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ABSTRACT

IMAGE GUIDED RESPIRATORY MOTION ANALYSIS:
TIME SERIES AND IMAGE REGISTRATION

by
Dan Ruan

Advisor: Jeffrey A. Fessler

The key feature of image guided radiation therapy (IGRT)}eys is improved effi-
ciency in conformal dose delivery by extracting, modeling aredicting tumor movement
with imaging techniques. To harvest the benefit of an IGRTesgstwo major problems
have to be solved: motion modeling and image processing fhiesis investigates these
issues. In particular, we focus on the application of treggtumors in the thoracic and
upper abdominal region, where respiratory motion is the idamt factor for tumor move-
ment. The characteristics of respiration makes motion niogldifficult, as breathing tra-
jectories are semi-periodic with drifting in mean positidrequency and phase. Clinical
practice shows large variation of breathing patterns andifigrent individuals, making
it necessary to quantify the regularity/reproducibilitiyaorespiratory trace to determine
the applicability of certain treatment methods. To this,eme have proposed a subspace
projection method to quantitatively evaluate the semigakcity of a given observation
trace. Extracting tumor location from diagnostic imagialipeit informative and accurate,

incurs radiation dose, which may result in normal tissue giccation. To minimize diag-

Xiii



nostic dose, it is desirable to obtain radiographic obsema at low frequency and use
external surrogates to infer internal tumor motion with@diation. The sparsity of the in-
ternal readout from diagnostic imaging together with thesideration of system latency
require methods that predict accurately over a long timgeanThese concerns intro-
duce additional challenges in applying classic time-saigalysis techniques, and special
structured models are needed to incorporate prior knovedelg, semi-periodicity in res-
piratory motion) for improved performance. Physiologibgkteresis further complicates
external-internal inference and proper modeling is désiceestimating such a relation-
ship. In this thesis, we have investigated regression tgqaks for real-time tracking and
prediction, shape modeling for robust tracking with minfmoebservation and external-
internal inference estimation.

Image processing is another crucial component of IGRT. ihqudar, accurate tracking
and monitoring of tumor evolution, and efficient propagataf dose assignment require
accurate image registration. The solution to the registngiroblem needs to reflect phys-
ical priors and constraints. Adopting a regularized optiion setup, we investigated a
penalty function design that accommodates tissue-typestent elasticity information.
To properly account for the sliding effects at motion inéeds, we have studied a class
of discontinuity-preserving regularizers that yield srtfosolutions in most regions, while
allowing discontinuities in the estimated motion field. Wesé further distinguished two
types of singularities in the deformation fielce., collision/vacuum generating flow v.s.
shear with the Helmholtz decomposition. Applying differeegularizers to each com-
ponent discourages the deformation from the first type ohyajgal singularities while
preserves large shear discontinuities.

The medical image registration field needs good validati@hgerformance evaluation

tools. A most general analytical evaluation for image regtgon is challenging. We have,

Xiv



however, during the course of this work, performed a pralany analytical study. We
proposed a set of statistical generative models and pravides and variance estimates for
certain estimators. In particular, we have investigatedabproximate performance of the
maximum-likelihood estimator corresponding to the getiegamodel and the commonly
adopted M-estimator. A simple example suggests that theoappation is reasonably
accurate.

Our studies in both time series analysis and image regmtratonstitute essential
building-blocks for clinical applications such as adagtikeatment. Besides their theoret-
ical interests, it is our sincere hope that with furtherificitions, the proposed techniques

would realize its clinical value, and improve the qualitylité for patients.
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CHAPTER 1

Introduction

The two core components of image guided radiotherapy (IG§yEjems are image
processing and radiation delivery. The image processingutecextracts tumor status in-
formation and feeds it into the treatment delivery systempdrticular, the motion of the
tumor volume must be tracked and predicted with high acgui@csubsequent localized
target treatment; the movement of the whole region undeatiad should be monitored
to ensure proper dose delivery, to avoid radiation to @altissues such as heart and spine,
and to minimize normal tissue complication probability (GF). To this end, an accurate
and efficient image registration method is critical. Regisbn between two (or a se-
guence of) images estimates the deformation among differ&rge acquisitions, captures
the evolution of the region of interest (ROI), and dynamicpfopagates treatment plans.
Despite the vast literature on image registration studdegpod quantitative evaluation
tool is unfortunately absent. A performance study to thetrgeserality is challenging,
given the nonlinear nature of the registration problem. kEwsv, questions then arise as
to whether the performance of image registration is limibyda model setup (objective
function design) or the behavior of the minimization algoms deployed (local minima
issues). Furthermore, to minimize diagnostic radiatiosejnly sparse observations of

the internal tumor location are available to the treatmetivdry system. For an effective



real-time gating system, a reliable mean position estimatorucial to adaptively control
the positioning of the gating window. How to efficiently eatt such control informa-
tion from a minimum amount of data is a key issue. This thesisilers these various
guestions in three parts.

The first part, dealing with the adaptive mean tracking pohlis the subject of Chap-
ter 2. Given a sparsely sampled respiratory trajectory tiaat drifts in mean, frequency
and phase, we aim to extract the mean trace in real time. T sbis loosely defined
problem, we resort to a data-based approach which incagmthe semi-periodic nature
of breathing motion. In particular, in the state space thaugmented via time lagging,
we model the observations as samples in a sequence of tiyiegallipses and extract
the projection of the center of such ellipses as the read-tastimate of mean position.
Formulated as a minimization problem with respect to theladgic distance, the static
ellipse fitting problem can be solved by generalized eigecedhposition. We introduce
a recursive-least squares (RLSE) structured algorithnehvhaturally leads to a dynamic
adaptive solution in a slowly temporal-varying environmefissymptotic convergence of
the proposed algorithm is derived. In addition, we geneeathe original least squares
fitting problem to a robust estimation setting so that theitsmh is insensitive to reason-
able amounts of outliers, what may be caused by abrupt bodgment or noisy data.
We prove that the feasible region is a union of two convex, setalyze the geometry of
both the feasible region and the functional value, and agpdglient projection method
to solve the adaptive problem. Experimental results witthlsimulated and clinical data
demonstrate feasibility of the proposed methods.

The remainder of the thesis studies the image registratablgm - another key compo-
nent in IGRT. We discuss objective design, optimizationéssand quantitative evaluation

of registration performance; these aspects are of intéoesgfeneral image processing as



well.

Chapter 3 focuses on designing regularizers that conveyipfmmation in optimization-
based registration for thoracic images. We consider twesygs regularization design: one
accounts for different rigidity levels for various tissygés and the other accommodates
sliding effects along motion boundaries. Tissue-typadrig regularization is realized by
penalizing the deviation of local transformation Jacoldiam orthogonal; sliding regu-
larization is studied by first generalizing edge-preseguviegularization from image de-
noising problems, and then Helmholtz decomposing the flodifterentiate between the
collision/vacuum generating component and the shear diiszoties. By regularizing the
divergence and curl components separately, we avoid theyfrs of unphysical disconti-
nuity, but preserve the latter one that corresponds to dloar

Given any image registration method, its results should d&lated and the perfor-
mance evaluated. Unfortunately, despite vast literatarenage registration algorithms,
validation study mostly relies on either simulation/pleantstudy or manually placed
marker locations. The first approach completely ignoresnsic information content of
the input images, and may result in unreasonably stringentirement (such as “correct”
alignment of uniform areas - the null space of any regisiratiperator). The latter one,
on the other hand, is biased towards high gradient regioreravhuman observers can
identify reliable correspondence and oblivious of the @s@ous clues. As a first step in
systematically studying the fundamental performancetloha registration model, Chap-
ter 4 presents a statistical generative model and the qgameng maximume-likelihood
(ML) estimator. The bias and variance of this estimatorusigtd via Crarér-Rao bound
analysis. For the commonly employed energy minimizatioseldaapproaches, the local
behavior of the corresponding M-estimate is analyzed usimjcit function theorem and

Taylor expansion. A simple example suggests reasonablgaycof the adopted approx-



imation and may lead to wider generality upon further inigedton.

The main contributions of this thesis can be summarized l&a\®.

¢ A novel data-driven mean tracking model for sparsely sachplEmi-periodic data.
More specifically, a state augmentation setup and a formualatith algebraic dis-
tance that results in closed-form solution from generdliggien decomposition. An
efficient ellipse tracking algorithm based on subspace mgosition that dynami-
cally adapts to slowly varying trends. Conditions and praofdsymptotic conver-
gence of the proposed algorithm. Analysis of the struct@ithe feasible parameter
set. A robust extension of the least squared problem to @elhadustness to outliers,
a gradient projection algorithm for solving the optimizatiproblem, and its adaptive

generalization.

e A tissue-type dependent regularization that encourageslyorigid behavior, where
appropriate.

e An original discontinuity preserving regularization foomrigid image registration

that preserves motion boundaries.

e An original statistical generative model for image regiion. Bias and variance
analysis for the maximum likelihood estimator. An M-esttmanalysis of the con-
ventional energy based registration methods. Empiricedgarison with a simple

example.

e A new subspace projection based method that quantifies pinececibility of a tem-

poral trajectory (Appendix A).

¢ A novel nonparametric local regression method in the augetkestate space for real-

time prediction of respiratory motion (Appendix B).

e A state space augmentation approach to account for hystéoesnferring internal



tumor motion from external surrogates (Appendix C).

The above remarks describe the major material in this theBismaintain the self-
containedness of each topic, we provide relevant backgr@atrthe beginning of each
chapter. In the course of this study, we came to certain aralgnd preliminary results that
are marginally related to the main theme of this thesis, lawelpotential for integration
upoon further development. We provide them as optional@@estind mark the titles with

an asterisk. These sections can be skipped without lossntihcity.



CHAPTER 2

Adaptive Ellipse Tracking and its Application in Estimating
Respiratory Drifting

1 Good ellipse fitting methods are desirable in pattern reitimyrand computer vision.
Simple low dimensional shape models are often used to fityrfagh dimensional ob-
servation data for increased robustness. Ellipses, asrtijecion of circular shapes, are
common among observations from natural and artificial dbjéeg, human faces, tires,
etc), and are among the most interesting shape models [3®}44n addition, ellipses also
have potential applications in describing dynamical systéhat exhibit semi-periodicity
and hysteresis. Using algebraic distance as the data fittietgic, ellipse fitting prob-
lems can be formulated in a convex optimization settinghwjiadratic constraints. Its
solution involves looking for the eigen vector correspangio the largest eigenvalue in a
generalized eigen decomposition problem. In this chaptedevelop an adaptive method
to dynamically fit the ellipse model, analyze the convergeoicthe proposed algorithm,
and discuss its application to estimating drifting in regfmry motion. Section 2.1 formu-
lates the ellipse fitting problem into the framework of gexlieed eigen decomposition.
Section 2.2 proposes an iterative algorithm for solvinggéeeralized eigen problem. Sec-

tion 2.3 considers adaptivity with data stream. Sectiorepgdlies the proposed algorithm

IThis chapter is based on materials from [97, 100]



to tracking mean drifting of respiratory motion. Sectio® provides relevant proofs used

in this chapter.

2.1 Ellipse Fitting Model for Static Data

We model ellipses using a general quadratic curve equdtietnx,y) denote the coor-
dinates of a point in the 2-dimensional state space, andedefin[x?> xy y* x y 1]T, where
superscripfT denotes transpose. Then poirty) falls on the ellipse parameterized by

a=[abcde {Tif and only if it satisfies the following quadratic curve edjoa:
(2.1) F(a,z) =a'z=axd+bxy+cy’+dx+ey+ f =0,

with negative discriminant,e., b?> — 4ac < 0.

The centel(xo, yo) of the ellipse parameterized withis given by:

2cd—Dbf

b2 — 4ac
2af —bd

(2.2) Yo = 02— dac’
From (2.1), a sample; lies on a given ellipse parameterized hyif and only if
F(a,z) = 0. This motivates the use &% (a, z;) as a measure of deviation of the sample

from the ellipse. This is known as “algebraic distance” whaoincides with Euclidean
distance in the cade is a plane. It is computationally beneficial to adopt thixtipancy
measure so that the collective distanceN@amples can be conveniently written in stan-
dard matrix form and manipulated with classic least-sgaaggproaches as in (2.3). For

observed samples of the forfr,yi),i =1,2,...,N, we want to find the ellipse parameter

a that minimizes the following cost function:

N

(2.3) Zle(a,zi) =a'Sa,



, - . o A
where we define the 6 6 empirical correlation matri§ = yN | 22T
The minimizer of (2.3) is invariant to a constant scalinglaggpto a, so we impose the

constraint thab® — 4ac= —1, or equivalently in matrix forne” Ca = 1 with

~

C  Osxs
O3x3 Osx3
00 2
whereC £ 0 —1 O |,and @3 denotes a X 3 matrix of zeros. In other words, our

2 0 O
ellipse fitting requires minimizing” Sa subject to the constraint thaf Ca = 1.

Introducing the Lagrangian multipli@rand differentiating, we need to solve the system

of equations:

Sa—ACa = 0,

(2.5) a'Ca=1

We solve this using the generalized eigen-decompositidghepair(S,C). BecauseS
has the form of a covariance matrix, it is nonnegative segfiirite. We assume hereafter
that there are enough data samples & full-rank, i.e., its eigenvalues are strictly
positive. In particular, by Theorem 1 f[31] , the pair(S,C) has exactly one positive
generalized eigenvalue and it corresponds to the uniga toinimum of the Lagrangian.
The corresponding eigen vector is the optimal solution ®dhipse parameter in (2.3).
Let (A,u) be the solution to the generalized eigenvalue probfm= ACa with A > 0,
then(A,a* = \/%u) is the solution to the constrained minimization problemarby.

The rank deficiency o€ can cause instability issues if a conventional generakzgen-

2Both the statement and the proof of lemma 1 in [31] are flawed, but thét fiesheorem 1 is correct.



decomposition algorithm were applied.g.[92] without caution. If analyzed properly,
however, its sparsity may reduce computation.

For later convenience, we first introduce some notationsn tlestate the corrected
lemma 1 in [31] and prove it. We denote the generalized spestv( A, B) 2 {A: Av =
ABwv}. Analogous to the case of a single normal matrix, we definectmalition num-
ber of a generalized eigen decompositiorkad, B) = \?\:ﬁ:ﬁg | whereAmax(A, B),
Amin(A, B) denote the maximal and minimal (by moduli) generalizedrigkies of A, B).

The signaturé i( A) of a real symmetric matrixd is the number of positive, negative, and

zero eigenvalues of the corresponding mattix.

Lemma 2.1. The number of positive, negative, and zero generalizede#dees of S, C),
whereS € O, is a symmetri€ positive definite matrix an@ € Oy, is Symmetric, are

the same as the signature of the constraint matrix

Proof. Symmetric positive definite matri§ can be decomposed &' Q with Q in-
vertible. We can subsequently rewrite the generalizedrefg®blem Su = ACu as
Q" Qu=\Cu. Apply a change of basis= Qu and getv =A\(Q1)TCQ v. Thus\is
the eigenvalue ofQ1)TC Q2. Leti(C) denote the signature @, then by Sylvester’s
law of inertia [132], which states that the signature(®fis invariant under congruence
transform, we have(C) = i((Q1)TC Q™). Therefore, the number of positive, negative

and zero eigenvalues of S, C) are the same as the signatureCaf O

3Signature is often defined with respect to a symmetric bilinear (quadratit); they are the same objects, viewed
from different perspective.

4In general, eigen decomposition (spectral theorem) applies to noratekes, which may not necessarily require
real symmetry. However, many applications deal with real symmetriticea, including the one under consideration
here.

5This is the part missing from [31].
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2.2 An lterative Algorithm for Solving the Generalized Eigen Prob-
lem

It is desirable to have an adaptive algorithm in the presef@ystem variations. In
particular, a rank-1 update is needed for the data covaziamatrix.S every time a new
observation becomes available. Assuming sufficient indt&ta, new data should only
mildly perturb the system. Therefore, if we have an itetlgorithm for the static system
with enough tolerance to the initial conditions, we shaltbefident in using the last state
estimate of the one-time-step-lag system as the initi@iaafor the iteration with the
new system. In this section, we provide such an iterativeralgn, prove its asymptotic
convergence, and discuss the region of attraction.

We first recall some observations from previous discussions

e a* is identical to the generalized eigenvectoup to a normalization factor that is
easy to compute. From now on, we focus on deriving an itematio the general-
ized eigen vector, no longer distinguishing betweeainda, assuming no confusion
would result from such notational convenience.

e A simple eigen decomposition @' yields thato(C') = {2,0,0,0,—1,—2}. From
lemma 2.1, and the minimization setup, we are interestecaking only the gener-
alized eigen vector that corresponds to the unique pogigveeralized eigen value of
(S,C). Itis equivalent to finding the eigen vector for the largegeavalue, in other

words, tracking the dominant eigen subspace.

We first discuss a method based on fixed-point analysis anerglezed Rayleigh quo-
tient to compute the solution to generalized eigen problessB) with both A,B full

rank.
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If (A, u) satisfy the generalized eigen decomposition relation:
(2.6) Au =ABu,

then we can generalize the Rayleigh-Ritz theorem and shevivédion provided in Sec-
tion 2.6) that the generalized eigen vectargorrespond to the stationary points of the

energy ratio function:

ul Au

(2.7) J(u) = 4 Bu’

and evaluating at the eigenvectors results in the corresponding genedhémenvalues.

In fact, the largest generalized eigenvaluis the global maximum od. Substituting

A =J(u) = %A% in (2.6) yields

Au Bu.

" uTBu
By assumptionA is full rank, we may multiply the above expression wiAi on both
sides and obtain:

u' Au

A'Bu.
u' Bu “

(2.8) u =

Equation (2.8) suggests that the generalized eigen vectofiked point for the iterative
map

ul Au

A'Bu.
u' Bu “

(2.9) fru—

Furthermore, the energy ratio function evaluated at thelfp@int is exactly the general-
ized eigenvalue that corresponds to the fixed paint

To use (2.9) to iteratively solve (2.5), we first separate é¢bsential subspace from
the nuisance ones, by decomposing the empirical corralatigtrix S into block form as

follows:
E B

BT D
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We also define the Schur complement of the bl#ln matrix S asS 2 E_-BD !B
The decomposition of the constraint matékis given by (2.4).
We provide an iterative scheme to compute the generalizpgeherectora and prove

its asymptotic convergence.

Theorem 2.2. Let the iteration ola be given by

T
a-Wan
(2.10) any1 = rlnari—TannS Can+ (1—nn)an,
where
E 0O
W = ;
0O —-D

andnp € (0,1) is asymptotically bounded above pfﬁ with k being the condition number
of (5’, C’) 6. Thena, converges asymptotically to the eigen vector that corradpdo the

unique positive eigenvalue 0§,C).

Proof. We decompose the state estimatento the concatenation of two vectots=

[a1; ay], and rewrite (2.5) as:

Fai+Bay; = )\é'al

(2.11) B'ai+Da, = 0.

Notice thatF is the autocorrelation matrix of the first three dimensiofihe observed

data, and is invertible by the assumption t§4s full rank. Being full rank,C is invertible

5we will see thato(S‘,C‘) C 0(S,C) and it is the subset that contains all non-zero generalized eigenvatuss.
often possible to obtain upper bound foby utilizing either prior information or proper training. The role of stepsize
(gain) nn determines the trade-off between convergence and convergaacd e convergence behavior of vanishing
gain in >0 Spnn=+%,¥ N <  for somea > 1) is commonly studied in the literature [65, 93], but asymptotic
constant gain{n >0 n:=Ilimp_«Nn > 0) is more desirable in practice. The condition we have imposed includes tha
of the decreasing gain, but also admits cases with asymptotic constant gain
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as well. We can solve the above equation as

ay = —DilBTal,

(2.12) (E—BDBNa; = ACay.

In theorem 2.3, we will show that iteration:

T
a; Sajin

ain+1 = MNn nis 1CGln+(1 Nn)@in
alnCaln

(2.13) = nnh(ainS,C)+ain,

whereh(z, §,C) 2 ;”—I%S'_lém — a, converges asymptotically to the solutian ’ of

(2.12). Therefore, by letting the covariams evolve accordingly as:
(2.14) azn=-D"'BTayp,

we have asymptotic convergence to the only stable staigr@nt a = [a1; a>] of (2.12).
In Lemma 2.4, we show that the iteration given in (2.13) and4pis identical to the

update equation in (2.10). O

Theorem 2.3. Iteration according to (2.13) converges to the generaligggen vector that
corresponds to the largest eigenvalug 6t C), whereS= [E — BD1BT] is the Schur

complement of the blod in S.

