APPENDICES

APPENDIX A

Combustion Synthesis Experiments

A.1 Glass L-junction for combining precursor streams

A.2**Rotameter Calibrations**

Ar dilution
Manufacturer: OMEGA
Tube Model No. R-6-15-B
Metered Gas: (Vol. Basis)
7.5% O2, 92.5% Ar

HydrogenTMT/ArgonManufacturer: OMEGAManufacturer: OMEGATube Model: N082-03stModel No. FL-5311CMetered Gas: HydrogenMetered Gas: Argon

Scale	Omega Ar	Calibrated	Scale	Calibrated	Omega Calibration		Lab Calibration			
(mm)	(lpm)	(lpm)	(mm)	(lpm)	Scale	Argon Flow	upscale	Vol	Time	Flow Rate
34	9.54	10.109	30	0.999	[mm]	[mL/min]	[mm]	[mL]	[s]	[mL/min]
35	9.84	10.427	35	1.222	2	7.066	10	20	60.84	19.72
36	10.15	10.755	40	1.442	4	9.364	18	40	69.36	34.60
37	10.45	11.073	45	1.660	6	11.748	29.5	40	39.49	60.77
38	10.76	11.401	50	1.874	8	14.132	40.5	60	33.89	106.23
39	11.07	11.730	55	2.086	10	16.516	50	80	32.06	149.72
40	11.37	12.048	60	2.294	12	19.240	60	100	27.59	217.47
41	11.68	12.376	65	2.500	14	22.219				
42	11.99	12.705	70	2.703	16	25.539		Lab (Calibration	
43	12.30	13.033	75	2.903	18	29.370	downscale	Vol	Time	Flow Rate
44	12.61	13.362	80	3.100	20	33.797	[mm]	[mL]	[s]	[mL/min]
45	12.92	13.690	85	3.294	22	38.735	60	100	28.10	213.52
46	13.24	14.029	90	3.485	24	44.183	50	100	36.33	165.15
47	13.56	14.368	95	3.673	26	50.228	40	100	58.53	102.51
48	13.88	14.707	100	3.858	28	56.698	30	100	89.58	66.98
49	14.21	15.057	105	4.041	30	63.508	20	100	170.02	35.29
50	14.53	15.396	110	4.220	32	70.744	10	100	319.89	18.76
51	14.86	15.746	115	4.397	34	78.321				
52	15.19	16.095	120	4.570	36	86.323				
53	15.52	16.445	125	4.741	38	94.751				
54	15.85	16.795	130	4.909	40	103.520				
55	16.18	17.144	135	5.073	42	112.714				
56	16.51	17.494	140	5.235	44	122.419				
57	16.84	17.844	145	5.394	46	132.550				
58	17.17	18.193	150	5.550	48	143.021				
59	17.51	18.554			50	154.003				
60	17.84	18.903			52	165.325				
61	18.18	19.264			54	176.903				
62	18.53	19.635			56	188.651				
63	18.87	19.995			58	200.570				
64	19.21	20.355			60	212.488				
65	19.55	20.715			62	224.321				
66	19.89	21.076			64	236.070				
67	20.23	21.436			66	247.562				
68	20.57	21.796								
69	20.91	22.156						PFS/	Argon	
70	21.26	22.527						Manuf	acturer: OM	EGA
71	21.60	22.888						Model	No.	
72	21.95	23.258						Metere	ed Gas: Argo	on
73	22.30	23.629								
74	22.65	24.000								
75	23.01	24.382						Scale	Flow Rate	
76	23.37	24.763						[mm]	[mL/min]	_
77	23.73	25.145						20	260.42	
78	24.11	25.547						30	521.20	
79	24.48	25.939						40	788.88	
80	24.87	26.352						50	1021.59	
81	25.25	26.755						60	1300.12	
82	25.64	27.168						70	1551.11	
83	26.03	27.582						80	1814.48	
84	26.43	28.005						90	2075.70	
85	26.82	28.419						100	2315.24	
86	27.21	28.832						110	2551.67	
87	27.61	29.256						120	2778.93	
88	28.00	29.669						130	3048.78	
89	28.38	30.072						140	3308.12	

A.3 Summary of experiments

The following table presents a summary of combustion synthesis experiments relevant to the synthesis studies and to the gas sensing studies presented in the dissertation. The table also provides information about the samples collected using bulk and TEM sampling. Refer to the grid sampling tables following. Experiments conducted before the ones presented here are documented in Tiffany Miller's thesis.

	Samples TEM ass box:grid/height [cm] g]	$\begin{array}{c} 050520:A3,A4/18.5\\ 050520:A5,A6/18.5, A7/10\\ 050520:B5/18.5, B6/37\\ 050520:B7(18.5, B6/37\\ 050520:B7(18.5, B6/37\\ 050520:B10/0.5, C1/1, C2/2, C3/5, C3/5, C3/7, C9/16.5, C10/10\\ 050520:C8/37, C9/16.5, C10/10\\ 050520:C9/210\\ 050520:D9/D10/37\\ 050520:D9/D10/37\\ 050520:E5/37\\ 050520:E9/E10/37\\ 050520:E9/E10/37\\ 050520:E9/E10/37\\ 050722:A46/1, A7/2, A8/5, A9/9, A10/13, B3/20, B4/25\\ 050722:B5/5, B6/9, B7/20, B8/25\\ 050722:B5/5, B6/9, B7/20, B8/25\\ 050722:B5/5, B6/9, B7/20, B7/20, B8/25\\ 050722:B5/5, B6/9, B7/20, B8/25\\ 050722:B5/5, B6/9, B7/20, B8/25\\ 050722:B5/5, B6/9, B7/20, B7/20, B8/25\\ 050722:B5/5, B5/5, B6/9, B7/20, B7/20\\ 050722:B5/5, B5/5, B6/9, B7/20\\ 050722\\ 050722:B5/5, B5/5, B6/9, B7/20\\ 050722\\ 050722\\ 050722\\ 050722\\ 050722\\ 050570\\ 050722\\ 05057\\ 05$
	Bulk height/time/m [cm]/[min]/[m	27/25/- 27/25/- 50/12/306 50/-/- 27/14/- 50/-/-2114/- 50/-/-2114/- 50/-/-2114/- 50/-7/- 50/10/- 50/10/- 50/10/- 50/10/- 50/10/- 50/10/- 50/10/- 50/10/- 50/112/- 50/10/- 50/10/- 50/10/- 50/112/- 50/10/- 50/- 50/10/- 50/- 50/10/- 50/
	Chimney	••••••••••••••••
$\left \right $		
	u- A	
	l precu	
	Solid - Pc	•
-		
	$\begin{array}{c} \text{or [lpm]}\\ \operatorname{Ar}_{PFS}\\ (20) \end{array}$	(30) (25) (25)
	$\begin{array}{c} \operatorname{ccale, mm} \\ \operatorname{Ar}_{TMT} \\ (30) \end{array}$	$\begin{pmatrix} 25\\ (25)$
	ameter s Ar <i>ditu.</i> (55)	
	ows (rot O ₂ [1.47]	$\begin{bmatrix} 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.46\\ 1.46\\ 1.46\\ 1.46\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.48\\ 1.46\\ 1.$
	$\operatorname{Gas}_{\operatorname{H}_2} \operatorname{H}_2$ (70)	(55) (55) (55) (55) (55) (55) (55) (55)
	Description	Re-fire Re-fire Re-fire Re-fire Re-fire Re-fire Re-fire Re-fire Re-fire Re-fire Re-fire NMACS MACS MACS TNBT at 100 °C PIV 2 Solid Reactants No TMT Re-fire Decomposed Gold Acetate Ven-Hung's Study MACS with Al MACS WIT MACS WIT WIT WIT WIT WIT WIT WIT WIT WIT WIT
	Date	6/1/05 6/3/05 6/3/05 6/3/05 6/11/05 6/11/05 6/11/05 6/11/05 6/11/05 6/12/05 7/13/05 7/13/05 7/22/05 7/22/05 7/23/05 10/23/05 11/205 11/205 11/205 5/22/07 5/2/
	Ref.	MACHARACACACHARACACACHAAAAAAAAAAAAAAAAAA

Summary of experiments conducted using the combustion synthesis facility

133

A.4 TEM grid index

Grid	Expt. Ref.	Description	Date	Location [cm]
A1		Colloidal Au		
A2		Colloidal Au		
A3	В	Re-fire	6/3/05	18.5
A4	В	Re-fire	6/3/05	18.5
A5	\mathbf{C}	Re-fire	6/3/05	18.5
A6	Ċ	Re-fire	6/3/05	18.5
A7	Ċ	Re-fire	6/3/05	10
A8	D	Nickel Acetate	6/4/05	18.5
A9	D	Nickel Acetate	6/4/05	18.5
B1	D	Nickel Acetate	6/4/05	18.5
B2	D	Nickel Acetate	6/4/05	18.5
B3		Colloidal Au	6/11/05	
B4		Colloidal Au	6/11/05	
B5	\mathbf{E}	Re-fire	6/11/05	18.5
B6	Ē	Re-fire	6/11/05	37
B7	F	Re-fire	6/11/05	37
B8	F	Re-fire	6/11/05	37
B9	F	Re-fire	6/11/05	37
B10	G	Height Study	6/12/05	0.5
C1	G	Height Study	6/12/05	1
C_2	G	Height Study	6/12/05	2
C_2	G	Height Study	6/12/05	5
C_{4}	G	Height Study	6/12/05	9
C5	C	Height Study	6/12/05	5 19
	G	Height Study	6/12/05	19
C_{7}	G	Height Study	6/12/05	18.5
C_8	ы ц	MACS	6/20/05	10.0 27
	II H	MACS	6/20/05	57 16 5
C9	11 11	MACS	6/20/05	10.5
D1	11	MACS	0/20/05	10
	т	TNDT at $100.9C$	7/0/03 7/12/05	10
D2 D2	J T	TNDI at 100 °C	7/13/03 7/12/05	10
D3	J		7/13/03	10
D5 D6	т	Colloidal Au 2 Solid Desetants No TMT	7/20/05	9F
D0 D7		2 Solid Reactants No TMT	7/22/05	20 15
		2 Solid Reactants No TMT	7/22/05	15
D8		2 Solid Reactants No 1 M1	7/22/05	15
D9	IN N	Decomposed Gold Acetate	7/23/05	37 97
D10 E9	N O	Decomposed Gold Acetate	(/23/05	37
E2 D9	0	Yen-Hung's Study	8/15/05	27
E3	0	Yen-Hung's Study	8/15/05	27
E4 E5	P	MACS with Pt	8/18/05	10.5
E5 DC	Q	MACS with Pt	8/18/05	37
E6		MACS with Pt	10/23/05	37
E7 De		MACS with Pt	10/23/05	37
E8	P	MACS with Pt	10/23/05	37
E9	R	MACS with Pt	10/23/05	37
E10	R	MACS with Pt	10/23/05	37

TEM Grid Box: 050520

TEM Grid Box: 050722

Grid	Expt. Ref.	Description	Date	Location [cm]
A1	S	MACS with Al	10/23/05	37
A2	\mathbf{S}	MACS with Al	10/23/05	37
A3	V	Methane-Unassisted	11/2/05	37
A6	W	MACS Height Study Rerun 11/5/05	11/5/05	1
A7	W	MACS Height Study Rerun 11/5/05	11/5/05	2
A8	W	MACS Height Study Rerun 11/5/05	11/5/05	5
A9	W	MACS Height Study Rerun 11/5/05	11/5/05	9
A10	W	MACS Height Study Rerun 11/5/05	11/5/05	13
B3	W	MACS Height Study Rerun 11/5/05	11/5/05	20
B4	W	MACS Height Study Rerun 11/5/05	11/5/05	25
B5	Х	MACS Height Study Rerun 11/5/05	11/8/05	5
B6	Х	MACS Height Study Rerun 11/5/05	11/8/05	9
B7	Х	MACS Height Study Rerun 11/5/05	11/8/05	20
B8	Х	MACS Height Study Rerun $11/5/05$	11/8/05	25

TEM Grid Box: 060601

Grid	Expt. Ref.	Description	Date	Location [cm]
C2		Toluene PMMA SnO2 Au	6/21/06	
D1		MSP Deposition	6/28/06	
D2		Explosive Gold Acetate	6/29/06	

