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ABSTRACT

ON INDUCING A NON-TRIVIAL, PARSIMONIOUS, HIERARCHICAL GRAMMAR
FOR A GIVEN SAMPLE OF SENTENCES

by
John Reed Koza

Co-Chairpersons: Bruce Arden
John Holland

The thesis presents an algorithm which, for a given sample of
sentences, induces a grammar that (1) can generate the given sample
of sentences, (2) is non-trivial in the sense that it does not merely
enumerate the sentences Of the sample, (3) is hierarchical in the sense
that the sentences of the sample are derived through relatively long
sequences of sentential forms, (4) is, at the same time, parsimonious
in the sense that the grammar contains a relatively small number of
rules of production, (5) contains recursive rules of production under
appropriate specified conditionms, and (6) contains disjunctive rules
of production (and generalizations) under appropriate specified condi-
tions.

The thesis formally defines the notion of a regularity in a sample
of sentences, presents a combinatorial algorithm for searching for regu-
larities, and argues that searching for local regularities is an
appropriate basis for a grammar discovery algorithm.

The Grammar Discovery Algorithm presented involves (1) a search
of the given sample of sentences for local regularities—this search
being an exhaustive process within a limited range, (2) the consideration
non-exhaustively of various possible transformations of the given sample
via grammatical rules of production that are developed from the local
regularities, (3) a selection process among such transformations,

and (4) the reapplication of theése steps until the sample is fully



resolved and a grammar induced.

The thesis contains and describes a computer program implementing
the Grammar Discovery Algorithm.

While the emphasis is on grammar discovery, there is also dis-
cussion on the equivalent problem of inducing axioms and rules of
inference in a formal system.

The Grammar Discovery Algorithm is justified in terms of its
internal consistency, its satisfying of various heuristic criteria and

by examples.
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I. INTRODUCTION

A. STATEMENT OF THE PROBLEM

The processes of deduction and induction are fundamental in
mathematics and the axiomatized sciences. These same two processes
also appear in the study of generative grammars.

p Yy
is the set of terminal symbols, where VN is

We define a general derivation system G-« R, A> to

be a system in which VT
the set of non-terminal symbols, where R is a set of rules, and where
A is the starting set. The starting set contain§ strings of terminal
and non-terminal symbols. The rules are pairs of symbol strings.
The first string, called the antecedent (or simply the left side),
is a non-empty string of terminal symbols and/or non-terminal symbols.
The second string of the pair, called the consequent (or simply the
right side), is a string of terminal symbols and/or non-terminal symbols,
or is empty.

A derivation system generates sentences by starting with any one
of the strings in the starting set, and by applying the rules, one
after the other. Each application of a rule consists of substituting
the consequent sub-string for the antecedent sub-string. Each-symbol
string so produced is, in general, a string of terminal symbols and
non-terminal symbols, and is called a sentential form. A sentential
form consisting only of terminal symbols is called a sentence.

A generative grammar is a derivation system in which the starting
set A consists only of a single disfinguished non-terminal of length

one. We customarily call this symbol "S'", the starting symbol, and we



call the rules of a grammar rules of production.
A formal system consists of two derivation systems. First,
there is a set VT of symbols of discourse about the subject at hand,

and a set of formation rules R_ for the formation of well-formed sentences

F

over VT' This derivation system is a grammar and has a starting

symbol S and whatever non-terminal symbols are needed to express the

rules RF' The second derivation system has a subset A of the well-formed

sentences of the first derivation system as its starting set. This

subset consists of the accepted truths of the system, called axioms.

There is also a set of truth-preserving rules RI’ called rules of

inference, for transforming one true, well-formed sentence into another.

By recursively applying the axioms and the rules of inference, one

derives the true sentences YT of the formal system, called theorems.

The non-terminal symbol set of this second derivation system is

typically the same as its terminal symbol set. Thus, any sentential

form of this second derivation system is a sentence and also a theorem.
The process of generating sentences in a derivation system is

called derivation. The process of generating theorems in a formal

system is called deduction. In both cases, VT’ VN’

Typically, these two processes present themselves in the setting of

R, and A are given.

finding the derivation, if any, that can generate a particular given
sentence. For grammars, this problem is the parsing problem. For

formal systems, it is well to remember that all theorem proving is

merely a parsing problem. Parsing and theorem-proving algorithms

are either bottom-up in the sense that they start with the given sentences
and consider possible sentential forms from which these sentences can

be immediately derived, or top-down in the sense that the derivation

starts with the starting set A.



Induction is the inverse process for deduction. In induction,
one begins with an observed, limited set Y of the true sentences YT.
The Copernican doing induction tries to discover a parsimonious set of

axioms A and a set of rules of inference R, which together could have

I
generated the given set Y.
Grammar discovery is the inverse process for derivation in a

grammar. In the grammar discovery problem, one starts with a set

terminal symbols and a set Y of sentences over this V..

VT of C T

1
Y may be presented, for example, as a concatenation of the individual
sentences, with or without initial punctuation between the sentences
to identify the sentences.

The problem we discuss»herein is the problem of finding a

non-trivial, parsimonious, hierarchical grammar 9?-: <VT, V.., R, "S'">

N’
which could have generated the given sentences Y. This problem réquires
finding a set of rules R of production and a suitable set of non-terminal
symbols VN.

Grammar discovery and induction are necessarily bottom-up processes.

In what follows, the main emphasis will be on the grammar discovery
problem, since this is the underlying problem common with the induction
problem for formal systems.

When we say that we are seeking a non- trivial grammar, we are
referring to any grammar except a grammar which merely éatalogs the
sentences of the sample Y—~—an example of which is the grammar in which
the starting symbol "S" may be rewritten as the disjunction of the
observed sentences of Y. Note that the adjective '"non-trivial" applies

to this well-defined, definite enumerative situation. When we say

that we are seeking a hierarchical grammar, we are referring to a



grammar which, as a minimum, is»non-trivial, but which has the additional
quality of generating its sentences through relatively long sequences
of sentential forms. Note that the adjectives "hierarchical" is less
precise and more connotative than the adjective 'non-trivial'. The
connotation is that each small phrase and substructure of a sentence
is generated by a separate application of a rule of production——in con-
trast to a situation in which large phrases are generated by one
application of one rule. When we say that we are seeking a parsimonious
grammar, we are referring to a grammar with a relatively small number
of rules of production. Note that the adjective 'parsimonious" is also
a connotative word. The connotation is that a few rules of production
are each applied many times in the generation of sentences—in contrast
to a situation in which many rules are each used only‘in a few specific
cases. A hierarchical grammar without recursions tends to be unparsimonious. A
grammar may be parsimonious without being hierarchical—for example, if
it is trivial. A grammar may be hierarchical without being parsimonious,
as, for example, a grammar which fails to employ recursions, or employs
superfluous non-terminal symbols or superfluous rules of production.

Note that we state the grammar discovery problem as a problem
of finding a parsimonious and a hierarchical grammar, but not
necessarily the most parsimonious and most hierarchical grammar—which
are qualities that are not defined here. Similarly, for lack of
definition, we do not require the finding of a necessarily interesting
grammar, nor a significant grammar, nor a linguist's grammar, nor
a grammar conforming to some known or supposed physiological or
psychological model, nor the ''best" grammar.

The grammar discovery problem, of course, admits of several



variations, and some of these variations have appeared within the
very limited literature on grammar discoﬁery and induction. For
example, the machine alleging to solve the grammar discovery problem
may receive more than a fixed sample of sentences. The machine may,
for example, receive, or ask to receive, answers to certain questions
in order to assist it in solving the problem. These questions may
take the form of asking whether certain new sentences which it constructs
are in the language produced by the grammar which is the desired
solution to the problem. Or, non-sentences identified as such may
be introduced with the sample sentences. Or, the machine may ask for
a larger sample of sentences or identified non-sentences if it needs
them (Gold, 1967). Then again, the machine may be assumed to be receiving
a continuing, infinite input of sample sentences (Goodall, 1962).
Another possibility is that the machine can receive, or ask to receive,
certain cues, such as the number (or an upper bound on the number)
or internal states which an automaton of a certain type would have to
have in order to accept the language generated by the grammar which
is the solution to the problem (Pao, 1969). Or, the machine may be
told that the given sample contains all the sentences of the language
(as in Gold's "text''method of presentation) or that the sample contains
sentences whose production requires the use of all the transitions
in a particular automaton (Pao, 1969). Or, the sample may be assumed
to be structured in various ways——for example, the sample may be assumed
to contain (or tend to contain) all of the sentences of the language
whose length is not longer than the longest sentence of the sample
(Feldman, 1969).

We deal here, however, with what seems to be the most basic and

general problem—the kind of grammar discovery problem one would



encounter in deciphering an unknown message from outer space, or in
decoding an ancient language from a given scroll, or in finding the
substructures in a coded message-~that is: given a fixed, finite
sample of sentences and no other information of any kind (that is,
no other information about the source of the same; no information
about the type of grammar producing the sentences; no information
about the statistical properties or completeness of the sample; no
non-sentences; no ‘cues ; and no information in response to queries
or requests) find a non-trivial, hierarchical, parsimonious grammar

that could have generated the sentences of the sample.



B. REVIEW OF PREVIOUS WORK IN THE FIELD

The literature in the field of induction is very small.

Solomonoff (1964) treats the problem as a special case of
sequence extrapolation using enumerative methods which are not readily
extendable, and which are highly dependent on such artifacts as
order of sentences within the sample.

Gold (1967) proposed a theory of language learning in which the
learner receives sequences of correct sentences of an unknown
language and successively guesses grammars of specified types.

If the guessing converges to one correct grammar, the language

has been 'identified in the limit.'" Gold proves several decidability
results concerning language identifiability in the limit, and pro-
poses several categorizétions of language learning models, and methods
of presenting information to such learning models.

Feldman (1969) proposes various concepts of grammatical com-
plexity and proposes approaches to inducing a least complex grammar
for a given sample. Feldman (1969) includes a heuristic method of
merging symbols of the alphabet to achieve recursive 'rules from a
finite sample.

Pao (1969) deals with the induction of finite state languages
and "delimited" languages--a subset of context-free languages. Pao
specifies conditions on the sample to guarantee a solution; and then,
given certain cues, the algorithm constructs an automaton, evaluates
it, and modifies it until a solution is attained.

Caianello (1970) discusses the Procustes Algorithm for feature
extraction and form analysis of language, and uses semigroup homo-
morphisms similar to what are called "transformations'" or 'recodings"

herein.



In a highly suggestive, short paper, Goodall (1962) discusses
the problem of induction from the point of view of logical types,
and the Godel Incompleteness Theorem. Goodall develops a probabil-
istic automaton for a given ongoing infinite sequence of input
symbols. In this paper, Goodall suggests, without specifying, the
idea of recoding the given sample into a new 'higher level" sample
using "resolving transformations'" that optimize the conflicting qual-
ities of "entropy" (information) and '"parsimony.'" This thesis
started as an attempt to attribute some consistent and reasonable
meaning to these suggestive terms and other petaphorical observations
in the Goodall paper, but no.claim is made that the definitions and
constructions herein of these same terms in any way correspond:to that
intended by Goodall.

In addition to work in the immediate field of induction, there
is, of course, a large literature in the fields of pattern recog-
nition (e.g. Uhr); cryptography (é.g. Smith and Gaines); picture
analysis; sequence forecasting and correlation, including continuous

functions are numerical sequences.



C. PRINCIPAL CLAIMS OF THIS THESIS

In this thesis, we formalize the notion of a regularity in
a sample of sentences, present a combinatorial algorithm for search-
ing for regularities, and argue that searching for local regular-
ities is a suitable beginning for a grammar discovery algorithme
an approach not found in the literature.

We then present the Grammar Discovery Algorithm which, for a
given sample of sentences, induces a grammar that (1) can generate
the given sample, (2) is non-trivial in the sense that it does
not merely enumerate the sentences of the sample, (3) is hierarch-
ical in the sense that the sentences of the sample are derived
through relatively long sequences of sentential forms, (4) is, at
the same time, parsimonious, in the sense that the grammar contains
a relatively small number of rules of production, (5) contains
recursive rules of production under appropriate specified conditions,
and (6) contains disjunctive rules of production (and generalizations)
under appropriate specified conditions. We do not claim that the
demonstratably‘non—trivial, hierarchical, and parsimonious grammar
that we seek and find here is aﬁ interesting grammar, i$ a sig-
nificant grammar (in the sense, perhaps, that it conforms to some
known or supposed physiological or psychological model),is a "lin-
giuist's" grammar, or is the 'best" grammar. Rather, we only claim
that (1) the grammars we seek and find here do possess the above
three qualities and that these qualities are reasonable objectives
for a grammar discovery algorithm; (2) the grammar discovery algorithm
herein satisfies certain heuristic criteria; and (3) the Algorithm
handles a variety of interesting examples that indicate it is not

inherently limited in its capacity.
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D. OVERVIEW OF THIS THESIS

Part II of this thesis contains a description of the Grammar
Discovery Algorithm,

In II. A., we discuss the method of presenting the sample of
sentences of the Grammar Discovery Algorithm. The Grammar Dis-
covery Algorithm begins with a sample of sentences Y produced by an
v

unknown grammar €9=:<v R, "S">. The sentences are presented

T> 'N’
as a concatenation of sentences, with or without initial punctuation
(for example, periods) between the sentences to identify the sentences.
The terminal alphabet VT is also given--or can be trivially inferred
from the sample. The goal is to find a parsimonious, non-trivial,
hierarchical grammar for the given sample of sentences~that is, to

find a set R of rules of production, and whatever non-terminal al-

are needed to write the rulies R. One of the

phabet symbols VN

non-terminal symbols in VN will be designated as the starting symbol
("S") of the grammar.

The Grammar Discovery Algorithm is divided into three parts:
the Search Phase, the Recoding Phase, and the Selection Phase.

In II. B., we describe the first main phase of the Grammar
Discovery Algorithme-namely, the Search Phase. In II. B. 1 through
II. B. 6, we formally develop and define the idea of a regularity
in a sample.

Informally, a "regularity'" exists whenever the occurrence
of certain symbols somewhere in a sentenc in the sample implies that
certain other symbols occur elsewhere in the sentence with a conditional
probability greater than mere chance.

In the Search Phase, one is interested in finding regularities

in the given sample of sentences. The search is for Zocal, not
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global, regularities. It is not obvious that any grammar discovery
algorithm should begin with a search for regularities, but an argu-
ment will be given to justify this search (II. B. 8). The regular-
ities will also be categorized by type in a manner suggestive of

the various Chomsky types of grammars (e.g. -context-sensitive unre-
stricted rewrite, etc). (II. B. 7) The grammatical types of the
rules production that ultimately will be induced will parallel the
types assigned to the regularities.

We present the algorithm of the Search Phase in II. B. 9, and
give examples (II. B. 10).

The Search Phase is an exhaustive, combinatorial process—
within the limits imposed by the principle of searching only for
local regularities.

The Search Phase ends with the generation of various tables of
statistics about the various regularities discovered. -

The secpnd main phase of the Grammar Discovery Algorithm is the
Recoding Phase. In the Recoding Phase, the local regularities found
in the Search Phase are used to transform (recode) the given sample
of sentences into a new set of sentences. This recoding is specified
by (1) a set of grammatical rules of production, which spefify which
substitutions are to be made, and by (2) a Recoding Proceéure, which
specifies when and where these substitutions are to be made. The
grammatical rules of production are developed from the local regulari-
ties discovered in the Search Phase. These rules ultimately become
the rules of production of the inducéd grammar. The Recoding Pro-
cedure is essentially a punctuating process that partitions the given
sample into appropriate phrases and substructures. The Recoding Pro-

cedure operates so as to minimize the introduction of rules of pro-
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duction into the induced grammar. For example, before a new rule of
production is introduced into the induced grammar, the algorithm
considers the possibility of instead introducing one recursive rule
(to replace one existing rule and the proposed new rules)as well

as the possibility of re-using the new rule alone or in conjunction
with other existing rules. The Recoding Phase is a non-exhaustive
process, in contrast to the Search Phase.

In II. C., we describe this Recoding Phase. We define the no-
tion of a transformation (recoding) in II. C. 2. We show how to
develop grammatical rules of production from local regularities in
II. C. 3, and show the connection between the grammatical type of
the rule and the mask of the local regularity from which the rule
was developed. In II. C. 4, we describe the Recoding Procedure—
which, with the rules of production, defines the transformation
(recoding).

The new set of sentences resulting from a recoding contains most
of the information and structure of the given sample of sentences.
Because structural regularities found in the original sample are
replaced with short markers, what were originally global regulari-
ties in the original sample tend to become near-by local regularities
in the new set of sentences. These short markers ultimately become
the non-terminal symbols of the induced grammar.

The original given sample of sentences is regarded as the set of sent-
ences of the first level in the Grammar Discovery Algorithm. These
sentences are composed entirely of terminal symbols. The set of
sentences resulting from the recoding then becomes the sentences of
the next level of the process. These sentences contain non-terminal
symbols as well. These sentences will now be searched for their

local regularities, and another recoding performed. The alternate
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application of first the Search Phase, and then the Recoding Phase
is what produces the non-trivial, hierarchical quality of the grammar
that is developed.

The third main phase of the Grammar Discovery Algorithm is the
Selection Phase. After the Search Phase is completed, several
(but not all) possible recodings of the sentences are considered.
The Selection Phase is a non-exhaustive process that oversees these
several trial recodings and selects one recoding which is then
actually applied to the sample to produce one new set of sentences.
This selection is made on the basis of three criteria: the entropy,
parsimony, and recursive parsimony of the transformation, the
parsimonious quality of the induced graﬁmar derives from this se-
lection from among the various possible recodings. Upon completion
of this actual recoding, the 3 main phases are repeated, using the
new set of sentences, instead of the original sample. The processes
continue until the conditions of the Termination Procedure are
fulfilled, thus ending the grammar discovery algorithm.

The result is a set of rules of production R, and a non-terminal
alphabet VN with which to express them, and a starting symbol "'S'".
Together with the given terminal alphabet V., these elements will

constitute a grammar g? =<V, VN’ ""S'", R> that could have produced

T?

the given sample of sentences.
In II. D., we describe this Selection Phase. We define the

entropy, parsimony, and recursive parsimony of a transformation in

ITI. D. 2. We define the notion of resolving transformation in II. D. 4.

We graph- the conditional probabilities of the regularities of the

transformation in II. D. 3. And, in II. D. 5, we describe the pro-

cess of making several trial recodings (each parameterized by the
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length of the longest regularity used), and the algorithm for select-
ing the actual recoding.

In II.E., we describe the process of inducing recursions from
a finite sample of sentences. In II.E.l. we first discuss the motiva-
tion for inducing recursions—namely, the ability of the induced grammar
to generate an infinity of sentences. Without recursions, there can
only be a finite number of sentences generated by a grammar. We define
recursions in II.E.2, and discuss different possible approaches to
inducing recursions in II.E.3. The different approaches can be divided
according to whether they operate on the sentences of the sample or on
the rules of production of the induced grammar. In II.E.4, we present
the sentence oriented method of inducing recursions. This method has
limited application. Finally, in II.E.5, we discuss the rule-oriented
method of inducing recursions.

In II.F., we discuss the related problems of inducing generali-
zatiops and inducing disjunctions. The discussion parallels the dis-
cussion of recursions. In II.F.1, we present the motivation for induc-
ing generalized rules when the sample is a formal system. In II.F.2,
we present a combinatorial rule-oriented method for inducing generali-
zations. Then, in II.F.3, we turn to disjunctions. We discuss the moti-
vation for inducing disjunctive (non-deterministic) rules of production
in grammar induction—namely, the ability of the induced grammar to
generate a variety of essentially different sentence types. Without
disjunctions, there can only be essentially one sentence type generated
by the grammar. In II.F.4, we present a sentence-oriented method for
inducing disjunctions that is based on finding ensembles of substitu-
tion instances that have maximal or near-maximal entropy. We conclude

this section with a discussion of the similarity of the problem of



inducing generalizations and inducing disjunctions.

In II.G. we discuss the Termination Procedure and Convergence
of the Algorithm.

In II.H. we discuss the heuristic considerations for choosing
the upper limits on lengths of regularities to be searched for in the
Search Phase.

In II.I, we discuss the various parameters of the Recoding Proce-
dure.

In II.J., we elaborate on the idea that the Grammar Discovery Al-
gorithm presented here for linear sequences of symbols is applicable
to a broad variety of induction and pattern recognition problems pre-
sented in different formats. This section also serves to
extend the definitions and concepts of the Grammar Discovery Algorithm
by providing illustrations from a simple two-dimensional pattern recog-
nition problem.

In II.K, we present a variety of examples of the Algorithm.

Throughout part II, we point out how the basic features of the
Grammar Discovery Algorithme~namely, its Search Phase involving local
regularities, the Recoding Phase, and the Selection Phasee=work to
produce a non-trivial, hierarchical, and parsimonious induced grammar.

In Part III, we discuss the self-punctuating nature of the Grammar
Discovery Algorithm. In II.B.2, we define the notion of extending a
regularity, of a regularity being preserved under extention, and of a
maximal regularity (III.B.2). In III.B.4, we argue that a maximal regu-
larity will usually not be missed or lost by an unfortuitous choice of
limits on the length of regularity in the Search Phase.

In III.C., we argue that the choice of parameters in the Recoding
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Phase and the combinatorial incompleteness of the Recoding Phase
does not usually cause the Algorithm to miss maximal regularities in
the sample~unless it finds equally desireable maximal regularities.
In III.D., we make the observation (quite contrary to intuition)
that the presence or absence of initial punctuation between the indivi-
dual sentences of a sample does not qualitatively or even qu nti-
tatively (combinatorially) complicate grammar induction.

In Part IV, we discuss several additional features of the
Grammar Discovery Algorithm, including ternary masks and ''don't care"
conditions (IV.A); alphabet-enlarging versus the alternative (Huffman)
type recodings (IV.V); recodings with noise in the sample and what noise
represents (IV.C); and the generation of contest-free rules of produc-
tion by an algorithm which appears to be inherently context-sensitive
(Iv.D).

In Part V, we discuss the justification for the Algorithm.

In the appendices, we describe the input to the Fortran IV com-
puter program implementing the Grammar Discovery Algorithm (Appendix
A); we exhibit the program in Appendix B; and we present additional

examples in Appendic C.



II. DESCRIPTION OF THE GRAMMAR DISCOVERY ALGORITHM

A. PRESENTATION OF THE SAMPLE

Let Vo, be a set of C1” symbols called the terminal alphabet.

The Grammar Discovery Algorithm is said to operate in one of
two modes depending on whether initial punctuation is present in the
sample. We say that the Grammar Discovery Algorithm is operating
in the first mode if there is no initial punctuation present in the
sample—that is, the sample Y consists of one long sequence of terminal
symbols

Y = Y(1), Y(2), ... , Y(O*F

in which the "sentences' of the sample are concatenated together.

We say that the Grammar Discovery Algorithm is operating in
the second mode*** if initial punctuation is present between the
sentences of the sample. This initial punctuation,bif present, is
conventionally the period. In this mode, the sample appears as a
string of symbols (a sentence) followed by a period, another string
of symbols (another sentence), ahother period, etc.

Thus, the sample is a sequence of symbols over the terminal

alphabet, with or without initial punctuation between the individual

*Mathematical variables which are capitalized herein refer to variables
that appear in the computer program implementing the Grammar Discovery
Algorithm,

**Mathematical vectors which appear in the computer program implementing
the Grammar Discovery Algorithm are written herein in the paren-
thesized style common in computer languages.

***The variable MODE in the computer program specifies whether the
Grammar Discovery Algorithm is operating in the first mode or
in the second mode.

17
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sentences. The sample consists of only this symbol sequence. No
additional information of any kind is given. No assumptions as

to the statistical properties or completeness of any other aspect
of this sample are made. Note that this method of information
presentation is neither Gold's '"text' method (in which the sample is
presumed to contain every sentence of the language!) nor Gold's
"informant" method (in which non-sentences appear) (Gold, 1967).

The presentation of the sample Y as a sequence of symbols, rather
than as a square, rectangle, tree, graph, or other structure or raster
containing symbols conforms to the predisposition in the study of grammars
of natural and artificial languages and in the study of formal systems
to consider linear sequences of symbols. However, virtually nothing
in what follows is actually dependent on this linear method of
presentation. Thus, pattern recognition problems where the sample
consists of other structures or rasters of symbols are equally amenable

to the methods described herein.
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B. THE SEARCH PHASE--FINDING REGULARITIES IN A SAMPLE OF SENTENCES

1. INTRODUCTION TO THE SEARCH PHASE

The first main phase of the Grammar Discovery Algorithm is the
Search Phase.

In the Search Phase, we search for local regularities in the given
sample of sentences. Informally, a 'regularity'" exists whenever the
occurence of certain symbols somewhere in a sentence in the sample
implies that certain other symbols occur elsewhere in the sentence
with a conditional probability greater than mere chance.

In this section, we proceed to define formally the notion of a
cylinder set in a sample; to generalize this concept using the idea
of a mask; to categorize these masks by grammatical type; to define
formally the notion of context-sub-sequence, the predicted-sub-sequence,
and the domain sequence; and to formally define and illustrate the
idea of a regularity in a sample. We then argue that if a grammar
discovery algorithm is to begin with a search for regularities, the
length of those regularities must be small—that is, we should only
search for local regularities. We present the algofithm of the Search
Phase.

The Search Phase is an exhaustive, combinatorial process--within
the limited range established by the principle of searéhing only for

local regularities.
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2. CYLINDER SETS IN A SAMPLE

Let V be a set of C symbols, 815 85 +eey @ Call V the

Cn

alphabet. A sentence over V is a sequence
S=Y Yy e Yy

where each Yi» 1<i<€n, is in V. Our interest here is in-finite sen-

tences, although most of the statements we make would apply equally

to infinite sentences.

Let Y be a given sample of sentences. In the terminology of
automata theory and information theory (Khinchin, 1956), each sentence
in the set of ali possible sentences over V, is an elementary event
of some space of events. Each subset of Y (and Y itself) then is an
event. We are interested in a particular kind of event—the cylinder
set.

An index sequence

Z= (ty, ty evn, t.)
is a sequence of different non-zero positive integers. An qllowable
index sequence for a given set Y of sentences is an index sequence in
which no integer is greater than the length of the shortest sentence in
Y. Two index sequences are disjoint if they contain no integers in
common. The cardinality of an index sequence X, denoted |Z|, is the
number of integers in Z.

A cylinder set g, or a cylinder, for a given sample Y of sentences

is the subset of all sentences in Y such that

for all i =1, ..., h, and where each a, € V, and where the sequence

(t is an allowable index sequence for the set Y. & may, of course,

i)t=1
turn out to be empty. Note that the cylinder set £ is defined in

terms of 3 parameters: (1) the sample Y of sentences, (2) the allow-
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able index sequence Z, and (3) a sequence of h ai's from the alphabet V.
Consider the cylinder set £ defined for a sémple Y of
sentences, and index sequence Z = (ti)?=1 , and h a's from the alphabet
V. Let W= (wJ.)?=1 be an index sequence disjoint from Z. Let o be
the cylinder set defined over the cylinder set £ (which is a subset
of the sample Y of sentences), an index sequence W, and g a's from V.
A positive regularity exists in a sample Y of sentences if, for some
non-empty cylinder set g defined as above, and for some cylinder set
o defined as above, then the conditional probability
o] 1
—_—
L
We denote the quantity 1/Cg by e. Note that this quantity is the
probability associated with a "pure chance" event—that is, it is the
probability of occurence of particular string over C symbols of length
g if each of the strings occurs equiprobably.

It will be customary herein to number the cylinder sets, such
as ¢ and o, so that we will then be able to index the conditional
probabilities (and thereby the positive regularities) with two numerical
indices and refer to them as Pij’ where i is the index number assigned
to cylinder set &, and j is the index number assigned to o.

The h positions of the index sequence Z constitute the context
part of the positive regularity; and the g positions of the index
sequence W constitute the predicted part of the positive regularity.

Note that a positive regularity in a given sample is specified
by 4 parameters: (1) the sample, (2) a context part, (3) a predicted
part, and (4) the conditional probability ]ol/!&l

In what follows, we will assume that the union of the h+g

integers in the disjoint index sequences Z and W together constitute

h+g consecutive integers—or, equivalently, that the context part
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and the predicted part cover h+g contiguous positions of the sentences
of the sample. We will discuss the occasions when this is not the case.

separately later in the section of TERNARY MASKS.
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3. MASKS

It will prove advantageous to generalize the above approach to
cylinder sets and to detach the cylinders from specific positions
tl’ oo th. That is, if a "1" in position 1 and a "1' in position 2

reliably predict a "0" in position 3, and a '"1" in position 4 and a

"1" in position 5 reliably predict a "0" in position 6, we should be
able to generalize these two observations about the sample and identify
them as being a regularity applying to sequences of length 3. Indeed,
often the same phrase will appear many times in a‘sample——but it will
usually appear in many different relative positions within the sentences.
We should therefore be able to generalize these regularities and
identify them as one regularity.

Khinchin accomplishes this generalization by introducing a time
shift operation. This approach is equivalent to the various "window"
schemes in pattern recognition approaches (Uhr, 1963).

However, even with the time shift, all the observations are specific
to the symbols that occur in the various positions. That is, if an
""a" in the first position (note: not position 1) and a ''c¢" in'a
third position reliably predict a '"b" in the second position, and a
"d" in a first position and an '"f'" in a third position reliably pre-
dict an "e" in the fifth position, then we should also be able to
generalize these two observed regularities and identify them as one
regularity applying to certain sequences of length 3.

Thus, it is desirable to make a further generalization and detach
the specific context symbols and the specific predicted context symbols
from the regularity, and expre;s the fact that certain positions may
constitute a context that reliably predicts certain predicted positions.

This leads to the follewing definition:
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A binary mask,:/l(, or a mask, is a binary sequence over the
symbols " " and "%"--provided the sequence contains at least one " "
and at least one "%'". The symbol" " denotes 'the context." The sym-
bol "%" denotes ''the predicted part." An M-mask is a mask .of length
M. For example, " % ' is a 3-mask in which the context is the first
and third position, while the predicted part is the second position.

The universe of binary masks is all 2M-2 binary sequen;es over
" " and "%" provided the sequence contains at least one " " and at
least one "%'". By implication, the shortest masks are of length 2.

For example, the universe of binary masks of length 3 consists of
Y, "% ", "% ", " % ", and "% %".

s ° s ° 3 0

the 6 masks " %", "

i 4

Note that " ' (all context)'is not considered a mask and has no
meaning. Also "% % %" (all predicted part) is not considered a mask at
this point in this paper. It can, however, be given a reasonable mean-
ing by interpreting it as the mask which catalogs unconditional probabil-

ity of occurrence of strings of length 3 in the sample.*

*The control parameter LAWL controls whether this extra mask is used in
the computer program implementing the Grammar Discovery Algorithm.
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4. TYPES OF MASKS
The universe of M-masks is partitioned by grammatical type

as follows:

All masks of the form ”_y—k%k” k#0 are called strictly left-

sensitive. All masks of the form "%K_”‘k” h#0 are called strictly

right-gensitive. Both of these two types of masks are considered
to be of the same level of grammatical complexity--that is, context-

sensitive. " %" is an example of a strictly left-sensitive 3-mask,

and "% " is an example of a strictly right-sensitive 2-mask.

ky gk, Mok -k

All masks of the form " "1 %72 2", where kl#O and kz#O

and k1+k2#M, are called strictly context-sensitive. M must be at

% " is an

least 3 to have a strictly context-sensitive mask. "
example of a strictly context-sensitive mask.

All other masks are called strictly unrestricted rewrite. These

masks are characterized by more than two switches from " " to "%"
or from "%'" to " " (if they start with a " "), or by two or more such
switches (if they start with a "%"). "% %" is the shortest strictly

unrestricted rewrite mask.
The justification for the choice of these names for these sub-
sets of masks will be seen later, in the section wherein we use the
regularities derived from the masks to develop the rules of production
of the induced grammar.
Masks can have a radix of either 2 or 3. If the radix of a mask
is 3, the mask is called a ternary mask. A ternary mask is a
sequence over the symbols " ", "%", and "#". The symbols " " and
"%" are defined as for binary masks. The symbol "#'" denotes "don't care."
There are several important differences and effects when one

uses ternary masks, instead of binary masks. Ternary masks (1) allow
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a separation in positions between the symbols of a regularity; (2)
allow a kind of generalization operation (opposite in effect to the
substitution rule of inference in logic) over Qhatever may be in a
certain position; and (3) may allow certain cryptographic regularities

to be more readily discovered. Ternary masks will be discussed in full

later.

For example, of the 6 masks of length 3, " %% and " __ %"
are strictly left-sensitive; "%% ' and "%_ " are strictly right-sen-
sitive; "_% _" is strictly context sensitive; and "% _ %" is strictly

unrestricted rewrite.
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5. CONTEXT SUB-SEQUENCES, PREDICTED SUB-SEQUENCES, AND THE DOMAIN SEQUENCE

The context-sub-sequence y is a sequence ofllength M over the
C symbols of the current alphabet Vc and the predicted symbol "%"
defined, for I =1, 2, ..., M as

Y(T-M+1) if A (1) = " ©
v {"%" if M) = %"

The symbol "%'" is merely a filler symbol in vy, and its appearance
here does not carry any of the meaning that the symbol otherwise has.
Because of this convention, note that the context-sub-sequence y
contains in itself all the information of the binary mask e from
which it was produced.

The predicted-sub-sequence ¢ is a sequence of length M over the
C symbols of the current alphabet Vc and the context symbol " "
defined, for 1 =1, 2, ..., M as

Y(T-M+1) if M (1) = "%"
v {" noifedl (1) = m
Here again " " is a filler symbol in ¢. Note that the predicted-
sub-sequence contains in itself all the information of the binary
mask e#ffrom which it was produced.

If the mask is a ternary mask, then y(I) and ¢(I) are "#" when-
ever g/”(l) is "#",

Finally, we define the domain sequence as the sequence of
length M over the current alphabet V, obtained as follows:

{Y(I) if ¢(I)
A(I) =
$(I) if v(I) =

!

-
=
-
=

for I =1, ..., M. Note that A consists of the symbols from the current
alphabet Vc (and not "%'" or " ") occurring position-by-position in

either vy or ¢, and represents the symbols actually appearing in Y.
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6. DEFINITION OF A REGULARITY

A regulariﬁyé?? =<vy, ¢, P, Y> is defined as a quadruple consisting
of a context-sub-sequence y (a sequence of length M over the symbols
of the current alphabet Vc and the symbol "%")., a predicted-sub-sequence
¢ (a sequence of length M over the symbols of the current alphabet
Vc and the symbol " "), a real number P representing the conditional
probability that the occurrence of y in the sample Y predicts the
occurrence of the predicted-sub-sequence y in Y. When the sample Y
intended is clear, we may write R as <%, ¢, P>. The Zength of a
regularity is M, which is the common length of y and ¢ and A.

In English text, for example, one regularity is= <Q%",

" U", 1.0>. This regularity is of length 2. This regularity expresses
the fact that the letter "Q" is always followed by the letter "U".

The binary mask M from which this regularity is derived is '"_%",

and is of length 2. This mask is a strictly left-sensitive mask.

The context-sub-sequence y of this regularity is '"Q%'', and the predicted-
sub-sequence ¢ is " U". Both, of course, are also of length 2. The
conditional probability P that the context-sub-sequence predicts the
occurrence of the predicted-sub-sequence in the sample is 1.0. The
domain sequence A for any occurrence of this regularity is "QU"-=that is,
"QU" are the symbols that actually occur in the sample. A is also of
length 2.

Note that the frequency of occurrence of a given context-sub-
sequence (the '"Q" in the above case) does not enter into the definition
of the regularity since conditional probabilities are used. It should
be noted, however, that the notion of a mask can be extended in order
to accomodate the measurement of probabilities of occurrence of single

symbols, 2-grams, 3-grams, etc. in the sample. This extention is
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accomplished by allowing a mask to consist entirely qf the predicted
symbol ( %). With a vacuous context, the conditional probability

Pij now becomes the probability of occurrence of.the predicted-sub-
sequence ¢. The probability of occurrence is not, however, used any-

where in the Grammar Discovery Algorithm.
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7. TYPES OF REGULARITIES

We classify regularities and Pij's by the magnitude of the
conditional probability Pij' If the Pij is exactly 1.0, we say that
the regularity (or, the pij itself) is of type 1, and we call it
structural. The regularity that "U" follows "Q" in English is a
structural regularity. If Pij is near 1.0; that is, if Pij is less
than 1.0 but greater than or equal to 1.0 —'l/cg, then we say that
the regularity (and the Pij) is of type 2. 1If the Pij is less than
1.0 - l/cg but greater than or equal to 1/2, then we say that the
regularity (and the Pij) is of type 3. If the Pij is less than 1/2
but greater than or equal to e = 1/c8 then we say that the regularity
(and the Pij)_is of type 4. The regularities of these 4 types are
the positive regularities. If the Pij is less than e, but greater
than 0.0, we say that the Pij is of type 6, and we call it noise.
If the Pij is exactly 0.0, we say that the Pij is of type 6. We

are interested, of course, in the Pij that are 1.0 or near 1.0.
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8. RATIONALE FOR SEARCHING FOR LOCAL REGULARITIES

It is not obvious that searching for local regularities in a
sample of sentences is the way to begin a grammar discovery algorithm.
Indeed, both practical and theoretical considerations seem to advise
against this kind of approach.

First of all, it would appear that, in searching for regularities
in a sample of sentences produced by an unknown grammar, one would be
obliged to consider dependencies between symbols widely separated
from one another in the sentence. This point is made in Chomsky
(1956, p. 286) in discussing the distance in the ''relations of
dependencies'" that may occur as a result, for example, of self-embed-
ding in natural languages such as English. In this regérd, consider
the sentence

++p+ppp
which is a well-formed sentence of the propositional calculus (in
Polish Notation), and which is generated from the single recursive
rule of production "p - +pp''. When one parses this seﬁteﬁce, the
first symbol (i.e. the "+") is in fact generated with the same application
of the rule of production as the last symbol (i.e. the final "p'").
Now the number of possible regularities observable in M positions
(MZ2) of sentences over an alphabet of c symbols is

m-h

$hen (o)

h=1
(where h is, as before the number of positions in the context part
of the regularity). This is equal to

(zm - 2) cm Q.

E
m
which is very large for anything but small m. Indeed, in the simplest

case, that of the binary alphabet (C=2), we have
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m 2 3 4 5 6 7
F 8 48 224 960 | 3968 16,128

Moreover, we are naturally interested in the possibility of sentences
of indefinite length; that is, in sentences that are produced by auto-
mata with cyclic state transition diagrams, and in sentences produced
by grammars with at least one recursive rule of production. A finite
sample of such sentences-which is, of course, the only situation we
woula encounter—contains a longest sentence; but, still, that sentence
could be very long. Thus, there would seem to be practical combinator-
ial obstacles to any algorithm which is based on searching for regu-
larities over m symbols, for even modestly large m, much less the m

one would encounter in practice.

Even without the practical combinatorial obstacles that seem to
surround analysis of sentencesof non-small length m, there is a
theoretical problem in searching for regularities among distant sym-
bols. Consider a finite sample of sentences over an alphabet V
with C symbols, wherein the longest sentence is of length m. Unless
the sample contains at least one instance of each of the c" possible
sequences of length m, (which would make the grammar very uninteresting,
indeed) there will be at least one, and in general very many, conditional
probabilities that are greater than 1/cg, for each h = 1, 2, 3, ...,
m-1. Thus,.there will be a least one positive regularity in any such
sample. The fact that positive regularities do appear will be used
later. But for the moment, it will be used to make another argument.

Consider again all the well-formed sentences of the propositional
calculus generated by the single recursive rule of production "P - +PP ",
The sentencessproduced by this rule are all of lengthm =3, 5, 7, 9,

m_

There are 2 2 sentences of length m. And, in particular, there are
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8 sentences of length 9; namely,

+P+P++PPP

++P++PPPP

+P+++PPPP

++++PPPPP

+P+P+P+PP

++P+P+PPP

+P+++P+PP

++++P+PPP

Suppose further, we are given a sample of sentences in which no

sentence is of length greater than 9, and that only 7 of the 8
sentences of length 9 are included in the sample. Suppose it is
the last sentence which is not present. Then the conditional pro-
bability that there is a '"P" in position 6, given that there is a
"++++P" in positions 1 through 5, respectively, and given that’there is
a "PPP" in positions 7 through 9, respectively is 1.0. Since c=2
and g=1 here, this is greater than l/cg = 1/2, and indeed therefore
indicates a "positive'" regularity. This discovered structural regu-
larity is, of course, an artifact of the sample. If the sample were
understood to be complete, in the sense of containing all of the
sentences of the grammar, then this regularity would be faithful to
the grammar. However, this sample of sentences is typical in that
it is admittedly an <ncomplete sample arising from a grammar which
is capable of producing other sentences. In a larger sample, it is
possible that the missing sentence would occur as a sentence. Or, it
may very well appear as a sub-sentence (which we can call phrase or
clause) of a longer sentence. Thus, when we search for regularities of
length equal to the length of the longest sentences of the sample,
the regularities we find are likely to be artifacts of the sample
size, and therefore highly dependent and variable on the sample size.

Any grammar discovery algorithm based on finding regularities of this

quality would be unstable. Our goal, of course, is that the grammar
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produced not depend on sample size, after a certain point. A grammar
discovery algorithm should converge, and thereafter be stable.

A final objection to searching for regularities of long length is
that their discovery may indeed tell something about each itemized
long sentence present in the sample, but tell us little about the
sub-structure of the sentence. Thus, even in the absence of other
objections, the regularities produced would tend to lead to trivial
information (i.e. cataloging the long sentences)--rather than informa-
tion about the sub-structure of the sentences.

Thus, if a grammar discovery algorithm is to begin with a search
for regularities, the length of regularities considered must be
small--both absolutely, to avoid practical combinatorial problems--
and relatively, to avoid instability and triviality problems. For
these, and other reasons that will be discussed later, it is necessary
(and also sufficient) to consider only smallM in searching for regu-
larities in a grammar discovery algorithm. The way to find global

properties is to look for local properties.
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9. ALGORITHM OF THE SEARCH PHASE

In the grammar discovery algorithm, we consider masks of length
M=2,3,4, ..., up to some pre-determined, small upper limit on
M.* The selection of this upper limit M2 will be discussed later.

For each such M, we consider all possible masks eMof length
M which are of grammatical type up to some pre-determined limit**—
perhaps, for example—all masks no more complex than strictly context
sensitive. The masks are considered in order of increasing grammatical
complexity—up to the pre-determined limit. That is, context sensi-
tive masks are considered, for example, before unrestricted rewrite
masks. This pre-determined limit is selected on the basis of what
type of grammatical rules one is seeking. It does not matter whether
one is too generous in admitting rules that are more complex, because
the rules are not only generated in order of increasing grammatical
complexity, but also are adopted into the grammar in that order. Thus,
all the M-1 strictly right senéitive masks of length M, and all M-1
strictly left sensitive masks of length M are generated and considered
first. They, in turn, are followed by the M(M+2)/2 strictly context
sensitive masks. These masks are then followed by the strictly unre-
stricted rewrite masks of length M, of which there are

M2 o2 -MQie2)/2

Suppose we denote, for the moment, the symbols of a sentence

in the sample as
Y(1), Y(2), ..., Y(d),

where d is the length of the sentence. Then, given the current M we

are considering, and the current maskz/ﬂz, we examine the sentence,

*The variable M2 is this upper limit in the computer program.