The second equation in (2.12) simply states tagats the generalized eigen vector
for the pair([E — BD1BT],C). Observe thatE — BD1BT] is exactly the Schur
complementS of the block D in matrix S. SinceS is symmetric positive definite, so
is S =[E—BD'BT|. As C is the only block inC' that contributes to the nonzero

spectral components arm[é’) = {2,—1,—2}, the second equation in (2.12) captures all

"The eigen vector paired with the biggest eigenvalue when regardedeaseagized eigen decomposition problem
from the second equation. The original constraihCa = 1 translates ta;Ca;=1,and prevents degenerated results.
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the nontrivial components of the original generalized rigecomposition problem (2.6).
It immediately follows from Sylvester’'s Law of Inertia [4Qhat the generalized eigen
spectrum of S, C) has the form\; > 0> Ay > As.

Furthermore, since the generalized spectrum has no zerpauwent, the second equa-

tion Sa; = ACa; can be rewritten as
A_lga]_ = éal,

which indicates that(C, S) = {A 1|\ € 6(5,C)} and the generalized eigen vector for
(C, S) coincides with that fofS,C) (up to possibly some positive scaling factor) with
the pairing determined by the element-wise inversion i@mabf the spectrum. Again,
since there is a unique positive eigenvalue (thus the maxinaf (5, é’), the generalized
eigen decomposition c(f:’,S‘) has only one positive element as well, whose correspond-
ing generalized eigen vector is of our interest. We will make of the above observed

relationship in the proof of theorem 2.3.

Proof. We consider (2.13) in the framework of generic stochastigraxmation algo-
rithms [4] a1 n+1 = a1n+Nnh(a1n). To apply the corresponding convergence analysis
technique, we need to first justify several assumptionswiig (2.13) in the classic adap-
tive form, we know precisely the mathematical conditionatiag to the objects, in par-
ticular, the gaimp, the functionh and the statéS*,(f’) (in our case, since we start with
the update equation, there is no residual perturbatiorivedan the evolution, as opposed
to the more general form of adaptive updates). In generalstate is represented by a
Markov chain controlled by the parameter to be estimated itais assumed that for fixed
parameter, the state has to be asymptotically stationadyjta limiting behavior regular

in the parameter. In our setting, static collective ddtéwe disregard the given constant

C) is used, the duplicate of which can be regarded as the sétfolen of Markov chain
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if preferred. Therefore, the stationarity and regulariondition with respect ta, [4] is
trivially satisfied. Furthermore, it is easy to check tha tipdate functiom(aa, S, C’) is
continuously differentiable with respect ¢a and regular (locally Lipschitz). Therefore,
we are allowed to use ODE based approach as a tool to provep&syenconvergence.
SinceS andC are both constant, we omit them as argumerit far notational brevity.
We link a continuous time ODE to the discrete time algoritl#l8) to a first order

approximation by:

~ 0

hai(s)) = Fca1(9)lss, ain=ai(sn)
~ n—ln(al,n+1_al,n>
_a1(9)"Sa(s) 51
(2.15) = ms 1Caq(s) —ai(s).

We representi(s) as a linear combination of the generalized eigen vectof$of).

K
(2.16) ai(s) = Z Bk(S) vk

K=1
Substituting this parameterization in (2.15) yields a domate-wise (with respect to the

basis{vk}f_,) ODE as:
4 Sie18k(9)? 1
To(s) = 21K 299 _g(s) ¥ k=12.. K
3eK(9) 5K 1 Z8(5 M (S) — Bk(s)
Sie1(9? 1
K1 2
Y k=13, k()% A

where (A, vy) are thekth generalized eigenvalue and eigenvectot$fC), and6y(s) is

(2.17) = | 1]6k(s),

thekth time (iteration) varying projection coefficient indigag the strength ofi1(s) along
directionwy.

We define aregio® = {0 = (01,...,0k)| |6kl < ﬁWﬂ for k>1}. Inour
K
caseK =3 and 0> A, > As. Itis easy to check tha{M > 0 for anyf € Q. For

S 1A k(s
k> 1,A\ <0, and (2.17) states that

2 8(9 = o(9K(9
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with ay(s) < 0 for allk > 1. It follows from Lyapunov stability theorem [46] thég(s) =0

ass — o for k > 1. On the other hand, sin@dg > 0 > A» > A3, we have

K 3
Y AB(8) <AT1(9)7 <AL Y Bk(9)%
=1 k=1

Subsequently,
0 o dkeaBk(9® 1 Sieibk(9® 1
asel(s) - [ZE_]_)\—];(GK(S)Z }\1 1}9 (S) [)\Ilz:li—lek<s)2 )\1 1} 91(S>.

Unlike the other modek @ 1) where origin serves as a stable sink, the magnitude (sj

increases as its ODE behaves as

0

6—591(5) = a1(S)6k(s),

with a1(s) > 0. Thereforea; — v1 asymptotically.

We have thus far proved the asymptotic convergence if thatedgdllows the ODE. In
other words, when the step sigas sufficiently small. Bigy values correspond to cruder
discretizations of the ODE, and may cause discrepanciegetthe convergence prop-
erties of the ODE and the original update equation (2.13prdier to reveal this effect, we
need to explore the pole structure of the dynamic system tin tentinuous and discrete
time. We consider the behavior bfas(s)) in the neighborhood of the stationary point
a1(S) = vk, Wherewy is thek-th generalized eigen vector ()S',é). Local linearization

results in
0
A= dai(s)

It is easy to see that the eigenvalues\pére given byo(Ax) = i—T -1, je{l,2,...K}\

h(a1(9))|as—o,-

{k}}. These are the Laplacian domain poles. The transformati¢2.15) defines a map
to Z-domain viaz = ns+ 1. We list below all possibilities in mapping the pole pattem

Laplacian domain and Z-dom&in

8This is very different than the commonly seen eigen decomposition ofletion matrices where spectrum is always
positive.
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1. WhenAg, A are of the same sigs,= i—'; —1le(—1,k-1).
Whens > 0 (s-pole in RHP)z=ns+1 > 1 falls outside the unit circle, which
corresponds to locally unstable pattern. Wisen(—1,0) (s-pole in LHP)~1<z<

0 lies inside the unit circle, stable= 0 corresponds ta= 1, for critical stability.
2. WhenAg,Aj are of opposite signs, arsd= ;‘\—T —1le(-2,—-1) C LHP.
In this casez=ns+ 1 € (—1,0) is inside the unit circle, corresponds to a locally

stable pattern.

3. WhenAg,Aj are of opposite signs, arsd= ﬁ—‘]‘ —1< —-2CLHP.
In this case, the s-pole lies inside the LHP, correspondirigdal stability. To avoid
discrepancy, we want the mapped z-pole to fall inside undlesi Recall that with
S andC both normal K(S C) = |;‘::‘:<§g | whereAmax andAmin are maximal and
minimal (by moduli) eigenvalues of the generalized eigerodeposition. Therefore,

s> —k — 1, and withn asymptotically bounded above t;y% ze (—1,1) corre-

sponds to a local stable pattern.

Therefore, the local stability pattern of the stationarnnp®for the ODE and the update
equation (2.13) agree. This links the convergence of the @XRat of the discrete-time

eguation, and asymptotic convergencegis thus proved. O
Lemma 2.4. Iteration (2.10) is identical to the set of updates givendri@) and (2.14).
Proof. Recall thatSis the Schur complement of blodR in

EFE B
S —

B" D

Performing matrix inversion in block form results in:



18

S ~S'BD?!
(2.18) S1= ) i
-DB"S1 D1+ DIB'SBD!
Setting aside the generalized Rayleigh quotient in (2\d8)pbserve that the major matrix

operations involved in the update can be “extracted frohgpas:

. r 7 I
ST = |1 o0l|S?
. ; 0
. r 7 I
(2.19) -DBT§t = | g 1|87
- / 0

Notice that the sparse structuret@hinduces the following relations:

Caq I | .
Ca = = Caq
0 0
(2.20) a'Ca = aIé’al

Therefore, we can rewrite the iteration in (2.13) as:
(2.21) a:n+l= nn)\ns_lca;n +(1—nn)a:n,

whereA, denotes the generalized Rayleigh quotient estimated in-theteration.

Furthermore, we rewrite the numerator of the generalizegldfgh quotient as:

alSa; = al[E—BD'B"]a;
= alFa;—a1BD DD Ba;
(2.22) = a]Eaj—azDas,
by the dependence ak on a; indicated in (2.14).

Putting the above ingredients back into the iteration @elte compact representation

(2.10). 0
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2.3 Adaptive Ellipse Fitting

For ellipse fitting, the matrixC describes the shape prior (constraint) of the data, and
remains constant. When new data becomes available, thersggtegamics are reflected
via changes in the empirical covariance ma®ixFormulation (2.10) expresses the update
of the state estimate in terms of sub-blocks and inversg directly (with no hidden or
intermediate transformations as in (2.13)). This enablssaghtforward derivation for
the update equations wheshchanges upon the arrival of new data samples. Notice that
S takes on the form of empirical covariance, so the diagonbitdacks E and D are
empirical covariance matrices with respect to their ownspalzes and are completely
decoupled. In practice, the update of the generalized Ryytpiotient can be performed
accordingly. In essence, the only quantity of real conceragdating the state estimate
is S~1. To incorporate the time varying property of the system, \&a simply extend
the previous results with a hyper-level evolving time tag ékpress the time varying
property of the system, we usg (i), Sy(i) etc.to denote the various quantities at a given

acquisition time = iAt. For a given, we rewrite (2.10) as follows:

L an(i)TW (i)an(i)
anca(l) = M= T Ean
ad223) = an (i),

(S(i)) "Can(i)+ (1—nn)an(i), n=01,...,Ni—1,

whereN; denotes the number of iterations used to compute the elppsgmeters at a
given timei. The challenge is to compute the inverseSyii + 1) efficiently, and we
provide below efficient rank-one updates 8T for both the sliding window adaptation

and exponential discount adaptation.
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2.3.1 Sliding Window Adaptation

In the sliding window adaptation, we use a constant lengttingl window to “mask
out” the historical data samples except the ones that ase @nough to the time instance
of interest. We defin& (i) = zij:t_Lszij with L indicating the constant window size.

When a new sample patt. 1 becomes available,

i+1
Si+1) = Z zjij
j=i+T L1

(2.24) = S(i) —Zi—L+lzi-|;|_+1+Zi+1ziT+l‘

To computeS(i + 1) from S(i) %, we denoteQ (i) = S(i) — zi_L+12 4, So that
Si+1)=Q(i)+ zi+1ziT+1. We invoke the Woodbury matrix identity [39] to compute

S(i +1)~! with two step rank one updates:

QY™ = (S()—zi—L412l 141)
= St =S zitn(m L aSH) aii - ) T L ST
Si+1)7" = (Q()+zipazly) "

(2.25) = Q() _Q z,+1(Z,+1Q() Z|+1+1> Z|+1Q_1

For this procedure to be executable, invertibility @f] LSt ) tay 11— 1) and
(2 ,Q(t) txr;1+ 1) are required. The second one is obvious v@th> 0. We prove the
first condition in Section 2.6. This pair of properties (2.psovides a recursion fa$ (i).

Substituting into (2.10) yields a recursion in the estimagarametera(i).
2.3.2 Discounting Adaptation
As an alternative to a fixed-length sliding window, we can tesaporal discounting

to emphasize the most recent data. In this case, we dé‘f(r)e: ZJ A Jz,zJ ,

wherey € (0,1) is a user-selectable discounting parameter. We can eastly $(i + 1)
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recursively as:

1_yi+l

(2.26) Ty

. 1-y .
Si+1)= Vrts(') + 24124

Invoking the matrix inversion lemma yields the recursion $qi + 1)

(2.27)
1_yi+1

1
ECORSE IR Fen ROt SR

. -1
Substituting this in (2.23) yields an adaptive ellipse rgtialgorithm with temporal

discounting.
2.4 Application to Tracking Respiratory Mean Drift

Modeling and predicting tumor motion caused by respiraigarhallenging due to tem-
poral variations in breathing patterns. Treatment apgreasuch as gating or adaptive bed
adjustment/alignment may not require full knowledge ofamsaneous position, but might
benefit from tracking the general trend of the motion. Onepdtnmethod for tracking
mean tumor position is to apply moving average filters withaaw sizes corresponding
to the breathing periods. Yet respiratory motion is only spariodic, so such methods
require reliable phase estimation, which is difficult in fresence of noise. As an alter-
native, we form a state vector from the respiration signéles at the current instant and
at a previous time, and utilize the algorithms discussedeictiSn 2.2 and Section 2.3 to
dynamically fit ellipse models to the training data and ecttthe mean position according
to (2.2). Ellipse eccentricity and orientation potenyiathpture hysteresis in respiratory
motion. We test the proposed method with simulated bregttreces, as well as with
real time-displacement (RPM, Varian) signals. Estimatranes are compared with retro-
spectively generated moving average results to illustteggperformance of the proposed

approach.
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2.4.1 Application Background

Accurate modeling and prediction of tumor motion causedrewathing is a challenging
problem. Previous studies [37,53, 110, 126] have noteditheulty of instantaneous po-
sition tracking and prediction. Given such limitations otaracy, and considering the ac-
tual dosimetric impact of small motion variations, treatrhapproaches such as gating or
adaptive bed adjustment/alignment may not require ingtedus position, but might ben-
efit from following trends of the motion, in particular meaosgtion drifting and/or abrupt
shifts. Current amplitude-based gating systems compareséantaneous tumor location
measurement with a pre-determined gating window threshaottl trigger the treatment
beam on/off. A potential modification to such systems woanlbrporate real-time mean
drifting information to (1) adjust bed position to competestor continuous mild drifting;
(2) trigger the treatment beam off upon detection of sigaiitcdrift. Compensating for
mean position drifting could increase effective delivedede given a fixed treatment mar-
gin, or alternatively, it could allow the use of smaller maggto achieve the same dose
delivery. Previously, other investigators have shown thate could be only limited gains
in trying to eliminate breathing movement completely, aaid the groundwork for con-
sideration of the methodology described here. Engelsmarodstrated that the margin
needed for cyclic breathing can be represented as a Gawsglastandard deviation of
0.4 times the amplitude of motion [27]. Wolthaus demonstratedethod for efficiently
selecting a mean patient representation from a 4D CT datd 38}.[Evidence from these
and other investigations [52] hint at the possibility théatracking’ system that estimates
variation in position such as the local mean may provideiggmt benefit by reducing or
eliminating non-periodic trends in motions, while redugdemands on temporal response
and acceleration of couch or multileaf collimator-basegistthent systems.

Fig. 2.1 illustrates how real-time knowledge of mean driftihelps to reduce gating
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margin for the same treatment dose delivery (90% in this Etan). In this example,
mean compensation reduces the margin by about 70% compeatraditional static gating
approach.

Furthermore, mean drift (or home position motion) is moedt, with slower temporal
variation than instantaneous position. This makes it moaetral to seek an estimator
for this lower order quantity. By imposing smoothness, adyestimator should be less

susceptible to noise than instantaneous position trackers
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Figure 2.1: Effect of drift compensation for gating systeraspiration trajectory (blue solid line); mean
position (red dashed line); gating with static window wit@98 delivery coverage (magenta
dashdot line); mean drift compensated dynamic gate with 80%erage (black dotted line).

The seemingly intuitive moving average filter is impractifea real-time application
due to (1) the absence of “future” observations at the instaestimation, and (2) the

difficulty of estimating instantaneous phase online frorspobservations.
2.4.2 Experiment Setup
We simulated two sets of data so that we could have “grounti-tifor verification

purposes. For the first set of simulations, we used noise-geictly periodic data with

both ideal sinusoid and modified cosine models [69]. In paldir, the discrete sinusoidal
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and modified cosine waveforms were generated respectivigiy w

(2.28) SN = X(iBt) = xo+ asin(TiAt/T — @)

(2.29) xmodified cos _ - y(iat) = x; — aco@(iat/T — @),

where we used the value= 2. In the second test, we generated a semi-periodic sinusoid
function with slow frequency drifting by modulating thHecal frequency with random

offset components, as follows

. i
(2.30) x?'”:xo+asin{ Z (1/T + &) — }
(2.31) xmodified Cos_ ./ 5con {TrAt Z (1/T +8) — }

where thed values were randomly distributed via a Gaussian distrapuiti (O, 02) with

0 < 1/T. In the simulation, we set periodl = 5 seconds/At = 1/30 corresponding to a
sampling frequency of 30Hz, home positigg= 0, magnitudea = 5cm, and systematic
phase offsep= 0. Fig. 2.2 shows typical simulation traces.

For real clinical data, we used the Real-Time Position Managnt (RPM, Varian Med-
ical Systems, Palo Alto, CA) system to obtain the trajecsookexternal fiducials placed
on the chests of 12 patients. The displacement-time relstiip was recorded at 30Hz and
is assumed to be highly correlated with superior-inferi@ptiragm motion [126], which
is a major source of respiratory motion for tumors in the tledung area. We centered
and scaled the unit-less RPM data so that their dynamic reogesponds to typical Si
motion for chest and lung tumors [108, 110]. We can thereafiasider the units to be on
the order ofmmfor typical thorax tumor motion. Characteristic paramefersthe RPM

data used in our experiment are reported in Table 2.1.
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[IDVS. Parameteff 1 | 2 | 38 | 4 | 5 | 6 | 7 | 8 | 9 | 10 [ 11 | 12 |
Data Characterization

STD 291 | 6.47 | 13.05| 2.83| 486 | 278 | 430 | 7.61 | 2.08 | 7.72 | 13.04| 6.56

P-P 10.93| 25.03| 48.91| 9.02| 13.09| 11.47| 17.77| 26.93| 13.14| 37.44| 38.97| 32.54

Period (sec) 4.5 4.6 7.2 5.6 4.4 5.4 4.7 9.7 4.7 4.1 3.1 5.2

Table 2.1:RPM Dataset information

2.4.3 Results

The fitting methods approximate data in the state spagg by ellipses. Itis desirable
to have the center of such ellipse, which corresponds to #snnestimator, to be robust
to missing data, spurious data, and to input data lengthdtfier from the ideal period
centered at the time instant of estimation. Fig. 2.2 illaigs both data-abundant cases
and the cases where only a segment ( 3 seconds worth) of aresdatailable for fitting.
The fitted ellipses are overlaid with the observation sampiehe augmented state space.
The second column in Fig. 2.2 illustrates that ellipses aasonable approximations for
the scattered observations in the state space. The diffeteetween column 3 and 4 in
Fig. 2.2 indicates the change of parameters in the presdrsmarce and/or non-centered
data. Not only does the ellipse fitting method degrade gudlgefith partial data, but also
the mean position estimated from this approach is reasypisédible. This empirical study

illustrates the feasibility of using the proposed methothgan tracking and prediction.

Adaptive Estimation

We first test the case where we use a fixed interval of the moshtealata. In the real
time estimation and prediction setting, all the input saeaphto the estimation algorithm
precede the time instant of interest. We also want to empéaisat the windowed history
is used to help estimate the ellipse parameters; and it nedthre integer multiples of the
period. We tested the windowed ellipse fitting with 5 second @ second local history

length, and report the results in Fig. 2.3. Discount adaptatield very similar results
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Figure 2.2: lllustration of ellipse fitting performance dfet proposed method. Each row corresponds to a
different data source: rowl (aX) ideal sinusoid; row2 (b¥¢al modified cosine; (cX) locally
modulated (noisy) sinusoid; (dX) locally modulated (ngisyodified cosine; (eX) clinical RPM
trace scaled so that P42 10mm to mimic SI motion. Column-wise: X(1) time-displacerhe
graph; X(2) augmented state space with displacement ardkityy { = 0.5 seconds); X(3)
ellipse fitting (red dashed line) applied to complete ddtas@) ellipse fitting (red dashed line)

applied to partial dataset.

to the windowed fitting, resulting in virtually overlappimgal-time mean tracking curves.

We omit them from the figures for visualization clarity. Wea@lplot the outputs of two

simple moving average filters with fixed window lengths.