TEM Grid Box: 060929

Grid	Expt. Ref.	Description	Date	Location [cm]
A8		AuAc Decomposition	1/27/07	1 mm
A9		AuAc Decomposition	1/27/07	1 mm
B1		AuAc Decomposition	_//.	
B2		AuAc Decomposition		
B7		AuAc Decomposition		4 mm
B10		AuAc Decomposition		4 mm
C4		AuAc Decomposition	2/24/07	1 mm
C5		AuAc Decomposition	2/24/07	1 mm
C8		AuAc Decomposition		1 mm
C10		AuAc Decomposition		1 mm
D1		Sputtered Au on Glass	2/8/07	
D9		AuAc Decomposition		2 mm
D10		AuAc Decomposition		2 mm
E1		Dispersion SnO2	12/11/07	
E2		Dispersion SnO2 Au	12/11/07	
E4		Dispersion SnO2 Pd	12/11/07	
$\mathbf{E8}$		AuAc Decomposition		1 mm
E10		AuAc Decomposition		$1 \mathrm{mm}$

A.5 Sampling piston residence time study

Controller time (s)	0.50	0.75	1.00	0.40	0.30	0.30
Pressure (psi)	100	100	100	100	100	100
Travel						
start (us)	3233301	2161090	25949741	8549914	1244432	2949970
end (us)	3494409	2422198	26216405	8811023	1494429	3205523
trav. Time (s)	0.2611	0.2611	0.2667	0.2611	0.2500	0.2556
Residence						
start (us)	3494409	2422198	26216405	8811023	1494429	3205523
end (us)	3711074	2888860	26938620	8922133	1494429	3216634
res. Time (s)	0.2167	0.4667	0.7222	0.1111	0.0000	0.0111
Total time (s)	0.478	0.728	0.989	0.372	0.250	0.267

Sampling time for a range of controller time setting

Sampling time for controller time setting of 0.30 seconds

Controller (s)	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	average
Pressure (psi)	100	100	100	100	100	100	100	100	
Travel									
start (us)	846645	2266610	3869903	5566527	7126488	8583118	10059748	11726373	
end (us)	1093306	2516603	4126563	5823187	7379815	8836445	10313075	11983033	
trav. Time (s)	0.2467	0.2500	0.2567	0.2567	0.2533	0.2533	0.2533	0.2567	0.2533 ± 0.0036
Residence									
start (us)	1093306	2516603	4126563	5823187	7379815	8836445	10313075	11983033	
end (us)	1096639	2539936	4146563	5836520	7396481	8856445	10329741	11996366	
res. Time (s)	0.0033	0.0233	0.0200	0.0133	0.0167	0.0200	0.0167	0.0133	0.0158 ± 0.0061
Total time (s)	0.250	0.273	0.277	0.270	0.270	0.273	0.270	0.270	0.269 ± 0.008

Sampling time for controller time setting of 0.40 seconds

Controller (s)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	average
Pressure (psi)	100	100	100	100	100	100	100	100	
Travel									
start (us)	909977	2489938	4189895	5696524	7489813	9133105	10819729	12629684	
end (us)	1166637	2743265	4443222	5949851	7743140	9386432	11076390	12883011	
trav. Time (s)	0.2567	0.2533	0.2533	0.2533	0.2533	0.2533	0.2567	0.2533	0.2542 ± 0.0015
Residence									
start (us)	1166637	2743265	4443222	5949851	7743140	9386432	11076390	12883011	
end (us)	1273301	2866595	4566552	6076515	7869803	9509762	11203053	13009675	
res. Time (s)	0.1067	0.1233	0.1233	0.1267	0.1267	0.1233	0.1267	0.1267	0.1229 ± 0.0068
Total time (s)	0.363	0.377	0.377	0.380	0.380	0.377	0.383	0.380	0.377 ± 0.006

APPENDIX B

Gas sensor study

B.1 Summary of experiments

Concor	Binder Description De		Dun	Sensitivity		Time	e Response	Begnonge Decemintion	
Sensor	Bilder Description	Date	nun	$S = \frac{R_a}{R_g}$	Average	τ (sec)	Average	- Response Description	
		05/03	1	4.72		34.88		Higher ambient response	
	Hydroxypropyl Cellulose	05/03	2	3.80		7.32		after CO exposure	
Ι	in Isopropyl Alcohol.	05/07	1	4.73	4.34 ± 0.4	13.57	14.4 ± 11.8	anter CO exposure.	
	Sonicated	05/07	2	4.16		7.62		Secondary response	
		05/07	3	4.31		7.87		during CO exposure.	
	Etherl Collectors in	05/09	1	3.22	3.05 ± 0.24	2.44	4.2 ± 1.5	Similar but worse than	
J	Ethyl Cenulose III	05/09	2	2.78		5.13		Sensor I except time	
	α -terpineoi	05/09	3	3.16		5.00		response	
	T-+	05/10	1	3.16		27.27		Almost ideal response	
V	(TEOS) with UC	05/10	2	2.97	2.97 ± 0.15	35.29	250 1 50	curves. Slight drift	
K	(IEOS) with HOI,	05/10		2.80		41.67	35.0 ± 5.9	towards higher	
	Water and Ethanol	05/10	3	2.96		35.93		resistance.	

A study of sensor performance with a range of binders for undoped ${\rm SnO}_2$ sensors

Sensor	Description	Date	Run	$S = \frac{R_a}{R_g}$	Averages	$S = \frac{R_a - R_g}{R_a}$	Averages	time	Averages
						(%)	(%)	(sec)	(sec)
L	SnO_2	6-Jun	1	11.92		91.61		9	
			2	12.25		91.80		10	
			3	14.94	13.04 ± 1.660	93.31	92.24 ± 0.932	9	9.54 ± 0.8
L	SnO_2	7-Jun	1	16.75		94.03		10	
			2	19.44		94.85		11	
			3	17.58	17.92 ± 1.377	94.31	94.40 ± 0.417	10	10.44 ± 0.2
М	SnO_2	8-Jun	1	15.82		93.60		16	
			2	13.90		92.81		14	
			3	16.49	15.40 ± 1.342	93.90	93.44 ± 0.563	16	15.33 ± 1.3
Μ	$SnO_2 @ 333C$	9-Jun	1	20.83		95.20		12	
			2	17.77	19.30 ± 2.160	94.37	94.79 ± 0.587	13	12.40 ± 0.8
Μ	$SnO_2 @ 333C$	11-Jun	1	19.51		94.88		13	
			2	20.12		95.00		12	
			3	18.28	19.30 ± 0.940	94.53	94.80 ± 0.244	12	12.38 ± 0.6
Μ	$SnO_2 @ 454C$	13-Jun	1	14.30		93.01		8	
			2	10.50		90.47		9	
			3	10.81	11.87 ± 2.109	90.75	91.41 ± 1.393	8	8.00 ± 0.5
Μ	$SnO_2 @ 375C$	14-Jun	1	19.18		94.79		9	
			2	20.04		95.00		8	
			3	19.00	19.41 ± 0.553	94.74	94.84 ± 0.138	10	8.75 ± 0.9
Μ	$SnO_2 @ 336C$	19-Jun	1	10.34		90.33		12	
			2	9.05		88.95		15	
			3	9.34	9.58 ± 0.674	89.30	89.53 ± 0.717	15	14.10 ± 1.5
Ν	SnO_2	22-Jun	1	6.10		83.62		11	
			2	6.49		84.59		13	
			3	5.57	6.05 ± 0.464	82.03	83.41 ± 1.292	15	13.10 ± 1.8
Ν	SnO_2	25-Jun	1	8.41		88.11		13	
			2	7.12		86.96		15	
			3	8.95	8.16 ± 0.939	88.83	87.97 ± 0.943	13	13.67 ± 1.2
Р	Nanorods	9-Jul	1	8.50		88.24		10	
			2	7.53		86.73		12	
			3	7.45	7.83 ± 0.585	86.58	87.18 ± 0.918	12	10.97 ± 0.9
Р	Nanorods	10-Jul	1	8.87		88.73		10	
			2	9.28		89.22		11	
			3	8.35	8.83 ± 0.466	88.00	88.65 ± 0.614	10	10.20 ± 0.4
Q	Nanorods	12-Jul	1	8.58		88.35		10	
			2	6.85		85.41		13	
			3	6.63	7.35 ± 1.072	84.91	86.22 ± 1.859	13	11.97 ± 1.9
\mathbf{Q}	Nanorods	13-Jul	1	9.02		88.90		11	
			2	7.52	F 0.0 1 0.001	86.71		13	12.02 1.0.0
			3	7.34	7.96 ± 0.921	86.38	87.33 ± 1.370	12	12.03 ± 0.9
R	Au-doped	18-Jul	1	6.18		83.82		8	
			2	4.70		78.73		11	10 50 1 0 0
		10 7 1	3	4.21	5.03 ± 1.027	76.23	79.59 ± 3.868	12	10.59 ± 2.3
К	Au-doped	19-Jul	1	9.54		89.52		7	
			2	8.09		87.64	0710 0 000	9	0.00 / 1.0
C	A 1 1	00 1 1	<u>র</u>	6.40	8.01 ± 1.573	84.37	81.18 ± 2.006	9	8.08 ± 1.0
5	Au-doped	22-Jul	1	6.91		85.54		10	
			2	4.30	F OF 1 491	70.77	00.41 + 4.004	21	10.44 - 0.5
C	A J 1	04 7 1	3	0.03	5.95 ± 1.431	84.92	82.41 ± 4.894	19	18.44 ± 2.5
5	Au-doped	24-Jul	1	9.77		89.77		15	
			2	1.51	7 01 1 000	86.69	00.00 1 0.017	22	10.00 + 4.0
			3	0.45	$(.91 \pm 1.696)$	84.50	80.99 ± 2.647	20	18.99 ± 4.0

Sensor performance summary. Dates range from June 6th, 2007 to April 16th, 2008

Sensor	Description	Date	Run	$S = \frac{R_a}{R_g}$	Averages	$S = \frac{R_a - R_g}{R_a}$	Averages	time	Averages
TI	DJJanaj	4 4	1	15.07		(%)		(sec)	
U	Pa-aopea	4-Aug	1	10.97		94.00		0	
			23	8 10	11.38 ± 4.007	90.00 88.00	90.67 ± 3.055	0	8.80 ± 1.1
	Pd doped	6 4 11 0	1	33.00	11.50 ± 4.057	06.08	30.07 ± 3.035	2	0.03 ± 1.1
U	i a-aopea	0-Aug	2	12.84		90.98		8	
			3	9.05	18.33 ± 12.926	88.90	92.63 ± 4.076	10	6.48 ± 4.4
U	Pd-doped	7-A110	1	14 50	10.00 ± 12.020	93.00	52.05 ± 4.010	7	0.40 ± 4.4
Ũ	i u uopeu	1 1148	2	9.44		89.00		10	
			3	9.74	11.23 ± 2.839	89.74	90.58 ± 2.128	8	7.97 ± 1.5
V	Alfa.A SnO ₂	8-Aug	1	2.59		61.39		23	
	2	00	2	2.49		59.87		32	
			3	2.42	2.50 ± 0.086	58.65	59.97 ± 1.373	31	28.83 ± 4.9
V	Alfa.A SnO ₂	9-Aug	1	3.24		69.15		25	
	-	0	2	2.67		62.58		31	
			3	2.39	2.77 ± 0.432	58.21	63.31 ± 5.507	38	31.03 ± 6.3
W	Au-doped	17-Oct	1	1.3		20		22	
			2	1.2		13		40	
			3	1.1	1.17 ± 0.076	9	13.90 ± 5.444	79	47.16 ± 29.0
Y	Au-doped	23-Oct	1	4.8		79		15	
			2	4.5		77		23	
			3	4.3	4.50 ± 0.250	77	77.50 ± 1.323	25	20.82 ± 5.4
Y	Au-doped	25-Oct	1	4.5		78		27	
			2	4.6		78		25	
			3	4.6	4.56 ± 0.030	78	78.00 ± 0.000	28	26.77 ± 2.0
Z	SnO_2	15-Nov	1	1.7		40		21	
			2	1.6		38		43	
			3	1.6	1.63 ± 0.029	38	38.67 ± 1.155	43	35.78 ± 12.6
ZA	SnO_2	17-Nov	1	1.9		46		41	
			2	2.0		49		46	
		10.31	3	2.2	2.00 ± 0.167	54	49.67 ± 4.041	47	44.67 ± 3.2
ZB	SnO_2	19-Nov	1	2.1		52		23	
			2	2.1	0.14 + 0.050	53	F9 99 1 F90	35	91.00 + 6.0
70	C O	01 N.	う 1	2.2	2.14 ± 0.059	35	53.33 ± 1.528	30	31.00 ± 0.9
ZC	SnO_2 std	21-Nov	1	2.0		49		19	
			2	1.0	1.63 ± 0.302	34 20	37.33 ± 10.408	29 41	20.67 ± 11.0
70	SnOa+binder	25 Nov	1	4.1	1.03 ± 0.302	76	51.55 ± 10.408	31	29.07 ± 11.0
20	511O2+bilder	20-1100	2	4.1		76		36	
			3	3.9	4.05 ± 0.095	75	75.67 ± 0.577	33	3317 ± 28
ZF	SnOo std	20-Nov	1	1.55	1.00 ± 0.000	35	10.01 ± 0.011	26	00.11 ± 2.0
21	51102 500	20-1101	2	1.44		31		53	
			3	1.43	1.47 ± 0.07	30	32.00 ± 2.65	49	42.67 ± 14.6
ZF	SnO ₂ binder	30-Nov	1	3.07	1111 ± 0101	67	01100 1 1100	31	12101 ± 1110
	2002		2	2.5		60		48	
			3	2.5	2.69 ± 0.33	61	62.67 ± 3.79	46	41.67 ± 9.3
ZG	SnO ₂ -dispers	3-Dec	1						
	- 1		2	1.49		13		15	
			3	1.25	1.37 ± 0.17	20	16.50 ± 4.95	47	31.00 ± 22.6
ZH	SnO ₂ -dispers	4-Dec	1	3.38		69		23	
	-		2	3.67		72		29	
			3	4.09	3.71 ± 0.36	76	72.33 ± 3.51	27	26.33 ± 3.1
ZH	SnO_2 -disp-bind	4-Dec	1	1.64		38		27	
			2	1.35		26		70	
			3	1.32	1.44 ± 0.18	25	29.67 ± 7.23	49	48.67 ± 21.5