**The variable GRAM controls this in the computer program.
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symbol by symbol. We consider the sub-strings of length M termin-
ating in position T=M, M#1, ..., d (d2M), and match each with the
current mask-—that is, we match the symbols
Y(T—M+i), ceey Y(T=M)

with mask positions 1, 2, ..., M. A context-sub-sequence vy and a
predicted-sub-sequence ¢ are then developed from each such matching,
as indicated by the definition of y and ¢.

Each distinct context-sub-sequence y that is produced is given
a distinct index number. Each distinct predicted-sub-sequence ¢ that
is produced is also given a distinct index number. This allows us
to refer to the conditienal probability pij that predicted-sub-sequence j
occurs, given that context-sub-sequence i occurred, by using the two
indices i énd j. In the computer program implementing the Grammar Dis-
covery Algorithm, the index number assigned is the natural number
equivalent to the M symbols of y and ¢ modulo (C+2)+2.* These two
natural numbers together thus abbreviate all the information needed
to identify the sub-sequence as either a predicted sub-sequence or a
context-sub-sequence--because a context-sub-sequence contains symbols
from the alphabet and the "%", but never the " ", while a predicted-sub-

sequence contains symbols of the alphabet and the " ", but never the "%".

*It should be noted that many of the operations of the Search Phase,

as well as later phases such as the Recoding Phase, are amenable to
being performed by parallel computers-—either by general purpose
parallel computers which will represent the next generation of computers,
or by a special purpose parallel computer. The combinatorial obstacles
to performing grammar induction on large samples of unknown text will
thus be greatly reduced in practice.

**The natural number corresponding to the context-sub-sequence is called
SQCTXT in the computer program. The natural number corresponding to the
predicted-sub-sequence is called SQPRED. The reason for the first

""+2" is the inclusion of the symbols " '" and "%'". The reason for the
second "+2" is the inclusion of the symbols "#" and the initial punc-
tuation mask.
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The pair of 2 natural numbers together are sufficient to recreate
the context-sub-sequence 'y, the predicted-sub-sequence ¢, and the
mask M.

The procedure for doing the above depends somewhat on the mode in
which the Grammar Discovery Algorithm is operating. If initial punc-
tuation is present in the sample (the second mode), the examination
above proceeds through each separate sentence. Naturally, if T+M-1>d,
then masks of that length M are not considered for that sentence. (We
can, if we like, allow the initial punctuation mask appearing at both
ends of a given sentence to be considered as part of that sentence;
however, we never allow inter-sentence examinations). If there is no
initial punctuation in the sample, the only restriction is that T+M-1>d.

In either mode, the entire sample Y is examined under the current
mask M.

Upon completion of this examination, it is now possible to
compute the conditional probability P that as given predicted-sub-se-
quence ¢ arising from a particular mask e of length M occurred,
given the occurrence of a particular context-sub-sequence y arising
from that same mask.

This process is then repeated for each mask being considered.

It is convenient to sort these conditional probabilities into
descending numerical order, from 1.0 on down. The Pi.'s are then
classified into types (I, II, III, IV, and V) as previously described.

Note that for a given context-sub-sequence with h context posi-
tions, one would expect that most of the (M-h)C = gc possible
predicted-sub-sequences will not actually occur in the sample. In a

non-pathological sample, there are relatively few context-sub-sequence
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and predicted-sub-sequence pairs that will actually occur.*

The result of the Search Phase is the production of tables of

regularities that occur in the sample.

*In the computer program implementing the Grammar Discovery Algorithm,
the possibility of an excessive number of small, insignificant Pi.'s
is dealt with by providing for the early culling of the tables Jof
regularities. This early elimination of Pij's is controlled by the

parameter EARLY.



10. EXAMPLES
Example A: To illustrate the ideas developed above, consider the
unpunctuated (first mode) symbol string Y as follows: THE<BIG-CAT
RAN=THE~BAD->CAT-"RAN~THE-BIG~RAT-RAN—~THE-BAD-RAT-RAN—

The terminal alphabet for this sample Y of length N = 64 over
Cl = 12 symbols is A ={A,B,C,D,E,G,H,I,N,R,T,~}, where "='" is an undis-
tinguished, but visible symbol to denote the blank.

The table below illustrates the kind of masks, context sequences,
predicted sequences, and conditional probabilities that one obtains in

analyzing the sample.

SOME REGULARITIES FOR LEVEL 1

CONDITIONAL CONTEXT PREDICTED

LENGTH PROBABILITY MASK Sub-Sequence Sub-Sequence

M P; ; TYPE M Y 8

3 1,00000 1 %% C%%° _AT

3 1.00000 1 %  TH% E

3 1.00000 1 %%_ %%G BI_

3 1.00000 1 % %AN R

3 1.00000 1 % R%T A

3 0.50000 3 %% B%% 16

3 0.50000 3 %% B%% AD

The first line of this table, for example, indicates that the letter
C is always followed by the letters AT in the sample. This forms the
"word" CAT. The second line of this table indicates that the letter
pair TH is sufficient to determine the following letter which is E.
These 2 lines illustrate left-sensitive rules.

Line 3 of this table indicates that the letter G is sufficient
context on the right to predict, with 100% reliability, the preceding
two letters, namely B and I. Line 4 indicates that the context of R

on the left and the context of T on the right is sufficient to determine
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the one intervening letter A, making the word RAT. This is an
example of a strictly context sensitive rule.

The only mask not illustrated for length 3 above is the unrestrict-
ed rewrite mask %-%. This is the only unrestricted rewrite mask of
length 3.

The last two lines of this table indicate that the letter B is
followed by IG and AD equally Oftenti.e. with probability .50).

Using the terminology we have developed, the information on line
1 represents the type I regularity'éze= <'C%%'", "_AT", 1.0,Y> of length

M= 3.

Example B: Now let us consider an example based on the following

sequence of 272 bits found in the memory of an IBM 360 computer:

(1) '"1110 0110 1100 1000 1100 0101 1101 0101 0100 0000 1100 1001
1101 0101 0100 0000 1110 0011 1100 1000. 1100 0101 0100 0000
1100 0011 1101 0110 1100 0100 1100 0010 1100 0101 0100 0000
1101 0110 1100 0110. 0100 0000 1100 1000 1110 0100 1101 0100
1100 0001 1101 0101 0100 0000 1100 0101 1110 0101 1100 0101.

1101 0101 1110 0011 1110 0010 0100 0000"

Here the alphabet A = {0,1} and N = 272 and C1 = 2.

When the memory of the computer is dumped, the sequence of
272 bits would conventionally be presented as 68 half-bytes (4 bit
sequences). The name conventionally attached to each 4 bit sequence
is the hexadecimal equivalent of the 4 bits in binary. Using these
names, the dump might read:
(2) "E6C8C5D5 40 C9D5 40 E3C8C5 40 C3D6E4E2C5 40 D6C6 40 C8E4DACIDS

40 C5 E5 C5DSE3 E2 40"



41

When the 68 half bytes are then combined into 34 full bytes and

presented as EBCDIC characters (as is the case in the EBCDIC dump),

we see

(3) "WHEN IN THE COURSE OF HUMAN EVENTS"

If we now search the sample (1) for regularities, we find for

a regularity length M of 2 the following regularities:

LEVEL= 1 M= 2

NUMBER OF TYPE
NUMBER OF TYPE
NUMBER OF TYPE

SEQUENCES (STRUG TURAL )
SEQUENCES (MESSAGE)
SEQUENCES (MESSAGE)

NUMBER OF TYPE 4 SEQUENCES (MESSAGE)

NUMBER OF TYPE 5 SEQUENCES (NOISE)

NUMBER OF P(I) 1
NUMBER OF POSSISLE F(I)

SEPARATION VALUE BETWEEN TYPES 3 AND 4  C.50000

VI SN
oD O D

EPSILON FOR DEFINING TYPES 2 AND 3 0.34000
# LEVEL LENGTH PROB TYPE MASK CONTEXT PREDICTED
6 1 2 0.57 3 4 12 -0
2 1 2 0.57 3 . 31 o_
7 1 2 0.55 3 -2 0% -0
4 1 2 0.55 3 % %0 o
3 1 2 0.45 4 2 Z0 1_
8 1 2 0.45 4 = 4 0% -1
1 1 2 0.43 4 2 z1 1.
5 1 2 0.42 4 = 4 1% -1
11 1 2 0.31 S %% E ¢o
10 1 2 0.25 5 23 23 10
12 1 2 0.25 S E$ % 01
9 1 2 .19 5 zz 2% 11

Note that the mask "%%'" is included in the above table and that
it catalogs the probabilities of occurrence of the various sequences

of symbols appearing in the sample.
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Similarly, if we search the sample for regularities of length no

greater than 3, we obtain the following table of regularities:

LEVEL= 1 M= 3

NUMBER OF TYPE 1 SEQUENCES(STRUCTURAL) 0
NUMBER DF TYPE 2 SEQUENCES (MESSAGE) 0
NUMBER OF TYPE 3 SEQUENCES (MESSAGE) 8
NUMBER OF TYPE &4 SEQUENCES (MESSAGE) 8

NUMBER OF TYPE 5 SEQUENCES (NOISE) 24
NUMBER OF P(1) 4Q
NUMBER OF PUSSIBLE P(I) 32
SEPARATION VALUE BETWEEN TYPES 3 AND 4 0.50000
EPSILON FOR DEFINING TYPES 2 AND 3 0.33333
# LEVEL LENGTH PROB TYPE MASK CONTEXT PREDICTED
22 1 3 0.61 3 X 11% -0
38 1 3 0.60 3 L S Z11 o_.
6 1 2 0.57 3 % 1% -0
26 1 3 0.57 3 = 00% -0
2 1 2 0.57 3 2 21 o_
42 1 3 0.57 3 2. 200 o__
28 1 3 0.56 3 -.% 01% -0
40 1 3 0.55 3 z_.. Z10 o__
7 1 2 0.55 3 % 02 -0
4 1 2 0.55 3 2 20 o_
23 1 3 0.52 3 - 1 - 10% -0
43 1 3 0.51 3 T Z01 O
44 1 3 0.49 4 S 201 ) S
24 1 3 0.48 4 % 10% —l
3 1 2 0.45 4 3. %0 1.
8 1 2 0. 45 4 % 0% -1
39 1 3 0.45 4 L 310 1.
27 1 3 0.44 4 .2 01% —_
41 1 3 0.43 4 f - 200 1.
1 1 2 0.43 4 T_ 1 1_
25 1 3 0.43 4 3 C0% -1
5 1 2 0.42 4 % 1% -1
37 1 3 0.40 4 3 211 .
21 1 3 0.39 4 — 11% -l
20 1 3 0.31 5 32 0%% .00
36 1 3 0.31 5 7. ZX0 Qo_
11 1 2 0.31 5 E2 % 0o
15 1 3 0.30 5 %% 132 -00
30 1 3 0.30 5 5. 271 00
32 1 3 0.28 5 22 2%Z1 10_
16 1 3 0.27 5 %% 1%% 01
14 1 3 0.26 5 -2z 1%2% -10
10 1 2 0.25 S E¥4 3 10
31 1 3 0.25 5 2% 231 0l
19 1 3 0.25 5 X% 0zZ% =10
12 1 2 0.25 5 2% E 2 4 01
35 1 3 0.25 5 X 130 o1
34 1 3 0.24 5 2E_ 230 10
17 1 3 0.23 5 53 0%2 =01
33 1 3 0.20 5 TT_ 230 11
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0.20
0.19
0.17
0.17
0.17
0.14
0.13
0.13
0.12
0.11
0.11
0.07
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= £

222
2%
282
3%
223
2%
E44
22%

1.4

%%

%52
271
132
%23
233
233
4%
EE%

£3%

=11
11
000
11_
-1l
010
100
o1
101
110
Cll
111

Some of the regularities we obtain with an M of 4 are

LEVEL= M 4
NUMBER OF TYPE 1 SEQUENCES(STRUCTURAL) c
NUMBER OF TYPE 2 SEQUENCES (MESSAGE) 0
NUMBER OF TYPE 3 SEQUENCES (MESSAGE) 16
NUMBER OF TYPF 4 SEQUENCES (MESSAGE) 32
NUMBER OF TYPE 5 SEQUENCES (NOTSE) 64
NUMBER OF P(I) 112
NUMBER OF POSSIBLE P(I) 56
SCPARATION VALUE SETWEEN TYPES 3 AND 4 0450060
EPSILUN FOR DEFINING TYPES 2 AND 3 0.25000
# LEVEL LENGTH PROB TYPE MASK
142 1 4 0.70 3 B
87 1 4 0.68 3 I
96 1 4 0.67 3 .z
85 1 4 0.65 3 -3
139 1 4 0.63 3 2
147 1 4 0.63 3 2
90 1 4 0.61 3 .3
22 1 3 0.61 3 2
98 1 4 0.61 3 I
38 1 3 0.60 3 B
93 1 4 0.60 3 I ¢
138 1 4 0.60 3 %
135 1 4 0.58 3 T ___
134 1 4 0.58 3 %
144 1 4 0.58 3 g___
6 1 2 0.57 3 _z
26 1 3 0.57 3 %
2 1 2 0.57 3 2
42 1 3 0.57 3 %__
28 1 3 D.56 3 _.Z
40 1 3 0.55 3 %__
7 1 2 0.55 3 -2
4 1 2 0.55 3 2

CONTEXT PREDICTED

2101
110%
101%
111%
%011
Z111
1003
11%
0102
211
011%
2001
L2100
© %110
2010
1%
00%
1l
200
01%
Z10
0%
20
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And, some of the regularities we obtain with an M of 5 are

shown below:

LEVEL=

NUME ER
NUMBER
NUMB ER
NUMB ER
NUMB ER
NUMBER
NU M8 ER

#

291
419
394
287
400
270
272
142
410

TYPE
TYPE

- TYPE

TYPE
TYPE
P{I)

1 W N

SEQUENCES(STRUCTURAL)}
SEQUENCES (MESSAGE)
SEQUENCES (MESSAGE)
SEQUENCES (MESSAGE)
SEQUENCES (NOISE)

POSSIBLE P(I)
SEPARATION VALUE BETWEEN TYPES 3 AND 4
EPSILON FOR DEFINING TYPES 2 AND 3

LEVEL

e N e e el

LENGTH PROB TYPE

0.86
0.86
0.74
0.73
0.73
0.72
0.70
0.70
0.70

(G- RG RO RURT R RO RY ]

WWwWwWwWwwwNN

c

2

33

19

174

288

256

0.50000

0.20000.

MASK

CONTEXT

111123
Z1111
20011
10102
21011
c1103
11012
%101
20101

PREDICTED
—0
LN
N
——l1
O
—0
—0

o___

In later sections, we will refer to these tables as part of other

examples.
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C. THE RECODING PHASE--DEVELOPING RULES OF PRODUCTION FROM REGULARITIES

1. INTRODUCTION TO THE RECODING PHASE

The Recoding Phase is the second main phase of the Grammar
Discovery Algorithm.

In the Recoding Phase, the local regularities found during the
Search Phase are used to develop grammatical rules of production which,
in turn, are used to transform the given set of sentences into a new
set of sentences. The new set of sentences contains most of the inform-
ation and structure of the original set of sentences. This transform
ation (recoding) process works by replacing contiguous predicted
symbols of local regularities occurring in the sample with single
symbols., Thus, what were originally global regularities in the given
sample tend to become local regularities in the new set of sentences.
The recoding that is done is defined, in part, in terms of gramma-
tical rules of production; and these rules of production ultimately
become the rules of production of the grammar being induced. The
resulting new sentences can later be treated anew as a sample and this
new sample can then be searched for regularities, reusing the methods
of the Search Phase. And, this new sample can then be recoded at this
higher level, yielding additional rules of production and a newer set
of sentences. The alternate application of first the Search Phase, and
then the Recoding Phase is what produces the hierarchical (and non-

trivial) quality in the grammar being induced.
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2. TRANSFORMATIONS (RECODINGS)

We are concerned here with mappings from a sequence Y of length
N over Cl1 symbols to a new sequence Y' of length N' over C1l' symbols.
A transformation (or recoding) 9’ as used here will refer to such a
mapping. If C1' > Cl, we say that the mapping is alphabet-enlarging.

A transformation is presented in terms of a set of (1) gramma-
tical rules of production, and (2) a Recoding Procedure. Both are
necessary to define the transformation. Each grammatical rule of
production consists of an antecedent (left) side, which is a symbol
string over the alphabet of Y'; an arrow; and a consequent (right)
side, which is a symbol string over the alphabet of Y. An example of
a rule of production is

0AO > 01110

We read this as '"replace A by 111 whenever A is found in context
with a zero on both sides of it."

Note that the set of rules of production is not sufficient,
in general, to uniquely define the mapping from Y to Y'. There will
often be many overlapping occurrences of the context-sub-sequences
of the local regularities. Hence there are many different overlapping
opportunities for applying - the rules of production. It is therefore
necessary to establish an order of precedence for developing the rules
of production. The Recoding Procedure is an algorithm for scanning
~ the sequence Y for occurrences of the context-sub-sequences of the var-
ious local regularities and for specifying in what order the rule of
production should be developed from these regularities.

The sample Y, as initially presented, is said to be the sample
of the first level . Each transformation, when applied to a sample,
maps that sample from its current level to a sample of one higher

level. 1t should be noted that each level above the first represents
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one sentential form in the derivation of the terminal string (which is
the sample at the first level). Thus, each level above the first
will contain some non-terminal symbols.

We adopt the convention here that a transformation of a given
sampie Y will always be over the complete domain Y. This will in
general necessitate the application of the identity transformation on
certain substrings of Y. This convention guarantees that the entire
domain Y is "covered"by each transformation, and this completeness of

covering facilitates later comparisons between transformations.
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3. DEVELOPMENT OF RULES OF PRODUCTION FROM LOCAL REGULARITIES

In the Search Phase, certain local regularities were discovered.
Recall that a regul‘arity,% = <y, ¢, P, Y> consists of a context-
sub-sequence vy, a predicted-sub-sequence ¢, and an associated condi-
tional probability P. The local regularities are now the basis for
developing the rules of production of the grammar.

Suppose we are given a context-sub-sequence y from some regu-
1arityé;?of length M. Suppose further that for some integral T > 0,

Y(T-M+I) = v(I)

for each I =1, 2, ..., M for which y(I) is not "%" or "#" *—that is,
suppose the coﬁtext specified by the context-sub-sequence ¢ is present
in the sample Y; and, that its terminal position is position T of Y.
Suppose the Recoding Procedures indicates it is appropriate that a
rule of production be developed using this occurrence of the context
part of this regularity, and suppose further that we are generating
context-dependent rules of production and that we are using only
alphabet-enlarging recodings. Then the rule of production would be
produced as follows:

1. The consequent (right) side of the rule consists of the
domain sequence

A=A, ooy AM)

—which is of length M.

2. The antecedent (left) side consists of a sequence of symbols
constructed as follows: Begin with the context-sub-sequence y and
consider each sub-string of contiguous predicted symbols "%" in «v.

Enlarge the current alphabet V. by a single new symbol, say '"N".

C

* "#" is the "don't care" symbol and is discussed more fully later.



This new symbol will be a non-terminal symbol in the induced grammar.
Now, insert this single new symbol N into the context-sub-sequence vy
in place of the entire substring of contiguous predicted symbols.

If there is more than one sub-sequence of contiguous predicted symbols
in vy, introduce another new non-terminal symbol into-VC for each such
sub-sequence. Note that there can be more than one such sub-sequence
only when the mask from which the regularity was derived was of strictly
unrestricted rewrite type. Note that the antecedent (left) side thus
produced is of length M or less. Note that this decrease in length

is the result of replacing the entire contiguous predicted substring
by a single new symbol. Note also that the symbols of the current

alphabet V. occurring in context or don't care positions in the sample

C
are left unchanged. Finally, note that the grammafical type'of the
rule of productioﬁ developed in this way is exactly the grammatical
type of the mark from which the regularity% was derived.

Suppose, for example, that é;?== <'11%%", " _00", 1.0, Y> is
a regularity in a given sample Y—~that is, in Y, the symbols 11 are
invariably followed by 00. The context-sub-sequence y for this struc-
tural regularity is "11%%'". The predicted-sub-sequence ¢ is '--00"
The conditional probability P is 1.0. The mask "_%%'" gave rise to
this regularity, and this mask is a left-sensitive mask. The domain
sequence A is ''1100". The sequence Y begins 0100110001..., so that
the context part of the context-sub-sequence "11%%'" occurs in Y so
that its final symbol (i.e. the second "%'") is at position T = 8 of Y.
The rule of production developed from this regularity of length 4 in
Y will be the ieft—sensitive rule

11N - 1100,

where N is understood to be a non-terminal. In this example, 'N"
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replaces the two contiguous predicted symbols, which in this case,
are the two 0's.

The alternative to generating context-dependent rules of pro-
duction is to generate context-free rules. If context-free rules
are to be generated, the antecedent (left) side will consist solely
of a single new non-terminal symbol. In this event, the antecedent
(left) side will, of course, be of length 1. If we are considering
only M22, then it will be shorter than the consequent side. The
subject of generating context-free rules will be discussed in detail
later.

An alternative to an alphabet-enlarging code is a recoding
using a Huffman code, or a similar scheme for optimal recoding. In
this approach, the alphabet is not enlarged. Instead, a distinctive
symbol string in the original alphabet is inserted in place of the
symbols in Y, The details of possible non-alphabet-enlarging recodings
and the advantages and disadvantages of this kind of recoding will be
discussed later.

Thus, as we have seen, the length of the regularities searched
for in the Search Phase limits the length of the consequent (right)
side of the rules of production developed for the induced grammar.
Thus, if M is the length of the longest regularity searched for in the
Search Phase, M is also the length of the longest consequent side of
a rule of production in the induced grammar. This in turn, means that
if the sample Y is of length N, then regardless of how the rules
of production are applied to accomplish the recoding of Y, the recoded
version of Y cannot be of length shorter than N/M. Since M is gen-

erally fairly small, the image of the sample Y under a Recoding is
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of a length relatively close to the length of Y itself. This means
that Y is not recoded by any one Recoding into an extremely short
completely-resolved image. In other words, if we look at the way
the sample Y is derived from the rules of production using the ulti-
mate induced grammar, we see that the derivation is indeed a hierarch-
ical derivation—that is, a derivation requiring relatively many
intermediate sentential forms (levels). Note that it is the smallness
of M which results in this hierarchical characteristic. Note also
that the hierachical grammar thus induced is also not t£ivial. Thus,
both the hierarchical and non-trivial character of the induced grammar
follow from the deéision to search only for Zocal regularities in
the Search Phase.

Finally, note that while certain Unrestricted Rewrite masks
can be accomodated in the above procedure (for example, the mask
"%% %%'"), there is no provision in general for the development of
length-increasing rules of production (that is, rules in which the
consequent (right) side is longer than the antecedent (left) side).
(See Ginsburg and Greibach [1966]). However, since every rudimentary
event (Smullyan [1959]) can be accepted by some linear bounded auto-
maton (Myhill [1960]), and hence context-sensitive language, the

formal systems of Smullyan are within the scope of this Algorithm.
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4, THE RECODING PROCEDURE"

We noted earlier that a transformation is specified in terms of
both (1) a set of grammatical rules of production, and (2) a Recoding
Procedure. The Recoding Procedure is an algorithm for scanning the
sequence Y for occurrences of the context-sub-sequences of various
local regularities, and for specifying in what order the rules of
production should be developed from those regularities.

The Recoding Procedure implemented in the computer program for
the Grammar Discovery Algorithm admits of numerous variations. These
variations will be described in detail as the reason for each possible
variation arises. For now, we will consider merely the basic features
of Recoding Procedure.

In the Search Phase, masks of various possible lengths, from a
length of Ml to a length of M2, were used to find local regularities.
We take these same M1 and M2 from the Search Phase for use in the
Recoding Procedure. If M2 is the mask of longest length considered
in the Search Phase, then the first occurrence of a contekt-sub-se—
quence associated with that mask cannot be earlier than position T = M2
in the sequence Y. Therefore, the Recoding Procedure starts scanning
the sequence Y at position T = M2. The sequence Y is examined for the
presence of a sub-sequence of Y of length M which terminates at position
T such that

Y(T-M+I) = vy (I)
for each I =1, 2, ..., M for which y(I) is not "%" oxr "#". In
general, context-sub-sequences may be identified with various sub-sequences
of Y. The purpose of the Recoding Procedure is to select one context-
sub-sequence from among the several possibilitieé. The sub-sequence

of Y that is selected is the one which meets the following conditions:
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(1) The sub-sequence selected is of longest 1length, of the lengths
between M1l and a parameter MBE which is less than or equal to M2.

This range of lengths is further constrained by 2 considerations.
First, there must indeed be a sub-sequence in Y of the length L being
considered. This means that T2L, for each L considered. Also,

if the sequence Y has initial punctuation, then the sub-sequence in

Y of length L must not include an initial punctuation mark. Note
that an initial punctuation mark is always assumed to precede any
seugence Y, and the first case is merely a special case of the second.

The second constraint is that none of the positions occupied by the
sub-sequence of length L have been recoded as yet on this level. That
is, our aim is to find regularities which "cover" the sequence Y
no more than once at any position. If multiple covering were allowed
at any one level, then (i) the resulting grammar would be ambiguous,
and (ii) it might be necessary to establish a precedence ordering
among the rules of production of the grammar induced.

(2) The regularity selected is the one whose conditional probability
is of the highest type, among those types which are allowed in the
Recoding. The lowest allowable type* is specified in advance, and
is typically type I, II, or occasionally III.

(3) The regularity selected has highest conditional probability,
given condition (2). This is accomplished by the sorting of the
conditional probabilities P(I) associated with the regularity.

(4) The regularity selected is the regularity whose mask is

of simplest grammatical type. That is, a regularity arising from

*The variable Al10W in the computer program specifies the lowest
allowable type of regularity to be used in recoding.
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a left-sensitive mask will be preferred to a regularity arising

from a strictly-context-sensitive mask, etc. Naturally; the type

of masks that can be selected are limited by the types of masks used in
the Search Phase.

After this local regularity is selected, a rule of production
may be developed from it, in the manner described in the preceding
section.

The sample Y is then recoded, as specified by that rule of produc-
tion. Before a new rule of production is introduced however, the
possibility 6f instead introducing a recursive rule of production
is considered. The procedure for inducing recursions works with rules
of production developed at previous levels of recoding. Thus, if the
grammar discovery algorithm is operating on its first level, no test
for recursion is performed, and the rule of production developed from
the regularity is automatically added to the induced grammar. If the
algorithm is already on the second level, or on a higher level, the
test for recursion will be performed. This test is fully described
in a later section. If a recursion is then induced, one recursive rule
of production is added to the induced grammar. This recursive rule
replaces one non-recursive rule of production which is already in the
induced grammar.

The Recoding Procedure operates so as to minimize the introduction
of new rules of production. Thus, when a new non-recursive rule is to
be introduced, the entire sequence Y is immediately searched for addi-
tional possibilities of applying that rule. These recodings are then
performed in preference to any other possible recoding. Similarly,
whenever a new recursive rule of production is introduced, a similar
back-tracking search is made through all previous levels to see if the

recursive rule can be applied. Moreover, with recursive rules,
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the Recoding Procedure considers the possibility of immediately re-
applying recursive rules (even of the same positions of Y which have just
been recoded), so that as much of Y as possible is recoded using the
newly induced recursive rule.

Also, the Recoding Procedure operates in such a way that it first
scans Y looking only for the possibility of inducing recursive rules
of production. After this scan is done, the sequence Y is rescanned
for the possibility of inducing non-recursive rules. This double
scanning approach given preference to inducing a recursive rule.
Because a recursive rule replaces an existing rule already in the
grammar, this approach helps minimize the number of rules in the induced
grammar.

The Recoding Procedure operates in such a way that the degree of
"covering " of the sample is maximized—that is, as many as possible
of the symbols of Y are either in the context part or predicted part
of some regularity and some rule of production.

Once a non-recursive rule is introduced into the induced grammar,
opportunities to reapply that rule are always considered before any

further rules are added to the grammar.
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5. EXAMPLE

In this section, we illustrate the development of rules of
productions from regularities, and illustrate the app}ication of
the rules using a recoding procedure.

We begin with an illustration of a context-sensitive rule
of production.

Suppose the given sample of sentences is as follows:

cumn— - wee LEVEL 1 eecce=w

SYMBCL STRING OF LENGTH 137 AND USING ALPHABET OF SIZE 14

e THEABIG~C ATRAN~¢ THE =B AD~CAT~RAN= ¢ THE~BT G~LOG-RAN= o THE-B AD~
DOGRAN= o TFE~ETCCATSAT g THE~RAD~C AT 2SAT~¢ THEB 1G-DOG~SATe
THE-BAC=DCG-SATA,

Note that the terminal alphabet for the sentences of this
sample include 14 Roman alphabet symbols and the period (as
initial punctuation).

Suppose further that the following regularity has been
identified in the sample:

¢ n%%E_‘n’ HTH— n, P >

This regularity is a left-sensitive context-sensitive regularity
because the mask from which the regularity was derived is a left

sensitive mask (i.e. %% '1).
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The development of a rule of production from this regularity
proceeds as follows: The two contiguous predicted positions
(namely positions 1 and 2) are consolidated and replaced by the
new non-terminal symbol ( "0" in this case). Together with the
two context positions, these three symbols become the antecedent
(left) side of the rule of production. The consequent (right)
side of the rule consists of the four terminal symbols from the

regularity. The rule of production is thus
0OE~ -—>  THE,

In a similar manner, the following 7 rules of production
might be developed:

TENTATIVE RULES OF PRCDUCTION FOR M OF 4
0B~ =—--- >  THE~

16~ =====> BIG~

2AT~  =====> CAT=~

AN~ —=-e- > RAN-

4D~ ==-==>  BAD-

56~ ===-=> D0G-

6AT~  =====>  SAT-

Applying these rules of production to the sample, one recodes

the sample and obtains the following:

NEW STRINC

e 0F=1G2AT = 2AN~ o 0E~4D2A T3 AN, OE~16~5G3AN~, CE~4D~5G3 AN~ 0

En1G~2AT 68T 0E~4D 2AT6AT~e OE=1G5GEAT~o OE~4DN~5G~6AT .
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Note that the rules of production in this example were
context-sensitive because the mask of the regularity from which
the rules were derived were context-sensitive masks.

It would seem that only context-sensitive rules of
production can be derived. Such is not the case. Later, after
motivatihg» and defining the concept of maximal regularity
(in section III.B.3 and IV.D), we will develop context-free
rules of production. However, it should be noted now that if
there is a procedure for developing context-free rules of
production, then their application to the given sample, using
the recoding procedure, is exactly the same as with context-
sensitive rules of production.

To illustrate this statement,recall example B from the
previous section. The sample in Example B was the following
binary sequence:

———— — cemmmme=l LEVEL ] cmmmmmcmeam- et —— e ———— -

SYMBOL STRING GF LENGTF 272 AND USING ZLFHABET OF SIZE 2

1110011011001000110001013110101010:C000€011601001110101010100
0000111000111100)000110001010100000C]1CCC§111101011011000100
13CC0010110001C1C1€0C0C0110101101100011¢C1C00000110010001110
01001101010011€000011101010101000000110001011110010111100101

110101031111060111110€01001GC00CO



Suppose there is a justification for developing context-
free rules of production in the Grammar Discovery Algorithm.
Suppose that the following four context-free rules are

developed:

TENTATIVE RULES OF PRODUCTION FOR M OF 2

A ———-=> 11
B —---- > 10
c ---- > o1
D ---—- > 00

Then the recoding of the given sample, using these four
context-free rules of production and the recoding procedure,
would yield the following new sample of sentences:

NEW STRING

ABCBADBDADCCACCCCDDDACBCACCCCDDDABDAAGBOADCCCDDDADDAACCBADCD
ADDBADCCCODDACCBALCHBCDDCACBCABCDACCDADDCACCCCDODADCCABCCABCC

ACCCABCAABCBCOOD

In the examples that accompany several of the following
sections of this paper, we will use context—free rules of
production in many cases, although the rationale for developing
these rules of production will not be fully developed until

sections III.B.3 and IV.D.
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D. THE SELECTION PHASE——~SELECTING RECODINGS

1. INTRODUCTION

The third main phase of the Grammar Discovery Algorithm is
the Selection Phase. The Selection Phase oversees several possible
trial recodings and selects one which is then actually applied to
the sample of sentences to produce one new set of sentences. This
selection is made on the basis of three criteria: the entropy, the
parsimony, and the recursive parsimony of the transformation.

In this section, we define the concepts of entropy of a trans-
formation, parsimony of a transformation, and recursive parsimony
of a transformation. We define a resolving transformation, and we
present the algorithm for trying recodings, evaluating them, and
then selecting one recoding as the actual recoding to be performed

on the sample. The idea of the Pij-graph is developed.
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2. ENTROPY, PARSIMONY, RECURSIVE PARSIMONY OF A TRANSFORMATION
Typically, there is more than one rule of production in each
transformation. Each rule of production is derived from a local
regularity. Recall that each regularity é;?=<y, b, Pij> consists
of a context-sub-sequence y, a predicted-sub-sequence ¢, and an
associated conditional probability pij' We define the entropy

of a transformation to be

_ E Pij log 2 pij

(using the convention that 0 log2 0 = 0 ), where the Pij are the
conditional probabilities associated with the regularities from which
the rules of production of the transformation were derived. Note
that the sum here is taken over the (reduced) set of rules of production.
Note that this measure depends only on knowing the set of rules of
production of the transformation.
Note, for example, that if each local regularity from which the
rules of production of the transformation was developed is a struc-
tural regularity (i.e. the context-sub-sequence predicts the predicted-
sub-sequence with 100% reliability), then the entropy of the trans-
formation will be zero. As an illustration of this, consider the
string Y
. abcdefghefghabcdefgh...

This string might be recoded using the two strictly-context-sensitive
rewrite rules

aNd -+ abcd

eMh - efgh |
which each have 100% reliability. The resulting string Y' would then
be |

. .aNdeMheMhaNdeMh....
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Note that no information is lost by this transformation for the
positions actually recoded.

On the other hand, if the local regularities used to develop
the rules of production of a transformation all had conditional
probabilities of ¢ = 1/cg (i.e. where the occurrence of the context
tells us "nothing'" about the '"predicted" part), then the entropy of
such a transformation would be maximal. Inférmation is lost by such
a transformation; the original sequence Y cannot be recovered by
applying any kind of inverse of production of this transformation
to the encoded string Y'. The information lost would be maximal
for the positions actually encoded. For example, suppose 001 is
followed with 00 or with 11 with probability 1/2, and that the rule
of production is

001A - 00100.
Y may be the sequence ...00100,00111,00100,00111... (the commas are
added here only as a visual aid) and Y' may be ...001A,00111,001A,
001A... Here Y cannot be recovered from Y'.

The weighted entropy of a transformation is the same sum as
the entropy of a transformation, except that the sum is taken over
each application of the rules of production. Thus, rules that are
used more often in the actual recoding count more in this sum.

Note that this measure is dependent on both the set of rules of pro-
duction and also the Recoding Procedure-—which determines how many
times each rule is applied.

The fewer rules of production in a grammar, the more parsimonious
it is.

Accordingly, we define the parsimony of a transformation as

A*n, where n is the number of (reduced) rules of production, and
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where ) is a positive real number called the coefficient of parsimony.*
Note that n is a measure of the complexity of the transformation, and
indirectly of the induced grammar (Goodall).

To illustrate the idea of entropy and parsimony, consider the
following trivial grammar which can be inferred from any given sample

of sentences o o

c++5 O OVET an alphabet V The grammar is

1’ 72 T'

%2 =<VT, S, S, P> where the rules of production P are the w rules:

In this case, the entropy of the transformation here is zero, because
all transformations are 100% reliable. However, the parsimony here
is high -—- namely )w.

We define the combined entropy-parsimony measure of a transformation

_ E Pij logZ'Pij + A*n

Note that there is a trade-off between the entropy and the

to be

parsimony of a transformation. The combined entropy-parsimony
measure for 2 different transformations can be the same if the one
with more rules of production has correspondingly less entropy (i.e.
if the regularities used to develop the ‘rules of production of the
transformation have greater reliability).

Note also that while probability of occurrence of the differ-
ent contexts is not explicitly considered in the Grammar Discovery
Algorithm (because conditional probabilities are used throughout),

probabilities Of occurrence are reflected implicitly in the following

*The variable LAMBDA in the computer program is the coefficient of parsimony.
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way: A rule of production developed from a regularity whose context
part that occurs rarely in the sample will not be applied often
in transforming the sample, and therefore other rules of production
will be needed to transform the remainder of the sample, and therefore
parsimony will be less. The ideas of "entropy" and "parsimony"
were suggested by a paper of Goodall (1962)., However, it is likely
that Goodall's entropy was a measure of information. (and therefore
was dependent on probabilities of occurrence and not conditional
probabilities). The idea of a combined measure and a trade-off
between these two quantities appears in Goodall (1962).

One recursive rule of production generally replaces many
(indeed, an infinity) of non-recursive rules of production.

The recursive parsimony of a transformation is defined as

kr. n,

where n, is the number of recursive (reduced) rules of production,
and where Ar is a positive real number, called the coefficient of
recursive parsimony.*

The combined entropy-parsimony-recusive-parsimony measure of
a transformation is defined to be

- Zpij 10g2 pij DY no+ A

Typically, recursive rules of production are more desireable

than non-recursive rules. Thus, Ar would be chosen so that
A < <A

so as to give relatively greater weight in the measure to the less
desirable non-recursive rules. One might even assign a value of zero

to recursive parsimony.

*The variable LAMR in the computer program is the coefficient of
recursive parsimony.
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Note that in all of the foregoing cases, the identity trans-
formation would have no entropy at all, since the application of an
identity transformation is a completely reliable recoding. The
combined measure of entropy, parsimony, and recursive parsimony actually
used in the computer program implementing the Grammar Discovery Algor-
ithm is an ad hoc combination of the above features. We have not
attempted to derive the particular function chosen from a series of
desired axiomatized properties, or to show that the function (or its
class) is the only function (or only class of functions) that satisfies
the axioms. The properties that the function does, however, satisfy
are as follows:

(1) A rule of production developed from a structural (Type I)
regularity whould have zero entropy. Thus, rules developed from either
type I regularities or identify transformations will contribute zero
to entropy.

(2) Each rule of production should count equally against parsimony.
Certainly, measuring grammatical complexity can be done in other ways
(and better ways) than counting rules of production; however, we will
use this simple approach suggested by Goodall (1962) here. One impor-
tant implication of this requirement is that each different identity
transformation should count as a rule in determining parsimony. Thus, we
do not treat the identity transformation as one transformation any
more that we treat any other rule of production having different predicted
parts as being the same. Note that if identity transformation did not
count against parsimony, they would not contribute to the H measure at all

(since their entropy is zero); and, if that were the case, the transfor-

mation with minimal H would always be the identity transformation on the

whole sample, and the initial sample would then be perpetuated from
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level to level.
(3) Each recursive rule of production should count equally
against recursive parsimony.
(4) The entropy for each application of each rule should be
normalized to reflect the number of symbols recoded with it. If
this normalization were not done, longer rules would tend to be favor-
ed over shorter rules. Carried to the extreme, the best recoding would
be accomplished with very long rules--rules so long that they are 100%
reliable solely by virtue of their capturing artifacts of the sample.
(5) The relative weights to be given to the 3 attributes of
entropy, parsimony, and recursive parsimony should be determined by
a weighted sum. The trade-off should be between entropy on the one
hand and the two kinds of parsimony on the other.
The weighted, normalized, combined entropy-parsimony-recursive-par-
simony used in the computer program is therefore
- M :E: P log P + An + A_n
rr
where this sum is taken over each application of each rule of production,

and where Mij is the length of the regularity associated with Pij' Note

ZMi. = N,
j

where N is the length of Y.

that

The idea of reliably recoding, or "bunching together," of portions
of a sample of data is found in a variety of settings. It is well
known in psychology and physiology [Miller, 1956] that human beings
are well able to classify gradations in pitch, hue, loudness, count,
smell, taste, and a variety of sensory information into about 7 cate-
gories. If faced with much more than 7 categories, humans lose the

ability to distinguish reliably and must "bunch" the data together so
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that items within the bunch may first be distinguished and gradated.
Then, at the next higher level, representatives of the bunches may
then be distinguished and gradated.

The pervasiveness of this number 7 (plus or minus 2) seems also
to extend into the social and political behavior of humans. As C.
Northcote Parkinson (1957) has noted in an examination of the English
Privy Council and other cabinet bodies,human decision-making bodies tend
to function best with about 8 members. When more than this number are
added to a committee, an inner committee of smaller size tends to
form to do the actual decision-making and to integrate the views of
factional representatives from the larger body.

Although not within the scope of this study, it seems possible
that, for humans, the tradeoff between parsimony and entropy comes
when more than 7 items must be integrated. This level (of parsimony)
in turn implicitly defines the degree of faithfulness of representation
(entropy) which necessarily must be accepted by humans in a variety of

sensory and social and political settings.
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3. THE pij-GRAPH OF A TRANSFORMATION

Whenever we have a collection of probabilities from a set of
regularities abstracted from a given sample, we may not only classify
them as to type (i.e. type I, II, III, IV, and V), but we may sort them
into descending order by magnitude. Such a graph, which we call the

pij—graph has the general appearahcé seen below:
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In the figure, o denotes the permutation of the Fm pij‘s which
sort them into descending order. o(i), where i is an integer from 1
to F_, is the ordered pair (i,j) that identifies the pij' Goodall
(1962) presented such a graph, although apparently erroneously using
the actual probabilities of occurrence. These probabilities, of course,
are rarely near 1.0. However, if we instead consider conditional prob-
abilities (as we do herein) or even relative probabilities (perhaps
normalizing all probabilities of occurrence of an M-gram by dividing
by the largest), there are several provocative and valid points in
Goodall. As always, the Goodall terminology is highly metaphorical
and suggestive. The high probabilities at the left end of the graph
represent the "structure' in the sample. The structure is that portion
of the sample that is reliably present. Structure is associated with
the type I or II regularities in the sample. Structure may be such
facts as Q's are always followed by U's in English; that periods are
reliably followed by spaces; that most birthdays in the social security
files have a "19" in them; or that certain self-synchronizing codes
have a certain punctuating symbol at the beginning of each phrase (e.g.
the peak of a sawtooth wave at the beginning of a television line image).
Since the structure is reliable, all of the structure may be abbreviated
and replaced by a shorter marker (or even removed altogether!). What
is structure at one level is structure at the next level--regardless
of how it is recoded, abbreviated, or deleted.

The message portion of a sample is the part that is unpredictably
variable at this level of analysis. The entropy of this portion of
the sample is high because this is the part of the sample which contains

the information. A key point is that what is '"unresolvable message'
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at one level is not necessarily unresolvable at a higher level.
Unlike structure, message is not always message. Of course, message
cannot be recoded (except by an identity transformation) because it
has no as-yet-identified internal structure* Message corresponds to
the type III and IV regularities in the sample.

The noise portion of the sample is that part of the sample
which occurs with very low probability. Noise corresponds to the
type V regularities--indeed, the "irregularities." Noise represents
all the exceptions, contradictions, error, and randomness of the sample--
things which occur so rarely that their non-occurrence in the sample
is so predictable that they cannot be considered message (which is
unpredictable variability). Whether noise represents "error'" (as, for
example, would be the case in an incoming encoded message) or 'excep-
tions" (that is, information which indeed is correct, but rare) depends
on the nature of the sample. Accordingly, one would want to preserve
exceptions for analysis at a higher level and discard error as informa-
tion that is incompatible with the sample. This is an external decision.

