T D341 776 D

ITBOAD.

rt

THE ASTROPHYSICAL JOURNAL, 341:26—40, 1989 June 1
© 1989. The American Astronomical Society. All rights reserved. Printed in U.S.A.

TESTING ORIGINS OF THE HUBBLE SEQUENCE

AuGUST E. EVRARD
Institute of Astronomy, University of Cambridge, and Department of Astronomy, University of California, Berkeley
Received 1988 August 5; accepted 1988 October 27

ABSTRACT

An analytic formalism which allows calculation of separate mass functions for disk, spheroid, and dwarf
galaxies in hierarchical clustering models is applied to galaxy formation in the cold dark matter model. The
method employs a probabilistic argument which requires theoretical prejudice regarding what physical or sta-
tistical criteria broadly define the Hubble types.

Dwarfs are assumed to form within haloes with virial temperatures below a critical value T, ~ 104 K.
Two sets of criteria to differentiate ellipticals from spirals are examined. One model assumes that ellipticals
cooled and formed stars rapidly while spirals cooled on longer, nearly hydrostatic time scales. This model fails
to reproduce simple observed characteristics of the galaxy distribution: spirals are predicted to be rarer and
typically ~5 times more massive than ellipticals. A second model assumes that ellipticals formed from rare
(~3 o) density fluctuations, while spirals arose from more common (~2 ¢ to 3 o) perturbations. These ideas,
when tuned to give the proper global abundances of spiral and elliptical galaxies, produce mass functions with
shapes in good qualitative agreement with observations. In addition, the model exhibits a “natural” morpho-
logical bias which allows enhancement of the elliptical fraction in clusters to levels in agreement with the
observed morphology-density relation.

In searching for a physical interpretation of the latter model, a conjecture is made that the transition from
the spheroid-forming to disk-forming regimes occurs at a critical pressure which is independent of environment.

Subject headings: dark matter — galaxies: formation — galaxies: structure

I. INTRODUCTION

Nearly 30 years ago, Eggen, Lynden-Bell, and Sandage
(1962) presented conclusive evidence that the birth of the
Milky Way involved collapse of a protogalactic object with
spatial dimension ~100 kpc over a time scale of ~10° yr.
Since that time, the complexities of the galaxy formation
process have been slow to unravel. In particular, an explana-
tion of the physical processes which govern the ultimate mor-
phology of a collapsing protogalaxy—the “keys to the Hubble
sequence “—remain elusive.

There are a few well-established ideas for what physics
broadly separates the Hubble types. For example, it has long
been held that gravitational binding energy plays an important
role in distinguishing dwarfs from bright galaxies. The early
simulations of Larson (1969, 1974, 1975) exhibited the inter-
play between gas dissipation, star formation rate, and super-
nova feedback. The idea that collective supernova explosions
could drive a galactic wind (Mathews and Baker 1971) and
unbind the gas in smaller galaxies has received recent attention
(Dekel and Silk 1986; Yoshii and Arimoto 1987). The con-
structed models can reproduce the characteristic low metal-
licities and surface brightnesses of dwarfs when the initial
binding energy of the galaxy is insufficient to contain gas
heated by early generations of star formation. The implication
is that normal galaxies (where the term normal in this paper is
used to denote all nondwarf elliptical, lenticular, and spiral
galaxies) are systems with virial temperature above some criti-
cal value T, .

Larson (1975) further suggested a physically compelling dis-
tinction between the formation of disk and the formation of
spheroidal systems. He argued for the star formation rate as
the critical element in determining whether or not a significant
disk structure could be formed. If stars were formed rapidly
during the collapse of a protogalaxy, consuming a large gas
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fraction in the process, the collapse of the galaxy would involve
mainly violent relaxation of a cold stellar component. N-body
simulations have shown that such collapse can reproduce the
bulk of observed luminosity profiles in elliptical galaxies (Van
Albada 1982; McGlynn 1984). Any remaining, presumably
enriched gas would settle to the galactic center, with further
star formation serving to enhance the central surface bright-
ness and produce a metallicity gradient in the sense observed
(Larson 1974).

A second, empirically motivated distinction between spirals
and ellipticals was suggested by Faber (1982) and expanded by
Blumenthal et al. (1984). Faber pointed out that the observed
Tully-Fisher and Faber-Jackson relations (L oc o?, p ~4)
would arise naturally in clustering from an initial scale-free
fluctuation spectrum with spectral index n = —2 [P(k) oc k"].
Blumenthal et al. noted that this is approximately the slope of
the cold dark matter spectrum on galactic scales. They also
pointed out that the observed narrow scatter and trend of
decreasing velocity from early to late systems at a given lumi-
nosity would require that ellipticals arise from ~3 ¢ fluctua-
tions while spirals are perhaps ~2 o objects (as depicted in
their Fig. 4). Further impetus for this model comes from biased
galaxy formation—the idea that galaxies form at 2 2.5 ¢ peaks
in the density field (Bardeen et al. 1986). This biasing is neces-
sary in an Q = 1 cold dark matter model if it is to reproduce
the observed kinematics of the galaxy distribution on scales of
1-10 b5 Mpc (Davis et al. 1985).

This paper presents a method of determining mass functions
for morphological types in order to test the ideas outlined
above. The motivation is to make quantitative predictions to
compare with observations. Since quantitative predictions
require an assumed cosmogony, we consider the specific case of
adiabatic fluctuations in a cold dark matter (CDM) dominated
universe with cosmological parameters Q = 1, Q, = 0.1, and
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Hy = 50hso km s~! Mpc~!. Ironically, it is found that the
physically appealing disk/spheroid distinction of Larson fails
to match some of the crudest global properties of the galaxy
distribution. However, the distinction by Faber, which lacks a
sound physical basis, is capable of reproducing several inter-
esting observations of the bright galaxy distribution.

Some of the observed properties of the galaxy distribution
which will be used as benchmarks for the models are briefly
discussed in § II. The basic physics of galaxy formation from
gravitational instability in a cold dark matter universe is out-
lined in § III. The formalism for constructing mass functions
for the morphological types is presented in § IV, and global
population results are given. Section V discusses the morpho-
logical bias expected in clusters. This leads to a possible physi-
cal interpretation of a pressure-dependent morphology, a
subject addressed in the final section which presents a
summary and discussion of the results.

