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ABSTRACT

IMAGE GUIDED RESPIRATORY MOTION ANALYSIS:
TIME SERIES AND IMAGE REGISTRATION

by

Dan Ruan

Advisor: Jeffrey A. Fessler

The key feature of image guided radiation therapy (IGRT) systems is improved effi-

ciency in conformal dose delivery by extracting, modeling and predicting tumor movement

with imaging techniques. To harvest the benefit of an IGRT system, two major problems

have to be solved: motion modeling and image processing. This thesis investigates these

issues. In particular, we focus on the application of treating tumors in the thoracic and

upper abdominal region, where respiratory motion is the dominant factor for tumor move-

ment. The characteristics of respiration makes motion modeling difficult, as breathing tra-

jectories are semi-periodic with drifting in mean position, frequency and phase. Clinical

practice shows large variation of breathing patterns amongdifferent individuals, making

it necessary to quantify the regularity/reproducibility of a respiratory trace to determine

the applicability of certain treatment methods. To this end, we have proposed a subspace

projection method to quantitatively evaluate the semi-periodicity of a given observation

trace. Extracting tumor location from diagnostic imaging,albeit informative and accurate,

incurs radiation dose, which may result in normal tissue complication. To minimize diag-
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nostic dose, it is desirable to obtain radiographic observations at low frequency and use

external surrogates to infer internal tumor motion withoutradiation. The sparsity of the in-

ternal readout from diagnostic imaging together with the consideration of system latency

require methods that predict accurately over a long time range. These concerns intro-

duce additional challenges in applying classic time-series analysis techniques, and special

structured models are needed to incorporate prior knowledge (e.g., semi-periodicity in res-

piratory motion) for improved performance. Physiologicalhysteresis further complicates

external-internal inference and proper modeling is desired to estimating such a relation-

ship. In this thesis, we have investigated regression techniques for real-time tracking and

prediction, shape modeling for robust tracking with minimum observation and external-

internal inference estimation.

Image processing is another crucial component of IGRT. In particular, accurate tracking

and monitoring of tumor evolution, and efficient propagation of dose assignment require

accurate image registration. The solution to the registration problem needs to reflect phys-

ical priors and constraints. Adopting a regularized optimization setup, we investigated a

penalty function design that accommodates tissue-type-dependent elasticity information.

To properly account for the sliding effects at motion interfaces, we have studied a class

of discontinuity-preserving regularizers that yield smooth solutions in most regions, while

allowing discontinuities in the estimated motion field. We have further distinguished two

types of singularities in the deformation field,i.e., collision/vacuum generating flow v.s.

shear with the Helmholtz decomposition. Applying different regularizers to each com-

ponent discourages the deformation from the first type of unphysical singularities while

preserves large shear discontinuities.

The medical image registration field needs good validation and performance evaluation

tools. A most general analytical evaluation for image registration is challenging. We have,

xiv



however, during the course of this work, performed a preliminary analytical study. We

proposed a set of statistical generative models and provided bias and variance estimates for

certain estimators. In particular, we have investigated the approximate performance of the

maximum-likelihood estimator corresponding to the generative model and the commonly

adopted M-estimator. A simple example suggests that the approximation is reasonably

accurate.

Our studies in both time series analysis and image registration constitute essential

building-blocks for clinical applications such as adaptive treatment. Besides their theoret-

ical interests, it is our sincere hope that with further justifications, the proposed techniques

would realize its clinical value, and improve the quality oflife for patients.

xv



CHAPTER 1

Introduction

The two core components of image guided radiotherapy (IGRT)systems are image

processing and radiation delivery. The image processing module extracts tumor status in-

formation and feeds it into the treatment delivery system. In particular, the motion of the

tumor volume must be tracked and predicted with high accuracy for subsequent localized

target treatment; the movement of the whole region under radiation should be monitored

to ensure proper dose delivery, to avoid radiation to critical tissues such as heart and spine,

and to minimize normal tissue complication probability (NTCP). To this end, an accurate

and efficient image registration method is critical. Registration between two (or a se-

quence of) images estimates the deformation among different image acquisitions, captures

the evolution of the region of interest (ROI), and dynamically propagates treatment plans.

Despite the vast literature on image registration studies,a good quantitative evaluation

tool is unfortunately absent. A performance study to the most generality is challenging,

given the nonlinear nature of the registration problem. However, questions then arise as

to whether the performance of image registration is limitedby a model setup (objective

function design) or the behavior of the minimization algorithms deployed (local minima

issues). Furthermore, to minimize diagnostic radiation dose, only sparse observations of

the internal tumor location are available to the treatment delivery system. For an effective

1
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real-time gating system, a reliable mean position estimator is crucial to adaptively control

the positioning of the gating window. How to efficiently extract such control informa-

tion from a minimum amount of data is a key issue. This thesis considers these various

questions in three parts.

The first part, dealing with the adaptive mean tracking problem, is the subject of Chap-

ter 2. Given a sparsely sampled respiratory trajectory thathas drifts in mean, frequency

and phase, we aim to extract the mean trace in real time. To solve this loosely defined

problem, we resort to a data-based approach which incorporates the semi-periodic nature

of breathing motion. In particular, in the state space that is augmented via time lagging,

we model the observations as samples in a sequence of time varying ellipses and extract

the projection of the center of such ellipses as the real-time estimate of mean position.

Formulated as a minimization problem with respect to the algebraic distance, the static

ellipse fitting problem can be solved by generalized eigen-decomposition. We introduce

a recursive-least squares (RLSE) structured algorithm which naturally leads to a dynamic

adaptive solution in a slowly temporal-varying environment. Asymptotic convergence of

the proposed algorithm is derived. In addition, we generalize the original least squares

fitting problem to a robust estimation setting so that the solution is insensitive to reason-

able amounts of outliers, what may be caused by abrupt body movement or noisy data.

We prove that the feasible region is a union of two convex sets, analyze the geometry of

both the feasible region and the functional value, and applygradient projection method

to solve the adaptive problem. Experimental results with both simulated and clinical data

demonstrate feasibility of the proposed methods.

The remainder of the thesis studies the image registration problem - another key compo-

nent in IGRT. We discuss objective design, optimization issues and quantitative evaluation

of registration performance; these aspects are of interestfor general image processing as
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well.

Chapter 3 focuses on designing regularizers that convey prior information in optimization-

based registration for thoracic images. We consider two types of regularization design: one

accounts for different rigidity levels for various tissue types and the other accommodates

sliding effects along motion boundaries. Tissue-type-rigidity regularization is realized by

penalizing the deviation of local transformation Jacobianfrom orthogonal; sliding regu-

larization is studied by first generalizing edge-preserving regularization from image de-

noising problems, and then Helmholtz decomposing the flow todifferentiate between the

collision/vacuum generating component and the shear discontinuities. By regularizing the

divergence and curl components separately, we avoid the first type of unphysical disconti-

nuity, but preserve the latter one that corresponds to shearflow.

Given any image registration method, its results should be validated and the perfor-

mance evaluated. Unfortunately, despite vast literature on image registration algorithms,

validation study mostly relies on either simulation/phantom study or manually placed

marker locations. The first approach completely ignores intrinsic information content of

the input images, and may result in unreasonably stringent requirement (such as “correct”

alignment of uniform areas - the null space of any registration operator). The latter one,

on the other hand, is biased towards high gradient regions where human observers can

identify reliable correspondence and oblivious of the lessobvious clues. As a first step in

systematically studying the fundamental performance limit of a registration model, Chap-

ter 4 presents a statistical generative model and the corresponding maximum-likelihood

(ML) estimator. The bias and variance of this estimator is studied via Craḿer-Rao bound

analysis. For the commonly employed energy minimization based approaches, the local

behavior of the corresponding M-estimate is analyzed usingimplicit function theorem and

Taylor expansion. A simple example suggests reasonable accuracy of the adopted approx-
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imation and may lead to wider generality upon further investigation.

The main contributions of this thesis can be summarized as follows.

• A novel data-driven mean tracking model for sparsely sampled semi-periodic data.

More specifically, a state augmentation setup and a formulation with algebraic dis-

tance that results in closed-form solution from generalized eigen decomposition. An

efficient ellipse tracking algorithm based on subspace decomposition that dynami-

cally adapts to slowly varying trends. Conditions and proof for asymptotic conver-

gence of the proposed algorithm. Analysis of the structure of the feasible parameter

set. A robust extension of the least squared problem to achieve robustness to outliers,

a gradient projection algorithm for solving the optimization problem, and its adaptive

generalization.

• A tissue-type dependent regularization that encourages locally rigid behavior, where

appropriate.

• An original discontinuity preserving regularization for nonrigid image registration

that preserves motion boundaries.

• An original statistical generative model for image registration. Bias and variance

analysis for the maximum likelihood estimator. An M-estimate analysis of the con-

ventional energy based registration methods. Empirical comparison with a simple

example.

• A new subspace projection based method that quantifies the reproducibility of a tem-

poral trajectory (Appendix A).

• A novel nonparametric local regression method in the augmented state space for real-

time prediction of respiratory motion (Appendix B).

• A state space augmentation approach to account for hysteresis for inferring internal
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tumor motion from external surrogates (Appendix C).

The above remarks describe the major material in this thesis. To maintain the self-

containedness of each topic, we provide relevant background at the beginning of each

chapter. In the course of this study, we came to certain analyses and preliminary results that

are marginally related to the main theme of this thesis, but have potential for integration

upoon further development. We provide them as optional sections and mark the titles with

an asterisk. These sections can be skipped without loss of continuity.



CHAPTER 2

Adaptive Ellipse Tracking and its Application in Estimating
Respiratory Drifting

1 Good ellipse fitting methods are desirable in pattern recognition and computer vision.

Simple low dimensional shape models are often used to fit noisy high dimensional ob-

servation data for increased robustness. Ellipses, as the projection of circular shapes, are

common among observations from natural and artificial objects (e.g., human faces, tires,

etc), and are among the most interesting shape models [26,44,89]. In addition, ellipses also

have potential applications in describing dynamical systems that exhibit semi-periodicity

and hysteresis. Using algebraic distance as the data fittingmetric, ellipse fitting prob-

lems can be formulated in a convex optimization setting, with quadratic constraints. Its

solution involves looking for the eigen vector corresponding to the largest eigenvalue in a

generalized eigen decomposition problem. In this chapter,we develop an adaptive method

to dynamically fit the ellipse model, analyze the convergence of the proposed algorithm,

and discuss its application to estimating drifting in respiratory motion. Section 2.1 formu-

lates the ellipse fitting problem into the framework of generalized eigen decomposition.

Section 2.2 proposes an iterative algorithm for solving thegeneralized eigen problem. Sec-

tion 2.3 considers adaptivity with data stream. Section 2.4applies the proposed algorithm

1This chapter is based on materials from [97,100]

6
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to tracking mean drifting of respiratory motion. Section 2.6 provides relevant proofs used

in this chapter.

2.1 Ellipse Fitting Model for Static Data

We model ellipses using a general quadratic curve equation.Let (x,y) denote the coor-

dinates of a point in the 2-dimensional state space, and definez = [x2 xy y2 x y1]T , where

superscriptT denotes transpose. Then point(x,y) falls on the ellipse parameterized by

a = [a b c d e f]T if and only if it satisfies the following quadratic curve equation:

(2.1) F(a,z) = aTz = ax2 +bxy+cy2 +dx+ey+ f = 0,

with negative discriminant,i.e., b2−4ac< 0.

The center(x0,y0) of the ellipse parameterized witha is given by:

x0 =
2cd−b f
b2−4ac

y0 =
2a f−bd
b2−4ac

.(2.2)

From (2.1), a samplezi lies on a given ellipse parameterized bya if and only if

F(a,zi) = 0. This motivates the use ofF2(a,zi) as a measure of deviation of the sample

from the ellipse. This is known as “algebraic distance” which coincides with Euclidean

distance in the caseF is a plane. It is computationally beneficial to adopt this discrepancy

measure so that the collective distances forN samples can be conveniently written in stan-

dard matrix form and manipulated with classic least-squares approaches as in (2.3). For

observed samples of the form(xi,yi), i = 1,2, . . . ,N, we want to find the ellipse parameter

a that minimizes the following cost function:

(2.3)
N

∑
i=1

F2(a,zi) = aTSa,



8

where we define the 6×6 empirical correlation matrixS
△
= ∑N

i=1ziz
T
i .

The minimizer of (2.3) is invariant to a constant scaling applied toa, so we impose the

constraint thatb2−4ac=−1, or equivalently in matrix formaTCa = 1 with

(2.4) C =







C̃ 03×3

03×3 03×3






,

whereC̃
△
=















0 0 2

0 −1 0

2 0 0















, and 03×3 denotes a 3×3 matrix of zeros. In other words, our

ellipse fitting requires minimizingaTSa subject to the constraint thataTCa = 1.

Introducing the Lagrangian multiplierλ and differentiating, we need to solve the system

of equations:

Sa−λCa = 0,

aTCa = 1.(2.5)

We solve this using the generalized eigen-decomposition ofthe pair(S,C). BecauseS

has the form of a covariance matrix, it is nonnegative semi-definite. We assume hereafter

that there are enough data samples andS is full-rank, i.e., its eigenvalues are strictly

positive. In particular, by Theorem 1 in2 [31] , the pair(S,C) has exactly one positive

generalized eigenvalue and it corresponds to the unique local minimum of the Lagrangian.

The corresponding eigen vector is the optimal solution to the ellipse parameter in (2.3).

Let (λ,u) be the solution to the generalized eigenvalue problemSa = λCa with λ > 0,

then(λ,a∗ =
√

1
uTCu

u) is the solution to the constrained minimization problem in (2.5).

The rank deficiency ofC can cause instability issues if a conventional generalizedeigen-

2Both the statement and the proof of lemma 1 in [31] are flawed, but the result in theorem 1 is correct.
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decomposition algorithm were applied,e.g. [92] without caution. If analyzed properly,

however, its sparsity may reduce computation.

For later convenience, we first introduce some notations, then restate the corrected

lemma 1 in [31] and prove it. We denote the generalized spectra asσ(A,B)
△
= {λ : Av =

λBv}. Analogous to the case of a single normal matrix, we define thecondition num-

ber of a generalized eigen decomposition asκ(A,B) = |λmax(A,B)
λmin(A,B) | whereλmax(A,B),

λmin(A,B) denote the maximal and minimal (by moduli) generalized eigenvalues of(A,B).

The signature3 i(A) of a real symmetric matrixA is the number of positive, negative, and

zero eigenvalues of the corresponding matrix.4

Lemma 2.1.The number of positive, negative, and zero generalized eigenvalues of(S,C),

whereS ∈ℜn×n is a symmetric5 positive definite matrix andC ∈ℜn×n is symmetric, are

the same as the signature of the constraint matrixC.

Proof. Symmetric positive definite matrixS can be decomposed asQTQ with Q in-

vertible. We can subsequently rewrite the generalized eigen problemSu = λCu as

QTQu= λCu. Apply a change of basisv = Qu and getv = λ(Q−1)TCQ−1v. Thus,λ is

the eigenvalue of(Q−1)TCQ−1. Let i(C) denote the signature ofC, then by Sylvester’s

law of inertia [132], which states that the signature ofC is invariant under congruence

transform, we havei(C) = i((Q−1)TCQ−1). Therefore, the number of positive, negative

and zero eigenvalues ofσ(S,C) are the same as the signature ofC.

3Signature is often defined with respect to a symmetric bilinear (quadratic) form; they are the same objects, viewed
from different perspective.

4In general, eigen decomposition (spectral theorem) applies to normal matrices, which may not necessarily require
real symmetry. However, many applications deal with real symmetric matrices, including the one under consideration
here.

5This is the part missing from [31].
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2.2 An Iterative Algorithm for Solving the Generalized Eigen Prob-
lem

It is desirable to have an adaptive algorithm in the presenceof system variations. In

particular, a rank-1 update is needed for the data covariance matrixS every time a new

observation becomes available. Assuming sufficient initial data, new data should only

mildly perturb the system. Therefore, if we have an iterative algorithm for the static system

with enough tolerance to the initial conditions, we shall beconfident in using the last state

estimate of the one-time-step-lag system as the initialization for the iteration with the

new system. In this section, we provide such an iterative algorithm, prove its asymptotic

convergence, and discuss the region of attraction.

We first recall some observations from previous discussions:

• a∗ is identical to the generalized eigenvectoru up to a normalization factor that is

easy to compute. From now on, we focus on deriving an iteration on the general-

ized eigen vector, no longer distinguishing betweenu anda, assuming no confusion

would result from such notational convenience.

• A simple eigen decomposition ofC yields thatσ(C) = {2,0,0,0,−1,−2}. From

lemma 2.1, and the minimization setup, we are interested in tracking only the gener-

alized eigen vector that corresponds to the unique positivegeneralized eigen value of

(S,C). It is equivalent to finding the eigen vector for the largest eigenvalue, in other

words, tracking the dominant eigen subspace.

We first discuss a method based on fixed-point analysis and generalized Rayleigh quo-

tient to compute the solution to generalized eigen problems(A,B) with both A,B full

rank.
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If (λ,u) satisfy the generalized eigen decomposition relation:

(2.6) Au = λBu,

then we can generalize the Rayleigh-Ritz theorem and show (derivation provided in Sec-

tion 2.6) that the generalized eigen vectorsu correspond to the stationary points of the

energy ratio function:

(2.7) J(u) =
uTAu

uTBu
,

and evaluatingJ at the eigenvectors results in the corresponding generalized eigenvalues.

In fact, the largest generalized eigenvalueλ is the global maximum ofJ. Substituting

λ = J(u) = uTAu
uTBu

in (2.6) yields

Au =
uTAu

uTBu
Bu.

By assumption,A is full rank, we may multiply the above expression withA−1 on both

sides and obtain:

(2.8) u =
uTAu

uTBu
A−1Bu.

Equation (2.8) suggests that the generalized eigen vector is a fixed point for the iterative

map

(2.9) f : u→ uTAu

uTBu
A−1Bu.

Furthermore, the energy ratio function evaluated at the fixed point is exactly the general-

ized eigenvalue that corresponds to the fixed pointu.

To use (2.9) to iteratively solve (2.5), we first separate theessential subspace from

the nuisance ones, by decomposing the empirical correlation matrixS into block form as

follows:

S =







E B

BT D






.
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We also define the Schur complement of the blockD in matrixS asS̃
△
= E−BD−1BT .

The decomposition of the constraint matrixC is given by (2.4).

We provide an iterative scheme to compute the generalized eigen vectora and prove

its asymptotic convergence.

Theorem 2.2.Let the iteration ofa be given by

(2.10) an+1 = ηn
aT

n Wan

aT
n Can

S−1Can +(1−ηn)an,

where

W =







E 0

0 −D






,

andηn∈ (0,1) is asymptotically bounded above by2κ+1 with κ being the condition number

of (S̃,C̃) 6. Thenan converges asymptotically to the eigen vector that corresponds to the

unique positive eigenvalue of(S,C).

Proof. We decompose the state estimatea into the concatenation of two vectorsa =

[a1;a2], and rewrite (2.5) as:

Ea1 +Ba2 = λC̃a1

BTa1 +Da2 = 0.(2.11)

Notice thatE is the autocorrelation matrix of the first three dimensions of the observed

data, and is invertible by the assumption thatS is full rank. Being full rank,C̃ is invertible

6We will see thatσ(S̃,C̃) ⊂ σ(S,C) and it is the subset that contains all non-zero generalized eigenvalues.It is
often possible to obtain upper bound forκ by utilizing either prior information or proper training. The role of stepsize
(gain)ηn determines the trade-off between convergence and convergence rate. The convergence behavior of vanishing
gain (ηn ≥ 0 ∑n ηn = +∞,∑n ηα

n < ∞ for someα > 1) is commonly studied in the literature [65, 93], but asymptotic
constant gain (ηn≥ 0 η := limn→∞ ηn > 0) is more desirable in practice. The condition we have imposed includes that
of the decreasing gain, but also admits cases with asymptotic constant gain.
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as well. We can solve the above equation as

a2 = −D−1BTa1,

(E−BD−1BT)a1 = λC̃a1.(2.12)

In theorem 2.3, we will show that iteration:

a1,n+1 = ηn
aT

1,nS̃a1,n

aT
1,nC̃a1,n

S̃−1C̃a1,n +(1−ηn)a1,n

= ηnh(a1,n, S̃,C̃)+a1,n,(2.13)

whereh(x, S̃,C̃)
△
= xT S̃x

xTC̃x
S̃−1C̃x−x, converges asymptotically to the solutiona1

7 of

(2.12). Therefore, by letting the covarianta2 evolve accordingly as:

(2.14) a2,n =−D−1BTa1,n,

we have asymptotic convergence to the only stable stationary pointa = [a1;a2] of (2.12).

In Lemma 2.4, we show that the iteration given in (2.13) and (2.14) is identical to the

update equation in (2.10).

Theorem 2.3. Iteration according to (2.13) converges to the generalizedeigen vector that

corresponds to the largest eigenvalue of(S̃,C̃), whereS̃= [E−BD−1BT ] is the Schur

complement of the blockD in S.

The second equation in (2.12) simply states thata1 is the generalized eigen vector

for the pair([E −BD−1BT ],C̃). Observe that[E −BD−1BT ] is exactly the Schur

complementS̃ of the blockD in matrix S. SinceS is symmetric positive definite, so

is S̃ = [E−BD−1BT ]. As C̃ is the only block inC that contributes to the nonzero

spectral components andσ(C̃) = {2,−1,−2}, the second equation in (2.12) captures all

7The eigen vector paired with the biggest eigenvalue when regarded as a generalized eigen decomposition problem
from the second equation. The original constraintaTCa = 1 translates toa1C̃a1 = 1, and prevents degenerated results.
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the nontrivial components of the original generalized eigen decomposition problem (2.6).

It immediately follows from Sylvester’s Law of Inertia [40]that the generalized eigen

spectrum of(S̃,C̃) has the formλ1 > 0 > λ2≥ λ3.

Furthermore, since the generalized spectrum has no zero component, the second equa-

tion S̃a1 = λC̃a1 can be rewritten as

λ−1S̃a1 = C̃a1,

which indicates thatσ(C̃, S̃) = {λ−1|λ ∈ σ(S̃,C̃)} and the generalized eigen vector for

(C̃, S̃) coincides with that for(S̃,C̃) (up to possibly some positive scaling factor) with

the pairing determined by the element-wise inversion relation of the spectrum. Again,

since there is a unique positive eigenvalue (thus the maximum) of (S̃,C̃), the generalized

eigen decomposition of(C̃, S̃) has only one positive element as well, whose correspond-

ing generalized eigen vector is of our interest. We will makeuse of the above observed

relationship in the proof of theorem 2.3.

Proof. We consider (2.13) in the framework of generic stochastic approximation algo-

rithms [4] a1,n+1 = a1,n + ηnh(a1,n). To apply the corresponding convergence analysis

technique, we need to first justify several assumptions. Viewing (2.13) in the classic adap-

tive form, we know precisely the mathematical conditions relating to the objects, in par-

ticular, the gainηn, the functionh and the state(S̃,C̃) (in our case, since we start with

the update equation, there is no residual perturbation involved in the evolution, as opposed

to the more general form of adaptive updates). In general, the state is represented by a

Markov chain controlled by the parameter to be estimated, and it is assumed that for fixed

parameter, the state has to be asymptotically stationary, and its limiting behavior regular

in the parameter. In our setting, static collective dataS (we disregard the given constant

C) is used, the duplicate of which can be regarded as the simplest form of Markov chain
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if preferred. Therefore, the stationarity and regularity condition with respect toa1 [4] is

trivially satisfied. Furthermore, it is easy to check that the update functionh(aa, S̃,C̃) is

continuously differentiable with respect toa1 and regular (locally Lipschitz). Therefore,

we are allowed to use ODE based approach as a tool to prove asymptotic convergence.

SinceS̃ andC̃ are both constant, we omit them as argument ofh for notational brevity.

We link a continuous time ODE to the discrete time algorithm (2.13) to a first order

approximation by:

h̃(a1(sn)) =
∂
∂s

a1(s)|s=sn, a1,n = a1(sn)

≈ 1
ηn

(a1,n+1−a1,n)

=
a1(s)TS̃a1(s)

a1(s)TC̃a1(s)
S̃−1C̃a1(s)−a1(s).(2.15)

We representa1(s) as a linear combination of the generalized eigen vectors of(S̃,C̃).

(2.16) a1(s) =
K

∑
k=1

θk(s)vk.

Substituting this parameterization in (2.15) yields a coordinate-wise (with respect to the

basis{vk}Kk=1) ODE as:

∂
∂s

θk(s) =
∑K

k=1θk(s)2

∑K
k=1

1
λk

θk(s)2

1
λk

θk(s)−θk(s) ∀ k = 1,2, . . . ,K

=
[ ∑K

k=1θk(s)2

∑K
k=1

1
λk

θk(s)2

1
λk
−1
]

θk(s),(2.17)

where(λk,vk) are thekth generalized eigenvalue and eigenvector of(S̃,C̃), andθk(s) is

thekth time (iteration) varying projection coefficient indicating the strength ofa1(s) along

directionvk.

We define a regionΩ = {θ = (θ1, . . . ,θK)| |θk| ≤
√

−λk
(K−1)λ1

|θ1| for k> 1}. In our

case,K = 3 and 0> λ2≥ λ3. It is easy to check that∑K
k=1 θk(s)2

∑K
k=1 λ−1

k θk(s)2 ≥ 0 for anyθ ∈Ω. For

k > 1, λk < 0, and (2.17) states that

∂
∂s

θk(s) = αk(s)θk(s)
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with αk(s) < 0 for all k> 1. It follows from Lyapunov stability theorem [46] thatθk(s) = 0

ass→ ∞ for k > 1. On the other hand, sinceλ1 > 0 > λ2≥ λ3, we have

K

∑
k=1

λ−1
k θk(s)

2 < λ−1
1 θ1(s)

2 < λ−1
1

3

∑
k=1

θk(s)
2.

Subsequently,

∂
∂s

θ1(s) =
[ ∑K

k=1θk(s)2

∑K
k=1

1
λk

θk(s)2

1
λ1
−1
]

θ1(s) >
[ ∑K

k=1θk(s)2

λ−1
1 ∑3

k=1θk(s)2

1
λ1
−1
]

θ1(s).

Unlike the other modes (k 6= 1) where origin serves as a stable sink, the magnitude ofθ1(s)

increases as its ODE behaves as

∂
∂s

θ1(s) = α1(s)θk(s),

with α1(s) > 0. Therefore,a1→ v1 asymptotically.

We have thus far proved the asymptotic convergence if the update follows the ODE. In

other words, when the step sizeη is sufficiently small. Bigη values correspond to cruder

discretizations of the ODE, and may cause discrepancies between the convergence prop-

erties of the ODE and the original update equation (2.13). Inorder to reveal this effect, we

need to explore the pole structure of the dynamic system in both continuous and discrete

time. We consider the behavior ofh̃(a1(s)) in the neighborhood of the stationary point

a1(s) = vk, wherevk is thek-th generalized eigen vector of(S̃,C̃). Local linearization

results in

Ak =
∂

∂a1(s)
h̃(a1(s))|a1=vk.

It is easy to see that the eigenvalues ofAk are given byσ(Ak) =
{λk

λ j
−1, j ∈{1,2, . . .K}\

{k}
}

. These are the Laplacian domain poles. The transformation in (2.15) defines a map

to Z-domain viaz= ηs+1. We list below all possibilities in mapping the pole patterns in

Laplacian domain and Z-domain8:

8This is very different than the commonly seen eigen decomposition of correlation matrices where spectrum is always
positive.
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1. Whenλk,λ j are of the same sign,s= λk
λ j
−1∈ (−1,κ−1).

When s > 0 (s-pole in RHP),z = ηs+ 1 > 1 falls outside the unit circle, which

corresponds to locally unstable pattern. Whens∈ (−1,0) (s-pole in LHP),−1< z<

0 lies inside the unit circle, stable.s= 0 corresponds toz= 1, for critical stability.

2. Whenλk,λ j are of opposite signs, ands= λk
λ j
−1∈ (−2,−1)⊂ LHP.

In this case,z = ηs+ 1 ∈ (−1,0) is inside the unit circle, corresponds to a locally

stable pattern.

3. Whenλk,λ j are of opposite signs, ands= λk
λ j
−1 <−2⊂ LHP.

In this case, the s-pole lies inside the LHP, corresponding to local stability. To avoid

discrepancy, we want the mapped z-pole to fall inside unit circle. Recall that with

S̃ andC̃ both normal,κ(S̃,C̃) = |λmax(S̃,C̃)

λmin(S̃,C̃)
| whereλmax andλmin are maximal and

minimal (by moduli) eigenvalues of the generalized eigen decomposition. Therefore,

s≥ −κ− 1, and withη asymptotically bounded above by2κ+1, z∈ (−1,1) corre-

sponds to a local stable pattern.

Therefore, the local stability pattern of the stationary points for the ODE and the update

equation (2.13) agree. This links the convergence of the ODEto that of the discrete-time

equation, and asymptotic convergence ofa1 is thus proved.

Lemma 2.4. Iteration (2.10) is identical to the set of updates given in (2.13) and (2.14).

Proof. Recall thatS̃ is the Schur complement of blockD in

S =







E B

BT D






.

Performing matrix inversion in block form results in:



18

(2.18) S−1 =







S̃−1 −S̃−1BD−1

−D−1BTS̃−1 D−1 +D−1BTS̃−1BD−1







Setting aside the generalized Rayleigh quotient in (2.13),we observe that the major matrix

operations involved in the update can be “extracted from (2.18) as:

S̃−1 =

[

I 0

]

S−1







I

0







−D−1BTS̃−1 =

[

0 I

]

S−1







I

0






.(2.19)

Notice that the sparse structure inC induces the following relations:

Ca =







C̃a1

0






=







I

0






C̃a1

aTCa = aT
1 C̃a1(2.20)

Therefore, we can rewrite the iteration in (2.13) as:

(2.21) a:,n+1 = ηnλnS
−1Ca:,n +(1−ηn)a:,n,

whereλn denotes the generalized Rayleigh quotient estimated in then-th iteration.

Furthermore, we rewrite the numerator of the generalized Rayleigh quotient as:

aT
1 S̃a1 = aT

1 [E−BD−1BT ]a1

= aT
1 Ea1−a1BD−1DD−1BTa1

= aT
1 Ea1−a2Da2,(2.22)

by the dependence ofa2 ona1 indicated in (2.14).

Putting the above ingredients back into the iteration yields the compact representation

(2.10).
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2.3 Adaptive Ellipse Fitting

For ellipse fitting, the matrixC describes the shape prior (constraint) of the data, and

remains constant. When new data becomes available, the system dynamics are reflected

via changes in the empirical covariance matrixS. Formulation (2.10) expresses the update

of the state estimate in terms of sub-blocks and inverse ofS directly (with no hidden or

intermediate transformations as in (2.13)). This enables astraightforward derivation for

the update equations whenS changes upon the arrival of new data samples. Notice that

S takes on the form of empirical covariance, so the diagonal sub-blocksE andD are

empirical covariance matrices with respect to their own subspaces and are completely

decoupled. In practice, the update of the generalized Rayleigh quotient can be performed

accordingly. In essence, the only quantity of real concern in updating the state estimate

is S−1. To incorporate the time varying property of the system, we can simply extend

the previous results with a hyper-level evolving time tag. To express the time varying

property of the system, we usean(i),Sn(i) etc. to denote the various quantities at a given

acquisition timet = i∆t. For a giveni, we rewrite (2.10) as follows:

an+1(i) = ηn
an(i)TW (i)an(i)

an(i)TCan(i)

(

S(i)
)−1

Can(i)+(1−ηn)an(i), n = 0,1, . . . ,Ni−1,

a0(i +1) = aNi(i),(2.23)

whereNi denotes the number of iterations used to compute the ellipseparameters at a

given time i. The challenge is to compute the inverse ofS(i + 1) efficiently, and we

provide below efficient rank-one updates forS−1 for both the sliding window adaptation

and exponential discount adaptation.
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2.3.1 Sliding Window Adaptation

In the sliding window adaptation, we use a constant length sliding window to “mask

out” the historical data samples except the ones that are close enough to the time instance

of interest. We defineS(i) = ∑i
j=t−L+1z jz

T
j with L indicating the constant window size.

When a new sample pairzi+1 becomes available,

S(i +1) =
i+1

∑
j=i+1−L+1

z jz
T
j

= S(i)−zi−L+1z
T
i−L+1 +zi+1z

T
i+1.(2.24)

To computeS(i + 1)−1 from S(i)−1, we denoteQ(i) = S(i)−zi−L+1z
T
i−L+1, so that

S(i + 1) = Q(i) + zi+1z
T
i+1. We invoke the Woodbury matrix identity [39] to compute

S(i +1)−1 with two step rank one updates:

Q(i)−1 = (S(i)−zi−L+1z
T
i−L+1)

−1

= S(i)−1−S−1zi−L+1(z
T
i−L+1S(i)−1zi−L+1−1)−1zT

i−L+1S
−1

S(i +1)−1 = (Q(i)+zi+1z
T
i+1)

−1

= Q(i)−1−Q−1zi+1(z
T
i+1Q(i)−1zi+1 +1)−1zT

i+1Q
−1.(2.25)

For this procedure to be executable, invertibility of(xT
t−L+1S(t)−1xt−L+1− 1) and

(xT
t+1Q(t)−1xt+1+1) are required. The second one is obvious withQ > 0. We prove the

first condition in Section 2.6. This pair of properties (2.25) provides a recursion forS(i).

Substituting into (2.10) yields a recursion in the estimation parametersa(i).

2.3.2 Discounting Adaptation

As an alternative to a fixed-length sliding window, we can usetemporal discounting

to emphasize the most recent data. In this case, we defineS(i) = 1−γ
1−γt ∑i

j=1γi− jz jz
T
j ,

whereγ ∈ (0,1) is a user-selectable discounting parameter. We can easily write S(i +1)
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recursively as:

(2.26)
1− γi+1

1− γ
S(i +1) = γ

1− γi

1− γ
S(i)+zi+1z

T
i+1

Invoking the matrix inversion lemma yields the recursion for S(i +1)−1:

(2.27)

S(i +1)−1 =
1− γi+1

γ− γi+1 S(i)−1−S(i)−1zi+1

{

1− γ
γ− γi+1 +zT

i+1S(i)−1zi+1

}−1

zT
i+1S(i)−1.

Substituting this in (2.23) yields an adaptive ellipse fitting algorithm with temporal

discounting.

2.4 Application to Tracking Respiratory Mean Drift

Modeling and predicting tumor motion caused by respirationis challenging due to tem-

poral variations in breathing patterns. Treatment approaches such as gating or adaptive bed

adjustment/alignment may not require full knowledge of instantaneous position, but might

benefit from tracking the general trend of the motion. One simple method for tracking

mean tumor position is to apply moving average filters with window sizes corresponding

to the breathing periods. Yet respiratory motion is only semi-periodic, so such methods

require reliable phase estimation, which is difficult in thepresence of noise. As an alter-

native, we form a state vector from the respiration signal values at the current instant and

at a previous time, and utilize the algorithms discussed in Section 2.2 and Section 2.3 to

dynamically fit ellipse models to the training data and extract the mean position according

to (2.2). Ellipse eccentricity and orientation potentially capture hysteresis in respiratory

motion. We test the proposed method with simulated breathing traces, as well as with

real time-displacement (RPM, Varian) signals. Estimationtraces are compared with retro-

spectively generated moving average results to illustratethe performance of the proposed

approach.



22

2.4.1 Application Background

Accurate modeling and prediction of tumor motion caused by breathing is a challenging

problem. Previous studies [37,53,110,126] have noted the difficulty of instantaneous po-

sition tracking and prediction. Given such limitations in accuracy, and considering the ac-

tual dosimetric impact of small motion variations, treatment approaches such as gating or

adaptive bed adjustment/alignment may not require instantaneous position, but might ben-

efit from following trends of the motion, in particular mean position drifting and/or abrupt

shifts. Current amplitude-based gating systems compare an instantaneous tumor location

measurement with a pre-determined gating window thresholdand trigger the treatment

beam on/off. A potential modification to such systems would incorporate real-time mean

drifting information to (1) adjust bed position to compensate for continuous mild drifting;

(2) trigger the treatment beam off upon detection of significant drift. Compensating for

mean position drifting could increase effective delivereddose given a fixed treatment mar-

gin, or alternatively, it could allow the use of smaller margins to achieve the same dose

delivery. Previously, other investigators have shown thatthere could be only limited gains

in trying to eliminate breathing movement completely, and laid the groundwork for con-

sideration of the methodology described here. Engelsman demonstrated that the margin

needed for cyclic breathing can be represented as a Gaussianwith standard deviation of

0.4 times the amplitude of motion [27]. Wolthaus demonstrateda method for efficiently

selecting a mean patient representation from a 4D CT data set [133]. Evidence from these

and other investigations [52] hint at the possibility that a’tracking’ system that estimates

variation in position such as the local mean may provide significant benefit by reducing or

eliminating non-periodic trends in motions, while reducing demands on temporal response

and acceleration of couch or multileaf collimator-based adjustment systems.

Fig. 2.1 illustrates how real-time knowledge of mean drifting helps to reduce gating
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margin for the same treatment dose delivery (90% in this simulation). In this example,

mean compensation reduces the margin by about 70% compared to traditional static gating

approach.

Furthermore, mean drift (or home position motion) is more stable, with slower temporal

variation than instantaneous position. This makes it more practical to seek an estimator

for this lower order quantity. By imposing smoothness, a good estimator should be less

susceptible to noise than instantaneous position trackers.
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Figure 2.1: Effect of drift compensation for gating system:respiration trajectory (blue solid line); mean
position (red dashed line); gating with static window with 90% delivery coverage (magenta
dashdot line); mean drift compensated dynamic gate with 90%coverage (black dotted line).

The seemingly intuitive moving average filter is impractical for real-time application

due to (1) the absence of “future” observations at the instant of estimation, and (2) the

difficulty of estimating instantaneous phase online from noisy observations.