On the pij—graph, structure, message, and noise appear as one
proceeds from left to right.

The pij-graph described earlier is of greatest interest when we
plot only the pij's used to develop rules of production that are actu-
ally used in a transformation. We call this graph the pij_ graph of

a transformation.

*There is one possible exception to this statement which is discussed
in the sentence-oriented method for inducing disjunctions. The excep-
tion occurs when a message sequence is one of an ensemble of possible
substitution instances for a predicted sub-sequence that has maximal
or near maximal entropy., See II,E.4,



71

For example, if our initial sample is

e mmeem e e ameee LEVEL 1 === —mmmm———

SYMBOL STRING GF LENGTF 272 AND USING ZLFHABET OF SI2E 2

111001101100100011000101110101010:€000C011601001110101010100
00001110001111OOJOOOIICOOIOIOICOOCGCJlCCCbllllOlOllOllOOOlOO
11€C0010110001€1€1€0C0C0110101101100011¢C1000000110010001110
01001101010011€000011101010101000000110001011110010111100101
110101011110001111210C01C01GC0O0CO

and we use the following 4 rules of production using an M of 2

TENTATIVE RULES OF PRODUCTION FOR M OF 2

A ——=> 11
B ——===> 10
cC --——-> 01
I > o0

we might find the following values for entropy and parsimony:

ENTROPY TERM 65.18735
PARSIMONY TERM 4.000060
RECURSIVE PARSIMONY TERM 0.0

VALUE OF H FOR THIS RECODINGeesesosoece 69.18735

NUMBER OF RULES OF PRODUCT ION 4
NUMBER OF RECURSIVE RULELS 0
NUMBER OF TIMES RULES ARE APPL IED 136

If we then apply the rules of production, using a standard

recoding procedure, we would obtain a pij—graph such as is

found on the next page. This recoding results in the
following new string:

ABCBADBDADCCACCCCDDDADBCACCCCDDDABDAAOBDADCCCDDDADDAACCBADCD
ADDBADCCCDDDACCBACCBCDDCADBDABCDACCOADDCACCCCDDDADCCABCCABCC

ACCCABCAABLBCDOD
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GRAPH OF P(I) USED IN RECCDING FOR LEVEL 1 AND M OF 2
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4. RESOLVING TRANSFORMATIONS

If the entropy is not large for a transformation, it must be
that pij's are mostly near 1.0 or near 0.0 .

Let g be the largest number of predicted positions for any mask
in a transformation. This number ié always less than or equal to
M-1 for the largest M tried in the Search Phase. The criterion for

a transformation is the value

- l log
c8 2 .8

A resolving transformation 1is a transformation for which the entropy
is less than the criterion.

This suggestive term is found in Goodall (1962). The idea there
that when a recoding satisfies the criterion, the underlying structure
that generated the sample has been identified; and, therefore, the
sample is "resolved."

Note that if one of our measures which combine entropy and parsi-
mony is used, some pij's may be smaller than 1 - e;‘or,,if a transformf
ation which is not a resolving transformation is considered, some pij's
may be smaller than 1 - €. In both these cases, however, most pij's
will tend to be near 1, and exceptions will occur only because the
introduction of that pij leads to such a substantial reduction in
the number of rules or production that the increase in entropy is
justified. In all cases, however, most of the pij's will be bunched
near 1.0.

In the pij-graph of a transformation actually used in recoding there
will be no pij's that are less than e because we never use regular-

ities so ynreliable in a transformation.
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In thg case of a resolving transformation, there can be no pij's
equal to e because one such pij would alone make the entropy of the
transformation larger than the criterion.

These last 2 observations define the features of any pij—graph of

a resolving transformation.
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5. TRIAL RECODINGS AND THE SELECTION OF THE ACTUAL RECODING

Ml and M2 are the lower and upper limits, respectively, on the
length of context-sub-sequences and predicted-sub-sequences considered
in the Search Phase in the search for local regularities. For each
M between Ml and M2, a different recoding resulté, in general, if
we allow only regularities of length up to M to be used in developing
rules of production in the recoding. Thus, M2-M1+1 recodings are
defined. These recodings are parameterized by the index MBE.

In the Selection Phase, these M2-Ml=1 different trial recodings
are each attempted, and the entropy, parsimony, and recursive parsimony
of each computed. The recoding which is selected to be the actual
vrecoding is the one which is associated with the first M (considering
the direction of considering the M's*) which is a resolving trans-
formation**, or the M which has the best combined entropy-parsimony-
recursive-parsimony measure (if it is not actually a resolving trans-
formation). The best combined measure is fhe least combined measure.

The strings resulting from the application of the actual recoding
constitute the strings of the next level of the process. The Search
Phase, the Recoding Phase, and the Selection Phase of the Grammar
Discovery Algorithm are then applied to the strings of this level,

until the Algorithm terminates.

*The variable VDIR specifies this order in the computer program.

**The variable WDF in the computer program determines whether the
first resolving transformation discovered is used for the actual
recoding, or whether (if there is more than one resolving transfor-
mation) the best resolving transformation is used.
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For example, if we again refer to the example started
on page 68, we find that for an M of 3, we develop the

following 8 rules of production:

TENTATIVE RULES OF PRODUCTION FOR M OF 3

A —--=-=> 111
B -----> 001
cC -~--=> 101
D ----=> 100
E -----> 0l1
F ———- > 000
6 ----=-> 110
H ————- > 010

The application of these 8 rules to the sample yields the

following new string:

ABCNNEFCGCHDFEBBGCHOFEDEGHBDHCFFGF ACEEFDGFCDFCFFGCCDEBFFGHBG

HEHDGFECHCFFGBEGHADCGCEGBADHHFOO

The entropy and parsimony for this transformation are

as follows:

ENTROPY TERM 42.55614
PARSIMONY TERM 8.060000
RECURSIVE PARSIMONY TERM 0.0

+

VALUE OF H FOK THIS RECUDINGeseososces 50455614

NUMBER OF RULES OF PRODUCTION 8
NUMBER OF RECURSIVE RULES c
NUMBER OF TIMES RULES ARE APPLIED 90

And, the pij=graph for the transformation is shown on the next

page.
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GRAPH OF P(1) USED IN RECODING FOR LEVEL 1 AND M OF 3
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Similarly, for an M of 4, we find the following rules:

TENTATIVE RULES OF PRODUCTION FOR M OF 4

A - > 1110
B —-_————D 6110
C === > 1100
D =—--- > 100C
E —————D 0101
F —————D 1101
G —_———> 01C0
H ———> 0000
1 ———==> 1001
J D 0011
K ————> 0010
L —————D 0001

and the following evaluation:

ENTROPY TERM 30.,02759
PARSIMONY TERM 12.60009
RECURSIVE PARSIMONY TERM 0.0

VALUE OF H FOR THIS RECODINGesesoesees 42402759

NUMBER OF RULES OF PRODUCTION 12

NUMBER OF RECURSIVE RULES 0
NUMBER COF TIMES RULES ARE APPLIED 68

and the following new string:

ABCDCEFEGHCIFEGHA JCDCEGHCJFBCGCKCEGHFBCBGHCCAGFGCLFEGHCEAEAE

FEAJAKGH

The pij—graph is found on the next page.
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If it seems that the combined entropy-parsimony measure
(H) is merely a monotonic function of M, consider what happens

with an M of 5. Here we get an extraorindary number of

rules---27 in all---as shown below:

TENTATIVE RULES OF PRODUCTION FOR M OF 5

A mem—e > 11100
B -----> 11011
C  ——m-- > 00100
D ----=> 01100
E ——-m- > 01011
F o ——-—-> 10101
[R— > 01010
Ho —meee > 00000
1 --—-—--> 11001
4 ——-==>  ¢0l111
K —=---> 10100
L ---——-> 00001
M . ——-==> 11000
N ————D 11110
0 ----=> 01000
P —-em=> 10110
Q -----> 00010
R --—==> 00110
S ———D 00011
T —-—==> 01110
U -----> 01001
V  —---=> 11010
I > ollll
X ---=-> 00101
Y ---—-> 1011l
[ R— > 10001
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For M of 5, the parsimony is therefore quite large.
However, the entropy is quite small. With an M as large
as 5, there is sufficient context to guarantee a more
faithful (and hence reliable, and hence lower entropy)
transformation. However, this greater faithfulness is
the result of the proliferation of rules of production.

There are more rules, each used less often, and each

used more reliably, The following is the calculation
of H:
ENTROPY TERM 22,21033
PARS TMONY TERM 27.00000
RECURSIVE PARS IMONY TERM 0.0

VALUE OF H FOR THIS RECODINGssesoesese 49.21033

NUMBER OF RULES OF PRODUCTION 27
NUMBER OF RECURSIVE RULES c
NUMBER OF TIMES RULES ARE APPLIED 54

And, the following is the new string that results:

ABCDEFGH I JGK LMNOMFHOJFPCMEQKLFPROSCTUFRLVFHOE TWXVYZNC<AA>OD

(Note that when we exhaust the non-terminal alphabet provided,
we use brackets as in Backus-Naur Form to indicate non-
terminals).

The pij-graph for an M of 5 is found on the following

page.
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Note that for M of 5, we have some type II regularities
in the transformation.

Reviewing this example, note that the smallest H is
attained with an M of 4. Thus, after considering trial
recodings for M of 2,3,4, and 5, we would select the
recoding based on an M of 4 for the actual recoding.

We then would use the new string obtained by using the
recoding based on an M of 4 as the string for input to

level 2 of the Algorithm.
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E. INDUCING RECURSIONS FROM A FINITE SAMPLE OF SENTENCES

1. INTRODUCTION AND MOTIVATION

Every sample of sentences we encounter is finite; and every
finite sample of sentences can be generated by a finite state
grammar. In fact, a finite state grammar can be trivially found
which generates the sentences in the sample and only those sentences—
thus producing the best possible fit between the sample and the grammar
induced. A grammar wﬁich generates only a finite number of sentences
is a finite cardinality grammar, and a language with only a finite
number of sentences is a finite cardinality language. A finite car-
dinality grammar need not be a finite state (regular) grammar, and
a finite state (regular) grammar need not be a finite cardinaiity
grammar.

Of course, for reasons of economy and to satisfy our own intui-
tive requirements, we insist that the grammar induced by a grammar
discovery algorithm not always be either a finite state grammar or a
finite cardinality grammar. Thus, we allow the induction of non-finite-
state-grammars—that is of left-sensitive, right-sensitive, strictly
context-sensitive, and strictly unrestricted rewrite grammars—all
from a finite sample (which is, of course, a finite cardinality lan-
guage itself). Similarly, we allow the induction of non-finite-card-
inality-grammars from a finite sample. The only way for a grammar
(by which we mean, of course, a finite grammar-——i.e. one with a finite
number of rules) to generate more than a finite number of sentences
is for the grammar to have a recursion. Allowing the induction of
recursions from a finite sample is as important as allowing the induc-
tion of non-finite-state rules of production from a finite sample.

Indeed, without recursion, many simple relations must be expressed
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by numerous different rules of production. Moreover, if the sample of

sentences is extended—say by application of a recursion—and we

are not allowed to induce grammars with recursions, then new rules

of production must then be added to explain the extension. Each
extension leads to a proliferation of additional rules of production;
In the case of this kind of extension of the sample, a grammar which

did not contain a recursion would be neither economical, nor stable

(under the extension).
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2. DEFINITION OFVA RECURSION
Given a grammar G = <VN, VT, P, S> . LetV = VN U VT' Let
w and y be strings over V*. We say that w <immediately derives
y, which we write as
w= y ,
if there exists a zl, z,, u, and v, all in V*, such that w = z1 u z,

Y and such that u -+ v is a rule of production in P.

23

and y = 21

N .
We say that w derives y, which we write as w => vy, if there exists

strings w > W such that w = Y and such that y = Wos

0> Wpsee

and such that w. = w,
i i+l

form is a string w € V* such that S = w. A sentence is a.string

for each i from 0 to n-1. A sentential

W e V% such that S = W.

A grammar is said to contain a recursion if there is a non-term-

inal N ¢ VN such that

o N B . Y Ns
where a, B, vy, s € V*, provided that it is not the case that o = vy
and B= ,

Note that rules such as N> Nand N - N and NM > MN do not
count as recursions in the above definition. We use only the noun
"recursion" in referring to the above idea. An individual rule of
production oNB + yNg is called a recursive rule if the same non-term-
inal N appears in both the antecedent (left) side and consequent

(right) side of the rule, and provided that it is not the case that

a =y and B = S, and provided that |aNB|#|yNs|.
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3. APPROACHES TO INDUCING RECURSIONS

There are several possible approaches to inducing recursions
from a finite sample.

Feldman (1966,1967) proposed an algorithm for jnferring an un-
ambiguous, recursive regular grammar from a given sample. This
algorithm begins with the construction of a non-recursive,
regular, grammar that generates exactly the given sentences, then
merges non-terminals in this grammar to get é recursive regular
grammar which seems to be a ''reasonable generalization" of the sample.
The algorithm ends with a simplication process.

To generate the intermediate grammar which exactly generates
the given sentences, Feldman processes the strings of the sample
in order of decreasing length. To the extent that the sample does
not have different sentences of equal length, this procedure eliminates
the effect of order of the sentences within the sample. Rules of
production are developed one-by-one, as they are needed to generate
each sentence in the sample in turn. Specifically, starting with

a (the) longest sentence a al of length n, Feldman would generate

12+
n-1 rules as follows: The first rule is S > alAl. The next n-3

rules are Ai > ai+1Ai+1’ for i =2, ..., n-2. The n-1 -th rule is

An-S ” an-lan-z

of a regular grammar, and which he calls a '"residue" rule. 'Residue"

--which is a rule which is not in the form of a rule

rules in general are rules of the form A » w, we VT’ /w/22. New
rules are added as necessary as additional sentences from the sample are
considered.

As each sentence is considered, new rules of production are added
only to the extent required to guarantee the generation of that sen-

tence. These new rules may even be terminating rules—which are like
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"residue" rules except that their consequent (right) side is of
length 1. Terminating rules come about when all but the last symbol
.of the sentence under consideration can be generated with the pre-
viously developed rules. The rules so developed may be combined
and written non-deterministically.

To obtain recursion, rules of production are now merged. Each
residue rule is merged with a non-residue rules, thus eliminating
the "residue'" rules. The general principle is that after such merging,
the resulting grammar must still generate all the sample, plus as
few new short sentences as possible. This merging is accomplished
as follows; Whenever the non-terminal on the antecedent (left) side
of a residue rule occurs on the consequent (right) side of a non-
residue rule, the non;terminal of the left side of this non-residue
rule is substituted for the non-terminal on its consequent (right)
side which was in common with the residue rule. This eliminates the
residue rule, and makes the non-residue rule involved into a recur-
sive non-residue rule. Note that the resulting grammar is now entirely
in the form of a regular grammar. Also, note that this procedure
vguarantees that the longest sentence of the sample is generated by a
recursive rule. Shorter sentences of the sample may be generated
either with the aid of a recursive rule, or only by non-recursive
rules. The tendency is that the shorter the sentence, the more non-
recursive rules have been constructed; hence, it is more likely that
it can be generated by a sequence of non-recursive rules, followed by
one terminating rule.

The non-residue recursive grammar thus produced is now simplified
to remove equivalent productions. This simplication results in no

change in the language generated.
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A second algorithm by Feldman (1969) infers a ''pivot'" grammar
for a given set of sentences. A pivot grammar is an operator grammar
in which a terminal symbol which separates non-terminals in a production
appears in no other way. Linear grammars are a special case of pivot
grammars, but the class of pivot grammars is much broader than the
linear grammars.

The algorithm begins with the sample of sentences and the know-
ledge of which terminal symbol(s) are the pivot terminal symbols. The
algorithm produces a pivot grammar.

The main strategy of the algorithm is to find self-embeddings.

Each sentence is examined to see if it has a proper substring which

is also a sentence of the sample. If it does, a ''loop non-terminal

is substituted for the longest such substring. This results in a new
sentence. This new sentence begins part of the sample under consideration.
If no sentences have such substrings, the sample is scanned to see

if all sentences have the same first symbol, or the same last symbol.

If this is the case, the common‘symbol is trimmed off, and the pro-

cess described above is then applied to the trimmed sentences.
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4. SENTENCE-ORIENTED METHOD OF INDUCING RECURSION

The methods for inducing recursions can be divided into two
categories. First, there are methods that operate on the sentences
of the samples—that is, the methods that look for some indication
in the sample that a recursive rule of production is justified.
Second, there are methods that operate on the rules of production
developed at each level of the grammar discovery algorithm.*

We examine the sentence-oriented approaches first.

A theorem of Bar-Hillel et al. (1962) states that for every
context-free language L, there exist constants p and g, depending
only on L, such that Zf there is a sentence z in L of length greater
than p, then z may be written as a concatenation uvwxy, where
lvwx| € q, withblvwl>0, and further that each sentence

u vi W xi y

is in L for i2 0. Thus, if L contains one sufficiently long sentence,
an infinity of other long sentences are stated to also be in L.
A proof of this theorem appears in Hopcroft and Ullman (1969) under
the name "uvwxy theorem."

The special case of the uvwxy theorem for regular languages is
a well-known résult, usually presented in discussions of whether a given
regular language is finite or infinite. This result is the theorem
stating that if a regular language contains a sentence of length
greater than the number of non-terminal symbols in the grammar (which
is the same as the number of states in the finite automaton associated
with the grammar), then the language is infinite, and in fact contains

an infinity of sentences of the form

*The variable WCV specifies which approach is to be used in the com-
puter program, only the rule-oriented approach. The variable KRECUR
specifies whether any attempt to induce recursions should be made.
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uviwy , 120.

The uvwxy theorem, and its proof, suggest a sentence-oriented
approach for inducing the presence of a recursion in a given sample
of sentences. If the sample of sentences is sufficiently rich and
varied, there should be some instances in the sample of substrings
of the form viwyi. We should attempt to recognize these instances.
In a sentence, a substring such as vi is the product of recursion.
This sub-string can be generated by the application of some recursive
rule i times.

The detectioh of vi can, be accomplished with masks of even
length M, wherein the first M/2 positions of the mask are'conteXt
positions, and the last M/2 positions are predicted positions--

that is,

oo
2 2

S

(A mask with the context and predicted symbols reversed works equally
well). The given sample of sentences at the current level is searched
for regularities associated with this series of masks of even length.
The only occurrence of regularities associated with this mask can
be over those strings where there is a repeated sub-string. The
conditional probability associated with this regularity should be
near 1.0 for a recursion to exist. That is, most occurrences of the
sub-string should be followed by another occurrence of the same
sub-string--the only exception being the last occurrence within the
sentence. Note that the conditional probability cannot be eXactly 1,
unless the entire sample consists of repetitions of the sub-string.

If the recursive rule is a non-self-embedding rule, then we
would find only vi in a sentence. If the recursive rule is‘a self-em-

bedding one then there would also be an x sub-string.
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Whenever a repeated substring a is discovered, a new non-terminal
can be introduced into the non-terminal vocabulary of the induced
grammar, and the recursive rule

N> aN
can be added to the induced grammar. Each occurrence of o in the
sample is then replaced with the non-terminal "N". The derivation

tree for this is as follows:

The recoded sample is then

...CNNNd....
There is no good procedure for deciding whether to write the rule
as N - abcN or N »> cabN, when a terminal such as '"'c" appears at the
beginning of the repeated substrings. There is no good criterion for
deciding whether to make the recursive rule left recursive or right
recursive. There is no good way to decide whether the sequence
immediately following the repeated substring should be written as a
disjunctive alternative to the recursive symb01~—thaf is,

N~ abeN | d
or whether another formulation is more desirable.

Moreover, an obvious self-embedding such as N - abcNdef with the

derivation tree

...cabcabcabcdefdefdef....
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may yield the pair of recursive rules
N - abceN
M »> defM
and a recoded sample of
. . . CNNNMMM. . .
Moreover, this method has no obvious extension to context-sen-

sitive or unrestricted rewrite rules; and the method also requires

a rather large sample size in general.
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5. RULE-ORIENTED METHOD OF INDUCING RECURSION
In the rule-oriented method of inducing recursion, we examine the
rules of production generated at each successive level of the grammar
discovery process, and try to induce the presence of recursion.
Consider, for example, a language generated by the grammar with
"p'" and "+" as the terminals and with the single strictly-context-free
recursive rule
P > *pPpP
A sample of sentences (with initial punctuation) from this language
might be
(1)  ++pp+pp.++pPPpP.+PP.+P+PP. ++PP+PP. +++DPPPP. ++PP+P+PP. ++PP++PPP.
In practice, the Grammar Discovery Algorithm would discover the single
non-recursive rule
A > +pp
at level 1. The original sample would then be recoded using this
rule of production. The result would be a set of sentences containing
the original terminal symbols '"p" and '"+'", and also the non-terminal "A".
The substring "+pp'" will not, of course, appear in the: encoded strings.
The result would be
(2) +AA.+Ap.A.+pA.+AA.++App.+A+pA.+A+Ap.
Note that substrings such as '+pA", "+Ap", as well as "+AA" do appear
in the image."
The rules of production developed at level 2 include
B > +AA,
which is the obvious non-recursive rule resulting from the recursive
structure of the language. However, rules such as
C > +pA

and
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D - +Ap
would also be developed since "+pA' and "+Ap" are cohesive sub-strings
at this level. Note the resulting exponential growth of the number
of rules of production, and of the non-terminals. This growth is typ-
ical when the more economical recursive rule (in this case p - +pp)
is not developed.

We now introduce some terminology.

Recursive rules of production for context-free grammars takes the
following forms, where A is a non—terminal, and where o and B are
Non-null strings:

first, A - Ao, which is called a left recursion;

second, A ~ oA, which is called a right right recursion;
and finally A - aAB, which is called a éerLembedding ("middle'" recursion).

The first two rules are left regular and right regular rules, re-

spectively, when the length of a is only 1.

If M is large enough (that is, the length of the consequent (right)
side of the rule of production is large enough), then recursions will
manifest themeslves between adjacent levels of the grammar discovery
process. Suppose the rule of production

A ~> aB¢
appears in the induced grammar at level i; and suppose the rule
B » &Ce
appears at level i+l; and suppose A and C are ultimately goint to be

identified with one another to make the recursive rule

A + abdAde

then if M had been large enough to encompass the length of adAde,
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the rule
A » adBoe

could have appeared at level i, so that the rule
A > oadAde

would have been induced at that level.

Thus, it is sufficient to examine ruleé of production occurring
at adjacent levels of the induced grammar, if M is generous enough.
(Alternatively, if M is not generous,it will be necessary to expand
our examination of rules to non-adjaéent levels).*

We now develop a procedure for identifying recursions.

Lef R1 be a rule of production induced at level i-1 of the grammar
discovery process, and let R2 be a proposed new rule of production that
is about to be added to the induced grammar at level i. Before any
proposed new rule is added at level i (iZ2), that rule is considered
in relation to each rule already in the grammar from’ level i-1 to see
if one recursive rule could replace both. Note that it is here that
we limit the detection of recursion to adjacent levels.

The following are the conditions for inducing a recursion:

(1) Rules R1 and R2 must be isomorphic in the following sense:

(a) The precondition for isomorphism is that the consequent

(right) side of rule R, and the consequent (right) side

1

of rule R2 be of the same length.

(b) Secondly, there must exist a one-to-one mapping &

from the set of symbols appearing in rule R1 to the set

*This latter feature is not now implemented in the computer program
for the Grammar Discovery Algorithm.
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of symbols appearing in rule RZ’ such that if symbol

f appears in the consequent (right) side of rule R1

at position t, then symbol £(f) must appear in the

consequent side of rule R, at position t, for all t

2

between 1 and the common length of the consequent
sides of the two rules.
(2) There must exist a symbol ¢ such that the following two con-
ditions hold:
(a) The symbol o is a predicted symbol on the antecedent

(left) side of rule R (To determine this, the mask from

1°

which rule R1 was developed must be considered).

(b) The symbol o appears on the consequent (right) side of

rule RZ'

The symbol o is the recursive symbol--the symbol linking the two
rules. If no recursive rule were identified, there would instead be
a chain of rules at successive levels—each linked between adjacent
levels by one such symbol.

If the above conditions hold, we have a recursion. The symbol o
is now an extraneous symbol in the induced grammar. Let T be the non-term-
inal symbol appearing in the same position of rule R, at level i-1 as

1

T occurs in rule R2 at level i. The rule R2 is extraneous, and should

not be added to the induced garmmar. The symbol 0 is extraneous and
should now be deleted from the current non-terminal vocabulary of

/
the induced grammar. Rule R1 should be made into a recursive rule R1

by replacing the symbol o on its antecedent(left) side by the symbol

T , so that T occurs now on both the antecedent(left) side and the

consequent (right) side of this modified rule R{i Thus, this modified

7. . .
rule Rl is now a recursive rule of production.
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Moreover, T should replace every occurrence of ¢ in all existing
rules as well. Rules which are then identical should then be deleted
from the induced grammar. This Rewriting process simplifies the in-
duced grammar.

Finally, the recursive rule just induced should be recursively
applied wherever possible to the existing set of sentences. There will,
in general, be many opportunities to apply the recursive rule which
did not exist before. This back-tracking process has the effect of
applying each rule maximally before going on.

Because of these processes of Rewriting all existing rules,
and the back-tracking process of recursively applying any new recursive
rule wherever possible, it iszEEEIEE"%£om the point of view of writing
the computer program for this algorithm to induce oﬂly"one recursive
rule at each level. The addition of additional levels to the grammar

discovery algorithm in no way complicates the induced grammar.

Thus, in the example, the rule
- A > +pp
was a rule at leVel 1; and (if no search for recursion is made) the
rules
B > +AA
C ~> +pA
D - +Ap
were rules induced at level 2. Level 2 is the first level at which

the inter-level search for recursion can be applied. Before accepting
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a rule such as

B - +AA
we would discover that it is isomorphic to the rule A - +pp. That is,
the consequent (right) side are both of length 3, and there exists
a mapping & taking "+'" into "+" , and 'p" into "A" and this mapping is
one-one. The symbol "A" is the recursive symbol o. T is '"p'".
Replacing "A" with "p", we get the recursive rule

p = +pp
If we now apply this rule whevever possible to the original sample
(1), we get a new sample which has a '"p" wherever there is an "A" in
(2). However, by applying this rule in every possible way, the sample
(1) in fact is completely reduced to

P.P-P-P.-P-P-P-P-

It should be noted that every recursive rule of production is
inherently a disjunctive rule as well. In particular, any recursive
rule can be written in the form

GNB - ¢NG&|®
where ¢ represents the empty string, where o, B, ¢ and § are strings,
and where '"N" is a non-terminal (recursive) symbol. The recursive
rules induced above are all of this form. Thus, the rule induced in

the above example is, if written completely,

p + +pp|o.
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F. INDUCING DISJUNCTIONS AND GENERALIZATIONS
1. INTRODUCTION AND MOTIVATION FOR INDUCING GENERALIZATIONS

One specific application of the Grammar Discovery Algorithm is
the induction problem for formal systems. In general, thé rules and
meta-rules of formal systems are written in terms of quantified var-
iables. For example, a given property, say commutativity of some bin-

ary operation ".", may hold '"for all" variables taken from a certain

set Z = {Zl,...,Zk}. The commutative rule would not be stated as k2

separate commutative rules (i.e. Zl-Z2 = ZZ-Zl, Zl- 3= L3°Lys 2,025 =

3'22, etc.), but rather as one rule stated in terms of a meta-variable

Z Z2,°2,, 2,2
Z
which ranges over the set Z (i.e.\f:xl,xzez XiX, = X5X; ). Of course,
whenever the set Z is not finite, the set of meta-variables is not
merely a convenience and economy, but a necessity.

The process of inducing the required meta-rule (which is stated
in terms of a quantified meta-variables) from specific instances of the
rule is called generalization. Generalization in induction is the
counterpart of substitution in derivation.

In doing induction in formal systems, it is desireable to have a

facility for generalization.
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2. INDUCING GENERALIZATIONS COMBINATORIALLY (RULE-ORIENTED METHOD)

The induction of generalized rules can be done combinatorially
in a manner similar in concept to the induction of recursions. We
begin by allowing the Grammar Discovery Algorithm to proceed in its
development of rules level by level. But before a new rule of pro-
duction R is admitted into the induced grammar (at a level greater
than level one), the possibility of instead introducing a generalized
rule is considered. The generalized rule, as it exists, would replace
the rule R about to be admitted as well as certain rule(s) already in
the induced grammar.

The following are the conditions required to induce a genetaliza-
tion:

(1) First, there must be a non-empty set of rules Rl”"’Rk in
the induced grammar which are all isomorphic to the rule R. (Iso-
morphism of rules is defined during the discussion of inducing recur-
sion).

(2) Second, for the h context positions of the consequent (right)
side of rule R, suppose only a particular subset of symbols (say,
Zl,Zz,...Zd) appear in those h positions in both R and Rl""’Rk'

Then all dh combinations of these d symbols in those h positions
must occur. (Note, then, that a minimum requirement is k?%dh).

(3) Third, for all but the h positions, the rules Rl""’Rk
and R must be identical.

Now define Z as the set of d symbols above. Z = {Zl,Zz,...Zd}.
Let X]seeesXy be d meta-variables. Let R* be the rule obtained from
R by substituting xi-for each occurrence of Z: in . rule R (1S€id).

1
Now the rule R* replaces Rl""’Rk and R in the induced grammar. Rule
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R* is the generalized rule; it is written in terms of the d meta-var-
iables X seeesXge For example, suppose a sample from a formal system
contains rules of inference such as

292y > Ly

2125 > ZgZy

Zolg > Lgly

Zyly > 242,

2321 > 2123

Zaly > Lylyg

lel - lel (identity rules)

17" 1"
Zoky > 252, ( )

1" 1"
Zglg > Lglg ( )
where

yA

{21,22,23}
d=3
h=2
the dh = 9 rules of inference are isomorphic. The dh rules of inference

can be consolidated into one meta-rule expressed in terms of the meta-

variables Xq and X, universally quantified over Z —namely, ¥/ xl,xzez
X Xy > XpX,.
The above induction of generalized meta-rules is a combinatorial

process. Of course, the requirement for the appearance of all dk

variations can be relaxed in practice—with the attendant risk of over-gen-
eralizing.*
Finally, it should be noted that the Generalization Process includes

a process which might be called the process of finding 'negative' regu-

*This combinatorial generalization process is not implemented in the
computer program.
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larities. Suppose, for example, in a non-binary alphabet that a
given symbol of the alphabet does not appear in a particular context
in the sample. Then a '"negative" regulérity can be envisioned which
stétes that fact about the sample. In fact, one can envision the
‘masks in the Search Phase as containing 'megative' predicted positions—
that is, which record the absence of particular symbols in particular
contexts in the sample. However, it will be seen that the Generaliza-
tion Process described above subsumes this process—and indeed, is
more general in the sense that pairs, triplets, etc. of absent symbols
in particular contexts can be expressed easily.

Let us now digress briéfly and discuss the process of inducing

disjunctive rules.
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3. INTRODUCTION AND MOTIVATION FOR INDUCING DISJUNCTIONS

An explicit disjunctive rule is a rule of production in which
the consequent (right) side consists of two or more different strings,
any one of which can be substituted for the antecedent (left) side. A
typical explicit disjunctive rule might be

A->aB | bB | c
where "A" and '"B'" are non-terminal symbols, and "a'', '"b", and '"c"
are terminal symbols. An implicit disjunctive rule is said to exist in
a grammar whenever the antecedent (left) sides of two or more rules
of production are identical, but the respective consequent (right)
sides are not. Obviously implicit disjunctive rules can be collected
and written as one explicit disjunctive rules.

Disjunctiqns already arise in the Grammar Discovery Algorithm—
but only in the course of inducing recursions. Each recursive rule
of produétion inherently is a disjunctive rule. In particular, any
recursive rule can be written in the form

aNB + YNG&|¢
where ¢ represents the empty string, where o, B, y, and § are strings,
and where '"N'" is a non-terminal symbol. The recursive rules induced
by the Grammar Discovery Algorithm are all in this form.

But so far, there is no other facility in the Grammar Discovery
Algorithm for inducing disjunctions. Indeed, the bottom-up character
of the Algorithm guarantees that no implicit disjunctive rule (and
therefore no explicit disjunctive rule) can result because different
substrings in the sample at any level will never be encoded in the
same way. A facility for inducing disjunctions is particularly neces-
sary when the sample has initial punctuation. In that event, the

encoding can never proceed beyond a string such as
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81.52.83. ( and so forth),

where the Si are non-terminal symbols. A facility for inducing dis-
junctions in any level of the process is needed in order to avoid

always writing final rules such as

s+s. |s, |s

1

where "S" is the starting (non-terminal) symbol of the grammar.

sl

This same unattractive situation (i.e. of having to write one final
trivial disjunctive rule having a large set of disjunctive choices) is
possibie, of course, even in the absence of initial punctuation, In
any case, this situation can be avoided if the Grammar Discovery Algor-
ithm has a facility to induce disjunctive (non-deterministic) rules
of production at any level (that is, not merely at the final level).
Finally, in the absence of a facility for inducing disjunctions
(i.e. if all rules were deterministic), only one possible structure
(except for variations cgused by the disjunctions inherent in recur-
sions) can be represented by the grammar. Thus, while recursions
provide the means for generating infinities of sentences, disjunctions

provide the means for generating different varieties of sentence.
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4, INDUCING DISJUNCTIONS USING ENTROPY (SENTENCE-ORIENTED METHOD)

Up to now, only non-disjunctive (deterministic) rules of produc-
tion have been induced. These rules of production have been induced
as the result of the existence of highly reliable regularities in the
sample. For example, the fact that the symbol "a" appears in a position
1 of the sample, and a "e'" appears in position 4 of the sample may imply,
with 99% reliability, that symbols 'bb" appear in positions 2 and 3.
Perhaps '"'cc'" appears in positions 2 and 3 with conditional probability
.5%. In this situation, a rule of production

aNe - abbe
may be induced, where N is a non-terminal symbol. Thié rule faith—
fully represents the sequence of symbols in the sample 99% of the time.
Actually, three 'regularities" are involved in the above recoding.
First, there is the highly reliable Type II regularity
é??l = <'a%%e', " bb ", .99, Y>.

This regularity is the basis for the recoding. Then, there are the two

Type V regularities (or '"non-regularities', if you prefer)

R

2

and é??

3

<d'a%%e", " cc ", .005, Y>

<'a%%e", " _dd ", .005, Y>.
These two regularities are in effect ignored because they represent a
relationship among the symbols of the sample which occurs only rarely.
Note that the entropy of the ensemble of probabilities <.99, .005,
.005> is very nearly zero. This near-zero entropy is associated with
deterministic rules of production that are induced by the Algorithm.
Noﬁ suppose that, in a given sample Y, we have the following
three regularities:

é??l = <'a%%e', " bb ", .33, Y>,
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R, =<"a¥%e", "_cc ", .33, Y>

and é;?s =<'a%%e", " dd ", .33, Y>
Now, the three possible substitution imstances (namely, "bb', "cc",
or "dd" in positions 2 and 3) occur with equal probability. Certainly,
one could not reasonably induce a rule of production that favored
any one of the three possibilities (e.g. aNe - abbe). The reason is
that the context here (i.e. an "a'" in a first position; and a "e" in
the fourth position) does not reliably predict the intervening 2 symbols.
Indeed, of the three possibilities that occur, the three occur equally
often. On the other hand, there are only three substitution instances--
that is, the symbols '"ae', '"ab'', etc. are not possibilities. Note that,
in this situation the ensemble of probabilities is <.33, .33, .33> here,
and that the entropy of this ensemble is large (and indeed makimal,
if only the three subsitution instances that actually occur are consid-
ered).

The above suggests a criterion for inducing disjunctive rules,

starting at the very first level of the Grammar Discovery Algorithm.

‘ . w
Let W be a set of Wwregularities %l = <y, ¢i’ Pi’ Y
i=1

having the same context-sub-sequence y and having non-zero conditional

probabilities {Pi}_w . (In general, w<<:Ch, where h is the number

i=1
of predicted positions in the mask associated with the regularities).
Suppose the entropy of the ensemble of these w non-zero probabilities
is maximal, or nearly maximal--that is,
logzw - Piwz 1og2 Pi
1=1

is zero, or small. In this situation, we write the disjunctive (non-de-

terministic) rules of production
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a > A1|A2|...|Aw
where o is the (common) antecedent (left) side as may be obtained from
any of the '%i’ and where Ai is the A-sequence for %i’ 1€ixw.

Note that we induce deterministic rules of production when the
reliability of a single regularity is high (the entropy over the possi-
ble substitution instances is zero, or small), and that we induce dis-
junctive (non-deterministic) rules of production when there are several
equally-likely (or nearly equally-likely) substitution instances (i.e.
the entropy over the possible substitution instances is maximal or
nearly maximal). With intermediate entropy, we do no encoding, and
we defer resolution to a higher level. Note also that with either
approach, the goal of minimizing the number of rules of production and
maximizing the parsimony of the induced grammar is furthered, as is
the goal of maximizing the non-trivial and hierarchical quality of the

grammar.

In certain samples from formal systems, there is an equivalence
between generalized rules and disjunctions. Suppose string a, B, and
y can be disjunctively substituted for a non-terminal N appearing in
some string § (using the rule N > a|B|y). The string & may be written
as §= (%Ngz, where %'and (% are strings. Define Z as the set containing
a, B, and vy, and then define z as a metavariable ranging over Z. If it
is appropriate to interpret the sample as containing theorems of a formal
system, we can then rewrite the disjunctive rule

N~ ofB|y

as the universally quantified genmeralization

\/ ze Z 6.z

8
17 2
for that formal system

Conversely, if we have a universally quantified generalization
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\/ z e Z F(z)

where F(z) is a rule in which z appears, then we can write

N - z1|z2 ...|zn,

where Z = {zl,zz, cees zn} .

As mentioned earlier, implicit disjunctive rules in a
grammar can be gathered together and written as one explicit
disjunctive rule. We can therefore define the multiﬁlicity
of an explicit disjunction as the number of different
disjunctive alternatives stated in the rule.

Rules of production are then of three types: (1) explicit
disjunctive rules, (2) recursions, and (3) non-disjunctive,
non-recursive rules. If a grammar consists only of the third
type of rules, at most one sentence can be generated. It is
necessary to have disjunctions to attain a variety of sentence
structures. If the grammar consists only of rules of the first
and third type, there are no more sentences than the product
of the multiplicities of the explicit disjunctions. This number
is, of course, finite. This product is an upper limit on the
number of essentially different structural types for sentences
generated by the grammar (of course, through ambiguity and other
reasons, this upper limit may not be attained). Indeed, variety
in structural types arises only from disjunctions.

If there are any recursions in the grammar, the number of
sentences that may be generated by the grammar becomes infinite

(assuming the rule can be used).
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Note, however, that the number of essentially different
structural types of sentences is still bounded. Recall also

that it was noted earlier that every recursive rule is inherently
a binary disjunctive rule---one of the disjunctive possibilities
being the recursive part of the rule, and the other being the
so-called '"base'" string. Note also that the recursive rule

can always be written so that this base string is the empty
string.

A normal-form grammar here is a grammar such that all of
the rules of production are rules of one of the following types:

(1) explicit disjunctive rules,

(2) recursions with an empty base string, and

(3) non-disjunctive, non-recursive rules.

For every grammar, there is a normal-form grammar that generates
exactly the same language---thst is, there is an equivalent
normal-form grammar.

In general, for a normal-form grammar, the number of
essentially different sentence structures is bounded above by the
product of multiplicities of the explicit disjunctive rules and
2nr, where n, is the number of recursive rules.

Note, from the description of the Grammar Discovery Algorithm,
that every induced grammar produced by the Algorithm is a

normal-form grammar.
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G. TERMINATION PROCEDURE

The Grammar Discovery Algorithm terminates when the sample Y
of the current level consists only of one symbol. This symbol be-
comes the starting symbol of the induced grammar. The Grammar Dis-
covery Algorithm arrives at this situation in one of two ways. If
the Grammar Discovery Algorithm is operating in the first mode (i.e.
there is no initial_punctuation between sentences), then this situation
is arrived at naturally by the reduction of Y to a length of one.

If the Algorithm is operating in the second mode (i.e. there isvinitial
punctuation between the sentences of the sample), then the sample

at the next-to-last level may have consisted of a concatentation of
single non-terminal sentences and initial punctuation marks (i.e.
Sq+Sq- and so forth). In that case, the reduction of the sample

from this level to the final levelbmay be accomplished by (a) removing
repetitions of the same non-terminal from the sample, and (b) Inducing
Disjunctions over the single symbols. Typically this disjunction
occurs at an intermediate level, and process (a) then applies to the
repetitions at the final level. Given a finite sample Y, the Grammar
Discovery Algorithm converges to some induced grammar after a finite
amount of time.

If M1Z72 (as is always the case) and if context-free rules only
are being generated (as described in a later section), then each
application of each context-free rule reduced the length of the sample
by at least one symbol. Even if each transformation involves only
one application of one binary constituent rule (M of 2), the Algorithm
would terminate after either N-1 levels (N being the length of the
sample, if there is no initial punctuation in the sample) or Nmax-l
levels (Nmax being the length of the longest sentence in the sample,

if there "< initial punctuation).



If context-sentitive rules are being generated, the reduction in
the length of the sample Y from level to level depends on their
being more than one contiguous predicted symbol in the mask of at least
one regularity used at least once in the recoding. One can assure this
by considering only masks with this property, or by requiring that
there be at least one application of such a rule as part of each trans-
formation (or, of course, by having at least one context-free rule in
each transformation).
In practice, of course, one usually '"covers'" the entire sample Y
or nearly all of it) so that these requirements are virtually automatically

satisfied by any transformation.
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H. CHOICE OF LIMITS ON LENGTH OF REGULARITIES IN THE SEARCH PHASE

In the Search Phase of the Grammar Discovery Algorithm, masks of
length M = M1, ..., M2 are considered. The lower limit M1 and the
upper limit M2* on the length of mask to be considered are determined
from the following considerations:

(1) Clearly one cannot scan the sample Y with an M greater than
the length Nmax of the longest sentence in Y. If the Grammar Discovery
Algorithm is operating in the first mode (i.e. with no initial punctuation
in the sample), then M2 cannot be larger than N—the sample length.

If the Grammar Discovery Algorithm is operating in the second mode
(i.e. with initial punctuation), M2 is limited above by Nmax—-the
length of the longest individual sentence in the sample Y.

(2) An M of 1 is appropriate only in the case where each symbol
in the sequence Y is statistically independent from the others, or
in the case where Y consists entirely of 1 symbol repeated endlessly.
In the case of one symbol repeated endlessly, an H (information rate)
of zero is attained. In the case of statistical independence among
the single (different) symbols, an information rate greater than zero
is attained; and indeed H is maximal (given the alphabet size) when
the symbols occur equally often. These two cases are so uninteresting
that we specify M122 to avoid them.

(3) If M is large, the number of different sequences of length M
over C symbols is large. Thus, the number of appearances of any par-
ticular sequence in the sample is relatively small. Certainly, if a
sequence only occurs once, twice, or 3 times, the statistics about these
sequences will not be meaningful. Thus, an M should be tried which

is not too large relative to the total length N of the sample. Also,

*M1 and M2 are parameters in the computer program.
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if N<CM, it is not even possible for all possible sequences of length
M to appear, even if, in these N symbols, no sequences appeared more
than once. Thus, M should be chosen so that

logCN >> M.

(4) In attempting to induce recursions, the point was made that
if there is a recursion, it will manifest itself in the tentative
rules induced at consecutive levels, provided M is large enough.
Thus, either M should be large enough to encompass any recursion
or the search for recursions should extend between non-consecutive
levels., This could be done in the same fashion as the search for re-
cursions between consecutive levels.