Continued: Sensor performance summary.

Sensor	Description	Date	Run	$S = \frac{R_a}{R_g}$	Averages	$S = \frac{R_a - R_g}{R_a}$	Averages	time	Averages
						(%)		(sec)	
ZI	SnO_2 std	5-Dec	1	1.66		40		40	
			2	1.44		30		30	
			3	1.44	1.51 ± 0.13	31	33.67 ± 5.51	31	33.67 ± 5.5
ZJ	SnO_2 -Au disp	8-Dec	1	1.084		8		72	
			2	1.083	1.00 0.00	7.7	700 1017	75	74.00 1.7
71/		0.D	3	1.084	1.08 ± 0.00	1.1	7.80 ± 0.17	75	74.00 ± 1.7
ΔK	SnO ₂ -Au disp	9-Dec	1	1.01		1		47	
			2	1.01	1.01 ± 0.00	0.9	0.03 ± 0.06	00	72.00 ± 22.3
71	SnO- dien	10 Dec	3 1	2.8	1.01 ± 0.00	73	0.93 ± 0.00	90	12.00 ± 22.3
	511O ₂ -disp	10-Dec	2	4 19		75		24 32	
			3	4.12	4.08 ± 0.27	77	75.33 ± 2.08	27	27.67 ± 4.0
ZQ	Au-SnO2 & SnO2	23-Jan	1	1.043	1.00 ± 0.21	4	10.00 ± 2.00	33	21.01 ± 1.0
	(1:10 disp.)	20 0 411	2	1.053		5		50	
			3		1.05 ± 0.01		4.50 ± 0.71		41.50 ± 12.0
ZS	Coll. Au:SnO ₂	4-Feb	1	2.4		58		15	
	(1:10 disp.)		2	1.86		46		21	
	2 Layer		3		2.13 ± 0.38		52.00 ± 8.49		18.00 ± 4.2
ZS	Coll. Au:SnO ₂	7-Feb	1	2.38		58		15	
	(1:10 disp.)		2	2.43		59		20	
	5 Layer		3		2.41 ± 0.04		58.50 ± 0.71		17.50 ± 3.5
\mathbf{ZR}	SnO_2 disp	28-Jan	1	3.06		67		24	
	1 Layer		2	2.69		63		32	
			3	2.76	2.84 ± 0.20	64	64.67 ± 2.08	28	28.00 ± 4.0
ZR	SnO_2 disp	30-Jan	1	4.31		77		22	
	2 Layer		2	3.86	101 1001	74		28	00.05 + 40
70	0.0.1	10 10 1	3	3.96	4.04 ± 0.24	75	75.33 ± 1.53	30	26.67 ± 4.2
ZR	SnO_2 disp	13-Feb	1	11.7		91		14	
	3 Layer		2	(.8 7		81	2200 ± 2.65	17	16.00 ± 1.7
70	SnO dian	19 Eab	3 1	۱ ۲	0.03 ± 2.31	00	88.00 ± 2.05	17	10.00 ± 1.7
Δh	4 Lever	10-reb	2	3.7		00 72		17 91	
	4 Layer		3	3.45	432 ± 120	72	75.33 ± 6.66	10	19.00 ± 2.0
ZB	SnO2 disp	20-Feb	1	6.4	4.02 ± 1.25	84	10.00 ± 0.00	15	15.00 ± 2.0
210	5 Laver	20100	2	3.3		70		26	
	0 110,01		-3	3.7	4.47 ± 1.69	73	75.67 ± 7.37	24	21.50 ± 5.4
ZT	SnO ₂ :sputAu	9-Feb	1	7.1		86		15	
	2 1		2	4.87		80		24	
			3	4.8	5.59 ± 1.31	79	81.67 ± 3.79	21	20.00 ± 4.6
ZT	SnO ₂ :sputAu	11-Feb	1	7.6		87		18	
			2	6		83		23	
			3	5.8	6.47 ± 0.99	83	84.33 ± 2.31	23	21.33 ± 2.9
ZU	SnO ₂ :sputAu	15-Feb	1	7.86		87		16	
			2	5.53		82		20	
			3	5.39	6.26 ± 1.39	82	83.67 ± 2.89	20	18.67 ± 2.3
ZV	SnO_2 disp	22-Feb	1	4.78		79		20	
	5 layer		2	3.13		68		29	
	5 hr sinter	04 7 1	3	3.26	3.72 ± 0.92	69	72.00 ± 6.08	29	26.00 ± 5.2
ZW	SnO_2 disp	26-Feb	1	3.88		74		17	
	3 Layers		2	3.14	9.95 1.0.40	68	CO C7 9 70	23	01.07 + 4.10
	3 nr sinter		ა	3.04	3.33 ± 0.46	07	09.07 ± 3.79	25	21.07 ± 4.10

Continued: Sensor performance summary.

Sensor	Description	Date	Run	$S = \frac{R_a}{R_a}$	Averages	$S = \frac{R_a - R_g}{R_a}$	Averages	time	Averages
				3		(%)		(sec)	
ZX	SnO_2 disp	29-Feb	1	3.5		71		21	
	1 Layer		2	3.1		67		27	
			3	3.1	3.23 ± 0.23	68	68.67 ± 2.08	30	26.00 ± 4.58
ZX	SnO_2 disp	25-Mar	1	6.25		84		19	
	2 Layer		2	5.03		80		23	
			3	4.93	5.40 ± 0.73	80	81.33 ± 2.31	25	22.33 ± 3.06
ZX	SnO_2 disp	29-Mar	1	6.2		84		16	
	3 Layer		2	4.3		77		18	
			3	4.1	4.87 ± 1.16	76	79.00 ± 4.36	20	18.00 ± 2.00
ZX	SnO_2 disp	2-Apr	1	5.68		82		18	
	4 Layer		2	3.64		73		26	
			3	3.4	4.24 ± 1.25	70	75.00 ± 6.24	25	23.00 ± 4.36
ZX	SnO_2 disp	7-Apr	1	6.34		84		13	
	5 Layer		2	3.95		75		19	
			3	3.5	4.60 ± 1.53	72	77.00 ± 6.24	22	18.00 ± 4.58
ZY	SnO2 disp	15-Apr	1	6.51		85		14.5	
	Au-Pd sputtered		2	4.72		79		20	
			3	4.03	5.09 ± 1.28	75	79.67 ± 5.03	20	18.17 ± 3.18
ZZ	SnO2:Al2O3 disp	16-Apr	1	2.13		53		26	
			2	1.77		43		31	
			3	1.6	1.83 ± 0.27	35	43.67 ± 9.02	35	30.67 ± 4.51

Continued: Sensor performance summary.

B.2 MATLAB code for sensitivity and time response data analysis

```
%
% MATLAB program: sensoranalysis.m
% Evaluates the sensitivity and time response of SnO2 gas sensor when
% exposed to reducing gas such as CO
%
% Smitesh Bakrania
% Created: May 9th, 2007
% Modified: June 8th, 2007
%
clear
% File Reading and Data Extracting
datafile = input('CSV file (exclude .csv): ', 's'); % prompts for the file
datafile = [datafile '.csv']; % attaches the extension
data = csvread(datafile); % reads in the file
hold on
\texttt{plot(data(:,4))} % plotting resistance as a function of matrix rows
grid minor
hold off
starttime = input('From data point:
                                      '); % insert sensing start point
                                     '); \% insert sensing end point
endtime = input('To data point:
data = [data(starttime:endtime,2) data(starttime:endtime,4)]; % truncating
% SENSITIVITY
dsize = length(data)-1;
% calculating derivative
\% stores all the derivatives in d1 with respect to time
for i=1:dsize
   d1(i+1,:) = (data(i,2)-data(i+1,2))/(data(i,1)-data(i+1,1));
end
% finds the minimum in the derivative (CO turned ON)
```

```
% start of the response
[c,ind1] = min(d1); % finds the min in derivative
ind1 = ind1-15; % data point 15 points before the min in derivative for S dropstart = [data(ind1,1) data(ind1,2)]; % datapoint where the res drop begins
data = data(ind1:end.:):
d1 = d1(ind1:end);
\% end of response
[c,ind2] = min(data(:,2));
dropend = [data(ind2,1) data(ind2,2)];
\% calculating sensitivity
S = dropstart(2)/dropend(2);
S1 = (dropstart(2)-dropend(2))/dropstart(2);
% TIME RESPONSE
trespdata1 = data(15:ind2,:);
% relative scaling (time starts from zero and resistance ends at zero)
trespdata(:,1) = trespdata1(:,1)-trespdata1(1,1);
trespdata(:,2) = trespdata1(:,2)-trespdata1(end,2);
\% calculating natural log of the resistance signal
lny = log(trespdata(:,2));
\% cutoff index value for linear fitting through plotting tool
startoff = 1; % change when start point too early
cutoff = 10; % change when end point is too late, normally 17
% linear fit
p = polyfit(trespdata(startoff:cutoff,1), lny(startoff:cutoff), 1);
tau = -(1/p(1))*60;
\% generates data values for the fit line
trespdata2 = [trespdata(startoff:cutoff,1), (p(1)*trespdata(startoff:cutoff,1))+p(2)];
% display results
display(', ')
display('
                 Sensitivity')
disp(S)
display('Alt.Sensitivity')
disp(S1)
display('
                Time Response [sec]')
disp(tau)
% Plotting Results
subplot(2,1,1);
hold on
plotyy(data(:,1),data(:,2),data(:,1),d1)
plot(trespdatal(startoff,1), trespdatal(startoff,2), ...
'o', 'color', 'red', 'linewidth', 1.2)
bo, 'color', 'nea', 'linewidth', 1.2/
plot(trespdata1(cutoff,1), trespdata1(cutoff,2), ...
'o', 'color', 'magenta', 'linewidth', 1.2)
plot(dropstart(1), dropstart(2), 'o', 'color', 'green', 'linewidth', 1.4)
plot(dropend(1), dropend(2), 'o', 'color', 'green', 'linewidth', 1.4)
xlabel('time [min]'), ylabel('resistance [kOhms]')
legend('sensor response', 'time response data beginning', ...
'time response data end', 'sensitivity calcu. points')
hold off
subplot(2,1,2);
hold on
plot(trespdata(startoff:cutoff,1), lny(startoff:cutoff), 'linewidth', 1.1)
plot(trespdata2(:,1), trespdata2(:,2), 'color', 'r')
xlabel('relative time [mins]'), ylabel('natural log of resistance')
legend('linearized signal', 'linear fit')
```

```
hold off
```

Material Analysis

C.1 XRD Analysis procedure

XRD data acquisition and analysis for tin dioxide powder samples

Smitesh Bakrania, July 26, 2005

Software: DMSNT ThermoARL

Sample preparation

Lay the sample using a blade in a 1cm square pattern, thick enough to be opaque. User Iso-propyl alcohol for adhesion and uniformity.