2.4.2 Experiment Setup

We simulated two sets of data so that we could have “ground-truth” for verification

purposes. For the first set of simulations, we used noise-free, strictly periodic data with

both ideal sinusoid and modified cosine models [69]. In particular, the discrete sinusoidal
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and modified cosine waveforms were generated respectively with

xsin
i = x(i∆t) = x0 +asin(πi∆t/T−φ)(2.28)

xmodified cos
i = x(i∆t) = x0−acos2n(πi∆t/T−φ),(2.29)

where we used the valuen = 2. In the second test, we generated a semi-periodic sinusoid

function with slow frequency drifting by modulating thelocal frequency with random

offset components, as follows

xsin
i = x0 +asin

{

π∆t
i

∑
k=1

(1/T +δk)−φ

}

(2.30)

xmodified cos
i = x0−acos2n

{

π∆t
i

∑
k=1

(1/T +δk)−φ

}

,(2.31)

where theδk values were randomly distributed via a Gaussian distribution N
(

0,σ2
)

with

σ≪ 1/T. In the simulation, we set periodT = 5 seconds,∆t = 1/30 corresponding to a

sampling frequency of 30Hz, home positionx0 = 0, magnitudea = 5cm, and systematic

phase offsetφ = 0. Fig. 2.2 shows typical simulation traces.

For real clinical data, we used the Real-Time Position Management (RPM, Varian Med-

ical Systems, Palo Alto, CA) system to obtain the trajectories of external fiducials placed

on the chests of 12 patients. The displacement-time relationship was recorded at 30Hz and

is assumed to be highly correlated with superior-inferior diaphragm motion [126], which

is a major source of respiratory motion for tumors in the chest or lung area. We centered

and scaled the unit-less RPM data so that their dynamic rangecorresponds to typical SI

motion for chest and lung tumors [108,110]. We can thereafter consider the units to be on

the order ofmmfor typical thorax tumor motion. Characteristic parametersfor the RPM

data used in our experiment are reported in Table 2.1.
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ID V.S. Parameter 1 2 3 4 5 6 7 8 9 10 11 12

Data Characterization9

STD 2.91 6.47 13.05 2.83 4.86 2.78 4.30 7.61 2.08 7.72 13.04 6.56
P-P 10.93 25.03 48.91 9.02 13.09 11.47 17.77 26.93 13.14 37.44 38.97 32.54

Period (sec) 4.5 4.6 7.2 5.6 4.4 5.4 4.7 9.7 4.7 4.1 3.1 5.2

Table 2.1:RPM Dataset information

2.4.3 Results

The fitting methods approximate data in the state space(x,y) by ellipses. It is desirable

to have the center of such ellipse, which corresponds to the mean estimator, to be robust

to missing data, spurious data, and to input data lengths that differ from the ideal period

centered at the time instant of estimation. Fig. 2.2 illustrates both data-abundant cases

and the cases where only a segment ( 3 seconds worth) of arc data is available for fitting.

The fitted ellipses are overlaid with the observation samples in the augmented state space.

The second column in Fig. 2.2 illustrates that ellipses are reasonable approximations for

the scattered observations in the state space. The difference between column 3 and 4 in

Fig. 2.2 indicates the change of parameters in the presence of scarce and/or non-centered

data. Not only does the ellipse fitting method degrade gracefully with partial data, but also

the mean position estimated from this approach is reasonably stable. This empirical study

illustrates the feasibility of using the proposed method inmean tracking and prediction.

Adaptive Estimation

We first test the case where we use a fixed interval of the most recent data. In the real

time estimation and prediction setting, all the input samples into the estimation algorithm

precede the time instant of interest. We also want to emphasize that the windowed history

is used to help estimate the ellipse parameters; and it need not have integer multiples of the

period. We tested the windowed ellipse fitting with 5 second and 7 second local history

length, and report the results in Fig. 2.3. Discount adaptation yield very similar results
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Figure 2.2: Illustration of ellipse fitting performance of the proposed method. Each row corresponds to a
different data source: row1 (aX) ideal sinusoid; row2 (bX) ideal modified cosine; (cX) locally
modulated (noisy) sinusoid; (dX) locally modulated (noisy) modified cosine; (eX) clinical RPM
trace scaled so that P-P≈ 10mm to mimic SI motion. Column-wise: X(1) time-displacement
graph; X(2) augmented state space with displacement and itsdelay (τ = 0.5 seconds); X(3)
ellipse fitting (red dashed line) applied to complete dataset; X(4) ellipse fitting (red dashed line)
applied to partial dataset.

to the windowed fitting, resulting in virtually overlappingreal-time mean tracking curves.

We omit them from the figures for visualization clarity. We also plot the outputs of two

simple moving average filters with fixed window lengths.

We constructed our simulations to have frequency 0.2Hz for deterministic cases or
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c(1) c(2)

d(1) d(2)

e(1) e(2)

Figure 2.3: Comparison of moving average (MA) and ellipse fitting estimator for mean position tracking:
left column X(1): “oracle” history window length:L = 5 seconds matches the underlying signal
periods exactly; right column X(2): history window lengthL = 7 seconds disagrees with the sig-
nal periods. Rows correspond to different data source as in Fig. 2.2. Blue solid line: observation
signal; black dotted line: moving average output; red dash dot: output from the ellipse fitting
algorithm.

centered around that for the randomly frequency modulated realizations. Therefore, the

“ground-truth” mean motion was zero for all the simulations. The clinical RPM data

(Patient 1 in both Table 2.1 and Fig. 2.6) also has approximately the same frequency. Since
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both the simulated and clinical data lack mean drifting, a good estimator for the mean

position should yield very stable (flat) output. When we select the training window size

to be the “oracle” (ground-truth value unknown to the algorithm) value ofL = 5 seconds,

which coincides with the signal period, outputs are stable from both the moving average

operator and the proposed method10, as illustrated by the the left column in Fig. 2.3. On

the other hand, it is impossible to guarantee that the history window size will always match

the “true” period. We illustrate the effect of a disagreement, where window sizeL = 7

seconds in the right column in Fig. 2.3. The moving average filter exhibits undesirable

oscillations, whereas the ellipse fitting method provides comparable results as in the case

of perfect period match.

The size of the sliding window and the discount factor must compromise between re-

sponse speed (tracking efficiency) and robustness (tracking stability). Even though the el-

lipse fitting method is not too sensitive to the window size, it is helpful to choose window

lengthL and discount factorγ from a short segment of training data. Fig. 2.4 illustrates the

effect of various choices of window length parameterL on mean estimation performance

with some RPM data and Fig. 2.5 illustrates the effect of the discount factorγ. For RPM

data with relatively long period and slow drifting (as in Fig. 2.4(a) and Fig. 2.5(a)), it is

desirable to use a larger window size (and correspondingly weaker discounting, largeγ)

to take advantage of its robustness. On the other hand, for breathing signals that have

relatively short periods and rapid shifts in mean position,such as the one illustrated in

Fig. 2.4(b) and Fig. 2.5(b), shorter window lengths and small discount factors are prefer-

able for prompt response to mean changes.

To automatically adjust the sliding window length and the discount parameter, we take

10A constant offset (as observed in the modified cosine case) has marginal clinical effect, as long as it is consistent.
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Figure 2.4: Effect of window lengthL on tracking performance. Solid line: observation; red dashed line:
L = 7 seconds; green dash-dot line:L = 5 seconds; black dotted line:L = 3 seconds. (a) RPM
with relatively long period; (b) RPM with relatively short period
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Figure 2.5: Effect of discount factorγ on tracking performance. Solid line: observation; red dashed line:
γ = .99; green dash-dot line:γ = .97; black dotted line:γ = .95. (a) RPM with relatively long
period; (b) RPM with relatively short period

a short segment of training data at the beginning of each treatment fraction, and apply a

subspace projection-based period estimation method [102]. For the signals in Fig. 2.4,

the signal in subplot (a) yields a period estimate of 9.7 seconds and the signal in sub-

plot (b) yields a period estimate of 3.1 seconds. Using the estimated period as the sliding

window length and choosing the corresponding discount factor appear to be reasonable

based on Fig. 2.4 and Fig. 2.5. We apply this scheme to automatically choose the adaptive

parameters for all of the 12 RPM datasets and report the results in Fig. 2.6. For base-

line comparison, we collect the complete trajectory, and apply a moving average filter

with the “oracle” window sizeL to obtain a reasonable “ground-truth”. The deviation of

the two adaptive real-time mean position estimator from this “gold standard” (with con-

stant offset compensated) is reported in terms of mean squared error (RMSE) in Table
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2.2. Both adaptive methods demonstrate reasonable agreement with the retrospectively

obtained “ground-truth”.
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Figure 2.6: Mean tracking for RPM data with window size determined by period estimator. solid line: ob-
served data; black dotted line: retrospective moving average mean estimation with “oracle”
period; red dash line: sliding window mean estimator with window sizeL chosen with period
estimation during training phase; green dash-dot line: discounting estimator with discount factor
γ chosen such thatγL/∆t = 1/20.

ID V.S. Parameter 1 2 3 4 5 6 7 8 9 10 11 12

PeriodL (sec) 4.5 4.6 7.2 5.6 4.4 5.4 4.7 9.7 4.7 4.1 3.1 5.2
Sliding Win RMSE 0.35 0.77 0.96 0.23 0.68 0.36 0.35 0.90 1.09 1.22 1.21 1.40
Discount factorγ .978 .979 .986 .982 .978 .982 .979 .990 .979 .976 .968 .981

Discounting RMSE 0.36 0.77 1.08 0.24 0.71 0.35 0.44 1.22 1.54 1.55 2.18 1.39

Table 2.2:Mean Estimation Performance

Sensitivity to Sampling Rate

In some cases, it is preferable to obtain observations at a low frequency. This is par-

ticularly true when internal tumor motion is extracted fromreal-time imaging devices

that would incur radiation dose. Sparse sampling poses a particular challenge to the con-

ventional mean estimator based on a moving average filter, which is more vulnerable to
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miss calculation of period length when there are very few samples, resulting in intolera-

bly high variance in mean estimation. We tested the use of sparse real-time observations

by subsampling from the 30Hz signal, applying both windowedand discounted adaptive

algorithms to estimate the mean target position, and comparing with the retrospectively

generated “true” mean from densely sampled data. Fig. 2.7 illustrates how different ob-

servation rates affect overall RMS error across all patients. Both adaptive approaches are

quite robust to low sampling rate. In particular, as the windowed adaptation only used

historical samples that are within one period, which is normally about 4−6 seconds, the

observable “break-down” at 1Hz in Fig. 2.7(a) corresponds to estimating the ellipse from

4−6 samples only, which is somewhat expected. On the other hand, the discounted adap-

tation utilizes all previous samples in a weighted fashion,and is naturally less affected by

sparse sampling as shown in Fig. 2.7(b).
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Figure 2.7: Overall RMS error (across all patients) as a function of sampling rate: (a) with windowed ellipse
fitting adaptivity; (b) with discounted ellipse fitting adaptivity with discount factorγ chosen such
thatγL/∆t = 1/20. Both methods are robust above 2Hz sampling rates.

Setting the Temporal Scale

The size of the window widthL and the discount factorγ control the trade-off between

response speed and smoothness of the tracking trace in each adaptive algorithm respec-
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tively. Even though the ellipse fitting method is robust to missing data (e.g., a partial

period), it is still desirable to react more promptly when changes are more frequent (short

underlying breathing periods and/or rapid shifts in mean position) and track stably other-

wise. For fixed-length sliding window adaptivity, it is preferable to choose a window size

that roughly matches the “true” period of the signal. Therefore, we use a short segment

of training data at the beginning of each treatment fraction, find the closest periodic func-

tion to the training segment using a subspace projection method [102] and use the derived

period as the fixed window lengthL.

We could choose the discount factorγ analogously by usingeffective memory length,

defined by

(2.32) L̃(i) =
i

∑
j=1

γi− j ,

because the time unit has a more intuitive physical interpretation. For largei, the efficient

memory length is̃L = 1
1−γ . In other words, we expect the performance of an adaptive mean

tracker with discount factorγ = 1− 1
L to behave similarly to a sliding window estimator

with window sizeL. In general, however, the discount method should be more stable,

but less responsive towards changes than the correspondingsliding window approach with

L = L̃ because previous samples are never completely “forgotten”. Thus, we use the period

estimated from projection as noted before [102] to findL from 20 seconds of training data,

then findγ such that

γαL = β,

where the pair of parameters(α,β) adjusts the decay rate. It has the interpretation that the

effect of a given sample decays toβ afterα periods. We found that in practiceα = 1 and

β = 0.05 is a reasonable choice and we use these values in later investigations.
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2.4.4 Discussion

Although we assumed uniform sampling for simplicity, the proposed approaches easily

generalize to nonuniform sampling scenarios, thanks to therobustness of the fitting pro-

cess. Lower sampling rates should affect the estimation less than the partial datasets tested

in Fig. 2.2. Nearly uniform but sparse sampling along the ellipse would increase estimator

variance, but should not introduce bias, unlike the partialdata case where all the samples

are concentrated along an arc segment.

Unlike simple filtering methods, the ellipse fitting method is more objective-oriented: it

is specifically designed for estimating time-variant mean of breathing signals. The ellipse

model reflects the semi-periodicity of respiratory motion.The fitting process is flexible

enough to capture changing trends yet is robust enough to control noisy oscillations. The

adaptive algorithms provide efficient updates of the ellipses and allow the users to deter-

mine the update rates of the fitting. For adaptive methods using either sliding window

or discounting factor, parameter selection involves the trade-off between system response

speed and stability. We have suggested one way to adjust the sliding window lengthL

based on the estimated nominal period length, and discusseda connection between the

discount factorγ and the “effective memory length”̃L to provide some guidance about the

choice of those parameters. Fast drifting sequences require a more responsive system, and

this should be reflected in the corresponding parameter settings. Even though the mean

drifting pattern and the respiratory frequency are very often closely correlated, a slow (and

regular) breathing pattern may still exhibit abrupt changes, as observed in the upper-left

corner of Fig. 2.6. It is possible to resolve this issue by applying the proposed method

on a training segment and then investigating the variation pattern of the estimated mean

position to further decouple the different causes of the mean position changes. As rela-

tion (2.32) only holds asymptotically, and the discountingmethod is less forgetful than its
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sliding window counterpart, the discount factor may need tobe further reduced to accom-

modate the more rapidly changing trends.

Our algorithms generalize easily to non-uniformly sampledobservations and higher

dimensional cases. Commercial solvers for some intermediate steps, such as generalized

eigen-decomposition, are available. Clinical experience and physical prior knowledge can

help guide choosing either the proper sliding window size ordiscount factor. In general,

both the window size and the discount factor allow real-timeadjustment (at the possible

cost of more complicated update rules), and could even be tuned intra-fraction, if neces-

sary. The intuitive interpretation of the parameters in terms of window sizeL, effective

memory lengthL̃ and decaying parameters(α,β) makes the control of those parameters

practical.

Practical issues that are worth further investigation include learning of mean position

drifting rate, abnormal abrupt change detection, and proper adjustment of the adaptivity

pace. This concerns the clinically significant question of “how far we can reliably extrap-

olate into future based on current observations”. For clinical use, the proposed method

needs to be further validated on both external surrogate andinternal tumor trajectories, as

they may bear different noise properties. Dose effect on various treatment methods and

software-hardware cooperation issues should also be studied.

2.5 Generalized Fitting Cost for Robust Estimation

It is often desirable to use a potential function that is robust to the presence of outliers.

It is therefore, natural to ask for extension of the squared algebraic distance to robust po-

tential functions such as generalized Gaussian, Huber, Hypergeometric,etc. When a more

general form of the potential function is to be used, the problem can not be reduced to

generalized eigen-decomposition, because the potential is no longer quadratic. General
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purpose optimization routines need to be studied. Note thatthis is not a dramatic sacrifice

as [90] shows that the generalized eigen decomposition problem can be mapped bijec-

tively into determing whether a matrixA−λB is copositive. Meanwhile, the problem of

determing the copositiveness is shown to be NP-complete [82], so is the generalized eigen

problem.

Proposition 2.5. The set defined bya′Ca≥ 1 is a union of two convex sets.

Proof. Recall the condition for defining the set can be rewritten as 4ac−b2≥ 1 wherea =

[a,b,c,d,e, f ]T . It is straight forward that[d,e, f ]∈ℜ3 is a convex subspace. We only need

to test the subspace of[a,b,c]. Observe that feasible points satisfy 4ac≥ b2 +1 > 0, thus

a andc would have the same sign. This naturally split the whole set into two disconnected

portionsa′Ca≥ 1,a> 0 anda′Ca≥ 1,a< 0. Without loss of generality, we concentrate

on proving the convexity of the setU = {a′Ca≥ 1,a > 0} hereafter.

Let (a,b,c) and (x,y,z) are points insideU . SinceU is closed, its convexity is im-

plied by “midpoint convexity” [16]. It suffices to test midpoint convexity, which we prove

below:

4
a+x

2
c+z

2
− (

b+y
2

)2−1 = 1/4
{

4ac+4xz+4az+4xc−b2−2by−y2−4
}

≥ 1/2{2az+2xc−by−1} .(2.33)

Notice that

az+xc ≥ 2
√

azxc= 2
√

(ac)(xz)

≥ 2

√

b2 +1
4

y2 +1
4

=
1
2

√

(b2 +1)(y2 +1).(2.34)
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However,

(b2 +1)(y2 +1) = b2y2 +b2 +y2 +1≥ b2y2 +2by+1 = (by+1)2,

thus
√

(b2 +1)(y2 +1)≥ by+1 (This relation holds regardless of the signs ofb andy).

Plugging into (2.33) results in

4
a+x

2
c+z

2
− b+y

2

2

−1≥ 0,

yielding midpoint convexity ofU .

In principle, we could consider general-purpose optimization techniques to solve a gen-

eral objective function of the formΦ(Z;a) = ∑N
i=1φ(zi ;a), with φ = φr(·;δ)◦F(zi ;a) =

φr(a
Tzi;δ). φr may be chosen to be a robust fitting function; it should be positive sym-

metric about the origin, and equals zero if and only if the argument is zero. Our goal is to

solve the general constraint optimization problem:

â = argmin
a∈C

Φ(a),

whereC is a given constraint set.

We will start by considering a simple constrained minimization method calledgradi-

ent projection, which is essentially the gradient descent method with projection on the

constraint set at the end of each iteration.

(2.35) a(n+1) = P C (a
(n)−α∇Φ(a(n))),

wherePC denotes the projector on to the convex setC . If stepsizeα is chosen appro-

priately, then for certain families of cost function, the gradient projection method (2.35)

converges, as established by Theorem 2.6 below. [6, p. 83] analyzes a generalization of the

above algorithm.



37

Theorem 2.6. LetC denote a nonempty, convex, closed subset ofℜnp. Let Φ : ℜnp→ ℜ

be convex and differentiable with gradient g(x)
△
= ∇Φ(x) satisfying a Lipschitz condition

of the form‖∇Φ(a)−∇Φ(ã)‖ ≤ L‖a− ã‖ , ∀a, ã ∈ C . Suppose the set of minimizers

X ⋆ =
{

a⋆ ∈ C : Φ(a⋆)≤Φ(a), ∀a ∈ C
}

is nonempty. If0 < α < 2/L, then the gradient

projection algorithm (2.35) converges to somea⋆ ∈ X ⋆.

In our case, the convex half cone is defined bya′Ca ≥ 1. Given a initial pointa0 =

a(n)−α∇Φ(a(n)). If a0 /∈ C , then the projectiona = PC (a0) has to satisfy:

a0−a ‖Ca⇒ a0−a = γCa

a′Ca = 1,(2.36)

whereC =















0 0 2

0 −1 0

2 0 0















and its spectraρ(C) = {−2,−1,2}. There are two scenarios

to be considered:

1. Whenγ ∈ −ρ(C)−1 = {1/2,1,−1/2}, the linear operatorI + γC has a nontrivial

null-space of dimension one. The solutiona in that case is obtained as the intersec-

tion between a two-dimensional plane (co-dimension one equals the multiplicity of

the corresponding eigenvalue) and the cone shape.

2. Let Assumingaγ
△
= [I + γC]−1a0 for γ /∈ −ρ(C)−1. We need to findγ such that

a′γCaγ = 1.

Let the eigen decomposition ofC beC =VΛV ′ and the above equality can be rewrit-

ten as:

a′0V[I + γΛ]−1Λ[I + γΛ]−1V ′a0 = 1.

Noting thatV is the “natural” coordinate system determined byC andV ′a0 is the

representation ofa0 in that coordinate, we rewrite the problem in the general form
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of y′0Λ̃(γ)y0 = 1 where we can identifyy0 = Va0 andΛ̃(γ) is the diagonal scaling

[I + γΛ]−1Λ[I + γΛ].

Without further manipulation, this corresponds to finding the roots to a 6th-order

polynomial.

We usually desire the resulting projectiona to be close to the starting pointa0. It follows

from a0−a = γCa that

‖a0−a‖22 = γ2a′C ′Ca,

and it is straight forward to pick out thea that is closest toa0 in L2 sense among several

(up to 6) candidates.

As stated in Theorem 2.6, the stepsizeα in (2.35) needs to be upper-bounded by 2/L to

ensure convergence, whereL is the Lipschitz constant for the gradientg(x). In what fol-

lows, we will use Huber function as an example to illustrate the procedure of obtaining an

upper bound for the Lipchitz constantL. We letφ(zi ;a) = φh(·;δ)◦F(zi ;a) = φh(a
Tzi ;δ)

as the fitting measure, whereφh is the huber function given by:

(2.37) φh(t;δ) =











1
2t2 |t|< δ;

δ|t|− 1
2δ2 |t| ≥ δ.

Notice that this is reasonable fitting measure asφh ≥ 0 and the equality holds if and only

if zi falls on the ellipse parameterized bya.

The column gradientg(Z;a,δ) is given by:

g(Z;a,δ) =
∂

∂a
Φ

= ∑
i

φ′h(a
Tzi;δ)zi ,(2.38)

whereZ
△
= [z1,z2, . . . ,zn] is the collection of all data points.

Our goal is to find the Lipchitz constantL such that

‖g(Z;a,δ)−g(Z; ã,δ)‖2≤ L‖a− ã‖2 ,
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for all a andã on the feasible setC .

‖g(Z;a,δ)−g(Z; ã,δ)‖2 =

∥

∥

∥

∥

∥

∑
i
[φ′h(a

Tzi ;δ)−φ′h(ã
Tzi;δ)]zi

∥

∥

∥

∥

∥

2

(2.39)

Note that the derivative of huber function is nonnegative with its slope bounded above

by unity:

φ′h(t;δ) =



























t |t|< δ

δ t > δ

−δ t <−δ.

Thus|φ′h(t;δ)−φ′h(t̃;δ)| ≤ |t− t̃|. Substitutingt = aTzi andt̃ = ãTzi yields:

(2.40) |φ′h(aTzi ;δ)−φ′h(ã
Tzi;δ)| ≤ |aTzi− ãTzi|

Letc
△
= [φ′h(a

Tz1),φ′h(a
Tz2), . . . ,φ′h(a

Tzn)] andc̃
△
= [φ′h(ã

Tz1),φ′h(ã
Tz2), . . . ,φ′h(ã

Tzn)],

then (2.39) can be rewritten as:

‖g(Z;a,δ)−g(Z; ã,δ)‖2 =
√

(c− c̃)TZTZ(c− c̃)

=
√

ρ(ZTZ)‖c− c̃‖2 .(2.41)

Subsituting the elementwise bound (2.40) into‖c− c̃‖2 yields:

‖c− c̃‖2 =
√

∑
i
(ci− c̃i)2

=
√

(a− ã)TZTZ(a− ã)

=
√

ρ(ZTZ)‖a− ã‖2 .(2.42)

Substituting (2.42) into (2.41) yields:

‖g(Z;a,δ)−g(Z; ã,δ)‖2≤ L‖a− ã‖2 ,
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whereL = ρ(ZTZ). A loose upperbound forρ(ZTZ) is trace
{

ZTZ
}

= ∑n
i=1zT

i zi asZTZ

is nonegative definite. This is a reasonable result considering the “strength” of∇Φ(a)

incorporates the collective effect of all the data points, and in in extreme cases whenzi are

“aligned” would scale as the number of sample points, andρ(ZTZ)≈ trace
{

ZTZ
}

. This

loose upperbound may be convenient to use when the data are dynamically updated, as it

does not require repetitively performing eigen decomposition.

We remark on the structure of the generalized fitting with robust cost here.

• It is reasonable to assume that the general robust fitting objective takes on the form of

Φ(Z;a) = ∑N
i=1φr(z

T
i a;δ) where theφr is some robust cost function andδ controls

its shape and scale. Moreover, the symmetry ofφr about the orgin in its argument

(aTzi) translates naturally to the overall objectiveΦ. This symmetry has an impor-

tant geometric implication. Recall that the feasible set ofparameters is the union of

two convex cones distinguished by the sign of the first element of a; together with

the above analysis about the geometry of the objective function, we conclude that the

graph of the objective is symmetric about the origin11. Technicality aside, this clears

the last bit of reservation one may have towards the applicability of the gradient pro-

jection method. Given an initiala0, one can arbitrarily pick a cone (the natural choice

would be the one whose first coordinate has the same sign as theelement ofa0), and

then perform gradient projection on the chosen cone. Based on whichever minimizer

a⋆ we obtained , a simple reflection results in−a⋆: another minimizer with the same

objective function value that resides on the other convex cone.

11This is a bit sloppy, since the graph lies inℜdim(a)+1 dimension, so it should be ideally stated as symmetric with
respect to(0,Φ(Z;0)). However,0 is not a feasible point in the domain, soΦ is not defined on that point, which makes
this statement illegitimate. A quick remedy would be to redefineΦ as:

Φ̃(a) =

{

Φ(a) a ∈ C ;
+∞ a /∈ C .

and the graph of̃Φ is symmetric with respect to(0,∞).
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• Given the iterative structure of the gradient projection method, extension to adaptivity

is natural. For static data case, we alternate between two operations: projection

onto the feasible setC and gradient descent in the direction of∇Φ. Notice that the

inclusion of a new data point only perturbs∇Φ by ∇φ(znew), but does not affect the

projection operatorPC . The result from previous iterations should be regarded as an

initialization to the updated cost function. More specifically, the adaptive version for

the gradient projection algorithm is given by:

an+1(i) = PC (an(i)−α∇Φ(an(i))), n = 0,1, . . . ,Ni−1,

a0(i +1) = aNi(i),(2.43)

wherei indexes the data samples andn indexes the inner iterations.

• We used algebraic distance to implicitly represent the ellipse to obtain a convex for-

mulation and a simple solution. It is possible to modify the algebraic fit of the ellipses

to drive it closer to the geometric solution, which is the minimizer of geometric dis-

tance. The idea is to weigh the samples based on a given estimation, leading to a

simple iterative mechanism. [11] provides the following interpretation. The algebraic

solutiona is the least squares minimizer ofΦ. Let h(z) be the geometric distance

from the center of the fitted ellipseOe to z

h(z) = ||z−Oe||2,

and determinepi by intersecting the ray from the ellipse’s center tozi and the ellipse.

Then

φ(zi) = κ
(h(zi)

2

h(pi)2 −1
)

≈ 2κ
h(zi)−h(pi)

h(pi)
, if zi ≈ pi ,(2.44)



42

for some constantκ. Thus one may interpret the algebraic solution as a fit to the

ellipse with respect to the relative distances, where distant points are weighted less

than near points. This explains why the algebraic solution tends to neglect points

far from the center. This is in fact, a desirable trait in manyapplications where non-

eccentric ellipses are favored.

If one prefers to minimize the absolute distance, then datazi can be weighted with

h(pi) for a given estimated ellipse. The resulting estimated ellipse may then be used

to update the weight, thus iteratively solving the weightedleast squares problem.

Naturally, if one is interested in solving the fitting in least squared sense for the

geometric distance, then the weight for datazi may be set tod(zi)/φ(zi) whered(zi)

is the geometric distance ofzi from the currently estimated ellipse. The advantage of

such iterative weighted least squares scheme is that the there is no need to compute

Jacobian or Hessian as in the case of a direct nonlinear optimization with respect

to geometric distance. The drawback is that its solution generally differs from the

minimizer of the geometric distance.

To harvest the benefit of using robust objectives, we need to choose the parameters for

those functions properly. For instance, the threshold parameter for Huber function deter-

mines the transition fromL2 cost toL1 penalty. Without assuming prior knowledge about

the mixing probability of normal samples against noise outliers, we determine the parame-

ter by considering the classification sub-problem. In particular, we use the Ostu’s method,

aiming to best distinguish between the normal and noisy samples. More specifically, after

thenth iteration, we examine the distribution of the fitting error and find the valueδ(n+1)

that minimizes the within-class variance of the fitting error from the previous iteration

{ei = φh(a
Tzi;δ(n))}. Mathematically, the threshold parameter at thenth iterationδn is
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selected as the minimizer to

σ2
w(δ)

△
= w1(δ)σ2

1(δ)+w2(δ)σ2
2(δ),

wherew1 = P(ei ≤ δ) is the probability of normal samples (errors smaller than threshold)

under the assumption of thresholdδ, w2 = 1−w1; σ2
i is the empirical variance of each

class.

We illustrate the robustness of the proposed method with a simulated example. Noisy

samples were uniformly distributed inside the computationregion with a roughly elliptical

object (the bone contour from a head CT slice). Figure 2.5 illustrates the initial fitting

with quadratic minimization and the evolution of the estimated ellipse with the gradient

projection method.
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Figure 2.8: Evolution of robust fitted ellipse with the gradient projection method: blue dots: observed sample
locations; green line: fitted ellipse.

2.6 Appendix

• Proof for the statement about stationary points of the energy ratio function in (2.7).

Claim 2.7. The generalized eigen vectors of(A,B) correspond to the stationary

points of the energy ratio function

J(u) =
uTAu

uTBu
.
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Proof. We compute the stationary point of the energy ratio functionJ(u), i.e., we

set:

(2.45)
∂

∂u
J(u) = 0

T .

The derivative on the LHS of (2.45) turns out to be:

∂
∂u

J(u) =
1

uTBu
[AuuTBu−BuuTAu].

With A > 0, B > 0 as previously assumed, so thatuTAu anduTBu are simply

positive scalars, setting the above expression to zero is equivalent to requiring

uTBuAu = uTAuBu.

This is exactly the condition for generalized eigen decomposition:

Au =
uTAu

uTBu
Bu.

Therefore, the generalized eigen vectors are the stationary points for the energy ratio

functionJ(u). Moreover, the evaluated functional values provide the corresponding

generalized eigenvalues. This result can be considered as ageneralization of the

Rayleigh-Ritz theorem.

• Derivation for (2.17)

We make use of the relationship between the generalized eigen decomposition(S̃,C̃)

and(C̃, S̃). Up to a constant gain, the set of generalized eigen vectors of the two

problems coincide, pairing with element-wise inverted spectrum. Since we aim to

prove the convergence of the coefficients of the eigen vectors either to zero or really

large, the constant scaling can be neglected for the sake of argument clarity. We use

the alternative setup of(C̃, S̃) in deriving (2.17) to take advantage of the assumed
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positive definiteness of̃S. The generalized eigen decomposition of(A,B) with

B being symmetric positive definite indicates the existence of a generalized eigen

matrixV (with columns being the generalized eigen vectors) that cansimultaneously

diagonalizeA andB:

AV = ΛBV ;

V TBV = I;

V TAV = Λ.(2.46)

WhereΛ is a diagonal matrix whose diagonal elements are the corresponding gen-

eralized eigenvalues of(A,B). Indeed, the use of two-stage conventional eigen de-

composition to compute generalized eigen decomposition reflects exactly this prop-

erty. We apply this to(C̃, S̃) and call their eigen matrixV . Again, V is also an

eigen matrix for(S̃,C̃).

The linear representation in (2.16) can be rewritten as:

a1(s) = V θ(s),

whereθ(s) = [θ1(s),θ2(s), . . . ]T .

Substituting in the relevant terms in (2.15), we have

a1(s)
TS̃a1(s) = θ(s)TV TSV θ(s) =

K

∑
k=1

θk(s)
2

a1(s)
TC̃a1(s) = θ(s)TV TCV θ(s) = θ(s)TΛ−1θ(s) =

K

∑
k=1

λ−1
k θk(s)

2

S̃−1C̃a1(s) =
K

∑
k=1

λ−1
k θk(s)(2.47)

The second and third lines in the above derivation also make use of the element-wise

inversion relation between the spectra of(C̃, S̃) and(S̃,C̃).
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Representing both the LHS and RHS of (2.15) with respect to the basis{vk}k=1,2,...,K,

and we have coordinate-wise equation (2.17).

• Proof of invertibility in (2.25).

Proposition 2.8. LetQ(t)
△
= S(t)−xt−L+1x

T
t−L+1, then(xT

t−L+1S(t)−1xt−L+1−1)

is invertible.

Proof. Proving the invertibility of a scalar quantity is the same asshowing that it is

none-zero. We rewrite the relation betweenS andQ as:S(t)=Q(t)+xt−L+1x
T
t−L+1.

Invoking the Woodbury matrix inversion lemma, we get:

(2.48)

S(t)−1 = Q(t)−1−Q(t)−1xt−L+1(x
T
t−L+1Q(t)−1xt−L+1 +1)−1xT

t−L+1Q(t)−1.

Plugging (2.48) intoxT
t−L+1S

−1xt−L+1−1 yields:

xT
t−L+1S

−1xt−L+1−1

= xT
t−L+1[Q(t)−1−Q(t)−1xt−L+1(x

T
t−L+1Q(t)−1xt−L+1 +1)−1xT

t−L+1Q(t)−1]xt−L+1 +1)−1

= xT
t−L+1Q(t)−1xt−L+1−xT

t−L+1Q(t)−1xt−L+1
1

xT
t−L+1Q(t)−1xt−L+1 +1

xT
t−L+1Q(t)−1xt−L+1

Let p
△
= xT

t−L+1Q(t)−1xt−L+1, thenp > 0 asQ(t) > 0. We rewrite the expression in

(2.49) in terms ofp and get

p− p× 1
p+1

p−1 =
1

p+1
[p(p+1)− p2− (p+1)] < 0.

This result states thatxT
t−L+1S(t)−1xt−L+1−1 < 0, thus invertible. In fact, the neg-

ativity of this term is not accidental, but a natural consequence of the consistent re-

lation stated below. WhenxT
t−L+1S(t)−1xt−L+1−1 6= 0, we could apply the matrix

inversion lemma in two different ways (expressingS−1 with Q−1, and the other way
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around), and obtain:

Q(t)−1−S(t)−1 = Q(t)−1xt−L+1(x
T
t−L+1Q(t)−1xt−L+1 +1)−1xT

t−L+1Q(t)−1

= −S(t)−1xt−L+1(x
T
t−L+1S(t)−1xt−L+1−1)−1xT

t−L+1S(t)−1.(2.49)

BecauseQ> 0, the RHS of line 1 in (2.49) is positive definite. With the minus sign in

the front and its quadratic form, line 2 in (2.49) indicates thatxT
t−L+1S(t)−1xt−L+1−

1 < 0 if it is ever nonzero (otherwise (2.49) cannot be established in the first place).



CHAPTER 3

Regularized Nonrigid Image Registration

1 In medical applications, spatial alignment is often required to properly integrate useful

information from separate images [74,139].Registrationis the procedure of retrieving the

transformation that maps from the target image’s coordinate space to the source image’s

coordinates.

Registration algorithms can be classified according to the family of transformations.

Rigid/affine (global) registration algorithms have only a few degrees of freedom, while

nonrigid registration algorithms often have a very high dimensional space of feasible trans-

formations. Usually, rigid registration methods provide satisfactory matching results for

individual bone structures, but are in general not descriptive enough for elastic tissues that

undergo more free-form deformations.

Nonrigid registration problems can be highly under-determined when transformations

of high dimensionality are used, resulting in ill-conditionedness, instability of solutions

as well as multiple local optima. Regularizations are usually introduced to alleviate these

issues and to effectively incorporate prior physical knowledge into the problem formu-

lation. Regularized nonrigid image registration algorithms usually involve minimizing a

1This chapter is based on material from [103].
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cost function, consisting of a dissimilarity measure and a penalty term that discourages

undesirable transformations. Conventional regularization methods usually treat the region

of interest (ROI) as one single deformable body and homogeneously penalize deviations

from smoothness or incompressibility properties of the deformation field [55,56,96].

However, homogeneous smoothness regularization has its limitations. In particular,

ignoring the elasticity differences between tissue types can cause non-physical results,

such as bone warping. Furthermore, isotropic smoothing throughout the ROI blurs motion

edges, resulting in artifacts across motion interfaces where sliding effects occur, which are

commonly observed between diaphragm and rib cage during respiration.

To address the tissue-dependent elasticity issue, segmentation-based methods were pro-

posed to treat each segmented region of an image independently [51, 64, 129]. These

methods rely heavily on precise segmentation and may incur boundary issues with over-

lapping/vacuum region in the deformed image. Empirical spatial filtering was also used to

“correct” the deformation field as a post-processing step [113]. Unfortunately, its deviation

from an optimization setup complicates convergence assessment. To study discontinuities

in deformation field, some recent research addresses motionfield discontinuity problem

using variation-based techniques for joint segmentation and estimation [24,135]. In these

methods, smooth regions and singularity set (edges) are devised according to image in-

tensity, and registration aims to align each part respectively. The smoothness and discon-

tinuity in the deformation itself is not addressed directly. We adopt the regularized opti-

mization framework, and propose regularization designs toaddress the tissue-dependent

elasticity and discontinuity preservation issues respectively.

Section 3.1 introduces the regularized registration setup. Section 3.2 provides an ap-

proach to incorporating tissue-type-dependent rigidity information into nonrigid registra-
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tion2 and Section 3.3 proposes a class of discontinuity preserving regularizers to address

the effects of sliding along motion interfaces. Given the general regularized optimization

setup, various optimization techniques can be used. We adopted B-spline parametriza-

tion in Section 3.2 for its natural smoothness, and variational flow in Section 3.3 to better

reveal the anisotropic filtering structure. These are specific choices for representing the

deformation that are independent of the regularizers themselves, and should not be con-

sidered as limitations: in particular, the variational flowsolved on rectangular grids can be

regarded as a special case of zero-th order B-spline with itssupport equal to the pixel size.