It should always be remembered that the entire approach to
grammar discovery described here is based on the idea of using relatively
small M in searching for regularities. If a regularity is missed at
one level because M was too small, then we claim the regularity will
be detected at a higher level. Thus, if the maximum length of M
is limited to say 5, and a Type I (100% reliable) regularity of length
10 exists in the sample, that regularity will be detected at a higher
level of the process. In the simplest case the first 5 symbols may be
encoded as a second new symbol. If the first 5 symbols at the first
level reliably predict the five succeeding symbols, then this regularity
involving 10 symbols at the first level manifests itself as a regularity
involving two symbols at the second level-—namely, the first new symbol
reliably predicts the second new symbol as its immediate successor.

It should be emphasized that finding two regularities of length 5
at the first level of the process, and then finding one regularity of
length 2 at the second level is not at all the same as finding the

one regularity of length 10 at the first level. This point is made in
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Goodall (1962). Combinatorics aside, the important difference is that
the first approach discovered a hierarchical relation in the sample,

and offers a significant insight into the sub-structure of the phrase of
length 10, while the other approach merely cataloged the occurrence

of a gross event.

The difference is between

A

7\

B C

a187878y85 85803931

and

d18,d78,858,8,84393,

Indeed, if M is large enough, the subsequences occurring in any finite
sample become quite regular and unique--the limiting case of this being

a completely trivial, non-hierarchical, and non-parsimonious grammar.
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I. CHOICE OF PARAMETERS IN THE RECODING PROCEDURE

The Recoding Procedure described earlier is only one possible
recoding procedure. Several variations in this Recoding Procedure
are possibie. For example, the sample Y may be scanned from right to
left, instead of from left to right, in the search for opportunities
for developing rules of production. Or, the scan could be started at
some intermediate symbol. Or, the positions could be scanned in
some order determined by some other considerations—such as the value
of the conditional probabilities encountered, etc.

Similarly, the regularities could be considered in ascending,
rather thandescending, order of length*-thereby giving preference
to longer regularities.

Also, the position for starting the scan is variable.** If the
length of the regularity varies between M1 and M2, and the scan of Y
is started at position T< M2, then ovbiously a regularity of length
less than or equal to T may well be found to recode some or all of
these first T positions, to the exclusion of a regularity of length M2Z.

The Recoding Procedure can also operate so that whenever recoding
is attempted using phrases no longer than M that this recoding is actually
done using only phrases of length M. This is called a strict
recoding***, and is appropriate only when the sample is believed to
come from a "uniform" code source (Fano). This variation in the
Recoding Procedure would be only rarely appropriate.

Another variation in the Recoding Procedure concerns the allowed

range in values of the conditional probabilities of the regularities

*This variation is under the control of the variable VDIR in the computer
program implemented in the Grammar Discovery Algorithm.

**This variation is under the control of the variable VSTART.

***%*This variation is under the control of the variable STRICT.
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used in recoding. The conditional probabilities associated with each
regularity are categorized by type (i.e. Type I; Type II, etc.),

and must specify whether the recoding prodedure can use only absolutely
reliable (Type I) regularities, or whether Type II, or Type III
regularities can also be used.****

Finally, Recoding Procedures can differ according to the order in
which the various criteria for selecting regularifies are applied. For
example, one can consider all fhe Type I regularities which are also
of length M, and then the other Type I regularities of different length.
Alternately, one can consider all the regularities of length M which
are also of Type I, and thenrconsider other regularities of length M
which are of different type.

The impact of these variations will be discussed in a later section.

Finally, it should be noted that the Recoding Procedure, even
with the variations noted above, is only an abbreviation itself of
a more combinatorially complete recoding procedure—that is, a recoding
procedure which is exhaustiv e in the sense that it includes all
possible variations in recoding. This complete recoding procedure would
not scan the sample from left to right, or right to left, or from the
middle out. In this complete procedure,the procedure would start by
considering all possible ways of partitioning the given sample Y
of length N into parts, with no part containing more than M symbols.

The number of such partitions is the same as the number of partitions
of the integer N into parts no greater than M (Riordan, 1958), and
this number is very large. Then all the possible regularities that
might be applied to each part of each partition must be considered.

And for each partition, and each such part, each possible regularity

**%*This variation is under the control of the variable ALLQOW.
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must be substituted into the part, and a recoding attempted, and entropy,
parsimony, and recursive parsimony of that encoding computed. And,

when a recoding is finally completed at one level, all the possible
different recodings at each successive level must be considered before

that recoding is finally selected to be the recoding at the present

level.
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J. EXTENSIONS OF THE GRAMMAR DISCOVERY ALGORITHM TO SAMPLES OTHER
THAN LINEAR SEQUENCES OF SYMBOLS

Earlier we made the statement that the methods of induction and
grammar discovery that we described herein are not particular to the
format for presentation of the sample. We then proceeded to describe
a specific Grammar Discovery Algorithm dealing with the problem of
inducing a grammar to generate a given sample of sentences which is
presented as a linear sequence of symbols. In this section, we return
to this point and argue for the general applicability of the methods of
induction and Grammar Discovery Algorithm in terms of a two dimensional
pattern recognition problem. It will be seen that this rephrasing is
not particular either to the Grammar Discovery problem for sentences,
or to the two dimensional pattern recognition problem, and that the
main features and insights of the Grammar Discovery Algorithm apply
to other problems, as well as similar problems presented in other formats.

Let us consider the simplest kind of two dimensional pattern
recognition problem. The sample will consist of a two dimensional
raster (matrix) of digital symbols. The raster may, for example, con-
sist of binary digital symbols representing the digitalized image of
certain items to be recognized-—perhaps printed letters of the arabic
alphabet. The alphabet for this sample is the set of whatever symbols
appear in the raster--perhaps 0 and 1 in the case of a binary raster.

A raster is said to have initial punctuation if certain submatrices in
the raster are separated in some way—for example, if there were 11 x 7
sub-matrices outlined such that each submatrix is presumed to contain
one letter of the arabic alphabet. In contrast, a raster would be
unpunctuated if no such initial punctuation of the raster were specified.

A mask is a submatrix over the context symbol " ', the predicted symbol
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"%'", and—if the mask is ternary-——the don't care symbol '#'. & and ¢

are submatrices defined in a manner analagous to the subsequences §

and ¢ of the Grammar Discovery problem. A regularity is defined exactly
as for the Grammar Discovery problem except that § is the context-sub-ma-
trix and ¢ is the predicted-sub-matrix. In the Search Phase, various
masks are considered, and regularities are catalogued and characterized
by type according to their conditonal probability.

In the recoding phase, the domain is partitioned ("covered'") by
sub-matrices. Whenever the context-sub-matrix of a regularity of
allowably high type occurs in one of the parts of the domain, this
part is recoded. Rules of production are developed form regularities
to express this recoding in a‘way exactly analogous to the 1-dimensional
case. For example, the letter '"L" occurring as in a 12 x 12 raster

amongst a large sample of arabic letters‘might be recoded as shown below.

Here an 8 x 3 pillar of 1's is recognized as a feature of many letters,
and recoded as "V" (vertical line); the 3 x 3 vertical-right intersec-

tion sub-matrix is recognized and recoded as "I'"; and the 3 x 4 hori-
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zontal line might be recognized and recoded as "H'". The 9 x 5

blank area might be recoded as "B'". Thus, the letter "L" is recoded as

a 2 x 2 sub-matrix contining a "V", "I'", "H", and "B". Indeed, this
description is precisely what an "L" is—namely a vertical line segment
intersecting at its end with the end of a horizontal line segment.

Note that both the vertical and horizontal segment may be represented by
recursive rules. If L's occur often in the sample, 'this 2 x 2 sub-matrix
might be given a name and recoded.

One should note in passing that this entire paper is about induction
and pattern recognition of samples of discrete symbols. Suppose instead
of doing a basic symboi-by-symbol matching operation, one does a corre-
lation between time segments of continuous signais. It may be possible
to extend the notion of regularity to continuous symbols. The time shift
operation inherent in the matching of symbols has an immediate analog
for continuous signals. Defining the context part, the predicted part,
and the don't care part of a signal merely involves considering the por-
tion of a given signal restricted to a particular time dpmain with the
correlation coefficient playing the role of the conditonal probability,
The idea of a regularity amongst a sample of continuous signals may be
defined in the obvious way.

The universe of possible masks is infinite, but it is possible to
imagine some discrete time intervals being used to make this universe
finite.

The concepts of entropy, parsimony, and recoding all have obvious
analogs.

It should be noted that the operation of digitalizing a continuous
signal is itself a recoding, or punctuating process, in exactly the

sense we have been discussing throughout this paper. In digitalizing
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data, a fidelity criterion (Chomsky & Miller) is used to associate
almost identical continuous signal segments and to encode them under

a common discrete digital name.



III. THE SELF-PUNCTUATING NATURE OF THE GRAMMAR DISCOVERY ALGORITHM

A, INTRODUCTION

The choices of the upper and lower limits on the length of
regularities searched for in the Search Phase and the choice of
parameters in the Recoding Procedure affect the partitioning (punc-
tuating) of the sample into the short parts which are in turn recoded.
Since the choice of parameters in the Recoding Procedure and in the
values of Ml and M2 ;re specified externally accbrding to heuristic
considerations, the grammar that is ultimately induced would seem
to be the product, not of the Grammar Discovery Algorithm, but rather
of these external choices. These external choices would seem to
lead to two principle types of effects: First, there would seem to
be the effect of choosing M2 too small in the Search Phase and thereby
"missing" longer regularities in the sample. Second, there would
seem to be numerous effects of partitioning the sample for purposes
of recoding~—perhaps of missing regularities because the regularity
encompasses symbols that end up in different parts of this partition—
or, perhaps, of losing the "syncpronization" of the symbols in the
sample (as, for example, in a sample produced by a uniform code source).

It will be seen that both the choice of M2 and the choice of
parameters in the Recoding Procedure ultimately concern the partitioning,
or "punctuating', the sample into parts. In fact, the Grammar Dis-
covery Algorithm is essentially a punctudingprocess (or a '"selective
punctuation' as Goodall would call it).

More importantly, the Grammar Discovery Algorithm is '"self-punc-
tuating," and recovers from the presumed predetermining effects of

the choice of M2 and of synchronization.

123
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B. EFFECT OF CHOICE OF LIMITS ON LENGTH OF REGULARITIES IN THE SEARCH
PHASE
1. INITIAL DISCUSSION
Let us first consider the possible limiting and predetermining
effects of the choice M2. (Ml is normally 2 and is not an issue).
Suppose that the maximum length of regularity searched for in the
Search Phase is M2, but that a regularity of length M, with M>M2Z,

exists in the sample Y, say in positions t The regularity

hel?" " ’,th+M .
that might be missed might for example, be that symbol Y(h+l) in
position 1 of the regularity, and the symbol Y(h+M) in position M
together reliably determine all the intermediate symbols Y (h+2),
vee,Y(h+M-1), If M is, say 8, the regularity would be characterized
by a context sub-sequence of "a%%%%%%h'" and a predicted sequence of
" bedefg " and a mask of "_%%%%%% " and a conditional probability
of 100% (Type I - absolutely reliable). That is, the regularity is
<'a%%%%%%h", " bcdefg ", 1.0>. If M2 is only 6, this regularity
would appear to be missed. We claim that if a regularity is missed
at one level because M2 was too small, then the regularity will be

detected as a regularity at a higher level. We now proceed to make

this statement more precise.
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2. EXTENTIONS OF A REGULARITY

First, it is necessary to know that the regularity which may
be "missed" is the longest regularity encompassing the symbols in-
volved. This does not weaken the statement; it does not sacrifice
generality; indeed, it would seem to make the statement harder to
verify.

Recall that a regularity’é§2==<y, ¢, P, Y> is characterized by
its context-sub-sequence y (a sequence of length M over the current
alphabet Vc augmented by the predicted symbol "%"; the predicted-
sub-sequence ¢ (which is a sequence of length M over the current al-
phabet Vc augmented by the contekt symbol " "), and the value P
(which expresses the conditional probability that the context-sub-
sequence y predicts the predicted-sub-sequence ¢ in the sample Y).

A regularity dR =<, ¢, P, Y> may be p-extended to the left
(right) to a new regularity é;?'=<y, ¢, P, Y> by the addition of
a predicted position~that is, by increasing the length of y and ¢
by one, by annexing a "%'" to the context-sub-sequence y on the left
(right) thus forming y', by annexing a specified symbol from the
current alphabet Vc to the corresponding position of the predicted-
sub-sequence ¢ thus forming ¢', and by changing the conditional
probability P to P' to express the conditional probability that v'
predicts ¢' in the sample Y. Néte that there are 2-C possible
p-extentions to the left (or right) for a given regularity. Note
also that P'S P,

Similarly, a regularity é§?=<w, ¢, P, Y> may be c¢-extended to
the left (right) to a new regularity é;?'=<y', ¢', P', Y> by the
addition of a context position—that is, by increasing the length of

y and ¢ by one, by annexing a " " to the predicted-sub-sequence ¢
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on the left (right) thus forming ¢', by annexing a specified symbol
from the current alphabet VC to the corresponding position of the
context-sub-sequence y thus forming y', and by changing the conditional
probability P to P' to express the conditional probability that

Y ' predicts ¢' in the sample Y. Note that there are 2°C possible
c-extentions to the left (or right) for a given regularity. Note

also that P'2P,

Of course, the type of a regularity may change under extention—
p-extentions being in general of lower type (less reliable) than the
regularity from which they were derived, and c-extentions being in
general of higher type (more reliable) than the regularity from which
they were derived.

In our discussions, if it does not matter whether an extention
is a c-extention or a p-extention, it will be called simply an

extention.
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3. DEFINITION OF A MAXIMAL REGULARITY

A regularity é;?=<y, ¢, P, Y> of types I, II, or III is said
to be preserved (p-preserved) (c-preserved) under extention provided
that P'2P—or the extention is of the same type as R.

A regularity'é;? is said to be maximal (p-maximal) (e~-maximal)
provided it is not preserved under extention (p-extentions) (c-exten-
tion) for any possible extentions (p-extentions) (c-extentions)
of it.

The existence of a maximal regularity means that a particular
sequence appears as a unit in the sample Y but that the symbols
surrounding this unit vary widely. For example, ifé;?==4%b%";”;__§",
1.0, Y> is a regularity, it means that whenever "ab'" appears in Y,
the symbol '"c'" always follows. If Ris a maXimal regularity, it
means that the sequence "abc' appears in the sample Y embedded in
all variety of different environments, perhaps as "dabce", "fabcg",
etc. If é;?'=<"a%","_b",l.0,Y> is also a regularity in Y, it is
not maximal .because R may be extended to R Equivalently,

""ab" does not appear in a variety of different contexts in Y, but

rather also appears with a '"c'" to its right.
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4, PERSISTENCE OF MAXIMAL REGULARITIES AFTER RECODINGS

We now claim that a maximal regularity of length M will usually
not be missed by the Grammar Discovery Algorithm because M2 (where
M>M2) was chosen too small. If a maximal regularity exists at one
level of the sample, it will usually persist and continue to exist
after the recoding at the next higher level. Thus, an unfortuitously
small choice of M2 will not cause the maximal regularity to be lost.
"usually" is our "almost always'" and it means "in all cases eXcept
possible for a case whose occurrence requires the coincidence of
several independent events each of very small probability "ee in
effect, "usually" refers to second order (and’lower).effects.

Let us assume that a maximal regularity'ége =<y, ¢, p, Y> of
specified type (Type I, II, or III) exists in the sample Y, and
that the regularity is of length M>M2. Suppose that the contekt
sequence appears q times in the sample Y. Let 4 be the domain sequence
of Rin Y. Say that A appears q' times in Y. Note that p=q'/q.

Let Aj denote the j-th occurrence of the sequence A in Y
(3=1,...,9). Let Aj(i) denote the i-th symbol in the j-th occurrence
of A in Y where i=1,...,M, and j=1,...,q.

Let aj be the symbol appearing in Y to the left of the left-
most symbol of the j-th occurrence of A in Y (j=1,...,q), and let
bj be the symbol appearing in Y to the right of the right-most symbol
of the j-th occurrence of A in Y.

Note that because % is maximal, no symbols in the sequence

<a1,...,aq> or <b1,...,bq> or in the sequence of ordered pairs
<(a1b1),...,(aq,bq)> will appear more than %f times (since ézais

of type III or better).

There are apparently three cases to consider:
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(1) None of the strings ajtﬁbj of length q+2 are encoded by
the transformation operating at this level of the Grammar Discovery
Algorithm,

(2) some of the symbols in Ajare encoded by a transformational
rule, but neither the symbol aj nor the symbol bj is also encoded by
the same application of this rule——that is, only symbols interior
to Aj are encoded.

(3) Some symbols of Aj are encoded by a transformational rule,
and either the symbol aj or the symbol bj is also encoded by the
same application of this rule. (Note, that both aj and bj cannot
be encoded by one application of one rule, since MM2).

Case (1) poses no problem as to 'missing'" regularities, since
no encoding occurs. At a higher level some encoding may occur, but
even then one of the cases below will then apply. It should be
noted, however, that the Grammar Discovery Algorithm operates in
practice so that most symbols of Y do in fact get '"covered" by the
rules at each level. When we say that the symbols are '"covered",
we do not necessarily mean that they are changed, but that they will
at least be part of a context-sub-sequence. In summary, this case
does not occur often, and is no problem when it does occur.

In case (2), some symbols entirely interior to Aj are encoded.

Suppose that the k symbols Aj(h),...,Aj(h+k-1), k€M, are the
symbols interior to Aj which are encodede—that is, are the domain
of the transformation é??being applied to the sample Y. Note that
this transformation é;ris made only because there ekists some regu-
lartity é%?'=<y', ', P', Y> of length k of allowably* high type in

the sample. As a matter of notation, note that the A of R

*The variable ALLOW controls this in the computer program.
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is Aj(h),...,4j(h+k-1), and we call this substring 4'. Note also
that by ".7(1:) (I), we mean the I-th symbol in the image underg'
of A

In a transformation, contiguous symbols of the domain A' are
encoded as new non-terminal symbols. If the image of Aj, that is
{;r(Aj), is of the same length or longer than A (the latter occurring
only when Unrestricted Rewrite Rules are being generated), no regularity
AR is "missed" because at some higher level the reduction in length
finally occurs, and one of the cases here will then apply. If.37tﬁj)
is shorter than Aj, then é?fA') was shorter than A'. Say the length of
g?'(A') is f, where f<k. Then the image of Aj is the substring

T)=43 D), ...,85(-1), T D),..., T)E),4) (+K),
.« Aj (M) |
which is of length M- (k-f).

There are now two sub-cases. In the first sub-case, M-(k-f)
is still greater than M2. In this case, the regularityé?? is not
"'missed," because the second sub-case below will apply at a higher
level when the necessary reduction in length finally occurs.

The second sub-case is that M- (k-f)€ M2, The original maximal
regularityé@? of length M now manifests itself as a regularity
R = <", ", P, Y>. We show that J " exists by constructing
it.

First we extend the transformation «grtwhich is a semigroup
homomorphism) to the domain VC U (" U"%"), by saying that the
extention J* is

: $(x) if x e VC
& {x .if xe A{v", "y}

Now we have, for I=1,...,M-(k-f), the context-sub-sequence
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Y(I) if 14€14€h-1
(D)= T*(v') (I+h+1) if h<€I<h+f-1
y(1+(k-1))  if neELILM-(k-£),
the predicted sub-sequence
¢(I) if 1€I€h-1
o" (D= {T* (') (I+h+1) if hSI<h+f-1
'¢(I+(k-f)) if h+f £I<M-(k-f)
and the conditional probability
p!"'=p.p!
Note that if the types of regularities allowed for making the
transformation.é?pare only of Type I (100% reliable), thené??"
will not only be detected—but its unconditional probability p" will
be the same as that ofé;? (since p' =1.0). If the allowed types of
regularity used in the recoding are of type II, then.é;?" will either

still be of type II or usually at least of Type III (since it would,

in general, take a fairly large number k of recodings to make

(1-e)< %—
where ¢ was defined earlier to be l/ck which is very small. Note
that this k is, in general, only 1, and will be more than 1 only if
case (1) applies at some point, or if, in case (2), SVYAj) is the same
length or longer than Aj for some recodings.

If type III regularities are used in the recoding (particularly,
if the conditional probability of R is 0(i ), then regularities
of typé III (particularly, if the conditionil probability of R
is 0/1:), may be lost. This is of course the reasons why regularities
of Ty;e IIT (particularly, the lower range of Type III are not very

suitable for recodings).

It should be noted that this discussion of case (2) assumed one
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rule of production (derived from one regularityé;?') was used to
encode the symbols Aj. In general, more than one rule of production
could be invoked. However, the argument is not altered—although

the probability p' would then be the sum of say, two small probabil-
ities. It should be emphasized that because M2 is always small, it
would be most unlikely that as many as three rules of production would
be applied within one such domain.

Case (3) really never happens. By hypothesis, R is maximal.
Hence there is no regularity of type III or of higher type that en-
compasses aj ( or bj) and some of the symbols of Aj-~for if there
" were, there would then have to be a regularity of length M+l encom-
passing the sequence ajAj (or Ajbj) of length M+l-—and this is
impossible since the fact that HRis maximal means that no such
regularity exists.

We return now to the example cited earlier—the question of
whether the regularity é;?-<"a%%%%%%h”, " bedefg ", 1.0> of length
M = 8 would be missed if the maximam length of regularity searched
for in the Search Phase was M2 = 6. This regularity states a
relationship among 8 symbols—and, in particular, that twoiWiaelfﬂﬂ
separated symbols determine the intermediate symbols. We will gssume
that this regularityé;? is maximale~that is, that the string ''abcde-
fgh'" appears in a wide variety of different contexts in the sample.
With a M2 of 6, the Grammar Discovery Algorithm will be recoding the
sample using regularities up to length 6. We assume that some recoding
"abcdefgh' does occur at this level. If some recoding does occur,
it is the result of the existence of some regularityé;?' within the
8 symbols—perhaps that '"bc'" are always followed by '"defg'". This

recoding would be accomplished by the rule of production
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becN -+ bedefg
where N is a non-terminal. Thus, the 8 symbols at the first level
would be encoded as "abcNh'" in every case. Now, at the next level, it
would be noted that an "a'" appearing ih position 1 and an "h" appearing
in position 5 reliably predicts the occurrence of '"bcN'" as intermed-
iate symbols. This regularity would be noted because its length
if 5, which is less than M2, which is 6. Thus, at level 2, this
regularityé;?" =<"a%%%%h'", " _beN ", 1.0> can ﬁ; used to develop
the rule

aPh » abcNh
where P is a non-terminal. Note that since "abcdefgh'" appears in a
variety of different contexts at level one, so will "abcHn" at level

two. Thus, no encoding involving the symbols to the left of "a"

and no encoding involving symbols to the right of "h'" will be developed.
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C. EFFECT OF CHOICE OF PARAMETERS IN THE RECODING PROCEDURE

Now let us consider the possible limiting and pre-determining
effects of the syncronization, punctuating, or partitioning of the
sample as it is determined by the choice of parameters or the Recoding
Procedure. Thus punctuating is the product of choices which either
are external choices determined according to heuristic considerationms,
or which are choices that are an integral part of the Recoding Pro-
cedure itself and the fact that the Recoding Procedure is not a
combinatorially exhaustive procedure for partitioning the sample.

We claim that a maximal regularity'é??==<y, ¢, P, Y> will usually
not be "missed" by the Grammar Discovery Algorithm because of the
partitioning of Y by the Recoding Procedure, except when a regularity
of equally high type is used instead as the basis for partitioning
and recoding.

As before, case (1) (where there is no encoding) presents no
problem of losing regularities.

In case (2), we are concerned about the domain (the A sequence)
of a maximal regularity{??being split between two parts of the
partition of Y. (Obviously, if the A ofé??lies entirely within
one part of the partition of Y, there is no problem).

First of all, the partition is not likely to divide a maximal
regularity. The partition is not imposed indiscriminately on Y--
independent of its regularities. Indeed, the partition is the conse-
quence of the existence of regularities of allowably high type and
suitable length. More often than not, the hypothesized maximal regu-
larity will itself determine the partition and therefore be located

within 1 part of the partition. Recall, in particular, that the
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Recoding Procedure considers the regularities in order of decreasing
type (that is, Type I first), so that the regularity chosen as the
basis for making the partition of Y will, at worst, be of the same
type as R itself. Also, within a given type, the regularities are
considered in order of decreasing reliability, so that the regular-
ity chosen will have a conditional probability at least as high as
that of L. Moreover, since the 1ongq¢ regularities are, in practice,
considered first (even if the shorter regularities are considered
first, it is the longer regularities that are more reliable, so that
they tend to appear first in any case) maximal regularity will tend
to be used as the basis for making the partition in the first place
(in preference to any shorter regularity). Thus, the problem of a
maximal regularity being divided is not likely to arise in the first
place.

However, suppose this division does occur. Indeed, in a highly
structured sample, there may be many reliable regularities that can
be used as a basis for partitioning and recoding, and the A of these
regularities will tend to overlap. But because of the order of con-
sidering regularities for recoding purposes, only regularities at

least as reliable as e%will be invoked.
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D. EFFECT OF PRESENCE OR ABSENCE OF INITIAL PUNCTUATION IN THE SAMPLE

The purpose of this section is to make the assertion (quite
contrary to intuition) that the presence or absence of initial
punctuation separating sentences in the sample is of little conse-
quence in the grammar discovery process; and that if it is absent
the discovery of sentence boundaries is qualitatively the same
punctuation problem as grammar discovery in general, and is moreover
not even quantitatively (i.e. combinatorially) much more difficult.

It is important to see that the entire Grammar Discovery Al-
gorithm is a punctuating process-—that is, a process of partitioning
the sample Y into appropriate parts and then recoding the parts.

The problem of inducing appropriate sentence boundaries is no
diffefent than'the process of inducing appropriate phrase boundaries
within sentences.

Naturally, if one wants to induce sentence boundaries, it is
necessary that the sample contain repetitions of various sentences
(or at least significant parts of them)~just as the induction of
phrase boundaries requires repetitions of the phrases. Indeed,
it is the repetition of features which establishes them as features.
With this precondition in mind, let us use a particular cénstruced
sample Y to argue the main assertion (above).

Suppose that a sample Y consists of 10 copies of 100 different
sentences, each sentence being of length 20~the particular numbers
and the uniformity of the number of copies and uniformity of sentence
length being unimportant to our argument. The sample thus consists
of 2,000 sentences. The 2,000 sentences appear in jumbled disorder
(if the sentences appeared in a regular order, they would not be

individual sentences !). If the Grammar Discovery Algorithm is
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operating in the second mode (i.e. with initial punctuation between
sentences), the sample appears as a string of 2,000 sentences

each separated by an initial punctuation mark (the period). If

the Grammar Discovery Algorithm is operating in the first mode
(i.e. with no initial punctuation), the sample appears as a string
of 20,000 symbols.

In either mode, the Grammar Discovery Algorithm first searches
for local regularities and then recodes them. In the second mode,
no/search for regularities is made across initial punctuation marks.
The following happens in the first mode: Since the sample is jumbled,
the two sentences on either side of each of the 10 occurrences of
a given sentence o will, in general, be differént. Indeed, the
probability that a particular sentence B appears, say, to the left
of the given sentence o is only 1/100; and, even with the Birthday
Problem phenomena, the odds are against any duplication of any
sentence towthe left of any of the sentences, and certéinly against
any reliable occurrence of such a duplication. Thus, it is most
unlikely that any of the symbols at the left end of o are related in
any way with the symbols occurring to their left. Since the part-
itioning and recoding of Y is done because of the occurrence of
regularities, the symbols within each sentence may be recoded, but
groups of symbols spanning the sentence boundary will not. Indeed,
each sentence may be what we called a maximal regularity (but it need
not be, of course).

Thus, although we cannot predict how the recoding of Y will
proceed, we can predict that no groups of symbols spanning a sentence
boundary will ever be recoded together. Thus, the sentence boun-

dary will be preserved, as the recoding proceeds from level to level.
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Even if each sentence finally becomes encoded as a single non-
terminal at a high level, these single non-terminals will display
no regularities amongst each other-~indeed,the sequence of 2,000
single non-terminals will have maximal entropy or near maximal
entropy. This may, of course, be an appropriate moment for inducing
disjunctions—but the point is simply that even at this level, no
regularities should appear—either for M of 2, 3, 4, etc. because
the sentences (being independent units) were jumbled.

Thus, appropriate sentence boundaries will be induced by the
same punctuating process as phrase boundaries.

Note also that the search for regularities is not even appre-
ciably shortened by the presence of initial punctuation. If the
sentences have average length of 20, most of the searching for local
regularities (with small M's of up to 4, 5, or 6) does not occur
over the sentence boundaries anyways. Thus, the presence of initial
punctuation (across which the search is not made) does not appreciably

reduce the combinatorics of the Search.



IV. ADDITIONAL FEATURES OF THE GRAMMAR DISCOVERY ALGORITHM

A. TERNARY MASKS AND DON'T CARE CONDITIONS

In the description of the Grammar Discovery Algorithm, the masks
used to search for regularities in the Search Phase were all binary
masks--that is, they were sequences of length M over only the symbols
" " ("context") and "%'" ("predicted"). The masks were also compact
in the sense that the mask expresses a relation within a certain sub-
string of the sample, and all symbols appearing between the left-most
symbol of that substring and the right-most symbol of that substring
are either in the context part of the regularity or the predicted part.

One may wonder about regularities involving relations between
two or more substrings that are widely separated by symbols that are
not part of the regularity--as, for example, might occur in mechanically
encoded messages. For example, an "a'" in a certain position in the
sample and a '"b" occurring 6 positions later may reliably predict the
symbol occurring half-way between them (in position 4).

There are two approaches to finding such regularities.

If binary compact masks are being used, this regularity will be
detected as a regularity at a highér level--particularly if the dis-
tance between the substrings is moderately 1argé or large. Or, this
regularity may be detected in the Generalization Process--that is, a
sequence of rules of p?oduction are found in which one of more of their
context positions are found to vary 'freely'" over the entire current
alphabet Vcénd these rules are then replaced by one generalized rule
having a universally quantified metavariable in the appropriate pos-
itions. This approach is particularly appropriate when the distance

between the substring of the relation is rather small,

139
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The second approach is more certain and involves using ternary

masks.* A termnary mask Mis a sequence of length M over the
symbols " ", "%", and the symbol "#" (which is called don't care).
There are SM ternary masks of length M as opposed to only ZM binary
masks of length M. To illustrate the use of the 'don't care" symbol
in ternary masks, consider the following example: The ternary mask
is " #%" (Note that the smallest ternary mask using all 3 symbols is
of length 3). This mask refers to the relationship in which a parti-
cular symbol predicts a third symbol, regardless of the second symbol.
A regularity based on this mask might be <'a#%", " #b", 1.0, Y>--
that is, the symbol "a" appearing in any position of the sample Y
reliably predicts the occurrence of symbol '"b'" two positions later.
To express this same regularity using only binary masks would require
C (the number of symbols in the current alphabet) separate regularities--
namely, <'aa%", "_b", 1.0, Y>, <"ab%", " b", 1.0, Y>, <"ac%",
" b", 1.0, Y>, etc. In general, if there are h don't care positions
in a mask, one ternary mask replaces Ch separate binary masks. Thus,
there are ZMCM binary regularities of length M, and there are SMCM_h
ternary regularities.

The smallest non-degenerate situation where both a binary and
ternary mask might be used occurs for values of M=3 (since the mask
must contain at least one " ', one "%'", and one "#" ), C=2 (a binary
alphabet), and h=1 (at least one don't care position). For this case,
the binary mask approach is more efficient than the ternary mask-

approach. But when

3\ M
h > 1ogC 2

*The variable FR controls the use of binary or ternary masks in the
computer porgram. Ternary masks are not implemented in the computer
program at this time. '
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--which encompasses most all other situations (particularly since

C will tend to be moderately large,'and M is usually small), the
ternary masks will involve fewer combinations. Moreover, it should

be remembered that the Generalization Process is itself a combinatorial
process, so that any apparent éfficiency of binary masks in the Search
Phase is lost in the Generalization Process. Also, the Generalization
Process requires a rather large and complete sample before it can
operate (at least without making conjectures ), and this is another

factor in favor of the efficiency of ternary masks.
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B. ALPHABET-ENLARGING VERSUS HUFFMAN-TYPE ENCODINGS

As mentioned earlier, there are two types of transformations:
alphabet-enlarging, and non-alphabet-enlarging.

In the alphabet-enlarging transformation (which is the approach
used above), there is a non-terminal alphabet, ° Strings containing
these non-terminals -, from time to time replace strings in the
given sample. Thus, at level one: the current alphabet Vc consists
only of the terminal alphabet VT; but at higher levels, new non-term-
inals are added as needed (as rules of production are developed)
and the current alphabet VC becomes the union of the original terminal

alphabet V., and these added new non-terminals. Because these non-

T
terminals are new symbols which are not found in the original sample
at level one, a string containing one of these non-terminals can be
recognized as being a string from a level higher than level one.*

In the non-alphabet-enlarging transformation, non-terminal sym-
bols are not used. The sample at each level (with the possible excep-
tion of the last .and highest level) consists only of the symbols
occurring at level one. The encoding is done by mapping one string
over the given alphabet to another string over the same.alphabet.

In general, not all strings over the given alphabet are possible
in the given sample Y, so that some of the "impossible'" strings are
available to serve the function which the new non-terminals serve in

the alphabet-enlarging approach. Generally, these "impossible"

strings will be rather long strings. Note that the two sides of the

*The variable EXR in the computer program specifies whether alphabet-
enlarging or Huffman-type recoding is to be done. Although Huffman
encoding was attempted in early stages of this work (and the subroutine
HUFF remains in the computer program), this feature is no longer
operative in the computer program.
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rules of production developed from this approach are strings Over the
same alphabet. Note also that the antecedent (left) side is almost
always going to be longer than the conseqﬁent (right) side of the rule.
This is in contrast to the situation when alphabet-enlarging transform-
ations are used. Thus, when alphabet-enlarging transformation. is
used, the Grammar Discovery Algorithm is inherently a contekt-sensi-
tive (or simpler) porcess; while when the non-alphabet-enlarging
approach ié_used, unrestricted rewrite rules emerge.

‘ Naturally, one must choose the new long strings with care--so that
they cannot be confused with natural strings in the sample. These new
longer strings must be treated as an encoded unit, and we are not
concerned with the statistics or internal regularities that these strings
may exhibit. Since the new strings tend to make more symbol strings
possible in the sample, the total entropy increases as a result of the
addition of them. An optimal coding procedure, such as the Huffman
code procedure (Fano), can be used to produce these new strings in
a manner that it is possible to reverse the code and recover the
original sample. When a Huffman coding procedure is used on a sample
of messages which are themselves strings over the encoding alphabet,
it is necessary to encode every symbol in the original sample. As
this type of encoding is applied from level to level, all possible
strings become possible in the sample, and the information rate of
thevsample increases to a maximum,

The two approaches can be combined into a limited-alphabet
transformation. In this approach, the number of non-terminals that
can be added is limited to a fixed number h. If more non-terminals
are needed, combinations (in the Huffman sense) of the allowed

non-terminals must be used., Unrestricted rewrite rules would then result.
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C. RECODING WITH NOISE IN THE SAMPLE

When a recoding is based only on Type I regularities,* no
information is lost in the recoding. Whenever a recoding is based
on a Type II or lower type regularity'éza=<w, ¢, P, Y> , then (1-p)-
100% of the time the transformation is not faithful to the sample.
There can be two motivations for using regularities of Type II
or lower type:

(1) Thg sample Y is assumed to contain a small amount of noise
and is therefore assumed not to be 100% accurate itself. In this
situation, if a regularity is found which has a conditional probability
of nearly 100% accurate itself. 1In this situation, if a regularity
is found which has a conditional probability of nearly 100%, it is
assumed:that the parts of the sample that do not conform to the regularity
are in error. The use of a regularity with conditional probability
near 100% therefore has the effect of correcting the sample and removing
the alleged errors in it.

(2) The sample Y is accepted as being 100% accurate, but one
desires to develop a very simple grammar for the sample. Parts of
the sample which do not conform to regularities whose conditional
probabilities are near 100% are assumed to represent "ekceptions”,
and one is not willing to sacrifice the parsimony necessary to account
for all the exceptions. Thus, the simplified grammar will be One
that represents most of the sample most of the time. This simplified
grammar will have fewer rules of production (more parsimony), but will

have higher entropy (more information from the sample is lost).

*The variable ALLOW in the computer programs regulates the type of
regularity allowed in the recoding.
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D. THE CONTEXT-FREE CASE

In the Recoding\Phase, certain strings of symbols are recoded.

Up to now, this recoding (assuming an alphabet-enlarging encoding)
always has involved substituting a new non-terminal symbol for a
string of contiguous symbols that are well predicted by a certain
context. Thus, the antecedent (left) side of any rule of production
that is ultimately developed has less than or the same number of
symbols as the consequent (right) side of the rule. Thus, each rule
developed will be context-sensitive, and the grammar ultimately
induced will also be context-sensitive. Thus, a grammar discovery
algorithm based on contexts and regularities is inherently a context-
sensitive process.

It might appear that because the whole Recoding Phase is based
on context and conditional probabilities that only sgtrictly-con-
text-sensitive rules can be developed. Indeed, regularities that have
no context part (as, for example, regularities developed from the mask
%M) merely record frequencies of occurrences of substringse-rather than
any relationship among symbols in the sample. Therefore, it would
appear that every rule must have a non-empty context and therefore
be strictly-context-sensitive. In fact, however, conteXt—free rules
(and regular rules-~-which are context-free rules with an M of 2)
can be developed in one of several ways by the Grammar Discovery
Algorithm.

First of all, a context-free rule can be induced using the Gener-
alization Process. Whenever a combinatorially complete set of strictly-
context-sensitive rules exists (that is, given h context positions
in a rule, all Ch possible strictly-context-sensitive rules appear

in the grammar), the Generalization Process can then induce a
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context-free rule to replace the entire set of strictly-context-
sensitive rules. Certainly, if a given substitution is made in all
possible contexts, then the substitution can be made without regard
to that contexte—that is, the substitition is context-free. However,
because the Generalization Process is a combinatorial process, this
approach is generally not available-—wfic¢ther for reasons of the large
combinatorics involved or because not all Ch strictly-conteXt~
sensitive rules appear. The latter condition is indeed most restrictive.
One canbloosen the Generalization Process by allowing the generaliza-
tion if no exceptions are found—that is, if among  all the contexts
that do appear, the substitution is invariably made, then a context-
free substitution can be generalized. However, even this approach
involves an exhaustive examination of a fair number of cases.

A second approach is based on the idea of maximal regularity,
which was defined earlier. Whenever a rule is developed from a
maximal regularityé;? =<y, ¢, P; Y>, a context-free rule can be induced,
--namely N->A,
where N is a new non-terminal, and where A is the A-sequence for
. The justification for the writing of this context-free rule
in this situation is that the regularityé;? cannot be extended.
This is the case because A appears in the sample Y in a wide variety
of contexts (the distribution of symbols surrounding A have a non-
zero and persumably high entropy), and therefore A is "free' of its
contexts. However, determining that a regularity is makimal (although
involving only the checking of 2:C p-extengions and 2°C c-extensions)
is itself as small-scale combinatorial process and somewhat unnatural.
However, this second approach suggests a third approach.

The third approach is based on the fact that regularities are
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considered in the Recoding Phase in decreasing order of their length.
Thus, if any regularities discovered in the Search Phase are maximal
regularities, they will be considered first in the Recoding Phase.
Thus, we can simply write

N->A
whenever we have a regularity e% Moreover, note that if e% is not
maximal, nothing is lost by this approach because at a higher level,
the maximal regularity will still appear as a regularity encompassing
N and various other symbols. Suppose the A-sequence of a maximal
regularityé??,of length M' is A’, and that a regularityé;? of length M
M < M' is used to write the rule

N->A
where A is the A-sequence of R. Then, with A a proper substring
of A', the maximal regularityé;?lmanifests itself at a higher level
over the string

AC1)'+++A'"Ch) N A"(k)---A'(M")
of length M'-M., Using the maximal regularity to write a rule now
(assuming that M'-M is now M2), we might get A > A'(1):--A'(h)
N A'tk)-'-A'(M‘), where A is.a non-terminal. Thus, we would have

two rules, both context-free, and this third approach works.*

*The variable RIT controls whether context-free rules are written in
in this way in the computer program.



V. EXAMPLES

In this section, we consider a number of examples that
illustrate the Grammar Discovery Algorithm.

EXAMPLE A: Consider the following sample of sentences:

AARADBLABAARARAADRALALPRRAAAAANA,

This sample presumably is from the language whose sentences
are all of the form AZ? where n 2 1, The terminal alphabet
consists only of the single symbol "A",

The input to the Grammar Discovery Algoritum might be

as follows:

MAXINMUM NUMEER CF LEVELS TC BPE TRIED 3
SHMALLTEST M TO RE TRIED 2
LARCEST M TO BE TRIFD , 4
DIEFLTICA CF CCNSICEFING M IN RECCCE CESCEND
LAVAGA -= CCEFFICTENT CF FARSINCAY 1.0C0C0
LANR == CUEEFICIFNY CF RECURSIVE PARSINCAY 0. 10000
SCLRECE NF INTTIAL SYNECL STRINC READ
MGDE == INITIAL PUNCTUATICN MARK 2NMD
TYPE [F GRANMNMAR DESIREL (MASKS TC BE TRIEC) LS~RS
GIT - CONTPOLS ANTECEDENT SICE OF RULES CF
WOPSET TYPE CF F({1) ALLCWED TC ENTER CCCE 4
USE CF BEST ¥ STRICTLY YES
FR -~ RACIX CF MASK 2
PRINT CCATRCL =~ PEINT UMSORTEL P(1) NO
PRINT CONTROL == PRINT SGRTEC P(I1) NO
FRINT CCNTROL == PRINT CPAPK CF P(I)=S ALL
PRINT CCNTROL -~ PRINT SEQUENCE NUMBERS YES
SLRFCUTINE USEL FCR RECCDINC RECODE
CVFRRICE VALUE FCR MPEST (MCH) Q
EARPLY FLIMINATICN CF UNALLCWABLE P{I) NO
INCLUNE ALL-PRELICTEL MASK NO
STARY RECODE AT TINME CF MREST YES
HSEL -~ METHCL FCR CCMFUTING F 4
TUT=CUT N FINCING CGCZCD M NG
METHCD OF FINDING RECURSICONS RULE
INCLEDE IDEMTITY RULES NO
TEST FCR RECURSICN YES
SIZE QF TERMINAL ALPHABRET (INITIAL STRING) 1
TEPMINAL ALPHARBRET: A

INTTTAL PUNCTUATICAN MARK (NCRE=2) .