II. THE OBSERVED GALAXY DISTRIBUTION

The Hubble sequence as illustrated, for example, by Sandage
(1961) displays a wide range of beautiful morphologies. A
detailed classification system has been developed to accommo-
date subtle differences between the types. For the purpose of
this paper, we consider galaxies as falling into two basic
populations—* normal” and “dwarf” (Dw)—with normal gal-
axies being further subdivided into spheroid (E) and disk (Sp)
systems. Observationally, the distinction between normal and
dwarf galaxies is mainly one of surface brightness (Kormendy
1987). Theoretically, the difference is one of binding energy or
virial temperature. No attempt is made here to distinguish
between gas-rich and gas poor dwarfs. The presence or absence
of a significant stellar disk is used to distinguish Sp from E
galaxies. Again, galactic gas content is ignored. Therefore,
since lenticulars (SO’s) possess significant disks, they will be
classed in the Sp category (Larson, Tinsley, and Caldwell
1980). Hereafter, unless otherwise explicitly stated, the term Sp
will refer to all nondwarf disk systems, both spiral and lenticu-
lar.

The detailed study by Sandage, Binggeli, and Tammann
(1985) of galaxies in the Virgo Cluster has prompted a reinter-
pretation of the standard Schechter luminosity function
(Binggeli 1987). When the luminosity function (LF) of all gal-
axies is decomposed into type-dependent LFs, some interesting
regularities are uncovered. The LFs of elliptical, lenticular, and
spiral galaxies are similar in shape, being roughly bell-shaped
with a width of about two decades in luminosity (—22 <
Mp, < —17). The brightest ellipticals are slightly brighter than
the brightest lenticulars, which in turn are somewhat brighter
than the most luminous spirals. At My, ~ —18 (L ~ 3 x 10°
L), dwarf galaxies begin to appear. They dominate the counts
within a magnitude fainter; in fact, the dE galaxies appear to
comprise 70% of the total cluster population down to the com-
pleteness limit of Mg, ~ —14.

Binggeli (1987) has presented evidence, by comparing the
Virgo data with both field galaxies and galaxies in the Coma
Cluster, that the type-specific galaxy LFs are independent of
environment. Only the relative proportions of the Hubble types
vary with local density. In the field, disk systems tend to out-
number ellipticals (Dressler 1980; Postman and Geller 1984)

by a global ratio
Sp)
— ~9, 1
< E glob ( )

whereas in clusters of galaxies, roughly twice the average
number of ellipticals are found within a cluster optical radius
(Oemler 1974; Dressler 1980):

Sp -
<E> clust =4 (2)

Enhancement of the elliptical population does not occur only
in massive rich clusters. Hickson, Kindl, and Huchra (1988)
find 20% ellipticals in compact groups containing typically
only four or five galaxies. Thus, the processes governing mor-
phology appear to be sensitive te local conditions, where local
means on the scale of a few galaxies. This idea is strengthened
by the strong dependence of morphological type on local
galaxy density (Dressler 1980; Postman and Geller 1984).

Although the evidence for universality of the type-specific
LFs is still tentative, if it is confirmed the implication would be
that the processes which shape galaxy morphology do operate
in the same manner in both the cluster and the field, i.e., locally.
However, the frequencies with which they operate may be
modulated by the large-scale density. The increased elliptical
fraction within rich clusters would then be interpreted as due
to collective enhancement of the local effects which govern
spheroid formation—a form of “natural morphological
biasing ” analogous to the original idea of biasing proposed by
Kaiser (1984).

Looking at the total galaxy population, the space number
density per unit luminosity of galaxies with luminosity L is well
parameterized by the Schechter function (Yahil, Sandage, and
Tammann 1980; Kirshner et al. 1983; Geller and Huchra
1983),

(L)AL = ®(L/L,)"* exp (— L/L,)dL , ©)

with L, ~ 3 x 10'°h;¢ Ly and faint end slope o ~ —1.25.
Most normal galaxies are brighter than My ~ —17
(L 2 L,/30), with dwarfs dominating fainter counts. The fact
that normal galaxies appear to have a low-luminosity cutoff
means that we can estimate the total number density of normal
galaxies by integrating the Schechter function down to their
limiting luminosity, taken as My, = —17. Although values of
the parameters «, L, , and @, vary somewhat from sample to
sample, the integration is not particularly sensitive; a mean
value of the three samples listed above is

ng, ~ 0.008h3, Mpc 3 . @

We can estimate a “characteristic ” total mass to associate with
normal galaxies by combining the luminosity L, with a typical
mass-to-light ratio within the luminous extent of galaxies
M/L ~ 10hsy M /L .The result is a mass per galaxy

Mg, >3 x 10Mhsd My . ©)

The above two quantities yield an estimate of the fraction of
mass in an Q = 1 universe presently associated with normal
galaxies

o, ="M 05 ©)

gal —
(V]

This small fraction could reflect the fact that galaxy formation,
or rather concentrated star formation, is an inefficient process—
perhaps lending credence to biased galaxy formation models.
However, the strength of this statement is limited by the uncer-
tainties of associating mass with luminosity.
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III. MODELING GALAXY FORMATION PHYSICS

We are assuming that structure in the universe formed via
gravitational instability of density perturbations imprinted in
the early universe. In particular, we consider perturbations
arising in a universe dominated by cold dark matter (Peebles
1982; Bond and Efstathiou 1984; Blumenthal et al. 1984).
Galaxy formation in this model is envisioned as a two-stage
process (White and Rees 1978) whereby dissipationless clus-
tering of the dark matter creates halo potential wells into
which the baryons can subsequently collapse and dissipate
through radiative cooling to form stars.

To make galaxies “by hand” (without detailed three-
dimensional numerical modeling) requires several ingredients.
One is a way of propagating initial density perturbations
forward in time to yield both the spatial number density and
characteristic internal properties (densities, temperatures, etc.)
of collapsed systems at a given mass. The Press-Schecter (1974)
formula is used to provide number densities n(M, z) while a
modified spherical “top-hat” prescription (Gunn and Gott
1972; Gunn 1977) is used to determine characteristic internal
properties. Another necessary ingredient is a criterion to judge
which collapsed systems form galaxies and which do not. The
ability to cool on a physically interesting time scale is the
classic criterion (Rees and Ostriker 1977; Silk 1977). More
complicated critiera determining morphology will be
addressed in the next section.

a) Gravity

Consider at some early postrecombination epoch z; a spher-
ical density perturbation with a mean overdensity profile
d{r) = [M(r) — M(r)]/M(r). The top-hat prescription assumes
that a mass shell M will expand to a turnaround radius
Feura(M) oc 6 Y (M)M?'® and collapse by a factor of 2 before
virializing through shock heating or violent relaxation.
Straightforward calculation (see the Appendix) leads to the
final virialized characteristics of the system as a function of
mass shell,