Preliminary results are demonstrated with each approach.

3.1 General Optimization Formulation for Regularized Registration

The goal of nonrigid registration is to find the optimal transformation T∗ such that

the transformed source image best matches the target. We usef ,g : Ω→ ℜ to denote

the intensity map for the source and target images respectively, whered is the image

dimensionality, and the open setΩ⊂ℜd denotes the physical region of interest (ROI) for

registration. LetT : Ω→ℜd be the transformation. Our goal is to find:

T̂ = argmin
T∈Γ

E(T, f ,g)

= argmin
T∈Γ
{Ed(g, f ◦T)+Er( f ,g;T)},(3.1)

where the setΓ is the class of admissible transformations.E is the overall objective func-

tion that we want to minimize, consisting of two parts:Ed(g, f ◦ T) denotes the data

dissimilarity measure, also called data infidelity term, and Er( f ,g;T) denotes the reg-

ularization term that is applied to penalize undesirable transformations. In the general

regularization setting,Er can also depend on imagesf andg.

2We proposed this method in 2006 [103] while [114] and [115] independently studied a similar penalty in 2006 and
afterwards.



51

3.1.1 Data Dissimilarity (Infidelity) Measure

Let x∈ Ω denote the coordinate (in vector form) of a specific spatial location. We use

Tx to denote the local transformation at locationx and∑x(·) to denote the summation over

a discrete lattice that is a subset ofΩ.

Sum of Squared Differences (SSD)

The sum of squared differences is a sensible data dissimilarity metric when the ref-

erence and the homologous image are acquired with the same modality with consistent

parameters:

(3.2) Ed,SSD= ∑
x

(g(x)− f (T(x)))2.

This metric has been considered by [58,61,62,85,116].

Mutual Information (MI)

When different modality images are to be registered, mutual information (MI) is a

popular choice, since it does not require explicit knowledge about the intensity mapping

between different modalities [20,72,75,88,117,127,131]:

Ed,MI = −I(g, f ◦T)

= −H(g)−H( f ◦T)+H(g, f ◦T),(3.3)

whereH(·) denotes the entropy of a random variable andH(·, ·) denotes the joint entropy

of two random variables.

In medical image data, we only have access to discrete samples of the intensity. To

both improve the smoothness of the dissimilarity measure and approximate its derivative,

we use Parzen window to estimate a differentiable entropy from the sample values [25].
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Following the setup in [117], the joint discrete Parzen histogram is:

(3.4) hPaz(F,G;T) =
1

ε f εg
∑
x

w
(F− f (T(x))

ε f

)

w
(F−g(x)

εg

)

,

for F ∈ B f and G ∈ Bg, whereB f and Bg are discrete sets of intensities associated

with the source and target images respectively.w(·) is the Parzen window that integrates

to unity, andε f , εg control the width of Parzen window in each dimension of the joint

histogram.

The data infidelity term (negative mutual information) is computed using the normal-

ized joint discrete Parzen probabilityp(F,G;T) ∝ hPaz(F,G;T) as:

(3.5) Ed,MI =− ∑
F∈B f

∑
G∈Bg

p(F,G;T) log2
p(F,G;T)

pf (F ;T)pg(G)
,

wherepf (F ;T) andpg(G) are obtained by marginalizing the joint probabilityp(F,G;T)

over binsBg andB f respectively.

Other dissimilarity criteria used in image registration include correlation coefficient and

its variation; and landmark matching based comparison. It is also common to combine two

or more of the above metric (e.g., SSD and landmark) depending on the applications.

3.2 Tissue-type Dependent Rigidity Regularization

For modeling efficiency, we parametrize the deformation field Φ(x)
△
= T(x)−x instead

of the transformationT itself. To improve the conditioning of the problem, a roughness

penalty is incorporated in terms of the gradients of the deformationΦ, using the squared

Frobenius norm‖∇Φ‖2Frob. We define the local tissue rigidity based regularization tobe a

weighted superposition of local non-rigidity penalty,∑xγ(x)r(Tx). The overall regularizer

reads:

Er( f ,g;T) = Enonrigid( f ,g,T)+Eroughness(T)

= ∑
x
{γ(x)r(Tx)+α(x)

∥

∥∇Φx
∥

∥

2
Frob}.(3.6)
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Here, we focus on designingEnonrigid , where we will chooser(Tx) to penalize the devia-

tion of the local transformations from being rigid, andγ(x) is the spatially varying weight

that reflects local tissue rigidity properties. In particular,γ(x) controls thelocal “trade-off”

between intensity match and deformation rigidity. It should be large within bone structures

and small within more elastic regions,e.g. muscle and fat. We call it“local stiffness fac-

tor” to reflect this physical interpretation. Correspondingly, the spatially varying“local

smoothness factor”α(x) controls the local trade-off between intensity match and defor-

mation smoothness. Since we are mainly interested in spatially varying stiffness property

in this work, we setα(x) to be a constant throughout the ROI for simplicity.

3.2.1 Regularization Design

Local Rigidity Functional

The local rigidity functionalr : (ℜd → ℜd) → ℜ≥0 quantifies how much the local

transformation deviates from being rigid. We desire the functionalr to have the following

properties:

• r(Tx) = 0 if and only ifTx is a rigid transform.3

• The functionalr should be invariant to orthogonal coordinate transformation.

To satisfy the first property, we utilize the following arguments:

Lemma 3.1. A necessary and sufficient condition for a transformation T to be rigid at x

is that its Jacobian matrix DTx
△
= ∇T(x) is orthogonal.

The proof follows from the group structure of the isometry onℜd, and the fact that the

Jacobian operation provides a group homomorphism between the isometry group onℜd

3Here, we equate rigid transformation with the isometry inℜd, which by formal definition also includes reflections.
However, reflection rarely occurs in practice. Moreover, the roughness penalty described in (3.6) and our choice of a
smooth basis for parametrization the deformation field further decreases the chance of a local reflection in the transfor-
mation estimate.
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and the orthogonal group ind-dimension.

Lemma 3.1 involves a matrix property, so it suffices to designa penalty that measures

how “non-orthogonal” the Jacobian matrix of the local transformationDTx is.

We use the following fact:

Lemma 3.2. A necessary and sufficient condition for a matrix M∈ℜd×d to be orthogonal

is that
∥

∥MMT − Id
∥

∥= 0, where‖·‖ denotes any matrix norm.

If M is orthogonal,MMT = Id, and
∥

∥MMT − Id
∥

∥= 0 for any norm. On the other hand,

for any matrix norm,
∥

∥MMT − Id
∥

∥= 0 impliesMMT = Id, which is exactly the definition

for a square matrixM to be orthogonal.

Therefore, once we definer(Tx) based on
∥

∥DTx(DTx)
T − Id

∥

∥, the first required property

is automatically satisfied.

Lemma 3.3.
∥

∥DTx(DTx)
T − Id

∥

∥ is invariant under isometric (rigid) transformations.

Isometric transforms on the coordinate system can be incorporated into the local trans-

formation Tx by applying the inverse transform. By the chain rule of differentiation, it

immediately follows thatD(Tx◦g) = DTxDg. If g is an isometry by assumption, thenDg

is an orthogonal matrix, and the invariance result follows from a simple manipulation:

D(Tx◦g)D(Tx◦g)T = DTxDg(Dg)T(DTx)
T

= DTx(DTx)
T .(3.7)

Thus
∥

∥DTx(DTx)
T − Id

∥

∥ also satisfies the second property above.

For simplicity and computation efficiency, we choose to use the squared Frobenius

norm, and define the following local rigidity regularization function:

(3.8) r(Tx)
△
=

1
2

∥

∥DTx(DTx)
T − Id

∥

∥

2
Frob.
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Some previous work enforces tissue incompressibility by constraining the Jacobian

determinant to be close to unity [55], but a unity valued transformation determinant is only

a necessary but not sufficient condition for local rigidity.The combination of Jacobian

determinant with its condition number may be a possible alternative, but would require

spectral analysis which is computationally demanding. We choose the squared Frobenius

norm because it satisfies the two properties above and yet is easy to compute.

Local Stiffness Factor

To design the spatially varying local stiffness factorγ(x), which determines the relative

weighting between data infidelity and deviation from rigidity, it would be desirable to

have accurate knowledge about mass, elasticity, as well as other mechanical properties.

Unfortunately, detailed information is rarely available.Instead, we infer the rigidity level

of local tissue from observed CT values. The empirical designcould be improved given

more precise/specific prior knowledge. We observe that in calibrated X-ray CT images,

pixel intensity (CT number) is highly correlated with tissuetype information, hence is

a good inference source for local rigidity. Therefore, instead of designing a direct map

γ : Ω→ℜ+, we define the local stiffness factor by applying a transfer functions(·) to the

image intensity map:

γ(x) = s( f (x)),

wheres: ℜ→ℜ+ is a monotone increasing map from the domain of CT number to rigidity

level. We choose to use a scaled and shifted hyperbolic tangent function in our application

due to its simplicity (two parameters with clear shape meaning) and desirable mapping

form: the properly placed sharp rising edge distinguishes bone structures from more elastic

tissues, while the saturation behavior is robust to small intensity variations of the same

tissue type.
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Fig. 3.1 shows the empirical histogram taken from a 192×160×60 breath-held thorax

CT volume with voxel size 0.2×0.2×0.5cm3. Observations for the tissue type v.s. CT

number (in Hounsfield unit) relationship agree with theoretical values [49] in that:

Air : −1000HU

Fat

Muscle











: −100∼ 60HU

Bones : 250∼ 1000HU.

We choose the location and shape parameters for the hyperbolic function such that the

non-rigidity penalty dominates in the bony structures, andis relaxed within elastic tissues.

−1000 −500 0 500 1000
CT number (HU)

Scaled Histogram

Stiffness Factor

air

lung

fat

muscle

bony structure

(a) (b)

Figure 3.1: Illustration of stiffness factors(·). (a) design of functionalh based on theoretical tissue-type-to-
CT-number map; (b) scaled stiffness factor v.s. tissue typeinformation inferred from empirical
histogram.

Parametrization and Optimization

We adopt the widely used tensor product B-spline basis to parametrize both the defor-

mation fieldΦ [62] and the image intensity. In practice, we often use B-spline βn(x) of

ordern = 3 for both purposes in volumetric registration. B-splines are smooth functions

with explicit derivatives [119] and finite support. They arepiecewise polynomials and can
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be recursively constructed by convolution [121,122].

The deformation for each directionr is represented independently with the correspond-

ing set of B-spline coefficientsΘl = {θl
i} as follows:

(3.9) Φl (x;Θ) = ∑
i∈N (x)

θl
iβi(x).

For volumetric case (d = 3), l ∈ {1,2,3} represents deformation direction alongx,y andz

coordinates respectively, and separable B-spline basis isused:

βi(x) = β
( x

∆x
− i
)

β
( y

∆y
− j
)

β
( z

∆z
−k
)

,

where i = (i, j,k) denotes the B-spline knot location,∆x,∆y,∆z determines the scale of

B-spline in each direction,x = (x,y,z) denotes the spatial location, and its neighborhood

N(·) is determined by the support of the B-spline basis.

The image model provides a continuous representation of an image given by a set of

samples. In fact, only the source image requires interpolation in the formulation consid-

ered here:

(3.10) f (x) = ∑
i∈N (x)

ciβi(x),

where the expansion B-spline coefficientsci are computed from the sample values ofG by

recursive digital filtering [122].

We utilize a multi-resolution scheme in the registration process, and use gradient de-

scent method at each resolution level to evolve the overall cost function until convergence.

For optimization, we used the derivative of the SSD energy (3.2), given by:

(3.11)
∂

∂θl
i

Ed,SSD= ∑
x

(g(x)− f (T(x)))∇ f |T(x)β
n(x− i).

The derivative for negative mutual information from (3.5) is given by [117]:

(3.12)
∂

∂θi
Ed,MI =− ∑

F∈B f

∑
G∈Bg

∂
∂θl

i

p(F,G;T) log2
p(F,G;T)

pf (F ;T)
.
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The terms involved in evaluating the regularization are:

(3.13) ∇Φx =
[

∑
i

θl
iβ

j
i (x− i)

]

(l , j)∈{1,2,3}×{1,2,3}
,

whereβ
j
i denotes the derivative of the basis functionβ in the jth direction. Using the

derivative property of the B-spline, the derivative ofβ can be computed analytically [119]:

(3.14)
∂
∂x

βn(x) = βn−1(x+1/2)−βn−1(x−1/2).

The local tissue rigidity based penalty term is similarly derived based on the fact that

DTx = ∇Tx = ∇Φx + Id.

The derivative of the penalty with respect to deformation parameterθl
i can be written as:

(3.15)

∂
∂θl

i
∑
x

γ(x)r(Tx) = ∑
x

γ(x) trace
{

[DT(DT)T − Id]
[ ∂

∂θl
i

DTDTT +DT
∂

∂θl
i

(DT)T]},

where we precompute and store∂∂θl
i
DT = βl for computation efficiency.

3.2.2 Experiment and Test Results

Experiment One: Geometry Validation by Thresholding

In the first experiment, we tested the proposed approach withtwo thorax CT scans of

the same patient: one at 80% of the vital capacity inhale breath hold (deep inhale breath

hold, tidal breathing generally peaks at about 40%) and one at exhale. The scans were

512×512×148 with voxel size 0.2×0.2×0.5cm3. We used the deep inhale breath-hold

thorax CT image as the target and further cropped it to size 259×175×107 to reflect the

region of interest. Sum of Squared Differences (SSD) was used as dissimilarity metric.

Fig. 3.2 shows typical data slices (different views) of the target image, source image and

the inferred stiffness map (h◦ f ). The inferred stiffness map captures rigid structures

reasonably well.
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Figure 3.2: Different views of the original data and tissue information inferred from it. Top row [X(1)]:
coronal slices; middle row [X(2)]: sagittal slices; bottomrow [X(3)]: axial slices. Left column
[a(#)]: slices from target image; middle column [b(#)]: slices from source image; right column
[c(#)]: slices from inferred stiffness map.

We first show the registration results in slice views for pureglobal rigid, affine transfor-

mation, and nonrigid registration with and without nonrigid regularization. The deformed

source image is displayed on top of the target image for comparison purposes in Fig. 3.3.

Fig. 3.3 illustrates that nonrigid registration outperforms global rigid/affine model based

registration on matching intensity. The advantage is most obvious in regions where organs

have undergone extremely elastic deformations, such as thediaphragm. The different per-

formance in the lung area is less noticeable due to the overall low intensity level in lung
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a(1) a(2)

a(3)

b(1) b(2)

b(3)

c(1) c(2)

c(3)

d(1) d(2)

d(3)

Figure 3.3: Deformed source image (green) overlaid with target image (dark blue) for comparison of inten-
sity match. Different views are indicated with numbers: [X(1)] coronal view; [X(2)] sagittal
view; [X(3)] axial view [X(3)]. Different registration method are distinguished with letters:
[a(#)] rigid transformation model; [b(#)] affine transformation model; [c(#)] B-Spline registra-
tion with smoothness penalty only; [d(#)] B-Spline registration with both proposed regulariza-
tion.

region, so mismatch in that region is not emphasized in SSD setting. Finally, the intro-

duction of proposed tissue type dependent regularization does not seriously deteriorate

intensity matching performance compared to conventional B-spline in general.

To better reveal the geometry of the deformation, we extracted bone structures by

thresholding the CT numbers at 250 HU, because they are good indicators of tissue type.
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Geometry extracted from both the target and the deformed source volumes are overlaid to

compare the bone structure alignment in Fig. 3.4.

a(1) b(1)

a(2) b(2)

Figure 3.4: Geometry extracted from registration results:target (blue) vs. deformed source (white). Left
column [a(#)]: B-spline based nonrigid registration with no local rigidity regularization; right
column [b(#)] B-spline based nonrigid registration resultwith proposed local tissue type depen-
dent regularization. Top row [X(1)]: whole ribcage view; bottom row [X(2)]: local zoom-in
view around diaphragm neighborhood.

We can clearly observe nonphysical warping of bones in the deformed source geome-

try using conventional B-spline based nonrigid registration method without the proposed

regularization. This is a typical local optimum situation.Upon localizing the occurrence

of this particular“bone warping”phenomena, we can observe that the“pseudo-periodic”

structure of the ribs makes the resulted deformation and thedesired physical one having

comparable intensity dissimilarity (data infidelity) value. On the other hand, since B-spline

is a smooth local basis, together with smoothness regularization to enforce continuity of

the deformation field, in regions close to diaphragm/lung region where deformation of

more elastic nature occurs, the deformation of bone structures are compromised to resem-
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ble those of elastic tissues.

When the proposed regularization is applied, however, the deformation on the bone

structures are given an additional“force” to conform to rigid transformation. Fig. 3.4

shows obvious improvements regarding the bone-warping issue.

Experiment Two: Quantitative Validation with Bifurcation La ndmarks

In the second experiment, we evaluate the registration accuracy in soft tissue regions

as it might be adversely affected by the introduction of the proposed regularization. Se-

quential thorax CT scans were obtained on a helical CT scanner (CT/I, General Electric,

Milwaukee, WI) for 11 patients. Two scans were obtained from each patient, one at nor-

mal exhale followed immediately by a scan at normal inhale during coached voluntary

breath-hold periods of 18-35 seconds. Scans were obtained with a pitch of 2, using a 5mm

aperture. The total time spent from the start of the first scanthrough the completion of the

second scan was less than 5 minutes. Images were reviewed by experts to ensure that they

were free of breathing-related artifacts in reconstruction. To quantitatively analyze the

registration accuracy, we compare the position of known features in the target and source

images. A human observer chose six landmarks within the right lung per patient [21].

Landmarks included vascular and bronchial bifurcations, and were nearly uniformly dis-

tributed in the ROI. Computed transform from registration algorithms was applied to the

landmark coordinate in the target image and compared to the landmark position in the

source image coordinate. Fig. 3.5 illustrates some of the manually picked landmarks.

We applied negative mutual information (MI) as the data dissimilarity metric to reflect

the general applicability of the proposed methods, even though X-ray CT images are used

both as the source and the target image to maximize the consistency of manually picked

corresponding landmark pairs. Moreover, landmarks pickedat lung bifurcations should
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(a) (b)

Figure 3.5: Illustration of landmark data on thorax CT: (a) illustration of volumetric data; (b) manual land-
mark positioning based on bifurcations

fairly characterize the effect of the additional regularization on the soft tissue regions. We

compared thin-plate splines (TPS), conventional B-splines and the proposed regularized

B-splines in this test. In TPS setup, control points were placed manually on the source

and the target dataset. We used the TPS results from [21], where 30 control points were

used to align the inhale and exhale CT model of the right lung, with 5 each on 6 specified

Superior-Inferior planes in the target dataset. Nelder-Mead simplex algorithm was used

to maximize MI for TPS. For the conventional and modified B-spline registration, multi-

resolution scheme was used to achieve computation efficiency. In each resolution level,

control knots were placed uniformly in the low-pass filteredsource image, and B-spline

coefficients are updated using gradient descent algorithm until convergence.

We computed the difference between the deformed landmark positions on the source

coordinate and the corresponding manually picked target landmark position. Fig. 3.6

shows box plots illustrating median, lower/higher quartile, data extent and outliers to char-

acterize the registration accuracy along each axis: right-left (RL), anterior-posterior (AP),
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and inferior-superior (IS). The regularized B-spline registration is competitive against thin-

plate splines or conventional splines inside the lung. Limitation of human observer due

to image resolution (voxel size 0.2×0.2×0.5cm3) and the dominant motion in inferior-

superior direction are also reflected in the registration performance.

1 2 3 4 5 6 7 8 9 10 11
−1.5

−1

−0.5

0

0.5

1

R
L 

E
rr

or
 (

cm
)

Patient ID
1 2 3 4 5 6 7 8 9 10 11

−1.5

−1

−0.5

0

0.5

1

R
L 

E
rr

or
 (

cm
)

Patient ID
1 2 3 4 5 6 7 8 9 10 11

−1.5

−1

−0.5

0

0.5

1

R
L 

E
rr

or
 (

cm
)

Patient ID

a(1) b(1) c(1)

1 2 3 4 5 6 7 8 9 10 11

−0.5

0

0.5

1

1.5

2

A
P

 E
rr

or
 (

cm
)

Patient ID
1 2 3 4 5 6 7 8 9 10 11

−0.5

0

0.5

1

1.5

2

A
P

 E
rr

or
 (

cm
)

Patient ID
1 2 3 4 5 6 7 8 9 10 11

−0.5

0

0.5

1

1.5

2

A
P

 E
rr

or
 (

cm
)

Patient ID

a(2) b(2) c(2)

1 2 3 4 5 6 7 8 9 10 11
−1.5

−1

−0.5

0

0.5

1

R
L 

E
rr

or
 (

cm
)

Patient ID
1 2 3 4 5 6 7 8 9 10 11

−1.5

−1

−0.5

0

0.5

1

R
L 

E
rr

or
 (

cm
)

Patient ID
1 2 3 4 5 6 7 8 9 10 11

−1.5

−1

−0.5

0

0.5

1

R
L 

E
rr

or
 (

cm
)

Patient ID

a(3) b(3) c(3)

Figure 3.6: Registration error for different methods: TPS,BSP and Regularized BSP. Left column [a(#)]:
Thin plate spline registration with manually picked control points; middle column [b(#)] con-
ventional B-spline registration; right column [c(#)] B-spline registration with proposed local
tissue type dependent regularization. Top row [X(1)]: right-left (RL) registration error in right-
left (RL) direction; middle row [X(2)]: registration errorin anterior-posterior (AP) direction;
bottom row [X(3)]: registration error in inferior-superior (IS) direction.

We also calculated the Euclidean registration error between deformed landmark loca-

tions and the manually selected points. In Fig. 3.7, we ordered the patients according to the

mean Euclidean error for TPS method, and used box-plot to illustrate the Euclidean error
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Figure 3.7: Comparison of 3-dimensional Euclidean Error. Top row (left to right): TPS, BSP and Regular-
ized BSP. Bottom left: mean Euclidean error over all landmarks on the same patient; bottom
right: box plot of the Euclidean error distribution over alllandmarks through all patients.

distribution for different methods. Fig. 3.7(d) shows the mean Euclidean error of land-

mark position estimate for each patient, and a box-plot of the collective Euclidean error

for each method is provided in Fig. 3.7(e). Both conventional B-splines and regularized

B-splines uniformly outperform the manually assisted thin-plate splines method, whereas

performance of the two B-splines based registration methods are comparable. This agrees

with the qualitative results in Fig. 3.3 where the proposed regularization appears to pre-

serve the flexibility of the conventional B-splines method in soft tissues. The mean and

standard deviation of Euclidean error for regularized B-spline is MR−BSP= 0.5 cm and

σR−BSP= 0.48 cm respectively, on the same order as the slice thickness,and superior to

MTPS= 0.85 cm andσTPS= 0.55 cm from TPS orMBSP= 0.56 cm andσBSP= 0.55 cm

from conventional B-spline.
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We used three B-spline resolution levels which took about 100 iterations in the last

(finest) resolution level to converge. The computation timefor both the conventional B-

splines and the regularized B-spline are both in the order ofminutes on a standard PC (2.4

GHz CPU and 1G internal memory) running Linux. All programming and visualization

in this paper were carried out on the Advanced Visual Systems(AVS) software platform

with central modules implemented in C/C++. Including the regularization increased the

registration time by less than 20% in most cases.

3.2.3 Discussions

We quantify local non-rigidity by the deviation of the localJacobian from being or-

thogonal, measured by a computationally efficient Frobenius norm. We considered both

mono- and multi- modality registrations involving a CT imageas either the source or target

observation. Local tissue rigidity level is inferred by applying a smooth monotone func-

tion to the CT values, avoiding explicit segmentation. The smoothness of the inference

function provides robustness to partial volume effects caused by limited resolution and by

multi-resolution schemes deployed to speed up computation.

The proposed regularization design is independent of the user-specified dissimilarity

metric and the parametrization of the transformation field.We evaluated registration ac-

curacy using the popular B-spline deformation parametrization, with two different dissim-

ilarity metrics: sum of squared differences (SSD) and negative mutual information (MI).

In the first case, we visualized bone geometry in the target and the deformed source image

for qualitative assessment. In the second case, we compareddeformed landmark locations

with manually specified“ground-truth” values for quantitative validation. Comparison

among thin-plate splines (TPS), conventional B-splines and the proposed method indi-

cates minimal compromise of registration accuracy in soft tissue regions, but significantly
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improved ribcage registration.

We have performed a preliminary study on incorporating tissue type information into

nonrigid registration framework essentially via the introduction of a spatially-varying stiff-

ness coefficient map and use that to adjust the local trade-off between intensity match and

rigidity property. This allows inhomogeneous regularization throughout the deformation

field estimation. We would like to extend this work in the following aspects:

• We would like to extend the non-homogeneity that we introduced in this work fur-

ther to non-isotropic setting. In many situations, anatomical structures not only

demonstrate tissue-type dependent inhomogeneous deformation, but also directional

variations. Examples are bending in head-neck region and the dominant elonga-

tion/deformation in up-down direction (vertical direction in sagittal plan) related to

breathing motion. These information could be handled in heuristic fashions by non-

uniformly placing the B-spline knots and having different knot spacing in differ-

ent directions. However, these ad-hoc techniques could be tricky in practice and

lacks certain theoretical justification. Furthermore, adjusting B-spline knots can only

strictly control the deformation level in the 3 vertical plans, which may not be suf-

ficient for some clinical applications. We conjecture that by introducing anisotropic

regularization into the optimization framework, we would be able to have a more

flexible and straight-forward way to accommodate directionrelated priors.

• In X-ray Computed Tomography, we designed the stiffness map as the composition of

a monotone increasing function with the intensity map, taking advantage of the fact

that in this particular modality, intensity is a very reliable reference source for tissue

type information. This is not true in general. We would like to explore approaches to

address this issue for other modalities in future work.
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3.3 Discontinuity-Preserving Regularization

Motivated by the common presence of sliding effects in medical imaging,e.g., the

discontinuous motion between diaphragm and ribcage duringbreathing, we study regular-

ization schemes that preserve discontinuities in the deformation field.

Recent research on image registration that accounts for discontinuities can be classi-

fied into two categories. The first class [23, 24, 135] is basedon joint segmentation and

registration. In these methods, smooth regions and singularity sets (edges) are devised

according to image intensity, and registration aims to align each part respectively. The

smoothness and discontinuities in the deformation is not addressed directly. The sec-

ond category is motivated by edge-preserving image restoration [34, 35, 77]. Several au-

thors [10,15,33,130] have tried to generalize total variation type regularization for vector

valued functions. These methods use regularization that combines the total variation from

each deformation coordinate. Meanwhile, decomposition and representation of a vector

field by velocity potentials and stream functions [38] have motivated flow regularizations

with divergence and curl components [42,136,138]. Analogous to image denoising, [137]

has proposed a convex Hodge decomposition based total variation regularization method

to denoise vector fields, resulting in piecewise harmonic flows. This paper is closely re-

lated to the latter category, and intends to adapt such principles to design regularizations

for medical image registration applications.

There are many ways to extend regularizers,e.g., Tikhonov or total variation (TV), orig-

inally developed for scalar fields, to vector flow applications. However, naive extensions

may violate the intrinsic structure of the problem, and result in loss of desirable properties.

Taking total variation as an example, summing over the totalvariation in each component

direction [10, 33, 130] compromises the rotational invariance with respect to the coordi-
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nate system. Section 3.3.1 handles this issue with care and proposes a class of regularizers

for vector fields that preserve discontinuities in the deformation field. We provide general

analysis of their functional forms, and define some desired properties as a consequence.

We derive the descending flow for optimization based on variational calculus and discuss

briefly some implementation issues.

Section 3.3.2 further notes that only sliding or shear discontinuity is physical in med-

ical image registration, hence it is necessary to distinguish this class of admissible dis-

continuity from collision or vacuum creating singularities. To design a regularizer that

differentiates between these two types of discontinuitiesand preserves only large shears,

we take advantage of the Helmholtz decomposition, and regularize the divergence and curl

components of the vector field differently.

Preliminary result for this work in progress shows promising results.

For clarity, we discuss the derivations for 2D case, yet all analysis generalizes naturally

to higher dimensions unless specified otherwise. We represent the deformation vector

field Φ : Ω→ ℜ2 asΦ(x) = [u(x),v(x)]T , whereu andv are directional deformation and

assumed to be orthogonal (but do not have to align with the image coordinate(x,y)) in gen-

eral. As we are mainly interested in geometric regularization for smoothness/discontinuity,

the regularization term is taken to be independent of the image. It corresponds to a special

case of the regularized registration problem introduced inSection 3.1 with

Er( f ,g;T) = Er(Φ).

A constant weightλ is adopted throughout the whole image to balance the data fidelity

and regularization energy. We focus on designingEr , and assume mono-modality images

with L2 metric as data fidelity measure hereafter. Thus the goal of registration can be
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formulated as:

Φ∗ = argmin
Φ∈Γ

E( f ,g,Φ)(3.16)

= argmin
Φ∈Γ
{Ed(g, f ◦ (I +Φ))+λEr(Φ)}.(3.17)



71

3.3.1 Indiscriminate Discontinuity Preserving Regularization

To encourage smooth deformations in most of the region of interest (ROI), yet admitting

some discontinuities requires a “magnitude” measure of thelocal change of the deforma-

tion field, analogous to the norm of image gradient in image restoration. The Jacobian of

the deformationΦ atx is given by:

DΦ(x) =







ux uy

vx vy






.

We propose to use the Frobenius norm of the matrixDΦ(x) as the local measure of varia-

tion for the deformation field:

|DΦ|Frob =
√

u2
x +u2

y +v2
x +v2

y(3.18)

=
√

|∇u|22 + |∇v|22.

This matrix norm is independent of both the image coordinatesystem(x,y) and the

deformation vector field direction(u,v). For simplicity, we assume that theu andv com-

ponents of the vector field correspond to the deformation field in x andy directions respec-

tively hereafter. In addition, this measure of “deformation change” introduces coupling

among the various directions in the vector fields and reflectsthe intuition that we observe

a “jump” in the deformation field regardless of the specific direction such change occur,

unlike the simple coordinate-wise sum used in traditional optical flow regularization [3,8].

For simplicity, we make matrix Frobenius norm the default notation for|DΦ| hereafter and

drop the subscript.

We consider a class of regularizers with the form:

(3.19) Er(Φ) =
Z

φ(|DΦ|)dx.

Applying variational analysis, and assuming Neuman boundary conditions,i.e., ∂nu = 0
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and∂nv = 0 on∂Ω, we derive the descent flow [3]wr = (ur ,vr) of Er to be as follows:

ur = ∇ ·
( ∂

∂∇u
φ
)

(3.20)

= ∇ ·
(φ′(|DΦ|)
|DΦ| ∇u

)

.

The expression for the update flowvr for v is similar. For simplicity, we define the “influ-

ence function” asψ(s)
△
= φ′(s)/s.

To design a proper regularizationφ that results in edge preserving flow, we interpret the

process as anisotropic filtering and decompose the effect ofthe flow into the normal and

tangent directions foreach component of the deformation field. We derive the regulariza-

tion flow in u− direction as:

(3.21) ur = ψ(|DΦ|)(uxx+uyy)+
φ′′(|DΦ|)−ψ(|DΦ|)

|DΦ|2 (u2
xuxx+2uxuyuxy+u2

yuyy).

By convention, we denote the second derivatives ofu in the tangent (T-) direction and

normal (N-) direction asuTT anduNN respectively, with

uTT = TT∇2uT =
1
|∇u|(u

2
xuyy+u2

yuxx−2uxuyuxy);

uNN = NT∇2uN =
1
|∇u|(u

2
xuxx+u2

yuyy+2uxuyuxy).

Rearranging the terms in (3.21) yields:

(3.22) ur = ψ(|DΦ|)uTT + |∇u|2
(φ′′(|DΦ|)
|DΦ|2 − ψ(|DΦ|)

|DΦ|2 +
ψ(|DΦ|)
|∇u|2

)

uNN.

For 2D case (higher dimension situations have similar structure):

ψ(|DΦ|)
|∇u|2 − ψ(|DΦ|)

|DΦ|2 = ψ(|DΦ|) |∇v|2
|DΦ|2|∇u|2 .

The coupling betweenu andv in the flow motivates us to consider the contribution of

variation in each deformation direction in|DΦ|. We defineβu
△
= |∇u|2
|DΦ|2 andβv

△
= |∇v|2
|DΦ|2 . By

construction,β ∈ [0,1] andβu +βv = 1. Then (3.22) can be rewritten as:

(3.23) ur =
(

φ′′(s)βu +ψ(s)βv
)

uNN+ψ(s)uTT,
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Now we are ready to discuss some desired properties for the functionφ. This is more

complicated than image restoration problems asφ is intrinsically a function of bothu and

v.

• In the presence of small variations in the deformation, (|DΦ| small implies|∇u|, |∇v|

both small), isotropic smoothing is desirable in each individual deformation direc-

tion. It is reasonable to require non-trivial smoothing along the tangent direction:

(3.24) φ′(0) = 0, with lim
s→0+

ψ(s) > 0.

To have isotropic diffusion ass→ 0+ is equivalent to:

lim
s→0+

βv +βu
φ′′(s)
ψ(s)

= 1.

Together with the fact thatβu + βv = 1, isotropic diffusion for small deformation

implies

(3.25) lim
s→0+

ψ(s) = lim
s→0+

φ′′(s) > 0.

Once the conditions (3.24) and (3.25) are satisfied, the flow (3.23) for small variation

reduces to:

ur ≈ φ′′(0)∆u.

The same analysis holds forvr . We immediately recognize that this diffusion coin-

cides with the isotropic flow from the heat equation.

• In the presence of large variations in deformation (large|DΦ|), it is desirable to dif-

fuse the deformation along the discontinuity, but not across it. We need to keep in

mind that the level of discontinuity|DΦ| takes into account deformation in all di-

rections, and the diffusion process in a certain direction (u or v) is decomposed with

respect to its own gradient field. In other words, the diffusion process inu direction
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is the projection of the joint deformation flow onto that direction. To preserve dis-

continuity, it suffices to annihilate the coefficients ofuNN andvNN for large|DΦ|, and

assume non-vanishing coefficients for the tangent flow components.










lims→+∞ φ′′(s)βu +ψ(s)βv = 0;

lims→+∞ ψ(s) > 0.

If one were to insist on the annihilation of the normal flow forall possible combina-

tions of(βu,βv), it would be necessary to require:

lim
s→+∞

φ′′(s) = 0 and lim
s→+∞

ψ(s) = 0.

On the other hand, ifβu≈ 0, indicating that the variation inx−direction (|∇u|) is rel-

atively small, isotropic diffusion in that direction wouldnot result in over-smoothing

discontinuity and should be acceptable. Withv being the major contributor to the

overall discontinuity in|DΦ|, only vNN has to be annihilated. Unfortunately, this

again results in a set of incompatible conditions onφ:

lim
s→+∞

φ′′(s)≤ 0 and lim
s→+∞

ψ(s)≥ 0.

One possible compromise is to let both terms approach zero ass→ +∞, but at dif-

ferent rates:

(3.26)











lims→+∞ φ′′(s) = lims→+∞ ψ(s) = 0;

lims→+∞
φ′′(s)
ψ(s) = 0.

Many functions satisfy the above conditions (3.24),(3.25)and (3.26),e.g., the hypersur-

face minimal functionφ(s) =
√

(1+s2) [3]. Due to the nonconvex nature of registration

problems, we are interested in finding only reasonable localminima in general. In the

usual case whereEd is nonconvex inΦ, it may be unnecessary to insist onφ being convex.

We make a quick comment here:
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• φ(s) = s2 corresponds to the regularization energy:

(3.27) Er,l2(Φ) =
Z

‖∇u‖2 +‖∇v‖2dx.

This is a natural generalization of Tikhonov regularization in image restoration. It is

the same energy that Horn and Schunk [48] introduced in the optical flow setting.

• φ(s) = s corresponds to the regularization energy:

(3.28) Er,l1(Φ) =
Z

√

‖∇u‖2 +‖∇v‖2dx,

which can be regarded as a rotationally invariant generalization of the total variation

(TV) regularization for flow fields [130].

A Test Setup with Truncated Quadratic Regularizer

For simplicity, we consider mono-modality registration with L2 norm as the data fidelity

measure,i.e.,

Ed =
1
2

Z

Ω
(g(x)− f (x+Φ(x)))2,

and the corresponding variational descent flow is given by:

wd(x) =
(

g(x)− f (x+Φ(x)
)

∇ f (x+Φ(x)).

For the preliminary test, we use a truncated quadratic [9] asthe regularization function:

(3.29) φ(s,α) =











(α0
α )2s2 |s| ≤ α

α2
0 otherwise.

The disadvantage and benefit of this choice are both clear. With strict “saturation” behav-

ior above the scale parameterα, it poses a challenge for optimization. Graduated noncon-

vexification approaches can be utilized. On the other hand, this formulation provides nice

theoretical interpretations. It is natural to introduce a line process [35] which is equivalent

to “labeling” the outlier in the robust estimation setting [7].
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Figure 3.8: Truncated quadratic regularization with varying scale.

Notice that (3.29) also provides a simple recipe to extract singularity setSof |DΦ| from

the estimatedΦ by thresholding at levelα:

S= {x : |DΦ(x)|> α}.

This may be useful for extracting motion interfaces.

To alleviate the local minima issue due to nonconvexity, we start with a large initialα.

This is equivalent to use the conventional Tikhonov regularization (the vector version is

more commonly known as Horn and Schunk in optical flow) of the formEr = |∇u|2+ |∇v|2

asS= /0 for α large enough. Then the scale parameterα is gradually decreased till the

desired tolerance for discontinuity. To speed up the implementation, a multi-resolution

scheme is applied.