Data Acquisition

User the following parameters for the full scan and the 3 peak (high resolution) scan:

scan type	Scan	step	range (deg)	scan rate (deg/min)	time (min)
Full Scan	continuous	0.02	15-90	4.0	18
3peak Scan	continuous	0.02	23-41	0.5	36

For superimposing tin dioxide index pattern use 41-1445 and for gold 4-734

Data Analysis

- Once the data is acquired, use the Background Subtraction option under Analysis in the menu bar.
- Use the default options with Box Car Curve Fit with default value of 1.5 degrees for background subtraction.
- Once the background is subtracted the Peak Finder option under Analysis will be available. User the Peak Finder default options: Peak Finder using Digital Filtering of ESD 4 and Ripple Multiplier of 1.5. Make sure only the peaks you are interested in are captured. If not then play with the numbers to achieve this as best possible.
- Once this is completed, use the Profile Fit option under Analysis and see all the peaks are listed if not you can remove the one's that are not needed. On the right hand side of the panel there are options for the fit. Use the Pearson 7 fit since it best describes the peak and click Calculate to proceed. See the curve fitting results on your plot and note the error shown on the calculation window.
- Note down the peak, the amplitude (CPS), Position (degrees) and the FWHM (degrees) for later calculation in the Scherrer formula.

C.2 MATLAB code for image analysis

```
% Title:
           diameter.m
\% Description: for calculating particle diameters for vertically
%
              centered circles generated using corelDRAW.
% Date:
           March 19th, 2005
% Edited: August 18th, 2005
% Author: Smitesh Bakrania
%
clear;
% ACQUIRES INPUTS REGARDING THE FILE AND SCALE
imfile=input('The bitmap file name: ','s'); % accesses file name
imfile=[imfile,'.bmp'];
                                         \% adds the bmp file extension
                                       % adds the pmp file of officer
scale=input('Scale bar dimension: ');
check=input('two sets (y/n)?: ','s');
                                             % second set analysis
% READING THE FILE AND ACQUIRES SCALE, CENTER COLUMN AND REVERSES BINARY
a=imread(imfile);
                                         % reads binary bitmap image
length=size(a);
                                         % gives dimensions (H x L) of 'a'
height=length(1);
                                         % image height in pixels
length=length(2);
                                         % image length in pixels
scale=scale/length;
                                         % microns (or nm) per pixel
mid_colm=round(length/2);
                                         % middle column with diameters
a=a(:,mid_colm);
                                         \% extracts the middle column
% a=im2double(a);
                                         % converts uint8 to a number
a=(a-1).^2;
                                         % inverses the binary; 0's & 1's
% COUNTING THE DIAMETERS IN PIXELS
b=0;
                                         % initializes diameter matrix
j=1;
                                         % index for 'b'(particle index)
for i=1:height
   if a(i)==1
                                         % checks if the number is 1
       b(j)=b(j)+1;
                                         % add to diameter count
       if i~=height
                                         % checks for matrix end
           if a(i+1)==0
                                         % if next number is 0
                                         % next particle index
               j=j+1;
               b(j)=0;
                                         % initiates next index
           end
       end
   end
end
% SCALES THE DIAMETERS
b=b.*scale:
                                         % scales pixel diameters
\% removes the first diameter as it represents the thickness of scale bar
b(1)=[]:
%-----
if check=='v'
% ACQUIRES INPUTS REGARDING THE FILE AND SCALE
imfile=input('The bitmap file name: ','s'); % accesses file name
imfile=[imfile,'.bmp'];
                                         % adds the bmp file extension
scale=input('Scale bar dimension: ');
                                         % access the scale bar dimension
% READING THE FILE AND ACQUIRES SCALE, CENTER COLUMN AND REVERSES BINARY
a=imread(imfile):
                                         % reads binary bitmap image
length=size(a);
                                         \% gives dimensions (H x L) of 'a'
height=length(1);
                                         % image height in pixels
length=length(2);
                                         % image length in pixels
scale=scale/length;
                                         % microns (or nm) per pixel
mid_colm=round(length/2);
                                         % middle column with diameters
a=a(:,mid_colm);
                                         % extracts the middle column
% a=im2double(a);
                                         % converts uint8 to a number
a=(a-1).^2;
                                         % inverses the binary; 0's & 1's
% COUNTING THE DIAMETERS IN PIXELS
```

```
b1=0;
```

% initializes diameter matrix

```
% index for 'b'(particle index)
j=1;
for i=1:height
    if a(i)==1
                                                % checks if the number is 1
        b1(j)=b1(j)+1;
                                                  % add to diameter count
        if i~=height
                                                % checks for matrix end
             if a(i+1)==0
                                                \% if next number is 0
                                                % next particle index
                 j=j+1;
                 b1(j)=0;
                                                 % initiates next index
             end
        end
    end
end
% SCALES THE DIAMETERS
                                                  % scales pixel diameters
b1=b1.*scale;
\% removes the first diameter as it represents the thickness of scale bar
b1(1)=[];
b=[b b1];
end
%_____
% PLOTTING
%hist(b,15);
                                                 % histogram with 15 bins
% mn=mean(b); sd=std(b,1);
                                                  % mean & standard deviation
%geometric mean
[freq mid]=hist(b,15);
                                                \% provides the frequency and midpoints
lndp=log(mid);
                                                % natural log of midpoints
fract=freq/sum(freq);
                                                % fractional population
fracts=fract/(mid(3)-mid(2));
                                                % fractional population per nm
                                                %(divided by the interval, assumed constant)
mn=exp(sum(lndp(:).*fract(:)));
                                                % geometric mean
mn=roundn(mn,-1);
                                                % rounding-off to 10^-1=0.1
%geometric standard deviation
diff=(lndp-log(mn)).^2;
                                                % nat. log difference
sd=exp((sum(freq(:).*diff(:))/(sum(freq)-1))^0.5); % standard dev.
sd=roundn(sd,-1);
                                               % rounding-off to 10^-1=0.1
%lognormal fit
maxd=max(b);
dp=0.1:0.1:maxd;
                         %35;
dpn=size(dp);
dpn=dpn(2);
for i=1:dpn;
    fit=exp(-(log(dp(i))-log(mn))^2/(2*(log(sd))^2))/(sqrt(2*pi)*dp(i)*log(sd));
    curve(i)=fit;
end
bar(mid, fracts);
%axis([0 35 0 0.3]);
                                               % to string for annotation
mns=num2str(mn); sds=num2str(sd);
gtext=['mean ', mns, '; stand. dev ', sds]; % text for annotation
annotation('textbox',[0.58 0.8 0.09 0.1], ...
  'string', gtext, 'LineStyle', 'none', ...
'FontName', 'Times New Roman'); % generates textbox
xlabel('d_p [nm]', 'FontName', 'Times New Roman');
ylabel('Fractional population [nm^-^1]', 'FontName', 'Times New Roman');
                                                                             % labeling axis
                                                                                             % labeling axis
%title('Particle Distribution plot');
                                                % plot title
h = findobj(gca,'Type','patch');
set(h,'FaceColor','r','EdgeColor','w');
                                                % changing color of bars
                                                % changing color of bars
hold
plot(dp, curve, 'LineWidth', 2);
size=size(b);
size=size(2);
sizes=num2str(size);
disp('particles counted:');
disp(sizes);
disp('done');
                                                % displays done when done!
```

C.3 As-received gold acetate BET analysis

Surface Area

Single point surface area at P/Po = 0.306968839: 3.8090 m²/g

C.4 EMPA results on SnO_2 dispersion films

				Weight %					Atomic %		
Point#	Sample film	Sn	Au	Õ	Pd	Total	Sn	Au	0	Pd	Total
1	SnO2	79.487	-0.112	10.715		90.202	50.021	-0.043	50.021		100.043
2	SnO2	79.010	-0.070	10.651		89.661	50.013	-0.027	50.013		100.027
3	SnO2	77.340	0.239	10.426		88.005	49.953	0.093	49.953		100.000
4	SnO2	78.280	0.071	10.552		88.903	49.986	0.027	49.986		100.000
5	SnO2	78.243	0.000	10.548		88.791	50.000	0.000	50.000		100.000
6	SnO2	79.043	0.183	10.655		89.882	49.965	0.070	49.965		100.000
7	SnO2	78.719	-0.042	10.612		89.331	50.008	-0.016	50.008		100.016
8	SnO2	78.623	0.070	10.599		89.292	49.987	0.027	49.987		100.000
9	SnO2	78.725	-0.028	10.612		89.338	50.005	-0.011	50.005		100.011
10	SnO2	78.174	0.140	10.538		88.852	49.973	0.054	49.973		100.000
11	SnO2 with Au	67.682	3.799	9.124		80.604	49.168	1.663	49.168		100.000
12	SnO2 with Au	62.941	3.831	8.485		75.256	49.100	1.801	49.100		100.000
13	SnO2 with Au	62.253	2.585	8.392		73.230	49.382	1.235	49.382		100.000
14	SnO2 with Au	64.291	3.914	8.667		76.871	49.099	1.801	49.099		100.000
15	SnO2 with Au	65.003	2.822	8.763		76.587	49.354	1.291	49.354		100.000
16	SnO2 with Au	67.755	3.533	9.134		80.422	49.227	1.547	49.227		100.000
17	SnO2 with Au	70.478	3.408	9.501		83.387	49.282	1.436	49.282		100.000
18	SnO2 with Au	67.166	4.308	9.054		80.528	49.052	1.896	49.052		100.000
19	SnO2 with Au	68.257	3.226	9.201		80.684	49.298	1.404	49.298		100.000
20	SnO2 with Au	65.955	3.336	8.891		78.182	49.250	1.501	49.250		100.000
21	SnO2 with Au rim	75.247	1.735	10.144		87.125	49.655	0.690	49.655		100.000
22	SnO2 with Au rim	75.177	1.721	10.134		87.032	49.658	0.685	49.658		100.000
23	SnO2 with Au rim	76.586	1.739	10.324		88.649	49.660	0.679	49.660		100.000
24	SnO2 with Au rim	76.166	1.567	10.268		88.001	49.692	0.616	49.692		100.000
25	SnO2 with Au rim	75.547	2.158	10.184		87.890	49.573	0.853	49.573		100.000
26	SnO2 with Au rim	75.790	1.729	10.217		87.736	49.659	0.683	49.659		100.000
27	SnO2 with Au rim	76.361	1.934	10.294		88.589	49.621	0.757	49.621		100.000
28	SnO2 with Au rim	76.095	2.242	10.258		88.595	49.560	0.880	49.560		100.000
29	SnO2 with Au rim	75.951	1.855	10.238		88.044	49.635	0.731	49.635		100.000
30	SnO2 with Au rim	75.837	1.870	10.223		87.930	49.631	0.737	49.631		100.000
31	SnO2 with Pd	69.406		10.497	7.586	87.489	44.566		50.000	5.434	100.000
32	SnO2 with Pd	69.603		10.432	6.975	87.009	44.973		50.000	5.027	100.000
33	SnO2 with Pd	67.442		10.260	7.772	85.475	44.304		50.000	5.696	100.000
34	SnO2 with Pd	70.012		10.495	7.027	87.535	44.965		50.000	5.035	100.000
35	SnO2 with Pd	65.879		10.238	9.023	85.139	43.373		50.000	6.627	100.000
36	SnO2 with Pd	62.230		9.711	8.793	80.734	43.192		50.000	6.808	100.000
37	SnO2 with Pd	66.413		10.330	9.161	85.904	43.332		50.000	6.668	100.000
38	SnO2 with Pd	65.583		10.153	8.728	84.464	43.537		50.000	6.463	100.000
39	SnO2 with Pd	66.206		10.305	9.176	85.687	43.305		50.000	6.695	100.000
40	SnO2 with Pd	64.244		10.367	11.347	85.958	41.770		50.000	8.230	100.000
metal	Weight %	Atomic %									