1+ 2, (M) = 5o(M)/1.68 , (7a)
Tl M) = 450 5 (MM 15hs¢"? kpe (7b)
Dyi(M) = p,i(M)/po = 37.387'(M)33(M) ,  (Tc)
T,(M) = 2.31 x 105 8,(M)M35h25 K . (7d)

Here J6o(M)=(1 + z)0(M) is the fluctuation amplitude
evolved by linear theory to the present day, M,, is mass in
units of 10'2 M, z,, is the collapse redshift, r,;, is the physical
virial radius, D (M) is the local density contrast of the shell
relative to the present cosmic background density p, =
3H2/87G, and T, is the virial temperature. The quantity
B(M) =1 — 3d log /d log M enters into the measure of the
local shell density because the layering of shells depends on the
slope of the initial overdensity profile 6(M).

This simplified behavior of mass shells is actually in very
good agreement with what happens in detailed self-similar col-
lapse models (Bertschinger 1983). What also emerges from the
self-similar models is that the postcollapse profiles of a shock-
heated y = 5/3 gas are extremely similar to the postcollapse
profiles of collisionless mass shells. This allows the simplifying
assumption that baryons and dark matter will collapse in
similar ways, until cooling removes pressure support from the
gas. This lack of segregation in the adiabatic regime is also seen
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in three-dimensional hydrodynamic calculations (Evrard and
Davis 1983; Evrard 1988).

Perhaps a significant leap of intuition is required to assume
that the results above obtained for a given spherically sym-
metric perturbation are applicable to arbitrary three-
dimensional structures with mean overdensity 6(M). That is, if
we draw a sphere around a random point in the universe con-
taining mass M which happens to be overdense by an amount
6(M), the mass on that shell will behave like the spherically
symmetric top-hat model above. This is unlikely to be true in
the general case, since the material within a shell around a
randomly chosen point is rarely close to spherically symmetric.
In particular, even if the volume is sufficiently overdense to
collapse by a certain epoch, tidal forces may shear out the mass
within the region before it has a chance to collapse on itself.
However, the counterargument is that galaxies do not form at
random points in space; they tend to form around peaks in the
initial density field. The behavior of the mass distribution
around a peak may follow more closely the evolution above.
The fact that equipotential contours are more spherical than
equidensity contours may justify the spherical approximation
for peaks with surrounding mass distributions of a moderate
ellipticity. This, coupled with the fact that “object finding”
algorithms operating in the non-linear regime tend to find
matter associated with peaks in the initial density field (Frenk
et al. 1988), might lead us reasonably to expect the top-hat
predictions to apply to properties of objects collapsed from
initial peaks.

We can then forge ahead and apply the above prescription
to a spectrum of fluctuations and replace d4(M) = voo(M),
where o4(M) is the rms present-day fluctuation amplitude on a
(top-hatfiltered) mass scale M (Peebles 1980). Two normal-
izations of the CDM spectrum listed in Table 1 are considered,
one favored by the N-body work of Davis et al. (1985) (the
DEFW normalization), the other arising from statistical work
of Bardeen et al. (1986, hereafter BBKS). The bias parameter b
measures the enhancement of galaxy fluctuations relative to
the underyling mass on a scale of 16h53 Mpc. In this sense, the
DEFW normalization is “ more biased ” than BBKS by about
50%.

Figure 1 shows the virial properties of vo cold dark matter
perturbations with both normalizations. Note the scalings with
v. With the BBK S normalization, 3 ¢ objects with galactic halo
masses (M, ~ 1) would collapse at a redshift z = 5, have radii
r ~ 50 kpc, a virial temperature T = 2 x 10° K corresponding
to a rotation speed v,,, = 230 km s~ !, and a density contrast of
about 2 x 10* These numbers are consistent with properties of
observed galactic halos and would imply dissipation and col-
lapse by a factor ~5 for the baryonic component in order to
agree with optical radii of ~10 kpc and density contrasts of
~ 108 (corresponding to ~ 1 proton cm ~3). The CDM fluctua-
tions on galactic scales follow §o(M) oc vM ~*/5, which, com-
bined with equation (7d), yields T ~ v? oc vM*/2. This leads to

TABLE 1
NORMALIZATION PARAMETERS

Model oo(16 Mpe b
BBKS ....... 0.59 17
DEFW ...... 0.40 25

2 go(x) = {(6p/p)*>** on scale x at
present epoch.
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Fi1G. 1.—Properties of cold dark matter perturbations evolved to virial equilibrium using the spherical top-hat prescription (eq. [7]), with 6o(M) = vo(M). The
solid and dashed lines show 1 ¢ objects with the BBKS and DEFW normalizations, respectively. Scalings with v are shown on the axis labels.

the observed form of the luminosity-velocity relations
L oc M oc v~ 2v* under the assumption of a constant M/L ratio.
However, the narrow scatter in luminosities at a given velocity
for each Hubble type implies a narrow band in v, the width in
log v being roughly A log v ~ 0.5A log L ~ 0.1 if there is 0.5
mag scatter in luminosity at a given velocity (Kaiser 1988).

b) Number Density of Collapsed Halos

The Press-Schechter (1974) formula yields the spatial
number density of halos of mass M collapsed at redshift z:

2py dlogae
M,zdlogM=— [—-—
n(M, z)d log ﬁMdlongz(M)

X exp [—- @:Id log M, (8)

where v (M) = 1.68(1 + z)/6o(M) is the normalized fluctuation
amplitude reaching virial equilibrium at redshift z. The basis of
the above formula is a striaghtforward counting argument.
Given an initial Gaussian distribution of overdensities with
variance 6(M), one examines how the the fraction of collapsed
mass in the universe changes in going from M to M + 6M. The
Ansatz that the change in this fraction is due solely to objects
of mass M produces the above formula.

There has been much lingering theoretical uncertainty about
the applicability of the Press-Schechter formula. One particu-
lar problem is whether the differentiation Ansatz properly
accounts for the erasure of substructure in hierarchical
clustering—the “cloud-in-cloud” problem. Another problem
is that a factor of 2 “fudge” was introduced into the original

derivation to account for the accretion of underdense regions
onto overdense objects. It is not entirely clear that this factor is
correct or, indeed, that any accretion factor is even warranted.
Luckily, these difficult questions can be circumvented by using
empirical evidence that the formula works. A recent study by
Efstathiou et al. (1988) of self-similar clustering in N-body
experiments shows that the Press-Schechter formula predicts
the number densities of collapsed objects extremely well for a
wide range of initial power spectra. We therefore assume that
equation (8) correctly predicts the mass function of halos at a
given redshift.