Preliminary Results

We apply the setup described in Section Section 3.3.1 to two coronal CT slices obtained

from deep inhale and exhale phases. Proposed regularization results in smooth deforma-

tion in homogeneous organ (lung, heart and exterior of rib-cage) and correctly preserves

motion interfaces on the boundaries between the diaphragm,heart atria, rib cage and the

lungs.



77

(a) source image (inhale) (b) target image (exhale)

(c) deformed source with Tik. reg. (d) deformed source with TQ. reg.
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(f) |DΦ| with TQ. reg.

Figure 3.9: Registration comparison between Tikhonov (Tik) and Truncated quadratic (TQ) regularizations.



78

(a) quiver plot for Tik reg.

(a) quiver plot for TQ reg.

Figure 3.10: Comparison of deformation fields.
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3.3.2 Discriminative Shear Preserving Regularizer

The problem of designing regularizer to accommodate sliding effects in medical regis-

tration has several distinct traits. First, we prefer to pose the problem in an optimization

framework with a single energy functional and obtain the deformation as its optimal, rather

than to use regularization to post-process some initial estimate or segmentation. Secondly,

the deformation should be fairly smooth except at the sliding sites. Thirdly, dramatic

local volume change seldom occurs in physical deformations; in particular, the deforma-

tion should neither create collision flow that maps different pixels to the same location

(folding) nor generate vacuums. Similarly, within the complement of the sliding surface,

shear should be fairly small. On the other hand, we should preserve the large shear at

the sliding boundaries. This requires our method to differentiate among different types

of discontinuities and regularize them accordingly. Finally, medical image registration in-

volves tissues that are elastic with sliding motion, and we expect nonvanishing divergence

and curl components from a physical deformation, so we are not interested in studying

the extreme cases of pure solenoidal or irrotational flows. The above prior knowledge can

be incorporated by devising a smooth regularization on the divergence component and a

regularization on the curl component that preserves large-magnitude. Motivated by [137],

we consider the following regularization energy:

(3.30) Er,divcurl(Φ) =
Z

Ω
α‖div Φ‖2 +β‖curl Φ‖dx.

The regularization on curlΦ is reminiscent of total variation. It penalizes small curl values,

yet is much more forgiving to large values than the quadraticform. In fact, similar to total

variation, one could argue that the proposed functional is unbiased towards shears.

As a simple sanity check, we examine how the proposed regularization energy would

drive an initial flow field. We derive the variational direction to descendEr(Φ) and use it
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to evolve the flow. In the absence of data fidelity term, one tradeoff parameter is sufficient,

and it is equivalent to descend the following function:

(3.31) Er,divcurl,2d =
Z

Ω
(ux +vy)

2 + γ|uy−vx|dx.

Both divergence and curl operators are linear and invariantto rigid coordinate transforma-

tion, so it suffices to check typical cases by aligning the flowto one of the coordinate.

• If Φ = (u(x),0),then a large value inux would indicate a jump along the direction

of the flow, which would potentially causes folding or a vacuum. Locally, we would

have divΦ = ux 6= 0, yet curlΦ = 0. Penalizing theL2 norm of divΦ as in (3.30)

discourages largeux values, thereby this helps prevent folding or vacuums.

• If Φ = (u(y),0), then a large value inuy would indicate the presence of shear along

the flow which we want the regularization to preserve. In thiscase, divΦ = 0 and

curl Φ 6= 0. Regularization with theL1 norm of curl f achieves the desired effect of

allowing this type of shear.

In 3D, the deformationΦ = (u,v,w) is decomposed into its divergence and curl com-

ponents as follows:

(3.32) divΦ = ux +vy +wz;

(3.33) curlΦ = det















i j k

∂
∂x

∂
∂y

∂
∂z

u v w















,

wherei,j,k are the unit vectors for thex−, y−, andz−axes, respectively.

Divergence is still a coordinate independent scalar field. The curl component, however,

is a vector field with three coordinatesΩ→ℜ3, and its direction is determined by the right
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hand rule. For the regularization function to be rotationally invariant, we use theL2 length

of the curl field pointwise and then integrate over the spatial coordinates,i.e.,

Er,divcurl,3d(Φ) =
Z

Ω
(div Φ)2 + γ‖curl Φ‖2dx

=
Z

Ω
(ux +vy +wz)

2 + γ
√

(wy−vz)2 +(uz−wx)2 +(vx−uy)2dx.(3.34)

Preliminary Experiment

To study the effect of proposed regularization, we first testit on an initial flow field. The

flow was evolved along the energy descending direction, which is derived using variational

calculus. We approximated the absolute value term with|uy−vx| ≈
√

(uy−vx)2 + ε where

ε is a small positive constant.

For image registration, the deformed source image needs to be interpolated. We use

the fast B-spline interpolation scheme proposed by Unseret al. [120–122] with a 4-level

multi-resolution structure [123]. The source image is represented as:

(3.35) f (x,y) = ∑
i, j

ci, jβn(
x

∆x
− i)βn(

y
∆y
− j),

whereβn is thenth-order B-spline basis.

For computational efficiency, we also use linear combinations of tensoredmth-order

B-spline basis to express the deformation field:

u(x) = ∑
i, j

du
i, jβ

m(
x

mx
− i)βm(

y
my
− j);

v(x) = ∑
i, j

dv
i, jβ

m(
x

mx
− i)βm(

y
my
− j).(3.36)

The finest level of B-spline deformation basis was chosen to be very narrowly supported

(2 pixels)so that its interpolating behavior does not compromise discontinuity preservation

within a given tolerance. It is straight forward to generalize the notations in (3.35) and

(3.36) to higher dimensions thanks to the tensor structure of the B-spline basis adopted

here.
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• Regularizing Flow

In general, it is difficult to characterize the solution to a nonlinear registration prob-

lem. To study how the regularization energy would bias the registration results, we

first examine its effect on a given flow. In particular, we are interested in checking

whether it could prevent collision/folding and vacuum creation, yet preserve sliding

(shear) discontinuities. Since the proposed penalty can beregarded as a combination

of L2 andL1 regularization on the divergence and curl component respectively, we

also compare with the results of Horn and Schunk (3.27) and total variation (3.28)

regularization.

Fig. 3.11 and Fig. 3.12 test the regularization effects on colliding flow and vacuum

generating flow respectively. Notice thatL1 regularization preserves large diver-

gence, and is vulnerable to such flow;L2 regularization successfully smooths the

flow to prevent both collision and vacuum. The proposed regularization behaves like

L2 on the divergence, and enjoys similar robustness. Fig. 3.13presents the results on

a pure shear flow. HomogeneousL2 regularization blurs the motion interface and is

inferior to theL1 regularization. The proposed method is effectivelyL1 for curl and

preserves big shears as illustrated. Fig. 3.14 provides an example where collision

and sliding coexist. It is clear that the proposed method successfully alleviates the

collision and preserves the sliding component.

• 2D Sliding Block Registration

In the first registration test, we simulated two blocks sliding against each other over

lightly textured still background. As before, we compare the performance usingL1,

L2 and the proposed regularization. The absence of a quantitative measure of perfor-

mance has always been an issue in image registration, and a “fair” choice of param-

eter needs to be made when several models are to be compared. Since the weighting
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original image transformed image original flow

Er,l1 Er,l2 Er,divcurl

Er,l1 Er,l2 Er,divcurl

Figure 3.11: Regularization results for a colliding/folding flow. First row: (left to right) original image,
transformed image, original (unregularized) flow. Second row: resulting flow under different
regularizations. Third row: image transformed according to regularized flows.

parameters in the energy functional control the tradeoff between data fidelity and

regularization, varying their values could lead to very different estimates. Indeed, all

models would coincide in the extreme case when the weight of the regularization is

set to be zero, as the result is driven solely by data matching. In the absence of a

rigorous way to choose the optimal parameters, it is only fair that we compare the

models over a range of tradeoff parameter values. Fortunately, we have access to

the ground truth deformation with the simulated data4 One may argue that there are

infinitely many deformations that would generate the same source and target image

4Due to background occlusion, there is no deformation that could match thetarget perfectly.
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original image transformed image original flow

Er,l1 Er,l2 Er,divcurl

Er,l1 Er,l2 Er,divcurl

Figure 3.12: Regularization results for a vacuum generating flow. First row: (left to right) original image,
transformed image, original (unregularized) flow. Second row: resulting flow under different
regularizations. Third row: image transformed according to regularized flows.

pair in Fig. 3.15, yet the uniform (within each block) sliding is the most common

and natural interpretation for physical motions. We expectthis simple simulation to

reasonably represent the major features of physical sliding in medical applications.

Fig. 3.16 quantifies the tradeoff between image similarity and regularization, and

their effect on estimating the deformation field. For each method under comparison,

we vary the tradeoff parameter, and plot the error of estimated deformation map v.s.

intensity mismatch. The horizontal axis is the sum of squared difference of inten-

sity values over the computation domain and the vertical axis reports the discrepancy

between the estimated deformation and the ground truth flow,measured by sum of
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original image transformed image original flow

Er,l1 Er,l2 Er,divcurl

Er,l1 Er,l2 Er,divcurl

Figure 3.13: Regularization results for a sliding flow. First row: (left to right) original image, transformed
image, original (unregularized) flow. Second row: resulting flow under different regulariza-
tions. Third row: image transformed according to regularized flows.

squared distance of the error vectors. We observe that for a wide range of data fit-

ting error, the proposed method outperforms the other alternative choices in terms of

real registration error. This makes the proposed method appealing. Unlike the oracle

ground-truth, the data fitting metric is accessible in practice, and people often choose

registration results (or regularization parameters) based on intensity error. Since the

proposed regularizer corresponds to a better deformation estimate for the same in-

tensity mismatch, it is a better choice given an fixed error budget in data matching.

Furthermore, if one has access to a good parameter choice forall regularizers (or has

the luxury of running a few trials and then somehow rate the results), the proposed
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original image transformed image original flow

Er,l1 Er,l2 Er,divcurl

Er,l1 Er,l2 Er,divcurl

Figure 3.14: Regularization results for a flow with simultaneously significant divergence and curl compo-
nents. First row: (left to right) original image, transformed image, original (unregularized) flow.
Second row: resulting flow under different regularizations. Third row: image transformed ac-
cording to regularized flows.

source image target image ground-truth deformation

Figure 3.15: Simulated sliding blocks and the ground truth deformation.

regularizer has the best performance among all.
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Figure 3.16: Registration performance comparison: registration error v.s. intensity discrepancy.
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Figure 3.17: Best estimation results (relative to the ground truth deformation) from various regularization
methods. Column-wise (left to right): (X1)L1 regularization; (X2)L2 regularization; (X3)
Proposed regularization. Row-wise (top to bottom): (a#) deformed template; (b#) quiver flow;
(c #) vertical component of the deformation.
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• 2D CT Image Registration

Sliding is widely observed along the boundary of the rib cageand internal organs. In

this test, we obtained two breath-hold X-ray CT images of a real oncology patient,

scanned at deep inhale (80%vital capacity) and exhale - a common procedure in ra-

diation treatment planning. As a preliminary study, we applied the proposed regular-

ization to register the pair of 2D coronal slices shown in Fig. 3.3.2. As in the sliding

block experiment, we compare the proposed method with theL1 andL2 regularized

results. With real clinical data, there is no ground truth, and the tradeoff parameters

were chosen experimentally. For each regularization method, we ran the registration

using several different parameter values, and picked the one that achieves a reason-

able balance between data fidelity and physical feasibilityvia visual examination.

Fig. 3.18 shows the “best” registration results of all regularization methods. With

the chosen parameters, all three regularized registrations provide comparable inten-

sity agreement between the deformed template and the targetimages. This suggests

the fairness of later comparison, as the results can be interpreted as minimization

of each regularization energy subject to the intensity match constraint. The warped

grid maps and quiver plots [Fig. 3.18(c#) & (d#)] illustratethe advantage of the pro-

posed regularization. In particular, the deformation on both interior and exterior of

the rib cage are fairly smooth, and the motion boundary in between is preserved. In-

terestingly, the proposed regularization also naturally extracts the motion boundary

between the lung and the mediastinum, which are affected differently by respiration.

As breathing mainly induces motion along superior-inferior direction (vertical in our

presentation), we examine that component closely in Fig. 3.19. Inside the thorax, reg-

istration result with the proposed regularization demonstrates good continuity, which

agrees with the physical interaction between the lungs and diaphragms during respi-
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ration. Motion discontinuities are effectively represented along the rib cage and the

surface of the mediastinum. Fig. 3.20,Fig. 3.21 and Fig. 3.22 illustrate the deforma-

tion field overlain on image intensity to reveal the agreement (or disagreement) of the

estimated deformations with motion boundaries.
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Figure 3.18: Registration results of CT data with various regularizations. Column-wise (left to right): (X1)
L1 regularization; (X2)L2 regularization; (X3) Proposed regularization. Row-wise (top to
bottom): (a#) deformed source; (b#) intensity difference between deformed source and the
target images; (c #) warp grid representation of deformation; (d#) quiver plot of deformation.
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Figure 3.19: Vertical component of the deformation from CT registration. (a)L1 regularization; (b)L2 reg-
ularization; (c) Proposed regularization.

Figure 3.20: Quiver plot overlain with image intensity forL1 regularized image registration.
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Figure 3.21: Quiver plot overlain with image intensity forL2 regularized image registration.

Figure 3.22: Quiver plot overlain with image intensity for discriminately regularized image registration.
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• 3D CT Image Registration

Unfortunately, the proposed functional seems to be insufficient by itself in regular-

izing 3D registration. In the neighborhood of sliding, the unphysical rolling effects

are widely observed. It is possible that this phenomenon is related to the Kelvin-

Helmholtz instability for shear flows. Since our algorithm iteratively updates the de-

formation flow, it behaves as an physical process that evolves the shear flow. In this

case, the shear surface is subject to the Kelvin-Helmholtz instability and any small

perturbation in the normal direction of the shear surface incurs rolling; in fact, singu-

larities occur in finite time. Also, this stability is more obvious in higher dimensions,

which possibly explains the relative benign behavior in the2D cases. As indicated

by generalized fluid flow models, introducing material viscosity and surface tension

may help prevent such turbulence. It is also possible that decomposing the overall

deformation into a concatenation of small physical steps may alleviate this rolling

artifacts, as smaller deformation requires relatively fewer iterations to resolve, and to

reach a reasonable result before the singularities form.

Figure 3.23 and Figure 3.24 illustrate the rolling artifacts.
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coronal slice of source coronal slice of target

warped grid deformed source

Figure 3.23: Coronal view for 3D discriminate registration. The same slice from source, target and deformed
source volume. Since it is a full 3D registration, the deformed source pulls information in all
(x,y,z) directions and the source slice is shown for reference purpose only.
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coronal slice of source coronal slice of target

warped grid deformed source

Figure 3.24: Sagittal view for 3D discriminate registration. The same slice from source, target and deformed
source volume. Since it is a full 3D registration, the deformed source pulls information in all
(x,y,z) directions and the source slice is shown for reference purpose only.
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3.3.3 Discussions

In Section 3.3.1, we first analyzed the conditions for a general class of regularizers

of the form(3.19) in an axiomatic fashion, in the sense that beginning from the assumed

behavior of a regularizer, we derived the consequence of these assumptions and the corre-

sponding functional form. Further noticing the necessity of distinguishing among differ-

ent types of singularities, namely, folding/vacuum v.s. shear, with the latter being the only

physically admissible, we designed different regularizers for each component based on

the Helmholtz decomposition. In particular, we have used anisotropicL2 diffusion on the

divergence component to enforce volume compatibility (no folding or gap), and adopted

anL1 regularizer on the curl component to preserve large shear.

In fact, we can substitute a more general regularization functionalφ in place of theL1

norm, and discuss the conditions onφ so that the regularized energy can preserve sliding,

as follows

(3.37) Er,gen(Φ) =
Z

Ω
α‖div Φ‖2 +βφ(‖curl Φ‖)dx.

The influence of the regularizationφ should be such that it penalizes weak curls, corre-

sponding to a smoother deformation field, but preserves the curl if it is strong. We denote

ψ(s)
△
= φ′(s)/s for s∈ (0,∞), and call it the “influence function” as before.

Mimicking the works in image restoration [3], it is easy to show thatφ needs to satisfy

the following conditions.

1. To suppress small curl values,

φ′(0) = 0, lim
s→0+

φ′(s)
s

= lim
s→0+

φ′′(s) = φ′′(0) > 0.

2. To preserve large shear,

lim
s→+∞

φ′′(s) = lim
s→+∞

φ′(s)
s

= 0 and lim
s→+∞

φ′′(s)
φ′(s)/s

= 0.
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There are many functions that satisfy these properties. In this study, we investigated

the truncated quadratic function, which was shown to be the discrete analogue of the

Mumford-Shah functional [13]; the absolute value function, which corresponds to regular-

izing theL1 norm of the curl component; and the Huber function, which canbe regarded

as the inf-convolution ofL1 andL2 functionals [14].

Shear preserving regularization for three dimensional registration needs further inves-

tigation.
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3.4 Equivalence Between TwoL2 Div- L1 Curl Regularizations⋆

Section 3.3 considered discontinuity preserving image registration with energy of the

form:

(3.38) E(Φ) =
Z

( f −g◦Φ)2dx+λdiv

Z

|div Φ|2dx+λcurl

Z

|curl Φ|dx,

which behaves asL2 regularizer on the divergence component to encourage homogeneous

smoothness in volume change andL1 regularizer on the curl component to preserve large

shears.

It is immediate that another form has similar properties:

(3.39) Ẽ(Φ) =
Z

( f −g◦Φ)2dx+λdiv

√

Z

|div Φ|2dx+λcurl

Z

|curl Φ|dx.

One may argue that regularization in (3.39) is one-homogeneous inΦ so that the coeffi-

cientsλdiv andλcurl have the same units. On the other hand, the setup in (3.38) hasnice

point-wise structure, and direct optimization is easier. If E has a unique minimizer, then

the equivalence between this two setups are trivally true; however, the data fidelity term

in intensity matching image registration problems is nonconvex, and uniqueness of the

minimizer cannot be established in general.

In what follows, we show an approximate equivalence betweenthese two formulations.

The main idea of the proof is to first transform the regularized optimization problems into

the corresponding constrained version, and then establishequivalence in the constrained

setup.

For simplicity, we use the following formulation for energy

Eλ(Φ) =
(

Z

( f −g◦Φ)2dx+α
Z

|curl Φ|dx
)

+λ
Z

|div Φ|2dx

= (| f −g◦Φ|22 +α|curl Φ|1)+λ|div Φ|22.(3.40)
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The equivalence between (3.40) and (3.38) is easily shown byidentifying λ = λdiv and

α = 1/λcurl.

Given f , g and for a fixedα, we denoteA(Φ)
△
= | f −g◦Φ|22 +α|curl Φ|1 andB(Φ)

△
=

|div Φ|22, so thatEλ(Φ) = A(Φ)+λB(Φ). SinceE is not convex in general, there may exist

multiple minimizers, and we denote the set of minimizers ofEλ as:

Cλ = {Φ : E(Φ)≤ E(Ψ), ∀Ψ ∈ Γ},

and the corresponding energy value asE∗λ = minEλ(Ψ).

Claim 3.4. For λ1 < λ2. If C1∩C2 = /0, then B(Φ1) > B(Φ2) for Φ1 ∈Cλ1
andΦ2 ∈Cλ2

.

Proof. Assume not. TakeΦ1 ∈Cλ1
andΦ2 ∈Cλ2

such thatB(Φ1)≤ B(Φ2)., then

Eλ2
(Φ1) = A(Φ1)+λ2B(Φ1)

= A(Φ1)+λ1B(Φ1)+(λ2−λ1)B(Φ1)

= E∗λ1
+(λ2−λ1)B(Φ1)

< Eλ1
(Φ2)+(λ2−λ1)B(Φ2)

= Eλ2
(Φ2).

(3.41)

The third line follows from the fact thatΦ1 ∈Cλ1
; the fourth line from the assumption that

Φ2 /∈Cλ1
andB(Φ1)≤ B(Φ2). This contradicts the assumption thatΦ2 minimizesEλ2

.

In fact, as long as we assumeΦ1,Φ2 do not simultaneously belong toCλ1
∩Cλ2

, the

contradiction would hold.

We now argue that forλ1 6= λ2, it is highly probable thatCλ1
∩Cλ2

= /0. The mini-

mizer(s) for the energyEλ(Φ) = A(Φ)+λB(Φ) need to satisfy the Euler-Lagrange equa-

tion

dA(Φ)+λdB(Φ) = 0.
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If Φ⋆ simultaneously minimizesEλ1
andEλ2

, i.e., Φ ∈Cλ1
∩Cλ2

, then it must be true

thatdB(Φ⋆) = 0. It immediately follows thatdA(Φ⋆) = 0 as well, so thatΦ⋆ satisfies the

Euler-Lagrange equation for allλ and that it is the minimizer for allEλ. In particular, it is

a minimizer for

Eλ=0(Φ) = A(Φ).

Meanwhile,dB(Φ⋆) = 0 implies divΦ = 0 andB(Φ) = 0. This means thatΦ⋆ is a

divergence free minimizer of the energy| f −g◦Φ|22+α|curl Φ|1 (which does not penalize

divergence at all!). This result also holds the other way around: if there exist a divergence-

free elementΦ in C0, thenΦ ∈Cλ ∀λ. The contrapositive of the original statement says

that if C0 has no divergence-free elements,Cλ1
∩Cλ2

= /0 ∀λ1 6= λ2.

Now we are ready to state it as a theorem.

Theorem 3.5.If Φ0 is a divergence free minimizer of E0 = | f −g◦Φ|22+α|curl Φ|1, then it

also minimizes Eλ ∀λ, and E∗λ = E∗0 = A(Φ0). If there is no such element, then Cλ1
∩Cλ2

= /0

for anyλ1 6= λ2. Moreover, forλ1 < λ2 and anyΦ1 ∈Cλ1
, Φ2 ∈Cλ2

, B(Φ1) > B(Φ2).

Recall the definitions of outer normals in [28], which is closely related to sub-differential

in functional minimization.

Definition 3.6. Given p,v∈ℜN, let H(p,v) denote the closed half space

H(p,v) = {x∈ℜN : (x− p) ·v≤ 0}.

Given a convex domainΩ⊂ℜN and a pointp∈ ∂Ω, the collection of outer normals toΩ

at p is defined as:

NΩ(p) = {v∈ℜN : Ω⊂ H(p,v)}.

Consider the 2-dimensional plane(A(Φ),B(Φ)), then for givenλ, Eλ = A(Φ)+λB(Φ)

is constant along lines of slope−1
λ . Assume the setΩ △

= {(A(Φ),B(Φ))},Φ ∈ Γ to be
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convex inℜ2 (if not, we shall consider its convex hull for now), then we have the following

lemma.

Lemma 3.7. p∈ ∂Ω is a minimizer of Eλ if and only if−(1,λ) ∈ NΩ(p).

This is a direct application of the Karush-Kuhn-Tucker (KKT) condition: the gradient

of theEλ is (1,λ). To require that∇Eλ to “point away” from the feasible set is equivalent

to the condition we stated with the definition of outer normals.

Furthermore, note that if∂Ω is differentiable atp, thenNΩ(p) contains a single direc-

tion, so this is equivalent to the traditional requirement of −∇ f = −∇g whereΩ = {x :

g(x)≤ 0}. If ∂Ω is differentiable everywhere, then anyp = (a,b) ∈ ∂Ω minimizesa+λb

for at most oneλ.

Ω

(aλ1
,bλ1

)

(aλ2
,bλ2

)

Ω

(−1,−λ)

(ah(λ),bh(λ))

(al (λ),bl (λ))

Ω

NΩ(p)

case 1 case 2 case 3

Figure 3.25: Illustration for the three cases of feasible region: strictly convex and everywhere differentiable,
nonstrictly convex and everywhere differentiable, nondifferentiable.

• Case 1. If Ω is strictly convex5, then the minimizer ofEλ for eachλ corresponds

to exactly one pointp(λ) = (a(λ),b(λ)) on ∂Ω, andb(λ) is strictly monotonically

decreasing as a function ofλ.

5

Definition 3.8. A set of pointsS in N-dimensional space is strictly convex if for every two pointsx1 andx2 belonging
to Ssuch thatx1 6= x2, the straight line segment joining the two points belongs toSbut does not belong to the boundary
of S (i.e. all the points on the interior of the straight line must be strictly in the interior ofS): that is, a setS is strictly
convex if and only if for everyx1, x2 ∈ S, and scalarν such that 0< ν < 1 we haveνx1 +(1−ν)x2 ∈ the interior ofS.
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• Case 2.If ∂Ω is everywhere differentiable, butΩ is NOT strictly convex. In partic-

ular, if ∂Ω contains line segments ofa+ λb = cλ for λ ∈ Σ, then the minimizer of

Eλ for eachλ /∈ Σ corresponds to exactly one pointp(λ) = (a(λ),b(λ)) on ∂Ω; the

minimizer of Eλ for eachλ ∈ Σ corresponds to a line segment on∂Ω, and the cor-

responding second coordinatesb(λ) form a continuum onℜ. In other words,b(λ)

(now a multiple valued function) has the property that ifλ1 < λ2, thenb(λ1) > b(λ2);

and ifb1,b2 ∈ b(λ), thenb∈ b(λ) for anyb1≤ b≤ b2.

• Case 3. If there existsp where∂Ω is nondifferentiable, and suppose that there ex-

istsλ1,λ2∈ℜ+ such that−(1,λ1),−(1,λ2)∈NΩ(p), thenp= (a,b) simultaneously

minimizesEλ1
andEλ2

. Combine with our previous argument with the specific def-

inition of Eλ, it must be true thatp minimizes allEλ. In other words,Ω ∈ H(p,v)

for v = −(cosθ,sinθ) for θ ∈ [0,π/2] (since we are only interested inλ ∈ [0,∞]).

This corresponds to the situation where a divergence-free registration arises as the

minimizer to| f −g◦Φ|22 +α|curl Φ|1, which is highly unlikely in practice, we omit

discussions about this case to avoid too much technicality.

In summary, ifΩ is convex, then6, B(Φ) is either a constant or a continuum forΦ ∈Cλ

for each fixedλ.

When∂Ω is differentiable,b(λ) is a strict monotone (potentially multi-valued) func-

tion of λ. For better presentation, we definebl (λ) and bh(λ) as the lower and upper

bounds of{b : a(λ)+λb(λ) = mina+λb,(a,b) ∈Ω}. Therefore, ifΦ ∈Cλ, thenB(Φ) ∈

[bl (λ),bh(λ)] and we have the following equivalence:

6With the exception of the rare case whereA(Φ) has a divergence-free minimizer
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(a) behavior of solution to unconstrained formulation (b) corresponding constraint

Figure 3.26: Equivalence between unconstrained and constrained formulation: Eachλ in the unconstrained
formulation maps to a constrained optimization problem minA(Φ) over a circle (or ring).

Theorem 3.9. Φ minimizes Eλ = A(Φ)+λB(Φ) if and only if it solves

minA(Φ)
s.t.B(Φ)=b, for someb∈[bl (λ),bh(λ)]

.

Proof. Quite straight-forward from previous argument.

If Φ is a minimizer forEλ, then takeb = B(Φ), and it must be a minimizer for

minA(Φ)
s.t.B(Φ)=b

.

On the other hand, ifΦ minimizes

minA(Φ)
s.t.B(Φ)=b

,

find theλ such thatb∈ [bl (λ),bh(λ)], andΦ minimizesEλ.

Sincebl (λ),bh(λ) are positive quantities, the constrained setup can be rewritten as:

minA(Φ)
s.t.
√

B(Φ)=b, for someb∈[
√

bl (λ),
√

bh(λ)]

.

Replicating all previous argument, we can show that this canbe mapped to the uncon-

strained formulation

minẼγ = A(Φ)+ γ
√

B(Φ) = (| f −g◦Φ|22 +α|curl Φ|1)+ γ|div Φ|2

for someγ.
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WhenΩ is not convex, its convex hull will contain one or more line segments, corre-

sponding to case 2. The optimum will be achieved at the end points of such line segments,

which is the intersection between the originalΩ and its convex hull. This will affect the

results in that for someλ, b(λ) may be the union of continuum (or possibly continua) and

single value(s). For the constrained formulation, this corresponds to not solving the opti-

mization if the constraintb takes on values in the complement of∪λb(λ). In that scenario,

the minimizer(a,b) lies in the interior of the convex hall ofΩ, and does not corresponds to

the minimizer of unconstrained problema+λb. This is O.K., as we are interested in show-

ing the equivalence of the unconstrained formulations finally, and the missing portions of

the constrained space does not contribute to the optimal solutions.



CHAPTER 4

Fundamental Performance Analysis in Image Registration Problems:
Cramér-Rao Bound and its Variations

1

Image registration, as a special form of signal warping, is an important task in image

processing. In contrast to the rapid development of algorithmic study in image registration,

a standard performance evaluation tool is in general absent, except [95] where the trans-

formation is assumed to be a global translation. It is important to investigate fundamental

performance criteria in a principled manner to compare the overall optimality of different

estimators for nonrigid registration problems. This chapter presents an observation model

for image registration that accounts for image noise more realistically than most formu-

lations, and describes performance analysis based on Cramér-Rao Bound(CRB) and its

related variant Modified Craḿer-Rao Bound(MCRB). We interpret the result of the com-

monly used optimization based registration as the M-estimate of the objective function and

derive its bias-variance behavior.

1This chapter is based on material from [98].
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4.1 Model - the Ideal v.s. Commonly Used

Generally, image registration methods aim to find the motionin an image sequence

{zi}, wherezi denotes theith observation (frame) of an underlying image. In reality,

only sampled observations are available, with spatial sample spacing∆. Therefore, it is

natural to use a discrete spatial index to refer to the sampled location. Without loss of

generality, we takezi[n] = zc
i (n∆) wherezc notates the underlying continuous intensity

map. Accounting for additive observation noise, we formulate the generative model as:

(4.1) zi[n] = f (n+ τi(n))+ εi [n],

where it is standard to assumeεi to be independent identically distributed (i.i.d) Gaussian

noise. In principle, the task of registering the observation sequence is to find the defor-

mation sequence of continuous maps{τi} for all i. We adopt the parametric setting, and

represent the underlying continuous image intensity as a linear combination of a finite

number of basis functionsb with coefficientsc = {ck}, i.e., f (x) = ∑K
k=1ckb(x,k). For

simplicity, we focus on pairwise registration which requires estimating one deformation

field τ, and drop the subindex inτi. Furthermore, we assume the deformation field is prop-

erly (sufficiently) parametrized withα, so the estimation performance for deformation and

image intensity may be characterized by that of the parameter set(c,α). For simplicity,

we formulate our problem in one dimension, but the analysis generalizes to higher dimen-

sions. The two observed images are modeled as:

z1[n] =
K

∑
k=1

ckb(n,k)+ ε1[n],

z2[n] =
K

∑
k=1

ckb(n+ τα(n),k)+ ε2[n] n = 1,2, . . . ,N,(4.2)

where{b(·,k)} are common intensity bases, andτ parametrized byα captures the point-

wise deformation. The components of additive noiseεi are zero mean I.I.D Gaussian with
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varianceσ2.

The formulation in (4.2) captures the spatial sampling of the observation, the finite rep-

resentation of the underlying “true” intensity{ck}Kk=1 and the dense pointwise deformation

τ.

For comparison purposes, we formulate the estimator in traditional registration setup

as the optimal transformation̂Γ such that2

(4.3) Γ̂ = argmin
Γ

D(z2,z1◦Γ),

whereD is some difference measure,e.g., sum-of-squared-difference (SSD) or mutual in-

formation (MI), andΓ indicates the transformation. In this setting, it is implicitly assumed

thatz1 (also known as the “source“) is a noise-free version of the true intensity imagef ,

andz2 (also called the “target ”) is a deformed image whose noise properties determines

the proper choice of the difference metric. Clearly there is alack of symmetry regarding

the presence of noise in this formulation.

For simplicity, we use sum-of-squared-difference (SSD) asour default choice of the

error metricD for (4.3) hereafter, corresponding to the Gaussian noise assumption, as

adopted in many practical cases.

4.2 Cramér-Rao Bound and its Asymptotic Behavior

We first reformulate (4.2) in a compact vector form as follows.

(4.4) z =







z1

z2






=







A0

Aτ






c+







ε1

ε2






= Aτc+ǫ,

2There is a slight abuse of notation here. The more precise formulation would be: Γ̂ = argminΓ D(z2,P(zc
1 ◦Γ)),

wherezc
1 the underlying intensity map that agrees withz1 on sampling grids, andP is the sampling function such that

P(zc)(n) = zc(n∆). Even so, the cost function is still incomplete, as onlyz1 is observed and the interpolatorI : z1→ zc
1

needs to be specified. The de facto objective function is thusD(z2,P(I(z1)◦Γ)).
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wherez
△
= [z1(1), . . . ,z1(N),z2(1), . . . ,z2(N)]T ∈ℜ2N andc

△
= [c1, . . . ,cK]T ∈ℜK

≥0 are col-

umn vectors by stacking the corresponding elements. The concatenated random noise vec-

tor ǫ ∼ N (0,Σ = σ2I2N). A0,Aτ ∈MN×K have elementsA0(i, j) = b(i, j) andAτ(i, j) =

b(i + τ(i), j) for i = 1,2, . . . ,N, j = 1,2, . . . ,K. The overall system matrixA = [AT
0 ,AT

τ ]T .

The Craḿer-Rao Bound(CRB) is a fundamental lower bound on the variance of any un-

biased estimator [124] and serves as a benchmark for estimator performance. When

maximum-likelihood (ML) estimators are applied, which areknown to be asymptotically

unbiased, it is often useful to bound their variance with CRB.In [45], it is suggested

that when inverting the Fisher information matrix (FIM) corresponding to the parameter

of interest only is not straight-forward, it is feasible to use “complete-parameter” Fisher

information matrices. Following a similar logic, we can write (4.4) in a more general form,

z = h(τα,c)+ǫ

= h(θ)+ǫ,(4.5)

whereh(τα,c)
△
= Ac andθ = [α,c] denotes the “complete-parameter” vector. It follows

immediately from the i.i.d Gaussian assumption of noiseǫ that the ML estimator̂θML

minimizes theL2 distance between observationz and system responseh(θ) as follows:

θ̂ML = argmin
θ
‖z−h(θ)‖2 .

Before we delve into the detailed computation, we clarify our goal and the structure of

FIM here. We are ultimately interested in the performance ofestimators for the deforma-

tion parameterα, and the image intensity parameterc is chosen to augment the data to

simplify expression. Withθ ∈ℜN+K, the FIM corresponding toθ takes on the form:

F(θ∗) = Ez|θ=θ∗

{

− ∂2

∂θ2Λ(z|θ)|θ=θ∗

}

,

whereΛ is the log-likelihood functionΛ(z|θ)
△
= log f (z|θ).
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Moreover, if we defineJx,y = E
{

[ ∂
∂xΛ(z)]T [ ∂

∂yΛ(z)]
}

, then the complete-data FIM can

be decomposed into block form as:

(4.6) Fθ =







Jα,α Jα,c

Jc,α Jc,c






.

The sub-blockJτ,τ is the FIM with respect to the quantity of interest - the deformation

parameters. As CRB is the inverse of the FIM, we can invoke the formula for partitioned-

matrix inverse [39] to obtain:

CRB(α) = [Jα,α−Jα,cJ−1
c,cJc,α]−1

CRB(c) = [Jc,c−Jc,αJ−1
α,αJα,c]

−1.(4.7)

This form can be further simplified using its symmetry - a factthat we will utilize later in

our computation.

The likelihood function with respect toθ is :

f (z;θ) =
1

(2π)2N/2|Σ|1/2
exp

(

−1
2
eTΣ−1e

)

,

wheree = z−h(θ) = z−A(τα)c.

The log-likelihood turns out to be:

Λ = log f (z;θ)

= −N log(2π)−2N logσ− 1
2σ2 ‖z−A(τα)c‖2 .(4.8)

Now we compute each term of the FIM.

∇τΛ = − 1
2σ2∇τ ‖z−A(τα)c‖2

=
1

σ2(z−A(τα)c)T∇τ(A(τα)c)(4.9)
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Notice that

∂
∂τ(l)

{Aτ[n, :]c} =
∂

∂τ(l)

K

∑
k=1

c(k)Aτ(n,k)

=
∂

∂τ(l)

K

∑
k=1

c(k)b(n+ τ(n),k)

=











∑K
k=1c(k)ḃ(n+ τ(n),k), l = n;

0 else,
(4.10)

whereḃ(·, ·) denotes the derivative ofb(·, ·) with respect to the first variable.

Plugging (4.10) into (4.9), we obtain

(4.11)
∂

∂τ(l)
Λ =

1
σ2(z2(l)−Aτ[l , :]c)

K

∑
k=1

ḃ(l + τ(l),k)c(k).

Therefore, the gradient ofΛ with respect toτ is:

(4.12)
∂
∂τ

Λ =
1

σ2 [(z2−Aτc)⊙ (Dc)]T =
1

σ2 [diag{Dc}(z2−Aτ(c))]T ,

whereD is the matrix whose elements areD(i, j) = ḃ(i + τ(i), j),1≤ i ≤ N,1≤ j ≤ K,

and “⊙” denotes the Schur/Hadamard product.