We constructed our simulations to have frequen@Hz for deterministic cases or
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Figure 2.3: Comparison of moving average (MA) and ellipstnfit estimator for mean position tracking:
left column X(1): “oracle” history window length: = 5 seconds matches the underlying signal
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nal periods. Rows correspond to different data source amir2R2. Blue solid line: observation
signal; black dotted line: moving average output; red dasth dutput from the ellipse fitting
algorithm.

centered around that for the randomly frequency modulatetizations. Therefore, the
“ground-truth” mean motion was zero for all the simulationghe clinical RPM data

(Patient 1 in both Table 2.1 and Fig. 2.6) also has approxin#te same frequency. Since
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both the simulated and clinical data lack mean drifting, adyestimator for the mean
position should yield very stable (flat) output. When we sellee training window size
to be the “oracle” (ground-truth value unknown to the altfon) value ofL = 5 seconds,
which coincides with the signal period, outputs are staldenfboth the moving average
operator and the proposed methiddas illustrated by the the left column in Fig. 2.3. On
the other hand, it is impossible to guarantee that the lyistordow size will always match
the “true” period. We illustrate the effect of a disagreemeavhere window sizd. = 7
seconds in the right column in Fig. 2.3. The moving averagerfeéxhibits undesirable
oscillations, whereas the ellipse fitting method providesiparable results as in the case
of perfect period match.

The size of the sliding window and the discount factor mushpgmmise between re-
sponse speed (tracking efficiency) and robustness (trgstability). Even though the el-
lipse fitting method is not too sensitive to the window sités helpful to choose window
lengthL and discount factoy from a short segment of training data. Fig. 2.4 illustrakes t
effect of various choices of window length paramdteyn mean estimation performance
with some RPM data and Fig. 2.5 illustrates the effect of tisealint factory. For RPM
data with relatively long period and slow drifting (as in Fy4(a) and Fig. 2.5(a)), it is
desirable to use a larger window size (and correspondingigker discounting, largg
to take advantage of its robustness. On the other hand, &atling signals that have
relatively short periods and rapid shifts in mean positisach as the one illustrated in
Fig. 2.4(b) and Fig. 2.5(b), shorter window lengths and $iliatount factors are prefer-
able for prompt response to mean changes.

To automatically adjust the sliding window length and th&cdunt parameter, we take

10A constant offset (as observed in the modified cosine case) hasnalatinical effect, as long as it is consistent.
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Figure 2.5: Effect of discount factgron tracking performance. Solid line: observation; red @asline:
vy =.99; green dash-dot ling = .97; black dotted liney = .95. (a) RPM with relatively long
period; (b) RPM with relatively short period

a short segment of training data at the beginning of eaclntesa fraction, and apply a
subspace projection-based period estimation method [1B8} the signals in Fig. 2.4,
the signal in subplot (a) yields a period estimate of S8econds and the signal in sub-
plot (b) yields a period estimate of13seconds. Using the estimated period as the sliding
window length and choosing the corresponding discounbfagppear to be reasonable
based on Fig. 2.4 and Fig. 2.5. We apply this scheme to auittatipichoose the adaptive
parameters for all of the 12 RPM datasets and report thetsesuFig. 2.6. For base-
line comparison, we collect the complete trajectory, andlyaa moving average filter
with the “oracle” window sizd. to obtain a reasonable “ground-truth”. The deviation of
the two adaptive real-time mean position estimator froms tigold standard” (with con-

stant offset compensated) is reported in terms of mean sequaror (RMSE) in Table
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2.2. Both adaptive methods demonstrate reasonable agneaviik the retrospectively

obtained “ground-truth”.
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Figure 2.6: Mean tracking for RPM data with window size detieed by period estimator. solid line: ob-
served data; black dotted line: retrospective moving ay@naean estimation with “oracle”
period; red dash line: sliding window mean estimator witmadw sizel. chosen with period
estimation during training phase; green dash-dot linecalisting estimator with discount factor
y chosen such that/2t = 1/20.

[(IDVS.Parameter] 1 | 2 [ 3 | 4 | 5 [ 6 | 7 | 8 [ 9 [ 10| 11 [ 12|
PeriodL (sec) || 45| 46| 7.2 | 56 | 44 | 54 [ 47| 9.7 47 ] 41 31 5.2
Sliding Win RMSE || 0.35 | 0.77 0.96 | 0.23] 0.68| 0.36| 0.35| 0.90 | 1.09| 1.22| 1.21| 1.40
Discount factoy || .978 | .979| .986 | .982 | .978| .982 | .979| .990 | .979 | .976 | .968 | .981
Discounting RMSE][ 0.36 | 0.77 1.08 | 0.24| 0.71] 0.35] 0.44| 1.22| 1.54] 1.55] 2.18 1.39

Table 2.2:Mean Estimation Performance

Sensitivity to Sampling Rate

In some cases, it is preferable to obtain observations awdreguency. This is par-
ticularly true when internal tumor motion is extracted fraeal-time imaging devices
that would incur radiation dose. Sparse sampling posestepar challenge to the con-

ventional mean estimator based on a moving average filtaghad more vulnerable to
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miss calculation of period length when there are very fewas) resulting in intolera-
bly high variance in mean estimation. We tested the use okgpaal-time observations
by subsampling from the 30Hz signal, applying both windowead discounted adaptive
algorithms to estimate the mean target position, and comgpavith the retrospectively
generated “true” mean from densely sampled data. Fig. RiStiates how different ob-
servation rates affect overall RMS error across all pasieBbth adaptive approaches are
quite robust to low sampling rate. In particular, as the windd adaptation only used
historical samples that are within one period, which is raiynabout 4- 6 seconds, the
observable “break-down” at 1Hz in Fig. 2.7(a) correspormdsdtimating the ellipse from
4— 6 samples only, which is somewhat expected. On the other, lamdiscounted adap-
tation utilizes all previous samples in a weighted fashand is naturally less affected by

sparse sampling as shown in Fig. 2.7(b).

101 10r

Voo o T a

15 15
Sampling Rate (Hz) Sampling Rate (Hz)

(@) (b)

Figure 2.7: Overall RMS error (across all patients) as ationof sampling rate: (a) with windowed ellipse
fitting adaptivity; (b) with discounted ellipse fitting adajity with discount factory chosen such
thaty-/2 = 1/20. Both methods are robust above 2Hz sampling rates.

Setting the Temporal Scale

The size of the window width and the discount factgrcontrol the trade-off between

response speed and smoothness of the tracking trace in daptiva algorithm respec-
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tively. Even though the ellipse fitting method is robust tessmg data€.g, a partial
period), it is still desirable to react more promptly wheranges are more frequent (short
underlying breathing periods and/or rapid shifts in measitpmn) and track stably other-
wise. For fixed-length sliding window adaptivity, it is peshble to choose a window size
that roughly matches the “true” period of the signal. Theref we use a short segment
of training data at the beginning of each treatment fractiima the closest periodic func-
tion to the training segment using a subspace projectiohoddgtL02] and use the derived
period as the fixed window length

We could choose the discount factpanalogously by usingffective memory length

defined by
2.32 L() = i =1
(2.32) (i) j;v‘

because the time unit has a more intuitive physical inteéatian. For large, the efficient
memory length if. = 1—Ey In other words, we expect the performance of an adaptivexmea
tracker with discount factoy = 1— % to behave similarly to a sliding window estimator
with window sizeL. In general, however, the discount method should be mofldesta
but less responsive towards changes than the corresposidiimgy window approach with

L = L because previous samples are never completely “forgotBémis, we use the period
estimated from projection as noted before [102] to tirfdom 20 seconds of training data,

then findy such that
Yl =8,
where the pair of parametefa, ) adjusts the decay rate. It has the interpretation that the

effect of a given sample decaysfiaftera periods. We found that in practiee= 1 and

[ =0.05is a reasonable choice and we use these values in latstigatéons.
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2.4.4 Discussion

Although we assumed uniform sampling for simplicity, theposed approaches easily
generalize to nonuniform sampling scenarios, thanks tadhastness of the fitting pro-
cess. Lower sampling rates should affect the estimatianthes the partial datasets tested
in Fig. 2.2. Nearly uniform but sparse sampling along thpe#l would increase estimator
variance, but should not introduce bias, unlike the pad#h case where all the samples
are concentrated along an arc segment.

Unlike simple filtering methods, the ellipse fitting methsdnore objective-oriented: it
is specifically designed for estimating time-variant me&hreathing signals. The ellipse
model reflects the semi-periodicity of respiratory motiorhe fitting process is flexible
enough to capture changing trends yet is robust enough tootowisy oscillations. The
adaptive algorithms provide efficient updates of the efigoand allow the users to deter-
mine the update rates of the fitting. For adaptive methodsgusither sliding window
or discounting factor, parameter selection involves thddroff between system response
speed and stability. We have suggested one way to adjustidimgsvindow lengthL
based on the estimated nominal period length, and discussednection between the
discount factoly and the “effective memory length” to provide some guidance about the
choice of those parameters. Fast drifting sequences eguirore responsive system, and
this should be reflected in the corresponding parametangsit Even though the mean
drifting pattern and the respiratory frequency are vergoftlosely correlated, a slow (and
regular) breathing pattern may still exhibit abrupt chas)ges observed in the upper-left
corner of Fig. 2.6. It is possible to resolve this issue byldpg the proposed method
on a training segment and then investigating the variatattepn of the estimated mean
position to further decouple the different causes of themyaasition changes. As rela-

tion (2.32) only holds asymptotically, and the discountingthod is less forgetful than its
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sliding window counterpart, the discount factor may neelegdurther reduced to accom-
modate the more rapidly changing trends.

Our algorithms generalize easily to non-uniformly sampiddervations and higher
dimensional cases. Commercial solvers for some intermeediaps, such as generalized
eigen-decomposition, are available. Clinical experiemmehysical prior knowledge can
help guide choosing either the proper sliding window sizéiscount factor. In general,
both the window size and the discount factor allow real-taa@istment (at the possible
cost of more complicated update rules), and could even bedturira-fraction, if neces-
sary. The intuitive interpretation of the parameters inmerof window sizel, effective
memory lengthl. and decaying parametefs, ) makes the control of those parameters
practical.

Practical issues that are worth further investigationudel learning of mean position
drifting rate, abnormal abrupt change detection, and praggustment of the adaptivity
pace. This concerns the clinically significant questiontaW far we can reliably extrap-
olate into future based on current observations”. For céihuse, the proposed method
needs to be further validated on both external surrogaterdechal tumor trajectories, as
they may bear different noise properties. Dose effect orouartreatment methods and

software-hardware cooperation issues should also beestudi

2.5 Generalized Fitting Cost for Robust Estimation

It is often desirable to use a potential function that is gilta the presence of outliers.
It is therefore, natural to ask for extension of the squatgdlaaic distance to robust po-
tential functions such as generalized Gaussian, Hubertdgometricetc When a more
general form of the potential function is to be used, the |genwbcan not be reduced to

generalized eigen-decomposition, because the potestia longer quadratic. General
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purpose optimization routines need to be studied. Notethiimts not a dramatic sacrifice
as [90] shows that the generalized eigen decompositionigmoloan be mapped bijec-
tively into determing whether a matrik— AB is copositive. Meanwhile, the problem of
determing the copositiveness is shown to be NP-compleie$82s the generalized eigen

problem.
Proposition 2.5. The set defined by’ Ca > 1is a union of two convex sets.

Proof. Recall the condition for defining the set can be rewrittenais-4b? > 1 wherea =
[a,b,c,d,e f]T. Itis straight forward thafd, e, f] € 03 is a convex subspace. We only need
to test the subspace &, b, c]. Observe that feasible points satisfyc4> b*> 4 1 > 0, thus
a andc would have the same sign. This naturally split the wholergettwo disconnected
portionsa’Ca > 1,a>0anda’Ca > 1,a < 0. Without loss of generality, we concentrate
on proving the convexity of the set = {a’Ca > 1,a > 0} hereafter.

Let (a,b,c) and(x,y,z) are points insidéJ. SinceU is closed, its convexity is im-

plied by “midpoint convexity” [16]. It suffices to test midpa convexity, which we prove

below:
a;XC;Z—(b;y)Z—l = 1/4{4ac+Axz+ daz+ Axc—b? — 2oy—y2 — 4}
(2.33) > 1/2{2az+2xc—by—1}.
Notice that
az+xc > 2\/azxc=2,/(ac)(x2)
2 2
_— be+1y>+1
- 4 4
1
— =./(p2 2
(2.34) — 2\/(b +1)(y2+1).
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However,

(B2 +1)(y2+1) = b2+ b2+ y? 4+ 1> b2y? + 2by+ 1 = (by+1)2,

thus /(b2 + 1)(y2+ 1) > by+ 1 (This relation holds regardless of the signdaindy).

Plugging into (2.33) results in

a+xc+z b+y?
2 2 2

4 ~1>0,

yielding midpoint convexity otJ. O

In principle, we could consider general-purpose optimizatechniques to solve a gen-
eral objective function of the for®(Z;a) = TN | @(zi;a), with 9= @ (;8) o F(2i;a) =
@ (a' 2i;8). @ may be chosen to be a robust fitting function; it should betjwessym-
metric about the origin, and equals zero if and only if theuangnt is zero. Our goal is to

solve the general constraint optimization problem:

a= argCrLT;iquD(a),

where( is a given constraint set.
We will start by considering a simple constrained minimiazatmethod calledyradi-
ent projection which is essentially the gradient descent method withgatoyn on the

constraint set at the end of each iteration.
(2.35) a™b = 2 (a —aOd(a)),

where P~ denotes the projector on to the convex getlf stepsizea is chosen appro-
priately, then for certain families of cost function, theadrent projection method (2.35)
converges, as established by Theorem 2.6 below. [6, p. @3} zes a generalization of the

above algorithm.
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Theorem 2.6. Let C denote a nonempty, convex, closed subsét"ef Let® : 0" — [
be convex and differentiable with gradier{tg 2 Od(x) satisfying a Lipschitz condition
of the form||0d(a) — Od(é@)|| < L|la—a|, Va,a e C. Suppose the set of minimizers
X*={a*e€ C: ®(a*) < D(a), Va € C} is nonempty. 0 < a < 2/L, then the gradient
projection algorithm (2.35) converges to somec X*.

In our case, the convex half cone is defineddd¢'a > 1. Given a initial pointag =

a™ —add(a). If ag ¢ C, then the projectiom = P ~(ap) has to satisfy:

ap—al|Ca=ap—a=YCa

(2.36) aCa=1,

whereC = | 0 —1 0 | andits spectr@(C) = {—2,—1,2}. There are two scenarios

2 0 0
to be considered: )

1. Wheny € —p(C)~* = {1/2,1,-1/2}, the linear operatol +yC has a nontrivial
null-space of dimension one. The soluti@nn that case is obtained as the intersec-
tion between a two-dimensional plane (co-dimension onalsghe multiplicity of

the corresponding eigenvalue) and the cone shape.
2. Let Assumingzzyé (I +yC]tag fory ¢ —p(C)~1. We need to fingy such that
aQCay =1

Let the eigen decomposition 6f be C =V AV’ and the above equality can be rewrit-
ten as:

apV [l +yA A +yA WV ag = 1.

Noting thatV is the “natural” coordinate system determined®yandV'ag is the

representation ofig in that coordinate, we rewrite the problem in the generamfor
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of y4A\(y)yo = 1 where we can identifyo = Vao andA(y) is the diagonal scaling
[+ yA] AL+ yA.
Without further manipulation, this corresponds to findimg troots to a 6th-order

polynomial.

We usually desire the resulting projectiarto be close to the starting poiag. It follows
from agp — a = yCa that

|lao— aH% =V?d'C'Ca,
and it is straight forward to pick out the that is closest tag in L, sense among several
(up to 6) candidates.

As stated in Theorem 2.6, the stepsizin (2.35) needs to be upper-bounded by 20
ensure convergence, whdras the Lipschitz constant for the gradiggitc). In what fol-
lows, we will use Huber function as an example to illustréie procedure of obtaining an
upper bound for the Lipchitz constant We let@(zi;a) = @(;8) oF (zi;a) = gh(a' 2i;d)
as the fitting measure, whegg is the huber function given by:

t2 t] < &;
(2.37) M(t;0) =

dJt| — 302 |t| > 8.
Notice that this is reasonable fitting measurepas 0 and the equality holds if and only
if z; falls on the ellipse parameterized by

The column gradieng(Z; a, d) is given by:
0
£CD
(2.38) = Y d(a'=:d)x,
|

9(Z;a,0) =

whereZ = [z1,22,...,2n] is the collection of all data points.

Our goal is to find the Lipchitz constahtsuch that

19(Z;a,8) —9(Z;a,9)|, <L|a—al,,



39

for all @ anda on the feasible saf.

(2.39)  |l9(Zia,8)-9(Z;a.8)l, = HZ[%(aTZi:é)—%(&Tza:é)]zi

Note that the derivative of huber function is nonnegativehwis slope bounded above

by unity:
t Jtl<d
Gh(td =48 t>5
-0 t< o

\

Thus|d,(t;8) — @,(f;8)| < [t —{|. Substituting = a' z; andf = &' z yields:

(2.40) ¢f,(a” 2i;0) — @, (@ 2;8)| < |a"z — & z|

Letc2 (@ (a"21),¢,(a"22),...,¢(a" zn)] andé2 [@(a"21),¢f(a' 22),...

then (2.39) can be rewritten as:

l9(Z:a.8) ~g(Z:a@.8), = /(c—TZTZ(cd)

(2.41) = \/P(ZTZ)|lc—¢é,.
Subsituting the elementwise bound (2.40) ifito- ¢||, yields:

le=éll; = /> (e—&)?

= J(@a-&72"Z(a-a)
(2.42) = \/P(Z2T2)|la—all,.

Substituting (2.42) into (2.41) yields:

19(Z;a,8) —9(Z;a,9)|[, <L|a—al,,
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wherel = p(Z' Z). Aloose upperbound f@y( 2" Z) istrace{ 2T 2} = 3 | 2 zjasz"
is nonegative definite. This is a reasonable result cornisiglehe “strength” ofJ®(a)
incorporates the collective effect of all the data points] an in extreme cases whenare
“aligned” would scale as the number of sample points, @i’ 2) ~ trace{ Z' Z}. This
loose upperbound may be convenient to use when the data maendibally updated, as it
does not require repetitively performing eigen decomparsit

We remark on the structure of the generalized fitting withusitzost here.

e Itis reasonable to assume that the general robust fittirgctiag takes on the form of
®(Z;a) = TN, @ (2 a; ) where they is some robust cost function adc:ontrols
its shape and scale. Moreover, the symmetrypoébout the orgin in its argument
(a' zj) translates naturally to the overall objecti®e This symmetry has an impor-
tant geometric implication. Recall that the feasible sgparameters is the union of
two convex cones distinguished by the sign of the first eldroér; together with
the above analysis about the geometry of the objective inmove conclude that the
graph of the objective is symmetric about the origfinTechnicality aside, this clears
the last bit of reservation one may have towards the applitabf the gradient pro-
jection method. Given an initialg, one can arbitrarily pick a cone (the natural choice
would be the one whose first coordinate has the same sign atethent ofag), and
then perform gradient projection on the chosen cone. Bas&dhachever minimizer
a* we obtained , a simple reflection results+a*: another minimizer with the same

objective function value that resides on the other conveyeco

UThis is a bit sloppy, since the graph liesifiM@)+1 dimension, so it should be ideally stated as symmetric with
respect td0, d(Z;0)). However0 is not a feasible point in the domain, ois not defined on that point, which makes
this statement illegitimate. A quick remedy would be to redefnas:

= . [ ®a) acC
CD(G)_{ Joo a¢C

and the graph o is symmetric with respect t(0, «).
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e Given the iterative structure of the gradient projectioriimoel, extension to adaptivity
is natural. For static data case, we alternate between twoabpns: projection
onto the feasible saf and gradient descent in the direction[d®. Notice that the
inclusion of a new data point only perturbispb by C@(znew), but does not affect the
projection operatof ~. The result from previous iterations should be regardecdhas a
initialization to the updated cost function. More specificahe adaptive version for

the gradient projection algorithm is given by:

ani1(i) = Poan(i) —add(an(i))), n=01,...,N—1,

(2.43) ao(i+1) = aNi(i),

wherei indexes the data samples amohdexes the inner iterations.

e We used algebraic distance to implicitly represent thepgdlito obtain a convex for-
mulation and a simple solution. It is possible to modify thgearaic fit of the ellipses
to drive it closer to the geometric solution, which is the mmizer of geometric dis-
tance. The idea is to weigh the samples based on a given é@stinigading to a
simple iterative mechanism. [11] provides the followinteipretation. The algebraic
solutiona is the least squares minimizer & Let h(z) be the geometric distance

from the center of the fitted ellipgge to z
h(z) = ||z — Oel|2,

and determing; by intersecting the ray from the ellipse’s centeet@nd the ellipse.

