold at sufficiently small
separations, at which the galaxies may be presumed to be
“virialized ”:

d 2

SE) + R — = @
Here ¢ is the two-point correlation function, (u2) is the mean
square radial velocity, <u?) is the mean square relative tangen-
tial velocity (one-dimensional), and <{g,)> is the mean relative
radial acceleration. (Note that in our convention g is the rela-
tive acceleration, and is therefore twice as large as Peebles’s g,
which is defined as the acceleration of only one of the two
galaxies in the pair.)

Equation (4) in its differential form is a statement of an
“average hydrostatic equilibrium,” and can be tested directly
in the N-body simulation, since all quantities in the equation
can be evaluated. It will prove convenient, because of the wide
range of &(r), to multiply equation (4) by —r/&(r), and study the
relation

rd
“iar (Eu2y) = 2Kul> —<uid) = —(r-g) . S
Except for the contribution of the direct two-body force, the
mean of the remaining (tidal) relative acceleration of a pair of
galaxies is given by an integral over the three-point correlation
function:

_26m  2Gp

&(r)

Beyond a minimum separation, the second, tidal, term in equa-
tion (6) dominates (see Fig. 1 below).

Empirically, the three-point correlation function has been

found to be related to the two-point correlation function
(Peebles and Groth 1975; Groth and Peebles 1977):

2z |z =r]) = QLML) + &()e(lz — r) + &0z — r )],
™

with Q ~ 1. If the above relation holds with &(r) oc r 7, then the
tidal acceleration is given by

—<r-g) =3K,0r Qo H3r* ™7, @

where K, is a constant depending only on y. Further assump-
tions about the form of the velocity anisotropy term allow
equation (4) to be integrated, yielding a relation for the velocity
dispersion, from which Q, can be determined. For example,
assuming isotropic orbits gives

—<r-g>

d3z%3£C(r,z|z—rI). ©6)

Cup(r)> = K,Qry Qo Hgr? ™. ©®

3
4y -1
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The application of the CVT to estimate Q, has been some-
what problematic. First, the estimated Q,, scaling as Av?, is
sensitive to the actual observational value of Av, over which
there is some debate. Davis and Peebles (1983) argue for Av =
340 + 40(H,r/100)°13 km s~ !, while Rivolo and Yahil (1981)
found Av = 100 + 15 km s~!, and Bean et al. (1983) quote
250 + 50 km s~ !, both independent of separation. Rivolo and
Yahil (1981), using their value of Av, obtained Q, = 0.01, which
they rejected outright as being too low compared with determi-
nations from Virgocentric inflow (Yahil 1981; Aaronson et al.
1982). They suspected that either equation (7) or the CVT, or
both, might not hold, although their low value of Av clearly
weighed heavily upon these concerns.

Davis and Peebles (1983) noted that, with equation (7) as it

10°

Vol. 296

stands, the relative force between galaxies is dominated by
each one’s close satellites (see also Fig. 1 of Peebles 1976a).
Believing this to be an unphysical peculiarity, they replaced the
last term in equation (7) with the middle one when calculating
the relative acceleration via equation (6). This reduces the esti-
mate of the collective force by a factor of ~3, resulting in
Qo = 0.2. Although this value is in reasonable agreement with
the value found from the Virgocentric inflow, and with other
estimates contained in their paper, the somewhat arbitrary
nature of the applied modification, for which there is no justifi-
cation of which we are aware, again calls into question the
basic tenets of the CVT.

On the other hand, Bean et al. (1983), with only a moderate
change to the basic theory, found Q, = 0.14. They inserted a

1-d velocity dispersion (km/s)2

104
100
105 U ) .
10 1 10
r (Mpc)

FiG. 1.—Mean square relative peculiar velocity components (crosses), radial components (inverted triangles), and tangential components (squares) are plotted vs.
separation. All velocities are normalized to one dimension. The upper solid line shows the measured values of the virial variable —{r - g)/3. The dashed line gives the
correlation function estimate of that quantity using equations (6) and (7) with Q = 1. The lower solid line shows the virial variable with only the direct two-body

contribution to g.
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softening term into the Newtonian gravity term in equation (6),
transforming z73 to (z + €)~3 to represent the finite extent of
galaxies.

In view of this muddled observational situation, we seek in
this paper to analyze the underlying principles of the CVT.
Specifically, we test in § IV whether the average hydrostatic
equilibrium assumed in equation (4) holds, and how accurately
{r - g> is determined by equation (6), using equation (7) to
represent the three-point correlation function.