By chain rule, the gradient ofΛ with respect toα is given by:

∇αΛ =
∂
∂τ

Λ
∂

∂α
τ

=
1

σ2 [(z2−Aτc)⊙ (Dc)]T [
∂

∂α
τ],(4.13)

where ∂
∂ατ ∈MN×L is the derivative matrix with element[ ∂

∂ατ](i, j) = ∂
∂α( j)τ(i), andL

corresponds to the length of the deformation parameterα.
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Now we compute the FIMJα,α with

E

{

∂2

∂α2Λ
}

= −E

{

[
∂

∂α
Λ]T [

∂
∂α

Λ]

}

= − dτ
dα

T

E

{

[
∂
∂τ

Λ]T [
∂
∂τ

Λ]

}

dτ
dα

(4.14)

= − 1
σ2

dτ
dα

T

E

{

diag{Dc}(z2−Aτc)[
1

σ2(z2−Aτc)T diag{Dc}]T
}

dτ
dα

= − 1
σ2

dτ
dα

T

diag2{Dc} dτ
dα

(4.15)

To calculateJc,τ andJc,c, we take the derivative ofΛ with respect toc:

∂
∂c

Λ = − 1
2σ2

∂
∂c
||z−Ac||2

=
1

σ2(z−Ac)TA .(4.16)

It is now straight forward to compute the entries for the complete FIM:

(4.17) E

{

∂2

∂c∂c
Λ
}

=− 1
σ2A

TA

E

{

∂2

∂τ(l)∂c(m)
Λ
}

=
1

σ2E{−Aτ[l ,m]D[l , :]c+ ε2(l)D[l ,m]}

= − 1
σ2Aτ[l ,m]D[l , :]c.(4.18)

The matrixJα,c can be represented in compact form as:

(4.19) E

{

∂2

∂α∂c
Λ
}

=− 1
σ2

dτ
dα

T

diag{Dc}Aτ.

With symmetry, the complete FIM is obtained:

(4.20) Fθ =
1

σ2







dτ
dα

T
diag2{Dc} dτ

dα
dτ
dα

T
diag{Dc}Aτ

AT
τ diag{Dc} dτ

dα ATA






.
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As a special case, whenτ is parametrized with rect functions,i.e., τ(n) = α[n], we have

dτ
dα = I . The FIM for(τ,c) is then given by:

(4.21) F(τ,c) =
1

σ2







diag2{Dc} diag{Dc}Aτ

AT
τ diag{Dc} ATA






.

At this point, we make the following observations:

1. With the commonly used model (4.3), it is assumed that the observed source image

z1 corresponds to the ground truthc. In other words, most existing methods solve for

the ML estimatorτ with the generative model:

(4.22) z2 =
K

∑
k=1

ckb(n+ τ(n),k)+ ε2(n),

by plugging in theck’s that best fitsz1. It is easy to derive the CRB for the log-

likelihood functionΛcom(z2;τ) = −N/2log(2π)−N logσ− 1
2σ2 ||z2−Aτc||2. The

FIM matrix Fcom
τ = Jτ,τ as we derived in (4.15). Therefore, CRBcom(τ) = J−1

τ,τ .

Notice that asJτ,cJ−1
c,cJc,τ ≥ 0 3 , CRBcom(τ)≤CRB(τ) as extra information (known

{ck}) is assumed in the case of (4.22). In other words, the plug-inoperation provides

a “looser” bound for the variance than the “true” CRB corresponding to model (4.2).

2. For asymptotically large SNR,i.e., σ2→ 0, we do expect a decent estimate ofc

directly from the source image, assuming no model mismatch in the generative basis.

In this case, the plug-in estimator as used in the traditional model, even though not a

true ML estimator, is expected to perform similarly to the real ML estimator. Indeed,

[76] shows that the “fake” bound approximates the true CRB4.

3. The above points may be interpreted better with a slight modification of the model in

3In most cases, we assumeJτ,cJ−1
c,cJc,τ to be nonsingular, so it is in fact positive definite.

4In particular, the parameter of interestτ is decoupled from the nuisance parameterc in this case, and the asymptotic
behavior of the bound can be shown with ease.



114

(4.2). Instead of i.i.d noise, we may assume that noise levelin the two images are not

symmetric, more specifically, we assumeε1∼N (0,σ2
1IN) andε2∼N (0,σ2

2IN).

The log-likelihood is given by:

(4.23) Λ =− 1

2σ2
1

‖z1−A0c‖2−
1

2σ2
2

‖z2−Aτc‖2 +some constant.

The partial derivatives of the log-likelihood with respectto τ ( thusα) is not affected

by target image model, and the second-order derivative the log-likelihood with re-

spect toc is given by:

E

{

∂2

∂c∂c
Λ
}

=− 1

σ2
1

AT
0 A0−

1

σ2
2

AT
τ Aτ.

We thus obtain the complete FIM with respect to(τ,c) as:

(4.24) F(τ,c) =







1
σ2

2
diag2{Dc} 1

σ2
2
diag{Dc}Aτ

1
σ2

2
AT

τ diag{Dc} 1
σ2

1
AT

0 A0 + 1
σ2

2
AT

τ Aτ.






.

Whenσ1→ 0, corresponding to high SNR in the template image, thenJc,c→ ∞ and

CRB(τ) = [Jτ,τ−Jτ,cJ−1
c,cJc,τ]

−1→ J−1
τ,τ ,

which reduces to the CRBcom.

4. To compute CRB(τ) exactly could be challenging, asATA may not be easy to invert

for arbitraryτ. Notice that the sub-matrixA0 of A has nice shift-invariant structure,

yet Aτ depends on the deformation. In special cases, such as when the whole image

(signal) experience uniform transformationτ(i) = constfor i = 1,2, . . . ,N, thenJc,c

is block-shift-invariant, and efficient inversion is possible.

5. As a special case, we consider when the whole image experiences uniform transfor-

mation, where a natural parametrization is to useα to describe the global transfor-

mation,i.e., τα(i) = α for ∀i.
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Under the uniform transformation assumption, we have

dτ
dα

= 1,

where1 indicates a column vector (of lengthN in our case) with all unity elements.

Substituting this relation into (4.15), (4.19) respectively and we obtain:

Fθ =
1

σ2







1
T diag2{Dc}1 1

T diag{Dc}Aτ

AT
τ diag{Dc}1 ATA







=
1

σ2







cTDDTc [Dc]TAτ

AT
τ [Dc] ATA






.(4.25)

4.3 Relating to MCRB

The modified Craḿer-Rao Bound(MCRB) was first introduced [22] to resolve the syn-

chronization issues in decoding systems. Rather than seeking the variance around the es-

timator for the “true” augmented data (“complete data”) which includes both the quantity

of interest and the nuisance parametersc, MCRB choose to look on the other parameters

as “unwanted”. Instead of using the true CRB, the MCRB may be regarded as an approxi-

mation via “marginalizing” over the nuisance parameters. In fact, MCRB is always lower

than CRB, thus a looser bound. In some cases, MCRB approaches the true CRB [76].

The central idea is the following. Instead of computing the true FIM

F = Ez

{

[
∂
∂τ

log f (z;τ)]2
}

,

it uses

(4.26) Ez,c

{

[
∂
∂τ

log f (z;τ,c)]2
}

.
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The rationale for MCRB is the following:

Ez,c
{

[τ̂(z)− τ]2
}

= Ec

{

Ez|c[(τ̂(z)− τ)2]
}

≥ Ec

{

1

Ez|c[(
∂
∂τ log f (z;τ,c))2]

}

≥ 1

Ec

{

Ez|c[(
∂
∂τ log f (z;τ,c))2]

}

=
1

Ez,c

{

[ ∂
∂τ log f (z;τ,c)]2

} .(4.27)

The first inequality comes from the application of CRB to the estimator τ̂(z) for a fixedc

and second is Jensen’s inequality.

4.4 An Alternating Minimization Algorithm

For registration purposes, we want to minimize the negativelog-likelihood in (4.23).

We adopt the frequentist perspective and consider the the underlying image intensityf

(and thusc) as fixed unknown. It is natural to ask for the solution of the augmented

problem:

(τ̂, ĉ) = argmin
τ,c
−Λ.

We describe an alternating minimization algorithm to solvethis problem as follows.

Algorithm 1 Alternating minimization of the nagetive log-likelihood in (4.23).
1: Initialize ĉ

2: repeat
3: For givenc = ĉ, minimize ‖z2−Aτc‖2 over τ. This step coincides with conventional registration

methods by assumingc known. Obtain̂τ.
4: For givenτ = τ̂, minimize 1

2σ2
1
‖z1−A0c‖22+ 1

2σ2
2
‖z2−Aτc‖22. This is a typical quadratic minimization

problem, and the solution is given by:

(4.28) ĉ =
[ 1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ
]†( 1

σ2
1

AT
0 z1 +

1

σ2
2

AT
τ z2
)

,

where(·)† indicates the pseudo-inverse operator for the Gram matrix.
5: until Some convergence condition is satisfied.

We make the following remarks:
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• As σ1→ 0, the contribution ofA0 andz1 dominates (4.28), and the solution reduces

to

(4.29) ĉ =
[

AT
0 A0
]†

AT
0 z1,

which corresponds to the conventional method wherez1 is considered to be a highly

reliable “template” and the image intensity is solely obtained by fittingz1.

• More generally, alternating descent may be used instead of requiring the achieving

minimizer at each iteration. This could be particularly beneficial for the step in updat-

ing τ conditioned on ˆc, as the quadratic form in the other step makes the minimization

overc trivial. Relaxing conditional maximization to increment in log-likelihood may

has potential computational advantage as well as better behavior to local maxima.

• As σ1→ 0, the alternating descent algorithm reduces to exactly anyconventional de-

scent algorithm in solving (4.3) withl2 difference metric. In the asymptotic case, the

conditional minimization ofc given by (4.29) is independent ofτ and the whole al-

ternating descent algorithm reduces to using the plug-in estimator (4.29) and descend

−Λ with respect toτ.

4.5 Comparison with Conventional Methods: CRB v.s. M-estimate

As we have commented briefly in the previous sections, the conventional method es-

timate the intensityf from the source imagez1 only. With l2 difference metric, we can

write the solution to the conventional method as:

ĉ = argmin
c
‖z1−A0c‖22 ;

τ̂ = argmin
τ
‖z2−Aτĉ‖22 ,(4.30)

wherez1, z2 are discrete observations for the source and target image invector form,A0

andAτ are defined as in (4.4).
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The first equation in (4.30) can be solved in closed form givenits quadratic form:

ĉ = A†
0z1,

and we can rewrite (4.30) as:

(4.31) τ̂ = argmin
τ

∥

∥

∥
z2−AτA

†
0z1

∥

∥

∥

2

2
.

We can also stack the expression as before, and defineA
△
= [−AτA

†
0 I ] and write the

objective as:

(4.32) τ̂ = argmin
τ

Φ(τ,z) = ‖A (τ)z‖22 .

In the following derivations, we will choose the most convenient form and use the above

equivalent expressions interchangeably.

Our goal is to derive the covariance of the minimizer defined above and we use similar

philosophy as in [30]. By implicit function theorem, the partial derivative ofΦ with respect

to τ are uniformly zero:

(4.33)
∂

∂τ(i)
Φ(τ,z)|τ=τ̂ = 0, ∀ spatial locationi,

for any given dataz.

Differentiating (4.33) again with respect toz and applying the chain rule yields:

(4.34) ∇20Φ(τ̂(z),z))∇zτ̂(z)+∇11Φ(τ̂(z),z) = 0.

Where, the components of∇20Φ(τ̂(z),z) are ∂2

∂τ(i)∂τ( j)Φ(τ̂(z),z), and the elements of∇11

are ∂2

∂τ(i)∂z( j)Φ(τ̂(z),z). We consider the case when∇20Φ(τ̂(z),z) is invertible, or more

precisely positive definite. This is equivalent to requireΦ(τ̂(z),z) to be locally strictly

convex. This assumption is true if the following regularitycondition is satisfied:there∃ a

compact neighborhoodN(τ̂) such thatΦ(τ,z) > Φ(τ̂(z),z) for all τ 6= τ̂ . Then we have:

∇Yτ̂(z) = [−∇20Φ(τ̂,z)]−1∇11Φ(τ,z),
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and the covariance matrix forτ̂ would beCov{z} transformed by local linearization [91],

i.e.,

Cov{τ̂} ≈ ∇zτ̂(z)Cov{z}[∇zτ̂(z)]′.

By substitution, we obtain

(4.35) Cov{τ̂} ≈ [∇20Φ(τ̂,z)]−1∇11Φ(τ̂,z)Cov{z}[∇11Φ(τ̂,z)]′[∇20Φ(τ̂,z)]−1.

We assume the covariance ofz to be:

(4.36) Cov{z}=







σ2
1IN 0

0 σ2
2IN






,

so it remains to derive the expressions for∇20Φ(τ̂,z) and∇11Φ(τ̂,z).

We first adopt the objective function form in (4.31) to take derivative with respect to

τ(l).

(4.37)
∂

∂τ(l)
Φ(τ,z) =

N

∑
n=1

(Aτ[n, :]A†
0z1−z2(n))

∂2

∂τ(l)2{Aτ(n)A†
0z1}.

Similar to (4.10),

∂
∂τ(l)

{

Aτ[n, :]A†
0z1

}

=
∂

∂τ(l)

K

∑
k=1

(A†
0z1)(k)Aτ(n,k)

=
∂

∂τ(l)

K

∑
k=1

(A†
0z1)(k)b(n+ τ(n),k)

=











∑K
k=1(A

†
0z1)(k)ḃ(n+ τ(n),k), l = n;

0 else,
(4.38)

whereḃ(·, ·) denote the derivative ofb(·, ·) with respect to the first variable.

Plugging (4.38) into the expression in (4.37) yields:

(4.39)
∂

∂τ(l)
Φ(τ,z) = (Aτ[l , :]A

†
0z1−z2(l))

K

∑
k=1

(A†
0z1)(k)ḃ(l + τ(l),k).
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To obtain∇20Φ, we take derivative with respect toτ(n). Noticing that ∂
∂τ(l)Φ depends

on τ only via τ(l), we obtain:

∂2

∂τ(l)∂τ(n)
Φ(τ,z) =



























{

∑K
k=1(A

†
0z1)(k)ḃ(l + τ(l),k)

}2
+ · · ·

+(Aτ[l , :]A
†
0z1−z2(l))∑K

k=1(A
†
0z1)(k)b̈(l + τ(l),k), l = n;

0 else.

whereb̈(·, ·) denotes the second-order partial derivative with respect to the first argument

in b(·, ·).

To compute∇11Φ(τ̂,z), we need to take derivative of (4.39) with respect to each el-

ement ofz. We perform this by differentiating with respect to the elements inz1 andz2

respectively.

Noting that ∂
∂z1(n) [A

†
0z1](k) = A†

0[k,n], we obtain:

∂2

∂τ(l)∂z1(n)
Φ(τ,z) = Aτ[l , :]A

†
0[:,n]

K

∑
k=1

(A†
0z1)(k)ḃ(l + τ(l),k)+ · · ·

+(Aτ[l , :]A
†
0z1−z2(l))

K

∑
k=1

A†
0[k,n]ḃ(l + τ(l),k).(4.40)

∂2

∂τ(l)∂z2(n)
Φ(τ,z) =











−∑K
k=1(A

†
0z1)(k)ḃ(l + τ(l),k), l = n;

0 else.

We assume that at the point of evaluation(τ̌, z̄), the samples of the warpedzc
1 approxi-

mates the observationz2, more specifically:

AτA
†
0z̄1≈ z̄2.

This is a reasonable assumption for most registration results. For simplicity, we denote

c̄
△
= A†

0z̄1, Ď(i, j)
△
= ḃ(i + τ̌(i), j), and the warping mapW

△
= Aτ̌A

†
0, then we can rewrite in

matrix form:

∇20Φ(τ̌, z̄) = diag2{Ďc̄
}

∇11Φ(τ̌, z̄) =

[

diag
{

Ďc̄
}

W −diag
{

Ďc̄
}

]

.(4.41)
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Plugging (4.41) and (4.36) into the expression forCov{τ̂} in (4.35), we obtain:

(4.42) Cov{τ̂}|τ̂=τ̌ ≈ diag
{

Ďc̄
}−1

[σ2
1WW

T +σ2
2I ]diag

{

Ďc̄
}−1

.

Remark: asσ2
1→ 0, z1 approaches the noise-free observation of the source imagef ,

and the conventional method should yield the same estimate as the more realistic model.

In fact,

Covσ1→0{τ̂}= σ2
2diag2{Ďc̄

}

,

which agrees with our previous analysis in (4.24) thatCRB(τ)→ J−1
τ,τ asz1 becomes asymp-

totically noise-free.

It makes sense to compare the covariance prediction for the M-estimate of the con-

ventional method and the Cramér-Rao Boundobtained from the more realistic model from

(4.2). For simplicity, we assume thatA0 to be invertible so thatA−1
0 = A†

0 and consequently

the warping mapW = AτA
−1
0 to be invertible.

To studyCRB(τ), we plug inJτ,c,Jc,c from (4.24) and obtain:

CRB(τ) = [Jτ,τ−Jτ,cJ−1
c,cJc,τ]

−1

=
{ 1

σ2
2

diag2{Dc}− 1

σ2
2

diag{Dc}Aτ[
1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ]

−1 1

σ2
2

AT
τ diag{Dc}

}−1

= σ2
2diag{Dc}−1{I − 1

σ2
2

Aτ[
1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ]

−1AT
τ
}−1

diag{Dc}−1 .(4.43)

With Aτ =WA0, we can write:

1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ =

1

σ2
1

AT
0 A0 +

1

σ2
2

AT
0W

TWA0.

The middle part of (4.43) can be rewritten as:

{

I − 1

σ2
2

Aτ[
1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ]

−1AT
τ
}−1

=
{

I −σ2
1Aτ[σ2

2AT
0 A0 +σ2

1AT
0W

TWA0]
−1AT

τ
}−1

=
{

I −σ2
1AτA

−1
0 [σ2

2I +σ2
1W

TW ]−1A−T
0 AT

τ
}−1

=
{

I −σ2
1W [σ2

2I +σ2
1W

TW ]−1W T}−1
.(4.44)
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By Woodbury-Sherman-Morissey identity:

[σ2
2I +(σ1W )σ1W

T
]−1 =

1

σ2
2

I − 1

σ4
2

σ2
1W [I +

σ2
1

σ2
2

WW T ]−1W T ,

thusσ2
{

I − 1
σ2

2
Aτ[

1
σ2

1
AT

0 A0 + 1
σ2

2
AT

τ Aτ]
−1AT

τ
}−1

= σ2
2I +σ2

1WW
T .

Substituting into (4.43) yields:

(4.45) CRB(τ) = diag{Dc}(σ2
2I +σ2

1WW
T)diag{Dc} .

This result coincides with the covariance estimate for the M-estimate evaluated at(Ď, c̄)

in (4.42).

4.6 A Simple Example

This section uses a simple example to illustrate the resultsfrom previous sections and

also to motivate discussions about performance comparison. In particular, it is expected

that the proposed model in (4.4) has advantage over the traditional model in (4.3) as the

estimation forc which parametrizes the underlying image intensity should be more reli-

able, because it combines the information from both the source and the target observations.

Consider a simple model

(4.46) z =







z1

z2






=







I

αI






c+







ε1

ε2






,

where we assume bothz1 andz2 are vectors of the same size as the underlying (unknown)

c. The scaling parameterα which relatesz1 andz2 in the noise-free case is the quantity of

interest.ǫ∼N (0,σ2
1I) andǫ2∼N (0,σ2

2I) are independent Gaussian additive noise.

M-estimator for the Conventional Method

In the conventionally method, the parameterc is estimated solely from observationz1:

(4.47) ĉ(z) = argmin
c
‖z1−c‖22 = z1.
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Sincez1∼N (c,σ2
1I), ĉ is an unbiased estimator forc with covarianceσ2

1I .

The objective function that̂α minimizes is

(4.48) Φ(α,z)
△
= ‖[αI − I ]z‖22 = ‖z2−αz1‖22 .

α̂(z) = argmin
α

Φ(α,z)

= argmin
α
‖z2−αĉ‖22

= argmin
α
‖z2−αz1‖22

=
z1

Tz2

‖z1‖22
.(4.49)

Hereafter, we discuss two approaches in approximating the mean and variance of̂α: a

direct method based on the explicit solution in (4.49); and an indirect approach that relies

on implicit function theorem and M-estimate. The explicit method is straightforward,

requires less manipulation, and should be reasonably accurate. On the other hand, explicit

solutions are not available in general (as we will see for theML estimator), so the implicit

method is more universally applicable. In this study, the direct method serves as a good

baseline reference for approximation performance, and thederivation based on indirect

approach is of didactic value.

Direct Approximation of Mean and Variance for the M-estimate

First, we directly approximate the mean and covariance ofα̂ based on the explicit

solution in (4.49).

The expected value of̂α from (4.49) is given by:

E[α̂] = E

{

(c̄+ ε1)
T(ᾱc̄+ ε2)

(c̄+ ε1)T(c̄+ ε1)

}

,



124

whereε1∼N (0,σ2
1I) andε2∼N (0,σ2

2I). We compute the above expression using con-

ditional expectation:

E[α̂] = Eε1 {Eε2[α̂]|ε1}

= ᾱEε1

{

(c̄+ ε1)
T c̄

(c̄+ ε1)T(c̄+ ε1)

}

.(4.50)

where the second line follows from the independence betweenε1 andε2.

Let ci denote theith element of ¯c and ei denote theith element ofε1. Thenci are

constants andei are scalar i.i.d Gaussian variablesei ∼N (0,σ2
1).

We can rewrite (4.50) as:

(4.51) E[α̂]/ᾱ = E

{

∑n
i=1(ci +ei)ci

∑n
i=1(ci +ei)2

}

.

Define functionf : ℜn→ℜ via f (x) = xTc
xTx

. We perform second-order Taylor expan-

sion of f around the pointx = c̄ and then take expectation with respect tox = c̄+ ε1:

E[α̂]/ᾱ = E[ f (c̄)+
1
2
(x− c̄)T∇2

x f (c̄)(x− c̄)]

= 1+
1
2

E[(x− c̄)T∇2
x f (c̄)(x− c̄)]

= 1+
1
2

E[εT
1 ∇2

x f (c̄)ε1].(4.52)

Now we focus on the termE[εT
1 ∇2 fx(c̄)ε1] whose sign determines the bias. The gradi-

ent∇x f and the Hessian∇2
x f of f are derived as follows:

∇x f = ‖x‖−2
2 c̄T −2‖x‖−4

2 (xT c̄)xT .

The ith element of∇x f is

[∇x f ]i = ‖x‖−2
2 ci−2‖x‖−4

2 (xT c̄)xi .

Taking derivative with respect tox j yields:

∂
∂x j

[∇x f ]i =−2‖x‖−4
2 cix j −2

{

−4‖x‖−6
2 xT c̄xix j +‖x‖−4

2 (xic j +xT c̄δ[i− j]
}

,
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whereδ is the Kronecker impulse function defined as

δ[x] =











1 x = 0;

0 otherwise.

The equivalent matrix representation of the Hessian is given by:

(4.53) ∇2
x f = 8‖x‖−6

2 xT c̄xxT −2‖x‖−4
2 (xc̄T + c̄xT)−2(xT c̄)‖x‖−4

2 I .

We evaluate the Hessian at ¯c and note thatE[ε1∇2 f (c̄)ε1] = σ2
1 trace

{

∇2 f (c̄)
}

depends

only on the diagonal elements of the Hessian, because the noiseε1 is i.i.d. We obtain:

[∇2
x f (c̄)]ii = 2‖c̄‖−4

2 (2c2
i −

n

∑
j=1

c2
j ),

so that

E[εT
1 ∇2

x f (c̄)ε1] = σ2
1

n

∑
i=1

[∇2
x f (c̄)]ii

= 2σ2
1‖c̄‖−2

2 (2−n),(4.54)

which is negative for alln > 2.

Subsequently,

(4.55) E[α̂]/ᾱ≈ 1− (n−2)σ2
1‖c̄‖−2

2 .

As (4.54) describes the difference betweenE[α̂/ᾱ] and unity, this indicates that for

n > 2, α̂ is an estimate of̄α that biases towards smaller magnitude.

Similarly, we computeVar{α̂} via E[α̂2]−E[α̂]2. The correlation reads:

E

{

(c̄+ ε1)
T(ᾱc̄+ ε2)(ᾱc̄+ ε2)

T(c̄+ ε1)

‖c̄+ ε1‖42

}

.

As before, we first use conditional expectation to separate out the uncertainty inε2 via:

E[α̂2] = Eε1Eε2[α̂
2|ε1] = E

{

(c̄+ ε1)
T(ᾱ2c̄c̄T +σ2

2I)(c̄+ ε1)

‖c̄+ ε1‖42

}

.
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Define a deterministic symmetric matrixH
△
= (ᾱ2c̄c̄T + σ2

2I) and a functionf (x) =

xTHx

‖x‖42
, and we aim to findE[ f (x)] for x = c̄+ ε1. We expand the functionf (x) around

x = c̄ and approximateE[α̂2] via:

E[α̂2] ≈ c̄THc̄

‖c̄‖42
+

1
2

E[(x− c̄)T∇2
x f (c̄)(x− c̄)]

=
c̄THc̄

‖c̄‖42
+

1
2

E[εT
1 ∇2

x f (c̄)ε1].(4.56)

The deterministic termf (c̄) simplifies to:

f (c̄) =
c̄THc̄

‖c̄‖42
= ᾱ2 +

σ2
2

‖c̄‖22
.

Sinceε1 is componentwise independent,E[α̂2] only depends on the diagonal element

of ∇2
x f (c̄), which we derive as follows.

∇x f (x) =−4‖x‖−6
2 xT(xTHx)+2‖x‖−4

2 xTH.

Theith element of∇x f (x) reads−4‖x‖−6
2 xi(x

THx)+2‖x‖−4
2 xTH(:, i)., whereH(:

, i) indicates theith column ofH. We may explicitly writexTH(:, i) = ∑ j x j [ᾱ2cic j +

σ2
2δ[i− j]]. The second-order derivative is given by:

∂2

∂x2
i

f (x) = −4‖x‖−6
2 [xTHx+2xix

TH(:, i)]+24‖x‖−8
2 x2

i x
THx

+2‖x‖−4
2 (ᾱ2c2

i +σ2
2)−8‖x‖−6

2 xix
TH(:, i).(4.57)

To evaluate∂2

∂x2
i

f (x) atx = c̄, we use the following relations:

c̄TH(:, i) = ci(ᾱ2‖c̄‖22 +σ2
2);

c̄THc̄ = ‖c̄‖22(ᾱ2‖c̄‖22 +σ2
2).

Substituting these relations into the expression (4.57) for ∂2

∂x2
i

f (x), we obtain:

∂2

∂x2
i

f (x)|x=c̄ = 8‖c̄‖−6c2
i (ᾱ

2‖c̄‖22+σ2
2)−4‖c̄‖−4(ᾱ2‖c̄‖22+σ2

2)+2‖c̄‖−4(ᾱ2c2
i +σ2

2).
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By the independence of the elements inε1, we obtain:

E[εT
1 ∇2

x f (c̄)ε1] = σ2
1∑

i

∂2

∂x2
i

f (c̄)

= ‖c̄‖−2(10−4n)ᾱ2σ2
1 +‖c̄‖−4(8−2n)σ2

1σ2
2.(4.58)

Substituting this quantity into (4.56) provides:

E[α̂2]≈ ᾱ2 +‖c̄‖−2σ2
2 +‖c̄‖−2(5−2n)ᾱ2σ2

1 +‖c̄‖−4(4−n)σ2
1σ2

2.

Together with the estimation forE[α̂] obtained in (4.55), this equation yields an ap-

proximation forVar{α̂} as:

Var{α̂} = E[α̂2]−E[α̂]2

= ‖c̄‖−2(ᾱ2σ2
1 +σ2

2)−‖c̄‖−4σ2
1[(n−4)σ2

2− (n−2)2ᾱ2σ2
1].(4.59)

Expressions (4.55) and (4.59) reveal some interesting structure. For large enoughn (in

fact for n > 6), the variance estimate(4.59) becomes upper-bounded by‖c̄‖−2(ᾱ2σ2
1 +

σ2
2), which we will show later is the Craḿer-Rao Boundfor the statistical model. This

implies that it cannot be unbiased. In fact, the bias quantity measured by(2−n)‖c̄‖−2σ2
1ᾱ

also increases accordingly.

Alternatively, we can follow [30], and use implicit function theorem and Taylor expan-

sion to approximate the bias and variance ofα̂ as the minimizer of (4.48). The data point

ž at which to perform Taylor expansion is mainly a choice of convenience rather than con-

siderations of asymptotic behavior. One natural choice of the expansion point would be

the noiseless data. Let ¯z denote the noiseless observation ¯c andᾱ denote the true param-

eter values, with ˇc andα̌ denoting the resulting estimates in (4.47) and (4.49) when ¯z is

observed. Then ¯z = [c̄; ᾱc̄], and
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Figure 4.1: Bias and variance approximation obtained from explicit solution for conventional M-estimate.

č = ĉ(z̄) = c̄;

α̌ = α̂(z̄) =
ᾱc̄T c̄

‖c̄‖22
= ᾱ.(4.60)

As the minimizer for (4.48),̂α satisfies:

∂
∂α

Φ(α,z)|α=α̂ = 2zT







I

0







[

αI −I

]

z = 0 ∀z.

Taking derivative with respect toz and invoking the chain rule, we obtain:

∂2

∂α2Φ
∂

∂z
α+

∂2

∂α∂z
Φ = 0,
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where

(4.61)
∂2

∂α2Φ = 2‖z1‖22 = 2zT







I 0

0 0






z,

and

(4.62)
∂2

∂α∂z
Φ = 2zT

















αI −I

0 0






+







αI 0

−I 0

















= 2zT







2αI −I

−I 0






.

Therefore,

(4.63)
∂

∂z
α̂(z) =− ∂2

∂α2Φ−1 ∂2

∂α∂z
Φ =−‖z1‖−2

2 zT







2αI −I

−I 0






.

Evaluating (4.63) atz = z̄, we obtain an estimate of covarianceCov{α} at α̌ = α̂z as

Cov{α̂(z)} ≈ ∂
∂z

α(z̄)Cov{z} ∂
∂z

αT(z̄)

=
−1

‖c̄‖22
c̄T
[

ᾱI −I

]







σ2
1I

σ2
2I







−1

‖c̄‖22







ᾱI

−I






c̄

=
ᾱ2σ2

1 +σ2
2

‖c̄‖22
.(4.64)

This quantity (4.64) coincides with the Cramér-Rao Boundobtained from the statistical

model as we will show later.

To estimate the bias for̂α, we present the first and second-order Taylor expansion for

E[α̂] as:

E(1)[α̂] = E[h(z)]

≈ E{h(ž)+∇zh(ž)(z− ž)}

= h(ž)+E{∇zh(ž)(z− ž)} .(4.65)
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E(2)[α̂] ≈ E

{

h(ž)+∇zh(ž)(z− ž)+
1
2
(z− ž)T∇2

zh(ž)(z− ž)

}

= h(ž)+E{∇zh(ž)(z− ž)}+ 1
2

E
{

(z− ž)T∇2
zh(ž)(z− ž)

}

.(4.66)

Notice that when ˇz is chosen to be ¯z, the quantity(z− ž) is zero mean Gaussian. It

follows that the first order termE{∇zh(ž)(z− ž)} = 0 in (4.65) and (4.66). Therefore,

the first order Taylor approximation yields:

(4.67) E(1)[α̂] = h(ž) = h(z̄) = ᾱ,

corresponding to zero bias.

The second-order approximation (4.66) requires computing∇2
zh(ž), which can be ob-

tained up to second order [30] via:

(4.68)

∇2
zh = [− ∂2

∂α2Φ]−1
{

∂3

∂α3Φ∇zhT∇zh+
∂3

∂α2∂z
ΦT∇zh+∇zhT ∂3

∂α2∂z
Φ+

∂
∂α

∇2
zΦ
}

.

Terms involved in the above expression are computed as follows:

∂3

∂α3Φ = 0.

Taking derivative of (4.61) with respect toz yields

∂3

∂α2∂z
Φ = 2zT







I 0

0 0






= 2

[

zT
1 0

]

.

Taking derivative of (4.62) with respect toz yields

∂3

∂α∂z2Φ = 2







2αI −I

−I 0






.

Evaluating atz = ž = z̄ and substituting into (4.68) yields:

(4.69)

∇2
zh(z̄)=− 1

2‖c̄‖22











−2

‖c̄‖22







c̄

0







[

ᾱc̄T −c̄T

]

+
−2

‖c̄‖22







ᾱc̄

−c̄







[

c̄T 0

]

+2







2ᾱI −I

−I 0

















.
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Sincez− ž ∼N











0,







σ2
1I 0

0 σ2
2I

















, the second-order term in (4.66) only involves the

diagonal elements of∇2
zh(z̄). We extract the corresponding blocks from (4.69) as:

∂2

∂z1(i)2h(z̄) = − 1

2‖c̄‖22

{

−4

‖c̄‖22
ᾱc2

i +4ᾱ

}

;

∂2

∂z1(i)2h(z̄) = 0.(4.70)

Thus

E
{

(z− z̄)T∇2
zh(z̄)(z− ž)

}

= ∑
i

σ2
1

∂2

∂z1(i)2h(z̄)

=
σ2

1

‖c̄‖22
(2ᾱ−2ᾱn)

= 2(1−n)ᾱ
σ2

1

‖c̄‖22
.(4.71)

It follows that the second-order estimation forE[α̂] is

(4.72)

E(2)[α̂] = E(1)[α̂]+
1
2

E
{

(z− z̄)T∇2
zh(z̄)(z− ž)

}

= ᾱ+(1−n)
σ2

1

‖c̄‖22
ᾱ =

{

1+(1−n)
σ2

1

‖c̄‖22

}

ᾱ.

For n > 1 and reasonable signal-to-noise ratio,E(2)[α̂] implies shrinkage in magnitude,

which WLOG, we refer to as “negative bias” hereafter.

Notice that the choice of ˇz = z̄ is mainly due to computation convenience (so thatz− ž

is zero mean Gaussian). It is feasible to perform the same routine for different data point

ž. [50,109] proved that under certain regular conditions, the M-estimate is asymptotically

normal with meañα where

E[
∂

∂α
Φ(α̃,z)] = 0.

Under reasonable regularity conditions, we can exchange the order of expectation and

differentiation, and take

∂
∂α

E[Φ(α̃,z)]] = 0.
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Figure 4.2: Bias and variance approximation for M-estimateobtained from expansion about(ᾱ, z̄).

Note thatα̃ can be interpreted as a local minima for an “average” cost functionE[Φ(α,z)],

i.e.,

(4.73) α̃ = argmin
α

E[Φ(α,z)].

The expectation of the objective function with respect to the distribution of the obser-

vation noise

E[Φ(α,z)] = E[

∥

∥

∥

∥

∥

∥

∥

[

−αI I

]







c̄+ ε1

ᾱc̄+ ε2







∥

∥

∥

∥

∥

∥

∥

2

2

]

= E[

[

c̄T + εT
1 ᾱc̄T + εT

2

]







−αI

I







[

−αI I

]







c̄+ ε1

ᾱc̄+ ε2






]

= (α− ᾱ)2‖c̄‖22 +n(α2σ2
1 +σ2

2)

= (‖c̄‖22 +nσ2
1)α

2−2ᾱ‖c̄‖22α+ ᾱ2‖c̄‖22(4.74)
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is convex quadratic inα and the minimizer reads

α̌ = argmin
α

E[Φ(α,z)]

=
‖c̄‖22

‖c̄‖22 +nσ2
1

ᾱ.(4.75)

For simplicity, letβ △= ‖c̄‖22+nσ2
1

‖c̄‖22
, thenα̌ = 1

β ᾱ. Sinceβ > 1, the expansion poinťα is a

shrinkage with respect to the true scaleᾱ.

We can construct an expansion point ˇz = [βc̄; ᾱc̄]. Then the minimizer ofΦ(ž) = 1
β ᾱ =

α̌, which satisfies the requirement (4.73).

Evaluating (4.63) at(č, ž) results in:

∂
∂z

α(ž) = −‖z1‖−2
2 zT







2αI −I

−I 0







= − 1

β2‖c̄‖22

[

βc̄T α̌c̄

]







2α̌I −I

−I0







= − c̄T

β2‖c̄‖22

[

2β−1
β ᾱI −βI

]

.(4.76)

The approximated covariance ofα̂ evaluated at the point(α̌, ž) is given by:

Cov{α̂}|z=ž,α̂=α̌ =
∂

∂z
α(ž)Cov{z} ∂

∂z
αT(ž)

= β−4‖c̄‖−4
2 c̄T

[

2β−1
β ᾱI −βI

]







σ2
1I 0

0 σ2
2I













2β−1
β ᾱI

−βI






c̄

= ‖c̄‖−2
2 β−4((2− 1

β
)2ᾱ2σ2

1 +β2σ2
2).(4.77)

We know from previous analysis that the M-estimate is asymptotically unbiased, so its

variance is to be bounded below by Cramér-Rao Boundasymptotically. Therefore, it is

curious to find whether there exists a consistent relationship between the pre-asymptotic

variance in (4.77) and the Cramér-Rao Bound,i.e.,

(4.78) ‖c̄‖−2
2 β−4((2− 1

β
)2ᾱ2σ2

1 +β2σ2
2) ≷ ‖c̄‖−2

2 (ᾱ2σ2
1 +σ2

2)?
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The quantity on the right-hand-side is the Cramér-Rao Boundobtained from the statistical

generative model (to be shown later).

Claim 4.1. The covariance of the M-estimator is boundedaboveby the Craḿer-Rao

Bound. Moreover, it asymptotically approaches the Cramér-Rao Boundasσ1→ 0.

Proof. To compare the left and right hand sides in (4.78), it sufficesdetermine the sign of

their difference:

RHS−LHS = ‖c̄‖−2
2 β−2(β6−4β2 +4β−1)ᾱ2σ2

1 +(β4−1)σ2
2.

For simplicity, we drop the positive quantity‖c̄‖−2
2 in later analysis as it does not affect

the sign. LetA
△
= ᾱ2σ2

1, B
△
= σ2

2, and we want to determine the sign for:

π(A,B;β) = β−2(β6−4β2 +4β−1)A+(β4−1)B.

The polynomial(β6−4β2 +4β−1) factors into

β6−4β2 +4β−1 = (β−1)(β2 +β−1)(β3 +2β−1).

By construction,β > 1, thus(β6−4β2+4β−1) > 0, soπ is linear inA,B with positive

coefficients. Meanwhile,A,B are both positive, soπ(A,B;β) > 0. This result translates

into the claim that in the nondegenerative case (σ1 6= 0), the variance of the M-estimate

is bounded above by the Cramér-Rao Bound. It is easy to check that whenσ1 = 0, the

variance equals the Cramér-Rao Bound.