SI7E CF BASIC ANCN=-TERMINAL ALFFARFET 10

SYVMECLS OF THE RASIC NCA=TERMINAL ALPH/EET: 0123456789
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At level 1, for an M of 2, the Grammar Discovery Algorithm

develop exactly one possible rule of production, as follows:

---------------------- m==== LEVFL 1 ==cceecccccecmecccmecccqeaece——e——

SYMBCL STRING CF LENCGTH 35 ANC LSING ALFHABET CF SIZE 1

BALAAAALAAAAAALANAAANAD, ADAAPARAAA

NYVBER COF TYPE
NUMRER (OF TYPF
NUMBER FF TYPE

SECUENCFS{STRUCTURAL)
SECLENCES (MESSACE)
SECUFNCFS (MESSAGE)
NUMBER CF TYPE SECUENCES (VESSACE)
NUMBER (OF TYPE SECLENCES (ANCISED
NUKIER CF DIFFERFNT MASKS USED
MNUMRER CF FCSSTELE M-SEQUENCES
NUMRER CF PCSSIELE P(1I)

NUMRER CF P(I)

NUFMEER OF DIFFFRENT CCANTEXTS
SEPARMATICN VALUFR RETWEEN TYPES 2
EPSILCN FOR DEFININC TYPES 2 ANC

(S BB TUR S I

NN NOOO0ON

AND 4 C.5C000
3 G.34000

TENTATIVE RULES CF PROCULCTICN FCR ¥ CF Z

ENTEQPY TERWV C.C
PAPSIMCNY TERM 1.C0000
RECURSIVF PLRSIMCNY TERM. C.C

VALUF CF H FCR THIS RECODINGececaooecoce 1.C0000

MUMRER COF RULES CF PROCUCTICN 1
NUVBER OF PECURSIVE RULES 0
NUMPFR CF ICENTITY PULES _ C
NUMBER OF TIMFS. RULES #FE APPLIEC 1

CURRENT STRING Y

ABDoARPADLAAAAAALANDRRARARLEABOARAAD,

NEW STRING

C.(C,0C0,0CC0,COCOC,
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The pij-graph for the one rule actually used in the recoding

is rather sparse:

GRAFPH CF.P (1) ULSEC IN RECCOINC FCR LEVEL 1 AND M OF 2

1.C0 #*
CoSe |
CoS€ |
0.G4 |
0eS2 |
0.0 1
0.88 |
0. 8¢ |
0.84 1
C.52 1
CofC |
0.78 1
Ce7¢6 1
Qe 76 |
C.72 |
Oe 70 |
C.6R |
Ce€d |
0.€2 |
0ﬂ60 I
.58 |
0.56 |
0.5%4 |
e52 |
C.50 +
Caé8 |
0.46 |
Cotts |
Ce2 1}
0.40 1
.28 |
Cs6 |
Co264 |
0.22 |
0.20 |
C.2F |
0.26 |
f.26 !
0.22 4
«2C
C.12 |
0,156 1}

H

|

|

t

I

|

]

4

o!.té

0.12

Ce.1C

0.CRo

C.Cs

0, Cl.‘

0.C2

C.C

1

NUNRER OF TYPF
NUMRER OF TYPF
NUNBER CF TYPE
NUMRER QF TYPES
NUMRER CF TYPE
AUNMBER CF PLI)

SEQUENCES(STRUCTURAL)
SEQUFACES (MESSAGE)
SECUENCES (MESSACE)
SFQUEANCES {(MESSACE)
SECUENCES (NCISE)

D W N e
OO0 Fr
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Similarly, for an M of 3 of level 1, the sample admits

of the development of only one rule of production:

LEVEL= 1 U

W

NUMBER CF TYPE
NUMBER (1F TYPE

SEGUENCES(STRLCTURAL)
SECLENCFS (NMESSAGE)
MUMBEF OF TYPE SECUENCES (MESSAGE)
NUVMRER O0F TYPE SECLENCFS (MESSACGE)
NUMRER CF TYPE 5 SFQUENCFES (NGISE)
NUNMBER CF DIFFFRENT MASKS USEL

NUFBER CF PCSSIRLE M-SECUENCES

NUMRER (OF PCSSIPRLE P(1)

MUMRER CF P(])

NUMRER CF NIFFERENT CCNTFXTS
SFPARATICN VALUE BETWEEN TYPES 2 AND 4 C«5000C
EESILCN FOR REFINING TYPRS 2 ANC 3 0.33332

BULWN -

o= ODOOO N

TENTATIVE RULES CF PRCCUCTICN FCR M CF 2

[ >  AMA

ENTRCFY TERM C.C
PARSINCNY TERWV 1.C0000
RCCURSIVE PARSIMCNY TEFM C.C

VALUE CF H FCR THIS RFCCNINGeesssosesne 1.€0C00

NUNMBER CF RULES CF PROCUCTICN 1
NUMBER OF RECURSIVE RULES 0
c
1

NUNRER CF ICENTITY PULES
NUMBER CF TIMES RULES £#RE APPLIEC

CURRENT STRING Y

ALho AAAALAAAADALANNALAAR ANNDAAAAAA,

NEw STRING

8A4CA4C0.,0CAA,CCCA,

Note that the new string contains both the original terminal

symbol "A" and the induced non-terminal "0".
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The pij-graph for M of 3 is as sparse as for M of 2, and
will not be shown here.

For an M of 4, one rule is again induced at level 1, as

f°11°ws:_ TENTATIVE RULES CF PROCUCTICN FCR M CF &

0 eme—- > AAAA

Application of this rule leads to the following new
string:

AA,0.CANLCO.COAR,

We omit the pij-graph and other output for M of 4.
Note that we have temporarily suppressed consideration
of the effect of identity rules in this exémple. In each
case the total value of H consisted only of the value
of parsimony. For M of 2, 3, and 4, the value of parsimony
was the same. The best M, therefore, would be the shortest

M and an M of 2 would be chosen, as noted by the following:

REST M IS 2 WITH H (F 1,CCCCO

More significantly, however, is that 2 is in fact the
best M when the effect of the identity rules are considered.
For an M of 3 or 4 (but not an M of 2), a recoding of the
entire sample requires application of an indentity rule
which transforms the terminal symbol "A" into itself.

This rules, when given any non-zero weight at all, is
sufficient to dictate the choice of M of 2 as the best M.

In Example 2, the role of these identity rules will

again be crucial.
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To review level 1, the following is a table of the

regularities observed in the sample

PEGULAPITIES FOR LEVEL 1

4  LEVEL LENGTFH FRCE TYPE MASK  CONTEXT PRECICTED
1 1 2 1.00 1 %_ ZA A_

z 1 2 1.CC 1 % A% _A

2 1 2 1.CC 1 _2% AZZ _AA

4 1 : 1.0C 1 .2 AA% A

5 ! 2 1,00 1 23 2ZA AA_

¢ 1 E 1.CC 1 % __ 2AA b

7. 1 4 1.00 1 _24% AT _AAA
g ] 4 1. CO 1 __2% Ar%?2 —_AA
q 1 4 1.0C 1 K AAAZ A
i0 1 4 1.CC 1 238, TEZA ANA_
11 1 4 1.00 1 23__ ZZAA AA__
12 1 4 1.CC 1 2 ZAAA A

and the following is the one non-identity rule of
production induced at level 1:

--------------------- RULES CF PRCOUCTICN FCR LEVEL lemcercemcmecacccocanas

The new string resulting from application of this one

rule of production is as follows:

NEW STRING

0+ CC.CC0.CCOC.COOCC,

The Algorithm now accepts this new string as its input for

level 2:

--------------------------- LEVEL 2 ====emmemcme—e ———

SYMBCL STRING CF LENGTH 20 ANC LSING ALFRABET CF SIZF 2

Ce (CaCC0.0C0OC. COOOQC
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For M of 2 at level 2, the Grammar Discovery Algorithm
proceeds just as it did for level 1. The same regularities
that were observed at level 1 are observed in this particular
sample, except that they occur in terms of the induced
non-terminal "0" instead of in terms of the terminal symbol
AN,

The rule of production 1 -——-» 00 is the rule of
production which the Algorithm begins to induce. However,
before inducing a new rule of production at a level above
level 1, the possibility of instead inducing a recursive rule
of production must be considered. Note that the rule 1 — 00
is isomorphic to the rule 0 ——=» AA, and that the symbol "OQ"
is common to both the antecedent side of the rule at level 2,
and the consequent side of the rule at level 1. The same
symbol positions of both rules are predicted and context
symbols.

Therefore, instead of inducing the rule 1 —% 00 at level
2 and adding this rule to the induced grammar, we instead induce
the recursive rule A —> AA, We delete 0 —» AA as a rule,

and we suppress the rule 1 —> 00. We obtain
TENTATIVE RULES CF PRODUCTICN FCR ¥ CF 2

FECURSICN NO. 1

The new rule (which is a recursive rule) is applied in all
possible ways, yielding:

A.A.AAA,
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The termination conditions are now satisified, since the
sample is now entirely reduced to sentences of length 1. The
induced grammar is thus A —> AA. No further M's need be
considered at level 2; however, if we did continue we would
induce A ~» AAA for M of 3, an& A—> AAAA for an M of 4.
The parsimony again would be identical for M of 2, 3, and 4,
except for the fact that identity recodings would be necessary
when A —> AAA and A — AAAA are used. Thus, again, an M

of 2 would be the best M.
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EXAMPLE B: Suppose the sample consists of a lightly
different set of sentences---namely, sentences of the form
An, n” 2, as follows:

-------------------------- LEVEL 1 - - -— -

SYMBCL STRING OF LENGTH 63 AND USING ALPHABET OF SIZE 1

RAGAAALAAAALAAAAA c ARAAAACAALAALRALAARLRALLAL PAAAAAAAA  ALANAAAA

Ald,

The analysis will proceed in a manner similar to that of
Example A, except that now two rules of production will
always result. The two rules will be either A ——3»AA and
A — AAA, or A ~—» AA and an identity rule mapping A
into itself. The additional rule, in both cases,
accommodates the sentences of odd length.

Note that, as in Example A, other rules (such as
perhaps A ~> AAAA or A ~—> AAAAAA)Will not be developed

because A —> AA subsumes both and is more parsimonious.



EXAMPLE C: In this example, we consider a sample of

well-formed sentences of the propositional calculus in
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Polish notation, with one term and one operation.

The sample is

DLPP4. PPEPP++ PPPP++4+.PPP+4P 4 PPHP+P +, PPP++.PP+P 4+,

The input to the Grammar Discovery Algorithm is as follows:

AN XT i
QUM LEST ™ T9 #F T21ED
LARGEST 0 T80 5k TaTRD
CIRECT I
LAMIIA ——
LAV == (CFEEFICIEAT OF
SOLRCFE F T ITTIAL
ol 1r 1T 1AL
Tyes UF G
RIT -
GRS TyeE o F D
USE b 4T o ST
P == DAL T LK
AN
PR INT

prInT

COHT CoT R
SQuUEBEETGT _ :
AYFE 22 [0 VA = R
FARLY O FLDUIMATIN
TMCLNT AL =00 50T
ST/71 2rcone AT T
ASF] == SETE
CUT= 0T O B
MR T G e BT T,
AR
TR Top el STy

R

STZU 78 TeenTaAar ALt Acl

1
TEE LA AL FsneT
N

[NTT 3 AL wand

SLzt 7F wasn
SY T LR TE 1T fas

MigE s e LRV TS

Sy V)
PONCTOAT T
HAP TG N

CRNS T KT NG
CORFETCLART O

i

T

2ADK

(#t5KS T

(N7 LS AT T enieg
|

[

i

AR -"]

IR

Y
FO

Ty P

~PL

i1 ORI
F RULES
NT SR 0D

(1)
1)
PLT)=5

WIS

TRIFD)

2
3
LF

l o ",7'&.)

SCEND
w9

JelUduuy
RFAD

<

LS=1S

C.T

3

YE <

19

123 v5ald350
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For an M of 2, three rules of production are

developed, as follows:

LEVEL= - 1 w= 2

NUMAER OF TYPE
NUMBER JF TYPC
NUM3ER OF TYPE

SEQUENCES(STRUCTURAL)
SEQUENCES (MESSAGE)
SEQUENCES {MESSAGE)
NUMBER 0OF TYPE SEQUENCES. {MESSAGE)
NUMRER OF TYPE SEQUENCES (NOISE)
NUMBRER NE NIFFERENT MASKS USED

NUMRER OF PASSIRLE M=SEQUENCES

NUMSFR OF PQOSSIBLE P({I)

NUNMBER NF P(T)

NUMEER OF DIFFERENT CONTEXTS
SEPARATICON VALUR BFTWEEN TYPES 3 AND 4 0.50000
EPSILCM FOR CEFINING TYPES 2 AND 3 0.34000

U e

P PLEPNNOSINO

TENTATIVE RULFS OF PRONDUCTION FOR M OF 2

1 ——===> PP

The value of H obtained upon applying these rules is as

follows:
ENTRIPY TERM 1.20941
DARSIMONY TERM 3.00000
RECURSTVE PARSIMAONY TERM 0.0

+

e s st . e WA e

VALUE OF H FOR THTS RECODINGaueeoesses  4.20941
MUMPER NF RULES OF PRODUCT ION 3
NUMAER OF RECURSIVE RULES 0

0

3

NUMBER OF IDFENTITY RULES
NUMBER NF TIMFS 2ULES ARF APPLIED

The new string obtained is

NEW ST2ING

D1+, 1+412.112+.13+3,1+433.13+.1+3,
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The p..-graph for this recoding is as follows:
P1J

GRAPY OF P(I) USED IN RECONDING FOR LEVEL 1 AND M OF

1.02 +

0.8

NUMAER
NUMIER

N M5 ER

RUMDER 7

MYMIAEQ

NUMB TR

T W

UENCESISTRUCTURAL)

s=0
SEQUENCES (MESSAGE)
SEQUENCES [MESSAGF)

SECUENCE

SEQUENCE

)

>

(MESSAGE]
(NDJISE)

WO H~NO

2
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For an M of 3, we obtain the following:

LEVEL= 1 M= 3

NJMBER OF TYPE 1 SEQUENCES({STRUGCTURAL) 0
NUMBER OF TYPE 2 SEQUENCES [MESSAGE) 4
NUMBER OF TYPE 3 SEQUENCES (MESSAGE) 7
NUMBFR OF TYPFE & STQUENLCES (MFESSAGE) 6
NJMRER OF TYPE S5 SEQUENCES {WOISES 15
NUMBER OF DIFFFRENT MASKS USED 4
NUMBFRR DF POSSIRLE M~SEQUENCES 8
NUMIER OF POSSIPLE P(I} 32
NUMPEE OF P(I) 32
NUNMBER 7F DIFFERENT CONTEXTS 16
SEPARATION VALUE SETWEEN TYPES 3 AND 4 £.50000
ECSILON FRR DEFIMING TYPES 2 AND 2 0.33333

TENTATIVT RULES NF PRODUCTION FOR M OF 3

1 ———==> 7P+

The value of H is as follows:

ENTROPY TERM 0.64752
PARSIMONY TERM 2.00000
RECURSIVE PARSIMONY TERM 0.0

+

VALUE OF H FOR THIS RECODINGeevecovsns 2.641752

NUMRER 0OF RULFS OF PROCUCTION 2
NUMBER OF RECURSIVE RULFES 0
NU#BER OQF IDENTITY RULES 3]
MUIVRER DF TIMES RULES ARF APPLIED 2

The string is then recoded as follows:
NFwW STRING

Poloellt+.PPle+ PL¥P+.1P+P+.PL+. 1P+,

Note that the rule 1 —» PP+ is reapplied several times

in the recoding.
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After considering tentative recodings based on an

M of 2, 3, and 4, the Algorithm concludes that

BEST % IS 3 WITH H CF 2.64752

and then uses the rule

to recode the sample. The resulting string is then the

input to the Algorithm at level 2.

- RULES OF PRODUCTION FOR LEVEL l=====-

At level 2, the Search Phase again searches for
regularities in the new sample, developes rules of
production, and computes the value of H for the
resulting transformations. For an M of 2 at level 2,

we obtain the following:

LEVEL= 2 M= 2

NUMATR OF TYPE 1 SFOUENCES(STRUCTURAL) 1
MUNMBRER SF TYPF 2 SCOUENCES (MESSAGE) 2
NUMBEC JF TYPE 3 SEQUENCES {(MESSAGE) 4
NUMBER F TYPT 4 SSRUENCES (MESSASE) 1
MUFPSER OF TYPE S5 SEQUENCES (NDISE) 10
NUMPECR OF DIFFERENT MASKS USFD 2
NUNMMZIR OF POSSTRLE M-SEQUENCES 16
NOMBER DF POSSIALE P(I) 32
NUM3ER TR ORI 18
NUMAEY JQF DIF=ERENT CONTEXTS 7

STRARATION VALUF 2ZTWESM TYPES 3 AND & 0.53300
FPSILON FOOR DEFINING TYPES 2 AND 3 0.34000
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The value of H is as follows:

ENTRAOPY TERM 2.15596
PARSIMOMY TERM 4.00000
RECURSIVE PARSIMONY TERM 0.0

: +

VALUE OF H FOR THIS RECODINGecasscacas 6.15596

NUMBER OF RULES 0OF PRODUCTICN 4
NUFMEER OF RECURSIVE RULES 0
MUMIER GF IDENTITY PULES 0

NUVMAER OF TIMES RULES ART APPLIED 7
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The pij-graph for an M of 2 at level 2 is as follows:

G2APH OF 2{1) USED IN PECODING FCR LEVEL 2 AND M 0OF 2

1.00 =++
J.72 1 1
N.66 | |1
Q.64 | 1
c.62 | 1]
9.20 | 11
S.43 |}

.36 1 I}
CeB% | V|
0.82 | il
.80 1 1Y
2,75 0 1
D76 1 i
Doe76 %]}
D.72 1
0.70 | 1
D.63 1t
Q.66 | x|
Jeb4 | 1
J.62 1 1
S.a0 gl
0.58 | %
0.56 | 11
0.54 1 1
0.52 | 11
0aB5) +=++
0.48 1 1]
Sekt |}
0.46 | |1
0.42 | |}
Cotd | 1
Ce35 1 |
0.26 | !
0.24 | 11
2.32 | |}
D20 1
0028 1 1!
.76 {1 11}
S.24 | V1
c.22 t
0.20 | 1
N.18 | 1]
0.1 | 1
D14 1 1]
D.12 | 11
3.10 0
vetrd | 1
.06 |
D.04 | 11
0.c2 | 11
C el + =4+

1273
NUMRFRR R TYPRL SEQUTNCESISTRUCTURAL)
puvReER QR TYPE SEMJENCFES (MESSAGE)
NIMAER R TYDPE 3 .SFQUENCES (MESSAGE)
NJHBRER OF TYPE 4 STQUONCES (MESSAGF)
NiypRER NF TYRPE SEQUEMCES (NOISE)
NUMRzr OF (1)

[CVRRAN IS

N
P OSO N
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For an M of 3 at level 2, the Algorithm considers
developing the rule 2 —3» 11+, but first checks to see
whether a recursion is a possibility. In fact, one
recursive rule can replace both 2 —» 11+ and the
rules 1 - PP+ developed at level 1. We thus obtain

the following recursion instead:

TENTATIVE RULES OF PRODUCTION FOR M 0F 3

RECURSION NO. 1

©

—————> PO+

Upon applYing the recursion once, we obtain the following

new string:

PePall+aPPle+ PltP+.1P+P+,Pl+a1P+,

Then upon applying the recursion in every possible way
to the new string (and taking into account the fact that
the non-terminal "1'" is now superseded by the recursive

symbol "P"}; we obtain the following as the recoding:

PQPQPQPQPOPOPOPO

The conditions for terminating the Algorithm now obtain,

and not further levels are considered.
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EXAMPLE D: In this Section; we analyze the behavior of
the Grammar Discovery Algorithm for a language---rather than
merely a particular finite sample of sentences from the
language. We do this to demonstrate that the kindslof results
one obtains from the Algorithm for small samples of sentences,
from languages with relatively simple grammars, over relatively
small alphabets can be expécted_to obtain also for-lérger
samples from languages with more complex grammars over
alphabets with large numbers of symbols. This particular
example also serves to illustrate the full range of grammar
induction devices discusséd, including those which are not
implemented in the computer program for the Algorithm, or
which require large combinatorial searches---namely, context
sensitive regularities, maximal regularities, recursions,
disjunctions, as well as context-sensitive and context-free
rules of production.

With this in mind, consider the language generated by the
following rules:

vV —> abv| ¢
W —> cdeW| ¢
X —> fghix| ¢
P —> VWX

Y —> leI @

I —> nopZI @
Q—> Y|z
S—>»PjQ
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Similarly, no regularities involving '"cde" will appear of
length greater than 3 which will be as reliable as those
for length 3, and no regularity involving "fghi'" of length
greater than 4 will be superior to those of length 4.

Finally, similar observations will apply to the two
phrases "1m" and 'nop'.

The second kind of regularity will involve strings
longer than the lengths of the basic 5 phrases. These
regularities will catalog the propensity of '"ab'" to follow
an "ab". As mentioned above, these regularities will be
less reliable than the corresponding shorter regularities.

The third kind of regularity for this language will
involve the interface between occurrences of the 5 basic
phrases and the symbol "j'". These will be of type II or worse.

In order to recode the sample at level 1, each of the
5 basic phrases will have to be recoded in some way internal
to themselves. The reason why there will be no inter-phrase
recodings is that a type I regularity internal to the phrase
exists in each case, while any inter-phrase regularity will
be of type II or worse. Exactly which recoding will be used
will depend on several externally-specified parameters. For
example, if context-sensitive rules are searched for, the

Algorithm will find and use a regularity such as
< "c%ey " d", 1.0 >
whereas if only right-sensitive regularities are searched for,

something such as
{ "%%e", "ed-", 1.0 >
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might be used. The Recoding Procedure, and in particular
the point in the sample where recoding begins, all affect
thé exact recoding chosen. However, even wifhin the
variability permitted by these external choices, it can be
predicted that the phrase''cde" will be recoded as a unit,
and thét, for example, no phrase involving "cdecde'" will
be used (of length 6). Thus, the initial sample of
sentences will be punctuated into sub-phrases of length

2, 3, and 4 corresponding to the 5 basic phrases.

Howevér, these phrases are recoded, the opportunity
to recode them at level 2 will occur, and it is at level 2
that the recursive structure of the sample will be
discovered. Again, the exact way in which the recursions
will be discovered will depend on some externally=specified
choices. If, for example, the "uvwxy'" method of inducing
recursions is being used, the Algorithm will note that there
are recurrences of the 5 basic phrases "ab'", "cde'", etc.
or recurrences of whatever symbols now represent these phrases.
If the rule-oriented method of inducing recursions is being
used, then at level 2 there may be recurrences of non-terminals
such as V, W, X, Y, and Z. These non-terminals may be recoded,
in a manner similér to that of Examplés A and B into other
non-terminals, and the recursion discovered at level 3.

In any event, the recursive structure of the sample will
be discovered somewhere between levels 1 and 3 of the recoding
regardless of how the recoding actually proceeds.

Also, the symbol "j'" will not be recoded at all because

it is the exceptional suffix to '"fghi" and the exceptional
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Note that the sentences of this language have the
general form
(ab) ¥ (cde)® (£ghi}* j (1m)" (nop)”

where r,s,t 2 0 and either u or v is 0, while the other is) 0.

In the Search Phase, one finds several different kinds
of regularities. First, there are regularities within the
5 phrases "ab'", '"cde", '"fghi'", "Im" and "nop'". Second, there
are regularities occurring between each of these 5 phrases and
themselves. Third, there are regularities occurring between 2
different ones of these 5 phrases as well as with the symbol "j."

Consider first the first kind of regularity. Among these
will be the regularity which catalogs the fact that an '"a"
always predicts a '"b" to the right. This regularity is a type I
left-sensitive regularity. There is also the fact that a ''b"
is almost always--but not always---preceded by an "a'". This is
a type II right-sensitive regularity. Similarly, a '"b" is usually
followed by an '"a', but occasionally is followed by a 'c" or
even an "f"., No regularity involving "a'" and "b" of length
greater than 2 will be as reliable as those of length 2 because,
as willlturn out, the string "ab" is a maximal regularity.

Similarly, within the phrases "cde" and 'fghi'", there will
be regularities. Some of these will be context-sensitive
regularities (something that was impossible in a phrase of
length 2), such as the type I regularity

Cnegem , "d" , 1.0°

Again, all regularities will be within the phrases.
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prefix to whatever follows.

The "j" will be followed approximately equally often by
either "1m" or "nop." After these 2 phrases are receded
internally, the non-terminals into which they have been
recoded will appear as fhe two possible substitution
possibilities following the "jﬁ. Thus, a situation where
the suffix to the "j" presents maximal entropy wili exist.
If the phrase "Im'" is recoded as Y, and the phrase "nop" is
recoded as "Z'", then the disjunction Q —> Y | Z can
be induced.

With the 3 recursions discovered at the beginning of
each sentence, and the 2 recursions and 1 disjunction at the
end of each sentence discdvered, eachlsentence will have
the form VWX j Q, or perhaps P j Q, depending on the
intermediate recoding that occurred. When each sentence of
the sample is reduced to a common form, the conditions for
terminating the Algorithm have been‘satisfied.' Thus, in
this case, we have induced the original grammar, or one
virtually the same as the original grammar.

Note that the different recursions. do not get '"tangled"
because the phrases in which they are embedded are all

maximal regularities.
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EXAMPLE E: Here again we shall consider a language rather
than a finite sample of sentences in order to illustrate a
situation which cannot be represented by any finite sample.

Consider an ergodic source generated strings over a

terminal alphabet A of size C Perhaps the grammar which

1°
describes the language is
S = ( a; 8, a8; ... a. ) S.

Any finite subset of the sentences generated by such a
grammar (even a subset that is complete in the sense that is
includes all sentences of the language up to a certain
specified length) has certain regularities which are artifacts
of the finiteness of the sample. The nature of ergodicity
is precisely the opposite---namely, that there are esééntially no
regularities in the sample. Therefore, to discuss the ergodic
case, one cannot consider any specific finite sample.

_ Recall that the Algorithm is given an externally specified
range of M's., This range is typically from a lower value of 2
up to a small whole number such aé 5. The Algorithm is also
given an externally specified direction for considering the
M's for recoding purposes (almost always descending---and always
descending when context-free rules are being generated).
Regardless of these two choices, the entropy associated with any
ergodic sample is always the maximal value. Thus, a disjunction
expressed in terms of phrases of length M (the first M) is
induced. If an M of 1 is consider, the disjunction is in terms
of single singles from the alphabet. (Note that the only useable
mask for an M of 1 is the '"predicted" mask which catalogs

probability of occurrence).



171

Thus, the Grammar Discovery Algorithm produces a
reasonable result for an ergodic source generating the
sentences of the given sample.

The above discussion suggests, in effect, an
alternative definition of érgodicity. In this paper, tﬁe
notion of the universe of masks is well defined, as is the
concept of the universe of possible regularities for a
given value of M. A source is ergodic, therefore, if
there are no regularities in the sentences produced by
the source except for type VI regularities having a
conditional probability pij equal to € = l/Cg, where
C is the size of the alphabet, and g is the number of
predicted positions in the regularity. In a more
practical vein, if the limiting value of the pij's are
their respective 1/Cg, then we can call the source

ergodic.
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EXAMPLE E: In this example, we will consider a very simple

The sample is as follows:

<THEBIG-CAT~RAN- o THE~BAD-CAT-RAN~. THE-B 1 6~DOG~RAN~, THE-BAD~

DOGHRAN*.THEﬁBIGﬂCATﬂSAT*.THEﬂBAB*CAT*SAT*.THE*BIG*DOG«SAT*.

THE~BAD-DOG-SA T,

The input to the Grammar Discovery Algorithm is as follows:

MAXIMUM NUMBER OF LEVELS TC BE TRIED 3
SMALLEST M TC BE TRIED 2
LARGEST M TO BE TRIED 4
DIRECTIUN OF CUNSIDERING M IN RECODE DESCEND
LAMBDA —- COEFFICIENT OF PARSIMONY 1.00000
LAMR —— COEFFICIENT OF RECURSIVE PARSIMCNY 0.10000
SCURCE OF INITIAL SYMBGCL STRING READ
MODE —- INITIAL PUNCTUATICN MARK 2ND
TYPE OF GRAMMAR DESIREC (MASKS TQ BE TRIED) LS~RS
RIT ~ CONTROLS ANTECEDENT SIDE OF RULES CF
WORST TYPE OF P(I) ALLOWED TO ENTER CODE 4

USE OF BEST M STRICTLY : YES
FR == RADIX OF MASK 2
PRINT CCNTROL —— PRINT UNSGRTED P{I) NO
PRINT CUNTROL — PRINT SORTED P(I) NO
PRINT CONTROL —— PRINT GRAPH COF P(I)-=§ ALL
PRINT CCONTROL —-- PRINT SEQUENCE NUMBERS YES
SUBRGUTINE USED FOR RECODING RECODE
OVERRIDE .VALUE FOR NBEST (MCH) 0
EARLY ELIMINATION OF UNALLCWABLE P(I) NO
INCLUDE ALL-PREDICTED MASK NO
START RECODE AT TIME OF MBEST YES
HSEL == METHOD FCR COMPUTING H 4
CUT-0UT ON FINDING GOCD M NO
METHOD OF FINDING RECURSICNS RULE
INCLUDE IDENTITY RULES NO
TEST FOR RECURSION YES
SIZE OF TERMINAL ALPHABET (INITIAL STRING) 14
TERMINAL ALPHABET: ABCDEGHINORST~
INITIAL PUNCTUATICN MARK {(MODE=2} .

SIZE OF BASIC NON-TERMINAL ALPHABET 10

SYMBOLS OF THE BASIC NON-TERMINAL ALPHABET: 0123456789
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The search phase produces the following for an M of 2:

LEVEL= 1 M= 2

NUMBER OF TYPE 1 SEQUENCES(STRUCTURAL) 1s
NUMBER OF TYPE 2 SEQUENCES (MESSAGE) 0
NUMBER OF TYPE 3 SEQUENCES (MESSAGE) 11
NUMBER OF TYPE 4 SEQUENCES (MESSAGE) c
NUMBER OF TYPE 5 SEQUENCES (NUISE) 16
NUMBER OF DIFFERENT MASKS LSED 2
NUMBER OF PGSSIBLE M~SEQUENCES 166
NUMBER OF POSSIGLE FP(I} 362
NUMBER GF P(I} 46
NUMJIER OF DIFFERENT CONTEXTS 28
SEPARATION VALUE BETWEEN TYPES 3 AND 4 0.50000
EPSILON FOR DEFINING TYPES 2 AND 3 0.34000

TENTATIVE RULES OF PRODUCTICN FOR M OF 2
0 ———-> TH
1 ——=-=> E=

2 ———> Bl

3 —=—==>  Gn
4 =====> CA
5 ———- >  T=
6 =—--—=> RA
T —— > Na
8 ———-=> B8A
9 —=—==> D=
00>  ---—- > DO

The value of H for M of 2 is as follows:

ENTROPY TERM 1.50000
PARSIMUNY TERM 12.C0000
RECURSIVE PARSIMGNY TERM 0.0

| S
VALUE OF H FOR THIS RECODINGeeeeoecess 13.50000
NUMBER OF RULES GF FRDDUCTION 12
NUMBER OF RECURSIVE RULES 0
NUMBER UF [DENTITY RULES c
NUMBER OF TIMES RULES ARE APPLIED 12

The sample is then recoded as follows:

.Q1234567.01894567.C123(00>367;0189<00>367.012345(01)5.01894

5<01>5;0123<b0>3<01>5.0189<OG>3<01>5.
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The pij-graph for this recoding based on an M of 2 is as

follows:

GRAPH OF P(I) USED IN RECCUING FOR LEVEL 1 AND M GF 2

1.C0 2o g g R AR e
0.98
0.96
0.94
0.92
0.0
C.38
0.86
0.84
0.82
0.30
0.78
0.76
0.74
0.72
0.70
.68
0.66
0.64
0.62
3460
0.58
0506
0.54
0.52
0.50
0.48 |
0.46 |
0.44 |
.42 |
0.40 |
G.38 |
0.36 |
0.34 |
0.32 |
0.30 |}
0.28 |
0.26 |

|

]

i

i

!

|

}

|

]

|

{

o e e S e S s G T o s o S e e S e e e

0‘24
0.22
0.20
Uel8
0.16
Uels
0.12
0.10
0.02
0.06
0. 04
0.02 | |
0.0 #-———m——t=—+

111111111333
NUMBER CF TYPE 1 SEQUENCES(STRUCTURAL)
NUMBER UF TYPE 2 SEGUENCES (MESSAGE)
NUMBER OF TYPE 3 SCEGQUENCES (MESSAGE)
NUMBER OF TYPE 4 SEQUENCES (MESSAGE)
NUMBER OF TYPE 5 SEQUENCES {(NOISE}
NUMBER CF PI(1) 1

NOoOoOoOwWe v



175

For an M of 3, the following tentative rules of production

are developed:

LEVEL= 1 M= 3

NUMBER OF TYPE 1 SECUENCES(STRUCTURAL) 46
NUMBER OF TYPE 2 SEQUENCES (MESSAGE) 0
NUMBER OF TYPE 3 SEQUENCES (MESSAGE) 34
NUMBER UF TYPE 4 SEQUENCES (MESSAGE) 0
NUMBER OF TYPE 5 SEQUENCES {NOISE) 32
NUMBFR OF DIFFERENT MASKS USED 4
NUMSER OF POSSIBLE M~SEQUENCES 2744
NUMBER COF POSSIBLE P(I) 1067¢
NUMBER OF PI(I) 112
NUMBER OF DIFFERENT CCNTEXTS S8
SEPARATION VALUE BETWEEN TYPES 3 AND 4 0.5CC00
EPSILON FOR DEFINING TYPES 2 AND 3 0.33333

TENTATIVE RULES OF PRGDUCTION FOR M OF 3

0 --—--> THE
1 - > -8l
2 —--—=>  6-C
3 ———-> AT~
& ——===> RAN
5 ———-= >  -BA
6 =———==> D~C
7 -———=> 6-D
8 -———=> 06
9 ——=—=> D-D

The value of H for the M of 3 is

ENTROPY TERM 2.CG000
PAPSIMONY TERM 10.0C0C0
RECURSIVE PARSIMUNY TERM G.U0

+

s o e e e e

VALUE OF H FOR THIS RECODINGeosececese 122C0000

NUMBcR OF RULES OF FRODUCTIGN 1¢
NUMBER OF PRECURSIVE RULES 0
NUMBER UF IDENTITY RULES 0
NUMBER OF TIMES RULES ARE APPLIED 10

The sample is then recoded as follows:

«01234~.05634~.01734~.05584-,0123532.C056353.017853.059853.



176

For an M of 3, the pij—graph is as follows:

GRAPH OF P(I) USED IN RECCDING FOR LEVEL 1 AND M OF 3
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Note that there are 6 type I transformations, and 4 type II

transformations.
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For an M of 4, the search phase produces the following:

LEVEL= 1 M= 4

NUMBER OF TYPE 1 SEQUENCES(STRUCTURAL) i3
NUMBER OF TYPE 2 SEQUENCES (MESSAGE) o
NUMBER OF TYPE 3 SEQUENCES (MESSAGE) 81
NUMBER OF TYPE 4 SEQUENCES (MESSAGE) 18
NUMBER UF TYPE 5 SEQUENCES (NUOISE) 20

NUMBER OF DIFFERENT MASKS USED 6
NUMBER OF POSSIBLE M-SEQUENCES 38416
NUMBER OF POSSIBLE F(I} 230496
NUNMBER OF P(I) 162
NUMBER OF DIFFERENT CONTEXTS 219
SEPARATIUN VALUE BETWEEN TYPES 3 AND 4 0.50000
EPSILON FOR DEFINING TYPES 2 AND 3 0.25000

TENTATIVE RULES OF .PRCDUCTION FOR M GF 4

0 ===-=>  THE~
1 - > BIG»
2 ----=> CAT-
3 —==—=> RAN=
4 ==—=>  BAD-
§ ————=>  DOG~
& —===> SAT=

The value of H is as follows:

ENTROPY TERM 0.0
PARSIMONY TERM 7.00000
RECURSIVE PARSIMUNY TERM 0.0
+.-—~——~—
VALUE OF H FOR THIS RECODING-.:....-.. 7.00000

NUMBER OF RULES GF FRODUCTION
NUMBER OF RECURSIVE RULES

NUMBER UF IDENTITY RULES

NUMBER OF TIMES RULES ARE APPLIED

~o o

The sample is then recoded as follows:
NEW STRING

«0123.0423.0153.0453.0126.0426,0156.0456.
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For an M of 4, the pij-graph shows that there are 7

type I regularities in the recoding:

GRAPH OF P(I) USED IN RECCOING FGR LEVEL 1 AND M QF 4
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The Algorithm then selects the best M, as follows:

BEST M IS 4 WITH H OF 7.00000

Using the best M (of 4) as the basis for the recoding,
the original sample is then recoded, and this recoded

version is then used as input to level 2, as follows:

—-—— LEVEL 2

SYMBOL STRING OF LENGTH 41 AND USING ALPHABET OF SIZE 21

+0123.0423.0153.0453.0126.0426.0156.0456.

The resolution of this sample at level 2 requires
the induction of a disjunction at level 2 --- a feature
not now implemented in the computer program. However,
if an M of 1 is used at level 2, this sample will be
recognized as being derived from a grammar which places
a "0" as the first symbol of every string, and then
disjunctively places a '"'1" or a "4" at position 2;

a "2" or a "5" at position 3; and a "3" or a "6" at

position 4.



VI. FUTURE DIRECTIONS

This paper raises numerous additional questions and suggests
further research about grammar induction and grammar discovery. Among
these questions are the following:

First, it would be interesting to explore the two-dimensional
pattern recognition problem using the methods of the Grammar Discov-
ery Algorithm. The concepts of context-sub-sequences, predicted-sub-se-
quences, regularities, and hierarchical rules of production would seem
to have application to pattern recognition problems as well as grammar
induction problems. The kinds of descriptions that the Grammar Dis-
covery Algorithm builds up in analyzing samples would seem to parallel
the kind of descriptions one would want a good pattern recognition
algorithm to develop about its samples.

Second, a precondition to seriously analyzing the two-dimensional
pattern recognition problem would be to rewrite the computer program
for implementing the Grammar Discovery Algorithm. The computer program
here was an integral part of the research for this paper. As such, the
program was cohstantly changed as the Algorithm was developed. Thus,
the computer program is structured in ways peculiar to its development
(e.g. the time-consuming hash coding of sequences) but which make it
quite inefficient for analyzing large samples.

Third, there are several aspects of the induction problem that are
amenable to more formal analysis than has been presented here. For
example, the combined measure of entropy and parsimony and recursive
parsimony used in the computer program is essentially an ad hoc meas-
ure based on intuitive considerations. An axiomatic development of

a combined measure would be interesting. Also, some of the questions

180
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of convergence and rates of convergence of the Grammar Discovery
Algorithm should be possible.

Fourth, it would be‘interesting to consider extensions of the
grammar discovery proéess that would lend themselves to samples consisting
of symbols that are ordered or partially ordered. This would include
samples of integers, or of playing cards, or of musical notes which
present interesting questions of induction or of identifying underlying

structure.



APPENDIX A. DESCRIPTION OF INPUT TO THE COMPUTER PROGRAM IMPLEMENTING

THE GRAMMAR DISCOVERY ALGORITHM

The input to the computer program implementing the Grammar
Discovery Algorithm consists of three control cards, followed by
additional cards containing the sample of sentences.

The first control card contains a variety of parameters which
control the operation of the Grammar Discovery Algorithm. All are

integer numbers, unless otherwise specified.

_ Typical
Card Columns Variable Name Description Value
1-5 L3 Upper Limit on the number of 99

levels to be tried by the al-
gorithm. This parameter has

no theoretical significance,
and is used only to conserve
computer time in testing. By
choosing a large value for L3,
its function is effectively ne-

gated. (See termination--II.G.)

- 6-10 M1 Lower Limit on length of regu- 2
larities searched for in the
Search Phase. This parameter

is almost always set to be 2.

(See section II.H. and III.B.)

11-15 M2 Upper Limit on length of regu- 8
larities searched for in the

Search Phase. This parameter
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16-20

21-25

26-30

31 32

VDIR

LAMBDA

LAMR

CONT

183

is usually a small whole number.

(See section II.H. and III.B.)

Direction of Considering M's -1
in Recoding Procedure. (See
section II.C.4.) A value of

+1 specifies ascending values,

and a value of -1 specifies
descending values. The choice

of -1 is usual, especially

when context-free rules are

being generated (IV.D) (See

RIT below).

Real Number — Coefficient of .5

Parsimony. (See section II.D.2).

Real Number — Coefficient of 1
Recursive Parsimony. Typically
LAMBDA << LAMR. (See section

11.D.2).

Specifies source of the sample. 1
A value of 1 specifies that the
sample is to be read in on cards,
after the 3 control cards. A
value of 2 or 3 specifies that
sample is to be generated by
experimental subroutines GEN2

or GEN3, respectively. CONT is
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usually 1. The subroutine GEN1

reads the cards, if CONT = 1.

33-34 MODE Specifies the mode of the ini- 1 or 2
tial sample. In the first mode
(MODE=1), there is no initial
punctuation in the sample, while
in the second mode (MODE=2),

there is. (See section II.A.)

35-36 GRAM Specifies grammatical type of 1
masks that are used in the Search
Phase to search for regularities.
A value of 0 specifies Unrestricted
Rewrite type; a value of 1, con-
text-sensitive. If context-free
rules are desired, GRAM may be
0 or 1, provided RIT is properly
set. If regular rules are de-
sired, GRAM may be 0 or 1, pro-
vided RIT is properly set, and
provided M2 and M1 are both 2.

A value of 0 is most general.

(See section II.B.9.)

37-38 ALLOW The worst type of regularity 1, 2, or 3
allowed to be used in Recoding.
ALLOW may be 1 (only 100% reli-
able regularities are to be

used); or 2 (either Type I or
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Type II may be used); or 3
(Types I, II, or III may be
used). It would be unusual
for ALLOW to be 4 or 5.‘(See

section II.C.4.)

39-40 STRICT A value of 1 specifies the use O
of only one value of M (namely,
MBEST) iﬁ Recoding, and is suit-
able oﬁly when the sample is
from a uniform code source. A
value of 0 allows any value of M
from M1 to MBEST (which is limited
above by M2) in Recoding. STRICT
is almost always 0. (See section

I1.C.4.)

41-42 FR Radix of Masks. A value of 2 2or 3
specifies binary masks, and a
value of 3 specifies ternary
masks (i.e. masks with '"don't
care'" positions). (See section

IV.A.)

43-44 PRI Controls pfinting of unsorted 0
table of regularities. A value
of 1 specifies printing, and a

value of 0 specifies no printing.

45-46 PR2 Controls printing of sorted
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table of regularities. A value
of 1 specifies printing, and

a value of 0 specifies no printing.

47-48 PRG Controls Printing of Graph 1or2

of regularities used in Recod-.

ings. A value of 0 specifies

the printing of no graphs;aa

value of 1 specifies printing

of some graphs (namely, when a
recoding is actually used); a

value of 1 specifies printing

of all graphs (i.e. for all

trial recodings and the one

actual recoding).

49-50 PRS Controls printing of SEQNO 0
table (table of indices of
regularities). A value of
0 specifies no printing, and

a value of 1 specifies printing.

51-52 EXR A value of 1 specities that 1
alphabet-enlarging Recoding
as contained in subroutine
RECODE is to be used. 2
specifies Huffman type of
Recoding is to be used.

(See section IV.B.)
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53-54 MCH If MCH is not-zero, this value O
is taken as an override value
of MBEST for purposes of Re-
coding. This parameter is
used only to force a value for
the '"best M" for Recoding, for

testing purposes.

55-56 EARLY A value of 1 specifies that 0
early culling of the table of
regularities is to be done (to
conserve memory space in the
computer), and a value of 0
specifies that it is not. This
parameter has no theoretical
significance. (See section

II.B.9.)

57-58 LAWL This variable is no longer used

by the program.

