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ABSTRACT

We explore a model in which the observed galaxy morphology-density relation is intrinsically related to the
initial fluctuations from which galaxies formed in a universe dominated by cold dark matter (CDM). We
assume a direct mapping between initial peak height and final galaxy morphology with sharp thresholds
dividing the principal Hubble types. Using a simplified, fully analytic formalism appropriate to Gaussian
models, we show how a background cluster or group of galaxies may modulate the abundances of different
morphological types. The model accounts for the observed power-law relation between the elliptical fraction
and the combined fraction of elliptical and lenticular galaxies. We then extend this analytic approach using
N-body simulations. The results support the validity of our prescription for differentiating disk from spher-
oidal galaxies. We note that a power-law segregation between luminous and dark matter densities is predicted

by the simulations.

Subject headings: cosmology — dark matter — galaxies: clustering — galaxies: structure

I. INTRODUCTION

It is well known (Abell 1958; Morgan 1961) that elliptical
galaxies are preferentially found in dense regions, such as
cluster cores, whereas spirals predominate in the field. Davis
and Geller (1976) first provided a quantitative measure of mor-
phological separation in three dimensions by evaluating the
respective correlation functions. They found significant differ-
ences between the clustering properties of the various morpho-
logical types, with ellipticals having a steeper two-point
correlation function of enhanced amplitude relative to the
spirals, and to the mean of all galaxies in the surveyed volume.
This result was extended to a much broader range of densities
by Dressler (1980) who computed the morphological type
dependence on local density as measured by taking the 10
nearest projected neighbors to each galaxy in a sample which
included 55 clusters. Postman and Geller (1984) reevaluated
the morphology-density dependence using three-dimensional
overdensities extending over a remarkable range of six decades
in density. More recently, Giovanelli, Haynes, and Chincarini
(1986) analyzed a part of the UGC Catalog to study the
morphology—projected density dependence in the Perseus-
Pisces Supercluster and found similar results over a wide range
of densities. These results have been especially intriguing to
theorists, because they may be indicative of environmental
effects during the galaxy formation process, in particular local
density, which influence morphological type. For example,
galaxy mergers provide an attractive method for forming ellip-
ticals (Toomre and Toomre 1972; Schweizer 1989). However,
an alternative model for galaxy formation in a cold dark
matter (CDM) universe relies exclusively on initial conditions
that characterize the primordial spectrum of density fluctua-
tions laid down in the very early universe from which all non-
linear structure is generated; Faber (1982) and Blumenthal et
al. (1984) identify ellipticals with >3 ¢ and spirals with 2-3 ¢
peaks in the primordial Gaussian density fluctuation field. This
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model, when coupled with a mechanism to distinguish dwarfs
from bright galaxies (Dekel and Silk 1986), is capable of repro-
ducing several fundamental characteristics of the observed dis-
tribution of bright galaxies (Evrard 1989).

The issue that we address in this paper is whether the
observed galaxy morphology-density relation could arise
solely from processes intrinsic to the primordial fluctuations
from which the galaxies condensed, without the need of any
environmentally induced physical processes such as ram pres-
sure stripping. We will focus on the distinction between ellip-
ticals and spirals and consider the possibility of regarding SO’s
as an intermediate type.

Our procedure will be to commence with the biased CDM
hypothesis and explore its consequences for the morphology-
density relation, both with analytic techniques and with
N-body simulations. In § II, we describe via the analytic theory
of Gaussian fields developed by Bardeen et al. (1986, hereafter
BBKS) how modulation by a background field can affect the
typical fluctuation on a galaxy scale. We define ellipticals and
spirals as approximately 3 ¢ and 2 ¢ peaks on galaxy scales,
tuning the thresholds to explain the finer details of the
morphology-density relation. In § III, we show that three inde-
pendent data sets provide strong evidence for a morphology
threshold model acting on a single underlying population of
galactic halos.

A nonlinear, analytic model is developed in § IV by using a
fit to the fractional overdensity in the CfA group catalog. This
enables a mapping from linear Gaussian overdensity into a
nonlinear overdensity containing the same mass fraction. We
then use N-body experiments as an independent test of the
model in the nonlinear regime. The final section summarizes
our results.