Now we approximateE[α̂] with (4.65) and (4.66) by expanding corresponding terms

about(α̌, ž).

The first order coefficient∇zh is obtained in (4.76), and the corresponding first-order
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approximation for the mean is:

E(1)[α̂] = h(ž)+E∇zh(ž)(z− ž)

=
ᾱ
β

+E











− c̄T

β2‖c̄‖22

[

2β−1
β ᾱI −βI

]







c̄+ ε1−βc̄

ᾱc̄+ ε2− ᾱc̄

















=
ᾱ
β

+
ᾱ

β3‖c̄‖22
c̄T(2β−1)(β−1)c̄

=
ᾱ
β

[1+
(2β−1)(β−1)

β2 ]

=
3β2−3β+1

β3 ᾱ.(4.79)

Sinceβ > 1, (β−1)3 = β3−3β2+3β−1= β3−(3β2−3β+1) > 0, and3β2−3β+1
β3 < 1.

Equivalently, E[α̂]
ᾱ < 1, indicating a shrinkage in magnitude, which agrees qualitatively

with the result from exact solution.

Expression in (4.79) can be rewritten as:

E[α̂] =
3β2−3β+1

β3 ᾱ

= [1− (β−1)3

β3 ]ᾱ.(4.80)

Denote the signal-to-noise ratio inz1 ass
△
=
‖c̄‖22
nσ2

1
and

E[α̂]

ᾱ
= 1− 1

(s+1)3 .

To approximate the bias with second-order Taylor expansion, we use (4.68) and evalu-

ate at(α̌ = ᾱ/β, ž).

∇2
zh(ž) = − 1

‖βc̄‖22

{

− 1

β2‖c̄‖22







βc̄

0







[

2β−1
β ᾱc̄T −βc̄T

]

. . .

− 1

β2‖c̄‖22







2β−1
β ᾱc̄

−βc̄







[

βc̄T 0

]

+







2ᾱ
β I −I

−I 0







}

.
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To compute(z− ž)T∇2
zh(ž)(z− ž) in (4.66), it suffices to use only the diagonal blocks

of ∇2
zh(ž), because the components ofz− ž =







c̄+ ε1−βc̄

ᾱc̄+ ε2− ᾱc̄






=







(1−β)c̄+ ε1

ε2







are independent. Partitionz − z into the deterministicψ and random partη so that

ψ =







(1−β)c̄

0






andη =







ε1

ε2






. Then the quadratic term in the second-order Tay-

lor expansion in (4.66) can be written as:

E[(ψ+η)T∇2
zh(ž)(ψ+η)] = ψT∇2

zh(ž)ψ+E[ηT∇2
zh(ž)η],

where expectation of cross terms betweenψ andη are dropped sinceη is zero-mean.

The diagonal portion of∇2
zh(ž) reads:

(4.81) ∇2
zh(ž) =

2

β2‖c̄‖22











1

β2‖c̄‖22







β(2β−1)ᾱc̄c̄T

0






−







ᾱ
β I

0

















.

It follows that

ψT∇2
zh(ž)ψ =

2(β−1)2

‖z1‖22

{

(β−1)‖c̄‖42
β2‖c̄‖22

ᾱ− ‖c̄‖
2
2

β
ᾱ

}

=
2(β−1)2

β3 [
(2β−1)

β
−1]ᾱ

=
2(β−1)3

β4 ᾱ.(4.82)

ηT∇2
zh(ž)η =

2

β2‖c̄‖22

{

β(2β−1)σ2
1‖c̄‖

2
2

β3‖c̄‖22
ᾱ− nσ2

1

β
ᾱ

}

=
2σ2

1

β6‖c̄‖22
[(2β−1)−nβ]ᾱ.(4.83)

Summing (4.82) and (4.83) yields:

(4.84) E[(z− ž)T∇2
zh(ž)(z− ž)] =

2(β−1)3

β4 ᾱ+
2σ2

1

β6‖c̄‖22
[(2β−1)−nβ]ᾱ.
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Combining (4.84) with the first order estimation ofE[α̂], we obtain the second order

approximation forE[α̂] as:

E(2)[α̂] = h(ž)+E

{

∇zh(ž)(z− ž)+
1
2
(z− ž)T∇2

zh(ž)(z− ž)

}

= E(1)[α̂]+
1
2

E[(z− ž)T∇2
zh(ž)(z− ž)]

=

{

β3− (β−1)3

β3 +
(β−1)3

β4

}

ᾱ+
(2−n)β−1

β5

σ2
1

‖c̄‖22
ᾱ

=
β4− (β−1)4

β4 ᾱ+
(2−n)β−1

β5

σ2
1

‖c̄‖22
ᾱ.(4.85)

Recall thatβ =
‖c̄‖22+nσ2

1

‖c̄‖22
, so for reasonable SNR,(2−n)β−1

β ≈ 1−n. Using thes=
‖c̄‖22
nσ2

1
,

we can rewriteE(2)[α̂] approximately as:

(4.86) E(2)[α̂] = [1− 1
(s+1)4 +

(1−n)s3

n(1+s)4 ]ᾱ.

Notice that when SNR is high (larges), then

E(2)[α̂] = [1− 1
(s+1)4 +

(1−n)s3

n(1+s)4 ]ᾱ

≈ [1+
1−n

n(1+s)
]ᾱ

= [1− 1−n
n

nσ2
1

‖c̄‖22 +nσ2
1

]ᾱ

≈ [1+(1−n)
σ2

1

‖c̄‖22 +nσ2
1

]ᾱ,(4.87)

which closely resembles the result (4.72) obtained from expanding about noiseless data ¯z.

In fact, for high enough SNR,‖c̄‖
2
2+nσ1

σ2
1
≈ ‖c̄‖

2
2

σ2
1

so that (4.87) and (4.72) are approximately

equal. This relation is expected, as for small SNR, ˇz ≈ z̄ and α̌ ≈ ᾱ, the small error

analysis is essentially performed on the same neighborhood!

ML Estimator for the Statistical Model

The maximum likelihood estimator from (4.23) aims to jointly estimatec andα via:

(4.88) [α̂, ĉ] = argmin
α,c

1

σ2
1

‖z1−c‖22 +
1

σ2
2

‖z2−αc‖22 .
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Figure 4.3: Bias and variance approximation of M-estimate obtained from expansion about(α̌, ž).

Note that conditioned onα, (4.88) is quadratic inc with the solution ˆc(α,z) given by:

ĉ =





















I

αI







T 





1
σ2

1
I 0

0 1
σ2

2
I













I

αI





















−1
[

I αI

]







1
σ2

1
I 0

0 1
σ2

2
I






z

= (
1

σ2
1

+
α2

σ2
2

)−1(
1

σ2
1

z1 +
α2

σ2
2

z2)

=
1

α2σ2
1 +σ2

2

(σ2
2z1 +ασ2

1z2).(4.89)

Remark:

• In the limiting case whenσ1→ 0 (with non-vanishingσ2), z1 is a noise-free obser-

vation ofc, it is natural to estimatec solely onz1 as (4.89) reduces to

lim
σ1→0

ĉ = z1,
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which coincides with (4.47) in the conventional method. On the other hand, as the

noise level inz2 becomes small relative to that inz1 (σ2→ 0 with non-vanishingσ1),

the estimate reduces to:

lim
σ2→0

ĉ = z2/α,

which corresponds to the case of estimatingc solely fromz2.

More precisely,

lim ĉ = z1 asσ1/σ2→ 0;

lim ĉ = z2/α asσ1/σ2→ ∞.(4.90)

• It is easy to check that the estimator in (4.89) is unbiased with variance

Var{ĉ}=
σ2

1σ2
2

α2σ2
1 +σ2

2

I =
σ2

1

1+α2 σ2
1

σ2
2

I .

It immediately follows that this quantity is upper-boundedby the covarianceσ2
1I of

the estimator forc (4.47) resulting from conventional methods.

Now we can plug in the expression of ˆc in (4.89) and (4.88) reduces to a minimization

problem overα only:

α̂ = argmin
α

Ψ(α,z)

= argmin
α

1

α2σ2
1 +σ2

2

‖αz1−z2‖22 .(4.91)

This functionΨ is nonlinear inα. Note thatΨ ≥ 0. In the case of noise-free observation

z = z̄, ᾱ achieves the zero value and is the global minimizer (we will justify this more

precisely later). Therefore, we can utilize the techniquesfor M-estimate as before, and

analyze the behavior of̂α in the neighborhood̂α(z̄) = ᾱ.

Let α̂ be the minimizer of the functionΨ(α,z), then it is true that

∂
∂α

Ψ(α,z) =
∂

∂α
1

α2σ2
1 +σ2

2

∥

∥

∥

∥

[

αI −I

]

z

∥

∥

∥

∥

2
= 0 for ∀z.
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∂
∂α

Ψ(α,z) =
1

(α2σ2
1 +σ2

2)
2
(αz1−z2)

T [2z1(α2σ2
1 +σ2

2)−2ασ2
1(αz1−z2)]

=
2

(α2σ2
1 +σ2

2)
2
zT







αI

−I







[

σ2
2I ασ2

1

]

z.(4.92)

Let Q
△
=







αI

−I







[

σ2
2I ασ2

1

]

=







ασ2
2I α2σ2

1I

−σ2
2I −ασ2

1I






, then the derivative of∂∂αΨ with

respect toz is given by:

∂2

∂α∂z
Ψ =

2

(α2σ2
1 +σ2

2)
2
zT(Q+QT)

=
2

(α2σ2
1 +σ2

2)
2
zT







2ασ2
2I (α2σ2

1−σ2
2)I

(α2σ2
1−σ2

2)I −2ασ2
1I






.(4.93)

Evaluating (4.93) atz = z̄ andα = ᾱ yields:

(4.94)
∂2

∂α∂z
Ψ(ᾱ, z̄) =

2

ᾱ2σ2
1 +σ2

2

c̄T
[

ᾱI −I

]

.

Now we compute the derivative of∂∂αΨ with respect toα and evaluate at the minimizer

α̂ = ᾱ with z = z̄:

∂2

∂α2Ψ = 2
∂

∂α

{

(αz1−z2)
T(σ2

2z1 +ασ2
1z2)

(α2σ2
1 +σ2

2)
2

}

= 2
{

−2
2ασ2

1

(α2σ2
1 +σ2

2)
3
(αz1−z2)

T(σ2
2z1 +ασ2

1z2) . . .

+
1

(α2σ2
1 +σ2

2)
2
[zT

1 (σ2
2z1 +ασ2

1z2)+(αz1−z2)
Tσ2

1z2]
}

.

This is a convenient form to be evaluated atz = z̄, and we obtain:

(4.95)
∂2

∂α2Ψ(z̄) =
2

ᾱ2σ2
1 +σ2

2

‖c̄‖22 .

To prepare for future use, we simplify the general form of (4.95) into:

(4.96)
∂2

∂α2Ψ =
2

(α2σ2
1 +σ2

2)
3
zT







(−3α2σ2
1 +σ2

2)σ
2
2I (3σ2

2−α2σ2)ασ2
1I

(3σ2
2−α2σ2)ασ2

1I (3α2σ2
1−σ2

2)σ
2
1I






z.
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Estimating ∂
∂z

α yields:

∂
∂z

α̂|z̄,ᾱ = − ∂2

∂α2Ψ−1 ∂2

∂α∂z
Ψ

= − 1

‖c̄‖22
c̄T
[

ᾱI −I

]

.(4.97)

The covariance evaluated at(ᾱ, z̄) is

Cov{α̂}|(z̄,ᾱ) =
∂

∂z
α(z̄)Cov{z} ∂

∂z
αT(z̄)

= ‖c̄‖−4
2 c̄T

[

ᾱI −I

]







σ2
1I 0

0 σ2
2I













ᾱI

−I






c̄

= ‖c̄‖−2
2 (ᾱ2σ2

1 +σ2
2).(4.98)

Lower Bound for Covariance From Cramér-Rao Bound

The negative log-likelihood is given as the objective function in (4.88). It is straight-

forward to compute the sub-matrices for the Fisher-Information Matrix.

∂
∂α

Λ =− 1

σ2
2

(αc−z2)
Tc;

∂2

∂α2Λ =− 1

σ2
2

cTc;

∂2

∂α∂c
Λ =

−1

σ2
2

(2αcT −zT
2 ),

resulting in

E[
∂2

∂α2c] =
−1

σ2
2

αcT .

The Fisher-information matrix (FIM) is thus given by:

FIM =
1

σ2
2







cTc αcT

αc (α2 +
σ2

2
σ2

1
)I






.

Invoking block-matrix inversion, we obtain:

Cov{α̂} ≥ σ2[cTc−αcT(α2 +
σ2

2

σ2
1

)−1αc]

= ‖c‖−2
2 (α2σ2

1 +σ2
2).(4.99)
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Since the ML estimator is known to be asymptotically unbiased, the coincidence be-

tween (4.98) and (4.99) justifies the well-known fact that the ML estimator is asymptoti-

cally efficient (thus is asymptotically a uniformly minimalvariance and unbiased estimator

(UMVUE)).

Approximate Bias of the ML Estimator

Not withstanding the value of asymptotic analysis for the MLestimator, it is often of

great interest to analyze the bias and variance before the the estimator enters the asymp-

totic zone. Hereafter, we focus on deriving analytical approximation for the bias of the ML

estimator. As in the covariance analysis previously, we assume the estimate is over contin-

uous parameter’sα and is computed by “completely” maximizing the objective function

(likelihood in this case) without “stopping rules” that terminates the iterations before the

maximum is reached. We derive the approximation using implicit function theorem, the

Taylor expansion (with different orders of approximation accuracy), and the chain rule.

The objective functionΨ in (4.91) implicitly defines the M-estimatêα as a function of

z. Yet the absence of an explicit analytical expression of theform α̂ = h(z) (as the one

in (4.49)) makes it difficult to study the mean ofα̂ directly. As in the previous section,

we apply Taylor expansion, chain rules and implicit function theorem to estimate the bias

with the first and second order approximation given by:

(4.100) E[α̂]≈ h(ž)+E{∇zh(ž)(z− ž)} .

(4.101) E[α̂]≈ h(ž)+E

{

∇zh(ž)(z− ž)+
1
2
(z− ž)T∇2

zh(ž)(z− ž)

}

.

We now determine the point of expansion ˇzand the approximation for first (linear) and
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second order (Hessian) coefficients∇zh, ∇2
zh. To obtain the best choice forα̌

(4.102) α̌ = argmin
α

E[Ψ(α,z)],

whereα̌ andž in the Taylor expansions are related byα̌ = h(ž). We computeE[Ψ(α,z)]

as follows:

E[Ψ(α,z)] =
1

α2σ2
1 +σ2

2

n

∑
i=1

(αz1(i)−z2(i))
2.

For each indexi,

E[(αz1(i)−z2(i))
2] = E[α2z1(i)

2−2αz1(i)z2(i)+z2(i)
2]

= α2(c̄2
i +σ2

1)−2αᾱc̄2
i + ᾱ2c̄2

i +σ2
2

= (α2−2αᾱ+ ᾱ2)c̄2
i +(α2σ2

1 +σ2
2),(4.103)

wherec̄i andᾱ are the underlying “true” parameter values.

Substituting (4.103) yields:

(4.104) E[Ψ(α,z)] =
1

α2σ2
1 +σ2

2

(α− ᾱ)2‖c̄‖22 +n.

Even thoughE[Ψ(α,z)] is nonlinear inα, its global minimizer is immediately observed

asα = ᾱ, becauseE[Ψ(ᾱ,z)] = n achieves the lower bound forE[Ψ(α,z)] as a function

of α. Thus we have found the proper point to expand aroundα̌ = ᾱ.

Note that when noise free data is observed,i.e., z = z̄, the minimizerα̂ in (4.91) is

obtained as:

α̂(z̄) = argmin
α

1

α2σ2
1 +σ2

2

‖αz̄1− z̄2‖22

= argmin
α

1

α2σ2
1 +σ2

2

‖αc̄− ᾱc̄‖22

= argmin
α

(α− ᾱ)2‖c‖22
α2σ2

1 +σ2
2

.(4.105)
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Note this function is nonnegative, its global minimizer is obtained atα = ᾱ, i.e., h(z̄) =

ᾱ = α̌. This indicates that ˇz = z̄ is the proper choice to expandh around, without requiring

to know the precise value of̄α.

In this case, the bias analysis with first-order Taylor expansion as in (4.100) is simple

by noting that(z− z̄)∼N
(

0,







σ2
1I

σ2
2I







)

, so that

E[α̂] = h(z̄)+E{∇zh(z̄)(z− z̄)}

= ᾱ.(4.106)

This states that the estimator is unbiased if we approximateits first moment up to first

order dependence on the data.

The first order expansion is usually sufficient in practice and has been extensively used.

However, there are situations where (4.100) may be inadequate. We next derive a mean

approximation based on the second-order Taylor expansion (4.101) which is expected to

be more accurate, but also computationally more intensive.

The first two (0th and 1st order) terms in (4.101) are (4.100),so it suffices to study the

Hessian∇2
z .

For scalarα, we follow the simplified expression in [30] to obtain the Hessian ofh(z)

as:

(4.107)

∇2
zh = [− ∂2

∂α2Ψ]−1
{

∂3

∂α3Ψ∇zhT∇zh+
∂3

∂α2∂z
ΨT∇zh+∇zhT ∂3

∂α2∂z
Ψ+

∂
∂α

∇2
zΨ
}

.

Some of the key ingredients are already available:∇zh is given in (4.97) as well

as ∂2

∂α2 Ψ in (4.95) (before evaluation) and∂2

∂α∂z
Ψ in (4.93). We still need to compute

∂3

∂α3 Ψ(ᾱ, z̄), ∂3

∂α2 ∂zΨ(ᾱ, z̄) and ∂
∂α∇2

zΨ.
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Evaluating (4.95) at(ᾱ, z̄) yields:

∂2

∂α2Ψ(ᾱ, z̄) =
2‖c̄‖22

ᾱ2σ2
1 +σ2

2

.

Taking derivative of (4.96) with respect toz yields:

(4.108)
∂3

∂α2∂z
Ψ =

4

(α2σ2
1 +σ2

2)
3
zT







(−3α2σ2
1 +σ2

2)σ
2
2I (3σ2

2−α2σ2)ασ2
1I

(3σ2
2−α2σ2)ασ2

1I (3α2σ2
1−σ2

2)σ
2
1I






.

Evaluating (4.108) at(ᾱ, z̄) yields:

(4.109)
∂3

∂α2∂z
Ψ(ᾱ, z̄) =

4

(ᾱ2σ2
1 +σ2

2)
3
c̄T
[

(σ4
2− ᾱ4σ4

1)I 2ᾱσ2
1(ᾱ

2σ2
1 +σ2

2)I

]

Taking derivative of (4.95) with respect toα yields:

∂3

∂α3Ψ =
−12ασ2

1

(α2σ2
1 +σ2

2)
3
zT
1 (σ2

2z1 +ασ2
1z2)+

2

(α2σ2
1 +σ2

2)
3

[

−4ασ2
1zT

1 (σ2
2z1 +ασ2

1z2)+ . . .

+2ασ2
1zT

1 (σ2
2z1 +ασ2

1z2)+2(α2σ2
1 +σ2

2)σ
2
1zT

1 z2

]

.(4.110)

Evaluating (4.110) at (4.110) at(ᾱ, z̄) yields:

(4.111)
∂3

∂α3Ψ(ᾱ, z̄) =
−12ᾱσ2

1‖c̄‖
2
2

(ᾱ2σ2
1 +σ2

2)
.

The term ∂
∂α∇2

zΨ is obtained by taking derivative of∂
2

∂α∂z
Ψ in (4.93) with respect toz

as:

(4.112)
∂

∂α
∇2

zΨ = 2
( 1

α2σ2
1 +σ2

2

)2







2ασ2
2I (α2σ2

1−σ2
2)I

(ασ2
1−σ2

2)I −2ασ2
1I






.

Evaluating at̄α yields:

(4.113)
∂

∂α
∇2

zΨ(ᾱ) = 2(
1

ᾱ2σ2
1 +σ2

2

)2







2ᾱσ2
2I (ᾱ2σ2

1−σ2
2)I

(ᾱσ2
1−σ2

2)I −2ᾱσ2
1I






.
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Substituting the expressions of all components into the right-hand-side of (4.107) yields:

∇2
zh(z̄) = − ᾱ2σ2

1 +σ2
2

2‖c̄‖22

{

−12ᾱσ2
1

(ᾱ2σ2
1 +σ2

2)
2‖c̄‖22







ᾱI

−I






c̄c̄T

[

ᾱI −I

]

+ . . .

− 4

(ᾱ2σ2
1 +σ2

2)
3‖c̄‖22







(σ4
2− ᾱ4σ4

1)I

2ᾱσ2
1(ᾱ

2σ2
1 +σ2

2)I






c̄c̄T

[

ᾱI −I

]

+ . . .

− 4

(ᾱ2σ2
1 +σ2

2)
3‖c̄‖22







ᾱI

−I






c̄c̄T

[

(σ4
2− ᾱ4σ4

1)I 2ᾱσ2
1(ᾱ

2σ2
1 +σ2

2)I

]

+ . . .

+2(
1

ᾱ2σ2
1 +σ2

2

)2







2ᾱσ2
2I (ᾱ2σ2

1−σ2
2)I

(ᾱσ2
1−σ2

2)I −2ᾱσ2
1I







}

.(4.114)

The second order term in (4.101) depends on the Hessian∇2
zh(z̄) via (z−z̄)T∇2

zh(z̄)(z−

z̄) since ˇz = z̄, wherez− z̄ are exactly the noise componentε∼N
(

0,







σ2
1I

σ2
2I







)

.

Because the elements ofε are mutually independent,E
{

(z− z̄)T∇2
zh(z̄)(z− z̄)

}

only

depends on the diagonal elements of the Hessian∇2
zh(z̄).

When a component is located in thez1 portion of z, the noise componentε(i) ∼

N (0,σ2
1), and the corresponding element in the Hessian is:

(4.115)
∂2

∂z1(i)2h(z̄) =− 1

2‖c̄‖22

{

−12ᾱ3σ2
1c2

i

(ᾱ2σ2
1 +σ2

2)‖c̄‖
2
2

− 8ᾱ(σ4
2− ᾱ4σ4

1)c
2
i

(ᾱ2σ2
1 +σ2

2)
2‖c̄‖22

+4ᾱσ2
2

}

.

Similarly,

(4.116)
∂2

∂z2(i)2h(z̄) =− 1

2‖c̄‖22

{

−12ᾱσ2
1c2

i

(ᾱ2σ2
1 +σ2

2)‖c̄‖
2
2

+
16ᾱσ2

1c2
i

(ᾱ2σ2
1 +σ2

2)‖c̄‖
2
2

−4ᾱσ2
1

}

.
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Combining the above yields:

E[εT∇2
zh(z̄)ε] = σ2

1

n

∑
i=1

∂2

∂z1(i)2h(z̄)+σ2
2

n

∑
i=1

∂2

∂z2(i)2h(z̄)

= − 1

2‖c̄‖22

{ −12ᾱ3σ4
1

(ᾱ2σ2
1 +σ2

2)
− 8ᾱ(σ4

2− ᾱ4σ4
1)σ

2
1

(ᾱ2σ2
1 +σ2

2)
2

}

. . .

− 1

2‖c̄‖22

{ −12ᾱσ2
1σ2

2

(ᾱ2σ2
1 +σ2

2)
+

16ᾱσ2
1σ2

2

(ᾱ2σ2
1 +σ2

2)

}

=
ᾱσ2

1

‖c̄‖22
.(4.117)

The second order approximation of the estimator yields:

E[α̂]/ᾱ = 1+
σ2

1

‖c̄‖22
,

which indicates a bias toward positive magnitude. Compared with the bias analysis for

the conventional M-estimate, the bias of the ML estimate is independent of the data length

n, which indicates that even though both estimators are asymptotically unbiased, they

approach the asymptotic region with different rate (roughly 1 : n).

In summary, we have tested with a simple example the estimated bias and variance of

the conventionally used M-estimate and the ML-estimator from the statistical generative

model. With the particular form of the example, the M-estimate can be obtained in closed

form, and we have estimated bias and variance from the explicit solution. To reflect the

more general scenario, where such explicit solution is unavailable, we have used implicit

function theorem and Taylor expansion to estimate bias and variance up to first and second

order. Numerical results demonstrate reasonable agreement of the theoretically predicted

values and empirical statistics. Qualitatively, all methods were able to capture the neg-

ative bias of the M-estimate,i.e., the estimated parameter is a shrinkage relative to the

true value. Furthermore, it could be shown that as an asymptotically unbiased estimator,

the variance of the M-estimate is in fact upper bounded, and asymptotically approaches



148

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3

σ
1

B
ia

s 
fo

r 
th

e 
M

L−
es

tim
at

e

 

 

1st−order Approx. with \bar{z}
2nd−order Approx. with \bar{z}
Numerical Result

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4
x 10

−3

σ
1

V
ar

ia
nc

e 
fo

r 
th

e 
M

L−
es

tim
at

e

 

 

Approx with \bar{z} (= CRB)
Numerical Result

(a1) bias approximationn = 5 (a2) variance approximationn = 5

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

σ
1

B
ia

s 
fo

r 
th

e 
M

L−
es

tim
at

e

 

 

1st−order Approx. with \bar{z}
2nd−order Approx. with \bar{z}
Numerical Result

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5
x 10

−4

σ
1

V
ar

ia
nc

e 
fo

r 
th

e 
M

L−
es

tim
at

e

 

 

Approx with \bar{z} (= CRB)
Numerical Result
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Figure 4.4: Bias and variance approximation of ML-estimateobtained from expansion about(ᾱ, z̄).

the Craḿer-Rao Boundas the SNR increases. The ML-estimator according to the statisti-

cal model, being asymptotically UMVUE, has positive bias yet approaches unbiasedness

faster (proportional to data length) than the M-estimate. The estimated covariance agrees

with the CRB to second order. As a work in progress, this investigation is far from conclu-

sive. More specifically, the ML-estimate demonstrates advantage in that it approaches the

asymptotic unbiasedness with a faster rate; yet it has higher variance than the M-estimate

in general. This leads to the familiar issue in estimator selection: the (pre-asymptote) bias

and variance tradeoff needs to be studied carefully. Numerically, we observe that the M-

estimate demonstrates variance close to the Cramér-Rao Bound, so it is possible that by

including higher order expansion in estimating the variance, we could obtain an approx-

imate rate at which the variance of the M-estimate approaches the Craḿer-Rao Bound.



149

Such information would allow us to reach either a consistentconclusion of the superiority

between the M-estimate and the ML-estimate, or a partition of the parameter space so that

each estimate would be the method of choice over certain regions.



CHAPTER 5

Summary and Future Work

5.1 Summary

We have conducted research addressing two key aspects of image guided respiratory

motion analysis: time series analysis to track semi-periodic signal structure from noisy

observations and image registration to model motion between inhale-exhale image pairs.

To track and predict the slowly varying mean position of a breathing signal, we have pro-

posed a dynamic ellipse tracking method in an augmented state space. Formulated as a

minimization problem in terms of algebraic distance, we provided a recursive algorithm for

solving the static data case, utilizing stochastic approximation techniques. Assuming slow

variations, we presented a natural extension of the recursion to an adaptive framework, to

account for newly available samples. To accommodate noisy samples and missing obser-

vations, we modified the objective using robust fitting functions instead of the quadratic

cost. Having shown that the feasible parameter region is theunion of two convex sets

and noting about the symmetric structure of the solution, weapplied the projection gra-

dient algorithm to solve the minimization problem. Analogous to the quadratic case, we

took advantage of the recursive structure of the algorithm and extended it to incorporate

adaptivity. To our knowledge, our method was the first to realize complete unsupervised

tracking of respiratory motion in the presence of uncertainties in basic pattern, magnitude

150
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and phase. It has the potential to improve significantly the performance of both real-time

adaptive treatment delivery and real-time gating systems.

For image registration, we focused on designing regularization to incorporate physical

priors. In particular, we have proposed to use tissue-type rigidity regularization so that

bone and soft tissue structures are regularized differently according to their own elasticity.

To account for the commonly observed sliding effects along motion boundaries, we have

first proposed a regularizer based on integrating some general functional of the Jacobian

magnitude. We derived axiomatically the conditions on suchfunctionals so that disconti-

nuities are preserved. Then we further noticed the necessity to distinguish among different

types of singularities, namely, folding and vacuum should be prevented yet shear should

be preserved. With this in mind, we utilized the Helmholtz decomposition and regularized

the divergence and curl component differently for the deformation field. The experimen-

tal results showed that the proposed decomposed regularization effectively combines the

advantage of isotropic smoothing as in conventional Horn and Schunk, and discontinuity

preserving regularizers such as total variation. Such efficient incorporation of prior knowl-

edge shapes the registration process towards more physicalsolutions, which leads to better

planning and treatment accordingly.

Furthermore, we have initiated a preliminary principled study on the fundamental per-

formance limit of image registration problems. We proposeda statistical generative model

to account for the noise effect in both the source and target images. The Craḿer-Rao

Boundfor the corresponding maximum-likelihood estimatorwas computed. Meanwhile,

we interpreted the conventional optimization based image registration results as an M-

estimate. Using the implicit function theorem and Taylor expansion to estimate the local

curvature of the objective function, we approximated its covariance accordingly. Not-

ing that both the ML and M-estimates are asymptotically unbiased, we studied the pre-
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asymptotic performance by estimating the mean and covariance of each estimator with

finite SNR. With a simple example, we have demonstrated that the bias of the proposed

ML estimator decreases faster than the M-estimate as the SNRincreases. This result, un-

fortunately, is still insufficient to determine the relative superiority of the two estimators

under consideration; because both ML and M- estimators are biased in the pre-asymptote

region, and their variance is not lower-bounded by the Cramér-Rao Bound. Further inves-

tigation is necessary to study the deviation of the covariance from the Craḿer-Rao Bound,

which can be possibly conducted with higher-order Taylor expansion, similar to the bias

analysis.

5.2 Future Work

• We have proposed a general framework for adaptive ellipse tracking. The adaptivity

pace controls the balance between response efficiency and output smoothness, and

should be determined properly. To this end, we have used a small segment of training

data and retrospectively estimated the period with subspace projection method. After

that, a static adaptivity parameter value (the window length for sliding adaptivity

and the forgetting factor for exponential discounting) is used throughout the course.

This is based on the assumption that frequency drifts are slow and that the robustness

from ellipse fitting could tolerate the frequency variation. This presumption may be

violated for long fractions, since the training segment becomes less correlated with

the state as time progresses. An adaptive frequency drifting model is desirable to

cope with such situation.

• In robust ellipse fitting, we need to determine the scale parameter for robust objective,

e.g., δ in the Huber function. Without assuming prior knowledge about the proportion

of outliers relative to the normal samples or their distribution, we have used Otsu’s
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method to find a threshold value for the residual error and selected the scale parameter

accordingly. The scale selection problem falls into the unsupervised classification

category, where normal and abnormal samples are to be automatically distinguished.

This is worth further investigation.

• We have proved asymptotic convergence with stochastic approximation techniques.

Recognizing the similarity between the proposed iterationwith the recursive least

squares (RLS) algorithm, we believe it is feasible to estimate the error statistics in

our model, analogous to the performance analysis work for linear filters.

• In the augmented state space, the distribution of the samples can be viewed as noisy

observations of some latent random process. The distribution depends on the respira-

tory phase and other parameters. It is possible to consider robust statistical quantities

such as rank order statistics to implicitly estimate the “center” of the observed cluster

in the augmented state space. A potential advantage with such a statistical interpre-

tation is that quantities such as confidence intervals and error distribution may be

derived to facilitate the detection of changes in system dynamics.

• We have developed a tissue-type-dependent regularizationmethod, which accounts

for inhomogeneity of elasticity among different tissue types. Physically, anatomies

not only exhibit inhomogeneous, but also anisotropic deformation properties, such

as directional elongation of muscles. It would be desirableto properly incorporate

such anisotropic physical prior as well. Furthermore, we have assumed access to an

X-ray CT image, and obtained local tissue elastic property subsequently. Alternative

methods to classify tissue types will be necessary for otherimage modalities.

• We have conducted preliminary discontinuity preserving registration for 2D images.

We will further investigate the quantitative aspect of the problem and the 3D im-

plementation. In particular, we will study possible solutions, such as introducing
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viscosity or surface tension regularization, to alleviatethe rolling artifacts observed

in 3D.

• We would like to further study unsupervised or semi-supervised schemes to choose

the regularization parameters in penalized image registration problems.

• In this thesis, we have focused on the pair-wise image registration problems. When

multiple frames are available over time, it is natural to extend the current work into

a joint estimation setting where the temporal sequence of deformation fields is to be

estimated. In this case, temporal correlation should be incorporated to encourage

structured solution, such as smooth evolution. Moreover, for image sequences ob-

tained mainly under respiration-induced motion, this corresponds to an integration of

our work in time series analysis that accounts for semi-periodicity and the regularized

nonrigid image registration methodology.

• To analyze the fundamental performance limits of image registration, it is necessary

to study the pre-asymptote variance for both the ML and M- estimates. The complex-

ity of using high-order Taylor expansion and the limitations of small error analysis

gives rise to the question as to whether there are more effective approximation tools

for such tasks. This is a challenging topic, but one well worth pursuit.

• It is desirable to utilize the performance analysis of imageregistration problems

to predict the statistical properties of the solutions for agiven objective function.

Knowledge about the fundamental limitations in image registration may help choose

system parameters properly. For example, it is only necessary to obtain images with

resolution corresponding to acceptable uncertainty in registration to avoid excessive

imaging dose. The threshold for detecting abnormality should be set above the pre-

dicted local variance from the performance analysis with normal noise distribution.

• Given the theoretical development in this study, it is our sincere hope that practical
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benefit could be harvested. This will require thorough studyof clinical implications,

including effect on various dose metrics, and predictive outcome statistics such as

tumor control probability (TCP) and normal tissue complication probability (NTCP).
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Introduction to Appendices

In speech proceesing, audio signal processing, and music synthesis, aquasiharmonic

signal refers to a waveform that is virtually periodic microscopically, but not necessarily

periodic macroscopically. In many biological phenomena, in constrast, there widely ex-

ist signals that are virtually periodic, yet demonstrate both miscroscopic and macroscopic

variations. With a little abuse of notation, we use the term “semi-periodic” to describe

such class of signals. A typical example of a “semi-periodic” signal is respiraotry motion.

Respiration is an involuntary action, the cycle of which is regulated through chemore-

ceptors byt he level of CO2, O2, and PH in the arterial blood. Anatomically, the lungs

reside in the thoracic cavity, encased by theliquid-filled intrapleural space. Inhalation

requires active participation of respiration muscles, with the diaphragm being the most

important. As the diaphragm contracts, and descends, it forces the abdomen inferiorly and

anteriorly, increasing the superior-inferior (SI) dimension of the chest cavity. The inter-

costal muscles pull the ribs superiorly and anteriorly, increasing both the lateral (LR) and

anterior-posterior (AP) diameters of the thorax. Exhalation is passive for quiet breathing.

Due to the complex respiratory pressuure volume relationship of the lung and chest wall,

deflating lung volume is larger than the inflating volume at the same transpulmonary pres-

sue, and breath-in time is typically longer than breath-outtime. This commony observed

phenomenon is calledhysteresis.

With the advent in targert conformal radiothrepy, such as Intensity Modulated Ra-
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diotherapy (IMRT), it is important to monitor tumor movement with high precision in

real-time. Internal tumor position can be extracted from images obtained from electronic

portal imaging detector (EPID) or orthogonally placed x-ray flat panels, as in Integrated

Radiotherapy Imaging System (IRIS) [54] or CyberKnife Robotic Radiosurgery System

(AccuracyTM Inc, Sunnyvale, CA), with or without implanted markers around the tumor

regioin. Moreover, it is desirable to minimize diagnostic imaging dose for safty con-

cerns, and external surrogates such as thermistors, thermocouples, strain gauges, pneumo-

tachographs [60], and infrared skin markers are utilized toinfer internal tumor position.

In either cases, it is important to characterize the complexity of internal motion, track both

instantanous and long term variation, and predict future tumor position to account for sys-

tem latency. When external surrogate is applied, it is critical to accurately infer internal

tumor postion from external observations. Chapter A proposes a scalar complexity index

to characterize the irregularity level of a breathing trajectory [102]. Chapter B describes

a nonparametric predictio approach based on local regression. Chapter C addresses the

hysteresis issue in external-internal inference via stateaugmentation.
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APPENDIX A

A Breathing Pattern Irregularity Index with Projection-based Method

1

Characterization of organ motion is important in radiation therapy, including dose plan-

ning and treatment delivery [12,18,36,37,53]. Tumor motion, especially in lung/liver re-

gions, is highly correlated with breathing patterns. Therefore, an index that characterizes

breathing regularity can facilitate treatment planning for tumors in those regions, particu-

larly for individualized treatment planning.

Periodicity has been a major assumption in breathing trajectory analysis, as good re-

producibility indicates the potential for a simple structured treatment plan tailored towards

the fundamental breathing pattern. Harmonic analysis has been employed widely to char-

acterize respiratory patterns [43, 87, 94]. Peaks of the Fourier spectrum are often used to

determine the dominating periodic behavior of the temporaltrajectory. Such approaches

lack a “goodness” measure,i.e., it is not clear how a periodic signal having the dominant

frequency differs from the true trajectory. Consequently, no fundamental periodic pattern

is available to judge the soundness of such a result.

We propose a rigorous general framework for periodicity analysis based on subspace

projections. For each period within a physiologically reasonable range, a measured breath-

1This chapter is based on materials from [102]
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ing signal is projected onto the subspace of all signals having that period to obtain the “best

fit” periodic signal in the Least Sqaured Error (LSE) sense. Residual errors for each such

period are then compared to yield the overall best periodic approximation. The estimated

trajectory obtained by this “projection” method is therefore the closest periodic signal with

respect to observed data. We derived the method in continuous signal space to account for

the sampling effect explicitly. We also allow temporal samples to be non-uniformly spaced

to offer more freedom for the data acquisition procedure.