Then
h(z)?
o) = Kl g 1)
(2.44) ~ 2Kh<z‘r)](;3<p'), if 2 ~ pi,
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for some constant. Thus one may interpret the algebraic solution as a fit to the
ellipse with respect to the relative distances, where digtaints are weighted less
than near points. This explains why the algebraic soluteds$ to neglect points
far from the center. This is in fact, a desirable trait in mapplications where non-

eccentric ellipses are favored.

If one prefers to minimize the absolute distance, then datan be weighted with
h(pi) for a given estimated ellipse. The resulting estimategsdimay then be used
to update the weight, thus iteratively solving the weighliesist squares problem.
Naturally, if one is interested in solving the fitting in Iéaxuared sense for the
geometric distance, then the weight for datanay be set tal(z;) /@(zi) whered(z;)

is the geometric distance ef from the currently estimated ellipse. The advantage of
such iterative weighted least squares scheme is that the ithheo need to compute
Jacobian or Hessian as in the case of a direct nonlinear iztiilon with respect

to geometric distance. The drawback is that its solutioregaly differs from the

minimizer of the geometric distance.

To harvest the benefit of using robust objectives, we neetidoge the parameters for
those functions properly. For instance, the thresholdmatar for Huber function deter-
mines the transition frorh, cost toL; penalty. Without assuming prior knowledge about
the mixing probability of normal samples against noiseietg| we determine the parame-
ter by considering the classification sub-problem. In patér, we use the Ostu’s method,
aiming to best distinguish between the normal and noisy sssnpore specifically, after
thenth iteration, we examine the distribution of the fitting eremd find the valu&(™1)
that minimizes the within-class variance of the fitting erhi@m the previous iteration

{& = g(a"z;5M)}. Mathematically, the threshold parameter at titie iterationd" is
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selected as the minimizer to
A
0g(8) = W1(8)0%(8) + w2 (8)05(d),

wherew; = P(g < 9) is the probability of normal samples (errors smaller thareghold)
under the assumption of threshd@dw, = 1 — wy; 0i2 is the empirical variance of each
class.

We illustrate the robustness of the proposed method witimalated example. Noisy
samples were uniformly distributed inside the computateznon with a roughly elliptical
object (the bone contour from a head CT slice). Figure 2.5tilies the initial fitting
with quadratic minimization and the evolution of the estiethellipse with the gradient

projection method.

Initialization from quad cost iteration2 iteration4

o o, ol e o o, R e oS e
0l . - B ol . - e . - ’
o N o e ]
at.” s . % at.” 3 A % at.” K 2 %
et . . R L et . . e . et ' 1
T IR T T T o T T T O T T
intialization with quadratic solution iteration 2 iterati 4

Figure 2.8: Evolution of robust fitted ellipse with the grauwli projection method: blue dots: observed sample
locations; green line: fitted ellipse.

2.6 Appendix

e Proof for the statement about stationary points of the gnextjo function in (2.7).

Claim 2.7. The generalized eigen vectors (@4, B) correspond to the stationary

points of the energy ratio function

W) = 7B
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Proof. We compute the stationary point of the energy ratio functi¢a), i.e., we

set:

(2.45) %J(u) =0'.

The derivative on the LHS of (2.45) turns out to be:

3u (u) = “TBu [Auw” Bu— Buu' Aul.

With A > 0, B > 0 as previously assumed, so thatAu andw’ Bu are simply

positive scalars, setting the above expression to zeraus&gnt to requiring
u' BuAu =u" AuBu.
This is exactly the condition for generalized eigen decositpm:

Au Bu.

" uTBu
Therefore, the generalized eigen vectors are the statiggaants for the energy ratio
functionJ(u). Moreover, the evaluated functional values provide theasponding
generalized eigenvalues. This result can be consideredgameralization of the

Rayleigh-Ritz theorem. O]

Derivation for (2.17)

We make use of the relationship between the generalized dkgﬂ)mpositiomé, é’)
and(é‘,g). Up to a constant gain, the set of generalized eigen vecfdiseawo
problems coincide, pairing with element-wise invertedctpen. Since we aim to
prove the convergence of the coefficients of the eigen veaibiner to zero or really
large, the constant scaling can be neglected for the sakgoimnt clarity. We use

the alternative setup c(fZ’,S‘) in deriving (2.17) to take advantage of the assumed
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positive definiteness of. The generalized eigen decomposition(ef, B) with
B being symmetric positive definite indicates the existenfca generalized eigen
matrix V' (with columns being the generalized eigen vectors) thastanltaneously

diagonalizeA and B:

AV = ABV;
VIBV = I;
(2.46) VIAV = A

WhereA is a diagonal matrix whose diagonal elements are the carnekpg gen-
eralized eigenvalues ¢fA, B). Indeed, the use of two-stage conventional eigen de-
composition to compute generalized eigen decomposititacts exactly this prop-
erty. We apply this tqC, S) and call their eigen matri%. Again, V is also an
eigen matrix for( S, C).

The linear representation in (2.16) can be rewritten as:
ai(s) = VO(s),

wheref(s) = [81(s),02(9),...]".

Substituting in the relevant terms in (2.15), we have

a1(s)" Sa1(s) =0(s)"VTSVE(s) = % Bk(s)?
k=1
a1(s)"Ca1(s) =8(s)'VTCVe(s) =6(s)TA10(s) = S A t6k(s)?
k=1
(2.47) S1Cay(s) = %A,;lek(s)
k=1

The second and third lines in the above derivation also magmtithe element-wise

inversion relation between the spectra6f, S) and(S, C).
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Representing both the LHS and RHS of (2.15) with respectet®#sis{ Vi k=12 k.,

and we have coordinate-wise equation (2.17).
Proof of invertibility in (2.25).

Proposition 2.8.LetQ(t)éS(t) oLyl g then(wl S o1 —1)

is invertible.

Proof. Proving the invertibility of a scalar quantity is the sameshswing that it is
none-zero. We rewrite the relation betwe®andQ as: S(t) = Q(t) + a1z | ;.
Invoking the Woodbury matrix inversion lemma, we get:

(2.48)

SO =QM) " —QM) T Lia(m 1 QM) T L+ 1) el Q)
Plugging (2.48) inta! | St 41— 1 yields:

T 1
Ty 418 w11

= 2 | 4 QM) - QM) Tw_ra(x | 1QM) T+ D) T | Q) N +1)—1
1
|_+1Q() Tt—L+1+

= ol | 1QM) T -2 1Q() Tz L1 a7 1t QM) 4

Let p x] L1 Q1 )xy 1, thenp > 0 asQ(t) > 0. We rewrite the expression in

(2.49) in terms ofp and get

1 1
—px ——p—1=— 1) —p?— 1)] < 0.
p—px p+1p p+1[p(p+) p°—(p+1)] <

This result states that! | ., S(t) t@_L+1 — 1 <0, thus invertible. In fact, the neg-
ativity of this term is not accidental, but a natural cons=te of the consistent re-
lation stated below. Whemt LSt ) tay L1 —1+#0, we could apply the matrix

inversion lemma in two different ways (expressifig! with Q 1, and the other way
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around), and obtain:

QL) T-SH)™ = Q) tmiLaa(x | 1QM) w1 +1) Tl QM)

(2.49) = —SO (@ LSO e - ) el SO

Becaus&) > 0, the RHS of line 1 in (2.49) is positive definite. With the nmsrsign in
the front and its quadratic form, line 2 in (2.49) indicateatte; | . ;S (t) t@_L 11—
1 < 0ifitis ever nonzero (otherwise (2.49) cannot be estabtish the first place).

U



CHAPTER 3

Regularized Nonrigid Image Registration

! In medical applications, spatial alignment is often regdito properly integrate useful
information from separate images [74, 138l egistratioris the procedure of retrieving the
transformation that maps from the target image’s cooréirspiace to the source image’s
coordinates.

Registration algorithms can be classified according to &meilf of transformations.
Rigid/affine (global) registration algorithms have onlyewfdegrees of freedom, while
nonrigid registration algorithms often have a very high divsional space of feasible trans-
formations. Usually, rigid registration methods providgisfactory matching results for
individual bone structures, but are in general not desegmnough for elastic tissues that
undergo more free-form deformations.

Nonrigid registration problems can be highly under-detesd when transformations
of high dimensionality are used, resulting in ill-conditexiness, instability of solutions
as well as multiple local optima. Regularizations are uguatroduced to alleviate these
issues and to effectively incorporate prior physical krexge into the problem formu-

lation. Regularized nonrigid image registration alganthusually involve minimizing a

1This chapter is based on material from [103].

48
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cost function, consisting of a dissimilarity measure anceagity term that discourages
undesirable transformations. Conventional regulariratethods usually treat the region
of interest (ROI) as one single deformable body and homamesig penalize deviations
from smoothness or incompressibility properties of theodeftion field [55, 56, 96].

However, homogeneous smoothness regularization hasnitations. In particular,
ignoring the elasticity differences between tissue typss cause non-physical results,
such as bone warping. Furthermore, isotropic smoothirauiinout the ROI blurs motion
edges, resulting in artifacts across motion interfaceg/hlding effects occur, which are
commonly observed between diaphragm and rib cage durimpgratien.

To address the tissue-dependent elasticity issue, segtitenbased methods were pro-
posed to treat each segmented region of an image indepénfleht64, 129]. These
methods rely heavily on precise segmentation and may inoundbary issues with over-
lapping/vacuum region in the deformed image. Empiricatigpéiltering was also used to
“correct” the deformation field as a post-processing std@]1Unfortunately, its deviation
from an optimization setup complicates convergence assgds To study discontinuities
in deformation field, some recent research addresses mitiiohdiscontinuity problem
using variation-based techniques for joint segmentati@hestimation [24,135]. In these
methods, smooth regions and singularity set (edges) alisetbaccording to image in-
tensity, and registration aims to align each part respelgtivi he smoothness and discon-
tinuity in the deformation itself is not addressed directye adopt the regularized opti-
mization framework, and propose regularization designsddress the tissue-dependent
elasticity and discontinuity preservation issues respelgt

Section 3.1 introduces the regularized registration sefigction 3.2 provides an ap-

proach to incorporating tissue-type-dependent rigidifpimation into nonrigid registra-
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tion? and Section 3.3 proposes a class of discontinuity presgregularizers to address
the effects of sliding along motion interfaces. Given thaegal regularized optimization
setup, various optimization techniques can be used. Weteddp-spline parametriza-
tion in Section 3.2 for its natural smoothness, and vaneidow in Section 3.3 to better
reveal the anisotropic filtering structure. These are $jgechoices for representing the
deformation that are independent of the regularizers tleéras, and should not be con-
sidered as limitations: in particular, the variational flsalved on rectangular grids can be
regarded as a special case of zero-th order B-spline wittugiport equal to the pixel size.

Preliminary results are demonstrated with each approach.

3.1 General Optimization Formulation for Regularized Registration

The goal of nonrigid registration is to find the optimal triorsation T* such that
the transformed source image best matches the target. Wé,gse€Q — [ to denote
the intensity map for the source and target images resgdgtiwhered is the image
dimensionality, and the open $2tc 09 denotes the physical region of interest (ROI) for

registration. Lefl : Q — 09 be the transformation. Our goal is to find:
T = argTrrélrnE(T, f,g)
(3.1) = argmin(Eq(g, foT) +E(f,gT)},

where the sef is the class of admissible transformatiofsis the overall objective func-
tion that we want to minimize, consisting of two partBy(g, f o T) denotes the data
dissimilarity measure, also called data infidelity termd & (f,g; T) denotes the reg-
ularization term that is applied to penalize undesirabdagformations. In the general

regularization setting, can also depend on imagésndg.

2We proposed this method in 2006 [103] while [114] and [115] indepetigstudied a similar penalty in 2006 and
afterwards.
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3.1.1 Data Dissimilarity (Infidelity) Measure

Let x € Q denote the coordinate (in vector form) of a specific spatiehtion. We use
Tx to denote the local transformation at locatioandy (-) to denote the summation over

a discrete lattice that is a subset(f

Sum of Squared Differences (SSD)

The sum of squared differences is a sensible data dissityilaetric when the ref-
erence and the homologous image are acquired with the sardalitgovith consistent

parameters:

(3.2) Eqsspo= Y (9(x) — F(T(x))>

This metric has been considered by [58, 61,62, 85, 116].

Mutual Information (MI)

When different modality images are to be registered, mutofrination (MI) is a
popular choice, since it does not require explicit knowkeddpout the intensity mapping

between different modalities [20,72,75,88,117,127,131]

Eqmi = —1(9,foT)

(3.3) = —H(g)—H(foT)+H(g,foT),

whereH(-) denotes the entropy of a random variable &h(d, -) denotes the joint entropy
of two random variables.

In medical image data, we only have access to discrete saropkte intensity. To
both improve the smoothness of the dissimilarity measudeasgaproximate its derivative,

we use Parzen window to estimate a differentiable entropy fthe sample values [25].
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Following the setup in [117], the joint discrete Parzendgsam is:

(3.4) hPaZ(F,G;T):?;;W(F—f(T(x))>W(F—g(>_<>)7

8f Sg

for F € Bf andG € Bg, where Bt and By are discrete sets of intensities associated
with the source and target images respectivelfy.) is the Parzen window that integrates
to unity, ande¢, g4 control the width of Parzen window in each dimension of thatjo
histogram.

The data infidelity term (negative mutual information) isyquuted using the normal-

ized joint discrete Parzen probabilipfF,G; T) 0 hP34F,G; T) as:

' p(F,G;T)
3. =- Gl ’
(3-5) Sam FezBfGengp(F’ 1108 o F T po(G)

whereps(F; T) andpg(G) are obtained by marginalizing the joint probabilipyF,G; T)

over binsBy and B+ respectively.
Other dissimilarity criteria used in image registrationlunde correlation coefficient and
its variation; and landmark matching based comparisos.diso common to combine two

or more of the above metrie(g, SSD and landmark) depending on the applications.

3.2 Tissue-type Dependent Rigidity Regularization

For modeling efficiency, we parametrize the deformatiordfi{x) 2 T(x) —xinstead
of the transformatiorm itself. To improve the conditioning of the problem, a roughs
penalty is incorporated in terms of the gradients of the aheédion ®, using the squared
Frobenius norm|0®||Z, . We define the local tissue rigidity based regularizatiobea
weighted superposition of local non-rigidity penal§y,y(x)r (Tx). The overall regularizer

reads:

E-(f,0:T) = Enonrigid(f,9, T) + EroughneséT)

(3.6) = Z{V r(Tx) +a(x HDCDXHFrob}
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Here, we focus on designirEhonrigid » Where we will choose(Ty) to penalize the devia-
tion of the local transformations from being rigid, apd) is the spatially varying weight
that reflects local tissue rigidity properties. In partauy(x) controls thdocal “trade-off”
between intensity match and deformation rigidity. It stiblog large within bone structures
and small within more elastic regions.,g. muscle and fat. We call tlocal stiffness fac-
tor” to reflect this physical interpretation. Correspondinghe spatially varyinglocal
smoothness factoréi(x) controls the local trade-off between intensity match anfbde
mation smoothness. Since we are mainly interested in $lgataying stiffness property
in this work, we seti(x) to be a constant throughout the ROI for simplicity.

3.2.1 Regularization Design

Local Rigidity Functional

The local rigidity functionalr : (09 — 09) — 020 quantifies how much the local
transformation deviates from being rigid. We desire thecfiomalr to have the following

properties:
e 1(Ty) = 0 if and only if T is a rigid transform3
e The functionak should be invariant to orthogonal coordinate transfororati
To satisfy the first property, we utilize the following argants:

Lemma 3.1. A necessary and sufficient condition for a transformatiorobé rigid at x

is that its Jacobian matrix Q(Tg OT (x) is orthogonal.

The proof follows from the group structure of the isometryof, and the fact that the

Jacobian operation provides a group homomorphism betweeisometry group ofd

3Here, we equate rigid transformation with the isometryith, which by formal definition also includes reflections.
However, reflection rarely occurs in practice. Moreover, the roegkrpenalty described in (3.6) and our choice of a
smooth basis for parametrization the deformation field further decse¢hsechance of a local reflection in the transfor-
mation estimate.
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and the orthogonal group oh-dimension.
Lemma 3.1 involves a matrix property, so it suffices to desigrenalty that measures
how “non-orthogonal” the Jacobian matrix of the local tf@nsationDTy is.

We use the following fact:

Lemma 3.2. A necessary and sufficient condition for a matrix\19*9 to be orthogonal

is that||[MMT — 14| = 0, where|-|| denotes any matrix norm.

If M is orthogonalMMT = Ig, and||[MMT —1g4|| = O for any norm. On the other hand,
for any matrix norm||MMT —I4|| = 0 impliesMMT = Ig, which is exactly the definition
for a square matris to be orthogonal. O

Therefore, once we defin€Ty) based orf| DTy(DTx)" — lg||, the first required property

is automatically satisfied.
Lemma 3.3.||DTx(DTx)" — lq|| is invariant under isometric (rigid) transformations.

Isometric transforms on the coordinate system can be icated into the local trans-
formation Ty by applying the inverse transform. By the chain rule of d#fstiation, it
immediately follows thaD(Ty o g) = DTxDg. If g is an isometry by assumption, th&xy

is an orthogonal matrix, and the invariance result follovesrf a simple manipulation:

D(Txog)D(Txog)! = DTyDg(Dg)" (DT,)"

(3.7) = DTx(DTx)T~

Thus||DTx(DTy)" — l4|| also satisfies the second property above. O
For simplicity and computation efficiency, we choose to use $quared Frobenius

norm, and define the following local rigidity regularizatifunction:

E

(3.8) r(Tx)

NI -

HDTX DTX IdHFrob
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Some previous work enforces tissue incompressibility bgst@ining the Jacobian
determinant to be close to unity [55], but a unity valued $fammation determinant is only
a necessary but not sufficient condition for local rigidifjhe combination of Jacobian
determinant with its condition number may be a possiblerréiive, but would require
spectral analysis which is computationally demanding. Weose the squared Frobenius

norm because it satisfies the two properties above and yasyste compute.

Local Stiffness Factor

To design the spatially varying local stiffness facgox), which determines the relative
weighting between data infidelity and deviation from rigydiit would be desirable to
have accurate knowledge about mass, elasticity, as wellnes mechanical properties.
Unfortunately, detailed information is rarely availablastead, we infer the rigidity level
of local tissue from observed CT values. The empirical desmnld be improved given
more precise/specific prior knowledge. We observe that iibreded X-ray CT images,
pixel intensity (CT number) is highly correlated with tisstype information, hence is
a good inference source for local rigidity. Therefore, @@t of designing a direct map
y: Q — 0%, we define the local stiffness factor by applying a transfeictions(-) to the
image intensity map:

y(X) = s(f(x)),

wheres: [0 — O is a monotone increasing map from the domain of CT number idityg
level. We choose to use a scaled and shifted hyperbolic terfigiection in our application
due to its simplicity (two parameters with clear shape meghand desirable mapping
form: the properly placed sharp rising edge distinguisteselstructures from more elastic
tissues, while the saturation behavior is robust to smadinsity variations of the same

tissue type.
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Fig. 3.1 shows the empirical histogram taken from a ¥950x 60 breath-held thorax
CT volume with voxel size @ x 0.2 x 0.5cnP. Observations for the tissue type v.s. CT

number (in Hounsfield unit) relationship agree with theicedtvalues [49] in that:

Air : —1000HU

Fat

—100~ 60HU
Muscle

Bones : 250- 1000HU

We choose the location and shape parameters for the hypefimottion such that the

non-rigidity penalty dominates in the bony structures, s@laxed within elastic tissues.

1 . . )
\ Scaled Histogram

air

— Stiffness Factor

\ lung |

muscle

air lung faymuscle bony structure
) ’j L fat\ “ bony structure
_
0 L .
—-1000 -500 500 1000 -1000 -500 0 1000
CT number (HU)

0
Intensity Value {Hu)

(@) (b)

Figure 3.1: Illustration of stiffness factaf:). (a) design of functionah based on theoretical tissue-type-to-
CT-number map; (b) scaled stiffness factor v.s. tissue tgfmemation inferred from empirical

histogram.