¢) Cooling

The ability of the gas in a halo to cool on an interesting time
scale is the principal physical condition for forming a galaxy.
Other time scales of interest are the dynamical time of the halo
and the age of the universe. These characteristic time scales can
be determined from the estimates of the physical properties of
collapsed shells given above. For example, the cooling time is
given by

Tcool(M) = 43Qb_ lﬁ(M)é(; Z(M)Mfllsx_l(nir)hg{')a Gyr ’ (9)

where A(T) = A(T)/(um,) ~ 10**A(T), with A(T) the total
cooling rate in cgs units, u the mean molecular weight and m,
the proton mass.

We define the dynamical time as the virial crossing time of a
shell:

Taya(M) = e _ g 515532 (Myhzd Gyr . (10)

vir
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The classic criteria for galaxy formation are the ratio of the
cooling to the dynamical time,

M
Tl _ 4707 p65 POOMIER Tk, (1)
Tdyn(M )
and the ratio of the cooling time to the Hubble time,
Teool(M) - - _ _
T'—H = 3.20, ' fM)3; AMIMIZR (T, )hss . (12)

Lines where the above critical ratios are unity define regions
in the n-T diagram shown in Figure 2. Cooling from a primor-
dial gas is assumed; the cooling curve A(T) is taken from Fall
and Rees (1985). Compton cooling is also included. Note that
the abscissa is inverted and shows the overdensity D = n/n,,
with ny = 5 x 1077(Q,/0.1)h%2, cm ™3 the present mean back-
ground particle number density. This density is directly related
to the collapse epoch shown on the right-hand axis. The top
axis shows the one-dimensional velocity dispersion v?; =
(kT/um,) with u = 0.6. The heavy solid line denotes values
where T,,/T4y, = 1, the heavy dashed line 7,,/ty = 1. The
diagonal dotted lines are lines of constant mass M oc (T3/p)*/2.
Evolved 1 o, 2 6, and 3 ¢ CDM perturbations with the BBKS
normalization are shown as long dashed lines. Perturbations
that lie in region I have too small an amplitude to have col-
lapsed by the present. Those in region II have collapsed and
can cool in a dynamical time. The collapsed systems in region
III have a cooling time intermediate between a dynamical time
and a Hubble time, while those in region IV cannot have
cooled by today. Dividing up this diagram among the simple
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Hubble types Dw, E, and Sp is the subject addressed in the
next section.

IV. MASS FUNCTIONS FOR DIFFERENT MORPHOLOGICAL TYPES

The n-T plane presented in the last section is now used as a
springboard for determining mass functions for the morpho-
logical types Dw, E, and Sp. The basic idea is to divide the
plane up among the morphologies according to some well-
defined physical criteria expressed as functions of n and T. The
areas demarcated in the n-T plane can then be mapped onto
the v-M plane, where a probabilistic argument, based on the
fact that the initial values of v are normally distributed, is used
to determine the fraction of collapsed objects falling within
each morphological class. These fractions, when combined
with the Press-Schechter formula for the number density of
collapsed halos at a given redshift, produce mass functions for
the individual Hubble types.

a) Physical Criteria for the Morphologies

The long-established idea (Larson 1974) for the origin of
dwarf galaxies—that they represent objects with binding
energy too small to retain gas after an initial burst of star
formation activity—is used to differentiate normal galaxies
from Dw’s. In particular, we use the estimate of the critical
temperature by Dekel and Silk (1986), T, = 10°* K (v, = 60
km s~ 1), below which dwarf galaxies would form. Two models
distinguishing spheroids (E’s) from disks (Sp’s) will be investi-
gated. The element common to both models is that normal
galaxies have virial temperature greater than the dwarf value,
T>T.

Via (km S_l)

100

BRNEALEEN =
A
=1
» 1 %
Q) -] N
3 ER
V=3 10
: 10" 1
8 __ 108 ’-1010 ‘_: 100
| R B Y T ! .
4 5 6 7
Log T(K)

F1G6. 2—The n-T plane containing the essentials of galaxy formation physics. Diagonal dotted lines are lines of constant mass; the long-dashed lines are CDM
perturbations with the BBKS normalization and values of v indicated. Perturbations below the solid horizontal line have collapsed by today. Those below the heavy
solid and dotted curves have 7 ., < T4y, and 7., < Ty, respectively. The classic interpretation of this diagram is that galaxies form in region II, where cooling is
rapid; the transition from galaxies to groups occurs in the intermediate cooling region III; and groups and clusters fall in region IV, where cooling is inefficient.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989ApJ...341...26E

T D D341 76 D

ITBOAD.

rt

No. 1, 1989

TESTING ORIGINS OF HUBBLE SEQUENCE

31

TABLE 2
MobDEL CONVENTIONS

Model Label Dw E Sp
T-1atio ............ T, T<T, Teool < Tdyn Tayn < Teool < Tt
v-threshold ....... V! T<T, V>V Tewa<Tayn  Vsp <V < Ve Teoar < Tayn
v T<T, V> Vg, Teoq < Ty 5p <V < Vg, Teool < Th

The first model attempts to encapsulate the physical ideas of
Larson outlined in § I with an additional assumption linking
star formation efficiency with rate of gas cooling. In this model,
ellipticals are taken to be objects which can cool rapidly,
Teool < Tayn» Whereas spirals are identified with objects having
Tayn < Teoot < Ty. The implicit assumption is that rapid cooling
will lead to fragmentation and star formation on roughly a
dynamical time, whereas slow cooling implies slow star forma-
tion and hence significant amounts of gas left over to quasi-
statically settle onto a disk after the underlying dark halo has
had a few dynamical times to become stable. For brevity, let us
call this collection of ideas the t-ratio model of galactic mor-
phology.