59-60 VSTART A value of 1 specifies that the 0 or 1l
scan in the Recoding Phase is
to start at position MBEST (rather
than M1) of the sample (or if
MODE=2, of each individual sen-

tence). (See section II.I. and
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HSEL
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II1.C. for discussion of effect

of VSTART.)

Selects method of computing
H (the combined entropy-parsi-

mony-resursive parsimony meas-

ure):
HSEL EXPRESSION
1 "Pij E 10g2 pij + qu +
NTM

N,.

2 Py E log, Py; *+ N\ +
a NTM

+4

3 MBE -Pijz: log, P,

N X +
M1 Q-

+

4 -PijZ logy Pis v N
q

where here nq is the number of
rules of production, where n, is
the number of recursive rules,
where NTM is the number of times
the rules are actually applied in
the transformation, where MBE is
the current M being used (as a
maximum M for any rules in this
transformation). The usual value

of HSEL is 1. The other expres-

N_X

N_A
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65-66

67-68

WDF

WCv

WXL
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sions were used for testing

purposes. (See section II.D.2).

Controls effect of discovering 1
a Resolving Transformation. A
value of 1 specifies that if a
value of M results in a resolv-
ing transformation, then this

M is immediately used for the
actual recoding at this level,

A value of 0 allows the contin-
ued examination of M (and there-
by allows another equally good

or possibly even better M to be
used. Note that variable VDIR
controls the order of considering
the M'é (and that this is usually
descending order). WDF is usually

1. (See section II.C.4).

Specifies Approach for inducing 1
recursions: A value of 1 spe-
cifies the Rule-Oriented Method
(See section II.E.4), and a

value of 2 specifies the Sentence-
Oriented ("uvwxy') Approach (See

Section II.E.5). WCV is usually 1.

This variable is no longer used

by the program.
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KRECUR
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Specifies whether Recursions
should be induced. A value

of 1 specifies that recursions
should be induced (if possible),
while a value of 0 specifies
that no attempt to induce re-
cursions should be made. (See

section II.E.1).

1
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The second control card contains the terminal alphabet and the
initial punctuation mark (if any). The variable Cl specyfying the
size of the terminal alphabet appears in card columns 1-5. The Cl
cymbols of the terminal alphabet appear starting in column 6. If
MODE = 2, the initial punctuation mark (customarily, the period)
appears after the Cl1 symbols. -If the sample contains blanks, it is
‘customary to use the symbol "='" in place of blanks to improve
readability of the analytical tables. This convention in no way
identifies the blank as a distinguished symbol to the Algorithm, how-
ever.

The third control card contains the non-terminal alphabet. The
variable N26 specifies the size of the non-terminal alphabet and appears
in card columns 1-5. The N26 symbols starting in column 6 are the
non-terminal alphabet symbols. If more than N25 non-terminal sym-
bols are required by the Algorithm, the Algorithm uses bracketed.
pairs of these N26 symbols in the fashion of backus normal form.

It is therefore advisable not to use brackets in either the terminal
or nonjterminal alphabets. It is customary to use numbers for
non-terminals, if letters have been used in the non=terminzl alphabet,
and vice versa; or, alternately, to use upper case letters for non-
terminals and lower-case letters for terminals (if a suitable output
printer is available).

If the sample is to be read in from cards (and this is under
the control of the variable CONT), then the fourth card is a card
containing the value of N, the length of the sample, in card columns
1-5. The fifth and succeeding cards now contain the sample, 80
symbols to a card. The size of the sample includes the initial punc-

tuation in the sample, if any.
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The following is an example of input to the computer program

implementing the Grammar Discovery Algorithm:

3 2 5 -1 €5 0.1 11 2141201211001 1401 1
201

26ABCOEFGHIIKLMNUPORSTUVRXYZ

272

1110011¢11C0102C11093101110101C1C1CACUC011001C011101010101000C0C01110001111001000
11000101€160CCC1100NG111101C11C11C00L0011000010110G001910100900011C1011011€00110
OLEOCOCCIIATIACEIIL00ETC110101CG011C000011101015101000060110001011110010111100161
1121010111 13CC011111GAGLCCLECEnG0

This input would be interpreted as follows:

MAXTMUM NUMBER OF LEVELS TO BF TRIED 3
SMALLEST M TO BE TRIED 2.
LARGEST M TU BE TRIED 5
DIRECTION OF (ONSIDEFING M IN RECODE - DESCEND
LAMBDA -~ COEFFICIENT CF PARSIMONY 0.50000
LAMR —-=- COEFFICIENT COF RECURSTVE PARSINMCAY 0.10000
SCURCE OF INITIAL SYMBCL STRING READ
MODE —-= INITIAL FUNCTUATICN MARK ‘ 157
TYPF OF GRAMMAR DESIRED (MASKS TO BE TRIED) LS=-RS
RIT - CCNTROLS ANTECECENT SINE OF RULES CF
WOEST TYPE QF P(I) ALLCWED TC ENTER CCCE 4

USE OF BEST M STRICTLY YES
FR =- RADIX OF MASK 4
PRINT CONTROL -- PRINT UNSORTED P(I) NO
PRINT CONTROL —-- PRIMNT SORTED P(T1) YES
PRINT CONTROL =-- PRINT GRAPH OF P(I)-S ALL
PRINT CONTROL —-- PFRINT SEQUENCE NUMBERS YES
SUBROUTINE USED FCR RECCDING RECODE
QVERRIDE VALUE FGR MBEST (MCH) 0
EARLY ELIMINATICN CF UNALLOWABLE P(I)} NO
LAWL YES
STZRT RECOCE AT TIME OF MBEST YES
HSFL ~- METHOD FCR CCMFUTING H 4
CUT-0UT ON FINDING GCOD M NO
METHOD OF FINDINC RECURSIONS RULE
WXL NO
TEST FOR RECURSION YES
S1ZE OF TERMINAL ALPHABET (INITIAL STRING) 2
TERMINAL ALPHABET: 01

SIZE OF BASIC NCAN-TERMINAL ALPHABET 26

SYMBOLS OF THE PASIC NCN-TERMINAL ALPHABET: ABCDEFGHI JKLMNOPQRSTUVWXYZ
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APPENDIX B: LISTING OF THE COMPUTER

PROGRAM IMPLEMENTING THE GRAMMAR DISCOVERY ALGORITHM

GRAMMAR DISCOVERY PROGRAM
IMPLICIT INTEGER ( A=)

REAL SCALARS
REAL CRIT
REAL CX
REAL FPS
REAL FC
REAL HBEST
REAL HP
REAL LAMBDA
REAL LAMR
REAL SEPAR
REAL TT

REAL FUNCTIGNS
REAL ALOG

VECTURS CF LENGTH NS
DIMENSION Y(500)
DIMENSION ALPHA(500)
DIMENSION YNEW(500)
DIMENSION SECNO(500)
INTECER DUNE(500)

VECTURS OF LENGTH MTSIZE
REAL P({500)
REAL PD(500)
DIMENSION SQCTXTISOC)
DIMENSIOH SCLEN(500)
DIMeNSIUN SCPKELISVO)
DIMENSIUN TYP:({500)
DIMENS LUN INDEX(500)
DIMENSION INDEP(50U)
DIMENSION TEPHI{500)
DIMENSIUN TEBNEXT(50C)
DIMENSICN TBUNT(500)

VECTURS OF LENGTH M2MaX

REAL H(20)

DIMENSION MASKIZ20)
DIMENSICGK PRe{20)
DIMENSICN PCST(20)

REAL FIRST(20)

REAL SECUND(20)

REAL THIRD{2V)

INTEGER BI(20)

INTEGER oII(20)

VECTORS CF LENGTK N4O
DIMENSICN SCTRJ(4D)
DIMENSIUN SURJAL(40)
DIMENSICN SCRU(40)
DIMENSIUN SCRCAL(40)

193
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DIMENSION SCRMAL(40)

VECTURS UF LENGTH RPMaAX
INTEGER LLIST(50)
INTEGER RPALENI{HQ)
INTEGER RPCLEN(50)
INTEGER RPLEV{5Q)
INTEGER RPIX{50]}
INTEGER RTIX{50)
REAL POX({50)
INTEGER DESC{50)

ARRAYS OF SIZE RPMAX # M2MAX
INTEGER RPA(5C,20)
INTEGER RPC{5(,20)
INTEGER RPAM(50,20)

VECTURS UOF LENGTH YRPMAX
INTEGER YRP{3CCI)

VECTURS COF SIZE MNDC
REAL HDJ(500)
INTEGER ILLLEN(500])
OTHER VECTGRS T
DIMENSIUN NUMT(5)
DIMENSION LETTER(75)
DIMENSION CHARIT8)
DIMENSIUN MARKER (3)
CATA MARKER / V4, V_%, v3v /
DIMENSICN BLANKS (5]
DATA BLANKS /7 % 8, ¢ ¢, 3 st ¢ 1 2 g
DIMENSICN ARKCW(12)
DATA AKROW / 1 l’ L] !, 1 l, l..l, !_l’ l..l’ l-l' I...l’ I)l,.ﬂ l'
] l' [ L] /
DATA SSS / 15Y /
REAL#8 NAMEL5)
DATA NAME/TURST 4 1CSGY 4 *LS—RS ¢, 'CFGT, 'RGY/
INTEGER SOURCE(3)
DATA SCURCL/YREAD®, 'GEN2', 'GEN3*/
REAL®3 WAYS{2)
DATA WAYS/'RECCDE?', "HUFFMAN'/
REAL%3 TTQ(2)
DATA TTQ /7 *RULE', P'UVWXY®' /
INTEGER TRI{3)
BATA TRI/INCNE',1SOME", 'ALLY/
INTEGER ANSW(2)
DATA ANSW/ENG!,tYES?/
INTEGER GkD{2)
DATA ORD/®LST?,92NDY/
REAL*8 DIRECTI(3)
DATA DIRECT /*DESCEND', ' ', *ASCEND' /
REAL*3 ANTE(2)
DATA ANTE/'CONTEXT','CF?/

- o w-

COMMON STORAGE

CCMMON Ci,CONT,L3,ML, M2, PR1, PR2y, FR ., LAMBDA, RIT ,

T
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MCHy MODEs ALLCHW 9 STRICT,EARLYsCFAM ’ NCHAR

N26s PRGy EXR » PRS, LAWL, VSTART , VDIR , HSEL, WDF,
WCVs WXLy KRECURy LAMR :
s NSeNeMbDE 4C o MTSIZE,M2MAX yNQsTRIAL, CONT ¢PUNCy LEVEL #N4OFC,NST,
PERCsCTXT TN, NTMsRPMAXysNRP s NY s YRPMAXyNRECUR ; YRARRW YRPUNC
+ NTP

VECTORS AND SCALARS.... I
ALLOW=THE WORST TYPE OF P(I) ALLOWED IN THE RECODING
ALPHA(T) =ALPHABETIC VERSICN GF Y
ANSW=ALPHABETIC VECTOR FOR YES-NGC PRINTING V
ANTE=ALPHABETIC VECTGR FGR PRINTING ANTECEDENT TYPES
ARROW=ALPHABETIC ARRCH
BI,BII=VECTORS FOR TESTING ISOMORPHISM OF RULES
BLANKS=ALPHABETIC BLANKS ‘

C = # OF CIFFERENT SYM3OLS IN SYMBCL STRING Y AT THIS LEVEL
INCLUCES THE SYMBCLS OF MARKER ' mm———
EXCLUDES INITIAL PUNCTUATICN MARK (.), IF ANY
THIS INCLUDES THE TERMINALS AND THE NON-TERMINALS _

Cl= # OF DIFFERENT TERMINAL SYMBOULS IN INITIAL STRING Y
EXCLUDES THE SYMBCLS CF MARKER
EXCLUDES INITIAL PUNCTUATICN MARK (<), IF ANY

Cw=# UF TERMINAL AND NON-TERMINAL SYMBOLS IN CURRENT STRING
EXCLUDES THE SYMBCLS CF MARKER T
EXCLUDES INITIAL PUNCTUATICN MARK () IF ANY

CX= REAL Cw

CHAK=VEC TOR OF NCHAR ALPHABETIC CHARACTERS

CCNT=CONTROLS METHSD OF PRUDUCING INITIAL STRING
1=USE GEN1  2=USE GENZ  3=USE CGEN3

CRIT=THRESHOLD CRITERIGN FOR H

DESC=TYPES OF P(I)*'S BEING GRAPHED BY 'GRAPH?®

DIRECT=ALPHABETIC VECTOR FOR PRINTING DIRECTIONS ,

DGNE(I): ©=PGSITION I CF Y IS NGT YET RECODED  1=[S DONE

EARLY= CUNTRULS TIME OF CULLING OUT SMALL P(I)'S
1=EARLY CULLING 0=NG tARLY CULLING

EPS= EPSILCN USEC TO SEPARATE TYPE 2 AND TYPE 3 P(I)*S

FC=REAL CUNSTANT TO COMVERT TO BASE 2 LOGARITHMS

FIRST{I)=FIKRST TCRM GF COMBINED H MEASURE

FR=RADIX OF MASKS  2=BINARY  3=TERMNARY

GRAM=TYPEZ (7 GRAMMAR DESIRED

- 0=UNRESTRICTED REWRITE
1=CUNTEXT SENSITIVE
2=LEFT~SENSITIVE AND RIGHT-SENSITIVE
NB: IF CONTEXT—FREE RULES AKE DESIRED, SET RIT=1
IN THLS EVENT, GRAM CCNTRULS TYPE OF MASKS TO 8E TRIED

H{M)=COMBINED ENTROPY AND PARSIMONY MEASURE e ———

HBEST= BEST VALUE GF H FGR THIS LEVEL

HP=REAL CUNSTANT FOR CUMULATING h MEASURE

HDJ(13=TrE CNTROPY OF THE I-TH DIFFERENT CONTVEXT

. {SUMMED CVER THE DIFFERENT PRECICTED PARTS)

ILCLEN{ I )=NUMBER OF UIFFERENT PRECICTED PARTS ASSOCIATED
WITH CCNTEXT I IN ILC ARRAY .

INDEP=INCEX VECTUR FUR SORTING PD INTO DESCENDING CRDER™ ~

INDEX=INDEX VECTCR FCR SORTING P INTO DESCENDING ORDER

KRECUR: 1=CHECK FUK RECURSIUN 0=DON?'T CHECK

L3=NUMBER CF LEVELS TG BE TRIED

LAM3DA=CCEFFICIENT OF PARSIMCNY

ottt e o

e e e
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LAMR=COEFFICIENT CF RECURSIVE PARSIMCNY
LAWL=CONTRGLS COMPUTATION OF PRUBABILITIES CF CCCURRENCE
0=DCNT 1=00 e
LETTER=VECTGR OF NON-TERMINAL SYMEBQLS
LEVEL= TYPE LEVEL. PRUOCESS BEGINS AT LEVEL=1 (INITIAL Y)
LLIST=LIST OF L'S USED TO CATALOG RULES OF PRODUCTION
M=TEST SEQUENCE LENGTH
M1,M2=RANGE OF VALUES OF M TO BE CGNS IDERED
M1 >= 2
M2<= M2MaX Tmm——
FORK REGULAR GRAMMARS (TYPE 3), SET Ml=M2=2
M2MAX=DIMENSIGNEU SIZE OF VECTORS VARYING OVER VALUES GF M
MARKER=ALPHASETIC VECTOR = RANGE OF MASK

#=DCON'T CARE SYMBOL  _=CCNTEXT PART %=PREDICTED PART
MASK (M)=VECTUR WHOSE VALUES RANGE OVER THE SET . MARKER
MASK: # - %
PRE: Y Y 3 T
POST: # Y

MCH=CVERRICE VALUE OF MBEST FGR LEVEL 1 0=NO OVERRIDE
MINM=MININMGM M THAT PRGDUCES A RECCDING THAT USES AT LEAST
ONE RULE GF PRODUCTION _
MNOC=DIMENSICNED MAXIMUM NUMBER OF DIFFRENT CONTEXTS
MCDE= INITIAL PUNCTUATION CONTROL
1=NO INITIAL PLNCTUATION MARK
2=CHAR{C1l+4) IS THE INITIAL PUNCTUATION MARK ne—
MSC=DIMENSIONED MAXIMUM NUMBER OF PRECICTED PARTS FDOR EACH
COUNTEXT : o
MTSIZE=DIMENSIONED SIZE OF VECTORS CATALOGING SEQUENCES
(SUCH AS SQCTXT, SQPREDs SQLEN, TYPE, P, PDy INDEX, LLIST)
N=LENGTH OF Y
N26=SIZE GF LETTER
N40=DIMENSICNED SIZE OF SYMEBOL STRINGS
NAME=ALPARETIC VECTOR OF NAMES CF GRAMMAR TYPES
NCHAR= SIZE CF VECTUR CHAR
INCLUDES INITIAL PUNCTUATICN {IF AAY)
INCLUDES INITIAL PUNCTUATION {IF ANY)
NDC=NUMBER CF CIFFERENT CCNTEXTS
NEPS= # OF P(I)'S WITHIN EPS OF 1.0 (TYPE 2)
NMESS= # CF MESSAGE P(IJ'S {TYPES 2,3,4)
NMASK= # GF PERMISSIBLE MASKS
NNOISY= & CF P(I)*S BETWEEN EPS ANC 0.0 {(NOISE) (TYPE BT
NQ=# OF RULES GF PRODUCTICN AT THIS LEVEL
NRECUR=# GF RELUKSIVE RULES CF PRCOLCTION AT THIS LEVEL
NS=DIMENSICNED SI1ZE OF Y
NSTRU= # GF PLL)'S EXACTLY 1.C {(STRUCTURAL) {(TYPE 1)
NST=SIZE CF VECTORS CATALUGING SEQUENCES _
{SUCH AS SQCTXT, SGPRED, SQLENy TYFE, P, PD, INDEX, LLIST)
NT3= # OF P{I)*'S BETWEEN 1.0-EPS AND SEPAR (TYPE 33~ 7
NT4= # OF P(I)'S BETWEEN SEPAR AND EFS (TYPE 4)
NTB=NUMBER OF SEQUENCES CATALGGED FOR CURRENT ™
[SIZE UF THONT, TBPHI, TBNEXT )
NTM=# OF TIMES RULES GF PRUDUCTICN ARE APPLIED IN RECODE
NRP=VERSICN OF NTP IN SUBRGUTINE RECODE
NTP=ACTUAL # OF RULES IN RPA, RPC T
NUMT=VECTOR OF CCUNT OF TYPES GF PLI)®S
NY=# OF SYMBOLS IN YRP
NZI= # UF P(I)'S FUR CURRENT M
ORD=ALPHABETIC VECTCR FCR PRINTING MODES
P(I)=CONDITIUNAL FROSBARILITY THAT TFE CONTEXT. PART OF THE
SEQUENCE I PREDICTS THE PREDICTCR PART OF THE SEQUENCE

e st vt . ¢
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PD(1)=C0PY OF P WHICH IS SORTED INTG CESCENDING ORDER
ALSO USED TC SORT P(I}'S THAT ARE-USEL IN RECODING
PCGX(1): CONOITIGNAL PROGABILITY OF SEQUENCE PAIR THAT
PRGLUCED THIS RULE CF PROCUCT IUN
PRI=PRINT CCNTRCL FOR UNSORTED P{I)*S O=DON'T PRINT 1=PRINT
PR2=PRINT CONTROL FOR SORTED P(I)°'S 0=DON*T PRINT  1=PRINT
PRG: PRINT CCNTRCL FDR GRAPH OF P(I1)*S USED IN RECODING
0=0DON*T PRINT GRAPH
1=PRINT SOME GRAPHS —=— GNLY WHEN TRIAL=2
2=PRINT ALL GRAPHS .
PRS: CONTRULS PRINTING UF SEGNO 0=DCN'T PRINT 1=PRINT
PRE(M)=M=-VECTCR OF LCNTEXT PART OF SEQUENCE
POST{M)=M-VECTUOR OF PRECICTED PART CF SEQUENCE
POX{I)=PROBABILITY ASSOCIATED WwITH RULE OF PRODUCTION 1
RIT=CCNTROLS FORVM OF ANTECECENT (LEFT) SIDE OF
RULE OF PRUODUCTION
1={ CONTEXT-FREE)= REPLACE ENTIRE PREDICTOR AND PREDICTED
SEQUENCES WITH ONE NEW NCN-TERMINAL SYMBOL
O=REPLACE ALL CCNTIGUOUS PREDICTCR SYMBCLS WITH
NEW NCN-TEKMINAL SYMBOL
RPAL1,J)=J~TH SYMBUL OF ANTECEDENT SIDE OF I-TH RULE OF PROD
RPC(1,J)=J-TH SYMBOL CF CCNSEGUENT SICE OF I-TH RULE CF PROD
RPALEN{I)=LENGTH OF ANTECEDENT SICE OF I-TH RULE OF PRODUCTION
RPCLEN(1)=LENGTH GF ACCNSEGQUENT SICE CF I-TH RULE CF PROD
RPLEV(I)=LEVEL OF RULE 1 |
RPAM{I,J)=RECCRD OF PREDICTEC PARTS FOR RULE I
RPMAX=DIMENSICNED MAX # OF RULES OF PRODUCTION IN RPA AND RPC
RPIA(I): STATUS OF RULE I IN RPA ANC RPC TABLES ,
0=RULE I HAS BEEN MADE INTC A RECURSIVE RULE AND DEACTIVATED
-2=NUN-RECURSIVE RULE
PUSITIVE # =KECURSIVE RULE. THE NUMBER POINTS TG THE
URIGINAL NCN-RECURSIVE RULE FROM WHCIH IT WAS
UERIVED T
RTIX{I)=STURAGE FCR RPIX OUTSIDE CF RECODE SUBROUTINE
STRUCTURE: RPA(I9d)y KPUUIgd)y RPALEN{I), RPCLEN(I),
RPLEV(I), RTIX(I), RPIX(I), POX{I)
SCRD,SCRJ=SCRATCH VECTORS
SCRDAL,SCRJAL ,SCRMAL=ALPHABETIC SCRATCH VECTORS
SECOND(I)=SECOND TERM OF COMBINED H MEASURE
SEPAR=VALUE SEPARATING TYPE 3 AND TYPE 4 P(I)'S
SEQNOIT) = IS INDEX OF ENTRY IN SQCIXT-TABLE CCNTAINING PHI OF
LONGEST STRUCTURAL SEQUENLE BEGINNING AT TIME T
SOURCE=ALPHAEETIC VECTOR CF SUURCES OF INPUT SAMPLE
SQCTXT(1)= PHI OF THE CCNTEXT PART OF THE SEQUENCE
SGPREL(I)= PHI CF THE PREDICTED SEQUENCE
SGLEN{I)= LENGTH COF STRUCTURAL SEGQUENCE I
SSS=ALPHABETIC *§°¢
STRICT: CONTRGLS VARIETY OF M'S ALLOWED IN RECODING
O=USE Mla..eMZEST 1=USE MBEST CANLY
T IS TIME
TBCKT 1) =TEMPORARY CCUNT OF OCCURRENCES OF SUB-SEQUENCES
TBPHI(I)=TeMPORARY COUNTEXT FUR SUB=—SEQUENCES
TBNEXT(1)=TEMPURARY PRECICTED PART FCR SEQUENCES
THIRG([J=THIRU TERM UF CUMBINED H MEASUKE
TT= # GF CCCURRENCES OF SEQUENCES PRI (REAL)
REPRESENTING PARTICULAR CCNTEXT
TRI=ALPHABETIC VECTORS FOR PRINTING
TTG=ALPHABETIC VECTGR OF WAYS OF INDUCING RECURSIONS
TYPE(I)=THE TYPE CF SEQUENCE 1 (142439445)
TYPE 1 (STRUCTURAL) P{I} EXACTLY 1.0

s wav———_-
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TYPE 2 (MESSAGE) P(I) WITHIN EPS CF 1.0

TYPE 3 (MESSAGE) P{I} BETWEEN L.O-EPS AND SEPAR
TYPE 4 (MESSAGE): P(I} BETWEEN SEPAR AND EPS
TYPE 5 (NOISE) P(T1) BETWEEN EPS AND 0.0

VDIR: CCNTRULS ASCEMDING CR CESCENDING DIRECTICN OF
CONSIDERATION OF M*S IN -RECODE —=1=0ESCENDING +1=ASCENDING
VSTART: BEGIN SCAN IN RECCOt AT TIME OF MBEST FOR EACH SENT
(FOR FCDE=2, CNLY}:  0=NC 1=YES
WAYS=ALPABETIC VECTOR OF CODING SUBROUTINES
WCV: 1=USE DEFINITICNAL APPRUACH TO FIND RECURSIONS
2=USE UVWXY APPROACH
WOF: EFFECT UF SATISFYING CRITERICN OR FINDING COMPLETE
RESOLUTICN FOR A PARTICULAR M
0=NQ EFFECT 1=CUT-0UT ANL USE THIS M
WXL: INCLUDE IDENTITY RULES {AND FACTOR OF M IN H)
0=NO 1=YES
Y{T)= LARGE SAMPLE OF CONCATENATED SENTENCES
YNEW(T)= NEW Y STRING CREATED BY RECODING
YRP{I)=STRING CONTAINING RULES OF PRODUCTION IN CONTIGUOUS
FORM. CONTAINS YRARRW BETWEEN ANTECEDENT AND CONSCQUENT
. SIDES. CCONTAINS YRPUNC BETWEEN RULES.
YRPMAX=DIMENSIONED MAX # OF SYMBOLS IN YRP

A e e

SUBRGUTINES e e

BEST FINUS BEST H

CCNV  CONVERTS A NATURAL NUMBER INTC A C~-ARY SEQUENCE
FZERO=2EROES FLUATING PGINT VECTOR '
GENL READS INITIAL SYMBOL STRING FRCM CARDS
GENZ IS SPECIAL BINARY SEQUENCE GENERATOR
GETMSK GENERATES MASKS

GRAPH PRINTS GRAPH OF P(I)*'S USED IN RECCDING
GRIO PRINTS UQUT MASKS

HUFF 1S HUFFMAN CODE SUBRCUTINE

IEQUAL=SETS VECTORS EQUAL

IMATCH=MATCHES INTEGER VALUES T
ISEEK DGES MATCHING

ISUM FINDS SUM CF VECTOR

IXSPRY=SPRAYS INTEGER CONSTINT

LCC LOCATES SEQUENCES THAT OCCUR IN SYMBOL STRING

LOOK  KEEPS LIST OF NEW NON-TERMINAL SYMBOLS AT EACH LEVEL
MCRE CREATES MASK FRCM TWC SEQUENCES (PRE AND PGST)

MTEST. TESTS GRAMMATICAL TYPE OF MASK

PHI CONVERTS A C-ARY SEQUENCE INTO THE NATURAL NUMBER™™
RANDU 1S RANDGM INTEGER GENERATCR

R ECODE  LCCES RECODING FRCM UNE STRING TO STRING OF HIGHMER LEVEL
SPRAY SETS VECTGR TC CONSTANT

$YMBOL PRODUCES SYMBCL STRING FOR PRINTING

TLOC DETERMINES WHICH SEQUENCES APPEAR AT A GIVEN TIME IN Y
XFSORT SURTS BLOCK OF RKEALS WITHIN ARRAY

ZERO SETS VECTCR TO ZEROES

o

INPUT AND CUTPUT .. W
S=INPUT CARDS
6=0UTPUT PRINTER
7=0LTPUT FILE CCONTAINING SUMMARY OF PRINTER OQOuTPUT

ey e e
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DIMENSIONED SIZES OF VECTCRS

[aXsXslaNgl

NS=500
M2MAX=20
MTSIZE=500
N26=26
N40=40
RPMAX=50
YRPMAX=300
MNCC=500
MSC=15

MAIN LOOP

OO0
—
o

CONTINUE
WRITE(64790)
FORMAT (*1* )

O
o

READ CONTROL PARAMETEKS

INPUT CARDS.s.

le CUNTRCL CARD:
415: L3, M1,y M2, VDIR
2F5.2: LAMBDA, LAMR
25123 CONToMUDE +GRAMGRITHALLOWsSTRICT¢FRyPRL 4 FR2,PRG4PRSy
) EXR,MCH,EARLY,LAﬁL1VSTARTQHSELaHDFgHCV'HXL“
) KRECUR
2« TERMINAL ALPHZBET VECTOR { FORMAT 15, 75Al1 ) -
Cl=SIZt OF NUON-TERMINAL ALPHABET )
CARD COLUMNS 6Geee CONTAIN THE C1 TERMINAL SYMBOLS
IF MODE=2, LAST CCLUMN AFTER THE TERMINALS CONTAINS
THE INITIAL PUNCTUATICN MAKK ()
3¢ NON~TERMINAL ALPHABET VECTGR {(FCRMAT 1[5, 75Al1)
N2e=SIZE OF VeCTOR IN FORMAT IS5
LETTER=ALPHABET IN FORMAT 75A1
4, [F CONT=1, GENL READS CAKD CCONTAINING LENGTH CF Y(FORMAT 1I5)
IF CONT=2, GEN2 READS CARLC (FORMAT 1615)
5. IF CONT=1, GENL READS IN CARD{S) UNTIL N SYMBOLS HAVE BGCEN
READ IN UNDER AN 80Al1 FORMAT

R

e v eawe ey

e en smaaprar @ < oan

READ (5+401C) L3,M1,M2,VDIR,LAMBOAJLAMRyCONT ¢yMOUDE jGRANMRIT)ALLGKW, S
LTRICT9FRyPR Ly FR2ZyPRCyPRSHEXR yMCHy EARLY yLARL VSTART yHSEL 9 WDF 3 WC V4 WX

2Ly KRECUR
4010 FURMAT (415,2F5.2,2512)
C
c

WEITE (6,4020)
WRITE (7,4020)

4020 FORMAT ('17) v v
WRITE (644G30) L34M1,M2,VDIR,LAMBDA, LAMR,CONT ) MODE  GRAM4RIT JALLOW, _
1STRICT yFRyPRLPK23 PRGsPRS JEXR jMCHy EARLY s LAWL oV START y HSEL; WOF ¢ WCV 4 W



4030

4040

4050

4060

o0

4070

4080

20u

2XL,KRECUR
FURMAT (1X,415,2F5.2,2512)

WRITE (094040) L3,MLyM2,DIRECTIVDIR#2)s LAMBDA, LAMR
WRITE (7,4040) L34M1,M2,DIRECT(VLIR+2}4LAMBDA,LAMR
FORMAT ( *0Q° / ‘

8 v MAXIMUM NUMBER OF LEVELS TG BE TRIED v, 117

4 * SMALLEST M TO BE TRIED Yy 17/

5 * LAKGEST M TO BE TRIED vy 17 -
8 Y DIRECTICN OF CONSIDERING M IN RECCDE Yo 86Xy AG /
9 ! LAMBDA —— COEFFICIENT GF PARSIMCNY Yy F10.5 /
9 v LAMK —= (COEFFICIENT OF RECUKRSIVE PARSIMONY 'y Fl0.5

7 )

WRITE (6,4050) SCURCE(CONT),ORD(MODE ) yNAME(GRAM+1) ,ANTEIRTT+1) ,ALL
10W,ANSH{STRICT+1) s FRy ANSW{PRL+1) s ANSW{FR2+1) ,TRI{PRG+1) JANSW(PRS+1
2) s WAYSTEXR) yMCH,ANSW(EARLY+1 ) y ANSW(LAKL+1 ) ANSW{VSTART+1),HSEL

WRITE (744050) SGURCE{CONT},0RD{MUDE )y NAME{GRAM# 1) ANTE(RIT+1),ALL
1OWyANSWISTRICT+1)2FRyANSWIPRI+L) JANSWIPR2+1} s TRI{PRG+1) yANSH(PRS+1
2) s WAYSUEXR) oM CHy ANSW{EARLY #1 )y ANSW (L AWL#+1) ) ANSW(VSTART+1) sHSEL

FORMAT

2 ' SGURCE GF INITIAL SYMBOL STRING Y, 6Xy A4 /

3 ¢ MODE == INITIAL PUNCTUATICN MARK 1, 6XyA4 [/
2 ' TYPE OF GRAMMAK DESIRED (MASKS TG BE TRIED) ', 6X,A8 /

1 * RIT = CCATRGLS ANTECEDENT SIDE OF RULES ty 6Xy AB /

1 * WORST TYPE OF P{I) ALLOWED TO ENTER CODE LI & A

8 * USE OF BEST M STRICTLY ', K s A& "/
2 ' FR == RACIX OF MASK Y, 1T/

6 ' PRINT CONTROL == PRINT UNSGRTED P(I} ', 6Xy A4 /

i * PRINT CCNTRCOL == PRINT SORTED P(I) YV, 6Xy A4 /

1 * PRINT CCNTROL ~=— PRINT CRAPH UF P(I)=$S Yy 64Xy A4 /

5 ' PRINT CCNTROL —— PRINT SEQUENCE NUMBERS e 6Xy A4/

2 ' SUBROUTINE USED FOR RECODING - 1, 6X, A8 /
2 t OVERRICE VALUE FOR MBEST ({(MCH) v, 77T
1 * EARLY ELIMINATION OF UNALLOWABLE F(I} ', 6Xy A4 /

7 " INCLUDE ALL-PREDICTED MASK 'y 6Xy A4 /

5 ' START RECUDE AT TIME CF MBEST 'y 6Xy A4 /

7 v HSEL -—- METHCD FOR COMPUTING H ', 17

8 )

WRITE (654060) ANSW{WDF+1),TTQURCV) yANSW(WXL+1) ,ANSWI{KRECUR+L)
WRITE (7,4060) ANSHIWDF+1),TTQUWCV) ) ANSW(WXL+1)sANSW (KRECUR*1)
FORMAT ‘ e

' CLT=OUT CN FINDING GOOD M Yy 6Xy A4/

' METHOD CF FINDING RECURSICNS 1, 6X, AB /

t INCLUGE IDENTITY RULES Yy 6Xy DG /

¢ TEST FOR RECURSICN v, 6XsA4

w W e

)

READ IN TERMINAL ALPHABET, INITIAL PUNCTUATION MARK (IF ANY),

READ (5,407C) Cl,{CHAR(I) 4I=4,78)
FUGRMAT (I5,7521) ’
NCHAR=C1+3+ (MCUE-1)

PRINT OUT TERMINAL ALPHABET
NCX=NCHAR=( MODE~1)

WRITE (6,4080) Cl, {CHAR(I} I1=4,NCX)
WRITE (7,4080) Cl,(CHAR(I),I=4,NCX)
FORMAT ( % ¢ /
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' SIZE OF TERMINAL ALPH2BET (INITIAL STRING) 'y I7 /
' TERMINAL ALPHABET: 'y 75A1
)
[F (MODE.EQ.2) WRITE (644090) CHAR(NCHAR)
IF (MODE.EQ.2) WRITE (7,40S60) CHAR(NCHAR)
FORMAT { * INITIAL PUNCTUATION MARK (MODE=2) 'yAl)

READ IN NCN-TERMINAL ALPHABET
READ {5,4407C) N265y(LETTER{I) »I=1,N26)
PRINT OUT EASIC NCN-TERMINAL ALPHABET

WRITE (6,41G0) N26, (LETTER(1),1=1,N2€)
WEITE (7,41C0) N26,(LETTER{I),I=1,N26)
FURMAT (¢ @ / )
' SIZE OF EASIC KON-TERMINAL ALPHABET ', 177/
" SYMBOLS OF THE BASIC NON-TERMINAL ALPHABET: *, 75A1 )

ESTABLISH CUNVENTIONS FOR REPRESENTING SYMBOLS

SYMBCLIC NUMERIC ot
FORM FORM

{ ALPHA) {Y)

# c DON'T CARE SYMBOL

- 1 CCNTEXT PART

3 2 PREDICTED PART

cesea 3...C14#2 THE C1 TERMINAL SYMBOLS -

. C1+3 THE INITIAL PUNCTUATIGN MARK, [F ANY

DO 115 I=1, 3
CHAR(T)=MARKER(I)
CONT INUE

C=NCFAK

DONT=0

CTXT=1

PERC=2
PUNC=NCHAR~-1
YRARRW=DCNT
YRPUNC=PERC

D

OBTAIN INITIAL Y FOR LEVEL 1

G0 70 (130,14C+150), CCNT
GEN1l: REAC SYMBOL STRING FRGM CARDS
CONT INUE
CALL GENL (YsNyNS+ALPHA,CHAR,NCHAR)
GO TO 130
GEN2: SPECIAL BINARY SEWQUENCE GENERATOR
CONT INUE

P Y

caLL CEN2 { STRINGyN,NS;MODEsNCHAR ,PUNC)
GC 70 180

GEN3:GENERAL SEGQUENCE GENERATCR
CONTINUE

GC TO 180
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CONTINUE
INITIALIZE FOR ALL LEVELS

LEVEL=1
CATCE=1
NRP=0
NTP=0
NY=0

CONSIDER VARIOUS VALUES OF LEVEL=ljseeesLl3

CONT INUE

INITIALIZE FOR THIS LEVEL

MINM=0

NST=0

NZ=0

NDC=0

DU 192 1I=1, MNDC
HCJ(11)1=0.0

CUNT INUE

PRINT OQUT Y

C=C-3-({MODE-1)

WRITE(6,200) LEVEL, N, CW

WRITE(7,200) LEVELs Ny CW
FORMAT(//'1-- - -

t - -

¥ SYMBOUL STRING GF LENGTH ¢, [3,
! AND USING ALPHABET OF SIZE ¢, 132

g o o gt a2

/

LEVEL?,

}

/7 /7

12,

CALL SYMBOL (Y ,ALPHAsN, VMA, CHAR,NCHARJLETTER,N26)

WRITE (6,220) (ALPHA{IIIL) I1I=1,MMA)
FORMAT ( *'0', (/1X,6CA1) )
WRITE (7,22C) (ALPHA(I1I),111I=1,MMA)

CCMPUTE CRITERICN FOR THIS LEVEL

FC=ALOG(2.0)

CX=C-3~(MODE~1)}

CRIT=-1i.0 *AL0G(1.0/CX)/FC

WRITE (6, 225} CRIT
FORMAT(//'CCRITERION = %, F10.5 / )

CONSIDER VARIOUS M = Ml ... M2

M=M1

CONTINUE

WRITE (6,240) LEVEL.M

FURMAT ("1 ,LEVEL="414,5Xs'M=,14////)
IF ( PRl «NEe. Q) WRITE{64544)

INITIALIZE FOR THIS M
NT8=0

H{M}=9999,
NSTRU=0
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NEPS=0

NT3=0

NT4=0

NNOISY=0

CALL ZERO( TBCNT, NS)

CALL SPRAY({ TENEXT,s NSy -1 )
CALL SPRAY( ToPHI,s NS, =1 }

EPS AND SEPAR
SEPAR=0.50
EPS=1.0/M
IFIEPS.GEe «34) EPS=.34
CCNSIDER VARIOUS MASKS

CCNVENTICNS FOR MASKy PREs POST VECTORS

#=DON'T CARE SYMBOL _=CONTEXT PART Z=PREDICTED PART
MASK: # - b4
PRE: Y Y 2
POST: # - Y
NMASK=0
SIND=0
CONT INUE
caLL GETMSK{ Vs FRy GRAMy NMASKy CTXT, PERCy DONTs M2MAX,
MASKy I[PART, £421 )
CONT INUE

CONSIDER ALL T FROM T=M TO T=N
FOR CURRENT VALUE OF My CONSIDER M~SEQUENCES STARTING AT
TIME T=T-M+1 TO TIME T=T

D3 400 T=M,N
FORM PRE AND POST SEQUENCES

DO 350 L=1,M
JD=L
TMJD=T-M+JD
K=M+1~-L

IF M-SEQUENCE CUNTAINS PUNCTUATIGN MARK, SKIP OVER IT
IF (MODE.EQ.2.AND.Y(TMJID).EQ.PUNC) GC TO 390
IF { MASK{K)} .EQ. DCNT )} PRE{L)=Y(TMJD])
IF { MASKIK) LEQ. DUNT POST{L) = DCANY
IF { MASK{K) LEQ. CTXT PRE(L)= Y(TVMJD)
IF { MASKIK) Qe CTXT PCSTIL) = CTXT
IF [ MASK(K) +EQ. PERC PRE(L)=PERC
IF { MASK{K) .EGe PERC PEST(L) = Y{(TFJD)
CONT INUE

P L

GET PHI*S FUR EACH SEQUENCE
CALL PHI (PRE+M,CyXPKE) -
CALL PHI (PCST,M,C,XPOST)

INSERT INTC TABLES
IF (NTB.EQ.0) GU TU 370
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DO 360 I=1,NT8
IF (XPRE.NE.TEPHI{(I)) GO TO 360
IF (XPOST.NE.TBNEXT(I)}) GO TO 360
TBONT(I)=TBCANT(I)+1
GO TC 380

360 CONT INUE

370 CONT INUE
NTB=NTB+1
TBCNT(NTBI=1
TBPHI(NTB)=XPRE
TONEXT{NTB ) =XPOST

380 CONTINUE

390 CONT INUE
C
c
c END OF LOGP FUR THIS T
C
400 CONTINUE
c
C
c END GF LOOP FOR THIS MASK
C
IF{SIND.EQ.L1)} GO TO 429
GO TG 262
C
c ALSO USE THE ALL-PREDICTED MASK
C
421 CONTINUE

IF{LAWL.NE.1} GO TO 428
SIND=1
NMASK=NMASK+1
DG 422 IZ=1, M
MASK(IZ)=PERC

422 CONT INUE
GO TO 263

428 CONT INUE

429 CONTINUE

c
C
c CCMPUTE THE PlI)*S
C
IF{NTB.EQ.0) GO TO 545
NZ=0
c
c MAIN LOOP FOR I=1, NTB
C
DO 540 I=1,NTB
IF {TBUNT(I).LE.Q) GG TO 540
C
C NEW AND DIFFERENT CONTEXT DISCOVERED
c CCMPUTE TT=COUNT OF ITS COCCRRENCES
C
NDC=NDC+1
T7=0.0
D0 430 J=I4NT8B
C
C CCNSIDER TABLE ENTRIES CNLY CNCE
IF (TBCNT{J).LE.O) GO TO 430
c
c MATCH CONTEXTS
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IF (TEBPHI(I).NE.TBPHI{J)) GO TO 430
TT=TT+TBCNT (J)

PREVENT FURTHER CONSIDERATIUN OF PREDICTED PARTS (CTHER THAN
FIRST) ASSOCIATED WITh THIS CONTEXT
TBCNT(J) ==TBCNT LI}
CGNTINUE

CCMPUTE THE Py SQCTXT ySQPRED,SQLEN, ETCe VALUES FOR THIS
PARTICULAR CONTEXT. THAT IS, CONSIDER EACH PREDICTED PART
ASSOCIATED WITH THIS CONTEXT.