Parametrization and Optimization

We adopt the widely used tensor product B-spline basis tarpatrize both the defor-
mation field® [62] and the image intensity. In practice, we often use Brg"(x) of
ordern = 3 for both purposes in volumetric registration. B-splines smooth functions

with explicit derivatives [119] and finite support. They giecewise polynomials and can
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be recursively constructed by convolution [121,122].
The deformation for each directians represented independently with the correspond-

ing set of B-spline coefficientd' = {6} } as follows:

(3.9) o'(x0)= 5 86X

IEN(X)

For volumetric cased = 3),| € {1, 2,3} represents deformation direction aloxy andz

coordinates respectively, and separable B-spline basseid:

509 =B(5 ~1)B(5 ~1)B(5,—):

wherei = (i, j,k) denotes the B-spline knot locatiofy, Ay, A, determines the scale of
B-spline in each directiorx = (x,y,z) denotes the spatial location, and its neighborhood
N (-) is determined by the support of the B-spline basis.

The image model provides a continuous representation ofnage given by a set of
samples. In fact, only the source image requires intermian the formulation consid-

ered here:

(3.10) f)= > cbi,
IEN(x)

where the expansion B-spline coefficientare computed from the sample valueszby
recursive digital filtering [122].
We utilize a multi-resolution scheme in the registrationgqass, and use gradient de-
scent method at each resolution level to evolve the overatiftinction until convergence.
For optimization, we used the derivative of the SSD energ®)(given by:

0

(3.11) 3] Fd.SsD= > (9(x) = (T (%)) B [r(»B"(x—1).

The derivative for negative mutual information from (3.5)given by [117]:

d d p(F,G;T)
3.12 By = — 2 o(F.G:T)log, 2> ).
(3.12) aei_Ed,Ml F;feég o0l p( )log, or (F:T)
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The terms involved in evaluating the regularization are:

(3.13) Oy = [Z 0,5/ (>_<—l)]

(1,j)e{1,2,3}x{1,2,3}’

WhereBi_j denotes the derivative of the basis functj@nn the jth direction. Using the

derivative property of the B-spline, the derivativefbéan be computed analytically [119]:

(3.14) %B“(x) =" (x+1/2) - B L(x—1/2).

The local tissue rigidity based penalty term is similarlyided based on the fact that
DTy = 0Ty = O®y + lg.

The derivative of the penalty with respect to deformatiorapaeterei can be written as:

(3.15)

0 - ] 5 i ; T
a—e;@@f@ = ;y@_()trace{[DT(DT) —Ig] [a—egDTDT +DT (0T},
where we precompute and stofeDT = 8' for computation efficiency.

3.2.2 Experiment and Test Results

Experiment One: Geometry Validation by Thresholding

In the first experiment, we tested the proposed approachtwitthorax CT scans of
the same patient: one at 80% of the vital capacity inhalethbreald (deep inhale breath
hold, tidal breathing generally peaks at about 40%) and ¢orexfzale. The scans were
512x 512x 148 with voxel size @ x 0.2 x 0.5cn?. We used the deep inhale breath-hold
thorax CT image as the target and further cropped it to size2bB6x 107 to reflect the
region of interest. Sum of Squared Differences (SSD) was asedissimilarity metric.
Fig. 3.2 shows typical data slices (different views) of tamet image, source image and
the inferred stiffness maghe f). The inferred stiffness map captures rigid structures

reasonably well.
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Figure 3.2: Different views of the original data and tisso®imation inferred from it. Top row [X(1)]:
coronal slices; middle row [X(2)]: sagittal slices; bottaow [X(3)]: axial slices. Left column
[a(#)]: slices from target image; middle column [b(#)]:c&ls from source image; right column
[c(#)]: slices from inferred stiffness map.

We first show the registration results in slice views for pgliebal rigid, affine transfor-
mation, and nonrigid registration with and without nondigegularization. The deformed
source image is displayed on top of the target image for cosgapurposes in Fig. 3.3.

Fig. 3.3 illustrates that nonrigid registration outpenferglobal rigid/affine model based
registration on matching intensity. The advantage is mbgioas in regions where organs
have undergone extremely elastic deformations, such afidparagm. The different per-

formance in the lung area is less noticeable due to the dvevaintensity level in lung
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a(2)

b(2)

b(3)

c(2) d(2)

c(3) d(3)

Figure 3.3: Deformed source image (green) overlaid withetaimage (dark blue) for comparison of inten-
sity match. Different views are indicated with numbers: I)}(coronal view; [X(2)] sagittal
view; [X(3)] axial view [X(3)]. Different registration métod are distinguished with letters:
[a(#)] rigid transformation model; [b(#)] affine transfoation model; [c(#)] B-Spline registra-
tion with smoothness penalty only; [d(#)] B-Spline regasion with both proposed regulariza-
tion.

region, so mismatch in that region is not emphasized in S$tihge Finally, the intro-
duction of proposed tissue type dependent regularizataes chot seriously deteriorate
intensity matching performance compared to conventiorsplhe in general.

To better reveal the geometry of the deformation, we ex¢ihdione structures by

thresholding the CT numbers at 250 HU, because they are gdazhtors of tissue type.
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Geometry extracted from both the target and the deformertesawlumes are overlaid to

compare the bone structure alignment in Fig. 3.4.

a(2) b(2)

Figure 3.4: Geometry extracted from registration resulésget (blue) vs. deformed source (white). Left
column [a(#)]: B-spline based nonrigid registration with local rigidity regularization; right
column [b(#)] B-spline based nonrigid registration resuith proposed local tissue type depen-
dent regularization. Top row [X(1)]: whole ribcage view;tlmm row [X(2)]: local zoom-in
view around diaphragm neighborhood.

We can clearly observe nonphysical warping of bones in therded source geome-
try using conventional B-spline based nonrigid registnatmethod without the proposed
regularization. This is a typical local optimum situatiddpon localizing the occurrence
of this particular‘bone warping”phenomena, we can observe that theeudo-periodic”
structure of the ribs makes the resulted deformation andi#is&red physical one having
comparable intensity dissimilarity (data infidelity) valuOn the other hand, since B-spline
is a smooth local basis, together with smoothness regalasiz to enforce continuity of
the deformation field, in regions close to diaphragm/lungioe where deformation of

more elastic nature occurs, the deformation of bone strestare compromised to resem-
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ble those of elastic tissues.
When the proposed regularization is applied, however, tlerchation on the bone
structures are given an additiondbrce” to conform to rigid transformation. Fig. 3.4

shows obvious improvements regarding the bone-warpingiss

Experiment Two: Quantitative Validation with Bifurcation La ndmarks

In the second experiment, we evaluate the registrationracgun soft tissue regions
as it might be adversely affected by the introduction of thegppsed regularization. Se-
guential thorax CT scans were obtained on a helical CT sca@i¥ét,(General Electric,
Milwaukee, WI) for 11 patients. Two scans were obtained fr@ohepatient, one at nor-
mal exhale followed immediately by a scan at normal inhalenducoached voluntary
breath-hold periods of 18-35 seconds. Scans were obtaiitle@\pitch of 2, using a 5mm
aperture. The total time spent from the start of the first $havugh the completion of the
second scan was less than 5 minutes. Images were reviewegdngsto ensure that they
were free of breathing-related artifacts in reconstructido quantitatively analyze the
registration accuracy, we compare the position of knowtutes in the target and source
images. A human observer chose six landmarks within the tigig per patient [21].
Landmarks included vascular and bronchial bifurcatiomsl were nearly uniformly dis-
tributed in the ROI. Computed transform from registratiogagithms was applied to the
landmark coordinate in the target image and compared toahénhark position in the
source image coordinate. Fig. 3.5 illustrates some of theuaidy picked landmarks.

We applied negative mutual information (MI) as the dataidigarity metric to reflect
the general applicability of the proposed methods, evengh-ray CT images are used
both as the source and the target image to maximize the ¢tensysof manually picked

corresponding landmark pairs. Moreover, landmarks pickelling bifurcations should
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Figure 3.5: lllustration of landmark data on thorax CT: (h)stration of volumetric data; (b) manual land-
mark positioning based on bifurcations

fairly characterize the effect of the additional regulatian on the soft tissue regions. We
compared thin-plate splines (TPS), conventional B-spliaed the proposed regularized
B-splines in this test. In TPS setup, control points weregdmanually on the source
and the target dataset. We used the TPS results from [21}ew8tecontrol points were
used to align the inhale and exhale CT model of the right lunt each on 6 specified
Superior-Inferior planes in the target dataset. Neldeetsimplex algorithm was used
to maximize Ml for TPS. For the conventional and modified Brspregistration, multi-
resolution scheme was used to achieve computation efficidnceach resolution level,
control knots were placed uniformly in the low-pass filtessiirce image, and B-spline
coefficients are updated using gradient descent algorithtihaonvergence.

We computed the difference between the deformed landmaskiqas on the source
coordinate and the corresponding manually picked targednteark position. Fig. 3.6
shows box plots illustrating median, lower/higher quattdata extent and outliers to char-

acterize the registration accuracy along each axis: tgfh(RL), anterior-posterior (AP),
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and inferior-superior (IS). The regularized B-spline stgation is competitive against thin-

plate splines or conventional splines inside the lung. tatron of human observer due

to image resolution (voxel sizeDx 0.2 x 0.5cn?) and the dominant motion in inferior-

superior direction are also reflected in the registratioriqggenance.
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Figure 3.6: Registration error for different methods: TBSP and Regularized BSP. Left column [a(#)]:
Thin plate spline registration with manually picked cohfoints; middle column [b(#)] con-
ventional B-spline registration; right column [c(#)] Bisge registration with proposed local
tissue type dependent regularization. Top row [X(1)]: titgft (RL) registration error in right-
left (RL) direction; middle row [X(2)]: registration erran anterior-posterior (AP) direction;
bottom row [X(3)]: registration error in inferior-supendS) direction.

We also calculated the Euclidean registration error betwsformed landmark loca-

tions and the manually selected points. In Fig. 3.7, we @dlére patients according to the

mean Euclidean error for TPS method, and used box-plotustithite the Euclidean error
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Figure 3.7: Comparison of 3-dimensional Euclidean Errap Tow (left to right): TPS, BSP and Regular-
ized BSP. Bottom left: mean Euclidean error over all landtearn the same patient; bottom
right: box plot of the Euclidean error distribution over Elhdmarks through all patients.

distribution for different methods. Fig. 3.7(d) shows thean Euclidean error of land-
mark position estimate for each patient, and a box-plot efdbllective Euclidean error
for each method is provided in Fig. 3.7(e). Both conventid@aplines and regularized
B-splines uniformly outperform the manually assisted tpliate splines method, whereas
performance of the two B-splines based registration metlame comparable. This agrees
with the qualitative results in Fig. 3.3 where the proposeglitarization appears to pre-
serve the flexibility of the conventional B-splines methadsoft tissues. The mean and
standard deviation of Euclidean error for regularized Brgpis Mr_gsp= 0.5 cm and
or-gsp= 0.48 cm respectively, on the same order as the slice thicka@sssuperior to
Mtps= 0.85 cm andotps= 0.55 cm from TPS oMgsp= 0.56 cm andogsp= 0.55 cm

from conventional B-spline.
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We used three B-spline resolution levels which took about it€rations in the last
(finest) resolution level to converge. The computation tfioreboth the conventional B-
splines and the regularized B-spline are both in the orderintites on a standard PC (2.4
GHz CPU and 1G internal memory) running Linux. All programmniaind visualization
in this paper were carried out on the Advanced Visual Syst@S) software platform
with central modules implemented in C/C++. Including the tagmation increased the

registration time by less than 20% in most cases.

3.2.3 Discussions

We quantify local non-rigidity by the deviation of the loc#cobian from being or-
thogonal, measured by a computationally efficient Frobeniorm. We considered both
mono- and multi- modality registrations involving a CT imageeither the source or target
observation. Local tissue rigidity level is inferred by &ppg a smooth monotone func-
tion to the CT values, avoiding explicit segmentation. Thegthness of the inference
function provides robustness to partial volume effectsedlby limited resolution and by
multi-resolution schemes deployed to speed up computation

The proposed regularization design is independent of tke-secified dissimilarity
metric and the parametrization of the transformation fiéke evaluated registration ac-
curacy using the popular B-spline deformation parameiornawith two different dissim-
ilarity metrics: sum of squared differences (SSD) and neganhutual information (Ml).
In the first case, we visualized bone geometry in the targétlae deformed source image
for qualitative assessment. In the second case, we comgafeaned landmark locations
with manually specifiedground-truth” values for quantitative validation. Comparison
among thin-plate splines (TPS), conventional B-splines #e proposed method indi-

cates minimal compromise of registration accuracy in ss$ite regions, but significantly
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improved ribcage registration.

We have performed a preliminary study on incorporatinguist/pe information into
nonrigid registration framework essentially via the ituation of a spatially-varying stiff-
ness coefficient map and use that to adjust the local trafdeetfieen intensity match and
rigidity property. This allows inhomogeneous regulanaatthroughout the deformation

field estimation. We would like to extend this work in the @lling aspects:

e We would like to extend the non-homogeneity that we intraalim this work fur-
ther to non-isotropic setting. In many situations, anatahstructures not only
demonstrate tissue-type dependent inhomogeneous deionniaut also directional
variations. Examples are bending in head-neck region aeadddminant elonga-
tion/deformation in up-down direction (vertical direatian sagittal plan) related to
breathing motion. These information could be handled irris&a fashions by non-
uniformly placing the B-spline knots and having differemtok spacing in differ-
ent directions. However, these ad-hoc techniques coulditey/tin practice and
lacks certain theoretical justification. Furthermore uasting B-spline knots can only
strictly control the deformation level in the 3 vertical p&a which may not be suf-
ficient for some clinical applications. We conjecture thatitroducing anisotropic
regularization into the optimization framework, we would able to have a more

flexible and straight-forward way to accommodate directigated priors.

¢ In X-ray Computed Tomography, we designed the stiffness maépecomposition of
a monotone increasing function with the intensity map,rnglkadvantage of the fact
that in this particular modality, intensity is a very relialseference source for tissue
type information. This is not true in general. We would likeeixplore approaches to

address this issue for other modalities in future work.
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3.3 Discontinuity-Preserving Regularization

Motivated by the common presence of sliding effects in madimaging, e.g, the
discontinuous motion between diaphragm and ribcage diriegthing, we study regular-
ization schemes that preserve discontinuities in the dedtion field.

Recent research on image registration that accounts foouliguities can be classi-
fied into two categories. The first class [23, 24, 135] is basegbint segmentation and
registration. In these methods, smooth regions and singukets (edges) are devised
according to image intensity, and registration aims torakgch part respectively. The
smoothness and discontinuities in the deformation is ndtressed directly. The sec-
ond category is motivated by edge-preserving image rasorg34, 35, 77]. Several au-
thors [10, 15, 33, 130] have tried to generalize total vastatype regularization for vector
valued functions. These methods use regularization thabotes the total variation from
each deformation coordinate. Meanwhile, decompositiah rapresentation of a vector
field by velocity potentials and stream functions [38] hawatiwated flow regularizations
with divergence and curl components [42,136,138]. Analsgo image denoising, [137]
has proposed a convex Hodge decomposition based totatieariagularization method
to denoise vector fields, resulting in piecewise harmonigloThis paper is closely re-
lated to the latter category, and intends to adapt suchiptescto design regularizations
for medical image registration applications.

There are many ways to extend regularizerg, Tikhonov or total variation (TV), orig-
inally developed for scalar fields, to vector flow applicaso However, naive extensions
may violate the intrinsic structure of the problem, and hesuoss of desirable properties.
Taking total variation as an example, summing over the t@ghtion in each component

direction [10, 33, 130] compromises the rotational invac with respect to the coordi-
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nate system. Section 3.3.1 handles this issue with carerapdses a class of regularizers
for vector fields that preserve discontinuities in the defation field. We provide general
analysis of their functional forms, and define some desiregpgrties as a consequence.
We derive the descending flow for optimization based on tianal calculus and discuss
briefly some implementation issues.

Section 3.3.2 further notes that only sliding or shear disioniity is physical in med-
ical image registration, hence it is necessary to distisigtiis class of admissible dis-
continuity from collision or vacuum creating singulargtie To design a regularizer that
differentiates between these two types of discontinudiaed preserves only large shears,
we take advantage of the Helmholtz decomposition, and aeigelthe divergence and curl
components of the vector field differently.

Preliminary result for this work in progress shows promgsiesults.

For clarity, we discuss the derivations for 2D case, yetradllgsis generalizes naturally
to higher dimensions unless specified otherwise. We reptdbe deformation vector
field @ : Q — 02 asd(x) = [u(x),v(x)]T, whereu andv are directional deformation and
assumed to be orthogonal (but do not have to align with thgéwcaordinatéx, y)) in gen-
eral. As we are mainly interested in geometric regular@ator smoothness/discontinuity,
the regularization term is taken to be independent of thgen# corresponds to a special

case of the regularized registration problem introduce8antion 3.1 with
E(f,0;T) =E(®).

A constant weighi is adopted throughout the whole image to balance the datityide
and regularization energy. We focus on desigriipgand assume mono-modality images

with L, metric as data fidelity measure hereafter. Thus the goal g$tration can be
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formulated as:

(3.16) ®* = argminE(f,g,®)
del

(3.17) = argqr)r;irn{Ed(g,fo(l + @)+ AE (D)}
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3.3.1 Indiscriminate Discontinuity Preserving Regulariation

To encourage smooth deformations in most of the region efést (ROI), yet admitting
some discontinuities requires a “magnitude” measure ofdbal change of the deforma-
tion field, analogous to the norm of image gradient in imagtom@tion. The Jacobian of

the deformatiord atx is given by:

Ux U
D (x) = ’
Ve Wy
We propose to use the Frobenius norm of the mddxx) as the local measure of varia-

tion for the deformation field:

(3.18) DPleroy = (/W +UB+3+V}
= 4/|0u|3+|0v3.

This matrix norm is independent of both the image coordisgem(x,y) and the
deformation vector field directiofu,v). For simplicity, we assume that theandv com-
ponents of the vector field correspond to the deformatiod frek andy directions respec-
tively hereafter. In addition, this measure of “deformatichange” introduces coupling
among the various directions in the vector fields and reflégesntuition that we observe
a “jump” in the deformation field regardless of the specifieediion such change occur,
unlike the simple coordinate-wise sum used in traditionaical flow regularization [3, 8].
For simplicity, we make matrix Frobenius norm the defauliation for|D®| hereafter and
drop the subscript.

We consider a class of regularizers with the form:

(3.19) £ (®) = [ 9(ID))dx

Applying variational analysis, and assuming Neuman bopndanditions,i.e., d,u =0
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ando,v =0 onoQ, we derive the descent flow [8}, = (ur, V) of E, to be as follows:

0
D‘(ﬁ )

¢(D®)
9 ooy

(3.20) U =

Ou).

The expression for the update flayvfor v is similar. For simplicity, we define the “influ-
ence function” agp(s) 2 @(s)/s.

To design a proper regularizatigrthat results in edge preserving flow, we interpret the
process as anisotropic filtering and decompose the effettedflow into the normal and
tangent directions foeach component of the deformation fielde derive the regulariza-
tion flow in u— direction as:

¢"(ID®|) — Y(|DP)

(3.:21)  ur = Y(|DP|)(uxx+ Uyy) + IDO|2

2 2
(UX UXX + 2uxquxy + UyUyy) .

By convention, we denote the second derivatives of the tangent (T-) direction and

normal (N-) direction asir7 anduyy respectively, with

1
Urt = TT DZUT = m(Uiny‘i‘ u)zluxx_ 2Unyny>;

1
unn = NTO%UN = m(u)z(uxer UGUyy + 2UUyUyy ).