An alternative, less physically intuitive differentiation
between ellipticals and spirals arises from the empirical L oc v*
relations as noted by Blumenthal et al. (1984). With constant
L/M assumed, the spherical collapse model predicts v2L oc v*.
The observed narrow scatter in the L-v the relation and the
trend of decreasing velocity from spheroid to disk systems at a
given luminosity thus provokes a model where morphology is
governed by the normalized perturbation height v. That is,
ellipticals are systems with v > v, and spirals result from per-
turbations with vg, <v < vg. Note that this model assumes
that gas dissipation and star formation are kind enough to
produce a stellar component with velocity dispersion or rota-
tion speed following (to within a constant factor) the character-

istic velocity of the parent halo. The values of v; and vg,, are left
as free parameters which will be adjusted to reproduce the
correct global abundance of spheroid and disk galaxies. Again,
some cooling criterion must apply to form galaxies, and the
two possibilities—cooling within a dynamical time and cooling
within a Hubble time—are considered separately. This collec-
tion of criteria will be referred to as the v-threshold model, with
two variations arising from the two cooling conditions.

Table 2 summarizes the models and labeling conventions
followed in the subsequent sections. Their schematic represen-
tations on the n-T plane are shown in Figure 3.

b) Formalism

We start with the Press-Schechter estimate for number den-
sities n(M, z) of halos as a function of mass at a given redshift z
(eq. [8]). The aim is now to partition this population of halos
among the different morphologies. This is done by projecting
the halos onto the n-T diagram and counting the fraction of
collapsed haloes which fall in the regions of Figure 3 outlining
the different morphological types. The idea is to transform the
lines demarcating the morphological classes from the n-T
plane to the v-M plane, and use the fact that the initial distribu-
tion of v is normal. The mapping of Figure 3 onto the v-M
plane is shown in Figure 4.

The number density of galaxies with mass M of a given type
X is then taken to be the number density of halos times the
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© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989ApJ...341...26E

T D D341 "76ED

ITBOAD.

rt

32 EVRARD Vol. 341
Tr Utl Utn

5:|III|IIII]YI|I:!t:flllllllf'fﬂ: 5:l|||IIIIIIII|J':,"Ill||||‘i;~’l: 5:||||]IIIIIIIlll.:!",:'llllllé:ﬂ:

- A ¢/ A - A " i - A S
4 o 4 - 4 f

- 1 F 1 E E =

o |- =EEl= 4 e A

S F ] - ] - ]
2 == = =

- Dw . - Dw .. ] ~ Dw X\~ 3

1 :—_-._ """""""""""" ’ _E 1 ;,, .................... _: 1 5, ........................ —E

o BTl 1 Bl 1 Bl ]

3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2

Log M, Log My Log My,

FI1G. 4—Mapping of Fig. 3 onto the v-M plane. Labeling is the same as in Fig. 3. The upper, middle, and lower dotted lines show values of v withz,;, = 7, 3,and 0,
respectively. The fact that the spectrum of initial perturbations at each mass M is normal in v allows calculation of mass functions for the individual morphologies.

fraction of collapsed perturbations which had values of v
appropriate for that particular galaxy type:

ny(M, z) = n(M, 2)fx(M) . (13)

For example, the criterion for forming a dwarf galaxy, T < T,,
translates for a particular mass M to an upper bound on over-
density, 5o(M) < pu(M) = (T,/2.3 x 10°)M [ 23, which in turn
determines a critical range of W (M) < vp, (M) = dp(M)/6o(M).
The fraction of collapsed halos satisfying this critierion will be

erfc [va(M)]}

Sou(M) = 1 — max {1’ erfc [v.(M)]

(14)
where

erfc (x) = 2m)~ /2 J dy exp (—y?/2)
is the complementary error function and v,(M)= 1.68
(1 + z)/ao(M) is the normalized perturbation height just col-
lapsed at redshift z.

In a similar way, ellipticals in both the t-ratio and the v-
threshold models are objects with overdensities bounded from
below (M) > vg(M). The fraction of halos which should be
identified with elliptical galaxies is given by

erfc [vi(M)]
> erfc [vy(M)])
Finally, the spiral fraction is bounded both from above and
below, vs (M) < v(M) < vg(M), although the range differs

between the t-ratio and the v-threshold models. The fraction of
halos with embedded disk galaxies is thus

erfc [vs,(M)] — erfc [vE(M)]} 16)
erfc [v,(M)] '

Note that there is no dynamics in this model, except what is
included in the Press-Schechter relation for the population of

Je(M) = max {1 (15)

Jsp(M) = max {1,

halos. The procedure here is to simply paint the distribution of
halos at a given epoch with labels corresponding to different
Hubble types in a manner consistent with that expected from
the initial Gaussian distribution of overdensities. Presumably,
the galaxy population seen today is a suitable convolution of
galaxies formed at all previous epochs. Without knowing a
priori the proper form for the time convolution operator to
apply at previous epochs (another way of saying that we do not
know what happens to galaxies within merged halos), we
cannot predict in detail what the galaxy population will look
like at the present day. Still, the “snapshot” approach used
here is not totally without merit, since there are several impor-
tant aspects of the models which are insensitive to redshift and
hence would be valid for any time convolution model.

¢) Global Population of Normal Galaxies

Figure 5 shows the (comoving) number density of normal
(E + Sp) galaxies as a function of redshift for each of the models
and the two different CDM normalizations. The characteristic
shape of the number density can be understood qualitatively
by considering the initial Gaussian distribution of over-
densities. At early times, only perturbations in the extreme tail
of the Gaussian are able to collapse, and so few objects are
found. The logarithmic number density increases rapidly with
time as the objects just collapsing ride up the shoulder of the
Gaussian. After 1 o objects have collapsed, the population
begins to decline as a result of merging or accretion of sur-
rounding material. This characteristic behavior is also
exhibited by halos identified in N-body experiments (Frenk et
al. 1988).

What we call the present number density of normal galaxies
depends on our assumptions regarding the fate of galaxies
within merging dark halos. Even though colliding galactic
halos merge on roughly a dynamical time scale (White 1978;
Barnes 1984), the dissipated stellar components may possess
sufficient binding energy to withstand the impact and avoid
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merging for a Hubble time (White and Rees 1978). Recent
N-body simulations by Carlberg (1988) have shown that dissi-
pated systems formed within hierarchically merging halos can
remain distinct long after the halo components have merged.
Observationally, this must be true if we are to understand the
existence of compact groups such as those compiled by
Hickson (1982). This would then motivate us to take the
present galaxy density to equal the maximum density found at
any redshift.

With this prescription, the t-ratio model predicts a normal
galaxy density factors of 3 and 10 larger than observed in the
DEFW and BBKS normalizations, respectively. The peak in
the number density occurs at very low redshifts—z =1
(DEFW) and z =2 (BBKS). The number density in the v-
threshold models can be adjusted by varying the threshold
parameter vg,. Matching the peak density to observations then
requires vg, = 2.5 with the DEFW normalization and vg, = 3.0
with BBKS. The “epoch of galaxy formation,” as defined, for
example, by the range in redshift for which the number density
is greater than half the peak value, would then be z ~ 24
(DEFW) and z ~ 4-9 (BBKS).