IV. RESULTS

The mean square relative peculiar velocity (one-
dimensional), as well as the directly measured virial variable
—<{r+ g>/3, is plotted against separation in Figure 1. The
mean square radial and mean square tangential (also one-
dimensional) components are also given. The scaling of the

VIRIALIZATION IN N-BODY MODELS. IL 313

dimensionless N-body model to the real universe is the same as
in Paper I, namely, H, = 50 km s~ Mpc™!; the mass per
galaxy is 2.2 x 1013 Q, M, and the length of the computa-
tional cube at the present epoch is 185 Mpc.

a) Relative Velocity Dispersion

The distribution of mean square relative velocity with
separation is seen in Figure 1 to be fairly flat and very aniso-
tropic in both models. The anisotropy extends well interior to
the region of infall, which is apparent upon comparison with
Figure 2, where the mean radial component of pairs’ proper
velocity is plotted. This feature arises from the “cold” (i.e.,
zero peculiar velocity) initial state of the models and is analo-
gous to the high orbital eccentricities found for isolated bin-
aries in Paper 1.

The rms relative velocity for all separations smaller than

400

200

200

100

-100 & :
1071

1 10
r (Mpc)

FIG. 2.—Mean value of the radial component of the pairs’ proper relative velocity is shown plotted vs. separation. The solid line is the Hubble relation, v, = Hr.
Regions of infall are evident in both models, although they are much weaker in the low-density simulation, where the growth of clustering has nearly stopped.
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1 Mpcis 190 km s ! for the Q, = 0.1 model, and 825 km s ! ) ]

for the Q, = 1.0 model. The observed velocity dispersion mea- b) Mean Relative Acceleration

surements for separations under 1 Mpc range between 100 and In Figure 1 and in what follows, we use the actual mean
310 km s~ ! (see § III). Taking any value in this range, compari- relative acceleration, {r - g, calculated by explicitly adding to
son with the N-body models clearly favors the case of an open the direct force between each pair the tidal contributions of its
universe. This conclusion is unlikely to be altered by more neighbors. In observational studies, on the other hand, this
realistic modeling of extended galaxies and stronger positional quantity has been estimated from the two and three-point cor-
correlation, as long as all mass is assumed to be distributed as relation functions, using equations (6) and (7). It is clearly
the galaxies. A velocity dispersion of 825 km s~ * (the Q, = 1.0 worth checking how good this estimate is in the models. Note,
case) cannot be dissipated by galaxies whose internal disper- however, that the two-point correlation function, shown in
sion or rotation velocities are ~ 150 km s~ ! (one-dimensional), Figure 3, is not well described by a single power law. Instead,
and stronger clustering will only increase the velocity disper- since force softening below r =d,, = 440 kpc (see Paper I)
sion. causes severe flattening of the correlation function below these

10_1 N N R | N N P
1071 1 10

r (Mpc)

FiG. 3—Two-point correlation function &(r) as a function of separation, along with double power-law fit (eq. [10]). Force softening at small separations severely
flattens the correlation function scales on r < d,, = 440 kpc.
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FiG. 4—Mass estimates obtained by the cumulative ratio —(u®)/<r * g>. Note the steady decline in this ratio, as opposed to the rapid convergence found for
bound isolated pairs in Fig. 6 of Paper 1. Yet the accuracy is better than a factor of 2 for separations 500 kpc < 1.85 Mpc.

scales, we adopt a double power law:

_ |Cdury r<ad,
<) = {C(dm/r)” Cr>d,’

with the values of the parameters «, 8, and C given in Figure 3.

The calculation of the integral in equation (6) therefore no
longer yields the simple power law, equation (8). In Figure 1
the dashed line shows values of —<(r*g) calculated from
equation (6), using equations (7) and (10) with Q = 1. The
results show moderate agreement in shape, but the magnitude
is low by a factor of ~1.5. We consider this reasonable agree-
ment, since it is within the error margin of the virial analysis
itself, which is a factor of ~2. Also, Q has not been reliably
determined for the 20,000-body models; similar 1000-body
models have Q = 1.2 (EE). Thus, our Q-value may be low by a
small factor.

Note that we have explicitly included the two-body force in
the calculation. This facilitates comparison with the directly
measured relative acceleration, in which the two-body virial
variable (r - g)/3 is also plotted in Figure 1, so that its contri-
bution to the total may be assessed.

(10)

¢) Classical Virial Theorem

Figure 1 shows that the agreement between the mean square
relative velocity (u2)/3 and the virial variable —{r - g>/3 is
not nearly as good as in the case of isolated pairs (Paper I). As
expected from the discussion in § IT above, at small separations
the mean square velocity exceeds the virial variable, and the
ratio of the two decreases with increasing separation, without
reaching any asymptotic value. Despite this lack of con-
vergence, we find in Figure 4 that, for separations between
500 kpc and 2 Mpc, the cumulative virial ratio is equal to
unity within factors of 1.5 for the Q, = 0.1 model and 2 for the
Q, = 1.0 model.