Summary of Au-doped and Pd-doped dispersion films analyzed with electron microprobe at EMAL

metal	Weight %	Atomic %
Au	3.5	1.6
Pd	8.6	6.3

C.5 TEM images

Tertiary system of SnO_2 doped with gold and aluminum

e5-11.tif

e5-12.tif

e5-13.tif

e5-14.tif

e5-15.tif

e5-16.tif

e5-17.tif

e5-18.tif

e5-19.tif

e5-2.tif

Tertiary system of SnO_2 doped with gold and aluminum

Tertiary system of SnO_2 doped with gold and aluminum

e5-20.tif

e5-21.tif

e5-22.tif

e5-23.tif

e5-24.tif

e5-25.tif

Tertiary system of SnO_2 doped with gold and aluminum

e5-28.tif

e5-29.tif

e5-3.tif

e5-30.tif

e5-31.tif

e5-32.tif

e5-33.tif

e5-34.tif

Tertiary system of SnO_2 doped with gold and aluminum

153

e5-36.tif

esm est

Tertiary system of SnO_2 doped with gold and aluminum

200 mm

e5-39.tif

e5-4.tif

e5-40.tif

e5-5.tif

Tertiary system of SnO_2 doped with gold and aluminum

e5-8.tif

e5-9.tif

 SnO_2 doped with nickel using nickel acetate

050520-a8-03-ti dp380nm.tif

050520-a8-04.tif

050520-a8-05.tif

050520-a8-06.tif

 \mathbf{SnO}_2 doped with nickel using nickel acetate

050520-a8-07.tif

050520-a8-08.tif

050520-a8-09.tif

 SnO_2 doped with nickel using nickel acetate

a9_1.tif

a9_2.tif

a9_3.tif

a9_4.tif

a9_5.tif

a9_6.tif

 \mathbf{SnO}_2 doped with nickel using nickel acetate

a9_7.tif

a9_8.tif

Gold-doped SnO_2 before re-fire

050520-a3-01.tif

050520-a3-02.tif

050520-a3-03.tif

050520-a3-04.tif

050520-a3-05.tif

050520-a3-06.tif

Gold-doped SnO_2 before re-fire

050520-a3-09.tif

050520-a3-10.tif

050520-a3-11.tif

Gold-doped SnO_2 before re-fire

b5_1_1.tif

b5_2_1.tif

Gold-doped SnO_2 re-introduced as reactants

050520-a5-01.tif

050520-a5-02.tif

050520-a5-03.tif

050520-a5-04.tif

050520-a5-05.tif

050520-a5-06.tif

050520-a5-07.tif

050520-a5-08.tif

050520-a5-09.tif

050520-a5-10.tif

050520-a5-11.tif

050520-a5-12.tif

050520-a5-13.tif

050520-a5-14.tif

050520-a6-05.tif

050520-a6-06.tif

050520-a6-09.tif

050520-a6-10.tif

050520-b7-1.tif

050520-b7-2.tif

050520-b7-3.tif

SnO_2 height study - sampled at 0.5 cm

200 pm

050520-b10-03.tif

050520-b10-04.tif

050520-b10-05.tif

050520-b10-06.tif

SnO_2 height study - sampled at 0.5 cm

050520-b10-07.tif

050520-b10-08.tif

050520-b10-09.tif

c2.7.1.11 2cm 14:56 06/22/05 TEM Mode: Imaging 20 nm HV-300kV Direct Mag: 100000x

c2_7_1.tif

c2_8_1.tif

15:51 06/22/05 TEM Mode: Imaging

5cm 15:53 06/22/05 TEM Mode: Imaging

5cm 15:57 06/22/05 TEM Modo: Imaging

5cm 16:02 06/22/05 TEM Mode: Imaging

100 mm HV=300kV Direct Mag: 40000x

c3_5_1.tif

c3_4_2.tif

5cm 16:04 06/22/05 TEM Mode: Imaging

20 nm HV=300kV Direct Mag: 100000x

c3_5_2.tif

${\rm SnO}_2$ height study - sampled at 5.0 cm

c3_5_3.tif

${\rm SnO}_2$ height study - sampled at 5.0 cm

050520-c4-a-01.tif

050520-c4-a-02.tif

050520-c4-a-03.tif

050520-c4-a-04.tif

050520-c4-a-05.tif

050520-c4-a-06.tif

050520-c4-a-07.tif

050520-c4-a-08.tif

050520-c4-a-09.tif

050520-c4-a-10.tif

050520-c4-a-11.tif

050520-c4-a-12.tif

050520-c4-a-13.tif

050520-c4-a-14.tif

050520-c4-b-01.tif

050520-c4-b-02.tif

050520-c4-b-03.tif

050520-c4-b-04.tif

050520-c4-b-05.tif

050520-c4-b-06.tif

050520-c4-b-07.tif

050520-c4-b-08.tif

050520-c4-b-09.tif

050520-c4-b-10.tif

050520-c4-b-11.tif

050520-c4-b-12.tif

050520-c5-01.tif

050520-c5-02.tif

050520-c5-03.tif

050520-c5-04.tif

050520-c5-05.tif

050520-c5-06.tif

050520-c5-07.tif

050520-c5-08.tif

050520-c5-09.tif

050520-c5-10.tif

 ${\bf SnO}_2$ height study - sampled at 18.5 cm

050520-c7-01.tif

050520-c7-02.tif

050520-c7-03.tif

050520-c7-04.tif

050520-c7-05.tif

050520-c7-06.tif

 ${\bf SnO}_2$ height study - sampled at 18.5 cm

050520-c7-07.tif

050520-c7-08.tif

050520-c7-09.tif

050520-c7-10.tif

050520-c7-11.tif

050520-c7-12.tif

 ${\bf SnO}_2$ height study - sampled at 18.5 cm

050520-c7-13.tif

Gold-doped SnO_2 - preheated gold acetate with partial decomposition

Gold-doped SnO_2 - preheated gold acetate with partial decomposition

Gold-doped SnO_2 - preheated gold acetate with partial decomposition

d10_1.tif

d10_2.tif

d10_3.tif

d10_4.tif

d10_5.tif

d7_5.tif

Two metal acetate precursors - gold acetate and a luminum acetate mixed $% \mathcal{T}_{\mathcal{T}}$

d6_3.tif

d6_5.tif

194

050722_a4_01.tif

050722_a4_02 eds.bmp

050722_a4_02.tif

050722_a4_03.tif

050722_a4_04 eds.bmp

050722_a4_04 next eds.bmp

Aluminum-doped \mathbf{SnO}_2 - identification with XEDS

 OFFICE
 OFFICE

050722_a4_05.tif

050722_a4_06 eds.bmp

050722_a4_06.tif

050722_a4_07 eds.bmp

Aluminum-doped \mathbf{SnO}_2 - identification with XEDS

Aluminum-doped SnO_2 - identification with XEDS

050722_a4_07.tif

undoped SnO_2

030624_b2_01.tif

030624_b2_02.tif

030624_b2_03.tif

030624_b2_04.tif

030624_b2_05.tif

030624_b2_06.tif

undoped SnO_2

030624_b2_07.tif

030624_b2_08.tif

030624_b2_09.tif

030624_b2_10.tif

030624_b2_11.tif

030624_b2_12.tif

undoped SnO_2 with chimney

050722_a3_05.tif

050722_a3_06.tif
undoped SnO_2 with chimney

050722_a3_11.tif

050722_a3_12.tif

undoped SnO_2 with chimney

050722_a3_13.tif

100 nm

d3_03.tif

d3_04.tif

d3_05.tif

d3_06.tif

undoped SnO_2 with tert-n-butyl tin precursor (heated line)

undoped SnO_2 with tert-n-butyl tin precursor (heated line)

d3_07.tif

d3_08.tif

undoped SnO_2 with tert-n-butyl tin precursor (heated line)

d3_3.tif

030624_b1_1.tif

030624_b1_10.tif

030624_b1_11.tif

030624_b1_12.tif

030624_b1_13.tif

030624_b1_2.tif

undoped SnO_2 older grids from Tiffany Miller's experiments

030624_b1_3.tif

030624_b1_4.tif

030624_b1_5.tif

030624_b1_9.tif

206

undoped SnO_2 older grids from Tiffany Miller's experiments

050722_a3 55deg.tif

e3_01.tif

e3_02.tif

e3_03.tif

e3_04.tif

e3_05.tif

e3_06.tif

e3_07.tif

e3_08.tif

e3_09.tif

e3_10.tif

e3_11.tif

e3_12.tif

e3_13.tif

e3_14.tif

e3_15.tif

e3_16.tif

e3_17.tif

e3_18.tif

e3_19.tif

e3_20.tif

e3_21.tif

e3_23.tif

a3_an20.tif

a3_an30.tif

a3_an40.tif

a3_an50.tif

a3_an55.tif

a3_ap10.tif

a3_ap20.tif

a3_ap30.tif

a3_ap40.tif

a3_ap50.tif

a3_bn10.tif

a3_bn20.tif

a3_bp10.tif

a3_bp20.tif

a3_an10.tif

a3_an20.tif

a3_an50.tif

a3_an55.tif

a3_ap0.tif

a3_ap10.tif

a3_ap20.tif

a3_ap30.tif

a3_ap40.tif

a3_ap50.tif

050722a3_006.tif

050722a3_005.tif

050722a3_011.tif

050722a3_012.tif

050722a3_017.tif

050722a3_018.tif

050722a3_023.tif

050722a3_024.tif

050722a3_029.tif

050722a3_030.tif

050722a3_035.tif

050722a3_036.tif

050722a3_041.tif

050722a3_042.tif

050722a3_002.tif

050722a3_003.tif

050722a3_004.tif

050722a3_005.tif

050722a3_010.tif

050722a3_011.tif

050722a3_014.tif

050722a3_015.tif

050722a3_016.tif

050722a3_017.tif

050722a3_020.tif

050722a3_021.tif

050722a3_022.tif

050722a3_023.tif

050722a3_028.tif

050722a3_029.tif

050722a3_034.tif

050722a3_035.tif

undoped SnO_2 for Yen-Hung's rotational analysis (Prof. Sastry's student)