A.1 An Irregularity Index based on Projection Distance

Given a set of discrete samples of a breathing trajectory, wewant to find the peri-

odic signal that best matches the observation data. This is equivalent to reconstructing a

periodic signal of unknown period from its noisy discrete samples. For this problem to

be feasible, we assume that there is some maximal frequency component in the signal.

This assumption is physiologically reasonable. We thus focus on the subspace of band-

limited periodic signals. We formulate the problem in a multilayer optimization setup

where we search over all possible periods for the “best-fit” signal. For each period within

a reasonable range, the observed breathing trajectory is projected onto the subspace of all

band-limited signals having that period to obtain the closest matching periodic function.

Projections from each such subspace are then compared to yield the overall best periodic

approximation. This method accounts for the discrete temporal sampling explicitly, and

allows for the possibility of nonuniform sampling.

We model the observation datayi as a temporal trajectory sampled at{ti}Ni=1 with addi-

tive noise:

(A.1) yi = f (ti)+ni , i = 1,2, . . . ,N,

where f is the unknown ground-truth continuous periodic function whose spectrum has
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finite support between[−γ,γ] andni denotes the additive noise.

If f (t) is a band-limited function with periodT, then we follow [29] to rewrite it as

linear combination of Fourier harmonics:

(A.2) f (t) =
K

∑
k=−K

cke
j 2π

T kt, K = ⌊T
2
⌋,

whereck’s are the coefficients for Fourier harmonics, and⌊·⌋ denotes the floor function.

Evaluation of the above representation at{ti}Ni=1 can be compactly rewritten in vector

form as:

(A.3) f = GTc,

wheref = [ f (t1), f (t2), . . . , f (tN)] denotes the discrete samples of the underlying function

f ; c = [c−K,c−K+1, . . . ,cK] is the concatenation of Fourier coefficients; and the matrixG

is defined as

(A.4) GT(i,k) = ej 2π
T kti .

Therefore, given the observed sample trajectoryy = [y1,y2, . . . ,yN]T , the optimal pe-

riod T∗ is the solution to the following optimization problem:

(A.5) T∗ = argmin
T

min
c∈C2K+1

||y−GTc||2,

whereC
2k+1 is the set of vectors of length(2k+ 1), and||y||2 = ∑N

i=1 |yi|2. The closest

periodic signal to the sampled trajectory in LSE sense is then given by:

(A.6) f ∗(t) =
K

∑
k=−K

ĉke
j 2π

T∗ kt.

whereK = ⌊T∗
2 ⌋ andĉk are obtained as the components of solution to (A.7) below when

T = T∗.
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For a given candidate periodT, the bandwidth parameterK = ⌊T
2⌋ is a constant, and

the inner optimization problem becomes an ordinary least-squares minimization:

(A.7) c∗T = argmin
c∈C2K+1

||y−GTc||2.

From classical optimization theory [68], the optimalc∗T of (A.7) satisfies the normal

equation:

(A.8) (G∗TGT)y = G∗Tc∗T ,

whereG∗T is the conjugate transpose ofGT andG∗TGT is known as the Gram matrix.

Moreover, when the sample size is large enough, specificallyN ≥ 2K + 1, which we

assume hereafter,GT has full column rank, and the(2k+1)×(2k+1)Gram matrixG∗TGT

is invertible [41]. The optimal solution for equation (A.8)can be written explicitly as:

(A.9) c∗T = (G∗TGT)−1G∗Ty.

At this point, we have solved the inner optimization problemin (A.5) in closed form.

The feasible range of periodsT in the outer minimization can be designed by incorporating

physical knowledge. For instance, normal breathing is expected to have a period between 1

to 10 seconds. Moreover, even though the peak of the Fourier spectrum is not informative

enough by itself, it turns out to be a reasonably good initialization for our method. Notice

that if exhaustive search overT is to be applied in A.5, we need to evaluate (A.9) and (A.6)

for eachT of interest. Thus the computation cost depends both on how finely we sample

the period parameterT and the range of search. Using a good initial guess forT∗ can

reduce the search range and thus reduce computation substantially . Also, reasonable ini-

tialization helps to prevent the algorithm from falling into nonphysical local minima. Since

it is now a simple 1-dimensional optimization problem to findT∗, we use an exhaustive

line search over a relatively small interval thanks to a goodFourier-based initialization.



163

Alternative optimization approaches like multi-resolution or incremental refinement could

be used to speed up the process. Due to the use of superposition of harmonics to describe

periodic functions, projection to the subspace corresponding to periodic functions with

period 2T would naturally yield a better data fit than the projection onto the subspace for

periodT. In other words, a function of periodT is certainly a function of period 2T, but

not vice versa. However, the additional descriptive power may not always be desirable,

since this could cause over-fitting introduced by noise. Initialization by detecting the peak

of the Fourier Spectrum picks out the dominant harmonic component and the algorithm

only needs to search over a relatively small neighborhood around that initialization point,

with the confidence that the local minimal obtained would be physiologically optimal.

Finally, our proposed irregularity index is the Root Mean Squared Error (RMSE) be-

tween the overall optimal periodic signal and the measured trajectory:

(A.10) RMSE=

√

1
N

N

∑
i=1
|| f ∗(ti)−yi ||2.

A.2 Material and Verification Design

We used the Real-Time Position Management (RPM, Varian Medical Systems, Palo

Alto, CA) system to obtain the trajectory of an external fiducial placed on each patient’s

chest wall. This fiducial tracking system records data in time-displacement pairs that are

generally assumed to be highly correlated with superior-inferior diaphragm motion [126].

This system is most useful for treating patients with tumorsin the chest or lung area

without compromising their breathing.

Twelve such clinical breathing signals were used in this study. The characteristic pa-

rameters of this population of data are listed in Table A.1 .

Under Institutional Review Board (IRB) approved protocol,we have used the RPM sys-

tem (Varian, Palo Alto, CA) to obtain breathing trace data recorded at 10Hz with duration
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ID V.S. Parameter 1 2 3 4 5 6 7 8 9 10 11 12

Data Characterization2

STD (cm) 0.158 0.210 0.266 0.242 0.206 0.259 0.242 0.267 0.283 0.313 0.335 0.202
Breathing Trajectory Fitting with Modified Cosine Model

period (sec) 4.7 4.6 4.9 5.3 5.3 4.3 4.9 6.4 9.5 5.6 3.0 5.3
RMSE (cm) 0.138 0.171 0.216 0.139 0.193 0.224 0.145 0.208 0.153 0.096 0.337 0.169

dose error (%) 1.667 2.793 3.527 2.092 3.217 3.580 2.402 3.293 2.496 1.454 6.144 2.161
PTV margin (cm) 5.940 5.900 5.523 5.723 5.727 5.859 5.646 5.338 5.724 5.522 5.951 5.835

95% dose coverage 0.909 0.887 0.850 0.904 0.878 0.851 0.906 0.858 0.890 0.938 0.811 0.888
Breathing Trajectory Fitting with Projection Method

period (sec) 4.7 4.4 4.5 5.4 4.1 4.6 4.7 7.2 9.7 5.6 3.1 5.2
RMSE (cm) 0.135 0.155 0.102 0.132 0.162 0.127 0.115 0.075 0.148 0.090 0.328 0.166

dose error (%) 1.595 2.440 1.638 1.983 2.352 1.721 1.832 1.210 2.471 1.431 6.137 2.066
95% dose coverage 0.915 0.903 0.934 0.903 0.876 0.910 0.924 0.949 0.905 0.942 0.836 0.895

Result for 20sec Training, 10sec Testing

period (sec)3 4.2 4.2 4.5 5.2 4.3 4.8 4.8 7.3 9.0 5.7 3.0 5.0
RMSEtrain (cm)4 0.153 0.151 0.089 0.126 0.082 0.075 0.121 0.042 0.116 0.078 0.228 0.049
RMSEtest (cm) 5 0.177 0.256 0.150 0.231 0.318 0.283 0.141 0.147 0.290 0.150 0.580 0.3062

Table A.1: Dataset information and Experiment Results

30secfrom 12 different patients . The recorded RPM data have relative units. To better

illustrate the major idea in this paper, we normalize the allthe breathing trace data to have

uniform zero mean and 1cm peak-to-peak variation. Shiftingthe mean does not introduce

any bias into any treatment simulation since it is a global quantity; while normalizing the

amplitudes makes the data more representative of typical tumor motion induced by respi-

ratory motion. The standard deviations of these normalizeddata are listed in Table A.1. To

justify the soundness of the proposed irregularity index, we have virtually simulated a 1-

dimensional phantom object of size 5cm that move according to the observed trajectories,

to mimic the behavior of a 5cm size tumor with peak-to-peak motion about 1cm, which

is realistic in clinical situations. A single ideal 1-dimensional treatment beam, or in fact,

delivery pattern of the same size (5cm) is designed for dose delivery simulations. It has

no penumbra, and completely covers the simulated target with uniform radiation intensity.

This idealized energy deposition model will be used hereafter to illustrate the potential

impact of motion patterns and how they influence energy deposition.

To verify that the proposed “irregularity index” and the fundamental pattern obtained
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from the the projection model are clinically significant, wehave designed three sets of

experiments.

First, we show that the Root Mean Squared Error (RMSE), whichis a mathematical

criterion, is well correlated with clinically critical metrics. In this paper, we use dose

error, Planning Target Volume (PTV) margin and 95% dose coverage to characterize per-

formances. In particular, dose error is computed in per centas the normalized difference

between received dose and the ideal dose that corresponds toa perfect overlap between the

target and treatment beam throughout the whole treatment procedure; PTV margin is the

expansion needed to ensure that the entire clinical target volume receives the prescribed

dose; and 95% dose coverage is computed as the portion of the target that receives no less

than 95% of the designated dose with no margin. To account forthe interplay between

target motion and treatment beam adjustment, the phantom object is moved conforming

to the observed breathing trace and the treatment beam is scheduled accroding to a des-

ignated pattern. We evaluate both the periodic fundamentalpattern extracted with the

projection model in A.6 and the one obtained with the optimalcommonly used modified

cosine model [70,71] to control the movement of the treatment plan. The modified cosine

model assumes that the breathing trajectory conforms to thefollowing formula:

(A.11) z(t) = z0−acos2n(πt/τ−φ),

wherez0,a,n,τ,φ are assumed to correspond to exhalation position, motion amplitude,

asymmetry degree, period and phase offset respectively, and are parameters to be opti-

mized;z(t) represents the breathing trace index by time.

Dose error, PTV margin and 95% dose coverage are compared against RMSE in both

setup to demonstrate the correlation.

Second, we compare the projection-based model with the modified cosine model (A.11)

to test the feasibility of the obtained fundamental pattern. RMSE as well as dose error,
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PTV margin and 95% dose coverage are used for this comparison.

Third, we illustrate the potential clinical use of the proposed method to predict motion

induced by respiration. We partitioned the breathing traceinto two parts: a training part of

duration 20secand a testing part of duration 10sec. For each breathing trace, the projection

model is learned with the training trajectory only, and it isused to “predict” the breathing

behavior for the testing portion. This is essentially a testof temporal variance.

A.3 Results and Discussions

Fig. A.1 shows one patient dataset to illustrate the role Fourier-initialization plays in

avoiding suboptimal local minima. An exhaustive evaluation for RMSE was carried out

over a large range of candidate periods in Fig. A.1 (a). Fig. A.1(b) illustrate the non-

physiological optimal obtained without proper prior information, due to reason we dis-

cussed previously: harmonic analysis has an inherent bias toward large period. Fig. A.1(c)

shows that initializing with peak location of Fourier Spectral (in this example correspond-

ing to T = 4.3s) helps to correctly capture the physiologically sound optimal period and

enables us to restrict the period search to an even smaller candidate set for further compu-

tation efficiency.
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Figure A.1: Proper initialization helps to avoid suboptimal (nonphysical) local minimum: (a) Exhaustive
evaluation of RMSE for difference candidate periods; (b) estimated pattern atT = 8.2s, this is
nonphysical even though it corresponds to slightly better fitting in RMSE sense; (c) estimated
pattern atT = 4.1s, the physiologically sound optimal period.
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To validate the correlation between the root mean squared error (RMSE) and the clini-

cally critical metrics, we plot the performance characteristic parameters (dose error, PTV

margin, 95% dose coverage) vs. RMSE in Fig. A.2 for both projection model based motion

compensated treatment and modified cosine model based motion compensated treatment.

Quantitative results are listed in Table A.1. In both treatment plan simulations, dose error

and PTV margin demonstrate an increasing trend as RMSE becomes larger while the 95%

dose coverage decreases. This validates the soundness of using RMSE as the index for

“performance indicator”.
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Figure A.2: Clinical significant performance metrics v.s. Root Mean Squared Error (RMSE). Different met-
rics are indicated with letters [(a#)] dose error (%); [b(#)] PTV margin (cm); [c(#)] 95% dose
coverage. Different motion models for conmoving the treatment beam are indicated with num-
bers: [X(1)] projection based model (treatment beam trajectory described as linear combinations
of harmonics); [X(2)] modified cosine model.

Moreover, we carry out a comparison between the projection-based model with the

commonly used modified cosine model described in Equation (A.11). Fig. A.3 shows the

RMSE of the best fit modified cosine model versus the proposed index (RMSE derived

from projection model), and it demonstrates that not only does our index capture how well
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the signal can be approximated by a well-recognized physical model, but the fundamen-

tal pattern obtained via the projection model uniformly outperforms the modified cosine

model in the LSE sense. For further clinically meaningful justification, we calculate the

performance characteristic parameters corresponding to amodified cosine model in Table

A.1, and we can observe that our projection model yields lower RMSE, dose error, PTV

margin and higher dose coverage than the modified cosine model overall (Fig. A.3). Fur-

thermore, the problem of fitting the data to the model described by Equation (A.11) is higly

non-convex with respect to its parameters which incurs two issues: it is extremly sensitive

to initialization due to the numerous local minima; and it iscomputationally expensive as a

nontrivial high dimensional search problem. In contrast, the proposed projection approach

offers a closed form solution for the inner optimization problem in (A.5) and is thus sim-

plified to a 1-D line search, it has an obvious advantage in computation efficiency over the

modified cosine model.

To further justify the above claims, Fig. A.4 shows some of the fitted trajectories with

“optimal” cosine model parameters with their counterpartsfrom the projection-based ap-

proach. The fundamental patterns obtained by the projection method do indeed offer a

better match than the cosine model. This is a result of the intrinsic “nonparametric” nature

of the projection based approach. Described as a linear combination of harmonics, the

fundamental pattern has essentially(2K + 1) degrees of freedom whereK is determined

by the imposed band limit of the physical signal. The modifiedcosine model, on the other

hand, has explicitly assumed no more than 5 degrees of freedom, which has restricted its

descriptiveness. For the same reason, our method imposes nosymmetry on the funda-

mental pattern; in particular, the trajectory of inhalation does not have to be the inverse of

exhalation, unlike the modified cosine model.

A “good” fit of the breathing trace with a periodic pattern is obtained (lowRMSE by
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Figure A.3: RMSE, Dose error(%), PTV margin (cm), 95% dose coverage of modified cosine model v.s.
projection model.

the proposed irregularity index) indicates that the breathing trace under examination is

highly regular, and vice versa. Similar argument holds for the relationship between “bad”

fit (high RMSE) and high irregularity. Instead of examining the combination of a whole

bunch of quantities, such as standard deviation of amplitude, mean positions, periods of

breathing cycles, etc, this single number (the RMSE) servesas the irregularity index, since

it is designed specifically for this purpose. Therefore, observing a low RMSE increases

the confidence and feasibility for potential dynamic treatment for the mobile target. In

particular, Synchronized Moving Aperture Radiation Therapy (SMART) [84] and simi-

lar motion compensation based treatment schemes are potentially applicable. Moreover,

the fundamental pattern, which is obtained as a free side-product during the process of

estimating period and computing the irregularity index, isa good indicator of what the

radiation beam pattern should be, serving the same purpose as average tumor trajectory
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Figure A.4: Trajectory fitting with projection model and modified cosine model. Left column: projection
model vs. true trajectory; right column: modified cosine model vs. true trajectory.

(ATT) introduced in [84]. In other words, it can be regarded as an alternative derivation of

ATT without having to examine individual cycles too closely. A potential merit of the pro-

posed method for extracting ATT is that it is much less sensitive to additive noise due to its

global nature - every sample on the observed breathing tracecontributes to the estimation

of the fundamental pattern.

To show the potential application of the proposed projection based scheme to predict

target motion, we derive the fundamental pattern with the first 20secof breathing trace

(the training portion) and apply it to the remainder of the data - the next 10secof breathing

trajectory is called “testing portion” since it is not seen by the projection model. We
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illustrate some examples in Fig. A.5. The irregularity indexes derived from the learning

portion, the corresponding optimal period and the evaluation of its fit to the the ground-

truth trajectory for the testing portion using RMSE are provided in Table A.1.
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Figure A.5: Prediction of breathing trajectory with projection model.

The quality of the prediction depends on how repetitive the true breathing trajectory is,

which again can be measured by the proposed regularity index. When we examine closely

the RMSE computed from training portion and test portion, wewill see that the latter is

uniformly larger, which is expected (since optimization isapplied only to training data).

Moreover, when we examine across cases, there is a positive correlation between RMSE

computed during training and RMSE computed from testing. This indicates RMSE dur-

ing recent historical trajectory is a good predictor for RMSE, and thus irregularity level for

near future. Generally, being a global regularity measure,the proposed index may not cap-

ture time varying properties of the breathing signal. This limitatioin can be overcoome by

applying the proposed method to smaller sliding time intervals instead of the whole trace.

Despite this limitation, the projection model based prediction appears to provide reason-

able predictions within approximately a 2 second response window given a sufficiently

regular breathing trace. Even though this number is significantly larger than the 0.4 sec-

ond discussed in [126], we arenot claiming that the proposed algorithm is preferable to

adaptive filtering, since regularity in breathing trace is apretty stringent assumption. Mod-

eling of free form breathing is a hard and unsolved problem ingeneral. It is often desirable
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to have a simple and descriptive model even if some conditions need to be checked in the

first place. Moreover, the proposed irregularity index is a convenient tool for such a sanity

check. By examining this single index, we can determine whether the breathing trace is

regular enough for the periodicity assumption to hold, hence the corresponding prediction

or synchronized motion compensation with ATT may be applied.

A.4 Summary

We have derived a general framework to find the closest periodic signal that best

matches the temporally sampled observation of breathing trajectory. Experimental results

have shown good consistency with physical knowledge and clinically critical parameters as

dose percentage error, PTV margin and 95% dose volume. Comparison between the pop-

ular modified cosine breathing model and the projection-based approach shows that being

consistent with the residual error from fitting the modified cosine model, our approach

offers additional computation efficiency and robustness inthe optimization process. Fur-

thermore, we get the fundamental breathing pattern which helps to justify the soundness

of the results and can serve as a valuable reference in further treatment planning. Potential

applications of the fundamental pattern to dynamic motion compensation and prediction

are illustrated with preliminary experiments. It is also likely that knowledge of the periodic

signal can aid in reconstruction of 4-dimensional computedtomographic models.

In this study, we have focused on finding the optimal periodicsignal in the LSE sense.

As future work, we would like to investigate alternative metrics that are potentially more

tolerant to transient pathological breathing patterns. Also, for a particular treatment plan-

ning scheme, some choice of matching metrics could be more suitable than others, and

the design of plan-dependent irregularity indexes would beinteresting. Finally, we have

used in this study the RMSE resulting from the projection method as an irregularity in-
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dex. Potential variants, for instance, a normalized version, may be more desirable in some

applications.
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APPENDIX B

Real-time Prediction of Respiratory Motion based on Nonparametric
Local Regression Methods

1 Current developments in radiotherapy such as Cyberknife and Intensity Modulated Ra-

diotherapy (IMRT) offer the potential of precise radiationdose delivery for moving ob-

jects. Accurate target volume tracking is necessary for conformal treatment plans to fully

utilize their capacity. Image-guided radiotherapy needs to consider system latencies re-

sulting from image acquisition, communication delay, dataprocessing, and mechanical

processing. For treatment over multiple fractions, or longprocedures, the diagnostic ra-

diation dose can be significant, so it is desirable to reduce the image acquisition rate.

To address this issue, hybrid tumour tracking approaches that combine episodic radio-

graphic imaging and continuous monitoring of external surrogates have been investigated

[80, 81, 86, 105, 106]. There are two active areas of researchrelated to hybrid tracking:

(1) study of feasibility and effective use of external surrogates (including the placement

mechanism) such as thermistors, thermocouples, strain gauges, pneumotachographs and

infrared skin markers [1,47,57,59,73,118,125]; (2) prediction algorithms [110,126,134].

In particular, even if perfect information about the current state is assumed, the lag between

observing tumour location and treatment delivery still necessitates having predictors that

1This chapter is based on materials from [99]
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can “look ahead” enough, yet behave reasonably well even forrelatively low input sam-

pling frequencies.

This study belongs to the second category where we are interested in predicting target

motion located in the lung area or its vicinity. Such motion is mainly caused by breathing,

and exhibits semi-periodicity as observed in normal breathing signals. This is a very ac-

tive research area [37, 53, 110, 126]. The semi-periodic structure of the breathing signals

make explicit modeling challenging, since parametric models often fail to capture local

variations. On the other hand, overly flexible models that depend only on temporally lo-

cal information fail to use correlated historical information. Among the most investigated

methods are linear predictors with various covariate lengths, neural networks, and Kalman

filters.

We propose a prediction method based on local weighted regression. Adopting a classic

approach in modeling dynamical systems, we first generate anaugmented state with the

most current observation and one or more preceding samples.This augmented state is

designed to capture the local dynamics about the time point of interest, and it is used

as the covariate for the predictor system. For a pre-specified “look-ahead” length, the

target response pattern of the predictor is obtained from the training data. Those state-

response pairs form a scatter-plot in a high-dimensional space where we apply locally

weighted regression. Intuitively, the predictor infers its response map from the behavior of

its neighbors in this state space, since it is probable that they are. The regression weights

are designed to reflect the “distance” between the state of interest and the training samples.

For the purpose of real-time tracking and prediction, we adaptively adjust the inference

weights to incorporate the decaying temporal correlation among response patterns with
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longer time lags2.

We discuss the proposed methods in detail in Section B.1. Themethod is applied

to clinical RPM data (RPM Varian Medical System, Palo Alto, CA) that is described in

Section B.2. We report the test results and the comparison toalternative methods in Section

B.3. Finally, we discuss future directions in Section B.4.

B.1 Methods

In this section, we propose a prediction method based on locally weighted regression.

For simplicity, we describe the model in terms of scalar locations, i.e., 1-D observation.

The extension to vector observation is straightforward. Section B.1.2 first introduces a

primitive version that ignores the change of temporal correlation with time lag, and Section

B.1.3 and Section B.1.3 extend it to include time indexing.

B.1.1 Model Setup and General Notations

Let the continuous scalar functionf : ℜ→ ℜ denote a motion index signal. At time

instantτ, we are given a set of discrete samples{si = f (t(i)), i = 1,2, . . . ,k} of the breath-

ing trajectory prior toτ, with t(k) < τ. For simplicity, we assume that the observed signal

is sampled uniformly with frequencyψ Hz, i.e., t(i + 1)− t(i) = 1/ψ. We assume that

the look ahead length is an integer multiple of the sampling interval 1/ψ seconds, and for

later convenience, we represent it in the discrete unit,i.e., a look-ahead lengthL indicates a

L/ψ seconds prediction. We usep to denote the state dimension used to capture system dy-

namics. To draw an analogy to ordinary differential equation (ODE) based system,p = 2

corresponds to first order difference system with location and approximate velocity; and

p = 3 corresponds to a second order difference system with the addition of acceleration.

2In fact, this corresponds to augmenting the state with the time index as an extradimension.
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B.1.2 Basic Local Weighted Regression

At current time instantτ, the available observations ares1, . . . ,sK, whereK ≤ τ×ψ.

Then for anyi ≤ K−L we construct lengthp state vectorxi = [si−(p−1)∆, . . . ,si], and re-

sponse variableyi = si+L. The parameter∆ is an integer that indicates the “lag length”

used to generate the augmented state. It should be chosen to properly reflect system dy-

namics: small lags are more sensitive to dynamical change aswell as noise; big lags are

more robust to the presence of noise yet average out the system dynamics at the same scale.

The set of hyper-pairs(xi ,yi) form a scatter plot in thep+1 dimensional space. Assum-

ing that the state thus constructed conveys all the information about system dynamics, then

the scatter-plot summarizes the noisy realizations of the prediction map:g : ℜp→ℜ:

(B.1) ŷi = g(xi),

where the predictorg is a smooth function. This is a reasonable model as we do expect the

prediction to vary smoothly with the historical trajectory. Our goal is to predict the target

location at time(τ+L/ψ) seconds, which is equivalent to estimating ˆyK.

Respiratory motion is not stationary, in fact, both the system dynamics and its local

statistics vary in a semi-periodic fashion. Unfortunately, most existing methods in esti-

mating the prediction mapg fail to take this “phase-dependent” phenomena into account,

with the exception of [104] and [134] where a discrete set of stage-wise models are con-

structed and updated adaptively. The idea is to train (or infer) a predictor at a given state

with (only) those historical data samples that behave similarly, or vaguely speaking, belong

to a similar respiratory stage. Yet the existing stage-wisemodels require predetermining

the number of discrete stages and often involve segmentation-based training. To circum-

vent these difficulties, we hereafter provide a means to locally estimateg in the state-space

neighborhood ofxK, based on local regression (LOESS) from nonparametric methods in
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the statistical literatures [19].

Let r be a pre-determined constant3 that specifies the size of the neighborhood whose

members affect the estimate in the scattered(p+ 1)-dimensional space. LethK be the

distance fromxK to the rth nearest neighbor in terms of Euclidean distance in thep-

dimensional subspace,i.e., hK is therth smallest number among the distance betweenxi ,

i = 1,2, . . . ,K−L to xK. Let κ(·) be a symmetric kernel function that satisfies:

1. κ(x) > 0 for |x|< 1 andκ(x) = 0 for |x| ≥ 1;

2. κ(−x) = κ(x);

3. κ(x) is a non-increasing function forx≥ 0.

We select local inference weight according to:

(B.2) wi = κ(h−1
K ||xi−xK||).

Figure B.1 illustrates the idea of weighting based on distance in state space. For sim-

plicity, one delay tap is used(p= 2), so the statexi = [si−∆,si]. The goal is to estimate the

responseyK for current state vectorxK, from available covariate-response pairs(xi ,yi) for

i ≤ K−L. Notice thatK−L < i ≤ K are not used in the regression, since their response

valuesyi are not yet available at time instantK. Distances between current statexK andxi

are computed and the kernel function is used to determine theregression weightswi as in

(B.2). The assigned weights emphasize those training samples that share similar dynamics

as the current state of interest as shown in the lower part of Figure B.1.

We subsequently estimateg locally using a polynomial of degreed, i.e., we use a

predictor of the formg(x) = ∑Q
q=1βqzq(x), whereQ= (d+1)p andzq(x) = ∏p

j=1x
d j
j and

(d1, . . . ,dp) ∈ {0,1, . . . ,d}p that corresponds to the base-d representation ofq.

3Equivalently, it could also be specified as a ratio with respect to the total number of data points.
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locationyK = sK+L, available covariant-response pair(xi ,yi)i≤K−L; lower subfigure: distance
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We estimate the coefficients of the local polynomial by minimizing the weighted local

squared error:

β̂ = argmin
β

K−L

∑
i=1

wi(yi−
Q

∑
q=1

βqzq(xi))
2

= (ZTWZ)−1ZTWY,(B.3)

whereZ is theK−L by Q matrix with elementsziq = zq(xi). The weighting matrixW

is a diagonal matrix withW(i, i) = wi . Since the local weightw has a limited bandwidth

hK as designed in (B.2), there are onlyr nonzero diagonal elements in the weighting

matrix W. Correspondingly, the outer summation∑K−L
i=1 can be equivalently written as

supported only on a local neighborhood of radiush, i.e., ∑i:||xi−xK ||<h. Therefore, the data

vectors involved have lengthr≪ K−L rather thanK−L. It is desirable to choose a small
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neighborhood sizer to decrease computation cost, yet not overly small to sacrifice the

regularity of (B.3),i.e., the invertibility ofZTWZ.

For subsequent prediction from a given observationxK, we use the estimated polyno-

mial coefficientβ̂:

ŷK =
Q

∑
q=1

β̂qzq(xK).(B.4)

The algorithmic flow chart is as follows:

Algorithm 2 PredictŷK from (xi ,yi)i≤K−L,xK with local regression.

Selectr (size of regression neighborhood), obtainhK from order statistics of||xi−xK ||.
Select kernelκ and compute regression weightswi according to (B.2).
Compute prediction model coefficientŝβ according to (B.3). For lag-one state augmentation with sec-
ond order polynomial prediction model,p= 2, d = 2, andQ= 9, so computingβ̂ requires the inversion
of a 9×9 matrixZTWZand then multiplying it by a 9×1 vector.
predict the response ˆyK using (B.4).

B.1.3 Variations that Potentially Improve Prediction Performance

We now describe two design variations that have the potential to improve prediction

performance: using an iterative weighting scheme to increase robustness to outliers in

regression (Section B.1.3), and dynamically updating the training atlas to account for tem-

poral variations and/or trends (Section B.1.3 and Section B.1.3).

Robust Local Weighted Regression with Iterative Weight Assignment

It is possible that the training set based on state space distance includes abnormal

covariate-response pairs due to noisy observation, or abrupt (and non-repetitive) changes

such as patient coughing, and thus they may not be “representative” of the predictor pat-

tern for the given state. To help the local regression methodto be robust to such outliers in

the (xi ,yi) pairs, we can diminish the weight of a sample covariate-response pair when-

ever it is inconsistent with the smooth regression from its neighbors. To quantify such

inconsistency, we can compare each response valueyi with its predicted value ˆyi = g(xi).
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Intuitively, the distance between the observed responseyi and its estimate ˆyi indicates how

different the particular covariate-response pair behavesthan its neighbors. Cleveland [19]

has suggested a robust weighting scheme based on a bi-squarefunctionB defined as fol-

lows:

B(x) =











(1−x2)2, for |x|< 1

0, for |x| ≥ 1.

Let ei = yi− ŷi be the residual of the observed response from the current fitted value. Let

s be the median of the|ei| for i = 1,2, . . . ,K−L. Define the robustness weights by

(B.5) δi = B(ei/6s).

The original weightwi(x j) that determines the “contribution” of theith sample covariate-

response pair in estimating thejth response ˆy j is then modified to bewi(x j) := δiwi(x j),

reducing the effect of outliers in fitting the other data points. We apply this re-weighting

procedure several times, and use the robust adjustedwi(xK) in place ofwi in (B.3) for

estimating the local polynomial coefficientβ̂. This is practical since theδi values involved

in adjusting the local weight depend only on theith sample fitting quality, and are indepen-

dent of the predictor. Plugginĝβ in (B.4) results in a predicted response value ˆyK. Since

the estimation of local polynomial coefficients discounts the effect of outlier samples, the

result predictor is expected to be robust to outlier behavior in the “training set” as well.

Note that robust local regression could be combined with other methods if needed.

Modified Weight Assignment with Exponentially Discounted Temporal Correlation

Fading memory is present in many natural processes. In breathing trajectories, tempo-

rally adjacent sample points tend to be more similar than thesample points further away

from one another. To incorporate this property in prediction, we adjust the weights by

applying an exponential discount as a function of the temporal distance. Specifically, we
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modify the weights as follows:

(B.6) wi(x j) := exp(−α|i− j|)wi(x j).

The positive constantα determines the decaying rate of influence of one sample on

another one as their temporal distance increases. As a special case,α = 0 corresponds

to no temporal discounting for the sample contributions, but dynamically adds the new

samples into the training atlas as they become available.

Temporally Windowed Training Samples

Alternatively, we can modify the weights using a temporal moving window as follows:

(B.7) wi(x j) :=











wi(x j) |i− j|< Γ

0 otherwise,

whereΓ is the window size. Here only samples that are close enough intime contribute to

the local regression with weights determined by (B.2). The length of the window needs to

be chosen long enough to guarantee enough samples for the local regression.

B.1.4 Baseline Methods for Comparison

It is desirable to decrease radiation dose due to imaging in image-guided radiotherapy

(IGRT). This means we would prefer to predict with low-frequency observation samples

(small ψ). On the other hand, it takes time to acquire each observed sample, process it

and move the hardware (linac, MLC or cyberknife) accordingly. Thus a system capable

of large lookahead lengths is preferable. These two requirements are challenges in predic-

tion, and trade-offs between them need to be considered. More specifically, with looka-

head length determined by the limitation of system response, we want to determine the

smallest measurement rate that still guarantees certain prediction accuracy. We will study

the performance of the proposed method when lookahead lengths and sampling rates are

varied, and compare that with some baseline approaches described as follows.
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Following [110], we use some commonly used predictors for baseline comparison. We

briefly describe their setups and optimization for free parameters in this section.

• Most Recent Sample

This method simply uses the last sample value:

ŷK = sK.

There are no parameters to be estimated.

• Linear Predictor4

The response is predicted as a linear combination of the previously known positions.

This corresponds to a simple model:

ŷK = βTxK +β0.

Given a training set, and for a fixed history length the optimal coefficientsβ,β0 in

terms of mean squared error can be obtained by solving a linear system.

• Artificial Neural Networks (ANN)

We investigate a multilayer perception (MLP) with two feed-forward layers as the

ANN predictor [63]. The first layer takes in a fixed history of samples and a constant

value 1, linearly transforms the inputs and then uses a sigmoid function to generate

the hidden values. The equation for the first layer is

h j(x) =
1

1+exp
(

−γT
j x+γ j,0

) .

The second layer is chosen to be a simple linear system, and the output is given by

ŷi = ηTh(xi).

4The “linear extrapolation” method described in [110] is a special case oflinear prediction.
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Parametersγ andη are estimated from the training set. We use Netlab toolbox [83]

to implement ANN in Matlab.

We have also implemented a Kalman Filter for comparison, using Expectation-maximization

(EM) method for parameter selection [78], and applied thosevalues for prediction. Our

results agree with [110] that the Kalman Filter provides inferior performance compared

to ANN. For conciseness, we skip reporting them in this paper. A related research worth

noting is the adaptive linear filter model introduced in [126], which can be interpreted as

Kalman Filter not in the state, but in linear regression coefficient vector. Unsurprisingly, it

shares the limitation of Kalman Filter due to the nonstationarity of respiratory signal.

B.2 Materials

We used the Real-Time Position Management (RPM, Varian Medical Systems, Palo

Alto, CA) system to obtain the trajectory of an external fiducial placed on the patient’s

chest wall. The recorded displacement-time relationship is believed to be highly correlated

with superior-inferior diaphragm motion [126], which is the major source of respiratory

motion for tumours in the chest or lung area (the displacements in left-right and anterior-

posterior direction are normally on the order of one magnitude lower). To better reflect

the behavior of physical superior-inferior motion, the unit-less RPM data were centered

and scaled so that their dynamic range matches that with typical SI motion for chest and

lung tumours. Table B.1 summarizes the RPM data used in our experiment5 . Figure B.2

illustrates two typical breathing trajectories.

5The data are adjusted to have globally zero mean; average periods are estimated with subspace projection method
[102].
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Subject ID 1 2 3 4 5 6 7 8 9 10

STD 4.96 4.99 3.01 1.99 3.16 1.73 6.27 5.65 2.74 5.29
P-P 25.36 23.65 12.67 11.24 18.72 9.70 28.79 21.89 12.19 21.55

Table B.1:RPM Dataset information.
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Figure B.2: Typical breathing trajectories: (a) rapid yet regular breath; (b) slow yet irregular breath.

B.3 Results and Discussions

B.3.1 Scatter Plot in Augmented Space

We first consider a simplep = 2 dimensional state vectorxi = [si,si−∆]. The response

variable is of the formyi = si+L. Figure B.3 shows a 3-dimensional scatter plot of(xi ,yi)

with the base-line X-Y coordinate reflecting the covariatexi and the Z coordinate indi-

cating the corresponding response variable valueyi . The covariate-response structure is

rather smooth, motivating our use of local regression to predict a response from the sam-

ples in the neighborhood of the projection onto the X-Y plane. Roughly speaking, the

pattern suggests the existence of a conceived functionalg that maps the covariate to the

response.

We started with a fine sampling rate ofψ = 30Hz and used onlylag−onedelay with

∆ = 12 that corresponds to 0.4 second to augment the state space. We investigate a looka-

head length ofL = 30, which is equivalent to a 1 second prediction. We used these pa-

rameters as defaults in later experiments (e.g., in Section B.3.4). This lookahead length

is reported to be difficult by [126] and [110] with a wide spectrum of common predic-
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Figure B.3: Covariate-response relationship with lag-oneaugmented state: (a) 3-dimensional Delaunay tes-
sellation plot; (b) 2-dimensional scatter plot with color indicating the response value.

tion techniques. In particular, in the comparative study in[110], the best performance

among linear predictors, Kalman filter and artificial neuralnetworks yields a RMSE of

about 5mm, with similar data statistics to our rescaled RPM data 6. Lag-one augmen-

tation corresponds to regression based on the most current samplesi and one preceding

observationsi−∆, which is the most compact model possible. The temporal lag∆ for aug-

mentation should be chosen to reflect the system dynamics properly and robust enough in

the presence of observation noise, and does not have to be unity.

B.3.2 Local Weighted Regression without Temporal Discounting

To illustrate the performance of the simple local weighted regression method described

in Section B.1.2, we conduct two simple experiments with thefollowing configurations:

we used the “tricube” function [19] as the weighting kernelκ and chose the effective

bandwidth so that the local regression is supported on half of the samples. Specifically, we

6The research conducted in [110] uses 3-dimensional position, which ispresumably more complex than this study.
However, since motion in SI direction dominates the overall respiratory variation in general, we expect the prediction
error to be the major contributor to the overall tracking/prediction performance. Rescaling the RPM data to have similar
statistics as typical SI motion, we feel it fair and illuminating to compare quantitatively the performance of our predictor
to that of the general 3D predictors.
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used

κ(x) =











(1−|x|3)3, for |x|< 1

0, for |x| ≥ 1.