It is tempting to identify the scale at which the cumulative
virial ratio equals unity as the size of a “typical™ cluster.
Inspection of Figure 4 shows these clustering scales to be
1 Mpc for Q, = 0.1 and 4 Mpc for Q, = 1.0, using direct
extrapolation of the data in the latter case. We can compare
these scales with two other scales of interest. The standard
clustering length in these models, ie., the distance at which
&r)=1, is 3 Mpc for Q,=0.1 and 6 Mpc for Q, = 10.
Another way to define a cluster size is from the phase-space
diagram of the radial component of the relative velocities of the
pairs versus their separations (cf. Rivolo and Yahil 1983).
Figure 2 for Q, = 0.1 that there is modest infall between 1.5
and 2.0 Mpc, indicating that the largest clusters are of this size.
In the Q, = 1.0 model, tremendous streaming motions exist
between 2.0 and 9.0 Mpc, with the maximum infall velocity
occurring at about 5 Mpc.

»

d) Peebles’s *“ Cosmic Virial Theorem’

Consider first the differential form of the cosmic virial
theorem, equation (5). Both sides of the equation are plotted in
Figure 5. The results show a systematic underestimate of the
pressure term (left-hand side) relative to the gravitational term
(right-hand side) over all scales measured. This is not the result
of a general contraction, as can readily be seen from Figure 2,
and must therefore be due to time-dependent terms that are
ignored by the CVT. The disagreement, however, is compa-
rable to the one noted for the classical virial theorem. Outside
of the softening range of the two-body force, r > 440 kpc, the
two sides of equation (5) do not differ by more than a factor of
~1.5 for both models. Interior to the softening region, the
velocity data become more noisy, and therefore the
unsmoothed derivatives on the left-hand side show more
scatter. Generally, agreement is not as good in this region.

Since the differential form of the CVT, equation (5), seems to
hold rather well, we have also tried to test an integral form, by
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Fi1G. 5—Measured values of the left-hand and right-hand sides of the differential form of Peebles’s cosmic virial theorem (eq. [5]).

integrating equation (4) between r and the maximum separa-
tion for which we have measured g, 1.85 Mpc. The integral
relation is more useful for mass estimates, because in practical
cases the samples are not likely to be as rich as the ones in the
N-body simulations, and the statistical noise would make the
use of the differential form of equation (5) more difficult. The
results are presented in Figure 6, in which we have divided the
integral of equation (4) by &, for the same reasons for which we
preferred equation (5) to equation (4) (see § IIT). The systematic
bias in the differential form causes similar discrepancies in the
estimated velocities. Outside of the softening range, the two
sides agree to within a factor of 1.5; below this range, the
discrepancy is larger.

V. CONCLUSIONS

We conclude that, for nonisolated pairs in the EE N-body
simulations, both the classical virial theorem, and the “cosmic
virial theorem” (CVT) proposed by Peebles (19764, b), provide
reasonable mass estimates, which are accurate to better than a
factor of 2 on scales 25 < Hyr < 100 km s~ L. If virial analyses
are similarly accurate for the real universe, results of their
application to galaxies (Rivolo and Yahil 1981; Davis and
Peebles 1983; Bean et al. 1983) should reinforce the conclusion
that the universe is open.

The CVT is really a statement of local hydrostatic equi-
librium, and as such may be somewhat better to use. Its accu-
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FIG. 6—Measured values of the integral form of Peebles’s cosmic virial theorem. Plotted is the integral of eq. (4) (multiplied by ¢). from the sample limit,

r = 1.85 Mpc, to smaller r.

racy is seen not to depend on separation, and is somewhat
better than that of the classical virial theorem. The latter, being
a global measure, is sensitive to large-scale currents at large
separations (infall into clusters), and is also not satisfied at very
small separations inside clusters, where the tidal potential
between neighboring galaxies is small compared with the
global depth of the gravitational potential.

The calculation of the mean relative acceleration of pairs of
galaxies from the three-point correlation function, equation (6),
using its empirical relation to the two-point correlation func-
tion, equation (7), was shown to be valid to within a factor of
~1.5. However, the usually deduced power-law relation
between the relative velocity dispersion and separation, equa-
tion (9), does not apply to the EE N-body models, in which the
two-point correlation function is sufficiently different from a
simple power law.

The one-dimensional velocity dispersions found in the
models for all pairs with separations smaller than 1 Mpc are
190 km s™! (Q, =0.1) and 825km s~ ! (Q, = 1.0). If the
models bear any resemblance to the real universe, then these
values may be directly compared with the observed ones.
While there is a disagreement about the observed velocity dis-
persion, an open universe is inferred from any value in the
quoted range of Av = 100-310 km s~ . More realistic N-body
calculations might include better modeling of extended gal-
axies, and initial conditions resulting in stronger correlation
functions, more closely resembling the real universe. However,
extended galaxies, with internal velocities ~ 150 km s~! (one-
dimensional), are unlikely to dissipate the high velocity disper-
sion obtained in the Q; = 1.0 model, and stronger clustering
will only increase it. As long as mass is distributed as the
galaxies, such refinements are therefore unlikely to create criti-
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cal or closed models consistent with the observed velocity dis-
persion.
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