050722a3_040.tif

050722a3_041.tif

050722a3_044.tif

050722a3_045.tif

MACS undoped SnO_2

050520-c8-01.tif

050520-c8-02.tif

050520-c8-03.tif

050520-c8-04.tif

050520-c8-05.tif

050520-c8-06.tif

MACS undoped SnO_2

050520-c8-07.tif

050520-c8-08.tif

050520-c8-09.tif

050520-c8-10.tif

050520-c8-11.tif

050520-c8-12.tif

MACS undoped SnO_2

050520-c8-13.tif

050520-c8-14.tif

050520-c8-15.tif

 O
 S0 nm

c9_11.tif

c9_12.tif

c9_13.tif

c9_2.tif

c9_4.tif

c9_5.tif

c9_5_1.tif

c9_6.tif

c9_7.tif

c9_8.tif

c9_9.tif

c10_01.tif

c10_02.tif

c10_03.tif

c10_04.tif

c10_05.tif

c10_06.tif

c10_07.tif

c10_08.tif

050722_a6_05.tif

050722_a6_06.tif

MACS undoped SnO_2 height study - sampled at 1 cm

050722_a6_07.tif

050722_a6_08.tif

050722_a6_09.tif

050722_a6_10.tif

050722_a6_11.tif

050722_a6_12.tif

MACS undoped SnO_2 height study - sampled at 2 cm

050722_a7_01.tif

050722_a7_02.tif

050722_a7_03.tif

050722_a7_04.tif

050722_a7_05.tif

050722_a7_06.tif

MACS undoped SnO_2 height study - sampled at 2 cm

050722_a7_07.tif

050722_a7_08.tif

050722_a7_09.tif

050722_a7_10.tif

MACS undoped SnO_2 height study - sampled at 5 cm

050722_a8_01.tif

050722_a8_02.tif

050722_a8_03.tif

050722_a8_04.tif

050722_a8_05.tif

050722_a8_06.tif

MACS undoped SnO_2 height study - sampled at 5 cm

050722_a8_07.tif

MACS undoped SnO_2 height study - sampled at 5 cm

050722_b5_05.tif

050722_b5_06.tif

MACS undoped SnO_2 height study - sampled at 9 cm

050722_b6_01.tif

050722_b6_02.tif

050722_b6_03.tif

050722_b6_04.tif

050722_b6_05.tif

050722_b6_06.tif

MACS undoped SnO_2 height study - sampled at 9 cm

MACS undoped SnO_2 height study - sampled at 9 cm

050722_b6_07.tif

MACS undoped SnO_2 height study - sampled at 13 cm

050722_a10_05.tif

050722_a10_06.tif

MACS undoped SnO_2 height study - sampled at 13 cm

050722_a10_07.tif

050722_a10_08.tif

050722_b3_01.tif

050722_b3_02.tif

050722_b3_03.tif

050722_b3_04.tif

MACS undoped SnO_2 height study - sampled at 9 cm

MACS undoped SnO_2 height study - sampled at 9 cm

050722_b7_07.tif

050722_b7_08.tif

050722_b7_01.tif

050722_b7_02.tif

050722_b7_03.tif

050722_b7_04.tif

050722_b7_05.tif

050722_b7_06.tif

MACS undoped SnO_2 height study - sampled at 9 cm

050722_b4_01.tif

050722_b4_02.tif

050722_b4_03.tif

050722_b4_04.tif

050722_b4_05.tif

050722_b4_06.tif

MACS undoped SnO_2 height study - sampled at 9 cm

050722_b4_07.tif

050722_b4_08.tif

MACS undoped \mathbf{SnO}_2 - high resolution TEM

050520_c5_03.tif

050520.c5.05.tif 13.0cm gold and sno2 Print Mag: 336000x @ 51 mm 10:56 0#/19/05

.0cm gold and sno2 int Mag: 1790000x @ 51 mm :53 0#/19/05

050520.c5.01.t1f 13.0cm gold and sno2 Print Mag: 1790000x @ 51 mm 10:41 0#/19/05

20 mm HV=300kV Direct Mag: 15

050520_c5_05.tif

050520_c5_04.tif

050520.c5.06.tif 13.0cm gold and smo2 Print Mag: 134000x 8 51 mm 11:02 08/19/05

050520_c5_06.tif

MACS undoped \mbox{SnO}_2 - high resolution TEM

050520_c8_05.tif

050520_c8_06.tif

MACS undoped SnO_2 - high resolution TEM

050520_c8_07.tif

MACS undoped \mathbf{SnO}_2 - high resolution TEM

A10_03.tif

SAED-01.tif

MACS gold-doped SnO_2

mothane with assac Print Mag: 55900x 0 51 mm 11:23 10/24/05

050520_e10_01.tif

mothane with auac Print Mag: 55300x 0 51 mm 11:25 10/24/05 100 nm HV-300kV Direct Mag: 25000x

050520_e10_02.tif

mothano with auac Print Mag: 112000x 0 51 mm 11:34 10/24/05

20 nm HV=300kV Direct Mag: 50000

050520_e10_05.tif

050520_e10_04.tif

050520_e10_06.tif

MACS gold-doped SnO_2

050520.010.07.tif mothano with asac Print Mag: 179000x 0 51 mm 11:43 10/24/05

050520_e10_07.tif

050520_e10_08.tif

050520_e10_09.tif

20 nm HV=300kV Direct Mag: 50000x 050520.010.10.111 mothane with auac Print Mag: 112000x 0 51 mm 11:56 10/24/05

050520_e10_10.tif

050520.010.12.tif mothano with auac Print Mag: 112000x 8 51 mm 12:00 10/24/05

050520_e10_12.tif

Print Mag: 112000x 0 51 mm 11:57 10/24/05

20 mm HV=300kV Direct Mag: 50000x

050520_e10_11.tif

100 mm HV-300kV Diroct Mag: 40000x

MACS aluminum-doped SnO_2

mothane with alac Print Mag: 89500x 0 51 mm 12:21 10/24/05

050722_a2_01.tif

050722.a1.03.tif mothane with alac Print Mag: 89500x 0 51 mm 12:25 10/24/05

mothano with alac Print Mag: 134000x 0 51 mm 12:34 10/24/05

20 mm HV=300kV Direct Mag: 60000x

050722_a2_05.tif

050722_a2_04.tif

050722.a1.06.t1f mothane with alac Print Mag: 224000x 8 51 mm 12:41 10/24/05

050722_a2_06.tif

MACS aluminum-doped SnO_2

050722_a2_07.tif

MACS platinum-doped SnO_2

959520,05,05,111 mothano with platinum 37cm Print Mag: 89500x 0 51mm 9:38 08/19/05

100 mm HV=300kV Direct Mag:

aa,

050520_e5_05.tif

050520_e5_06.tif

MACS aluminum-doped SnO_2

050520_e5_09.tif

060929_b2_03.tif

060929_b2_04.tif

060929_b2_05.tif

060929_b2_06.tif

Gold acetate decomposition study on hot-plate

Gold acetate decomposition study on hot-plate

060929_b2_07.tif

060929_b2_08.tif

060929_b2_09.tif

060929_b2_10.tif

060929_b2_11.tif

060929_b2_12.tif

Gold acetate decomposition study on hot-plate

060929_b1_04.tif

060929_b1_05.tif

Gold acetate decomposition study on hot-plate

 Image: Market state
 Image: Market state

 100 mm
 100 mm

060929_b2_01.tif

060929_b2_02.tif
Gold acetate decomposition study on hot-plate

060929_b2_03.tif

060929_b2_04.tif

060929_b2_05.tif

060929_b2_06.tif

060929_b2_07.tif

060929_b2_08.tif

Gold acetate decomposition study on hot-plate

060929_b2_11.tif

060929_b2_12.tif

060929_b2_13.tif

060929_b2_14.tif

100 m 100 m 100 m

060929_b2_17.tif

060929_b2_18.tif

060929_b2_19.tif

060929_b2_20.tif

100 mm

060929_b2_21.tif

060929_b2_22.tif

060929_b2_23.tif

060929_b2_24.tif

060929_b2_25.tif

Gold acetate decomposition study on hot-plate

10092_12_27.11 0092_12_27.11 0092_12_27.11 0092_12_27.11 0092_12_27.11 0092_12_27.11

Gold acetate decomposition study on hot-plate

50 mm

060929_b2_29.tif

060929_b2_30.tif

060929_b2_31.tif

060929_b2_32.tif

- 50 Am 50 nm 060929_b2_33.tif 060929_b2_34.tif

Gold acetate decomposition study on hot-plate

060929_b2_35.tif

060929_b2_36.tif

060929_b2_37.tif

060929_b2_38.tif

060929_b2_39.tif

060929_b2_40.tif

060929_b2_41.tif

060929_b2_42.tif

060929_b2_43.tif

060929_b2_44.tif

Gold acetate decomposition study on hot-plate

Gold acetate decomposition study on hot-plate

060929_b2_49.tif

060929_b2_50.tif

200 mg 200 mg 6022, 48, 0 M 6022, 48, 0 M

060929_a8_03.tif

060929_a8_04.tif

200 nm

m

060929_a8_05.tif

060929_a8_06.tif

Too nom

060929_a8_09.tif

060929_a8_10.tif

060929_a8_11.tif

060929_a8_12.tif

Gold acetate decomposition study - sampled 1 mm away

060929_a9_01.tif

060929_a9_02.tif

060929_a9_03.tif

060929_a9_04.tif

060929_a9_05.tif

060929_a9_06.tif

Gold acetate decomposition study - sampled 1 mm away

 00029_a9_01
 00029_a9_01

060929_a9_09.tif

060929_a9_10.tif

060929_a9_11.tif

060929_a9_12.tif

Gold acetate decomposition study - sampled 2 mm away

060929_d10_01.tif

060929_d10_02.tif

060929_d10_03.tif

060929_d10_04.tif

060929_d10_05.tif

060929_d10_06.tif

Gold acetate decomposition study - sampled 2 mm away

060929_d10_07.tif

060929_d10_08.tif

060929_d10_09.tif

060929_d10_10.tif

060929_d10_12.tif

060929_d10_13.tif

Gold acetate decomposition study - sampled 2 mm away

060929_d10_14.tif

060929_d10_15.tif

060929_d10_16.tif

060929_d10_17.tif

060929_d9_1.tif

060929_d9_2.tif

060929_d9_3.tif

060929_d9_4.tif

060929_d9_5.tif

060929_d9_6.tif

060929_d9_7.tif

060929_d9_8.tif

Gold acetate decomposition study - sampled 2 mm away

6.0

Gold acetate decomposition study - sampled 4 mm away $% \left({{{\rm{A}}_{{\rm{B}}}} \right)$

060929_b10_01.tif

060929_b10_02.tif

060929_b10_03.tif

060929_b7_01.tif

060929_b7_02.tif

060929_b7_03.tif

Gold acetate decomposition study - sampled 4 mm away $% \left({{{\rm{A}}_{{\rm{B}}}} \right)$