Rearranging the terms in (3.21) yields:

'(IDD D D
(3.22) Ur = (|DPurr + 'D“'2<d|g¢|2|) _Lp|(c|>q>|2’) LIJI(|Du|2D>UNN'

For 2D case (higher dimension situations have similar sireg:

W(DP)) w(b®) _

|Ov?
[D®[0ul>’

The coupling between andv in the flow motivates us to consider the contribution of

.. . . . . . . A |Du|2 A “:Jv|2
variation in each deformation direction jp®|. We define, = DD andpy = Do By

construction € [0,1] andBy + Bv = 1. Then (3.22) can be rewritten as:

(3.23) Ur = (@ (5)Bu+ W(s)Bv) unn+ W(S)uTT,
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Now we are ready to discuss some desired properties for tiaifun ¢. This is more
complicated than image restoration problemgasintrinsically a function of botlu and

V.

e In the presence of small variations in the deformatidD g

small implies|Cu

, |0V

both small), isotropic smoothing is desirable in each i@l deformation direc-

tion. Itis reasonable to require non-trivial smoothingredhe tangent direction:

(3.24) @(0) =0, with lim Y(s) > 0.

s—0t

To have isotropic diffusion as— 0" is equivalent to:

im B+ 8,8 1

W(s)

Together with the fact thg, + By = 1, isotropic diffusion for small deformation

implies

(3.25) lim @(s) = lim ¢’(s) > 0.

s—0t s—0t

Once the conditions (3.24) and (3.25) are satisfied, the B8] for small variation
reduces to:

ur ~ @’ (0)Au.

The same analysis holds fgr. We immediately recognize that this diffusion coin-

cides with the isotropic flow from the heat equation.

e In the presence of large variations in deformation (I4@®|), it is desirable to dif-
fuse the deformation along the discontinuity, but not agriesWe need to keep in
mind that the level of discontinuityp®| takes into account deformation in all di-
rections, and the diffusion process in a certain directioar(v) is decomposed with

respect to its own gradient field. In other words, the diffussprocess i direction
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is the projection of the joint deformation flow onto that ditien. To preserve dis-
continuity, it suffices to annihilate the coefficientsupfy andvyy for large| D®|, and

assume non-vanishing coefficients for the tangent flow corapts.

lims . 1. @' (8)Bu + W(s)By = 0;
lims— 4o P(s) > 0.
If one were to insist on the annihilation of the normal flow &rpossible combina-

tions of (By, Bv), it would be necessary to require:

lim ¢’(s)=0 andsiimow(s) =0.

S——+4o0

On the other hand, B, ~ 0, indicating that the variation ix—direction (Cul) is rel-
atively small, isotropic diffusion in that direction woutt result in over-smoothing
discontinuity and should be acceptable. Witheing the major contributor to the
overall discontinuity in|D®|, only vy has to be annihilated. Unfortunately, this

again results in a set of incompatible conditionsgn

lim ¢@’(s) <0 and lim g(s) > 0.

S— 400 S——+00
One possible compromise is to let both terms approach zese-as-«, but at dif-
ferent rates:

liMs .00 @'(S) = liMs 1.0 P(S) = 0;

liMs e % —0.

(3.26)

Many functions satisfy the above conditions (3.24),(3.25%) (3.26),e.g, the hypersur-
face minimal functionp(s) = \/fl—i—sz) [3]. Due to the nonconvex nature of registration
problems, we are interested in finding only reasonable logaima in general. In the
usual case whettgq is nonconvex ind, it may be unnecessary to insist @ibeing convex.

We make a quick comment here:
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o ¢s) = & corresponds to the regularization energy:
(3.:27) Eni(®) = [ 10U+ | 0v]

This is a natural generalization of Tikhonov regularizatio image restoration. It is

the same energy that Horn and Schunk [48] introduced in theadflow setting.

e ((s) = scorresponds to the regularization energy:

(3.28) Erp,(®) = /\/umuu2+ |0v]2dx

which can be regarded as a rotationally invariant genextadim of the total variation

(TV) regularization for flow fields [130].

A Test Setup with Truncated Quadratic Regularizer

For simplicity, we consider mono-modality registratiortinli, norm as the data fidelity
measurej.e.,

o= [ (909 - F(x+ 0(x)2

and the corresponding variational descent flow is given by:
Wy (X) = (9(x) — f(x+ D(x)) Of (x+ D(x)).

For the preliminary test, we use a truncated quadratic [#heasegularization function:

(3.29) Psa)=¢ °
a3 otherwise.

The disadvantage and benefit of this choice are both cledin $tfict “saturation” behav-

ior above the scale parameterit poses a challenge for optimization. Graduated noncon-
vexification approaches can be utilized. On the other hdmslformulation provides nice
theoretical interpretations. It is natural to introducéng Iprocess [35] which is equivalent

to “labeling” the outlier in the robust estimation setting.[
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S

Figure 3.8: Truncated quadratic regularization with vagyscale.

Notice that (3.29) also provides a simple recipe to extrimefidarity setSof |[D®| from

the estimated by thresholding at leved:
S={x: [DO(x)| > a}.

This may be useful for extracting motion interfaces.

To alleviate the local minima issue due to nonconvexity, ta svith a large initial.
This is equivalent to use the conventional Tikhonov regeddion (the vector version is
more commonly known as Horn and Schunk in optical flow) of trefE, = |0u|?+ |Dv|?
asS= 0 for a large enough. Then the scale parametas gradually decreased till the
desired tolerance for discontinuity. To speed up the implet@tion, a multi-resolution

scheme is applied.

Preliminary Results

We apply the setup described in Section Section 3.3.1 to tnanal CT slices obtained
from deep inhale and exhale phases. Proposed regularizatalts in smooth deforma-
tion in homogeneous organ (lung, heart and exterior of afe) and correctly preserves
motion interfaces on the boundaries between the diaphrhgart atria, rib cage and the

lungs.
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(e) |IDD| with Tik. reg. (f) IDD| with TQ. reg.

Figure 3.9: Registration comparison between Tikhonov)(@ikd Truncated quadratic (TQ) regularizations.



78

- - - - . S e s
- S s [ s
- - A A
- . B P A D
I e
[ R R RN
A A I S
N A O A N
- L A A A A A B W A
\\\\\\ L A A A
\\\\\ P B R
\\\\\\\\ P A N
\\\\\\\\\ P A
\\\\\\\\\\\\\ A R
\\\\\\\\\\\\\\ N
\\\\\\\\\\\\\\\ Ty
////////////// a4
,,,,, Se--s~-o 2210
e e
rrrrrrrrrrr L P G
e e PO g
S
S il g
\\\\\\\\\\ T e e e
A e o - e e e T e T
P e
- e e e e e e e~
- e e e e e e e——
b v e e e e e
I e P

(a) quiver plot for Tik reg.

- ;o

- e e .

P P
- e s -

N N N

T e

(a) quiver plot for TQ reg.

Figure 3.10: Comparison of deformation fields.
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3.3.2 Discriminative Shear Preserving Regularizer

The problem of designing regularizer to accommodate giidiffiects in medical regis-
tration has several distinct traits. First, we prefer togotise problem in an optimization
framework with a single energy functional and obtain theod®fation as its optimal, rather
than to use regularization to post-process some initiadhes¢ or segmentation. Secondly,
the deformation should be fairly smooth except at the sfjdsites. Thirdly, dramatic
local volume change seldom occurs in physical deformationparticular, the deforma-
tion should neither create collision flow that maps différpixels to the same location
(folding) nor generate vacuums. Similarly, within the cderpent of the sliding surface,
shear should be fairly small. On the other hand, we shouldgove the large shear at
the sliding boundaries. This requires our method to difieege among different types
of discontinuities and regularize them accordingly. Ayahedical image registration in-
volves tissues that are elastic with sliding motion, and w@eet nonvanishing divergence
and curl components from a physical deformation, so we atémerested in studying
the extreme cases of pure solenoidal or irrotational flows dbove prior knowledge can
be incorporated by devising a smooth regularization on thergence component and a
regularization on the curl component that preserves langgnitude. Motivated by [137],

we consider the following regularization energy:
(3:30) Evaveunt(®) = [ adiv @) +B|lcurl @] dx

The regularization on cur is reminiscent of total variation. It penalizes small cualues,
yet is much more forgiving to large values than the quadfatia. In fact, similar to total
variation, one could argue that the proposed functionahisased towards shears.

As a simple sanity check, we examine how the proposed regatem energy would

drive an initial flow field. We derive the variational direwti to descend, (P) and use it
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to evolve the flow. In the absence of data fidelity term, onedadf parameter is sufficient,

and it is equivalent to descend the following function:

(3.31) Er,divcurl,2d = /Q(Ux + Vy)2 + V| Uy — Vx|dlﬁ

Both divergence and curl operators are linear and invat@ngid coordinate transforma-

tion, so it suffices to check typical cases by aligning the fiowne of the coordinate.

e If ® = (u(x),0),then a large value iny would indicate a jump along the direction
of the flow, which would potentially causes folding or a vagul_ocally, we would
have divd = uy # 0, yet curl® = 0. Penalizing thé., norm of div® as in (3.30)

discourages largey values, thereby this helps prevent folding or vacuums.

o If ® = (u(y),0), then a large value iny would indicate the presence of shear along
the flow which we want the regularization to preserve. In ttase, divd = 0 and
curl ® #£ 0. Regularization with thé&, norm of curl f achieves the desired effect of

allowing this type of shear.

In 3D, the deformatiorh = (u,v,w) is decomposed into its divergence and curl com-

ponents as follows:

(3.32) dived = uy + vy + Wy,
1 7 k
= a 9 9

(3.33) curl® = det > 5 = |
u v w

wheret, 7, k are the unit vectors for the—, y—, andz—axes, respectively.
Divergence is still a coordinate independent scalar fielte durl component, however,

is a vector field with three coordinat€s— 003, and its direction is determined by the right
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hand rule. For the regularization function to be rotatinaivariant, we use thé, length

of the curl field pointwise and then integrate over the spabardinatesi.e.,

Ecaneunaa(@®) = [ (dv @)%+ ylcurl @] ,dx

(3.34) = /Q(Ux +Vy + Wg)? V\/(Wy —Vz)Z + (Uz — Wx)2 + (Vx — Uy) 2dXx.
Preliminary Experiment

To study the effect of proposed regularization, we firstitest an initial flow field. The
flow was evolved along the energy descending direction, wisiderived using variational
calculus. We approximated the absolute value term {ith- vi| = /(Uy — vx)2 + € where
€ is a small positive constant.

For image registration, the deformed source image needs toterpolated. We use
the fast B-spline interpolation scheme proposed by Uatai. [120-122] with a 4-level

multi-resolution structure [123]. The source image is esgnted as:
(3.35) fxy) =¥ 6B~ DB~ 1)

' ) ; 1,] AX Ay 9
wherep" is thenth-order B-spline basis.

For computational efficiency, we also use linear combimegiof tensoredanth-order

B-spline basis to express the deformation field:
X . y .
ux) = 3 diBm(— B (=——);
P im0y

(3.36) V9 = 3BT
]

me Y
)B (@ =)
The finest level of B-spline deformation basis was choseretedry narrowly supported
(2 pixels)so that its interpolating behavior does not cammpse discontinuity preservation
within a given tolerance. It is straight forward to genezalthe notations in (3.35) and

(3.36) to higher dimensions thanks to the tensor structtitbeoB-spline basis adopted

here.
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e Regularizing Flow

In general, it is difficult to characterize the solution to@lfinear registration prob-
lem. To study how the regularization energy would bias tlggsteation results, we
first examine its effect on a given flow. In particular, we amterested in checking
whether it could prevent collision/folding and vacuum ¢iea, yet preserve sliding
(shear) discontinuities. Since the proposed penalty caedaded as a combination
of Lo andL4 regularization on the divergence and curl component résedyg, we
also compare with the results of Horn and Schunk (3.27) atad wariation (3.28)

regularization.

Fig. 3.11 and Fig. 3.12 test the regularization effects dhdwog flow and vacuum
generating flow respectively. Notice thhi regularization preserves large diver-
gence, and is vulnerable to such flol regularization successfully smooths the
flow to prevent both collision and vacuum. The proposed i@igdtion behaves like
L, on the divergence, and enjoys similar robustness. Fig.@d&ents the results on
a pure shear flow. Homogeneosregularization blurs the motion interface and is
inferior to thel regularization. The proposed method is effectivielyfor curl and
preserves big shears as illustrated. Fig. 3.14 providesxamgle where collision
and sliding coexist. It is clear that the proposed methoaessfully alleviates the

collision and preserves the sliding component.

¢ 2D Sliding Block Registration

In the first registration test, we simulated two blocks siglagainst each other over
lightly textured still background. As before, we compare grerformance usinby,

L, and the proposed regularization. The absence of a quarditaeasure of perfor-
mance has always been an issue in image registration, amdractoice of param-

eter needs to be made when several models are to be compareel ttg weighting
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original image transformed image original flow
Er,Il Er,I2 Er,divcurl

Er,I 1 Er,I 2 Er,divcurl

Figure 3.11: Regularization results for a colliding/faidiflow. First row: (left to right) original image,
transformed image, original (unregularized) flow. Secoot:rresulting flow under different
regularizations. Third row: image transformed accordimgagularized flows.

parameters in the energy functional control the tradeofiveen data fidelity and
regularization, varying their values could lead to venfeatiént estimates. Indeed, all
models would coincide in the extreme case when the weightefégularization is
set to be zero, as the result is driven solely by data matchinghe absence of a
rigorous way to choose the optimal parameters, it is onlytfeat we compare the
models over a range of tradeoff parameter values. Fortlynate have access to
the ground truth deformation with the simulated datne may argue that there are

infinitely many deformations that would generate the samegcgand target image

4Due to background occlusion, there is no deformation that could matdhrtnet perfectly.
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Figure 3.12: Regularization results for a vacuum genegdiow. First row: (left to right) original image,
transformed image, original (unregularized) flow. Secomd:rresulting flow under different
regularizations. Third row: image transformed accordimgagularized flows.

pair in Fig. 3.15, yet the uniform (within each block) slidims the most common
and natural interpretation for physical motions. We exjtlist simple simulation to

reasonably represent the major features of physical glisirmedical applications.

Fig. 3.16 quantifies the tradeoff between image similaritg aegularization, and
their effect on estimating the deformation field. For eaclihoe under comparison,
we vary the tradeoff parameter, and plot the error of eseahaleformation map v.s.
intensity mismatch. The horizontal axis is the sum of squaiéerence of inten-
sity values over the computation domain and the vertica seports the discrepancy

between the estimated deformation and the ground truth fltsgsured by sum of
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Figure 3.13: Regularization results for a sliding flow. EFiew: (left to right) original image, transformed

image, original (unregularized) flow. Second row: resugjtitow under different regulariza-

tions. Third row: image transformed according to regukediflows.

squared distance of the error vectors. We observe that fada mnge of data fit-

ting error, the proposed method outperforms the otherradtere choices in terms of

real registration error. This makes the proposed methodapm. Unlike the oracle

ground-truth, the data fitting metric is accessible in pcagtand people often choose

registration results (or regularization parameters) daseintensity error. Since the

proposed regularizer corresponds to a better deformastimate for the same in-

tensity mismatch, it is a better choice given an fixed erratda in data matching.

Furthermore, if one has access to a good parameter choied fegularizers (or has

the luxury of running a few trials and then somehow rate ttseilts), the proposed
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Figure 3.14: Regularization results for a flow with simubansly significant divergence and curl compo-

nents. First row: (left to right) original image, transfoechimage, original (unregularized) flow.
Second row: resulting flow under different regularizatiomird row: image transformed ac-

cording to regularized flows.

target image ground-truth deformation

source image

Figure 3.15: Simulated sliding blocks and the ground trigfocmation.

regularizer has the best performance among all.
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Figure 3.16: Registration performance comparison: regisi error v.s. intensity discrepancy.
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Figure 3.17: Best estimation results (relative to the gbtmth deformation) from various regularization
methods. Column-wise (left to right): (X1); regularization; (X2)L, regularization; (X3)
Proposed regularization. Row-wise (top to bottom): (a#pdeed template; (b#) quiver flow;
(c #) vertical component of the deformation.



89

e 2D CT Image Registration

Sliding is widely observed along the boundary of the rib cage internal organs. In
this test, we obtained two breath-hold X-ray CT images of &@aaology patient,
scanned at deep inhale (80%uvital capacity) and exhale - anconprocedure in ra-
diation treatment planning. As a preliminary study, we &gpthe proposed regular-
ization to register the pair of 2D coronal slices shown in.Big.2. As in the sliding
block experiment, we compare the proposed method with.thendL, regularized
results. With real clinical data, there is no ground truthd ghe tradeoff parameters
were chosen experimentally. For each regularization ntktive ran the registration
using several different parameter values, and picked tlectloat achieves a reason-
able balance between data fidelity and physical feasibiigyvisual examination.
Fig. 3.18 shows the “best” registration results of all regidation methods. With
the chosen parameters, all three regularized registspoovide comparable inten-
sity agreement between the deformed template and the fargges. This suggests
the fairness of later comparison, as the results can bepietisd as minimization
of each regularization energy subject to the intensity matmnstraint. The warped
grid maps and quiver plots [Fig. 3.18(c#) & (d#)] illustrdtee advantage of the pro-
posed regularization. In particular, the deformation othkinterior and exterior of
the rib cage are fairly smooth, and the motion boundary iwben is preserved. In-
terestingly, the proposed regularization also naturallyaets the motion boundary
between the lung and the mediastinum, which are affectéereiftly by respiration.
As breathing mainly induces motion along superior-infedwection (vertical in our
presentation), we examine that component closely in Fid.3dnside the thorax, reg-
istration result with the proposed regularization demi@aiss good continuity, which

agrees with the physical interaction between the lungs @ahdagms during respi-
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ration. Motion discontinuities are effectively represshialong the rib cage and the
surface of the mediastinum. Fig. 3.20,Fig. 3.21 and FigR 8l@strate the deforma-
tion field overlain on image intensity to reveal the agreenjendisagreement) of the

estimated deformations with motion boundaries.

;
2500 ; i 2500
2000 2000
1500 s 1500
1000 = 1000
i
500 500
o
o
\

source (deep inhale) target (exhale)




91

2500 ' 2500 . 2500
2000 2000 2000
1500 ‘ 1500 1500
1000 1000 1000
500 500 500

o o o
(a3)
a0 - b e o 5 4
g 1000 1000 1000
e . i ‘- ]
R [ 500 g AL AT 500 A [ 500
; < 8 0% ! i L.
i g = sy ! ke \s s Vi L
_..".‘ i o ___-I.,-l 9T 0 =i \ e 0
: ] e / | A
£ . F - \
- —! T -500
f }."""\ ‘ 500 \ ‘ 500 . d ‘
j !
-1000 ‘ -1000 -1000

LI AN e S e

R R R R RN A R AR R IR LR RN IR

R I (N e {0 ST e
OO e e ool e T R AT
SO e "‘””/W”““Hj“““”‘““\\\““““ """" ///m1n\l\\\“‘"'umm\\\“”
LTy STV e TN T
S T R R R RN R RN R AR A RN RN RARREEE N SULT
Ve N AR AR R AN AR AN AR A AR RANREED R R TR IETTRRRRRRINRE
NN RN R RN R RN SRR VR

e L L

(d1) (d2) (d3)

Figure 3.18: Registration results of CT data with variougutarizations. Column-wise (left to right): (X1)
L1 regularization; (X2)L» regularization; (X3) Proposed regularization. Row-wisep(to
bottom): (a#) deformed source; (b#) intensity differenedween deformed source and the
target images; (c #) warp grid representation of defornmatid#) quiver plot of deformation.
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Figure 3.19: Vertical component of the deformation from @gistration. (a).; regularization; (b), reg-
ularization; (c) Proposed regularization.
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Figure 3.20: Quiver plot overlain with image intensity for regularized image registration.
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Figure 3.22: Quiver plot overlain with image intensity fasctiminately regularized image registration.
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e 3D CT Image Registration

Unfortunately, the proposed functional seems to be insefftdy itself in regular-
izing 3D registration. In the neighborhood of sliding, thephiysical rolling effects
are widely observed. It is possible that this phenomenorlated to the Kelvin-
Helmholtz instability for shear flows. Since our algorithtaratively updates the de-
formation flow, it behaves as an physical process that esdive shear flow. In this
case, the shear surface is subject to the Kelvin-Helmho#iability and any small
perturbation in the normal direction of the shear surfacaiia rolling; in fact, singu-
larities occur in finite time. Also, this stability is moredbus in higher dimensions,
which possibly explains the relative benign behavior in 2Recases. As indicated
by generalized fluid flow models, introducing material visitp and surface tension
may help prevent such turbulence. It is also possible thedbm@osing the overall
deformation into a concatenation of small physical stepy aileviate this rolling
artifacts, as smaller deformation requires relativelydevterations to resolve, and to

reach a reasonable result before the singularities form.