II. ANALYTIC THEORY

We will use the techniques developed by BBKS in § Vc to
describe the modulation effects of a background cluster or
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F1G. 1—The density fluctuation power spectrum of a CDM-dominated universe, with the galaxy-background split at a comoving wavelength 34! Mpc. For the

spectrum we assume h = 0.5,and Q = 1.

group on a forming galaxy. We utilize the CDM fluctuation
spectrum P(k) given in BBKS. We divide the fluctuations into
galactic o, = v, 0, and large-scale (such as cluster) background
d, = v, 6, components by assuming a sharp split in the fluctua-
tion spectrum. Here o, and o, are the respective rms fluctua-
tions in the two domains and J,, J, are the corresponding
dimensionless overdensities. This S/N (signal-to-noise ratio)
split is quite common in handling noisy electric signals and
assumes that the high-frequency component is uncorrelated
with the low-frequency fluctuations. This is justified by the fact
that a typical background peak contains such a large number
of high-frequency fluctuations that it provides a fair sample. It
is the subsequent nonlinearity of biasing in the galaxy forma-
tion process that induces the correlations between the low and
high frequencies.

Let us describe this mechanism with a simple toy model (Fig.
1). The high-frequency field v, has a normal distribution, so
that the probability that the density at a point exceeds a certain
value v, is given by

1 e o]
P(v, > vp) = —=

V2 ),
= 2 erfc (%) .

The total overdensity of the combined ¢t = g + b field is given
by

2
e "2 dy,

@.1)

Ot =v,0,=v,0,+ v, 0, . 2.2)

We assume that galaxies form only in the regions where v,
exceeds the biasing threshold v,. This threshold combined with
a fixed value v, for the background field yields

g gy
aﬂ 0.0

If we take the asymptotic expansion of erfc (z), the probability
for the total density exceeding this threshold v, becomes

(2.3)

dependent on v, :

o = ‘-'"b)z:l

2
20,

P(v, > v,) oc exp [

1
~ exp (av,, -3 ﬂv,f) .

Here « and B have a simple relation to the threshold and the
respective rms amplitudes:

_ (99 . o_ (%Y
a=v|\—5); B=
O'g 69

In BBKS the galaxies are considered as peaks of the density
distribution, which makes the details of the calculations more
difficult, but still the generic form of the relation (2.4) is very
similar—even the v, dependence of « is linear, and g is practi-
cally constant. Only the numerical coefficients differ a little.

If we associate the threshold for bright galaxy formation
(encompassing the major morphological types Sp, SO, and E)
with v, and associate a higher threshold for ellipticals vg, then
the elliptical fraction of the galaxies as a function of v, becomes

i oc exp [(ag — a)v, — 3(Bs — Bvi] . (2.6)

This formalism allows us to calculate cumulative distributions;
in particular we associate the SO’s with an intermediate value
of the threshold vgy. We can write down the expression for the
fraction of E + S0’s as

24

@.5)

Se+s0 o exp [(ago — v, — '%(ﬂso - ﬂ)Vﬂ . 27

The second-order terms in the exponent are negligible, since
is practically independent of the thresholds. Therefore the rela-
tion between fractional abundances and the linear overdensity
of the background is highly nonlinear and exponentially
amplified:

Se ocexp [(ag — a)vy]

Se+s0 o< exp [(ago — 0Jvp] . (2.8)
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This suggests a power-law relation between f; and f; . s,
where the explicit dependence on the background density has
been eliminated. Even the dependence on the particulars of the
window function are mild, since these cancel out with the rms
values:

d log fg
dlog fgeso Gso— &  Vgo — Ve

In principle one could improve this simple model using the
peak formalism of BBKS, which should give about the same
results. Since here we only emphasize the gross features of the
morphology-density relation, we did not feel compelled to go
into such complications, since other nonlinear effects most
likely dominate.