060929_b7_04.tif

060929_b7_05.tif

060929_c4_01.tif

060929_c4_02.tif

060929_c4_03.tif

060929_c4_04.tif

060929_d10_01.tif

060929_d10_02.tif

060929_d10_03.tif

060929_d10_04.tif

060929_d10_05.tif

060929_d10_06.tif

060929_d10_07.tif

060929_d10_08.tif

060929_d10_09.tif

060929_d10_10.tif

060929_d10_11.tif

060929_d10_12.tif

060929_d10_13.tif

060929_d10_14.tif

060929_d10_21.tif

060929_d10_22.tif

060929_d10_23.tif

060929_d10_24.tif

060929_d10_25.tif

060929_d10_26.tif

060929_d10_27.tif

060929_d10_28.tif

060929_d10_29.tif

060929_d10_30.tif

060929_d10_31.tif

060929_d10_32.tif

060929_d10_33.tif

060929_d10_34.tif

060929_d10_35.tif

060929_d10_36.tif

060929_b2_01.tif

060929_b2_02.tif

060929_b2_03.tif

060929_b2_04.tif

060929_b2_05.tif

060929_b2_06.tif

060929_b2_07.tif

060929_b2_08.tif

060929_b2_09.tif

060929_b2_10.tif

060929_b2_11.tif

060929_b2_12.tif

060929_b2_13.tif

060929_b2_14.tif

060929_b2_15.tif

060929_b2_16.tif

060929_b2_17.tif

060929_b2_18.tif

060929_b2_19.tif

060929_b2_20.tif

\mathbf{SnO}_2 dispersion-drop film on TEM grid

060929_e1_01.tif

060929_e1_02.tif

060929_e1_03.tif

060929_e1_04.tif

060929_e1_05.tif

060929_e1_06.tif

\mathbf{SnO}_2 dispersion-drop film on TEM grid

060929_e1_07.tif

060929_e1_08.tif

060929_e1_09.tif

060929_e1_10.tif

060929_e1_11.tif

060929_e1_12.tif

\mathbf{SnO}_2 dispersion-drop film on TEM grid

060929_e1_13.tif

Gold-doped SnO_2 dispersion-drop film on TEM grid

060929_e2_01.tif

060929_e2_02.tif

060929_e2_03.tif

060929_e2_04.tif

060929_e2_05.tif

060929_e2_06.tif

Gold-doped SnO_2 dispersion-drop film on TEM grid

060929_e2_07.tif

060929_e2_08.tif

060929_e2_09.tif

060929_e2_10.tif

060929_e2_11.tif

060929_e2_12.tif

Gold-doped SnO_2 dispersion-drop film on TEM grid

060929_e2_13.tif

060929_e2_14.tif

060929_e2_15.tif

Palladium-doped SnO_2 dispersion-drop film on TEM grid

060929_e4_01.tif

060929_e4_02.tif

C.6 SEM images

C.6.1 Precursor particles

Metallic gold powder, Sigma Aldrich

AU_POST1.TIF

AU_POST2.TIF

AU_POST3.TIF

AU_POST4.TIF

AU_POST5.TIF

AU_POST6.TIF
Metallic gold powder, Sigma Aldrich

AU_PRE1.TIF

AU_PRE2.TIF

AU_PRE3.TIF

AU_PRE4.TIF

AU_PRE5.TIF

AU_PRE6.TIF

Metallic palladium powder, Sigma Aldrich

PD_POST1.TIF

PD_POST2.TIF

PD_POST3.TIF

PD_POST4.TIF

PD_POST5.TIF

PD_POST6.TIF

As-received gold acetate powders, unsputtered

AUAC01.TIF

AUAC02.TIF

AUAC03.TIF

AUAC04.TIF

AUAC05.TIF

AUAC06.TIF

Gold acetate powders, sputtered

AUACB01.TIF

AUACB02.TIF

Acc. V Spot Magn Det WD Exp J4 Artter Creep 20MPa 1000c

AUACB03.TIF

AUACB04.TIF

AUACB05.TIF

AUACB06.TIF

Gold acetate powders, sputtered

AUACB07.TIF

AUACB08.TIF

As-received aluminum acetate powders, unsputtered

ALAC01.TIF

ALAC02.TIF

ALAC03.TIF

ALAC04.TIF

ALAC05.TIF

ALAC06.TIF

 Acc. V. Spot Magn
 Det. WD
 Exp.
 200 µm

 300 kV 6.0
 132x
 Det. WD
 Exp.
 200 µm

As-received aluminum acetate powders, unsputtered

ALAC07.TIF

ALAC08.TIF

ALAC09.TIF

ALAC10.TIF

Aluminum acetate powders, sputtered

ALACA01.TIF

ALACA02.TIF

ALACA03.TIF

ALACA04.TIF

ALACA05.TIF

ALACA06.TIF

As-received palladium acetate, unsputtered

PDAC01.TIF

PDAC02.TIF

PDAC03.TIF

PDAC04.TIF

PDAC05.TIF

PDAC06.TIF

As-received palladium acetate, unsputtered

PDAC07.TIF

PDAC08.TIF

PDAC09.TIF

PDAC10.TIF

PDAC11.TIF

PDAC12.TIF

As-received palladium acetate, unsputtered

PDAC13.TIF

PDAC14.TIF

PDAC15.TIF

Palladium acetate, sputtered

PDACA01.TIF

PDACA02.TIF

PDACA03.TIF

PDACA04.TIF

PDACA05.TIF

PDACA06.TIF

Copper acetate, sputtered

CUAC02.TIF

CUAC03.TIF

CUAC04.TIF

CUAC05.TIF

CUAC06.TIF

CUAC07.TIF

Copper acetate, sputtered

CUAC08.TIF

CUAC09.TIF

CUAC10.TIF

CUAC11.TIF

CUAC12.TIF

CUAC13.TIF

Copper acetate, sputtered

CUAC14.TIF

CUAC15.TIF

CUAC16.TIF

CUAC17.TIF

CUAC18.TIF

CUAC19.TIF

C.6.2 Sensor film SEM images

Sensor A

MSPSENA2.TIF

MSPSENA3.TIF

MSPSENA4.TIF

Pd-doped SnO_2 and SnO_2 dispersion mixture film

PDHYB04.TIF

PDHYB05.TIF

Sensor ZR with 1 and 5 layers deposited

ZR_LAY1_01.TIF

ZR_LAY1_02.TIF

ZR_LAY5_01.tif

ZR_LAY5_02.tif

Sensor ZT with sputtered gold layer on ${\rm SnO}_2$

AUSPUT04.TIF

AUSPUT05.TIF

AUSPUT06.TIF

AUSPUT07.TIF

Sensor ZT with sputtered gold layer on SnO_2 , with XEDS results

AUSPUT08.TIF

AUSPUT09.TIF

EDAX ZAF Quantification (Standardless) Element Normalized SEC Table : Default

Elem	Wt %	At %	K-Ratio	Z	A	F	
0 K AuM SnL Total	19.46 4.86 75.68 100.00	64.75 1.31 33.94 100.00	0.0327 0.0385 0.7001	1.2304 0.8541 0.9255	0.1365 0.9267 0.9996	1.0001 1.0005 1.0000	
Elemen	t Net	Inte.	Backgrd	Inte. E	rror P/	В	
0 V	0.2	0	4 52	4 94	E 4	2	

υĸ	8.29	1.53	4.06	5.42
AuM	3.59	3.99	9.47	0.90
SnL	63.00	3.52	1.33	17.90

Picture 1.png

Sensor ZV with 5 layers and 5 hours sintering

Szv01.tif

Szv02.tif

Szv03.tif

Sensor ZX with single layer of SnO_2 dispersion

Sxly101.tif

Sxly102.tif

Sxly103.tif

BIBLIOGRAPHY

BIBLIOGRAPHY

- van Mol, A. M. B., Alcott, G. R. & Allendorf, M. D. Tin oxide precursor chemistry and its link to coating properties. *American Ceramic Society Bulletin* 84, 37–41 (2005).
- [2] Dinh, N. N., Bernard, M. C., Gof, A. H.-L., Stergiopoulos, T. & Falaras, P. Photoelectrochemical solar cells based on SnO₂ nanocrystalline films. *Comptes Rendus Chimie* 9, 676–683 (2006).
- [3] Batzill, M. & Diebold, U. The surface and materials science of tin oxide. Progress in Surface Science 79, 47–154 (2005).
- [4] Seiyama, T., Kato, A., Fujiishi, K. & Nagatani, M. A New Detector for Gaseous Components using Semiconductive Thin Films. *Analytical Chemistry* 34, 1502 (1962).
- [5] Malyshev, V. V. & Pislyakov, A. V. SnO₂-based thick-film-resistive sensor for H2S detection in the concentration range of 1-10 mg m-3. Sensors and Actuators B: Chemical 47, 181–188 (1998).
- [6] Devi, G. S., Manorama, S. & Rao, V. J. High sensitivity and selectivity of an SnO₂ sensor to H₂S at around 100 °C. Sensors and Actuators B: Chemical 28, 31–37 (1995).
- [7] Zhao, Y., Feng, Z. & Liang, Y. SnO₂ gas sensor films deposited by pulsed laser ablation. Sensors and Actuators B: Chemical 56, 224–227 (1999).
- [8] Shin, W., Matsumiya, M., Qiu, F., Izu, N. & Murayama, N. Thermoelectric gas sensor for detection of high hydrogen concentration. *Sensors and Actuators B: Chemical* 97, 344–347 (2004).
- [9] Bittencourt, C., Llobet, E., Ivanov, P., Correig, X., Vilanova, X., Brezmes, J., Hubalek, J., Malysz, K., Pireaux, J. J. & Calderer, J. Influence of the doping method on the sensitivity of Pt-doped screen-printed SnO₂ sensors. *Sensors and Actuators B: Chemical* **97**, 67–73 (2004).
- [10] Brezmes, J., Llobet, E., Vilanova, X., Orts, J., Saiz, G. & Correig, X. Correlation between electronic nose signals and fruit quality indicators on shelf-life measurements with pinklady apples. Sensors and Actuators B: Chemical 80, 41–50 (2001).
- [11] Gardner, J. W., Shin, H. W. & Hines, E. L. An electronic nose system to diagnose illness. Sensors and Actuators B: Chemical 70, 19–24 (2000).
- [12] Ehrmann, S., Jungst, J., Goschnick, J. & Everhard, D. Application of a gas sensor microarray to human breath analysis. *Sensors and Actuators B: Chemical* 65, 247–249 (2000).
- [13] Ihokura, K. & Watson, J. The Stannic Oxide Gas Sensor Principles and Applications (CRC Press, Boca Raton, Florida, 1994).
- [14] Madler, L., Roessler, A., Pratsinis, S. E., Sahm, T., Gurlo, A., Barsan, N. & Weimar, U. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO₂ nanoparticles. *Sensors and Actuators B: Chemical* **114**, 283–295 (2006).

- [15] Kennedy, M. K., Kruis, F. E., Fissan, H., Mehta, B. R., Stappert, S. & Dumpich, G. Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties. *Journal of Applied Physics* **93**, 551–560 (2003).
- [16] Miller, T. A., Bakrania, S. D., Perez, C. & Wooldridge, M. S. Nanostructured Tin Dioxide materials for Gas Sensor Applications. Functional Nanomaterials (American Scientific Publishers, 2006), first edn.
- [17] Yamazoe, N. New approaches for improving semiconductor gas sensors. Sensors and Actuators B: Chemical 5, 7–19 (1991).
- [18] Choe, Y.-S. New gas sensing mechanism for SnO₂ thin-film gas sensors fabricated by using dual ion beam sputtering. Sensors and Actuators B: Chemical 77, 200–208 (2001).
- [19] Ivanov, P., Llobet, E., Vilanova, X., Brezmes, J., Hubalek, J. & Correig, X. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO₂ surfaces. *Sensors and Actuators B: Chemical* **99**, 201–206 (2004).
- [20] Nicoletti, S., Dori, L., Cardinali, G. C. & Parisini, A. Gas sensors for air quality monitoring: realisation and characterisation of undoped and noble metal-doped SnO₂ thin sensing films deposited by the pulsed laser ablation. *Sensors and Actuators B: Chemical* **60**, 90–96 (1999).
- [21] Wurzinger, O. & Reinhardt, G. CO-sensing properties of doped SnO₂ sensors in H₂-rich gases. Sensors and Actuators B: Chemical 103, 104–110 (2004).
- [22] Sung, J.-H., Lee, Y.-S., Lim, J.-W., Hong, Y.-H. & Lee, D.-D. Sensing characteristics of tin dioxide/gold sensor prepared by coprecipitation method. *Sensors and Actuators B: Chemical* 66, 149–152 (2000).
- [23] Heilig, A., Barsan, N., Weimar, U. & Gopel, W. Selectivity enhancement of SnO₂ gas sensors: simultaneous monitoring of resistances and temperatures. *Sensors and Actuators B: Chemical* 58, 302–309 (1999).
- [24] Ying, Z., Wan, Q., Song, Z. T. & Feng, S. L. Controlled synthesis of branched SnO₂ nanowhiskers. *Materials Letters* 59, 1670–1672 (2005).
- [25] Comini, E., Bianchi, S., Faglia, G., Ferroni, M., Vomiero, A. & Sberveglieri, G. Functional nanowires of tin oxide. Applied Physics A-Materials Science & Processing 89, 73–76 (2007).
- [26] Kolmakov, A., Zhang, Y. X., Cheng, G. S. & Moskovits, M. Detection of CO and O₂ using tin oxide nanowire sensors. *Advanced Materials* 15, 997 (2003).
- [27] Tresback, J. S., Vasiliev, A. L. & Padture, N. P. Engineered metal-oxide-metal heterojunction nanowires. *Journal of Materials Research* 20, 2613–2617 (2005).
- [28] Takada, T., Fukunaga, T. & Maekawa, T. New method for gas identification using a single semiconductor sensor. Sensors and Actuators B: Chemical 66, 22–24 (2000).
- [29] Licznerski, B. W., Nitsch, K., Teterycz, H., Sobanski, T. & Wisniewski, K. Characterisation of electrical parameters for multilayer SnO₂ gas sensors. *Sensors and Actuators B: Chemical* 103, 69–75 (2004).
- [30] Cavicchi, R. E., Walton, R. M., Aquino-Class, M., Allen, J. D. & Panchapakesan, B. Spin-on nanoparticle tin oxide for microhotplate gas sensors. *Sensors and Actuators B: Chemical* 77, 145–154 (2001).
- [31] Baik, N. S., Sakai, G., Miura, N. & Yamazoe, N. Hydrothermally treated sol solution of tin oxide for thin-film gas sensor. Sensors and Actuators B: Chemical 63, 74–79 (2000).

- [32] Sakai, G., Baik, N. S., Miura, N. & Yamazoe, N. Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H₂ response on film thickness. Sensors and Actuators B: Chemical 77, 116–121 (2001).
- [33] Cukrov, L. M., McCormick, P. G., Galatsis, K. & Wlodarski, W. Gas sensing properties of nanosized tin oxide synthesised by mechanochemical processing. *Sensors and Actuators B: Chemical* 77, 491–495 (2001).
- [34] Min, B.-K. & Choi, S.-D. SnO₂ thin film gas sensor fabricated by ion beam deposition. Sensors and Actuators B: Chemical 98, 239–246 (2004).
- [35] Mandayo, G. G., Castano, E., Gracia, F. J., Cirera, A., Cornet, A. & Morante, J. R. Builtin active filter for an improved response to carbon monoxide combining thin- and thick-film technologies. *Sensors and Actuators B: Chemical* 87, 88–94 (2002).
- [36] Chowdhuri, A., Gupta, V. & Sreenivas, K. Enhanced catalytic activity of ultrathin CuO islands on SnO₂ films for fast response H₂S gas sensors. *IEEE Sensors Journal* 3, 680–686 (2003).
- [37] Kammler, H. K., Madler, L. & Pratsinis, S. E. Flame synthesis of nanoparticles. *Chemical Engineering & Technology* 24, 583–596 (2001).
- [38] Grass, R. N. & Stark, W. J. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal. *Journal of Nanoparticle Research* 8, 729–736 (2006).
- [39] Vital, A., Angermann, A., Dittmann, R., Graule, T. & Topfer, J. Highly sinter-active (Mg-Cu)-Zn ferrite nanoparticles prepared by flame spray synthesis. *Acta Materialia* 55, 1955–1964 (2007).
- [40] Wal, R. L. V., Hall, L. J. & Berger, G. M. Optimization of flame synthesis for carbon nanotubes using supported catalyst. *Journal of Physical Chemistry B* 106, 13122–13132 (2002).
- [41] Salata, O. Applications of nanoparticles in biology and medicine. *Journal of Nanobiotechnology* 2, 3 (2004).
- [42] Rosner, D. E. Flame synthesis of valuable nanoparticles: Recent progress/current needs in areas of rate laws, population dynamics, and characterization. *Industrial & Engineering Chem*istry Research 44, 6045–6055 (2005).
- [43] Wegner, K. & Pratsinis, S. E. Gas-phase synthesis of nanoparticles: scale-up and design of flame reactors. *Powder Technology* 150, 117–122 (2005).
- [44] Miller, T. A., Bakrania, S. D., Perez, C. & Wooldridge, M. S. A new method for direct preparation of tin dioxide nanocomposite materials. *Journal of Materials Research* 20, 2977– 2987 (2005).
- [45] Zhu, W. H. & Pratsinis, S. E. Synthesis of SiO₂ and SnO₂ particles in diffusion flame reactors. AICHE Journal 43, 2657–2664 (1997).
- [46] Nakazawa, S., Yokomori, T. & Mizomoto, M. Flame synthesis of carbon nanotubes in a wall stagnation flow. *Chemical Physics Letters* 403, 158–162 (2005).
- [47] Wal, R. L. V., Ticich, T. M. & Stephens, A. B. Can soot primary particle size be determined using laser-induced incandescence? *Combustion and Flame* 116, 291–296 (1999).
- [48] Hall, D. L., Wang, A. A., Joy, K. T., Miller, T. A. & Wooldridge, N. S. Combustion synthesis and characterization of nanocrystalline tin and tin oxide (SnOx, x=0-2) particles. *Journal of* the American Ceramic Society 87, 2033–2041 (2004).