Figure 3.23 and Figure 3.24 illustrate the rolling artifact
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03

warped grid deformed source

Figure 3.23: Coronal view for 3D discriminate registratidiine same slice from source, target and deformed
source volume. Since it is a full 3D registration, the defedisource pulls information in all
(x,y,2) directions and the source slice is shown for reference & poly.
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coronal slice of target

warped grid deformed source
Figure 3.24: Sagittal view for 3D discriminate registratid he same slice from source, target and deformed

source volume. Since it is a full 3D registration, the defedsource pulls information in all
(x,Y,2) directions and the source slice is shown for reference mapoly.
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3.3.3 Discussions

In Section 3.3.1, we first analyzed the conditions for a gainelass of regularizers
of the form(3.19) in an axiomatic fashion, in the sense tlegfitming from the assumed
behavior of a regularizer, we derived the consequence stthesumptions and the corre-
sponding functional form. Further noticing the necessitgistinguishing among differ-
ent types of singularities, namely, folding/vacuum v.seahwith the latter being the only
physically admissible, we designed different regulaszir each component based on
the Helmholtz decomposition. In particular, we have usetbamopicL, diffusion on the
divergence component to enforce volume compatibility @dihg or gap), and adopted
anL; regularizer on the curl component to preserve large shear.

In fact, we can substitute a more general regularizatioetfanal ¢ in place of thelL1
norm, and discuss the conditions @0 that the regularized energy can preserve sliding,

as follows
(337) Erger®) = [ alldiv @[>+ Bo curl @] )dx

The influence of the regularizatiapshould be such that it penalizes weak curls, corre-
sponding to a smoother deformation field, but preservesuhefat is strong. We denote
Y(s) 2 ¢ (s)/sfor se (0,), and call it the “influence function” as before.

Mimicking the works in image restoration [3], it is easy tashthat@ needs to satisfy

the following conditions.

1. To suppress small curl values,

@(0)=0, Ilim LGS lim ¢’(s) = ¢’(0) > 0.

s—0t S s—0t
2. To preserve large shear,

e e 98 9 _
sLITood(S)_SETw S =0 andsllmo(ﬁ(s)/s_
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There are many functions that satisfy these properties. hig gtudy, we investigated
the truncated quadratic function, which was shown to be tkerete analogue of the
Mumford-Shah functional [13]; the absolute value functiahich corresponds to regular-
izing theL; norm of the curl component; and the Huber function, which loamegarded
as the inf-convolution ok, andL, functionals [14].

Shear preserving regularization for three dimensionabtegfion needs further inves-

tigation.
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3.4 Equivalence Between Twd., Div- L; Curl Regularizations*

Section 3.3 considered discontinuity preserving imagéstegion with energy of the

form:
(3.38)  E(®)= /(f —go¢)2dw+)\div/\div ¢|2d:c+)\cur|/]curld>]da:,

which behaves ds; regularizer on the divergence component to encourage hensagis
smoothness in volume change dndregularizer on the curl component to preserve large
shears.

It is immediate that another form has similar properties:

(3.39) E(qa):/(f_goqa)zdmﬂdiv,//wiv ¢|2dw+)\cur|/|curld>|da:.

One may argue that regularization in (3.39) is one-homogas e ® so that the coeffi-
cientsAgiy andA¢y have the same units. On the other hand, the setup in (3.38)ites
point-wise structure, and direct optimization is easiéiE lhas a unique minimizer, then
the equivalence between this two setups are trivally trogydver, the data fidelity term
in intensity matching image registration problems is nonwex, and uniqueness of the
minimizer cannot be established in general.

In what follows, we show an approximate equivalence betweese two formulations.
The main idea of the proof is to first transform the regulatipptimization problems into
the corresponding constrained version, and then estaddjalvalence in the constrained
setup.

For simplicity, we use the following formulation for energy

E\(®) — (/(f—go¢)2dw+a/|curl¢\dw>+)\/|divd>]2da:

(3.40) = (|f —go®|5+alcurl ®|1)+A|div ®J3.



100

The equivalence between (3.40) and (3.38) is easily showiddmntifying A = Ag;y and
o =21/Acurl-

Given f, g and for a fixedx, we denoteA(®) 2 |f —go®|3+alcurl ®|; andB(®) 2
|div @3, so thatE, () = A(P) +AB(P). SinceE is not convex in general, there may exist

multiple minimizers, and we denote the set of minimizergphs:
C\={D:E(®)<E(Y), WWerll,

and the corresponding energy valueEgs= minE, (V).

Claim 3.4. For A; < Az. IfC1NC, = 0, then B®1) > B(®d2) for @3 € Gy, andd; € G,

Proof. Assume not. Take; € C,, and®, € C,, such thaB(®;) < B(P,)., then

Ep,(P1) = A(D1)+AB(®y)
= A(P1) +A1B(P1) + (A2 — A1)B(®1)
= E;, +(A2—A1)B(®y)
< Ep(®2) + (A2—A1)B(Py)
= Ep(®y).

(3.41)

The third line follows from the fact thab, € C,; the fourth line from the assumption that
®;, ¢ Cy, andB(®1) < B(®P2). This contradicts the assumption ti@t minimizesE,,.

In fact, as long as we assumdg, ®, do not simultaneously belong @, NC,,, the
contradiction would hold.

We now argue that fok; # Az, it is highly probable thaCy, NC,, = 0. The mini-
mizer(s) for the energf, (®) = A(P) +AB(P) need to satisfy the Euler-Lagrange equa-
tion

dA(®) + AdB(®) = 0.
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If ®* simultaneously minimizeE,, andE,,, i.e., ® € C,, NC,,, then it must be true
thatdB(®*) = 0. It immediately follows thatl A(®*) = 0 as well, so tha®* satisfies the
Euler-Lagrange equation for alland that it is the minimizer for ak, . In particular, it is
a minimizer for

Ex—o(®) = A(P).

Meanwhile,dB(®*) = 0 implies divd® = 0 andB(®) = 0. This means tha®* is a
divergence free minimizer of the energly— go ®|3+a|curl ®|; (which does not penalize
divergence at all!). This result also holds the other wayiad if there exist a divergence-
free elementd in Cy, then® € C, VA. The contrapositive of the original statement says
that if Co has no divergence-free elemer@g, NC,, = 0 VA1 # Ao.

Now we are ready to state it as a theorem.

Theorem 3.5.If ®°is a divergence free minimizer ofE | f —go ®|2+a|curl |y, then it
also minimizes VA, and E = E = A(®?). If there is no such element, theg €Cy, =0

for anyA; # A2. Moreover, forA; < Az and any®; € Gy, ®; € G, B(®1) > B(P2).

Recall the definitions of outer normals in [28], which is @bsrelated to sub-differential

in functional minimization.

Definition 3.6. Givenp,v e ON, letH(p,v) denote the closed half space
H(p,v) = {xeON: (x—p)-v< 0L

Given a convex domaif2 ¢ ON and a pointp € 9Q, the collection of outer normals 1@
at pis defined as:

No(p) ={ve ON:Q c H(p,v)}.

Consider the 2-dimensional plag®&(®),B(®)), then for givem, E, = A(P) +AB(P)

is constant along lines of slope)—l\. Assume the se@ 2 {(A(P),B(D))},P T to be
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convex i (if not, we shall consider its convex hull for now), then weréaghe following

lemma.
Lemma 3.7. p € 0Q is a minimizer of k if and only if—(1,A) € No(p).

This is a direct application of the Karush-Kuhn-Tucker (KKcbndition: the gradient
of theE, is (1,A). To require thatJE, to “point away” from the feasible set is equivalent
to the condition we stated with the definition of outer norsnal

Furthermore, note that dQ is differentiable atp, thenNg(p) contains a single direc-
tion, so this is equivalent to the traditional requiremeht-@1f = —g whereQ = {x:
g(x) < 0}. If 0Q is differentiable everywhere, then apy= (a,b) € 0Q minimizesa+ Ab

for at most one\.

No(p)

case 1l case 2 case 3

Figure 3.25: Illustration for the three cases of feasibtgan: strictly convex and everywhere differentiable,
nonstrictly convex and everywhere differentiable, nofedéntiable.

e Case 1.If Q is strictly convex®, then the minimizer of, for eachA corresponds
to exactly one poinp(A) = (a(A),b(A)) on0Q, andb(A) is strictly monotonically

decreasing as a function df

5

Definition 3.8. A set of pointsSin N-dimensional space is strictly convex if for every two poirisandx, belonging
to Ssuch thak; # xp, the straight line segment joining the two points belongS boit does not belong to the boundary
of S(i.e. all the points on the interior of the straight line must be strictly in the interidg)othat is, a seSis strictly
convex if and only if for everys, X2 € S, and scalaw such that 6< v < 1 we havevx; + (1—Vv)xp € the interior ofS.



103

e Case 2.If 0Q is everywhere differentiable, b@ is NOT strictly convex. In partic-
ular, if 9Q contains line segments af+ Ab = ¢, for A € Z, then the minimizer of
E) for eachA ¢ X corresponds to exactly one poiptA) = (a(A),b(A)) on 0Q; the
minimizer of E, for eachA € X corresponds to a line segment @9, and the cor-
responding second coordinate@\) form a continuum ori]. In other wordsp(A)
(now a multiple valued function) has the property thatiit< A2, thenb(A1) > b(A2);

and ifby, by € b(A), thenb € b(A) for anyb; < b < by.

e Case 3.If there existsp whereodQ is nondifferentiable, and suppose that there ex-
istsA1,A2 € 07 suchthat-(1,A1), —(1,A2) € No(p), thenp = (a,b) simultaneously
minimizesE,, andE,,. Combine with our previous argument with the specific def-
inition of E,, it must be true thap minimizes allE,. In other wordsQ € H(p,V)
for v = —(cosb,sinB) for 6 € [0,11/2] (since we are only interested e [0,]).
This corresponds to the situation where a divergence-igestration arises as the
minimizer to| f —go ®|3 + a|curl ®|1, which is highly unlikely in practice, we omit

discussions about this case to avoid too much technicality.

In summary, ifQ is convex, ther?, B(®) is either a constant or a continuum fére C,
for each fixedh.

WhendQ is differentiable,b(A) is a strict monotone (potentially multi-valued) func-
tion of A. For better presentation, we defibgA) andb,(A) as the lower and upper
bounds of{b: a(A\) +Ab(A) = mina+Ab, (a,b) € Q}. Therefore, if® € C,, thenB(®)

[bi (M), br(A)] and we have the following equivalence:

6with the exception of the rare case whé@) has a divergence-free minimizer
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=
=
=

(a) behavior of solution to unconstrained formulation  (bjresponding constraint

Figure 3.26: Equivalence between unconstrained and @nstt formulation: Each in the unconstrained
formulation maps to a constrained optimization problem Afi®) over a circle (or ring).

Theorem 3.9. ® minimizes = A(®) +AB(®P) if and only if it solves
minA(®)
st.B(®)=b, for someve[b (A),bon(M)]
Proof. Quite straight-forward from previous argument.
If ® is a minimizer forE,, then takeb = B(®), and it must be a minimizer for
minA(®).
st.B(P)=b
On the other hand, ® minimizes
mMIinA(®P),
st.B(®)=b

find theA such thab € [by(A),br(A)], and® minimizesE,. O

Sinceby (A),br(A) are positive quantities, the constrained setup can bettewis:
minA(®P) :
st.o/B(®)=b, for somebe|,/b;(A),\/bn(N)]

Replicating all previous argument, we can show that this lmamapped to the uncon-

strained formulation
minEy = A(®) 4+ yy/B(®) = (| f —go ®[3+ alcurl ®|1) +y|div D)2

for somey.
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WhenQ is not convex, its convex hull will contain one or more lingsents, corre-
sponding to case 2. The optimum will be achieved at the enatpof such line segments,
which is the intersection between the origifaknd its convex hull. This will affect the
results in that for somg, b(A) may be the union of continuum (or possibly continua) and
single value(s). For the constrained formulation, thigegponds to not solving the opti-
mization if the constrainb takes on values in the complementgfb(A). In that scenario,
the minimizer(a, b) lies in the interior of the convex hall &, and does not corresponds to
the minimizer of unconstrained probleaa-Ab. This is O.K., as we are interested in show-
ing the equivalence of the unconstrained formulations lfmahd the missing portions of

the constrained space does not contribute to the optimatisos.



CHAPTER 4

Fundamental Performance Analysis in Image Registration Problems:
Cramér-Rao Bound and its Variations

Image registration, as a special form of signal warpingnisnaportant task in image
processing. In contrast to the rapid development of allgonic study in image registration,
a standard performance evaluation tool is in general apsgoépt [95] where the trans-
formation is assumed to be a global translation. It is imguairto investigate fundamental
performance criteria in a principled manner to compare trexall optimality of different
estimators for nonrigid registration problems. This cleapiresents an observation model
for image registration that accounts for image noise moatigecally than most formu-
lations, and describes performance analysis based onézifaao Bound(CRB) and its
related variant Modified Craar-Rao Bound(MCRB). We interpret the result of the com-
monly used optimization based registration as the M-es&ratthe objective function and

derive its bias-variance behavior.

1This chapter is based on material from [98].
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4.1 Model - the Ideal v.s. Commonly Used

Generally, image registration methods aim to find the moitoan image sequence
{z}, wherez denotes theth observation (frame) of an underlying image. In reality,
only sampled observations are available, with spatial samsppacingA. Therefore, it is
natural to use a discrete spatial index to refer to the sasnpleation. Without loss of
generality, we take;[n] = z°(nA) wherez® notates the underlying continuous intensity

map. Accounting for additive observation noise, we forneithe generative model as:
4.1) z[n] = f(n+1;(n)) +&i[n],

where it is standard to assuraeto be independent identically distributed (i.i.d) Gaussia
noise. In principle, the task of registering the observasequence is to find the defor-
mation sequence of continuous mgpus} for all i. We adopt the parametric setting, and
represent the underlying continuous image intensity aseati combination of a finite
number of basis functionis with coefficientsc = {c}, i.e, f(x) = TK_;cb(x,k). For
simplicity, we focus on pairwise registration which reasrestimating one deformation
field T, and drop the subindex m. Furthermore, we assume the deformation field is prop-
erly (sufficiently) parametrized with, so the estimation performance for deformation and
image intensity may be characterized by that of the paransetéc,a). For simplicity,

we formulate our problem in one dimension, but the analysisegalizes to higher dimen-

sions. The two observed images are modeled as:

K
an = 3 ab(nk) +en,
K=1
(4.2) N = %ckb(n+Ta(n),k)+sz[n] n=12...,N,
K=1

where{b(-,k)} are common intensity bases, angarametrized by captures the point-

wise deformation. The components of additive naisare zero mean 1.1.D Gaussian with
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varianceo?.

The formulation in (4.2) captures the spatial sampling efdbservation, the finite rep-
resentation of the underlying “true” intensi{y:k}}f:1 and the dense pointwise deformation
T.

For comparison purposes, we formulate the estimator intioaal registration setup

as the optimal transformatidnsuch thag
(4.3) [ =arg minD(z,z10T),

whereD is some difference measurg, sum-of-squared-difference (SSD) or mutual in-
formation (MI), and™ indicates the transformation. In this setting, it is imghcassumed
thatz; (also known as the “source®) is a noise-free version of the tntensity imagd,
andz (also called the “target ) is a deformed image whose noisp@ties determines
the proper choice of the difference metric. Clearly there ligck of symmetry regarding
the presence of noise in this formulation.

For simplicity, we use sum-of-squared-difference (SSDpasdefault choice of the
error metricD for (4.3) hereafter, corresponding to the Gaussian noisaragtion, as

adopted in many practical cases.

4.2 Cramér-Rao Bound and its Asymptotic Behavior

We first reformulate (4.2) in a compact vector form as follows

Z Ao €1
c+ = Aic+ €,

V) A¢ &

(4.4)

\§
I
I

2There is a slight abuse of notation here. The more precise formulatioidvbe: I = argmin- D(z,P(% o)),
whereZ; the underlying intensity map that agrees wiihon sampling grids, an& is the sampling function such that
P(Z)(n) = Z*(nA). Even so, the cost function is still incomplete, as anlys observed and the interpolatorz; — 7§
needs to be specified. The de facto objective function isEHas, P(1(z1) oI)).
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wherez £ [z1(1),...,21(N), 2(1),...,z(N)]" € 0N ande = [cy, ..., c]T € 0¥, are col-
umn vectors by stacking the corresponding elements. Theatenated random noise vec-
tor e ~ A[(0,Z = 0?lon). Ag,Ar € MN*K have elementéy(i, j) = b(i, j) andA(i, |) =

b(i +1(i),j) fori=1,2,...,N,j=1,2,...,K. The overall system matrig = [A],AT]T.
The Crangér-Rao Bound(CRB) is a fundamental lower bound on the vagiari@any un-
biased estimator [124] and serves as a benchmark for estirpatformance. When
maximum-likelihood (ML) estimators are applied, which &re@wn to be asymptotically
unbiased, it is often useful to bound their variance with CRB[45], it is suggested
that when inverting the Fisher information matrix (FIM) cesponding to the parameter
of interest only is not straight-forward, it is feasible teeu*complete-parameter” Fisher

information matrices. Following a similar logic, we can ter(4.4) in a more general form,

z = h(tg,c)+e

(4.5) = h(6) +e,

whereh(tq,c) 2 gcandd = [0, c] denotes the “complete-parameter” vector. It follows
immediately from the i.i.d Gaussian assumption of naishat the ML estimatoéML

minimizes the., distance between observatigrand system respon$gd) as follows:
BuL = arg ”éinHz —h(6)[,-

Before we delve into the detailed computation, we clarify goal and the structure of
FIM here. We are ultimately interested in the performancestimators for the deforma-
tion parameten, and the image intensity parameters chosen to augment the data to

simplify expression. Witl® € ON+K the FIM corresponding té takes on the form:

. 0?
F(6%) = E.jp—s- {—@/\(Z|9)|e=e*} :

whereA\ is the log-likelihood function\(z|0) 2 log f(z]0).
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Moreover, if we defineyy = E {[%/\(z)]T [%/\(z)]}, then the complete-data FIM can

be decomposed into block form as:

(4.6) = | "

The sub-block} ; is the FIM with respect to the quantity of interest - the defation
parameters. As CRB is the inverse of the FIM, we can invokedhadla for partitioned-

matrix inverse [39] to obtain:

CRB(0) = [Joa—Juclogdeal

(4.7) CRB(c) = [Jec—Jdeadaodacl ™

This form can be further simplified using its symmetry - a fédett we will utilize later in
our computation.

The likelihood function with respect ®is :

f(z;0) = }eTZ_le>,

1
(2-,-[)2N/2|Z|1/2 exp(—z
wheree = z —h(0) = z — 4(1q)c.

The log-likelihood turns out to be:

N = logf(z;0)
1
(4.8) = —Nlog(2m) ~2Nlogo - 5 |z —4(tq)c||?.
Now we compute each term of the FIM.
1 2
D'[/\ = ——D‘[ ||Z—2(TQ)C||

202
(4.9) — Lz At 0 Ae)
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Notice that
9 iadndel = 203 oA
or(hy VT awél r(M,
0 3 K)b K
B mkzlcu (n+1(n),k)
K ¥ o
(4.10) _ Sieic(kb(n+1(n),k), 1=n;
0 else

whereb(-,-) denotes the derivative &, -) with respect to the first variable.

Plugging (4.10) into (4.9), we obtain

(4.11) — A= 5(2() = Al ]c) % b(l +1(1),k)c(k).
k=1

Therefore, the gradient &f with respect ta is:

@12) A= Sl Ae)o (D) = ldis(De} (2~ Ale))]"

whereD is the matrix whose elements adi, j) = b(i +1(i),j),1 <i <N,1<j <K,
and “©” denotes the Schur/Hadamard product.