We adopt the galaxy filter scale R, = 0.375h~' Mpc taken
from BBKS for both the analytic and the N-body experiments.
Using the BBKS notation, taking y = 0.55, appropriate for this
filter, and choosing v, = 2, the mean density of the galaxies
becomes

_og—a  Vg—V,

(29)

n, = 0.023h> Mpc ™3 . (2.10)

A typical mass of 2.3 x 10''h~! M is associated with a
Gaussian filter of this size. To estimate the background mass
scale, we take a typical galaxy mass to be about 6 times larger
and assume the background region contains 10 times more
mass. This yields a filter scale for the background R, = 4R,.
From Figure 1 of BBKS, one can estimate the relative power
within the two filters to give 0,/0, ~ 0.4-0.5, which translates
toa = 0.5-0.6.

III. DATA ON MORPHOLOGICAL TYPE-DENSITY CORRELATIONS

There are three data sets available which describe the depen-
dence of morphological type on local density. Dressler (1980)
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phological fraction as a function of local density in the CfA
catalog. Giovanelli, Haynes, and Chincarini (1986) use galaxies
in the Perseus-Pisces Supercluster and plot morphological
fractions as a function of projected overdensity. The variations
of morphological fraction found seem to be quite similar,
although at first glance projection effects make it difficult to
quantitatively compare the two results. All three papers
provide the fractional abundances of ellipticals (E), SO’s, and
spirals (S). The data show quantitatively how the spiral frac-
tion decreases and the elliptical fraction increases in progres-
sively denser environments. However, the SO population is
intermediate in its characteristic dependence on environment
and shows no simple monotonic trend. The three different frac-
tions are normalized to add up to unity.

Encouraged by the simple analytic relationships suggested
in § I, we replot the data from the samples in a way that is
independent of the local density measure, so that the three
samples can be intercompared. First, we combine the ellipticals
and SO’s into a single class whose fraction corresponds to the
intermediate threshold vg,. Second, in order to eliminate the
explicit dependence on density, we plot the elliptical fraction fg
(corresponding to the high-threshold vg) against the combined
E + S0 fraction f; . o. We use only strongly overdense, viria-
lized regions (dp/p > 170) to minimize confusion from clump-
ing on intermediate scales at low background density. Also,
projection contamination is small in this regime. We do not
explicitly make use of the spiral fraction since they provide no
further information due to the normalization constraint. Fur-
thermore, since the analytic theory predicts a power-law rela-
tion between the respective abundances, we plot log f; against
log fg+so in Figures 2a and 2b.

We see a remarkable concordance between the data sets
implying a power-law relation

used projected densities in his study of a sample of 55 rich d log f3
clusters, and Postman and Geller (1983) measured the mor- d10g forso 16. @1
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F1G. 2—The fractional abundance of ellipticals (fg) plotted against the combined fraction of ellipticals and SO’s (f;, 5o). Data from Dressler (1980) and Postman
and Geller (1984) are shown in Fig. 2a, while the data of Giovanelli et al. (1986) are shown in Fig. 2b. The dotted line corresponds to a power-law fit with a slope
of 1.6.
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F1G. 3.—The fractions of E and E + SO galaxies as a function of density in
the Postman and Geller sample. In the nonlinear regime above about four
galaxies per Mpc® (corresponding to an overdensity of ~200), the fractions
show a power law dependence on local density.

The excellent fit to a power law indicates that projection effects
do not play a significant role at these high overdensities. This
result supports our model which considers the spiral, SO, and
elliptical galaxies as parts of a single underlying population
characterized by different thresholds. There is an offset
between the Giovanelli, Haynes, and Chincarini (1986) data
and the other two samples, due to the selection of galaxies in
the UGC Catalog by diameter, which biases the catalog
against inclusion of early-type galaxies.