Predictions for the global ratio of disk to spheroidal systems
are shown in Figure 6. The t-ratio model is in serious conflict
with observations: ellipticals are nearly always more abundant
than spirals; for example, at z = 2, E’s outnumber Sp’s by a
factor of 2. This is one of the major shortcomings of this model.
The situation would be made even worse if the cooling rate
were increased by metal enrichment, since this effectively
increases the dividing mass scale between E’s and Sp’s without

much affecting the high-mass (and high-temperature) upper
endpoint of the spirals, resulting in an even larger abundance
of spheroids. In the v-threshold models, one again has a degree
of freedom, the value of vg, to vary in order to match the
observed global abundance. This is achieved by using vy =
3.35(DEFW) and v, = 3.72 (BBKS).

The predicted mass functions for spiral and elliptical gal-
axies are shown in Figure 7 for snapshots taken at redshifts
z=717, 3, and 0. The t-ratio model predicts that spirals are
embedded in halos typically a factor of 5 more massive than
those of ellipticals. This goes against the observational fact that
the most luminous systems are preferentially elliptical,
although the model predictions could be fixed if the L/M
values of E galaxies were typically larger by about a factor of
10 than those of spirals.

In contrast, the mass functions for E’s and Sp’s in the v-
threshold models span roughly the same range in mass, with a
slight tendency for the most massive system to be elliptical. The
width of the distribution is controlled from below by the criti-
cal dwarf temperature T, and from above by the imposed
cooling condition. This width remains constant in time with
the more stringent cooling condition 7., < 74,, (model v})
because this condition occurs essentially along a line of con-
stant mass M ~ 3 x 10'! M . The observed width of the
spiral and elliptical luminosity functions, about 2 orders of
magnitude, is nearly reproduced with this cooling criterion in
the BBKS normalization, while the DEFW biasing produces
extremely narrow mass distributions. With more generous
cooling within a Hubble time, 7, < 74, the mass functions
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widen by an order of magnitude or more. The maximum pos-
sible increase is required for the DEFW disk systems; their
cooling and formation would have to continue to the present
epoch. On the other hand, the most massive BBKS systems
must be prevented from forming stars efficiently in order not to
produce a luminosity function significantly wider than 2
decades in L.

To summarize, the z-ratio model is unable to produce even
rough agreement with the observed mass functions and abun-
dances of disk and spheroidal systems. Ellipticals are predicted
to be more abundant and substantially less massive than disk
galaxies. The v-threshold model has two free parameters which
are set by the observed number density and relative global
abundance of E’s and Sp’s. With the added assumption of
similar L/M ratios for spirals and ellipticals, this model can
produce mass functions in good qualitative agreement with
observations.

d) Dwarfs

The predicted mass function for dwarfs is the same in both
models and is shown in Figure 8. Although observational
knowledge of the dwarf population is hindered by their intrin-
sic low luminosity and surface brightness, a limited compari-
son with dwarf properties is possible. One issue is the faint-end
slope a given in

n(M, z)d In M oc M* exp (—M)dM .
A value a ~ —2 is predicted by the models, steeper than the
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F1G. 8.—Mass function of halos which would produce dwarfs at three dif-
ferent redshifts. Line styles are for the same redshifts as in Fig. 7.
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density & between perturbations in the field and those embedded within 3.5 ¢
clusters on mass scales 10'# and 10'° M.

observed value o ~ —1.25. The steep predicted value is the
same as that seen by Frenk et al. (1988). There are two ways to
explain this discrepancy. One is to postulate that faint galaxy
counts have been significantly underestimated, as suggested by
Binggeli (1987). Another, perhaps more attractive alternative is
that dwarf L/M values are strongly mass-dependent (Dekel
and Silk 1986; Davis and Efstathiou 1988). The faint end of the
luminosity function is then dependent on the model for L/M.
For example, a power-law model

L/M oc M1 a7

can reconcile an observed faint-end slope a,,, with a theoreti-
cal prediction a, if

Oeh — Xobs

. (18)

q =
The numbers quoted above would imply g ~ 3, or L oc M*, a
fairly strong dependence. The models of Dekel and Silk predict
L oc M?. Note that one qualitative agreement of the model
with observations is the existence of an overlap in mass of
normal and dwarf galaxies.

V. “NATURAL” MORPHOLOGICAL BIASING IN CLUSTERS

The critical values vg, and v; were tuned in the v-threshold
models to agree with the observed global proportion of E and
Sp galaxies. In attempting to identify a physical mechanism
responsible for morphology in this model, recall that the criti-
cal values of v correspond to critical values of the overdensity

0o(M) = voo(M) . (19)

The overdensity d,(M) determines the virial properties of col-
lapsed structures (eq. [7]), and hence, presumably, the physics
of the star formation within them. To test the significance of
the values of dg(M) and d5,(M) defined by using the critical
value vg and vg, in equation (19), we can bias the galactic
population with long-wavelength density perturbations
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(Kaiser 1984) and ask whether the observed cluster population
abundances are reproduced with the same critical values of
0g(M) and dg,(M) inferred globally.

We consider a population of galactic-scale perturbations
6(M) which have been enhanced with a statistically indepen-
dent background overdensity d,;,;. Let us further associate the
biasing density with that expected from protoclusters of mass
M, and height v, allowing us to write dy;,; = v, 6(M ). Ignor-
ing coupling of the perturbations on the two different scales,
the galactic-scale perturbations will be normally distributed in
the variable

_ M)
" o(M)

O'(M cl)
—Va —0_ ( M) .

’

(20)

The degree of biasing characterized by the second term on the
right-hand side, ov(M) = v,[a(M /a(M)] is shown in Figure 9
for 3.5 o protoclusters of mass 10'* M and 10'® M, corre-
sponding roughly to the core and total masses of a typical rich
cluster.

The consequences of cluster biasing on the disk-to-spheroid
ratio are shown for the v! model in Figure 10. (Results for the v
model are similar, and the t-ratio model shows no effect.)
Because the general effect of biasing is to reduce the value of v
required for a given overdensity 6, the elliptical fraction in
clusters can be significantly enhanced over the global value.
The observed enhancement, from 10% E’s in the field to 20%
in clusters, is reproducible by the stronger biasing on the core
mass scale. This is in accord with the idea that morphology is
more closely linked to local conditions than to the larger scale

Vol. 341

cluster environment.