- [49] Limaye, A. U. & Helble, J. J. Effect of precursor and solvent on morphology of zirconia nanoparticles produced by combustion aerosol synthesis. *Journal of the American Ceramic Society* 86, 273–278 (2003).
- [50] Pratsinis, S. E., Zhu, W. H. & Vemury, S. The role of gas mixing in flame synthesis of titania powders. *Powder Technology* 86, 87–93 (1996).
- [51] Vemury, S., Pratsinis, S. E. & Kibbey, L. Electrically controlled flame synthesis of nanophase TiO₂, SiO₂, and SnO₂ powders. *Journal of Materials Research* **12**, 1031–1042 (1997).
- [52] Pratsinis, S. E. Flame aerosol synthesis of ceramic powders. Progress in Energy and Combustion Science 24, 197–219 (1998).
- [53] Gutsch, A., Muhlenweg, H. & Kramer, M. Tailor-made nanoparticles via gas-phase synthesis. Small 1, 30–46 (2005).
- [54] Wooldridge, M. S. Gas-phase combustion synthesis of particles. Progress in Energy and Combustion Science 24, 63–87 (1998).
- [55] Dima, A., Dima, O., Moldovan, C., Cobianu, C., Savaniu, C. & Zaharescu, M. Substrate influence on the response of sol-gel derived SnO₂ gas-sensors. *Thin Solid Films* **427**, 427–431 (2003).
- [56] Guidi, V., Butturi, M. A., Carotta, M. C., Cavicchi, B., Ferroni, M., Malagu, C., Martinelli, G., Vincenzi, D., Sacerdoti, M. & Zen, M. Gas sensing through thick film technology. *Sensors* and Actuators B: Chemical 84, 72–77 (2002).
- [57] Mueller, R., Jossen, R., Kammler, H. K. & Pratsinis, S. E. Growth of zirconia particles made by flame spray pyrolysis. AICHE Journal 50, 3085–3094 (2004).
- [58] Miller, T. A., Bakrania, S. D., Perez, C. & Wooldridge, M. S. A new method for direct preparation of tin dioxide nanocomposite materials. *Journal of Materials Research* 20, 2977– 2987 (2005).
- [59] Wang, A. An Experimental Investigation of the Satruation of Tetramethyl Tin Vapor/Argon Mixtures (2001).
- [60] Miller, T. A. Combustion Synthesis of Metal/Metal Oxide Nanocomposite Materials (2005).
- [61] Powder Diffraction File, compiled by JCPDS. International Centre for Diffraction Data, Swarthmore, PA (1990).
- [62] Rasband, W. S. ImageJ U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2007.
- [63] Bakrania, S. D., Miller, T. A., Perez, C. & Wooldridge, M. S. Combustion of multiphase reactants for the synthesis of nanocomposite materials. *Combustion and Flame* 148, 76–87 (2007).
- [64] CRC Handbook of Chemistry and Physics (CRC Press, New York, 2004), 85th edn.
- [65] Gallagher, P. K. & Gross, M. E. The Thermal-Decomposition of Palladium Acetate. Journal of Thermal Analysis 31, 1231–1241 (1986).
- [66] Kristl, M. & Drofenik, M. Preparation of Au₂S₃ and nanocrystalline gold by sonochemical method. *Inorganic Chemistry Communications* 6, 1419–1422 (2003).
- [67] Jain, K., Pant, R. P. & Lakshmikumar, S. T. Effect of Ni doping on thick film SnO₂ gas sensor. Sensors and Actuators B: Chemical 113, 823–829 (2006).

- [68] Dreizin, E. Phase changes in metal combustion. Progress in Energy and Combustion Science 26, 57 – 78 (2000).
- [69] Dreizin, E. L. Effect of phase changes on metal-particle combustion processes. Combustion Explosion and Shock Waves 39, 681–693 (2003).
- [70] Bakrania, S. D., Perez, C. & Wooldridge, M. S. Methane-assisted combustion synthesis of nanocomposite tin dioxide materials. *Proceedings of the Combustion Institute* **31**, 1797–1804 (2007).
- [71] Wostek-Wojciechowska, D., Jeszka, J. K., Uznanski, P., Amiens, C., Chaudret, B. & Lecante, P. Synthesis of gold nanoparticles in solid state by thermal decomposition of an organometallic precursor. *Materials Science-Poland* 22, 407–413 (2004).
- [72] Hamaoui, B. E., Zhi, L., Wu, J., Li, J., Lucas, N. T., Tomovic, Z., Kolb, U. & Mullen, K. Solid-state pyrolysis of polyphenylene-metal complexes: A facile approach toward carbon nanoparticles. *Advanced Functional Materials* 17, 1179–1187 (2007).
- [73] Hu1, M.-S., Chen, H.-L., Shen, C.-H., Hong, L.-S., Huang, B.-R., Chen, K.-H. & Chen, L.-C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. *Nature Materials* 5, 102–6 (2006).
- [74] Pustovalov, V. K. & Babenko, V. A. Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. *Laser Physics Letters* 1, 516–20 (2004).
- [75] Pasquato, L., Pengo, P. & Scrimin, P. Functional gold nanoparticles for recognition and catalysis. *Journal of Materials Chemistry* 14, 3481–3487 (2004).
- [76] Haruta, M. Catalysis: Gold rush. Nature 437, 1098–1099 (2005).
- [77] Obaid, A., Alyoubi, A., Samarkandy, A., Al-Thabaiti, S., Al-Juaid, S., El-Bellihi, A. & Deifallah, E.-H. Kinetics of Thermal Decomposition of Copper(II) Acetate Monohydrate. *Journal* of Thermal Analysis and Calorimetry 61, 985–994 (2000).
- [78] Mahfouz, R., Alshehri, S., Monshi, M. & El-Salam, N. Isothermal decomposition of gammairradiated palladium acetate. *Radiat. Eff. Defects Solids (Switzerland)* 159, 345 – 51 (2004).
- [79] Zhang, J. Y. & Boyd, I. W. Photo-decomposition of thin palladium acetate films with 126 nm radiation. Applied Physics A: Materials Science & Processing 65, 379–382 (1997).
- [80] Saha, M., Banerjee, A., Halder, A. K., Mondal, J., Sen, A. & Maiti, H. S. Effect of alumina addition on methane sensitivity of tin dioxide thick films. *Sensors and Actuators B: Chemical* 79, 192–195 (2001).
- [81] Xiong, Y., Akhtar, M. K. & Pratsinis, S. E. Formation of Agglomerate Particles by Coagulation and Sintering: the Evolution of the Morphology of Aerosol-made Titania, Silica and Silica-Doped Titania Powders. *Journal of Aerosol Science* 24, 301–313 (1993).
- [82] Xing, Y., Koylu, U. O. & Rosner, D. E. Synthesis and restructuring of inorganic nano-particles in counterflow diffusion flames. *Combustion and Flame* 107, 85–102 (1996).
- [83] Zawadzki, A. G., Giunta, C. J. & Gordon, R. G. Kinetic Modeling of the Chemical Vapor-Deposition of Tin Oxide from Tetramethyltin and Oxygen. *Journal of Physical Chemistry* 96, 5364–5379 (1992).
- [84] Coblenz, W. S., Dynys, J. M., Cannon, R. M. & Coble, R. L. Initial stage solid state sintering models. A critical analysis and assessment. *Materials Science Research* 13, 141 – 157 (1980).

- [85] Leite, E. R., Cerri, J. A., Longo, E., Varela, J. A. & Paskocima, C. A. Sintering of ultrafine undoped SnO₂ powder. *Journal of the European Ceramic Society* 21, 669–675 (2001).
- [86] Arcidiacono, S., Bieri, N. R., Poulikakos, D. & Grigoropoulos, C. P. On the coalescence of gold nanoparticles. *International Journal of Multiphase Flow* **30**, 979–994 (2004).
- [87] Egry, I., Lohoefer, G. & Jacobs, G. Surface-tension of liquid-metals results from measurements on ground and in-space. *Physical Review Letters* 75, 4043–4046 (1995).
- [88] Cobianu, C. et al. A SnO₂ microsensor device for sub-ppm NO₂ detection. Sensors and Actuators B: Chemical 58, 552–555 (1999).
- [89] Epifani, M., Alvisi, M., Mirenghi, L., Leo, G., Siciliano, P. & Vasanelli, L. Sol-gel processing and characterization of pure and metal-doped SnO₂ thin films. *Journal of the American Ceramic Society* 84, 48–54 (2001).
- [90] Lee, S., Lee, G.-G., Kim, J. & Kang, S.-J. L. A novel process for fabrication of SnO₂-based thick film gas sensors. *Sensors and Actuators B: Chemical* 123, 331–335 (2007).
- [91] Vuong, D. D., Sakai, G., Shimanoe, K. & Yamazoe, N. Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application. *Sensors and Actuators B: Chemical* 103, 386–391 (2004).
- [92] Yasunaga, S., Sunahara, S. & Ihokura, K. Effects of tetraethyl orthosilicate binder on the characteristics of an SnO₂ ceramic-type semiconductor gas sensor. Sensors and Actuators 9, 133–145 (1986).
- [93] Watson, J., Ihokura, K. & Coles, G. S. V. The Tin Dioxide Gas Sensor. Measurement Science & Technology 4, 711–719 (1993).
- [94] Garje, A. D. & Aiyer, R. C. Electrical and gas-sensing properties of a thick film resistor of nanosized SnO₂ with variable percentage of permanent binder. *International Journal of Applied Ceramic Technology* 3, 477–484 (2006).
- [95] Becker, T., Ahlers, S., Bosch-v. Braunmuhl, C., Muller, G. & Kiesewetter, O. Gas sensing properties of thin- and thick-film tin-oxide materials. *Sensors and Actuators B: Chemical* 77, 55–61 (2001).
- [96] Karthigeyan, A., Gupta, R. P., Burgmair, M., Sharma, S. K. & Eisele, I. Influence of oxidation temperature, film thickness and substrate on NO₂ sensing of SnO₂ ultra thin films. *Sensors* and Actuators B: Chemical 87, 321–330 (2002).
- [97] Wang, S., Zhao, Y., Huang, J., Wang, Y., Kong, F., Wu, S., Zhang, S. & Huang, W. Preparation and CO gas-sensing behavior of Au-doped SnO₂ sensors. *Vacuum* **81**, 394–397 (2006).
- [98] Safonova, O. V., Rumyantseva, M. N., Ryabova, L. I., Labeau, M., Delabouglise, G. & Gaskov, A. M. Effect of combined Pd and Cu doping on microstructure, electrical and gas sensor properties of nanocrystalline tin dioxide. *Materials Science And Engineering B-Solid State Materials For Advanced Technology* 85, 43–49 (2001).
- [99] McFarland, A. D., Haynes, C. L., Mirkin, C. A., Van Duyne, R. P. & Godwin, H. A. Color My Nanoworld. Journal of Chemical Education 81, 544 (2004).