Plotting the Postman and Geller (1984) data on a log-log
scale, there is power-law dependence of the galaxy abundances
on the background density, shown in Figure 3:

d log fg
——=0.1 2
dlog p 0.18 3.2
d log fg+s0
—=0.12. 33
dlogp 0 (3:3)

IV. MODELING THE NONLINEARITIES

The fundamental difficulty that we encounter in comparing
the above results with the observations centers on how to
relate the background density v, of the initial Gaussian process
to the highly nonlinear density distribution today. This
problem cannot be resolved by applying the two-point corre-
lation function. Rather, it is the very high order moments of the
density distribution which generate the six decades of the
logarithmic overdensity that is observed. A measure of the
overdensity is obtained from the number counts of galaxies in
a given cell size. This is clearly related to Py, the probability
that a given cell contains N galaxies, an integral over the
N-point correlation function. This distribution is known to be
extremely skewed toward high N (Crane and Saslaw 1986;
Balian and Schaeffer 1989). In Dressler’s (1980) study of galaxy
morphology in rich clusters, the number distribution of gal-
axies over bins of projected density satisfied a lognormal dis-
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tribution, a conclusion that was even reached by Hubble
(1936). Most skewed or non-Gaussian distributions can in fact
be fitted by a lognormal distribution, and this result should be
considered as providing a phenomenological description of the
nonlinear galaxy distribution.

Using such a lognormal fit, one can clearly map a non-
Gaussian distribution into a Gaussian, but this procedure does
not guarantee that any spatial coherence will be retained.
Dynamical mixing during nonlinear collapse can significantly
rearrange the galaxies. However, the success of biased CDM
and the density peak prescription as outlined in BBKS sug-
gests that the mapping of initial (Lagrangian) overdensity to
final density is a reasonably robust procedure in the absence of
dissipation: one would expect that statistically the points at the
highest linear overdensities would end up in high-density
regions after significant nonlinear evolution has taken place.
Conservation of mass enables us to establish a mapping
between these two distributions, by requiring that the same
mass fraction be associated with the respective overdensity
level surfaces. However, this still does not guarantee that this
mapping is true in the local sense. The validity of this assump-
tion has recently been investigated by Weinberg (1989), who
used the above procedure to obtain from galaxy catalogs
Gaussian initial conditions for an N-body simulation that was
subsequently evolved to be similar to the original galaxy dis-
tribution. We further explore this mapping in the N-body
experiments presented in the next section.

Already the above arguments of lognormality point to a
roughly exponential relation between v, and p, but we decided
to adopt an even more phenomenological approach. We use
the original data of Postman and Geller (1984), comprising the
number of galaxies in the CfA Catalog above a certain local
overdensity threshold. We convert these cumulative numbers
into fractions, then convert/the(fre:ztions into a normal
Gaussian distribution, by assigning a Gaussian variable v that
has the same cumulative fraction associated with it. The rela-
tion between the nonlinear overdensity contrast and the
Gaussian is surprisingly well fitted by an exponential (Fig. 4):

op/p = exp (3.36v) . 4.1)

This overdensity dependence of the luminous matter comprises
two independent factors. One is the nonlinear gravitational
clumping of all mass, including the dark matter. The second is
the systematic segregation of the luminous matter from the
dark matter. The latter may be expected to have an exponen-
tial dependence on v from equation (2.4), as long as the sta-
tistical quantity v is providing a reasonable estimate of the
physical quantity v,. This is addressed with the N-body models
of§ V.

Since both measurable quantities, the morphological frac-
tion and the local density, depend on the background level in
an exponential manner, we expect a generic power law relation
between our observables. This should break down at sufficient-
ly low densities, where noise from small-scale clumpiness and
projection effects contaminate the measure of local density. At
overdensities above 170, virialization will erase substructure.
Thus we would expect a flattening of morphological fraction
dependence on density below ~1 Mpc 3.

V. N-BODY EXPERIMENTS

To fully explore the effects of nonlinearities inherent in the
gravitational clustering process, we have performed a set of
numerical simulations. Initial fluctuations in L = 16h~! Mpc
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Fi1G. 4—The cumulative “filling factor” of galaxies as a function of over-
density 6 in the Postman and Geller sample expressed in terms of an equivalent
complimentary error function variable v. That is, the fraction of galaxies in the
sample whose local density contrast is > 4 is given by erfc (v).