ILCLENINDC)=0
DO 520 J=I,4NTB

CCNSIDER TABLE ENTRIES CNLY ONCE
IF (TBCNT(J).CE.O) GO TO 520

MATCH CONTEXT
IF (TBPHI{I).NE.TBPHI{J)) GO TO 520
NST=NST+1
NZ=NZ+1
PINSTI==TBCNT(JI/TT
ADJINDC) =HDJI{NIC) ~ PINST) * ALOG(P(NST))
TBCNT(J) =0 :
TLCLEN(NDC) =ILCLEN(NDCC)+1
SQLEN(NST)=M
SQPREDINST ) =TENEXT(J)
SGCTXTANST)=TBPHI{J)

CLASSIFY SEQUENCES AS TO TYPE (1le2e¢244s OR 5)

IF {P{NST)GE«l«0) GU TQ 440

IF (PINST).Gt.1.0-EPS) GO TO 450
IF (PINST).GE.SEPAK) GO TO 460
IF {PINST).GE.EPS) GC TG 470

IF {(P(NST).GE.0.0Q) GO TO 480

TYPE 1: P(I) EXACTLY 1.0 (STRUCTURE)

CONT INUE
NSTRU=NSTRU+1
TYPEINST)=1
GO TG 490

TYPE 2: PUI) WITHIN EPS OF 1.0

CONT INUE
NEPS=NEPS+1
TYPE(NST)=2
GO TO 490

TYPE 32 P(I) BETWhEEN 1.0-EPS AND SEPAR

CONTINUE
NT3=NT3+1
TYPE(NST)=3
GO 70O 490
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c TYPE 4: P(1) BETWEEN SEPAR AND EPS
C.
47 CONT INUE
NT4=NT4+1
TYPE(MST )=4
GU TO 490
c
c TYPE 52 P(I) LESS THAN EPS {NGISE)
C NB: NG P(1)=0.0
C
480 CONT INUE

NNCISY=NNCISY+l
TYPE(NST)=5
GG TO 490

450 CCNTINUE

C
c
c DELETE P(I)}*S HERE THAT ARE TGO SMALL
C
IF { NOT(EARLY.EQelAND.TYPE(NST)GTLALLOW)) GO TO 495
NZ=NZ-1
NST=NST-1
495 CONTINUE
c
c PRINT UNSCRTED TABLE OF NON-ZERO ANC DEFINED P*S
C

IF {(PR1.EQ.C) GO 7O 510
CALL CONV (SCRJ»MsCoSQCTXTINSTI)
CALL SYMbUL {SCRJ»SURJAL,M, MMy CHARy NCHAR,LETTERN26)
CALL CUNV (SCRDsM,C,SQPREDINST)] ‘
CALL SYMBUL (SCRD,SCRCAL,M;, MMQy CHAR s NCHAR,LETTER, N2}
"CALL GRID ( SCRJ, SCRDs My DCNT, CTXT, PERC, SCRMAL, MARKER )
JJ=NST .
“MJ=M
WRITE(0,710) JJ LEVEL,SQLEN{JJ) 4P{II)»TYPEL{JI)
1 (SCRMAL(JJIH) 9 JJH=1,MJ) s BLANKSy { SCRIAL{KKIYyKKJ=1 MM} , BLANKS,
2 (SCRDAL(JKL) s JKL=1,MMQ )}
510 CONTINUE
520 CONT INUE
540 CONT INUE

PRINT STATISTICS ON TYPES OF SEQUENCES
45 CONTINUE

WRITE(6,550) NSTRU, NEPS,s NT3, NT4, NNOISY
550 FORMAT |{

1 YONUMBER OF TYPE 1 SEWUENCES{STRUCTURAL)*, IT7 /

6 ! NUMBER CF TYPE 2 SEQUENCES (MESSACGE)} ', 17 /
6 ' NUMBER OF TYPE 3 SEQUENCES (MESSAGE) ', I7 /
6 * NUMBER UF TYPE 4 SEQUENCES (MESSAGE) ', 17 /
3 * NUMBER COF TYPE 5 SEQUENCES {(NOISE!} 8, 17 )

NP I={C~3~{MOCE~1)) **M

PSIZE=NPI®*NMASK

WRITE(6,570) NMASKs NPI, PSIZEs NZ, NCCy SEPAR, EPS
570 FORMAT ( ’
' NUMSBER Cf DIFFERENT MASKS USEG ¢
NUMBER OF POSSIBLE M—SEQUENCES '
NUMBER CGF PCSSIBLE P(I} Y0 I7 4
NUMBER OF P(I} !
NUMBEFR. CF DIFFERENT CONTEXTS e 17 /

W= NN -
- = = o
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3 ', SEPARATICN VALUE BETWEEN TYPES 3 AND 4'y, FL0.5 /
4 ' EPSILUN FOR DEFINING TYPES 2 AND 3 'y F10.5 /
5 )

SCRT THE P{1)*S INTO DESCENDING ORDER

IF (NTB.EQ.O) GO TCO 610
00 542 JK=1, NST
PC{JK)I=P({JK)
542 CONT INUE
CALL XFSORT ( PDy, MTSIZE, INDEXs 14 NST )

C
c PRINT SORTED TABLE GF NUN—ZERO AND CEFINED P*S

IF ( PR2 .EQ. O ) GO TO 548

WRITE (64544)
544 FORMAT (0 # LEVEL LENGTH PRGB TYPEY, 7X,

1 'MASK CONTEXT PREDICTED® / *Q*' )

LO 546 L=1, MET

JJ= INDeX(L}

MJ=SQLEN(JJ)

CALL CCRV ( SCRJ4MJ, Cy SQCTXT(JJ) }

CALL SYMBOL ( SCRJy SCRJAL yMJ, MMy, CHAR 4 NCHAR ,LETTER,N26)
CALL CONV { SCRU,MJ,y Co SQPREDI(JJ) )
CALL SYMBUL ( SCRDy SCRDAL, MJ, MMQ » CHAR, NCHAR +LETTERsN26)

CALL GRID { SCRJ, SCRD, M, DONTs CTXT, PERC, SCRMAL, MARKER )
ARITE(64,700) JJISLEVEL,SQLEN(JI) 2P (JJ)»TYPE(JS) T
1 (SCRMAL (JJH) pJJH=14MJ) y BLANKS s (SCRIAL(KKJ) KK J=1 9 MM) g BLANKS o
2 (SCRDAL(JKL), JKL=1,MMQ )
S46  CONTINUE
548  CONTINUE

c
c
c ATTEMPT RECUDING, CUMPUTE H FUR THIS M
c
TRIAL=1
MBE=M 4
caLL RECODE(Y,YNEW,SECNCALPHA, LLIST,SQCTXT,SQLENSQUPRED,
1 TYPE, PyPDy INDEX, INDEP, CHAKy  SCRJySCRJAL,SCRD,
2 SUKCALy PUSTyB1,BII,PRE,MASKyH,FIRSTySECOND, THIRD, LETTER ,
3 RPALEN; RPULEN,RPLEV,RFA,RPC,RPAM,YRP,NUMT,ARROW oDONE  ,DESC
4 4 PCX, RPIX, RTIX )
c
¢
c CCMPUTE NSUM, NMESS, MINM
c

IF (ALLOW.EQ.1) NSUM=NSTRU
IF (ALLUW.EQ.2) NSUMSNSTRU+NEPS
IF (ALLOW.EGa3) NSUM=WSTRU+NEPS+NT3
IF {ALLUWGEC.4) NSUM=NSTRU+NEPS+NT3+NT4
IF {ALLOW.EUWeS5) NSUM=NSTRU+NEPS+NT3+NT4+hNOISY
NMESS=NZ-NNCISY-NSTKU
IFINTH.EQ.0) GC TO 600
IF (MINM.EQ.O) MINM=M
00 CONT INUE

CHECK FOUR (1) ALL SEQUENCES STRUCTURAL SEQUENCES,
(2) H{M) IS 0.0, OR (3} H{(M} IS LESS THAN CRITERION

oOcCcoOoO o
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IF(WDF.NE.1) GG TO 592
IF (NUMT (1) .NE.O .AND. NUMT(2).EQ.C .AND. NUMT(3).EQ.0

1 «ANDs NUMT (4) oEQ 40D «AND« NUMT(5).EQeC } GO TO 650

IF(FIRST{M).EQ. 0.0 )} GO TOQ £50
IF(H{M).LE.CRIT) GO TO 630
CONT INUE

END OF LCLP FOR M

CONT INUE
M=M+1
IF (M.LE.M2) GG TO 230

FIND BEST M =—-— LOCAL MINIMA AMONG THE H(M)

CALL BEST(H,Ml, M2y HBEST, MBEST, MINM, FIRST,SECCND,THIRD,M2MAX)
WRITE (6,620} MBEST,H(MBEST)

WRITE (7,62C) MBEST,H{MBEST}

FORMAT | ‘OBEST M IS 'y I4, * WITH H GF *; F10.5 )

GO 10 67C

CRITERICN SATISFIED

CONT INUE

MBEST=M

WRITE (6464C) MBEST,CRIT,H{MBEST)

WKITE (7,04C) MBEST,CRIT,H{MBEST)

FORMAT { *OM CF *, 14, ' SATISFIES CRITERION GF *, F1l0.5,
1 v WITH H OF 'y F10.5 )

GO TO 670

ALL P{I)} ARE STRUCTURAL

CNTINUE
MBEST=M
WRITE (6,060) M,LEVEL
WRITE (7,660} M,LEVEL
FORMAT( 'OM CF *, 14, " GIVES COMPLETE RESOLUTION AT LEVEL?412/7)

CVERRIDE VALUE CF MBEST (FCR LEVEL 1 CAMLY)

CONT INUE

IF {eNGTo{MCH.NC.0ANDLLEVELL.EQ.L)) GG TC 690
MBEST=MCH

ARITE (6,680) MBEST

WRITE (7,68C) MBEST

FORMAT ( 'OM OF *, 14, ' IS GVERRIDE VALUE * )
CONT INUE

PRINT THE SQ-TABLES

WRITE (6,700) LEVEL

FORMAT { '1REGULARITIES FOR LEVEL 'y 14 )
WRITE{(6y544)

If (NST.EQ.0) GO TO 730

DG 720 L =1, NST
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I=INDEX (L)
M=SQLEN(I)
CALL CONV {SCRJ,MsCySQCTXT(I))
CALL SYMBUL (SCRJsSCRJALsM,  MM,CHAR;NChRAR,LETTER,N26)
CALL CONV (SCRO,M,C4SQPRED(I)] _ o
CALL SYMBGL (SCRD,SCRDAL M, MMQ,CHAR,NCHARyLETTER4N28) ™
CALL GRID ( SCRJ, SCRD, My DCNT,-CTXT, PERC, SCRMAL, MARKER )
Jd=1
MJ=M
WRITE(69700) JJs LEVELy SCLEN{JJIsP(JJ)STYPE(JIJ), ,
1 (SCRMAL{(JJH) s JIH=1 ¢4MJ) sBLANKS , (SCRJIAL(KKJI) sKKJI=1,MM} ¢ BLANKS,
2 {SCRDAL(JKL), JKL=1,MMQ )
710  FGRMAT ( 318, F8.2, I8y 77X, 80Al )
720  CCNTINUE
730  CONTINUE

c
c
o DO RECODING WITH M=MBE (BEST M)
¢
TRIAL=2
MBE=MBEST
CALL RECODE(Y ,YNEws SEQNGyALPHA, LLIST,SQCTXT,SQLEN,SQPRED,
1 TYPE, P,PDyINDEX, INDEP, CHARy,  SCRJ¢4SCRJALySCRD,
2 SCRDAL, POST,BI1,BI1IPREsMASKyHyFIRST,SECOND,THIRD, LETTER ,
3 RPALEN, RPCLENJRPLEV,RPA,RPC,RPAM,YRP4NUMT,ARRUW 4D0NE  ,DESC
4 4 PCX, RPIX, RTIX ) nmeem
C
Cc
o END CF LCCP FOR THIS LEVEL
c

GO TC (740,76C)s CATCH
740 CONT INUE
LEVEL=LEVEL+]
IF (LEVEL.LE.L3) GO TO 190
WRITE (6,750)
WRITE (7,75C) _
750 FORMAT (. 'ONU MUKE LEVELS TO BE CONSIDERED® / )
CALL SYMBOL (Y ALPHA,N, MMA, CHAR yNCHAR JLETTERyN26)
WRITE (6,22C) (ALPHA(III), III=1,MMA)
WRITE (7,220) (ALPHA(III),1II=1,MMA)

C
C
c PRINT FINAL RULE OF PRODUCTION
C
7

60  CONTINUE
GU TG ( 762, 772), MODE

762  CONTINUE
CALL SYMBGL (Y,ALPHA,N,  MMA,CHAR,NCHAR,LETTER,N26)
WRITE(6,770) SSS; ARRUW, (ALPHA(III), I1I=1, MMA )
WRITEL7,770) SSS, ARROW, (ALPHA(LII), III=1, MMA )

770  FORMAT ( *0% / ¢ %, 129A1 / (% %', 1SX, 110AL /7 } }
GO TG 778

772 CONTINUE
L=0
DO 775 T=1, N
L=L+l
YNEW{L)=Y(T)
IF(Y(T).NE. PUNC) GO TO 775
CALL SYMBOL( YNEW, ALPHA, L 5 MMA, CHAR, NCHAR, LETTER, N2&T~
WRITE(0s770) SSS, ARROW, (ALPHA{ITI}, IlI=l, MMA )
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WRITEL7,770) SSS, ARROWy {(ALPHA{IIID),
L=0

CONTINUE

CONTINUE

END OF PROCESSING OF THIS DATA SET
CONTINUE

GO 70O 110
END

111=1,

MMA )
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$COPY RECODE *SINK#a-CC
SUBRCUTINE RECODE(Y,YNEW,SECNO,ALPHA, LLIST,SQCTXT,SQLEN,SQPRED,
1 TYPE, PyPDy INDEX, INDEP, ChARy SCRJySCRJAL,SCRD,
2 SCRDAL,. PCST,81,811,PREyMASKyH,FIRST,SECCND,THIRE, LETTER ,
3 RPALENy RPCLEN,RPLEV:RFA,RPCsRPAV¥,YRFyNUMT 4 ARROW ,DONE » DESC
4 9 PCXy RPIXy RTIX )

SUBROUTINE FOR RECODING SAMPLE Y
IMPLICIT INTEGER (A-2Z)

CCMMON STCRAGE

OOOO OO0

CCMMCN Cl,CONT4L3,M14M2, PR1, PR2, FR o LAMBDA, RIT ,
MCH, MODE, ALLOW o STRICT,EARLY,GRAM , NCHAR
NZ&s PRGy EXR , PRS, LAWLs VSTART , VOIR , HSEL, WOF,
WOV, WXLy KRECUR, LAMR
’ NS,N.MBE,C.MTSIZE,MZMAX;NQ,TRIAL,CCNT,PUNC,LEVEL,N4G}Ft;NST,
PERC,CTXT TN, NTMy RPMAX sNRP ¢ NY s YRP¥AX ) NRECUR ¢ YRARRWy YRPUNC
¢ NTP

oW

QOO0

VECTURS GF SIZE NS
INTEGER Y(NS)
INTEGER YNEW(NS)
INTEGER SEQNCINS)
INTEGER ALPHA(NS)
INTEGER DONE(NS)

C VECTURS CF SIZE MTSILE
INTEGER SQCTXT(MTSIZE)
INTEGER SQGLEN{MTSIZE)
INTEGER SQPREL(MTSIZE)
INTEGER TYPE(MTSILZE)
INTEGER INDEX(MTSIZE)
INTEGER INDEP(MTSIZE}
REAL P(MTSIZE)

REAL PD{MTSIZE)

VECTORS OF SIZE NCHAR
INTEGER CHAR(NCHAR)

ao oo

VECTORS CF SIZE N4O
INTEGER SCRJIN4O)
INTEGER SCRJAL(N4O)
INTEGER SCRD{N40)
INTEGER SCRCAL (N4O)

C VECTORS OF SIZE M2MAX
INTFGER POST (M2MAX)
INTEGER BI.(M2MAX)
INTEGER BII(M2MAX)
INTEGER PRE (M2MAX)
INTECER MASK{M2MAX)

REAL H(M2MAX) '
REAL FIRST({MZMAX)
REAL SECIOND(M2MAX)
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REAL THIRDIMZMAX)

VECTORS GF SIZE N26
INTEGER LETTER(N26)

VECTORS CF SIZE RPMAX
INTEGER LLIST(RPMAX])
INTEGER RPALENIRPMAX)
INTEGER RPCLEMN(RPMAX)
INTEGER RPLEV{RPMAX)
REAL POX({RPMAX])

INTEGER RPIX{RPMAX]
INTEGER RTIX{RPMAX)
INTEGER DESCI{RPMAX)

ARRAYS OF SIZE RPMAX * MZMAX
INTEGER RPA (RPMAX,M2MAX)
INTEGER RPC (RPMAX,M2MAX)
INTEGER RPAM{RPMAX, M2ZMAX)

VECTORS GF SIZE YRPMAX
INTEGER YRP{YRPMAX}

OTHER VECTCRS
DIMENSION NUMT(5)
INTEGER ARRCW(lZ2)

REAL CONSTANTS AND FUNCTICNS
REAL HP
REAL ALOG
ReaL FC
REAL LAMBDA
REAL LAMR

SUBROUTINE RECODES SAMPLE ACCURDING TG PARAMETERS
MAIN PARAMETERS FOR RECODING:
MBE=UPPER LIMIT CON LENGTH OF REGULARITY TO BE USED IN
THIS RECODING
M-‘-le..ayMBE
TRIAL=INCICATICON CF WHETHER THIS RECODING IS TRIALUTEK™
ACTUAL RECCDING 1=TRIAL 2=ACTUAL
RIT=WHETHER TU WRITE CUNTEXT~FREE RULES
ALLOW=ST1YPE OF WGKST P(1) ALLOWEL IN RECODING
STRICT=WHETHER TC DO STRICT RECUGDING
KRECUR=whETHER TO TRY RECURSICNS
OTHER PARAMETERS
VDIR=CIRECTICN OF SCAN FOR M
VSTART=STARTING POINT FOR SCAN
HSEL=SELECTIGN OF H MEASURE {FOR TESTING PURPOSES)

INITIALIZATIGN

YNL=N
HP=0.0
NTM=0
NCT=0
NQ=0
NRECUR=0
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NHER=0

FILL=DUNT

CALL ZERJ (SEGNG,N)

CALL ZERG (DONEsNS)

DO 2049 I=1,M1

YNEW(I}=Y(I)

CONTINUE

IF (TRIAL.EQ.2) WRITE (65,2010} LEVEL

IF (TRIAL.EQ.2) WRITE (T742010) LEVEL

FORMAT ( t0 . RULES CF PRODUCTICN *,
‘FOR LEVEL'y 12, :
[ S, - I [} )

IF (TRIAL.EQ.1l) WRITE (6,2020) MBE

FORMAT ({ 'OTENTATIVE RULES OF PRCGDUCTICN FOR M OF ', I3 )

CCPY INTO TEMPORARY RPIX FRCM THE PERMANENT RTIX TABLE
NB: IF TRIAL=1l, THE RPA AND OTHER ASSOCIATED TABLES ARF NOT
ALTERED, AND NRP IS NOT CHANCED.
IF(NTP.NE.O) CALL IEQUAL (RPIX, NTP, RTIX)

LGOP FOR T=M11...,N

LAST=0

QLAST=0

TN=M1

T=M1

CONT INVE

YNEWLTN)=Y(T)

IF (NST.EQ.0) GO TO 2460

IF (VSTART.EC.1.AND.T-QLAST.LT.MBE) GO TO 2460

L00P FOR LR=1,2

FIRST TIME: TRY TC USE SEQUENCES THAT BECCME RECURSIVE
PRUVIDED KKECUR IS SET AT 1{ ES)
PROVIDED LEVEL IS GREATER THAN 1

SECUND TIME: USE ANY SEQUENCE

LR=1

IF {LEVEL.EQ.1) LR=2
IF [KRECUR.EQ.0) LR=2
CONTINUE

LOOP FOR LTA=1, ALLGCW

LTA=1
CONTINUE

LOCP FOR M

M=MljeeesMBE IF VUIR=+]
M=M2’.'¢.”1 IF VDIR=-1
M=MBE GNLY IF STRICT=1

IF (VOIR.EQ.1) M=M1
IF(VCIR.EQ.-1) M=MBE
IF (STRICT.EQ.1) M=MBE
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2080 CONTINUE
DU 2120 LLL=1,NST
L=INDEX(LLL)
IF (SQLEN(L).NEL.M)}) GO TO 2120
IF (TYPE(L).NE.LTA) GO 7O 2120

C MAKE SURE NG PUNCTUATION CCCURS IN M-SEQUENCE OF Y
iF {MODE.EQ.1) GO TO 2100
DO 2090 JO=14M
TMID=T-M+JD
IF (Y{TMJD) «.NE.PUNC) GG TO 2090
QLAST=TMJD
IF (VDIR.EQ.~1) GO TO 2130
GO TO 2469
2090 CONTINUE
2100 CONTINUE

c
C RECREATE CONTEXT-SEQUENCE AND PRECICTED-SEQUENCE
- CALL CONV (PRE,M,C,S5QCTXT(L))

CALL CONV (PUST M,C,SQPREDI(L))

C

c MATCH Y AGAINST CONTEXT AND PREDICTED SEQUENCES
DO 2110 JD=1,M
TMID=T-M+JD

IF {(POST{JD).EQ.DAONT) GO TO 2110

IF {(PRE(JD) .EC.PERCLANDLPOST{UD)LNELY(TNJD)) GO TO 2120

IF {PGST{JID) «EQ.CTXTLANULPRE (UD).NE.Y{TMJID}} GO TO 2120
2110 CONTINUE

c LCCATED SEQUENCE OF LENGTH M AT TIME T
G3 70 2150

2120 CONTINUE
2130 CONTINUE

C
C
c END OF LOCP FOR M
C
M=M+VDIR
If {STRICTLEQ.1} GO TC 2140
IF (VDIREQe~1.AND.M.GE.ML) GO TGO 2C80
IF (VDIRGEQ.1.ANDeM.LELMBE) GO TO 2080
C
2140 CONTINUE
L=0
2150 CUNTINUE
SEQNG(T)=L
C
c
C THE SEQUENCE THAT IS FCOUND IS
C l. OF LONGEST LENGTH FROM M1 TO MBE OF THOSE SEQUENCES
C ENDING AT TIME T (IF VDIR = —1 )
c OF SHORTESY LENGTH {IF VDIR = +1 )
C GF LENGTH MBE ({IF STRICT = 1)
C 2. OF HIGHEST ALLOWABLE TYPE
C 3.0F HIGHEST P(I) POSSIBLE
C 4.0F SIMPLEST GRAMMATICAL TYPE
C

IF {(L.EQ.Q0)} GC TO 2450
¥=SQLEN(L)
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1S THEKE RUOM (FROM LEFT) FUR AN M-SEQUENCE
IF (T+1-M.LE.LAST) GO TO 2450

ARE ALL ﬂ PUSITIONS AS YET UNRECODED?
B0 2160 JD=1,¥
TMID=T-M+JD
IF (CONE(TMJID)LEQ.l) GO TO 2450
CONT INUE

CCONTRIBUTICN TO H
IF (P{L).EQ.0.0) GO TO 2170
NTM=NTM+1
IF{KXLEGQa 0} MHQ=1
IF(AXLEQel) MAQ=M
HP=HP=P (L) *ALCG(P (L)) * MWQ
CONTINUE

CHECK CURRENT L AGAINST LLIST
QNEW: 1= L IS NEW TO LLIST C=L IS OLD

CALL LOUOK (LLISTyMTSIZESNGsLsILINE,QNEW)
LAST=T

TRN=TN=-M

KL=0

T=T-M

WRITE CONSEQUENT (RIGHT) SIDE OF RULE OF PRODUCTION
CONSEQUENT SIve IS OF LENGTH M

IF (GUNEW.NE.1) GO TG 2190

DO 2180 JP=1l,M

SCRD{JPI=Y{T+JP) i
CONT INUE

CUNTINUE

WRITE ANTECEODENT SIDE OF RULE GF PRODUCTION

RIT=CONTRULS FURM OF ANTECEDENT (LEFT) SIDE OF
RULE GF PRODUCTION . ,
1=(CONTEXT-FREE )= REPLACE ENTIRE PREDICTOR AND PREDICTED
SEQUENCES WITH ONE NEW NON-TERMINAL SYMBOL
C=REPLACE ALL CONTIGUCUS PREDICTCR SYMBCLS WITH
" NEW NUN-TERMINAL SYMBOL

IF (RIT.EQ.C) GO TO 2210

% 3 e s e ok e e 3k o4 e e ofe o ok ok ol el e e o e ok ale e dik o o e 3k e afe o o e e e e sl o e ol o ok ofs e e e el sk e e ok e kg ek
CCNTEXT—FREE CASE (RIT=1)

S e e e o oo o o o e o ok o o o e o o ofe e ok e oo o o o o o ol o % o s ok o e o et kol e e o ot o e o ok o akale e ol X ke ok R
REPLACE ENTIRE ANTECECENT({LEFT) SIDE WITH L NEW NON-TERMINAL

SRANCH TC RECURSIVE TEST, IF LR=1
KRET=1
IF {LR.EQ.1) GO TO 2810
CONTINUE
IF (LR<EQelAND.LRX.EQ.O) GO TO 2450
TN=TN+1



NOCOOOOOO e XadaKel

215

2220
2230

2240
2259

2260

OO0

216

IF (LR.EQ.1.AND.LRX.EQe1) YNEW(TN) =RSYM
IF (LR.EC.2) YNEW(TN)=C-1+IL INE#NCT

KL=KL+1

SCRJIIKLI=YNEW{TN)

CALL IXSPRY (DONEyNS»lsT+1,T+M)

T=T+M |
IF(M.GE.2) CALL IXSPRY(YNEWsNSsFILLy TN#1, TN+M-1 )
TN=TN+M=1

GO TG 2360

RIT=0 CASE

CONTINUE

CALL CONV (PREsMsC,SQCTXT{(L))

CALL CONV {PGSTsM,C,SQPREDI(L))

CALL MCRE (PRE,POST MyMASK,DONT,CTXT,PERC,MODE,PUNC]

IS MASK STRICTLY CONTEXT-SENSITIVE
OR STRICTLY UNRESTRICTED REWRITE

CALL MTEST ( MASK, M,PERC, &£2305, £2215 )

A A o Ao A Rk e 0w e A e ke #**'***#*******##**#***#**********#**##*****#

STRICTLY CCNTEXT-SENSITIVE CASE
o e e o ool o et o e o o o ook ok 900 o o e e o o ot e ok e ol el e ot ot o kel R

FIND CONTEXT ON LEFT, IF ANY

CGNT INUE
LEFT=0
RIGHT=0
00 2220 LEFT=1,H
IF (POST(LEFT)4EQeDCNT-CR.POST(LEFT).EQ.CTXT) GO TO 2230 .
CONT INUE
CONTINUE
LEFT=LEFT~1
FIND CONTEXT CON RIGHT, IF ANY
DO 2240 RL=1,M
RLQ=M+1-RL
IF (POST(RLQJ.EQ.DUNTSOR.POST(RLQU)LEQ.CTXT} GO TO 2250
CONT INUE
CONT INUE
RIGHT=RL~1

BRANCH TO RECURS IVE TEST, IF LR=1

KRET=2

IF (LR.EQ.1} GO TO 2810

CONTINUE

IF (LReEQel ANDLLRX.EQ.O) GO TO 2450
CALL IXSPRY (DONEsNSylsT+Ll,T+M)

LEFT END iIF ANY)

IF (LEFT.EQ.0) GO TO 2280
DO 2270 KT=1,LEFT

T=T+1

TN=TN+1

YNEW(TNI=Y(T)

KL=KL+]
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SCRJU(KL)=YNEW(TN)
CONT INVE
CONT INUE

REPLACE *MID' CONTIGUOUS SYMBOLS IN Y WITH 1 NEW NON-TERMINAL

TN=TN+1

IF (LReEQel ANDJLRX<EQsl) YNEW{(TN)=RSYM

IF (LR.EQe2) YNEW(TN)=C—-1+ILINE+NCT

KL=KL+1

SCRJIKL) =YNEW(TN)

MID=M-RIGHT—-LEFT

IF(MID.GE.2) CALL IXSPRY(YNEW,NS,FILL, TN+l, TN¢MID-1 )
TN=TN+MID~-1

T=T+MID

RIGHT END (IF ANY)
IF (RIGHT.EQ.0} GO TO 2300
D0 2290 KP=1,RIGHT
T=T+1
Th=TN+1
YNEW{TNI=Y(T)
KL=KL+1
SCRJI{KL)=YNEW(TN)
CONT INUE
CONT INUE
GO TGO 2360

e o e ol oo e o o ol ek ool e ot ol e ol e ot aofs o e o i o o 0k e e e okl ok s ool e o e ok o e et ook o oK

STRICTLY UNRESTRICTEOD-REWRITE CASE )
AR AR B R HOR R R R R R R SRR R R K

CONTINUE
¥ %%¥RPAMy RECUR DCNE
NB=-1
KA=0
CONTINUE
KA=KA+1
IF (KALGT.M) GO TQO 2350
IF (MASK(KA).EQG.NB) GO TO 2330
No=MASK{ KA}
KRET=3
IF (LR.EGC.1) GG TO 2810
CONTINUE
IF (LR<EWs1.ANDLRX.EQ.0) GO TO 2450
TN=TN+1
IF (LReEQel dANDSLRX.EQel) YNEW{TN)=RSYM
IF (LR.EGe2) YNEW(TN)=C—-1+ILINE+NCT
NCT=NCT+1
KL=KL+1
SCRI(KL)=YNEW(TN)
T=T+1
GO TO 2310
CONTINUE
IF {MASK{KA).EC.PERC) GO TO 2310
T=T+]
TN=TN+1
YNEW(TN)=Y(T)
KL=KL+1
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SCRJI(KLI=YNEW(TN)
CONT INUE
GO TC 2360

SAVE ANTECEDENT (LEFT} SJDE OF RULE OF PRODUCTION IN RPA

CONT INUE

IF (QNEW.NE.1)} GO TC 2410

NHER=NHER+1

NRP=NRP+1

RPLEV{NRP)=LEVEL

POX(NRP)=0.0

IF{LRX.EQ.0) PCXINRP) = P{L)

IF(LR.EQ.2 «ORe LR.EQel.ANDLRXLEQeO ) RPIXINRP)= =2
NB: RPIX CAN ALSC BE SET IN RECURSIVE ROUTINE

RPALEN(NRP ) =KL

DO 2370 JG=1sKL

RPA{NRP,JG)=SCRJI(JG)

CCNTINUE

SAVE CONSEGUENT (RIGHT) SIDE OF RULE OF PRODUCTICN IN RPT
RPCLENINRP) =M
0O 2380 JP=1,M
RPCINRP,JP)=SCRD{JP)
CONTINUE
IF (RIT.tQ.0Q) GO TO 2390
RPAM(NRP,1)=PERC
GO 70 2410
CONT INUE
DU 2400 JB=1sM
RPAM(NRP ,uB)=MASK(JB)
CONTINUE
CONTINUE

PRINT RULES OF PRODUCTION ONTO 6, AS THEY ARE PRODUCED
SCRJ=ANTECEDENT SIDE OF RULE OF PRCODUCTION
SCRC=CCNSEQUENT SIDE OF RULE CF PRCDUCTION

IF {QNEW.NE.1l} GC TO 2430

CALL SYMBGL (SCRDySCRDALsMyMMQ,CHAR,NCHAR,LETTER,N26)

CALL SYMBGL {SCRJ;SCRJALKLyMM,CHARs NCHAR, LETTERsN26)
WRITE (652420) (SCRUAL(J) 9 J=L1,MM) 5 ARROW [SCROAL(JJI) 9 dJ=1 4MMQ)}
FGRMAT {(10% ,129A1/{1X,19X,110A1/J) n—
CONT INUE

IF NEW RULE WAS FOUND, OR NEW RECURSIVE RULE WAS FORMED,
TRY TO APPLY IT THRCUGHCUT STRING Y

I=NRP

MG=RPCLENI{I)

IFISTRICT.EQe«l +AND. MG.NE. MBEJ GO TO 2450
CONT INUE

NGL=0

LOOP FOR TX=Mljees

LASTX=0
QLASTX=0



219

TNA=ML
TA=M1 "

3550 COUNTINUC )
IF (VSTART<EQel.ANDTX-QLASTX.LT. MBE ) GO TO 3630

IS THERE RGOM (FRCM LEFT) FOR AN M-SEQUENCE
IF(TX+1-MG oLT. LASTX) GO TO 3630

a0 o0

ARE ALL ¥ POSITICNS AS YET UNRECODED?
DO 3570 JD=1,MG
TMJD=TX-MG+JD
IF (DONE(TMJD).EQ.1) GO TO 3¢30
3570 CONTINUE

c MAKE SURE NGO PUNCTUATION OCCURS IN M=SEQUENCE OF Y
IF {MODE.EQ.1) GC TG 3590
DC 3580 JD=1, MG
THID=TX~MG+JO
IF (Y(TMJD) .NE.PUNC) GO TO 3580
QLASTX=TMJD
GO TO 3630
3580 CONTINUE
3590 CUNTINUE

c MATCH Y WITH CCNSEQUENT (RIGHT) SIDE OF RULE I
DO 360G JD=1,MG
IF (RPAM(I,JC).EQ.DUNT) GO TO 3600
TMID=TX~MG+JD
If (RPC{I,JD).EQ.Y(TMID)) GO TC 3600
IF(LAXEGal <ANDe Y{TMJID).EQeSMID +ANDe RPC(1,JD)<EQ.RSYMT
1 GG TO 360¢
GO TO 3630
3600 CONTINUE

c LCCATED SEQUENCE OF LENGTH M AT TIME T
SEQNG(TX)=L
NGL=NGL+1
LASTX=TX

C CONTRIBUTILN TO H
IF (POX(I}.EQ.0.0) GO TC 3610
NTM=NTM+1
IF{nXL.EQ.O) Mwi=1l
IF(WXLaEQel) MWQ=M
HP=HP-POX(I)*ALCGIPOX(I)) * MWQ
3610 CONTINUE

C

C RECOGE
TNX=TNX-MG
TX=TX-MG

MAA=RPALEN(I)

DO 3€20 JD=1,MAA
TRX=TNX+1
YNEW(TNX)=RPA(1,4D)

3620 CONTINUE ,
IF(MG.GT.MAA) CALL IXSPRY(YNEWsNS,FILL,TNX+1l, TNX+MG-MAA)
TNX=TNX+MG-MAA
CALL IXSPRY(DCNEsNSsly TX+1l, TX+MG)

TX=TX+MG
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YRPINY)=SCRD(JP)
2490 CONTINUE

NY=NY+]

YRP{NY)=YRPUNC

CALL SYMBOL (SCRJ,SCRJIALyMAsMM,CHARyNCHARZLETTER(N26)

CALL SYMBOL (SCRDsSCRCALMCyMW,CHARyNCHARSLETTER,N26) ‘

WRITE (7,2420) (SCRJUALLJY 9J=1 MM} ARRCW, {SCRDAL{JJ) s JJ=1sMn)
2500 CONTINUE

c COPY INTC PERMANENT RTIX THE TEMPORARY VECTOR RPIX

IF {NRP.EQ.O)} GO TO 2510
NTP=NRP
CALL IEQUAL (RTIX,NRP4RPIX)
2510 CONTINUE
2520 CONTINUE

c
c PRINT QUT CRIGINAL STRING Y
C
WRITE (6,272C)
CALL SYMBOL (Y,ALPHAyNy;MMA;CHARyNCHARSLETTER4N26)
WRITE (6,273C) (ALPHA(LIL},III=1,MMA)
C .
C REMOVE *FILL?® SYMBOLS FROM YNEW
c .
CALL REMOVE( YNEW, YNEWs, YNLs YNL, FILL )
C
C PRINT OUT NEW STRING YNEW
C
WRITE(6, 2732)
CALL SYMBOL (YNEW, ALPHAyYNL ,MMA,CHAR,NCHAR,LETTER,N26)
WRITE (6,2730) (ALPRA(III};III=1,MMA)}
c
C
c TRY TU RE-USE ALL RULES DEVELOPED IN ALL POSSIBLE WAYS
C

IF(NRP.EQ.O) GO TO 2652
2538 CONTINUE
NGL=0

LM=1,2
FIRST TIME: TRY TO USE SEQUENCES THAT ARE RECURSIVE
SECOND TIME: TRY ANY OTHER SEQUENCE

SOOCO0O

LM=1
IF{KRECURL.EQ.D) LM=2
2540 CCNTINUE

c
c LUCP FOR T=Mlje.o
C

LAST=0

QLAST=0

Ti=M]1

T=M1

2550  CUNT INUE
IF (VSTART.EQ.1.AND.T-QLAST.LT.MBE) GO TO 2631
IF (YNEW(TN) JEQ. FILL ) GO TO 2631
DU 2630 I=1, NRP
M=RPCLEN (1)
IF(STRICT.EWel <AND. M.NE. MBE)} GO TG 2630



[N e OO0 (2] (e}

2580
2590

(g N aNel

2610

2620

221

WHEN LM=1, PROCESS ONLY RECURSIVE RULE (RPIX > 0 )
IF(LM.EQ.l  .AND. RPIX(I) .LE. O ) GO TG 2630

WHEN LM=2, PROCESS NON~RECURSIVE RULE (RPIX=-2)
IF{LM.EQe2 oANDe RPIX(I) oNE. «2 ) GO TO 2630

DEACTIVATED RULES ARE SKIPPED

- 1S THERE RCCM (FROM LEFT) FOR AN M-SEQUENCE
If (T+1-M.LT.LAST) GO TQO 2630

MAKE SURE NO PUNCTUATION CCCURS IN M—~SEQUENCE OF Y
IF (MODE.EQ.Ll)} GO TUO 2590
DO 2580 JD=1.,M
TMJID=T=M+JD
IF(YNEW(TMJD)oNE. PUNC ) GO TO 2580
QLAST=TMJD
GG TU 2630

CONTINUE
CONTINUE

MATCH Y WITH CONSEQUENT (RIGHT) SIDE OF RUL
DO 2600 JD=1,M"
IfF (RPAM(I+JC).EQ.DCNT) GO TO 2600
TMID=T-M+JD .
IF( RPC(I,JD) «NE. YNEW(TMJD) ) GC TC 2630
CONT INUE

LOCATED SEQUENCE OF LENGTH M AT TIME T

NGL=NGL+1
LAST=T

CCONTRIBUTICN TO H

IF (POX(I).EQ.0.0) GO TO 2610
NTM=NTM+1

IF{dXL.EW.0) MWQ=1

IF(WXL.EQel) MWQ=M
HP=HP=POX(I)*ALOG(POX{I)) * MWQ
CONT INUE

RECODE

TN=TN-M

T=T-M

MA=RPALEN(T)

DO 2€20 JD=1.MA

Th=TN+1

YNEW{TN)=RPA(I,JD}

CGNT INUE

IFIM.GToMA) CALL IXSPRY { YNEW, NS, FILL, TN+l, TN+M-MA)
TN=TN+M=MA

CALL IXSPRY (DONEWNSs1,T#1,T+M)
T=T+M

CONTINUE

END CF LCCP FGR T AND TN
CUNT INUE

T=T+1
TN=TN+1
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IF(T.LE. YNL ) GO TO 2550

C
c END OF LCCP FOR LM=1,2
C.

LM=LM+]1

IF(LM.LEL.2) GC TO 2540
2650  CONTINUE
C
c
C GO THROUGH LIST OF RULE OF PRODUCTICN UNTIL NO APPLICATIONS ARE
C pPOsSsiBLE
C

IF (NGL.NE.C) GO TO 2538

IF TRIAL=1, DELETE NHER RULES FRCM TABLES

pDOOO

652 CONTINUE
IF (TRIAL.EQ.1) NRP=NRP-NHER

IDENTITY RULES
(APPROXIMATE COUNT)

eXsEaN ¢

NIR=0
IF(WXL.EQ.0) GO TG 2659
€Z=0
XG=1
00 2658 1J=1, N
IF(Y(IJ).EQ.PUNC) GC TO 2653
IF (DCNELIJ) LEQ.1) GO TO 2657
X6=0
C1=CZ+l .
IF(CZ.LT. MBE ) GO TO 2658
2653  CONT INUE
NIR=NIR+1
ATM=NTM+1
XG=1.
Cz=0
GU TG 2658
2657 CONTINUE
IF(XG.EQ.0) GC TO 2653
X6=1
CZ=0
2658 CONT INUE
2659 CUNTINUE

CCMPUTE H

AOOO

FIRST(MBE)=2469.
GO TC (2660,2670,2680,2690)y HSEL
2660 CONTINUE
IF (NTMJNE<O) FIRST(MBE)=HP/(FCHNTM])
GO TGO 2700
2670 CUNTINUE
IF (NTMJ.NE.OQ) FIRST(MBEI={HP*NQ) /{FC%NTM)
GO 70 2700
2680 CONTINUE
FIRST(MBE)=(HP*MBE) /{FC%MLI]
GG TO 2700
26590 CONTINUE
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FIRST(MBE)=HP/FC
G) To 2700
2700 CUNTINUE
SECOND{MBE) =NQG=LAMBDA
SECCND(MBE)= (NG+NIK) * LAMBCA
THIRD(MBE) =LAMR®NRECUR
HI(MBE)=FIRST(MBE)+SECUND(MBE }+THIRD(MBE) . ]
WRITE {6,2710) FIRST(MBE),SECOND{MBE) s THIRDIMBE) yHIMBE) yNQyNRECUR,
1 NIRy NTM
2710 FORMAT ( *C* /

2 ' ENTRGPY TEKM Yy, Fl0.5 /
3 ' PARSIMCNY TERM 'y Fl0.5 /
4 ' RECURSIVE PARSIMCNY TERM 'y FLO.S5 /
5 ] 1 ’ ] 1.-__'__-.‘__.! /
1 ' VALUE OF H FOR THIS RECODINGeceoewascea?y Fl0e5 /
8 / :
1 t NUMBER UF RULES OF PRCDUCTION “ 17 7/
7 ' NUMBER CF RECURSIVE RULES ¢, 17/
7 ' NUMBER OF IDENTITY RULES t, 17 /
2 f NUMBER CF TIMES RULES ARE APPLIED Y, 17/
4 )
In
c PRINT OUT CRIGINAL STRING Y
o

WRITE (642720)
2720 FORMAT { YCCURRENT STRING Y ¢ / Q' )
CALL SYMBUL (Y, ALPHA N MMA,CHAR,NCHAR,LETTER,N26)
WRITE (6,273C) (ALPHA(III),I1I=1,MMA)
730 FURMAT ( *0', (/1X, 6041) )

AGAIN REMCOVE ALL *FILL' SYMBGLS FRCM YNEW
CALL REMOVE( YNEw, YNEW, YNL, YNL, FILL )

PRINT UOUT NEW STRING YNEW

OO CaOaN

WRITE(6, 2732)

2732 FORMAT ('ONEW STRING * / 10°* )
CALL SYMBUL (YNEW,ALPHA,YNL sMMA,CHAR,NCHAR,LETTER,N26)
WRITE (642730) LALPEA(III),11I=1,MMA)

PRINT OUT STKING YRP

PRINT GRAPH OF P({I) ACTUALLY USED IN RECODING

OO oO0n

IF (oNOT.(PRGJEQe2CR.PRGLEQ.1AND.TRIALL.EQ.2)) GO TO 2790
IF {NJ.c¢Q.0) GO TQ 2790 °
CALL ZERU (NUMT,5)
DC 27490 I=1,N
L=LLIST(I)
PO(I)=P(L)
K=TYFE(L)
NUMT{K)=NUMT{K)+1
2740 CUONTINUE
I[F (PRG.EQ.C) GG TO 2760
CALL XFSORT (PDyMTSIZE,INDEP,1,NGQ)
DO 2750 I=1,NnC
DESCUI)=TYPE(LLIST(INDEP(I)))
2750 CONTINUE
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CALL GRAPH {PD,NQsNUMT,LEVEL +MBEsDESC)
2760 CONTINUE

PRINT STATISTICS ON P{I)*S ACTUALLY USED IN RECODING

aEaN e N gl

WRITE (6,2770) (NUMT{IIM},IIM=1,5)
2770 FORMAT |

1 ' NUMBER OF TYPE 1 SEQUENCES(STRUCTURAL)®, 17 /

6 ' NUMBER OF TYPE 2 SEQUENCES (MESSAGE) ', 17 /
6 ' NUMBER OF TYPE 3 SEQUENCES (MESSAGE) *, I7 /
6 ' NUMBER OF TYPE 4 SEQUENCES (MESSAGE) ¥, 17 e
3 ' NUMBER OF TYPE 5 SEQUENCES (NOISE) Yy 17 )

NZZ=ISUMINUMT,5}

WRITE (6,2780) NIZ
2780 FORMAT { .