The shape of the elliptical and spiral mass functions are little
changed by the cluster bias, as shown in Figure 11. This again
is in agreement with the comparisons made by Binggeli (1987)
between LFs in the field, Virgo, and Coma for the different
morphological types. His conclusion was that the underlying
LFs for the Hubble types were independent of position, but
that the ratio among the types was modulated by the local
environment. The v-threshold model naturally accounts for
this behavior in terms of varying degrees of biasing expected in
different environments. Indeed, “ antibiasing” in a void would
serve to enhance the spiral fraction.

VI. SUMMARY AND DISCUSSION

A procedure for calculating mass functions for different mor-
phological types was presented and used to test existing ideas
for the origin of the major Hubble types. The procedure yields
a snapshot of the galaxy distribution at a given redshift by
combining three ingredients: (1) the Press-Schechter estimate
of the halo mass function; (2) simplified dynamics based on the
spherical top-hat prescription; and (3) appropriate fractions
based on physical criteria and a Gaussian distribution of over-
densities. A characteristic temperature T, = 10>* K divides
dwarfs from normal galaxies. This division produces a low-
mass cutoff in the mass functions of normal disk and spher-
oidal systems. The steep faint-end slope found for the mass
function of all galaxies can be reconciled with observations if
dwarf Luminosity is a strongly increasing function of mass,
L ~ M*.

Of the two models investigated to differentiate disk from

10 —

No Bias
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Mpps=10"" M,

] (vBus=3.5)
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FiG. 10.—Effects of biasing on the disk-to-spheroid ratio. With the critical overdensities 6 and &, defined by the global population results held fixed, the cluster

fraction of E galaxies can be enhanced by a factor ~2 as observed.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989ApJ...341...26E

T T D341 C"76ED

ITBOAD.

rt

No. 1, 1989 TESTING ORIGINS OF HUBBLE SEQUENCE 37
BBKS
Sp
AN AR LARRN R RRN RARN RN ERRRLARRN RRRRN RRRRS
b T ]
(’I) — — -
O - T ] UI
e — — Vit
= - N ]
o - T .
o) -8 — _ _]
5 i {PETTL AR\ SN AT e | AT AT M AT A
RN AR AR RN AR AN AR RARRY AR RARNS
5 F T .
- _2_ P —
= B 1 ]
= - T 1 @
4 I g v
a0 4_ T 7 t
@) L 1 _
— L £ _
-8 1 _]
a1 ITRSTA AEE R AN Vi EYEhu v | AR ATA M ARETA T
-2 -1 0 1 -2 -1 0 1
Log M;,

Fi1G. 11.—Mass functions at z = 7 for the unbiased population (thin line) and the population biased in 10'*M, clusters (heavy line). The shapes of the mass
functions vary little in going from the field to clusters in agreement with Binggeli’s (1987) observations.

spheroids, the physically motivated t-ratio model fails to
reproduce the low observed global fraction of E’s. It also pre-
dicts that disk systems form in halos typically 5 times more
massive than the halos of ellipticals. Further, the observed
narrow luminosity-velocity relations are not satisfied by the
galactic halos in this model. Although the latter two of these
maladies could be cured by suitably contrived L/M’s (Kaiser
1988), the model appears in very serious trouble with the over-
production of ellipticals. One could attempt to shrink the
number of ellipticals produced by simply reducing the area on
the n-T plane populated by ellipticals, either by pushing up the
critical temperature T, or by pushing down the critical cooling
ratio t0 T./Tayn = @, Where Q < 1. However, reducing the
total number of ellipticals in this way would be done at the
expense of creating an extremely narrow E mass function only
about a factor of 2 wide in mass. This again would make the
model hard to reconcile with observations.

The empirically motivated v-threshold model, which was
designed to reproduce the L-v relations, had two free param-
eters which were tuned to produce a peak galactic number
density and global abundance ratio equal to those presently
observed. The resulting threshold for bright galaxy formation,
v ~ 2.5-3, is in good agreement with that required to reconcile
an Q = 1 CDM universe with observations determined by sta-
tistics of peaks (Bardeen et al. 1986) and N-body simulations
(Davis et al. 1985). The model can produce mass functions for
disk and spheroids which span the same range of about two
decades in mass, in good qualitative agreement with observa-
tions. It also yields a “natural” morphological bias, in the
sense that the elliptical fraction in high-density regions is
enhanced.

For the v-threshold model, the “epoch of galaxy formation,”
as determined by the era during which the number density of
halos capable of producing normal galaxies is above half its

peak value, occurs at redshifts z ~ 4-9 for the BBKS normal-
ization and z ~ 24 for the DEFW level of bias. The DEFW
model is still consistent with redshift 4 quasars (Efstathiou and
Rees 1988), but detection of significant numbers of higher red-
shift galaxies could pose problems for this normalization. The
results presented here are incapable of discriminating between
the normalizations, essentially because of the uncertainty in
what cooling critiera to apply to normal galaxies. The mass
functions in the v-threshold model with the DEFW bias and
cooling allowed on a Hubble time look rather similar to those
in the BBKS bias with cooling on a dynamical time (Fig. 7).

Does the v-threshold model conflict with the physically rea-
sonable idea that disks form on time scales long compared
with a dynamical time? Perhaps not, as long as the star forma-
tion rate is not directly linked to the rate at which gas can cool.
Breaking this link is not implausible. Several lines of argument
point to enhanced high-mass star formation in the first gener-
ations of stars (Carr, Bond, and Arnett 1984). These early gen-
erations could reheat much of the cooled galactic gas through
UV emission and supernovae, and also could pollute the first
low-mass (Population II) stars with metals, possibly to a level
Z ~0.25 Z, (Cayrel 1986). The newly reheated and enriched
envelope could then cool quasi-statically onto a disk once the
halo potential had settled down. This heating process would
move the baryonic component of galaxies to positions on the
n-T plane different from that expected from shock-heating via
gravitational collapse, so the simple line where 7., = 74y, in
Figure 2 need no longer apply. In this way, spiral disks would
still be able to form over many halo dynamical times even
though their halos initially landed in regions of the n-T plane
where 7.0 < Tayn- This line of argument would effectively
invalidate the t-ratio model, since it is predicated on a direct
link between the cooling and star formation rates.