periodic cubes were generated on a N = 64 cubic mesh using
Bertschinger’s (1987) path integral method over a range of
constrained density fields. The constraint used is that the large-
scale density field filtered with a Gaussian window on a scale
R;s = 0.2L = 3.2h~ ! Mpc equal an input value J,5. We chose
five values of d; s corresponding to —4 g, —2 6,0,2 g,and 4 ¢
fluctuations on the filter mass scale M, ~ 1.4 x 10'* M. The
constrained fields are a convenience which allows efficient sam-
pling of rare, high-density environments. The choice of filter
scale is, to some degree, arbitrary; the value M 5 ~ 10'* M
reflects the mass scale associated with clusters of galaxies. Two
realizations are generated for each of the above values of dg,
corresponding to the real and imaginary parts of the initial
complex density field, yielding a total of 10 models. The initial
displacement fields are evolved to an initial redshift z; = 9 with
the Zel'dovich approximation. These are then assigned to a
reduced 323 particle distribution and the system followed to
the present with the P3M N-body code (Efstathiou and East-
wood 1981). The initial conditions and simulations are sum-
marized in Table 1.

Galaxies in this model are assumed to form at the locations
of peaks in the initial, filtered density field which lie above

TABLE 1
SIMULATION PARAMETERS

Parameter Value
Comovingcubelength .......................... 16h~* Mpc
Fourier grid $ize ...........ccceveviveieenenannnn. 0.25h* Mpc
Number of particles ................cooeeiiiinne 32,768
Gravitational softening ......................... 50h~! kpc
Particlemass ..............cooceviiniiiiiiiinn.. 34 x 10'°h~' M,
Total Mass .......couevuiinieuinniiniiniiaianss 1.2 x 10*%h~! Mg
Galaxy filter radius .........c.coeveiuieneniene. 0.375h~! Mpc
L-S background filter radius .................... 3.2h~! Mpc

Constrained L-S perturbations ................. vs=4,2,0,-2 -4
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some critical threshold v.. To locate the Lagrangian birth-
places of galaxies in the simulations, the initial 643 density
fields are filtered on a scale R, = 0.375h~ ! Mpc. Peaks, defined
simply as a cell whose density is greater than those of its adjac-
ent 26 neighbors, are located within the realizations, and the
nearest locations in the 323 particle distribution are “tagged”
with the appropriate peak height v,. The cumulative abun-
dance of galaxy-scale peaks found this way in the models is in
good agreement with the analytic BBKS expectation.

If galaxies behave as collisionless objects after their dissi-
pative formation, then it is appropriate to use the trajectories
of the particles tagged at locations of peaks above the v,
threshold as tracers of “galaxy” orbits. Figure 5 shows the
dynamical evolution inside a comoving 84~ ! Mpc cubic region
in one of the 4 ¢ constrained background runs. The evolution
proceeds in rows from top to bottom. The left-hand column
shows particles representing peaks above an elliptical thresh-
old taken to be vg = 3. The next column shows peaks associ-
ated with the disk (SO and Sp) population—those above the
critical threshold for bright galaxy formation v, but below the
spheroid limit v;. We assume a value of v, = 2. The subsequent
column shows all those peaks below v, (“failed” protoga-
laxies?), and the right-most column shows the general mass
distribution.

Higher peaks are more strongly clustered in the initial, linear
field as expected. By a redshift z ~ 1, the elliptical population is
already concentrated in the dense core of the collapsing proto-
cluster. The disk population inhabits the surrounding, lower
density environments. At z =0, there are ~90 galaxies
(particles associated with peaks above v,) within an Abell
radius of the cluster center—this would correspond to Abell
richness class II. The velocity dispersion of ¢ ~ 700 km s~ ! is
not atypical of a richness II cluster.

We can perform straightforward morphology-density mea-
surements on the numerical experiments by using projected
snapshots of the modeled galaxy distribution down each of the
simulation axes. Local two-dimensional densities are deter-
mined by Dressler’s (1980) criterion based on the distance to
the 10th nearest galaxy. Type fractions are computed from the
ensemble of projections for each box, and results from the
independent volumes combined to improve statistics. Counts
of spheroid (E) and disk (SO and Sp) galaxies found using the
peak threshold criteria are given for all the models in Table 2.
Values of vg = 3 and v, = 2 and assumed, and the SO counts
assume an intermediate threshold vg, = 2.5.