The neighborhood sizer was chosen to be 200, which is equivalent to about 7 seconds

worth of samples. Accordingly,hK is the 200th smallest number among||xi−xK||.

B.3.3 Robust Local Regression with Iterative Weighting

We investigated the robust iterative weighting of Section B.1.3, but found that itera-

tive weighting did not significantly change the prediction errors in this experiment. This

suggests the absence of dramatic outliers in our experimental data.

B.3.4 The Effect of Dynamically Updating the Training Set

If the training set is determined before the treatment process, and is kept the same

thereafter, the corresponding local regression structures are also fixed. This is the “static”

inference scenario. It is also possible to “add” (or “substitute” the oldest sample with)

new samples into the training set during the treatment process, as new responses become

available. We refer to the latter approach as “dynamically updating of the training set”.

The computation for simple local regression is the same regardless of whether we up-

date the training atlas or not, as it uses only the training samples that fall into the neighbor-

hood of the target. On the other hand, when robust local regression with iterative weighting

is applied, choosing between static training and dynamic training makes a difference. In

the static scenario, the robust weights can be computed offline upon the availability of

all the training samples, and are kept the same thereafter. However, if we use dynamic

updates, not only does the size of the “atlas” grow with time,but there would also be

changes in the robust weights, since the newly available covariate-response samples can

potentially change the regression weights for those existing samples whose supports over-
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lap with those of the new ones. This effect can propagate through the whole atlas.

At the cost of possible additional computation, dynamically updating the training atlas

admits new information as the time proceeds. This is particularly valuable when the under-

lying system dynamics demonstrate strong temporal variation, such as frequency change

or home position drifting, which are both commonly observed. New samples can either be

added to the training set as either simple addition, which corresponds to a collective history

case, or substituted for the oldest training sample, as in the windowed training history case.

In both cases, experiment results indicate that dynamically updating the training set yields

overall superior prediction performance in terms of root mean squared error (RMSE) and

mean absolute error (MAE), as we report in Section B.3.4 and Section B.3.4.

Dynamically Expanding the Training set

Using a discount factorα = 0 in (B.6) to adjust weight for the training samples up to

the most currently available one is equivalent to building acollective atlas that includes

all previous covariate-response pairs. Of course, new training pairs are entered into the

the atlas as time proceeds. Table B.2 reports the predictionperformance for one second

lookahead with 5Hz sampling using this dynamic training structure as opposed to a static

20 second training at the beginning of the fraction.

Table B.2: Comparison of Prediction Performance among Static Training, Dynamic Expanding Training,
and Updating Training with Moving Window

Subject ID 1 2 3 4 5 6 7 8 9 10 Average
Root Mean Squared Error (RMSE)

static 9.7 3.6 2.2 1.9 10.8 5.6 4.9 4.2 2.8 4.4 5.0
expand 3.4 2.8 1.6 1.4 2.5 1.3 4.8 2.6 2.1 3.7 2.6
update 2.7 2.5 1.4 1.4 2.6 1.3 4.8 2.5 2.1 3.5 2.5

Mean Absolute Error (MAE)
static 7.5 2.6 1.7 1.4 3.9 2.6 3.7 2.5 2.1 3.1 3.1

expand 2.6 2.1 1.2 1.1 1.7 1.0 3.5 1.7 1.6 2.6 1.9
update 2.0 2.0 1.1 1.0 1.7 1.0 3.4 1.7 1.4 2.5 1.8

Figure B.4 illustrates improved prediction performance bydynamically expanding the
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training set for breathing traces that either exhibit mean drifting or pattern changes. There

is minimal benefit when the breathing pattern is already fairly regular or irregular with

no “trend”, and new observations simply add to the already sufficiently dense training

atlas. Change detection may be used to locate some local variations, but this imposes extra

complexity7.

Dynamically Updating Training Set with Windowed History

Alternatively, a moving window can be used to update the sample set. This corresponds

to substituting the oldest samples with the newly availablecovariate-response pairs, as dis-

cussed in Section B.3.4. We illustrate the effect of this dynamic updating method in Table

B.2 and Fig. B.5. A dynamic window of length 20 second is used in all of our experiments.

We used the performance of dynamic expansion as a baseline for the windowed study.

For the 20sec training window, the overall prediction performance improves upon the

previously discussed dynamic expansion. The level of improvement, though, is much

smaller than the one we obtained by going from static training to dynamic expansion.

Some trade-offs are expected: for long fractions, it is morelikely that the later samples

are decoupled from the samples acquired at the very beginning of the procedure, thus

moving window method should be favorable; on the other hand,dynamic expansion does

not require choosing a window length, and it is almost free ofthe risk of running into

insufficient samples for the local inference, thus has the advantage of being simple and

stable. There is little difference in the prediction performance between the two methods

from Fig. B.5 except that in the mean drifting case, the windowed update may be slightly

better, which is also reflected quantitatively in Table B.2.

7Segmentation based tracking/prediction model [134] follows similar logic, yet requires further research to improve
robustness and automation.
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Figure B.4: Effect of dynamically updating the training atlas: actual signal time history (blue solid line), pre-
diction from static training (black dash-dot line) and prediction from dynamic expanding atlas
(red dashed line). (a) breathing with mean drifting (Patient 1); (b) In the presence of chang-
ing breathing pattern (Patient 6); (c) with complicated transient interrupting regular breathing
(Patient 8); (d) quasi-regular breathing pattern (Patient10).



191

20 40 60 80 100 120

−10

0

10

Time (seonds)

D
is

pl
ac

em
en

t
(a)

20 30 40 50 60 70 80 90 100 110

−5

0

5

Time (seonds)

D
is

pl
ac

em
en

t

(b)

20 40 60 80 100 120 140 160

−10

0

10

Time (seonds)

D
is

pl
ac

em
en

t

(c)

20 40 60 80 100 120 140

−10

0

10

Time (seonds)

D
is

pl
ac

em
en

t

(d)

Figure B.5: Comparison of prediction performance using dynamic update with moving windowed and ex-
panding training atlas: actual signal time history (blue solid line), dynamic expanding training
(black dash-dot line), moving window adaptive training (red dashed line).

B.3.5 The Effect of Measurement Rate and Lookahead Length

We compared the local regression (LOESS) method using expanding training atlas with

the baseline approaches described in Section B.1.4. In particular, we compared with most

recent sample (MRS), linear prediction (Linear), Kalman Filter (KF) and Artificial Neural

Networks (ANN) when lookahead length and sampling rates arevaried. Figure B.6 and

Fig. B.7 report the results in terms of the collective root mean squared error (RMSE) and

mean average error (MAE) across all patients. In general, the prediction errors increase

as sampling frequencyψ decreases and/or lookahead lengthL increases, as expected. In-
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terestingly, the proposed local regression method is insensitive to the sampling rate, and

performs almost consistently across different lookahead lengths. Unlike the most recent

sample, linear model or Kalman filter, which not only make assumptions about the under-

lying model structure (linearity), but also try to explicitly solve for the model parameters,

LOESS makes none of the above assumptions or effort. The nonparametric nature of the

regression avoids assuming a fixed model structure, let alone solving for it. The only re-

quirement is consistent behavior (orexistenceof an underlying functional form). A poly-

nomial of sufficient order approximates this underlying function via fitting samples in the

neighborhood of the point of interest. This also explains, to some extent, why ANN out-

performs the other approaches [79], as it is a combination oflocal linear perceptrons, with

extra nonlinearity provided by the sigmoid activation function. When lookahead length

is short and sampling rate is high, linearity holds approximately, and all methods provide

reasonably good prediction. However, when we need to look further ahead, linear models

are not sufficient to capture the dynamics, even though the response pattern may still be

consistent, and that is where LOESS (and ANN) demonstrates its advantage. Figure B.6

reports the relationship between collective prediction error (across all testing subjects) and

lookahead length for sampling rateψ = 5Hzand Fig. B.7 illustrates how collective predic-

tion error change with different sampling rates. LOESS approach performs competitively

with ANN for lookahead length 0.6 seconds, in particular for low sampling frequency, and

it demonstrates an obvious advantage for lookahead length 1second.

B.4 Conclusion and Future Work

In this paper, we have proposed a local regression based method to predict respiratory

motion. We compared the proposed method and conventional approaches such as most re-

cent sample, linear model, Kalman filtering, and artificial neural networks. The proposed
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Figure B.6: Collective performance comparison for different lookahead lengths. With sampling rateψ =
5Hz, (a) root mean squared error (RMSE), (b) mean absolute error (MAE).
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Figure B.7: Collective performance comparison for different sampling ratesψ. Left column [a#] RMSE,
right column [b#] MAE. Top row [X1] illustrates the results from a lookahead length of 0.6
second and bottom row [X2] shows the results when lookahead length is 1 second.
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method had lower prediction error than the others for tasks requiring long lookahead pre-

diction. We have also discussed extensions and variations of the basic method to provide

robustness to outliers that may be caused by low SNR or miss-tracking. We studied the

prediction performance with different error metrics (RMSEand MAE) for various com-

binations of lookahead length and sampling frequency. The proposed method showed the

most advantage for long lookahead lengths and low sampling rates.

We have discussed the challenge of choosing a good discount factor for weight adjust-

ment in local regression in Section B.1.3 and discussed the two simple cases corresponding

to either no forgetting or inference from windowed historical sample. The proper choice of

the temporal discount factor depends on the variation of theunderlying breathing pattern,

and automatic schemes should be investigated.

As observed in our experiment, various phases of respiratory motion are predicted with

different accuracies. Respiratory motion demonstrates obvious non-stationarity: the sys-

tem variation at the transition phase could be very different than that during extreme tidal

stages (end-inhale or end-exhale). From another perspective, if we examine the signal-

to-noise ratio (SNR) over a windowed portion of the signal, SNR would change as the

window covers different stages of the breathing: SNR would be relatively high during

transition stage, as the signal variation is big relative tonoise, while SNR is low at the

plateau stages, which correspond to end of inhale or exhale.These observations motivate

a potential research topic: if we aim at homogeneous prediction performance throughout

the breathing trajectory, it may be necessary to use adaptive sampling. More precisely,

denser sampling may help where prediction uncertainty is big whereas sparser sampling

should suffice where prediction is more reliable. This is a topic for future study.

The dynamics of respiratory motions change over various stages of breathing, and

makes general prediction difficult. Models using state dependent transition probabilities
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have been investigated for stochastic tracking [104], and explicit segmentation was also

studied [134]. Our proposed method uses local kernel regression to capture this variation

implicitly by essentially limiting inference to a neighborhood of training samples that are

expected to behave similarly. Intuitively, this is almost equivalent to training a local model

at each state of interest. Since the state distance (and thusthe inference weight) is assigned

with respect to Euclidean distance in state space, it is important that clustering with this

distance reflect dynamic similarity. This is expected in most cases, except when home

(mean) drifting is high both in frequency and displacement value. In the exceptional case

of dramatic mean drift, samples belonging to different breathing stages may be clustered

together. One straight-forward remedy would be to incorporate mean drifting compensa-

tion in the inference weight. A robust mean tracking algorithm for respiratory motion is

provided in [100] that outputs mean position estimates for both the training samples and

the state of interest. We expect improved accuracy by accounting for mean position drift-

ing. We plan to conduct further experiments and analyze thiseffect in more detail in the

future.
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APPENDIX C

Inference of Internal Respiratory Tumor Motion from External
Surrogates: A State Space Augmentation Approach in Modeling

Hysteresis

1 Respiratory motion affects tumours in the thorax and abdomen. In particular, breath-

ing is the major reason for intrafractional tumour motion for lung cancer patients. It

is important to monitor such motion during radiotherapy treatment to ensure the accu-

rate delivery of radiation dose in motion-compensated Intensity Modulated Radiotherapy

(IMRT). Fluoroscopic imaging or portal imaging can monitortumour motion during the

treatment process. To reduce x-ray exposure, hybrid tumourtracking approaches that

combine episodic radiographic imaging and continuous external surrogates have been in-

vestigated widely [80,81,86,105,106]. Using external surrogates to infer internal tumour

motion assumes that there is consistent relationship between internal and external motion.

Hysteresis is typical in lung tumour movements, with the tumour taking a different

path during inhale and exhale. Inhalation normally takes longer than exhalation, and the

deflating lung volume exceeds the inflating volume at the sametrans-pulmonary pres-

sure [57]. Respiratory hysteresis makes inferring internal tumour locations from external

surrogate signals challenging. Most of the external surrogate systems, such as thermis-

tors, thermocouples, strain gauges, pneumotachographs [60], and infrared skin markers as

1This chapter is based on materials from [101]
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applied in the Varian Real-time Position ManagementTM (RPM) system (Varian Medical

Systems, Palo Alto, CA), provide one-dimensional signals, whose instantaneous ampli-

tude (or displacement) alone does not provide sufficient information about the specific

breathing stages.

Previous studies about correspondence between internal tumour motion and external

surrogates can be classified into two categories. One class of studies investigates the

correlation between the two signals to justify the feasibility of using certain types of

surrogates, or compare different surrogate options (including the placement mechanism)

[1,47,59,73,118,125,128]. Alternatively, some other studies assumea priori the existence

of a strong correlation between internal and external signals, and aim to estimate the cor-

respondence map [107]. We adopt the latter perspective and study with a general setup the

correspondence maps that take the external surrogate traceas input and output estimates of

the internal tumour location, including, but not restricted to linear relations as reflected by

the correlation coefficient and its variants. The presence of respiratory hysteresis makes

this a challenging problem, as the same external surrogate position can reflect different

internal tumour locations during different phases. Existing methods address hysteresis by

first separating empirically the breathing trajectories into two distinct “directions” (inhale

v.s. exhale), and then constructing a piecewise phase-dependent map [66, 67, 107, 108].

However, subdividing the breathing into inhale and exhale phases often requires manual

intervention, and is infeasible for real-time application, because a breathing “peak” or

“trough” can be only be identified retrospectively.

In this study, we propose to use a simple state augmentation of the external surrogate

signal. Augmenting the state space with self-delayed observation bestows the model with

“memory”, which is an alternative way to characterize the “path-dependence” property of

hysteretic systems. This procedure captures system dynamics, and embeds the breathing
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phase information implicitly into the framework. We then provide the solution to a gen-

eral class of parametric inference models with the augmented observations. As special

cases, we derive optimal solutions for the parameters of linear and quadratic correspon-

dence models. Furthermore, given a training internal/external dataset, we demonstrate

a computationally efficient approach to choose a patient-specific (or fraction-dependent)

augmentation scheme. Generalization to adaptive correspondence models follows natu-

rally. We test the proposed approach on synchronized recordings of internal gold marker

trajectories and external fiducial marker locations [5].

Section C.1 describes the clinical data used for this test, discusses the challenges caused

by hysteresis in converting the external surrogate position directly to internal tumour lo-

cation and presents the proposed method. A general correspondence model is formulated

with polynomial models as an example. Optimal model parameters are derived and gener-

alization is given to accommodate adaptivity. Section C.2 reports testing results followed

by discussions. Section C.3 concludes this study with a briefsummary.

C.1 Methods and Materials

C.1.1 Data Description

To study the internal/external motion correspondence, we obtained synchronized record-

ings of internal tumour motion trajectories and external fiducial marker locations. The

paired trajectories from eight lung cancer patients were collected with a Mitsubishi real-

time radiation therapy (RTRT) system at the Radiation Oncology Clinic at the Nippon

Telegraph and Telephone Corporation (NTT) hospital in Sapporo, Japan. Two to four

1.5mm diameter gold ball bearings (bb’s) were implanted in or near the tumour [112] and

these internal markers were tracked in real time with diagnostic x-ray fluoroscopy [111].

External surrogate signals were obtained with the AZ-733V external respiratory gating
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system (Anzai Medical, Tokyo, Japan) integrated with the RTRT system. It uses a laser

source and a detector, both attached to the treatment couch with the beam placed orthogo-

nal to the patient’s abdominal skin surface. The device calculates the change in the surface

amplitude by measuring the relative position of the reflected light [5] and outputs a one

dimensional relative position measurement of the abdominal surface. The data acquisition

rate for the entire system is 30 frames per second. Table C.1 describes the study partici-

pants. All patients included in this analysis had peak-to-peak marker motion greater than

1cm. The KV fluoroscopy + Anzai system took multiple readingsfor each fraction from

several treatment field configurations to account for obscured x-ray views as the gantry

rotated. The recording lengths varied between 20 and 250 seconds with an average of 82

seconds. There are in total 128 readings, 46 of which were longer than 100 seconds.

Patient Gender Age Tumour Pathology # of bb’s Tumour Site Prescribed Dose (Gy) # of Fractions
1 F 47 Adenocarcinoma 4 R S7 N/A 1
2 F 70 Adenocarcinoma 3 L S6 N/A 1
3 F 71 Adenocarcinoma 2 R S5 N/A 1
4 F 47 Adenocarcinoma 3 R S4 48 8
5 M 81 Squamous cell carcinoma 3 R S6b 48 4
5 40 8
6 M 61 small cell lung cancer 3 R S10 40 8
7 M 68 Squamous cell carcinoma 3 R S6 48 4
8 M 85 Adenocarcinoma 3 R S8 48 4

Table C.1:Description of study participants. Patients 1-3 were brought in for data acquisition purposes only,
so there is no prescription dose. Patient 5 was treated twiceat the same site, with two months
between treatments. The tumour site is indicated using the common anatomical notation for lung
segmentation: S1-3 is upper lobe, S4-5 is middle lobe and S6-10 is lower lobe.

C.1.2 A General Correspondence Model

To minimize diagnostic imaging dose in IGRT systems, it is important to infer internal

tumour location from external surrogates. In principle, wecould use a correspondence

model that observes a trajectory~r of the scalar external surrogater up to time instantn

to infer the 3-dimensional internal tumour positionp = (x, y, z). We denote the collec-

tive surrogate information available at timen as~r(n)
△
=
{

r(m) : 0≤ m≤ n
}

. However,
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it is challenging to estimate such a map that estimates the internal tumour position from

the complete collection of historical surrogate data, since the length of the input variable

grows to infinity as time progresses. A more practical choiceis to use some much more

compact quantityr that captures sufficient information from~r for inference. With inter-

nal and external motion both being smooth, it is reasonable to approximatep(r) using

polynomials. Therefore, we focus on estimating a class of correspondence models that are

linear in their coefficients as follows:

(C.1) p̂(r) = Af(r),

wheref is a vector function of external surrogater; all model parameters to be optimized

are contained in the coefficient matrixA. In particular, two simple correspondence mod-

els, i.e., a linear model and a quadratic model introduced in [107] arespecial cases of the

form given in (C.1).

Linear models assume each coordinate of internal motion is affine in r = r(t). This

corresponds to the case where

(C.2) f(r) =






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Quadratic models map the external surrogate to each coordinate of internal motion via

a quadratic relation. It can be expressed in (C.1) with

(C.3) f(r) =










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The expression in (C.1) is linear in the model coefficientsA and yields a closed form

optimal solution in the least squared error (LSE) sense. GivenN sample points(rn,pn),
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n = 1,2, . . . ,N, the solution to the LSE problem:

(C.4) Â = argmin
A

E(A),

whereE(A) = ∑N
n=1 ||pn−Af(rn)||2, is given by solving the normal equation [68], and

(C.5) Â = P TF (F TF )−1,

whereF =















f(r1)
T

...

f(rN)T






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



andP =


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
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pT
1

...

pT
N
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











. The corresponding residual is given by:

∆P
△
= P −FÂT

= (I−F (F TF )−1F T)P ,(C.6)

with overall residual error (summed over all 3-dimensions)as:

E(Â) = trace
{

∆P T∆P
}

= trace
{

P T(I−F (F TF )−1F T)P
}

.(C.7)

It may be preferable to have simpler models (with fewer free parameters) over more

complicated models at the cost of small sacrifice in data fitting performance. This model

selection preference can be incorporated into the optimization setting by modifying the

objective function as:

(C.8) Ẽ(A) = E(A)+λR(#A),

where #A denotes the number of free parameters in the coefficient matrix A, andR is a

monotonically increasing function that assigns higher costs to more complicated models.

The regularization weightλ controls the tradeoff between the data fittingE(A) and the

preference for lower-order models. A simple example ofR would be the linear function
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R(#A) = #A, which directly penalizes the number of components inA; this is equivalent

to the Akaike Information Criterion [2]. Using the closed form optimal solution (C.5) and

the expression for optimal residual error (C.7) for a given fixed model structure, the modi-

fied objective function can be minimized in two layers. We saytwo inference models have

the same“model structure” if they only differ in parameter values. It follows immedi-

ately that all models with the same structure has equal number of degrees of freedom, thus

the same complexity regularizationR(#A) in (C.8). Therefore, to minimizer over models

of different complexity, it is natural to choose the “best” parameter setting within each

model structure (with fixed degrees of freedom thus a constant complexity penalty), and

then compare across structures. Within each class, minimizer of the complexity penalized

objectiveẼ(Ã) is the same as that ofE(Ã), and can be solved and evaluated efficiently us-

ing the closed form optimal solution (C.5) and expression foroptimal residual error (C.7).

This motivates the two-layer hierarchical algorithm shownbelow for finding the optimal

solution withinK candidate model structuresC = ∪K
i=1{Ci}.

Algorithm 3 Two-layer Optimization Routine for SolvinĝA = argminẼ(A) (C.8).

1: Ẽ←+∞; iopt← 0; Ã← [].
2: for i = 0 toK do
3: Choose model structureCi from the collection of modelsC ,
4: ComputeRi = R(#A) for structureCi ;
5: ComputeÂi within classCi according to (C.5) and its residual errorE(Âi) from (C.7).
6: if E(Âi)+Ri < Ẽ then
7: Ẽ← E(Âi)+Ri ;
8: iopt← i;

9: Ã← Âi .
10: end if
11: end for

C.1.3 Hysteresis and State Augmentation

Conventional methods that explicitly segment the breathingprocess into inhale and

exhale phases have their limitations, as physical phase transitions (and delays) occur con-

tinuously rather than as discrete jumps. To circumvent the intrinsic difficulty of estimating
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breathing phases, we study the system dynamics directly, expecting them to sufficiently

convey phase information. In a discretely observed system,one usually captures the sys-

tem dynamics with time-lagged samples. For the sake of simplicity and to avoid over-

parameterization, we restrict this study to a single lag. The proposed method generalizes

to multiple-lag models naturally.

Given a discrete-time external surrogater(n), n= 1,2, . . . ,N, we augment each external

surrogate state with a timeτ (in discrete unit) delayed sample,i.e., r(n)
△
= (r(n), r(n−τ)).

This augmentation captures first-order system dynamics, asthe difference betweenr(n)

and r(n− τ) can be regarded as a measure of average local velocity. Asr is uniquely

determined by~r, it fits into the general formulation (C.1). We apply the methods provided

in Section C.1.2 to estimate the coefficients for the augmented model. To demonstrate

the idea, we establish a linear model that is comparable to (C.2) and a quadratic model

analogous to (C.3).

The augmented linear model (inr) represents each internal coordinate as a linear com-

bination ofr(n), r(n− τ) and a constant offset, corresponding to:

(C.9) p̂ = Af(r), where f(r) =















r(n)

r(n− τ)

1















with a 3×3 coefficient matrixA.

The augmented quadratic model (inr) estimates each internal coordinate as a linear
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combination ofr2(n), r(n)r(n− τ), r2(n− τ), r(n), r(n− τ),1, corresponding to:

(C.10) p̂ = Af(r), where f(r) =





































r2(n)

r2(n− τ)

r(n)r(n− τ)

r(n)

r(n− τ)

1





































with a 3×6 coefficient matrixA.

In both cases, linearity inA results in the closed form solution given by (C.5) with the

correspondingF respectively.

C.1.4 Choice of Lag Length

The delayτ should be chosen properly, since too long a lag provides minimal local

dynamic information and too short a lag makes the estimationsensitive to observation

noise. For inference purposes, we desire a lag that maximally resolves the ambiguity in

the estimated correspondence map. We choose the lag that minimizes the fitting error for

training data:

(C.11) τ̂ = argmin
τ

E(Â(τ)),

with the objective functionE defined in (C.4). The coefficientŝA and the errorE depend

on τ becausef contains both the current external surrogate displacementr(n) and its

lagged stater(n− τ).

Equations in (C.6) and (C.7) provides a closed-form expression for E(Â(τ)) for each

given τ. The optimization problem (C.11) simplifies to a simple one-dimensional line

search that we solve by searching over an interval with the corresponding delay time be-

tween 0 (no lag) and about half of an average breathing period.
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C.1.5 Adaptivity of the Correspondence Map

Adaptivity may be useful to accommodate gradual changes in the correspondence mod-

els, due to drifting or variations in patients’ breathing. In the case of linear and quadratic

models, the operation in (C.5) involves inverting fairly small matrices (3×3 and 6×6 re-

spectively), so direct inversion is numerically feasible.However, when more complicated

models with higher degrees of freedom are used, it is desirable to reduce computation by

applying recursive algorithms that modify current estimates based on newly available data.

The key to recursively updating (C.5) is to avoid recomputing(F TF )−1 from scratch ev-

ery time. This is effectively the inversion of empirical correlation matrix with observation

fi. [100] provides rank-one update equations for sliding window and exponential discount

adaptivities.

C.2 Results and Discussions

To illustrate the challenges caused by hysteresis, Fig. C.1 shows an example of the rela-

tionship between internal tumour location obtained by fluoroscopic imaging and an exter-

nal surrogate from an abdominal surface measurement as described in Section C.1.1. We

depict only the anterior-posterior (AP) coordinate against the surrogate signal, as this axis

demonstrates the strongest hysteresis for this test subject. The optimal linear and quadratic

correspondence maps [107] provide reasonable inference ofinternal tumour motion from

external surrogates, yet they fail to describe the breathing-phase dependency of an ideal

correspondence map. In fact, any function that tries to map the scalarr(n) to p would

experience the same problem, since this is a one-to-multiple relation with hysteresis.

Figure C.2 illustrates the internal tumour location in the anterior-posterior (AP) direc-

tion v.s. the state augmented external surrogates forτ = 45, which corresponds to a 1.5

second delay for 30Hz sampling rate. The scatter-plot in Fig. C.2(a) represents each data
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Figure C.1: Example of a breathing trajectory with respiratory hysteresis.
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Figure C.2: Scatter plot showing the data samples in augmented external state space with the colors indi-
cating internal AP value. Locally consistent colored samples suggests the potential of resolving
hysteretic ambiguity by distinguishing among different respiratory phases implicitly with state
augmentation.

sample in the(r(n), r(n− τ)) space with a circle, and uses color (or intensity if viewed in

gray-scale) to depict the internal AP coordinate values (inmm) from fluoroscopic readout.

The one-to-multiple discrepancy appears largely resolvedas different colored circles are

not overlaid on each other, suggesting the existence of a single-valued inference map.

To illustrate the idea of model fitting in augmented state space, we first apply the sim-

ple linear model in (C.9) to the dataset shown in Fig. C.1 with a lag length of 1.5 seconds

(which may not be optimal), and illustrate the results in Fig. C.3. Even though there are

still noticeable differences between the observed internal coordinates in the upper row of

Fig. C.3 and their linear fit in the bottom row, the aggregated estimation error (across

all patients and fractions) reduced to 1.74 mm from 2.01 mm with direct linear fitting as
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Figure C.3: Correspondence relations in augmented state space and their linear fittings. Upper row: internal
tumour coordinate v.s. augmented state for observed samples with colors indicating internal AP
value; bottom row: estimates of tumour coordinate via linear fit with hollow circles depicting
modeled hypersurface evaluated at regular grid points and solid circles for the evaluation at the
sample locations, with colors indicating estimated AP value.

in (C.2) and 1.93 mm with direct quadratic fitting as in (C.3). In particular,we observe

noticeable decreases in estimation error in the AP direction, where hyesteretic ambiguity

is the most significant. Table C.2 reports the Root Mean Squared Error (RMSE) in each

direction respectively for the linear and quadratic model,with and without state augmenta-

tion2. Figure C.4 reports the paired (across patient/fraction) differences between the RMS

error of the direct methods and the augmented methods. The RMSE difference between

direct linear and augmented linear methods has mean 0.14mm and a median of 0.11mm;

the RMSE difference between direct quadratic and augmentedquadratic method has mean

2For comparison purposes, we have also computed estimate from the 5th-order polynomial model with direct method,
which has the same degrees of freedom (18 parameters) as the augmented quadratic model. Its estimation error is 0.75,
1.25 and 1.11 (mm) in LR, SI and AP direction respectively, with a 3D RMSE equals 1.83mm. A paired student t-
test between the RMSE for the 5th-order polynomial model and the augmented quadratic model yields ap-value of
1.06×10−10, which indicates statistically significant error reduction by the augmented quadratic model. This shows
that the improved performance of the proposed method is not a direct consequence of increased degrees of freedom, but
should rather be attributed to its capability of resolving hysteretic ambiguity via state augmentation.
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0.17mm and a median of 0.15mm. To assess statistical significance, we performed a paired

student-t test with the null hypothesis that the performance of the direct and augmented

methods do not differ. Thep values for the linear method and the quadratic method are

4.96×10−13 and 4.08×10−18 respectively, demonstrating that the error reductions were

statistically significant.

LR (mm) SI (mm) AP (mm) 3D (mm)
Direct Linear 0.80 1.45 1.13 2.01
Direct Quadratic 0.79 1.35 1.13 1.93
Aug. Linear 0.75 1.30 0.87 1.74
Aug. Quadratic 0.74 1.18 0.84 1.63

Table C.2: Estimation Error Table
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Figure C.4: Histogram of paired differences between the RMSerrors of the direct and the augmented meth-
ods: (a) difference between the RMSE of the direct linear approach and augmented linear
approach; (b) difference between the RMSE of the direct quadratic approach and augmented
quadratic approach.

Figure C.5 shows the estimated time series of these four approaches for converting

external surrogates to internal tumour locations. The higher-order models were more de-

scriptive with the extra degrees of freedom, as demonstrated by the relative performance of

quadratic models and linear models within each class respectively. State augmentation en-

ables varying response patterns during different stages ofbreathing as indicated implicitly

by the system dynamics.

As discussed in Section C.1.4, to properly choose the lag length , we use a short training
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Figure C.5: Estimation performance comparison among different methods. Red-solid line depicts the in-
ternal tumour position obtained from fluoroscopic imaging,and dashed blue like provides es-
timated quantities from external surrogates. Each column represents one internal motion co-
ordinate. Each row indicates the time series generated withone estimation method: (1st row)
direct linear; (2nd row) direct polynomial; (3rd row) augmented linear; (bottom row) augmented
polynomial.

set with internal-external pairs to compute offline the estimation performanceE(Â(τ)) de-

fined in (C.4) as a function of the lag lengthτ. In practice, the lag length does not have to be

the exact optimum in (C.11); values near that optimum should sufficiently convey system

dynamics. Reasonable insensitivity in the choice of lag length τ is desirable as this value

is determined prior to the treatment and remains fixed subsequently. Figure C.6 illustrates
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Figure C.6: Estimation error as a function of lag length for state augmentation: linear fit (solid line);
quadratic fit (dashed line).

that the estimation error is a smooth function of the lag length, which suggests the desired

robustness. For both the linear correspondence model (C.9) and the second-order polyno-

mial model (C.10) with state augmentation, the optimalτ corresponds to about 1.7−1.8

seconds delay. Without this knowledge, our previous experiments used 1.5 seconds de-

lay to augment the state space (Fig. C.2-Fig. C.5), and still yielded plausible results. The

asymmetric slopes in Fig. C.11 around the optimalτ̂ suggests that it may be preferable to

use a relatively small time delay in the absence of precise information.

Assuming that the choice of lag length is robust to inter-patient and inter-fraction vari-

ations, we used a fixed lag length equivalent to 1.5 seconds delay for simplicity, and il-

lustrate in Fig. C.7 the beam-wise 3D RMSE for patients 4,5 and6, whose treatment

extended over multiple days. The minimum RMS error for non-compensated treatment,

which corresponds to a constant estimate at the retrospective mean value, is also shown

for reference purposes. These results confirm that the augmented methods consistently

exhibit lower error.

Adaptivity is most beneficial for irregular respiration traces. Our test data had relatively

regular breathing patterns, so inclusion of adaptivity improved the estimation accuracy

only slightly.
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Figure C.7: Beam-wise 3D RMSE (mm) for patients 4-6: minimumnon-surrogate (blue circle-dashed);
linear inference (green square-dashed); polynomial inference (red star-dashed); augmented lin-
ear inference (cyan triangle-dashed); augmented polynomial (magenta diamond-dashed). Non-
uniform tick locations along the x-axis indicate the numberof beams applied each individual on
treatment day.
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C.3 Conclusion and Future Work

We have proposed a method to map external surrogate signals to internal tumour po-

sitions. Breathing-phase dependent response patterns dueto hysteresis are incorporated

implicitly by using a simple state augmentation technique to capture system dynamics. We

introduced a general class of correspondence models that are linear in model parameters,

with linear and quadratic (in external surrogate) models asspecial cases. We described

closed-form expressions for both the optimal model parameters and the corresponding er-

ror value. Based on the latter, we further investigated the proper choice of lag length in

state augmentation, and argued its relative robustness. Test results on clinical data demon-

strated reduced inference error over the direct linear and polynomial models.

The number of degrees of freedom in a correspondence model determines the trade-off

between flexibility and robustness. We seek a model that is descriptive enough to fit the

data without undesired sensitivity to observation noise, also known as “overfitting”. The

proposed method may have more degrees of freedom than previous methods due to state

augmentation. On the other hand, because it incorporates breathing-stage information im-

plicitly, it can use all available internal-external correspondence pairs, without subdividing

the training data as required for piecewise models [66,67,107]. In principle, using all the

data may compensate for the possible increased sensitivitycaused by the extra flexibility.

The choice among different complexity levels in augmented models is still open. Both the

number of augmentations and the model degree contribute to the overall complexity. Fur-

ther studies should investigate methods for properly penalizing model complexity based

on information criteria as explained in Section C.1.2.

Many research groups have observed phase shifts between external surrogate signal and

internal tumour motions [17, 32]. Typically, this phase shift was to be avoided to obtain
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higher internal-external correlation. However, it is possible to compensate for consistent

phase shift, to simplify and improve the correspondence mapestimation. In particular,

we can artificially synchronize the internal-external phase by shifting one of them accord-

ing to a constant offset estimated from training data. We will further study phase-offset

estimation and its use in external-internal inference in the future.

This work is a preliminary study to validate the existence ofa reasonably simple corre-

spondence map and the possibility to estimate it with high accuracy. In practice, internal-

external pairs are obtained at a much slower rate. Correspondence maps must be extracted

from sparse imaging data and applied to continuously obtained external surrogate signals

to estimate the internal tumour locations. Our method can serve as a critical module in this

overall framework, yet intensive simulations and validations are further required.

Even though our test data did not exhibit dramatic improvements when using adaptive

model estimation, model updates in response to changes are necessary in general. Pursu-

ing this direction requires more thorough analysis of breathing motion variations, change

detection and model adaptive rate.
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[41] K. Gröchenig. A discrete theory of irregular sampling.Linear Algebra and its Applications, 193:129–
50, November 1993.

[42] S. Gupta and J. Prince. Stochastic models for div-curl optical flow methods. Sig. Proc. Letters.,
3(2):32–4, 1996.

[43] R. P. Hamalainen and A. Kettunen. Stability of Fourier coefficients in relation to changes in respira-
tory air flow patterns.Med. Eng. and Phy., 22(10):733–739, Dec 2000.

[44] R. Haralick and L. Shapiro.Computer and Robot Vision. Addison-Wesley, Reading, MA, 1992.

[45] A. O. Hero and J. A. Fessler. A recursive algorithm for computing Cramer-Rao-type bounds on
estimator covariance.IEEE Trans. Info. Theory, 40(4):1205–10, July 1994.

[46] M. Hirsch, S. Smale, and R. Devaney.Differential equations, dynamical systems, and an introduction
to Chaos. Academic Press, 2003.

[47] J. D. Hoisak, K. E. Sixel, R. Tirona, P. C. Cheung, and P. P. Pignol. Correlation of lung tumor motion
with external surrogate indicator of respiration.Int. J. Radiat. Oncol., Biol., Phys., 60(4):1298–306,
Nov 2004.

[48] B. Horn and B. G. Schunck. Determining optical flow.Artif. Intell., 18(1-3):185–203, August 1981.

[49] J. Hsieh.Computed tomography: Principles, design, artifacts, and recent advances. SPIE, Belling-
ham, 2003.

[50] P. J. Huber.Robust statistics. Wiley, New York, 1981.

[51] R. H. Huesman, G. J. Klein, J. A. Kimdon, C. Kuo, and S. Majumdar. Deformable registration of
multimodal data including rigid structures.IEEE Trans. Nuc. Sci., 50(3):389–92, June 2003.

[52] G. D. Hugo, D. Yan, and J. Liang. Population and patient-specific target margins for 4D adaptive
radiotherapy to account for intra- and inter-fraction variation in lung tumour position.Phys. Med.
Biol., 52(1):257–74, January 2007.

[53] S. Jiang, C. Pope, K. Al Jarrah, J. Kung, T. Bortfeld, andG. Chen. An experimental investigation
on intra-fractional organ motion effects in lung IMRT treatments. Phys. Med. Biol., 48:1773–1784,
2003.

[54] S. Jiang, G. Sharp, R.Berbeco, G.Chen, H. Mostafavi, and A. Jeung. Development of an integrated
radiotherapy imaging system (IRIS).Int. J. Radiat. Oncol., Biol., Phys., 60(1, Supp1):S611, 2004.
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[139] B. Zitová and J. Flusser. Image registration methods: a survey.Im. and Vision Computing,
21(11):977–1000, October 2003.


	final_rackham
	z1
	z2
	z1

	z_tmp
	final_rackham
	z1
	z2
	z1