What physical mechanism underlies the v-threshold model?
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It is interesting to note that lines of constant v correspond
closely to lines of constant pressure,

P = nT ~ S*M)M?? ~ v*, 1)

since the CDM spectrum has &(M)oc vM~'/® on galactic
scales. Thus, the critical values of v and v, define critical virial
pressures Py and Pg,. But why should pressure regulate star
formation? Because we lack fundamental theories of hierarchi-
cal fragmentation and star formation (Scalo 1988), an unam-
biguous answer is impossible to give at this time. However,
Figure 12 gives an indication of the possible importance of
pressure through two interesting coincidences. Here the virial
pressure for 1 ¢, 2 0, and 3 ¢ collapsing objects is shown as a
function of mass using the BBKS normalization. The horizon-
tal line equals the observed thermal pressure in the cool com-
ponent of the interstellar medium (ISM), P ~ 4000 K cm™3
(Jenkins, Jura, and Loewenstein 1983; Bohlin, Savage, and
Drake 1978; Cowie 1987). The first coincidence is that the peak
in virial pressure for objects collapsing in the CDM model
occurs at galactic mass scales. If a pressure-sensitive trigger is
involved in setting off efficient star formation, then that trigger
is more likely to be reached by collapsing objects with
M ~ 10!1-10'2 M, than by higher or lower mass objects. The
second coincidence is that the cool ISM pressure, which pre-
sumably is in balance with the pressure generated by super-
nova heat input (McKee and Ostriker 1977), is remarkably
similar to the virial pressure in a collapsing 2 o object on
galactic mass scales (3 ¢ for the DEFW bias). Perhaps this
empirical evidence is telling us that concentrated star formation
(=bright galaxy formation) occurs efficiently only in
environments pressurized at or above a critical level?

Unfortunately, this argument may be misleading, since con-
stant v does not uniquely imply constant pressure. For
example, mass surface density scales as the square root of the
pressure:

¥ = M/R? ~ S¥(M)M'? ~ 2, 22)

However, since P oc v*, the difference in virial pressure between
a1 and a 3 o collapsed object is nearly 2 orders of magnitude.
This may be sufficient to explain why 3 ¢ objects form galaxies
while 1 ¢ objects do not. Still, the more subtle distinction
between disks and spheroids is only a factor of (v/vsp)* =~ 3 in
pressure. Whether or not star formation is sufficiently sensitive
to support this finer morphological division remains to be seen.
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pressure merely coincidental?

With the answers buried deep within multiphase models of the
ISM with any number of complex nonlinear processes at work
(turbulence, magnetic fields, cloud coagulation and fragmenta-

_ tion, shock-heating, molecular and grain cooling, and so on),a

true physical foundation for this model is almost certain to be
slow in coming.
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APPENDIX

DETAILS OF THE TOP-HAT DYNAMICAL MODEL

) ansider at some initial redshift z; a spherically symmetric perturbation characterized by {r), where §; is the mean overdensity
interior to a radius r. To avoid shell crossing, we assume that §(r) is monotonic decreasing in r. Make the transformation to a
Lagrangian coordinate M using the unperturbed mass shell coordinates:

3M

1/3
) — _ V- 1Af13p =213
r,(M) [47‘[?(20] 150(1 + Zl) M12 h50 Mpc N (Al)
where M, = M/10'? M. Given 5{(r) - 6{M), the turnaround redshift of a given mass shell is (Peebles 1980, eq. [19.53])
1 M) &M
+ zturn( ) — l( ) (A2)

1+z

7106
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Assuming that, after turnaround, shells collapse by a factor of 2 and then are halted either by shock heating or violent relaxation
(Gunn 1977; Bertschinger 1983), we obtain the collapse redshift and virial radius of a shell M:

do(M
1 2M) = 27201 4 2y (00)] = 2D (a3
rvi(M) = 0.4565 (M)M17h3s Mpc, (A4)
where do(M) = §(M)(1 + z,) is the initial overdensity propagated to the present using linear theory.
The lining up of shells according to r,; (M) allows calculation of the local mass density
dM dr (M) ]t
(M) = = | 42— .
pold = s = | e e
Define f(M) as a measure of the profile slope:
drvir(M ) Tyir 3M dé Tvir
= - — | = :
M M ( 6 dM ) 3IM D) (A5)
Plugging this into the above relation with equation (A4) gives
PuidM) = 37.3p, 53(M)B~ (M), (A6)

where p, is the present cosmological background density.

The virial velocity and temperature are found from assuming energy conservation for each shell. Although the zero point of the
total energy is not well defined, the monotonic decreasing condition on d,(M) guarantees no shell crossing, and so an energy integral
exists for each shell

1, GM  GM 1 GM GM
~ 02 (M) — = = - 2 (M) =
2 vVlI'( ) rvir(M) rtum(M) 2 rvir(M) ’ UVII'( ) rvir(M)

The virial temperature can be found by equating specific energies 3nkT ;, = p, v, and using n = p,/(um,) with u = 0.6 to give

= 3(56.4 km s~ )2 So(M)M33h2}> | (A7)

T,.(M) = 2.31 x 10° §,(M)M23h23 K . (A8)
We are now in a position to define the cooling time on a given shell. The pressure drop due to radiative cooling is controlled by

3
dGKT) _

L= mAT),

where ny is the number density of hydrogen ions. For a fully ionized primordial (X = 0.76, Y = 0.24) H-He mixture, ny/n ~ 0.45.
This leads to the definition of the cooling time:

L BT
ol (045200 A(T)’

where A(T) = A(T)/(um,) ~ 10**A(T). Using T = T,,(M) and p, = Q, p,;(M) gives the cooling time for a collapsed shell:
Teoat( M) = 43.1Q; 1 35 (MM BMA(T,;) " *hse”® Gyr . (A9)
Define the dynamical time to be the virial crossing time for a shell:

Tayn(M) = 2 25 = 921 55 3%(M)h3¢ Gyr . (A10)

vir

The interesting ratios are those of the cooling to the dynamical time,

M
TenlMD _ 4 68007t 55 EHMMIFAOR(T,)  hsd® (A1)
Tdyn(M )
and the cooling to present Hubble time,
M
—tw:( ) 32405t 65 (MM BOOR(T,) hss” (A12)
H
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Finally, for large perturbations Compton cooling will also be important. The relevant ratio is

tdyn(M )

TeomM) _ 19065 52(M)hs .

(A13)

so the Compton cooling time scale will be shorter than the dynamical time for collapse redshifts z,;, 2 10.
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