Figure 6 shows the resulting elliptical and E + SO fractions
versus projected density determined from stacking the three

TABLE 2
“GALAXY ” COUNTS

Vis E SO Sp “Failed ” Peaks
4 41 37 60 210
4 34 29 62 225
2 i, 22 52 50 229
2 e 13 28 74 248
0 i 16 43 49 284
[ R 7 23 62 253
-2 14 36 42 290
=2 e 8 16 59 267
-4 . 16 31 35 285
—4 11 21 42 264
Total ........ 182 316 535 2555
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FiG. 5—Evolution within a comoving 8k~ ' Mpc cubic region on one of the simulations constrained to produce a moderately rich cluster by the present epoch.
Particles associated with peaks above the elliptical threshold vg are more clustered than those between v, and v; which are in turn more clustered than the total mass

distribution.
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FiG. 6—The morphology-density relation for E and E+ S0 galaxies for
both the Dressler sample (open circles) and the ensemble of numerical experi-
ments ( filled circles) determined using k = 0.5. The simulations assume v, = 2,
vso = 2.5 and vy = 3. The observed behavior of the elliptical population is
reproduced well by the experiments. Results for the combined E+ S0 popu-
lation are not as compelling.

orthogonal projections of all 10 experiments. Error bars are
1 o deviations within each bin. Dressler’s data are the solid
circles. The simulations reproduce the Dressler data for the
elliptical fraction versus density extremely well. The combined
E + SO behavior is in poorer agreement. There are not enough
SO’s in the highest density environments, even with the low
value of vy, = 2.5. Figure 7 shows the elliptical versus E + SO0
fractions from the simulations. The data are in fairly good
agreement with the theoretically expected power law of slope

Vg — V.

=2 (5.1)

Vso — Ve
shown as the dashed line and slightly steeper than the observed
slope taken from Figure 2a. Attempts at increasing the SO
fraction at high densities by lowering vy, fail because this
simultaneously generates more SO’s in low density environ-
ments than are observed. The discrepancy between the analytic
and numerical results for the SO’s may be due to subtle effects
on the tail of the peak height distribution arising from the
discrete nature of the simulations; the modulation is very sen-
sitive to the local shape of the peak height distribution. For the
adopted filter scale, the appropriate value of v, which repro-
duces the observed mean density of bright galaxies is ~2.3
(BBKS). Had we chosen this value of v, and shifted to vg = 3.2
in order to produce the correct global abundance of ellipticals,
the number of peaks above vg in the simulations would have
been reduced by a factor of 2 and the statistics therefore much
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F1G. 7—The E fraction is plotted against combined E + SO fraction for the
numerical experiments (solid circles). The dashed line shows the slope of 2
expected from the analytic model, while the solid line is the observed slope
taken from Fig. 2a.

poorer. The set of higher values for the thresholds imply a
steeper local slope, thus a steeper modulation for the E+ SO
fraction, a shift in the right direction. The simulations provide
support for a peak height distinction between disk and spher-
oid morphologies, but a finer distinction between SO and Sp
galaxies based on this simple threshold picture is not entirely
clear.

One can also use the numerical experiments to investigate
aspects of the non-linear analytic model presented in the pre-
ceding section. Figure 8 shows the local galaxy density contrast
o plotted against fraction of galaxies expressed in terms of the
complimentary error function variable v as in § IV). A three
dimensional density based on distance to the 10th nearest
neighbor is used. For collapsed regions with log é 2 2, the
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FiG. 8.—The cumulative “filling factor” for galaxies in the simulations
(dashed line) along with the observed relation (solid line) taken from Fig. 4. The
experiments show a roughly lognormal mapping in the nonlinear regime
similar to that seen observationally.

F1G. 9—The total mass (assuming h = 0.5) contained within a radius
defined by the (three-dimensional) distance to the sixth nearest galaxy in the
final, nonlinear galaxy distribution is plotted against initial peak height v,
filtered on the galaxy mass scale. A large scatter in this “ background ” mass
scale is evident—the median value is roughly 200 times the employed galaxy
filter mass. Different symbol types refer to different values of the initial LS
background constraint: filled circles, v, s = 4; filled triangles, v g = 2; asterisks,
vs = 0; open triangles, v = —2; and open circles, v, = —4.

simulated data follow an exponential mapping similar to that
seen in Figure 4 for the observational data.