1 ' NUMBER CF P(I} Yy I7? )
2790 CONTINUE

[
¢
c IF TRIAL=2; SUBSTITUTE RECODED YNEW INTO Y
c NEW SIZE OF ALPHABET
c NEW LENGTH OF Y
c SUBSTITUTE NEW STRING (YNEW) INTO Y VECTOR
¢
IF (TRIAL.NE.2} GO TO 2800
C=C+NQ+NCT
N=YNL
CALL IEQUAL (YyN,YNEW)
2800 CONTINUE
c
RE TURN
c
c
c
c CHECK FOR RECURSION
c
c
c
2810 CONTINUE

LRX=0

IF (KRECUR.EQ.0) GO TU 2910
IF (QNEW.EQ.OQ0) GO TC 2910
IF (LEVEL.EC.1) GU TO 2910
IF (NRP.EQ.0O} GO TO 2910

00 2900 I=1,NRP

RULE [ IS CF PREVIOUS LEVEL
If (RPLEV(I).NE.LEVEL~-1) GU TU 2900

CONSEQUENT (RIGHT) SIDE OF RULE 1 FRCM PREVIOUS LEVEL, AND
CINSEQUENT SIDE OF CURRENT RULE ARE OF SAME LENGTH
NB:zTHIS IS PRE~CONDITICN FGR ISCMCRPHISM (SEE BELOW)

LCC=N

IF (RPCLEN(I).NE.LCC) GO TO 2900
MA=RPALENLI)

L0 2890 J=1,MA

OO0 oo

(X el

SYMBOL *SMID' IS A *PREDICTED® SYMBOL CNVTHE ANTECEDENT(LEFT)
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SIDE GF RULE I, AT PREVIOUS LEVEL
IF (RPAM(I,J) «NE.PERC)} GO T3 2890
SMID=RPA(],J)
DO 2880 JJ=1,LCC

SYMBGL 'SMID® APPEARS ON CCNSEQUENT (RIGHT) SIDE OF RULE AT
THIS LEVEL
IF (SCRO(JJ)NE.SMID) GG TGO 2880

ISOMCRPHISM OF CCNSEQUENT (RIGHT) SIDE OF RULE I FRGM PREVIOUS
LEVEL, AND CONSEQUENT (RIGHT) SIDE GOF CURRENT RULE
BILEN=0
BITLEN=0
00 2830 KK=1,LCC v
CALL LOOK (Bl M2MAX,BILEN,RPC{I,KK),BILEV,BINEW)
CALL LUOOK (BIL,M2MAXsBIILEN,SCRD(KK) 4BIILEV,BIINEW)
IF {(BILEV.NE.BIILEV) GO TO 2880
CONTINUE

HAVE RECURSIUON

LRX=1

NRECUR=NRECUR+L

WRITE (6,2840) NRECUR

FORMAT ( *ORECURSICN NO. *, I3 )

ICENT IFY RECURSIVE SYMBOL
RSYM=RPC {1 ,JJ)

ABANDON CGENERATICN OF CURRENT RULE
IF (NQ.NE.O) NQ=NQ-1

INSERT RSYM WHEREEVER SMID OCCURRED IN RULES
DO 2870 I1A=1,NRP
LZA&=RPALEN(TA)
D0 2850 JA=1,LZA
IF (RPA{IAyJA)EQ.SMID) RPA(IA,JA)=RSYM
CONT INUE
LZC=RPCLEN( IA)
DO 2660 JA=1,L2ZC
IF (RPC{IA,JA).EGaSMID) RPC{IA,JA)=RSYM
CONTINUE
CONT INUE

GENERATE A RECURSIVE RULE AND DEACTIVATE RULE I
RPIX(I)=0
RPIX{NRP+1) =1
DO 2872 JP=1l, M
SCRD{JP)I=RPC(I,JP)
CONTINUE
DO 2874 JG=1, MA
SCRI(IGI=RPL{I4JG)
CONTINUE
GG 70 2910

END OF LCCP FOR JJ
CONTINUE

END OF LOCP FOR J
CONT INUE
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¢ END OF LOGP FOR 1
2900 CONTINUE
c

2910 CONTINUE
GO TO (2200,2260,2320)y KRET

END
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SUBROUTINE BEST ( H, Ml, M2y HBEST,MBEST,MINM,FIRST,SECOND,
1 THIRD, M2MAX )}

IMPLICIT INTEGER (2-2)

REAL HIM2ZMAX)

REAL FIRST(42MAX)

REAL SECCND (M2MAX)

REAL THIRD(MZ2MAX}

REAL HBEST

SUBRGUTINE T3 FIND BEST H
QUT: HBEST, MBEST

VYOO

MO=M1

IF ( MC «LTo MINM ) MO = MINM

HBEST=H{M0)

MBEST= M0

DG 1C I=MD, M2 ,

IF( HBEST .LE. HI{I) ) GO TO 10

HREST=H{I)

MBEST=1
10 CONTINUE

RETURN

END

SUBRCUTINE GETMSK (M,FR, GRAMyNMASK,CTXT,PERC,DONT,M2MAX, MASK, IPART

Ly®) :

IFPLICIT INTEGER{A-2Z)

INTEGER MASK(M2MAX)

IF {NMASK.NE.C} GC TG 2010

Jdz=2

AKZ=1

LATCH=1

ML IM=M

1111=0

[XEG=0

NTOT=F R¥%M=2

(PART=1
2010 CONTINUE

c LCOP FOR IPART
2026 CONTINUE

D0 2030 I1G=1,¥
MASK{IGI=CTXT
2030 CONT INUE
GO 73O (2040,2C50,2110,2140), IPART

C TYPE 3 MASK [REGULAR}
2040 CONTINUE
IF {M.GT.2) GG TO 2190
IREG=IREG+1
If {IREG.GT.2) GC TO 2190

C LEFT END
IF (IREG.EQe.1) MASK(MI=PERC
C RIGHT END

IF (IREG.EQ.2) MASK(1)=PERC



2070

2080

2090

2100

2110

2120

2130

2140

2150

2180

2190

G0 TO 2180

RIGHT-SENSITIVE
CONT INUE
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AND LEFT-SENSITIVE

IF (M.LEL2) GO TC 2190

GO TC (2060,2090),

RIGHT-SENSITIVE
CONTINUE
MLIM=MLIM~]

LATCH

IF {MLIM.GY.0) GO TO 2070

LATCH=2

MLIM=M

GO TO 2050
CONTINUE

00 2080 JM=1,MLIM
MASK{JM)=PERC
CONTINUE

GO Y0 2180

LEFT—-SENSITIVE
CONT INUE
MLIM=MLIM-1

IF {(MLIM.LE.C) GO TO 2190

DO 2100 JL=1,MLIM
JH=MEl=JL
MASK (Jw) =PERC
CONT INUE

GO TO 2180

TYPE 1 MASK [CONTEXT—SENSITIVE)

CONT INUE

If (M.LEL2) GC TO 2190

KKZ=KKZ+1

IF {KKZ.LE.M-1} GO
JJZ=JJi+1

IF (JJ4Z.6GTaM13 GO
KKZI=JJ4Z

CONT INUE

DO 2130 LK=JJZsKKZ
MASKILK}=PERC

CONT INUE

GO TG 2i80

10 2120

T0 2190

TYPE O MASK (UNRESTRICTED REKWRITE)

CONTINUE

IF (¥.LE.2) GO TO 2190

ITII=IT11+1

IF (ITI1.GT.NTOT)} GO 70 2190
CALL CONRV {MASKsMsFR,IIII)

DO 2150 IJK=1l,yM
IF {MASK{IJKILEQ.O}

MASK(IJKI=CTXT

IF {MASKIIJK) .EQel) MASK{IJUK)=PERC

CONTINUE

CALL MTcST{MASKsM,
CONT INUE
NMASK=NMASK+1
RETURN

CONT INUE

PERC, &2180,-2140 )
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IPART=IPART +1

[F{{PARTJLE. 4—GRAM ) GG TGO 2020
RETURN 1

END

SUBRCUT INE MTEST{MASK M, PERC ¥ ,% )
IMPLICIT INTEGER(A-Z)

INTEGER MASKI(M)

C TEST MASK FOR GRAMMATICAL TYPE
C RETURN 1: UNRESTIRCTED RE-WRITE
c RETURN 2: CONTEXT-SENSITIVE
NB=-1
€CC=-1

DO 2170 IK=s1,M
IF (MASK(IK).EQ.NB) GO TO 2170
NB8=MASK{ IK)
CCC=CCC+1
2170 CONTINUE
IF! CCC.GEe3 o0Re {CCC.EQRe2 oANDe MASK(1)<EQePERC) ) RETURN 1
RETURN 2
END
SUBRCUTINE GRID { PRE, POST, M, DUNTCTXTy PERCs SCRGy ZLM)
IMPLICIT INTEGER {A-1)
INTECER PREINM)
INTEGER POST (M)
INTEGER SCRC{M)
INTECGER ZLM{3)
C #=DCN'T CARE SYMBCL _=CCNTEXT PART Z=PRECICTED PART
DO 100 I=1, M
K=1
IF [POST(I) EQe DCNY ) SCRGIKI=ZLM(1)
IF t POSTII) JEQe CTXT )} SCRGIKI)=ZLM(2)
IF  PRE(I) <EQe PERC ) SCRGIK)=ZLMI(3)
100 CONT INUE
RETURN
END
SUBRCUTINE GRAPH { XsN, NUMT , LEVELs MBE , TY )
IMPLICIT INTCGER (A-Z)
REAL X{N)
INTEGER NUMT(Z)
INTEGER SPUGT(5)
INTEGER IMAGE{S51y101)
INTEGER TY(N}
REAL CCMP
REAL GRDIN
DATA BLANK / ¢ ¢ /
DATA VERT / v}v /
DATA HORZ / =t /
DATA PLUS / t+* /
DATA STAR % /

GRAPH PRINTS GRAPH CF PLI)%S USEC IN RECODING

SO0

WRITE(6,130C) LEVEL, #48E
18C0 FCRMAT ( *1GRAPH OF P{I) USED IN RECCDING FOR LEVEL*,I12,y
1 ¥ AND M GF*', 14 /)
C
IF { N +LEs 101 ) GG TQ 150
COMP=N/100.
NWIDE=101
GO TO 170



230

150 CONTINUE
NW IDE=N
COMP=1.0

170 CONTINUE

DO 200 J=1, NWIDE

D0 200 I=1l, 51

IMAGE(I,J)=BLANK
200 CONT INUE

c VERTICAL LINES AT RIGHT AND LEFT EOGE
DO 235 =2, 50
IMAGEL{ I41)=VERT
IMAGE( I, NWIDE)=VERT

235 CONT INUE

C FIND LOCATICNS OF VERTICAL LINES CIVIDING GRAPH
15=0
D0 220 K=1,5
IS=IS+HNUMTIK])
SPOT{Kj}=1S/CCi1P
IF{SPCT(K}.EQ.0} SPCT{K)=1
220 CONT INUE

O

INSERT VERTICAL LINES DIVIDING GRAPH
DO 230 K=145 .
DO 230 I=2, 50
[FII.EQ.26) GC TO 230
IMAGE{ I, SPOT{K}}=VERT
230 CONT INUE

c HORIZONTAL LINES
DO 240 1I=1,3
I=1+{11-1)%25
UG 240 J=1, MWIDE
IMAGE{ [, 3}=HCIRZ
IF{ JoEW.l oCRe JWEQ.NWIDE ) IMAGE{1sJ)=PLUS
DO 238 L=1, 5
IF(J.EQ. SPOTIL} ) IMAGE(Id) = PLUS
238 CONT INUE
240 CONTINUE

C INSERY PCINTS TG BE PLOTTED INTO GRAPH
DO 300 J=1, N
JJ=C0MP=y
IF{JJ.EQ.O} JU=1
Ii=1+ 503X {JJi
IMAGE{ [I,4J}=STAR
300 CONT INUE

PRINT GRAPH

OO

DO 500 I=1, 51

II=52-1

ORDIN=.02%{11-1}

WRITE(54430) ORDIN, (IMAGE{IlsJd)s J=14NWIDE )
430 FORMAY { * 'y, F4.2, 11Xy 101Al )
500 CONTINUE
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c PRINT TYPES OF THE P{I)*S ACROSS BOTTCM OF GRAPH

WRITE(6y 600) ( TY(I)y I=ly NWIDE )
600 FORMAT { 6X, 10111 )

RETURN

END

SUBROUTINE SYMBOL { Y, ALPhA,; N, Ks "CHAR, NCHAR LETTER,N26)
IMPLICIT INTEGER {A-2)

INTEGER Y(N)

INTEGER ALPHA(N)

INTEGER CHAR{NCHAR }

INTEGER LETTER{N26)

CCNVERTS NUMERICAL STRING INTO ALPHABETIC SYMBOL STRING

IN:
Y=STRING CF NUMBERS
O3ls27e0e
N=LENGTH QF Y
NCHAR=NUMZER COF SYMBCLS IN VECTOR CHAR
CHAR=VECTCR OF TERMINAL SYMEOLS
INCLUDING INITIAL PUNCTUATICN, IF ANY
ALSO INCLUDING THE SYMBOLS OF ZLM
LETTER= VECTOR CFf NON-TERMINAL SYMBCLS
N26=SIZE GF VECTGR LETTER
QuUT:
K=LENGTH GOF ALPHA STRING PRGDUCED
ALPHA=RESULTING STRING CF CHARACTERS
ALPHA MUST B8E DIMENSICNED TQO AT LEAST 4
NB:s ALPHA AND Y MUST BE DISTINCT
If MCRE YHAN N26 NON—-TERMINALS ARE NEEDED

QOO0 O0O00

DATA LP / <K' /
DATA RP /1 $O5* /
DATA NBLANK /7 * ¢ /

O

ALPHA(LI=NBLANK
ALPHA{2)=NBLANK
ALPHA{3)=NBLANK
ALPHA{4) =NBLANK
K=0
IF(N.NE.O) GO TO 5
K=4
GO TG 999

5 CONTINUE
00 15 I=1, N

TERMINAL SYMBOLS (INCLUDING INITIAL PUNCTUATICN, IF ANY)
INCLUDING ZILM
IF { JNOT. {Y{I).LT.NCHAR)) GO TO &
K=K+l
ALPHA(K) = CHAR( Y{l) + 1 )
G3 10 15

(e N aKel

FIRST N26 NON—~TERMINAL SYMBCLS (SINGLE SYMBOL)
CONT INUE
IFL «NOT. { Y{I).LT. NCHAR+N26) } GO 10 7
K=K+l

[N e Nal
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15
G389

860

12

30
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ALPHALK) = LETTER { Y{I} +1-NCHAR)
GO T0 15°

LATER NON-TERMINALS (PARENTHESES ANLC 2 NON-TERMINALS)

CONTINUE

L1={Y(1}-NCHAR}/ N26

L2= Y{I) — NCHAR — L1¥N26 +1

K=K+1

ALPHA{K)}= LP

K=K+1

ALPHAIK) =LETTER{L1)

K=K+1

ALPHAIK)=LETTER{L2)

K=K+1 ’

ALPHA(K}=RP

CCNT INUE

CCNTINUE

RETURN

ZND

SUBROUTINE NMCRE(PRE,POSTyMeMASKs DONT,CTXT»PERC,MODESPUNC )
IMPLICIT INTEGER{A—Z)

INTEGER PRE(M)

INTEGER POST (M)

INTEGER MASK{M}

CREATES MASK FRCM PRE AND POST SEQUENCES

D0 8E0 JO=1, M

KeM+1~-Jd0

IFIPRE(JD) .EQe PERC ) MASK{K)} = PERC .
IF(PCST{JUD) +EGs CTXT ) MASKI{K) = CTXT

IF{ POST{JD} .EQ. DGONT ) MASKI{K} = DCLNT

CONT INUE )

RETURN

END

SUBRCUTINE GENL { Yy Nj NSy, ALPHA 3 CHAR, NCHAR 3}
IMPLICIT INTEGER (A=)

INTEGER Y (NS}

INTEGER ALPHAINS)

INTEGER CHAR{NCHAR)

READ { 5,4 12) N

FORMAT { 15)

READ ( %, 203 {ALPHA{I); I=1, N i

FORMAT ( 80Al )

0O 30 I=1, M

CALL IMATCHICFAR, NCHARy ALPHA{I)}, YII) )
Y{D)=Y{Ti~1

CONT INUE

RETURN

END

SUBROUTINE LCC {NSaNsML,STRICT yMBE,SQLENyTYPEsALLCWyPREZCoY MTSIZE
1yM2MAX,POST s SGPREC s MODE ¢ DONT 9 PUNCy INDEX s SEQNO s NSY o SQCTXT 4 PERC, CTXT
24+VDIRSUSEDyQLASTVSTARTsM2)

IMPLICIT INTEGER (A-1)

INTEGER Y{NS)

INTEGER SEQNUINS)

INTEGER SGQCTXTIMTSIZE)

INTECER SQLEN{MTYSIZE)

INTEGER SUPRELCIMTSIZE)

INTEGER TYPE(MTSIZE)

INTEGER INDEX({MTSIZE)

INTECER USED{MTSIZE)
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INTEGER POST (MZMAX}
INTEGER PRE (M2MAX)

C
C
¢ SEARCH Y FOR ALLCWABLE SEQUENCES
C
C IN: _
C MBE=VALUE OF M TG BE USED IN THIS RECODING
C oUT:
C
C
IF (NST.EQ.Q) GO TO 214l
c
C VARIOUS M = Ml ees MBEST

IF (VDIR.EQ.1) M=M]
IF (VOIREQ.=1) M=M2
IF (STRICT.EGe.l} M=MBE
2123 CONTINUE
C
C CCNSIDER T= M' . ae N
T=M '
2125 CONTINUE
IF {(VSTARTSEQC.1.AND.T-QLAST.LT.MBE} GO TG 2137

D0 2135 LJ=1,2
00 2134 LTA=1l, ALLOW
DO 2133 LLL=1,NST
L=INDEX{LLL)
IF (LJ.EQ.1.ANDJUSEDIL).EQ.O0) GO TO 2133
IF {LJ.EQ.2.AND.USEDIL).EQ.1) GO TO 2133
IF {SQLENILJI.NE.M) GC YO 2133
IF{TYPEIL) . NEa LTA ) GC TO 2133
IF {MODE.EQ.Ll) GU TO 2129
DO 2127 JD=1l.M
TMJD=T-M+JD
IF (Y{THJDJ} NE.PUNC) GO TQ 2127
QLAST=TMJD
GO TO 2137
2127 CCKRVINUE
2129 CONTINUE
CALL CONV {PREsM,Cy SRCTXTIL))
CALL CONV (POSTsMsC,SQPRED(L))
03 2131 JD=1,M
TMID=T-M+JD
IF (MODDELEQL.2.AND.Y(TMUDI.EQ.PUNC) GO TO 2137
IF {(POSTIJD).EQ.DONTY GO TO 2131
IF (PRE{JU)EC.PERCLANDLPOST(JO).NELY{TMUD)) GG TO 2133
IF {(POST{JD)EQuCTATLANDLPRE(JCI-NELY{TMJID)) GO TO 2133
131 CONTINUE

LOCATED SEQUENCE OF LENGTH M AT TIME T

SEUNULT)=THE ROw (L) IN STPHI:SfNEXTgSILEN TABLES CF THE
LONGEST SEQUENCE OF ALLOWABLE TYPE ENDING AT TIME T

[aNeNeNaNKal ol ¥

USED{L)=1
SEQNOI(T)=L
GO TO 2137

~

-
2123 CONTINUE
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2134 CONTINUE
2135 CONTINUE
2137 CONTINUE

T=7+1
IF (T.LE.N) GO TO 2125

M=M+VDIR

IF (STRICT.EQ.L1) GO TG 2139

IF {VDIREQ.—1.AND.M.GE.ML) GO 70 2123

IF {(VDIR.EQol«AND.M.LE.MBE} GG TO 2123
2139 CONTINUE

2141 CONTINUE

RETURN

END

SUBROUTINE TLOC (NSsML,STRICTsMBEsSQLENSTYPEJALLCWsPREJCoYsMTSIZES
1M2MAX, POST 4 SQPREDy MODE  DONTyPUNC s INDEX yNST s SQCTXT 4 PERCHCTXT 4, VSPEC,
2SPECSUSEDs TyLsVSTARTVDIR,QLAST o LAWL 5 M2)

IMPLICIT INTEGER {A-Z)

INTEGER YINS)

INTEGER USED{MTSIZE}

INTEGER SQCTXY{MTSIZE]

INTEGER SQUEN{MTSIZE}

INTEGER SQPRELIMTSIZE)

INTEGER TYPE{NMTSIZE)

INTEGER INDEX{MTSIZE)

INTEGER POSTIMZMAX)

INTEGER PRE {M2MAX)

SEARCH Y FOR ALLOWABLE SEQUENCES
GIVEN T

IN:
MBE=VALUE CF M TG BE USED IN THIS RECCDING
ouT:

QOO OOOACO

VSPEC=0

SPEC=0

IF (NST.EQ.C) GO TO 1639

IF {VSTART.EQel.AND.T-QLAST.LT.MBE) GO TC 1639

e X e

VARICUS M = ML .ee. MBEST
IF {VDIR.EQ.1) M=Ml
IF (VDIRLEQ.—13 M=M2
IF {STRICT.EQ.l) M=MBE

1623 CONTINUE
DO 1633 LJ=1,2
DO 1é&32 LTA=1, ALLCH
DO 1631 LLL=1,NST
t=INGEX{LLL)
IF {LJeEQe1.AND.USEDIL).EQ.Q) GO TO 1631
IF {LJ<EQ.2.ANDLUSED{L)-EQ.1) GO TO 1631
IF [SGLEN(L).NE.M) GO TO 1631
IF(TYPEIL) oNE. LTA ) GO TQ 1631
IF (MOUE.EQ.l) GO TG 1627
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DO 1625 Ju=1yM
THIC=T-M+JD
IF [Y{THJID)NEJPUNC) GO TO 1625
QLAST=TMJID
GU 70 1639
1625 CONTINUE
1627 CONTINUE » _
CALL CONV (PREsMaC,oSQCTXTIL))
CALL CONV {PCST,M,CsSQPREDIL))
DO 15629 J4D=1,M
TMJO=T-M+J4D
IF [MOOE.EW«24AND.Y{TMJUD).EQ.PUNC) GO TQO 1635
1F (POST(JD}.EQ.DONT) GO TO 1629
IF {(PRE{JUDISEC.PERC.ANDaPOST(JD)NELY{TMID)) GO TO 1631
IF {(POSTI{JU).EQ.CTXT.ANDLPRE(JDILNELYITMUD)) GO TO 1631
1629 CONTINUE
C LCCATED SEQUENCE OF LENGTH M AT TIME T
IF {LJLEQL1) VSPEC=L
IF {LJetQ.2) SPEC=L
1631 CONTINUE
1632 - CONT INUE
1633 CUNTINUE
1635 CONT INUE
M=M+VD [R
IF {STRICT.EQ.Ll) GO TGO 1637
IF (VDIRJEQe—1.ANDJM.GELML) GO TO 1623
IF {VDIR.EQel .AND.M.LE.MBE) GO TO 1623
627 CONTINUE

639 CUNTINUE
L=0
IF (SPEC.NE.O) L=SPEC
IF {VSPECNELD) L=VSPEC
Ir {L.lc.0) USELIL)=1

RETURN

END

SUBRCGUTINE CEN2 ( STRINGyNsNS,MODE,NCHAR,PUNC)
IMPLICIT INTEGER (A-2)

INTECER STRING(NS)

REAL PRUEI(20)

REAL YFL

SPECIAL BINARY SEQUENCE GENERATGOR FOR SENTENCES OF UNIFORM
LENGTH

TERMINAL SYMBOLS: 051 (SO, S1}

RULES OF PRODUCTION:

OO0 Co

S ==> XA
A ~-=> YA
A ~=> ZA
A ==> kWA
X —=> 11
Y =~> 01
L -=> 10
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[aXeNe (@] (@] OO

OO

OO
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W —-=> 00

IN:
NS=DIMENSICNED SIiZE OF STRING

NCHAR=NUMBER OF TERMINAL SYMBOLS {INCLUDING PUNCTUATION, IF ANY)
MCDE=DETERMINES METHOD OF INITIAL PUNCTUATION

ouT:
N=SIZE CF STRING PROCUCED
STRING=TFE STRING PROCUCED
READ IN FRTM CARD:

NEAR=APPRUXIMATE SIZE OF STRING DESIRED

BEGIN=SEED FGR RAND
N8=SENTENCE LENGTH
DIV: 2=USE NCN-TERMINALS Y AND Z

READ ONE CONTROL CARD
READ (5, 13) NEAR, BEGIN, N8, DIV
FORMAT { 1615 )

DG 8 L=1, DIV
PROB(L)=0

N=0
NEW. SENTENCE

CONTINUE
iF U N .GT. NEAR )} GC TG 30

LETTER X=11

SENTENCE ALWAYS BEGINS WITH AN X

N=N+1
STRING{N)=S1
N=N+1
STRING{N)=S1
4=2

INSERY Y, Z, OR W RANDOMLY

CONTINUE

CALL RANDU(BEGINs 1Yy YFL)
BEGIN=TIY

IND= YFL#*DIV+1.0

PROBUIND) = PROBIIND) +1.0
If (4 .GE. N8) GO 7O 28
GO TO { 10y 20, 25),s IND

LETTER Y=01
CONT INUE
N=N+1
STRING(N}=SC
N=N+1
STRING{N)=S1
J=Jd+2

3=USE Yis,

ANO W
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LETTER Z=10

CUNTINUE

=Nl
STRINGINI=S1
N=N+1
STRING(N)}=SC
J=Jd+2

GO 10 5

LETTER W=00

CCNT INUE

N=N+1
STRINGINI=SO
N=in+l
STRINGINI=S0
J=Jd+2

GC TU 5

END OF SENTENCE
INCLUDE INITIAL PUNCTUATICN MARK,

CONT INUE

I MUDE oNEe 2 ) GO TO 4
N=N+ 1 .
STRINGINI=PUNC

GO TU 4

PRINT CUT PRUBS AS CHECK

CONTINUE

G 38 L=1l, 01V

Pl L) = PRCE(L) / N % 2.0
CCNTINUE

WRITE {6, 59) ( PROB(I), I=1, DIV )
FORMAT { 1OF1C.8 )

RETURN
END
SUBROUTINE HUFF{ M, Cy M2, P, LEN,
LIST )
IMPLICIT INVEGER ( A=Z )
REAL PIM])
REAL PCLM2)
INTEGER LEN{M)
INTEGER KCDE{M, MKD)
INTEGER ACT(MZ2)
INTEGER TASZ(M,C )
INTEGER LMIN(C)
INTEGER LIST(M)
REAL SUM
REAL MIN

HUFFMAN CODING SCHEME

If MODE=2

KGCEy PCy

STATS wITH M MESSAGES CF PROB P(I)

COUES ThEM INTC SEQUENCES OF C

IN:
M= # CF MESSAGES

SYVMBCLS

ACT,

TAB s LMINSMKD,y
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M2= 2%M
C=# OF 'SYMBOLS IN ALPHABET FUOR MESSAGE
P({1) = PRCB OF MESSAGE I
MKD=MAX LENGTH OF ANY ENCODED MESSAGE {2ND SUB OF KODE)
QuT:
KCDE(I,J) = CODE FOR MESSAGE I { USES LEN{I) SYMBCLS)
LENU{I)= LENGTH OF CCDE FOR GRIGINAL SEQ I
SCRATCH VECTCRS:
PC{I) = CRIGINAL VECTOR P PLUS ADCITIGNAL LINES
ACT{I) = O IMPLIES LINE IS INACTIVE , 1 IMPLIES ACTIVE
TAB{I,J)=THFE LINES USED TQO CREATE LINE M#+I IN TABLE
LINE M+#1 HAS ONLY MO ENTRIES. OTHER LINES HAVE DEL=C
LMIN{I)= LOCATICN OF CNE OF THE 1 SMALLEST PC*S
LIST= C—ARY NUMBER USED IN TREE SEARCH

e e R T e P e P L e T e 2
CALLING SEQUENCE
e e e R R R R R E R ey e R 2 s e S T IR P L P TR 2 2 22
NEED NME,CC,PB
REAL PC{400)
DIMENSION K0ODE(200,20)
DIMENSICON TABL200.,2)
DIMENSION LEN{200)
DIMENSICN ACT {400}
DIMENSION LISTL20C)
OIMENSIGN LMIN(LO)
MKD=20
RECODING
IN TO HUFF:
NME=NUMBER OF MESSAGES TU BE RECUDED
CC=NUMBER COF SyMsoLs
PB=PROBAEILITY VECTCOR
MKU=DIMENSIONED SIZE OF 2ND UIM CF KQDE
MKK=TWICE MME
PRODUCED B8Y SUBRCUTINE: KCDE, LEN
KODE{I,J) = CCDE FOR MESSAGE I { USES LEN{I) SYMBOLS)
LEN(I)= LENGTH OF CODE FOR ORIGINAL SEQ I
SCRATCH FOR HUFF: TABs ACTs LIST, LMIN
IFIEXR.NE.2) GO TO <80
IFINMELEG.C) GG YO 980
MK K= 2% NME
CALL HUFF(NME, CCs MKK,PBs LEN, KODE, PCy ACT,; TAB ,LMINsMKD,LISTI)
950 CONTINUE
FREFIFRERRFULERE SR I TR SEU R IR GEBE A AR FH LIS S X IE IR DA UG AL F GRS S S B LS RT xR

OO OO0 OO0 O0ON0

INITIALIZE

DB 7 I=l, M
ACT(I) =1
PC(I) = PLI}
LEN({TI) =0
7 CCNT INUE

DO 9 tL=1, C

DO 9 I=1ls M

TABLIsL) =0
9 CONTINUE
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C FIND MO
IF { C 4EQ. 2 ) GO TO 20
CL=C~-1
03 10 MU=2,C
RNU= M — MO
Q= NU / CL
IF { Q@ = CL -.EQ. NU ) GO TO 30
12 CONT INUE
20 CONT INUE
MO =2
CONT INUE

MAIN SECTICN
FIRST TIME DEL=MU, THEN DEL=C

OO0 W
O

DEPTH=M
TDEPTH=0

NACT=M

DEL=M3

FINU DEL SMALLEST PRGBS
GET SUM OF DEL SPMALLEST PROBS

NOOOO

2 CONT INUE
SUM=0.,0
DO 70 L=1, DEL
MiIN=999.
20 60 i=1, CcPTH
I# { MIN JLE. PCUI) OR. ACT{I) «NEe« 1 ) GO TO 60
MIN = PC(I )}
LMIN{L) = 1
60 CONT INUE
{l=LMiNLL) -
ACT( L1 ) =0
SUM=SumM + PC
73 CONTINUE
NACT=NACT - BEL

( I1 )

C
C CREATE NtW LINE IN PC—-TABLE EQUAL TO SUM CF THE CEL SMALLEST
C
DEPTH=DEPTH +1
TOePTH=TDEPTH+]
ACT(DEPTH) =1
PCIDEPTH) = SUM
CC 90 J=1, C
TAB( TDEPTHs J ) = LMIN(J)
90 CONTINUE
C
IF { NACT oJLTe. 1 ) GO TO 100
NACT=NACT+1
el = C
GO 10 22
160 CONTINUE
C
C CREATE COCE SEQUENCES
C

CO 120 Isl, M
LiSTiI) =1
120  CONTINUE
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C TREE SEARCH
125 CONT INUE
{I=TDEPTH
K=0
130 CONTINUE
K=K+1

II = TAB{ IIs LISTIK) }
IF ( II LE. M ) GO TO 140

II=I1 - M
GG TO 130
C
C REACHED ENCPOINT OF TREE

140 CONT INUE
IF { 11 «EQ. 0 ) GO TO 190
00 150 LL =1, K
KODE(II,LLY = LIST{LL } =1
150 CCNY INUE
LENUII) = K
190 CONT INUE
LISTIK) = LISTIK) +1
IF { LIST(K) «.LE. C )} GO TO 125
LIST(K) =1
K=K-1
IF { K .GT. 0 ) GO TO 190

PRINT CODES

oo

PRH=0
IF { PRH .EQ. O } GG TO 361
DC 360 I=1, M
Jd= LEN (I} _
WRITE (65 341 ) I, { KODE(I,J), J=1, JJ )
341 FORMAT ( 1X, 4, 5X, 120I1 )
360  CONTINUE
361  CONTINUE
RETURN
END
SUBROUTINE REMOVE ( IN, OUT, NINs NOUT, FILL }
IMPLICIT INTEGER(A=Z)
INTEGER INININ)
INTEGER OQUTININ)
16=0
DG 10 T=1, AIN
IF{ IN(T) +EQe. FILL ) 60 TO 10
TG=TG+1
CUTLTG=IN(T)
10 CONT INUE
NOUT=TG
RETURN
END
SUBROUTINE ZERGINVECT,N)
ENTRY [ZERO{NVECT,N)
INTEGER NVECTIN)

c SUBRGUTINE TO ZERQC VECTOR
DC 10 I=1,N
NVECT{I)=0
10 CUNT INUE
RETURN
END

SUBROUTINE FZERCINVECLY,N)
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KEAL NVECTIN)
SUBRUUTINE TG ZERQ VECTGR

O

DU 10 I=14N

NVECT(I)=0.0
1o CONT INUE

RETUKN

END

SUBRCUTINE SPRAY{NVECT4N,NVAL)
ENTRY ISPRAY{NVECT ¢NyNVAL)
INTEGER NVECT{N)

C SUBRCUTINE TO SET VECTOR TU A CONSTANT
DC 1C 1:'11 N
NVECT{I)=NVAL

10 CUNT INUE
RETURN
END
FUNCTION ISUM{NVECT,N)
INTECER NVECTIN)

C (SUM  FINOS SUM CF VECTGR
ISUM=0Q
DO 10 I=l, N
[SUM=]SUM#NVECTILI)

1C CONT INUE
RETURN
EnND
SUSRCUTINE PHI 1 DIGIT, My Cy SUM )
MiLICIT [NTEGER (A-L)
INTEGEZR DIGITINM)

PHI  ASSIGNS AN INDEX NUMBER TO A GIVEN M—SEQUENCE
PHI=NATURAL NUMBER CORRESPCNDING TG M DIGITS MCOULO C

IN: DIGITy M, C

DIGIT=VECTOR CF M DIGITS MOD C
QuUT: PHI

PHI=NATURAL NUMBER PRCOUCED

COOCOCOO0

SUM=0
E=1

DG 120 L=1,M
SUM=SUNYESDIGIT (Me1=L)
E=E%C
CUNT TNUE

RETUKN

END

SUBRCUTINE CGNV ( DIGIT, My Cy NUM )
TMPLICIT INTEGER ( A~Z2)
INTEGER DIGITIM)

[
to
<

CUNVERTS NUMBER *ANUM' TO M DIGITS MOOC C

IN: NUM, M, C
NUM=NATURAL NUMBER
gurt: DIGIT
VIGITS= M DIGITS MGD €

OO0

iN=NUM

00 1o L=1, M

Q=N/C

DIGIT { M=L+]1l ) = N=-Q¥C
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N=Q

CONTINUE

RETURN

END

SUSROUTINE XFSORT { V, Ns INDEXs N1, N2 )
ENTRY FXSGRT [ Vs Ny INDEXs N1y N2 )
REAL VIN)

REAL T

INTEGER INDEX(N)

INDEXED SORTING RCUTINE.
SORTS BLOCK WITHIN VECTOR V INTO HIGHee.oLOW ORDER

IN:
V=VECTCR OF LENGTH N CF VALUES TCQ BE SORTED
N=DIMENSICNED SIZE CF V
N1=INDEX GF BEGIANNING OF BLOCK WITNIN V TO BE SORTED
MNZ=INDEX OF END GF BLCCK WITHIN V TO BE SORTED
ouT:
INDEX{1) = SUBSCRIPT OF I~-TH LARGEST ELEMENT OF V
CHANGED
THAT PART {F VECTGR V WHICH IS SORTED

NBs IN MAIN, INDEX VECTOR V BY 25 AND ALL OTHER ASSOCIATED

VECTORS BY INDEX{ I}

DO 324 Kd= N1, N2
INDEX(KJ) = KJ
IF [ NI .GE. N2 ) GC TO 999

NL= N2-1
CO 300 L= N1; NL
IF ( viL) +CE. VIL+1 ) 3 GO TO 300

VI{L+1) GREATER
Lil= L+1 — N1
DG 100 J=1, LLL

K=L+1 —J
IF{ VI(K} .GE. V{K+1) 3 GO 70O 200
T=V{K)
ViK} = V{K+1l}
VIK+l) = T

NT=INDEX(K)

INDEXIK) = INDEXiIK+1)
INDEX{R+1) = NT
CONTINUE

CCONTINUE
CONTINUE

CONTINUE

RETURN

END

SUBRCUTINE LOGCK { LLIST, LOIMyLEN, ITEML. EVEL o NEW)

IMPLICIT INTEGER (A-1)

INTEGER LLIST{LDIM)

ITEM=CURRENT ELEMENT
LDIM=DIMENSICONED SIZE OF LLISYT
LEN=ACTUAL LENGYT# OF LLIST '
LEVEL=INOEX OF PLACE WHERE ITEM IS FCUND IN LLIST
LLIST{I}=LIST OF ITEMS
NEWs O=ITEM WAS IN LLIST ALREADY
I=ITEM IS NEWs AND WAS ADDED TGO LLIST
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C
C INITIALIZE: LEN BEFORE FIRST ENTRY
C
C
IND=1
GO 70 50
ENTRY LCCKN{ LLIST, LDIMyLEN, ITEMy)LEVEL ,NEW)
IND=D

50 CONTINUE
IF{LENJEQ.O) GO TO 150
DO 180 I=1, LEN
IFILLIST{I).EQe ITENM )} GO TO 200
100 CONTINUE
C NO MATCH
150 CONT InNUE
cW=1
FIIND.EQ.O oORe LENLT. LDIM ) GO TO 168
RINT Ll66, LDIM
166 ORMAT | *0OTCC MANY ELEMENTS IN LIST OF LENGTH ¥y 16 )
C NB: LEVEL SET TO LAST POSSIBLE LEVEL IN THIS CASE
LEVEL=LDIM
CJ TO 250
163 Cunt [NUE
LaN={EN+}
LLIST{LEN)=ITEM
LEVEL=LEN
GJ) 706 250
CURRENT O LTEM' MATCHES WITH EXISTING ELEMENT OF LLIST
CUNT DUt
NEa=C
LEVEL=1
250 CCNT INUE
KeTURN
END
SUBRCUTINE ISEEK { NVECTs Ns NOWe KCCE )
INTEGER NVECT{IN)
CJ 10 I=1ly N
IF { NVECT{I1) +EQ. NOW ) GO TO 20
10 CONT INUE
L0DE=0
RETURN
20 CONT INUE

KNS

NodZ
RETURN
END
SUBROUTINE IXSPRY{NVECT,NDIM,NVAL, Il, [2 )
INTEGER NVECTINDIM)
DO 10 I=11, I2
NVECT(I)=NVAL
10 CIONTiNUE
RETURN
£hD
SUSROUTINE TEQUAL ( JVECT, Ny KVECT )
INTEGER JVECT{N)
INTEGER KVECT(N)
O 10 I=1, N
JVECT(I)=KVECT(I)
10 CONT INUE
RETURN
END

T O =

N o
o
o
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SUBRCUTINE MATCH { NVECT, N, NOWe KODE 1}
ENTRY IMATCH{NVECT s N,NOW,KODE)
INTTGER NVECTINI
DO 10 I=1l, N
IF { NVECT{I) .tEQ. NOW } GO TC 20
CONTINUE
PRINT 155 NOw
FORMAT { *OQUNABLE TO MATCH:?', A4}
KZDE=0
RETURN
CONTINUE
KODE=1
RETURN
END
SUBRGOUTINE RANDU{IX,IYseYFL)

COMPUTES UNIFORMLY DISTRIBUTED RANDCM REAL NUMBERS BETWEEN
0 AND 1.0 AND RANDOM INTEGERS BETWEEN ZERO AND

2%%31e EACH ENTRY USES AS INPUT AN INTEGER RANDOM NUMBER
AND PRCDUCES A NEW INTEGER AND REAL RANDCM NUMBER.

DESCRIPTICN GF PARAMETERS

IX =~ FOR THE FIRST ENTRY THIS MUST CONTAIN ANY ODD INTEGER
NUMBER WITH NINE OR LESS CICITS. AFTER THE FIRST ENTRY,
IX SHOULD BE THE PREVIOUS VALUE OF 1Y CCMPUTED B8Y THIS
SUBRCOUTINE.

IY — A RESULTANY INTEGER RANDCWF AUMBER REQUIRED FOR THE NEXT
ENTRY TO THIS SUBROUTINE. THE RANGE OF THIS NUMBER IS
BETWEEN ZERG AND 2%%31

YFL= ThnE RESULTANT UNIFORMLY DISTRIBUTED, FLOATING POINT,
RANOCM NUMBER IN THE RANGE 0 T0 1.0

REAL YFL

[X=65549

DC 1 K=1, 1CC

CALL RANDU {1 IX, 1Y, YFL )
CONTINUE

REMARKS
THIS SUBROUTINE IS SPECIFIC TG SYSTEM/360 AND WILL PRODUCE
2% %29 TERMS EEFORE REPEATING. THE REFERENCE BELOW DISCUSSES
SEEDS (65539 HERE)s RUN PROBLEMS, AND PROBLEMS CONCERNING
RANDGHM DIGITS USING THIS GENERATIGN SCHEME. MACLAREN AND
MARSACLIA, JACM 12y P. 83-89 DISCUSS CONGRUENTIAL
THE RANDU TYPE, ONE FILLING A TABLE AND GNE PICKING FROM THE
TABLE, IS OF BENEFIT IN SOME CASES. 65549 HAS BEEN
SUGGESTED AS A SEED wHICH HAS BETTER STATISTICAL PROPERTIES
FOR HIGH ORDER BITS OF THE GENERATED DEVIATE.
SEEDS SrQULD BE CHOSEN IN ACCCRCANCE WITH THE DISCUSSION
GIVEN IN THE REFERENCE DBELCW. ALSC, IT SHOQULD BE NOTED THAT
IF FLCATING PCINT RANDCM NUMBERS ARE UESIRED;AS ARE
AVAILABLE FROM RANDU, ThE RANDCM CHARACTERISTICS OF THE
FLCATING PCINT DEVIATES ARE MODIFIED AND IN FACT THESE
DEVIATES HAVE HIGH PROBABILITY OF HAVING A TRAILING LOW
ORDER ZERO BIT IN THEIR FRACTICNAL PART.
POWER RECSIDUE METHOD DISCUSSED IN IBM MANUAL C20-8011l,
RANDCVM AUMBER GENERATICN AND TESTING

INTEGER NUMBERS ARE AL CDD

I¥Y=1X*%65539
IFLIYIS546:6
IY=1Y+2147483647+1
YEL=1Y
YFL=YFL#*.4656613E~9
I[X=1Y

RETURN

END
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