Some of the difficulties one will encounter when attempting
analytic calculations based on a peak-background split
assumption can be appreciated by examining Figure 9. Here
the total mass within a sphere of radius Ry, the distance to the
sixth nearest galaxy, is plotted against peak height on galactic
scales. Interpreting this mass as the “ background ” mass scale
for analytic calculation, we see that there is a rather large
range, about a factor 30, in the true local background mass.
This makes definition of an appropriate, single background
mass scale problematic. The median value of M(<R,) = 10**
M, is a factor of 200 greater than the filter mass of the galaxy
scale.

Does the background density field filtered on this scale
contain any useful information regarding nonlinear galaxy
densities? Figure 10 shows the final local galaxy densities
based on R4 plotted against the background perturbation
height v, of the density field filtered using a Gaussian M, =
10'* M. A clear monotonic trend is evident, but the scatter in
density at a fixed background value can be quite large. This is
especially true in the transition region separating the linear
and nonlinear regimes.

We note that the local galaxy density is, as expected, a
biased estimate of the mass density measured within the same
volume, as illustrated in Figure 11. The local mass overdensity
0, is related to the galaxy overdensity 6, by a power law over
six orders of magnitude

5,088 (52
We stress that the scale at which the local mass density is
measured is defined by the galaxy distribution. The above rela-
tion is not defined at a fixed background mass scale; rather, it
holds over the range of background masses illustrated in
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F16. 10.—The final galaxy density based on the three-dimensional distance
to the 6th nearest galaxy plotted against the initial perturbation height v,
filtered on the median background mass scale of Fig. 9. Symbol types are the
same as in Fig. 9. The final nonlinear density is correlated with the linear
background density, but a large scatter is evident.

Figure 9. Because of the difficulty in estimating dynamical
masses, this relation will be hard to test observationally.
However, density reconstruction techniques such as that devel-
oped by Bertschinger and Dekel (1989) may provide a means of
measuring this relation in the linear to mildly nonlinear regime
6, < 10.

VI. DISCUSSION AND CONCLUSIONS

We have presented evidence that the observed galaxy
morphology-density relation may be intrinsic to the primor-
dial fluctuations from which the galaxies formed. Following
Faber’s (1982) suggestion of a relation between morphology
and height of initial density perturbation, we adopt a threshold
criterion defining morphological type in the biased CDM sce-
nario. Using a simplified, fully analytic version of the BBKS,
formalism we have shown how a background cluster or group
of galaxies may modulate the relative abundances of galaxies
with different Hubble types.

By combining the observational data on the density depen-
dence of ellipticals and SO’s, we have also found a tight power-
law correlation between f; and fp,g. This argues that
ellipticals and SO’s constitute a single-parameter family with
respect to the density dependence. Despite the fact that non-
linear evolution introduces a strongly non-Gaussian tail into
the galaxy distribution, we have found that the logarithmic

Log p/<p> in galaxies

F1G. 11.—Relation between the local galaxy and mass density measured
within a sphere of radius R, the distance to the sixth nearest galaxy. The data
follow a power law of slope 0.8 (dashed line).

overdensity of the galaxies in the CfA catalog is extremely well
fitted by a Gaussian distribution. Furthermore, both f; and
fe+so have a power-law dependence on the local overdensity.
These observed trends are of intrinsic interest and independent
of any assumptions about CDM or a specific model for galaxy
formation.

We have extended the analytic approach by performing
N-body simulations with 32,768 mass points in comoving
volumes of dimensions 16h~! Mpc. The results agree with the
observed relation between elliptical fraction and local galaxy
density. However, in contrast to the analytic work, the simula-
tions do not reproduce as well the observed behavior of the
E+S0 population We have discovered and quantified an
interesting trend in the simulations between the total mass and
galaxy densities: a power-law relation of the form 6, oc 8% i
apparent over a range of six orders of magmtude in galaxy
density. We anticipate that future developments in density
reconstruction techniques and other dynamical mass estima-
tion methods may allow this prediction to be tested over a
modest dynamic range in density.
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