By chain rule, the gradient @k with respect tax is given by:

0,60
O\ = a—_l_/\a—a'l'
1 )
(4.13) = g[(zz—ArC)Q(DC)] [ﬁTL

where 21 € MN*L is the derivative matrix with elemen.1](i, j) = aaa(j 1(i), andL

~—

corresponds to the length of the deformation paraneter
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Now we compute the FIMy o with

92 9 .0
E{W/\} - —E{[a—a/\] [0_0(/\}
at’ (.0, 10 dt
(4.14) - = E{[a/\] [EA]}E
1t
o2 da
1at’

dt
_ 32 -
(4.15) = S diag“{Dc} =

To calculatel. r andJ. ., we take the derivative ok with respect tac:

0 1 0
N = ——— " |lz— 2
dc 202 GCHZ Ac]|
1 T
(4.16) = ?(z —A4c) 4.

It is now straight forward to compute the entries for the ctetgFIM:

(4.17) E & A= Latg
' dcoc | o2

2
E {m/\} = éE{—AT[I,m]D[I,:]c+82(|)D[I,m]}
1

(4.18) = —?Ar[l,m]D[l,:]c.

The matrixJy . can be represented in compact form as:

92 1 at’
(4.19) E{aaac/\} =5 diag{De}Ar

With symmetry, the complete FIM is obtained:

aeT . 2 dt T
1 diag“{Dc diag{Dc} A
(4.20) Fe:O.z da { }da do { } T
Al diag{Dc} &t a'a

_ E {diag{Dc}(Zz—ATC)[é<ZZ—ATC)Tdiag{DC}]T}

E
da
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As a special case, wharis parametrized with rect functionise., T(n) = a|[n|, we have
g—é = 1. The FIM for (1, ¢) is then given by:

1 | diag?{Dc} diag{Dc}A

(4.21) Free) = 52

Al diag{Dc} a4
At this point, we make the following observations:

1. With the commonly used model (4.3), it is assumed that bsewed source image
z) corresponds to the ground truth In other words, most existing methods solve for

the ML estimator with the generative model:
K
(4.22) 7= cb(n+1(n),k) +e2(n),
K=1

by plugging in thecy’s that best fitszy. It is easy to derive the CRB for the log-
likelihood function A®M(z,;1) = —N/2log(2m) —Nlogo — 55|z — Arc|[2. The
FIM matrix FEOM = J, ; as we derived in (4.15). Therefore, CRE(1) = J; 1.
Notice that ash .J; +Jet > 03, CRB*®™(1) < CRB(1) as extra information (known
{ck}) is assumed in the case of (4.22). In other words, the pluapération provides

a “looser” bound for the variance than the “true” CRB corrasgiag to model (4.2).

2. For asymptotically large SNR.e., 6> — 0, we do expect a decent estimatecof
directly from the source image, assuming no model mismatthe generative basis.
In this case, the plug-in estimator as used in the traditiomaalel, even though not a
true ML estimator, is expected to perform similarly to thaliIL estimator. Indeed,

[76] shows that the “fake” bound approximates the true GRB

3. The above points may be interpreted better with a sligtdification of the model in

3In most cases, we assurﬂ\echchc‘T to be nonsingular, so it is in fact positive definite.

4In particular, the parameter of interasis decoupled from the nuisance parametér this case, and the asymptotic
behavior of the bound can be shown with ease.
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(4.2). Instead of i.i.d noise, we may assume that noise Iextbke two images are not
symmetric, more specifically, we assume~ A (O, O'%IN) andey ~ A(O, cr%IN).
The log-likelihood is given by:

1 1
4.23 N=———=|zg — ——= |z — A + some constant
( ) 20_% ” 1 AOCHZ 20_% H 2 TCHZ

The partial derivatives of the log-likelihood with respéet ( thusa) is not affected
by target image model, and the second-order derivativedfdikelihood with re-

spect toc is given by:

92 1 1
E Ab=— AT A — ATA,.
{acac } O%AOAO O%AT '
We thus obtain the complete FIM with respec{toc) as:

L diag?{Dc} L diag{Dc} A;
(4.24) Freo=| 2
G%A-Tr diag{Dc} G—EAEAO—FG%ATTAT.

Whenaoy — 0, corresponding to high SNR in the template image, then— o« and
CRB(T) = [Jr1 — Jredoeded] ™ — It

which reduces to the CREM

. To compute CRBr) exactly could be challenging, @' 4 may not be easy to invert
for arbitraryt. Notice that the sub-matri®g of 4 has nice shift-invariant structure,
yet A; depends on the deformation. In special cases, such as whevhtile image
(signal) experience uniform transformatioi) = constfori =1,2,...,N, thenJ. .

is block-shift-invariant, and efficient inversion is pdssi.

. As a special case, we consider when the whole image erpesainiform transfor-
mation, where a natural parametrization is to ase describe the global transfor-

mation,i.e., 1 (i) = a for Vi.
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Under the uniform transformation assumption, we have

@,
do 7’

wherel indicates a column vector (of lenghhin our case) with all unity elements.

Substituting this relation into (4.15), (4.19) respedinand we obtain:
o 1 | 1T diag’{Dc}1 1T diag{Dc} A
Al diag{Dc} 1 ara

1 | c'DDTe [Dc]TA
(4.25) = 5

AllDcf 4a'a

4.3 Relating to MCRB

The modified Crarar-Rao Bound(MCRB) was first introduced [22] to resolve the-sy
chronization issues in decoding systems. Rather thanrsgéhe variance around the es-
timator for the “true” augmented data (“complete data”) @rhincludes both the quantity
of interest and the nuisance parameierMCRB choose to look on the other parameters
as “unwanted”. Instead of using the true CRB, the MCRB may bard=gl as an approxi-
mation via “marginalizing” over the nuisance parametensfact, MCRB is always lower
than CRB, thus a looser bound. In some cases, MCRB approachta¢CRB [76].

The central idea is the following. Instead of computing tie t=1M

F= EZ{[S—TIogf(Z:T)]Z}v

it uses

(4.26) Ezc { [% |ng(Z;T,c)]2} :
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The rationale for MCRB is the following:

E.. {2 -1°} = Ec{E.[{(@-1)%}

S
Ezcl(Zlogf(z1,¢))?
1
E. {EZ|C[(% log f(zT, C))z]}
1

Ezc {[% log f (Z;T,c)]z} '

v

(4.27)

The first inequality comes from the application of CRB to thineator1(z) for a fixedc

and second is Jensen’s inequality.

4.4 An Alternating Minimization Algorithm

For registration purposes, we want to minimize the negdagelikelihood in (4.23).
We adopt the frequentist perspective and consider the therlying image intensityf
(and thuse) as fixed unknown. It is natural to ask for the solution of theymented
problem:

(T,¢) =arg Tén_/\'

We describe an alternating minimization algorithm to sdhie problem as follows.

Algorithm 1 Alternating minimization of the nagetive log-likelihood {4.23).
1: Initialize é
2: repeat
3:  For givenc = ¢, minimize ||z — Acc||, overt. This step coincides with conventional registration
methods by assumingknown. Obtaint.
4. Forgivent =1, minimizez%% llzs — A0c||§—|- 2%% llzo— ATc||§. This is a typical quadratic minimization
problem, and the solution is given by:

1 1 P 1 1
(4.28) = [SAA+ SAA] (SA 2+ S5A ),
01 03 01 03

where(-)" indicates the pseudo-inverse operator for the Gram matrix.
5: until Some convergence condition is satisfied.

We make the following remarks:
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e As o1 — 0, the contribution oAy andz; dominates (4.28), and the solution reduces

to

(4.29) é= [AS Al "A 21,

which corresponds to the conventional method wizglie considered to be a highly

reliable “template” and the image intensity is solely ob&al by fittingz; .

e More generally, alternating descent may be used insteadqefining the achieving
minimizer at each iteration. This could be particularly egcial for the step in updat-
ing T conditioned ore, as the quadratic form in the other step makes the mininoizati
overc trivial. Relaxing conditional maximization to incrementlog-likelihood may

has potential computational advantage as well as bettevimito local maxima.

e Aso; — 0, the alternating descent algorithm reduces to exactlycanyentional de-
scent algorithm in solving (4.3) with difference metric. In the asymptotic case, the
conditional minimization ot given by (4.29) is independent ofand the whole al-
ternating descent algorithm reduces to using the plugtimesor (4.29) and descend

—A with respect ta.

4.5 Comparison with Conventional Methods: CRB v.s. M-estimate

As we have commented briefly in the previous sections, theergional method es-
timate the intensityf from the source image; only. With I, difference metric, we can

write the solution to the conventional method as:

o
Il

2.
2

argmin||z; — Aoc|
C
(4.30) T = argrrT1in|]zz—ATé|]§,

wherez;, z» are discrete observations for the source and target imagecior form,Ag

andA; are defined as in (4.4).
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The first equation in (4.30) can be solved in closed form giteguadratic form:

c= AgZ]_,

and we can rewrite (4.30) as:

~ . 2
(4.31) T=arg rrTnnsz — ATA(‘;leZ.
We can also stack the expression as before, and defire [—ATAg I] and write the

objective as:
(4.32) T=arg ngind)(T,z) = ||42%(T)ZH§.

In the following derivations, we will choose the most conest form and use the above
equivalent expressions interchangeably.

Our goal is to derive the covariance of the minimizer defineova and we use similar
philosophy as in [30]. By implicit function theorem, the parderivative of® with respect

to T are uniformly zero:

(4.33) L.)(D(T, 2)|i—t =0, V spatial locatiori,

o1(i
for any given data.

Differentiating (4.33) again with respect t@and applying the chain rule yields:
(4.34) 02%d(1(2),2)) 0,1 (2) + O (3(2),2) = 0.

Where, the components a°®(1(z),z) are ﬁ;mqb(f(z),z), and the elements df'?
are W{iz(j)d)(f(z)?z). We consider the case whéir°d(i(z2),z) is invertible, or more
precisely positive definite. This is equivalent to requi?€t(z),z) to be locally strictly
convex. This assumption is true if the following regulagndition is satisfiedthered a

compact neighborhool¥ (1) such thatb(t,z) > ®(1(z),z) for all t # 1 . Then we have:

Ovt(2) = [-0%%(%,2)] t0M (1, 2),
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and the covariance matrix farwould beCov{z} transformed by local linearization [91],
e,

Cov{t} ~ Os(2) Cov{z}[OA(2)]'-

By substitution, we obtain
(4.35) Cov{i} ~ [0%d(1,2)] 10N d(1,2) Cov{z} [0 D (1, 2)] [0%%D(F,2)] .

We assume the covariancez be:

olly 0
(4.36) Cov{z} = ,
0 O'%|N

so it remains to derive the expressions f5P® (1, z) andOM (1, 2).

We first adopt the objective function form in (4.31) to takeidative with respect to

T(l).

N 2
(4.37) %“)CD(T,Z) = n:1(Ar[n, Az — zﬂn))ﬁ{&(n)Agzl}.
Similar to (4.10),
K
aTLm{Ar[n;]Agzl} = aTi(l)kzl(Agzl)(k)Ar(n, k)
0 K
= a2, A b+ ().

(4.38) _ K (Alz)(Wb(n+1(n),k), 1=n

0 else

whereb(-,-) denote the derivative df(-, -) with respect to the first variable.
Plugging (4.38) into the expression in (4.37) yields:
K

(4.39) %(I)GJ(T,Z) = (AT[I,:]Agzl—zz(l))k;(Agzl)(k)b(l +1(1),k).
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To obtain?%®, we take derivative with respect t¢n). Noticing thatari(l)qb depends
ont only viat(l), we obtain:
, { T A (ASz) (B(I +T(1), k) } 2+
amem)“’M =0 AL Az - 20) S (Az) (0B +T(1),k), 1=

0 else

\

whereb(-, ) denotes the second-order partial derivative with respethé first argument
inb(-,-).

To computed*d(1,2z), we need to take derivative of (4.39) with respect to each el-
ement ofz. We perform this by differentiating with respect to the etts inzy andz
respectively.

Noting that%(n) [Abz1] (k) = Al [k, n], we obtain:

2
WGD(T,Z):AT[I,:]A(T)[:M] Z(AOZ]-)( ) ( —|—T(|) k)—|—

K

(4.40) ( [ A021—22 kz [ )k)
=1
P - ~ 3 Az (b +T(1).K), 1 =n;
ot(l)az(n) 7 0 clse

We assume that at the point of evaluati@nz), the samples of the warpefl approxi-

mates the observatian, more specifically:
AAZ ~ 2.
This is a reasonable assumption for most registration tes#or simplicity, we denote
c2 A(ng_l, D(, ) 2 b(i +1(i), ), and the warping mag 2 Ang, then we can rewrite in
matrix form:
0%99(1,2) = diag?{Dc}

(4.41) Dllq)(tz) = diag{[v)E}‘W —diag{[v)c_}



121

Plugging (4.41) and (4.36) into the expression@or{1} in (4.35), we obtain:

(4.42) it ~ diag{Dc} [0 WWT + 03| diag{De}

Remark: asof — 0, z1 approaches the noise-free observation of the source irhage
and the conventional method should yield the same estinsatgeamore realistic model.
In fact,

Covg,—0{t} = 03diag?{De},
which agrees with our previous analysis in (4.24) GRE(T) — J; —1 asz becomes asymp-
totically noise-free.

It makes sense to compare the covariance prediction for thestivhate of the con-
ventional method and the Cr&mRao Boundobtained from the more realistic model from
(4.2). For simplicity, we assume thag to be invertible so tha@gl = Ag and consequently
the warping mapl/ = ATAgl to be invertible.

To studyCRB(T), we plug inJ; ¢, J. . from (4.24) and obtain:
CRBT) = [Ji—dedooded ™

1 . 1 . 1 1 41 . _
= {—Zdlagz{Dc}——2d|ag{Dc}AT[—2Ang+ —ZAIAT] 1—2A-Trd|ag{Dc}} !
032 032 01 032 032

. . 11 1 ATl _
(4.43) = o3diag{Dc} *{l —?AT[O—%AEAOJrO—%AIAT] AT} diag{Dc}

2
With A; = WA, we can write:

1 1 1 1
?A;I)-Ao-l- ?AIAT = ?A;I)-AO'F ?Ag wT Who.
1 2 1 2
The middle part of (4.43) can be rewritten as:
1 1 1 _
{1 - ?Ar[—zAcT)AOJF —zArTAr]flAI} !
2
= {l AT 02A0A0+01A0WTWA0 }_1

= {1 - BAA R + AW T WA TAT}

(4.44) = {I-EW[d +FW W) TwT}
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By Woodbury-Sherman-Morissey identity:

T, 1 1 02 _
(031 + (e W)a W' ] = 2 o—go%wu + 0—§wa] LT,

AT -1
thuso,{| —Oi%AT[Oi%AgAOjL oi%ATTAT] AT} =l + a3 W,

Substituting into (4.43) yields:

(4.45) CRR1) = diag{Dc} (03l + o?WWT)diag{Dc}.

This result coincides with the covariance estimate for thedtimate evaluated 4D, C)

in (4.42).
4.6 A Simple Example

This section uses a simple example to illustrate the refwits previous sections and
also to motivate discussions about performance comparisoparticular, it is expected
that the proposed model in (4.4) has advantage over thditraal model in (4.3) as the
estimation forc which parametrizes the underlying image intensity sho@drore reli-
able, because it combines the information from both thecsoand the target observations.

Consider a simple model

21 I €1
(446) z = = c_|_ ,

Vi) al &2

where we assume both andz, are vectors of the same size as the underlying (unknown)
c. The scaling parameterwhich relatesz; andz in the noise-free case is the quantity of

interest.e ~ A((0,021) ande, ~ A\((0,03!) are independent Gaussian additive noise.

M-estimator for the Conventional Method

In the conventionally method, the parametes estimated solely from observatian

(4.47) c(z) =argmin||zg — c||§ = 7.
C
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Sincez; ~ A((c,021), é is an unbiased estimator ferwith covarianceo?l.

The objective function that minimizes is

(4.48) ®(a,2) = [l ~1]z]5 = ||z - oz,
a(z) = argrginCD(a,z)
= argmin|z - aé||3
= argn&insz—cleug
(4.49) - ZlTZj
121l

Hereafter, we discuss two approaches in approximating #&nnand variance @: a
direct method based on the explicit solution in (4.49); améhairect approach that relies
on implicit function theorem and M-estimate. The explicietmod is straightforward,
requires less manipulation, and should be reasonably aiecu®n the other hand, explicit
solutions are not available in general (as we will see folheestimator), so the implicit
method is more universally applicable. In this study, thedi method serves as a good
baseline reference for approximation performance, andddérevation based on indirect

approach is of didactic value.

Direct Approximation of Mean and Variance for the M-estimate

First, we directly approximate the mean and covariancé dfased on the explicit
solution in (4.49).
The expected value af from (4.49) is given by:

o [ (ct+e)T(ac+er)
Elal= E{ Gre)(eren) } ’
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whereg; ~ A((O, ofl) andey ~ A((O, o%l ). We compute the above expression using con-

ditional expectation:

Ela] = Ee {Ee[a]le1}
(c+e)Te }

c+¢€1)T(c+e)

(4.50) = 0k, { (

where the second line follows from the independence betwgande,.
Let ¢; denote thath element ofc and g denote thath element ofe;. Thenc are
constants ang are scalar i.i.d Gaussian variablgs- A (0, o%).

We can rewrite (4.50) as:

o) /- { R

Define functionf : 0" — O via f(x) = %% We perform second-order Taylor expan-

sion of f around the poin& = ¢ and then take expectation with respectcte- ¢ + €;:

E6)/d = E[f(@+ 5(e— ) 3@ 2)
- 14 5El@ -3 R (@(@ o)

1
(4.52) = 1+ EE[SI 02 f(c)eq).

Now we focus on the terrﬁ[e{ szw(c_)sl] whose sign determines the bias. The gradi-

ent[,. f and the Hessial2 f of f are derived as follows:
Ouf = ;%" = 2|z, * (=" o)z
Theith element ofd, f is
(Ot = lelly 6 = 2]llly* (=7 )x.
Taking derivative with respect tg yields:

0 _ _ — _ o
ax; (0Tl = =2z i~ 2{ Ao, °T &0 + 5 Oy + T e~ i)}
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whered is the Kronecker impulse function defined as

1 x=0;
O[X| =

0 otherwise

The equivalent matrix representation of the Hessian isrgise

(4.53) 02 f =8||z|;°z caxa —2|z||;* (zc" +cx’) —2(x"¢) [|z|, 1.

We evaluate the Hessian aand note thaE[e,0?f (c)e1] = 0%trace{0?f(c)} depends

only on the diagonal elements of the Hessian, because teeaios i.i.d. We obtain:

02 4(@ = 21z 2 - 3 &),
i=

so that

n

Efej 05 f(c)ed] = of Z[Di F(e)li

(4.54) = 20%|lc]3%(2—n),

which is negative for alh > 2.

Subsequently,
(4.55) E[d)/a~ 1 (n—2)of|e];*.

As (4.54) describes the difference betwejd /a] and unity, this indicates that for
n> 2,0 is an estimate ofi that biases towards smaller magnitude.

Similarly, we computé/ar{a} via E[a?] — E[G]%. The correlation reads:

- { (c+e1)T(Oc+e)(ac+e)T (+€1) } |
le+e1)3

As before, we first use conditional expectation to separnat¢h@ uncertainty i, via:

E[a2] = Eq,Ee, [62]e1] = E { (c+e1)T(0%ce” +031)(c+€1) } |

= 4
le+ &1l
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. L. . AN .
Define a deterministic symmetric matrix = (0%ce’ +03l) and a functionf (x) =

’T‘Tm'ﬂf and we aim to finde[f ()] for x = ¢+ €1. We expand the functiofi(x) around
2

x = ¢ and approximat&[G?] via:

) ~ TE+ Sl a—2)
2
(4.56) = %qL%E[SIDif(c—)sﬂ.
2

The deterministic ternf (¢) simplifies to:

_c'He =2 03
= aE 2
eIl lell2

Sinceg; is componentwise independefd?] only depends on the diagonal element

f(c)

of 02 f (¢), which we derive as follows.
Op f(x) = —4|jz|, %z (@ "Ha) + 2| z|,* = H.

Theith element of 1, f (z) reads—4|z||,° i (€ THx) + 2|||,*@TH(;,i)., whereH (:
,i) indicates theith column ofH. We may explicitly writezTH (:,i) = ¥ xj[a®cicj +
058[i — j]]. The second-order derivative is given by:

62
%
(4.57) +2z)5* (0%c% +03) — 8|zl Xz TH (i)

f@) = —4|z);°la"He +2xz H(.i)] +24] 2] ;*XPa Ha

To evaluate(;% f(x) atx = ¢, we use the following relations:

°l

- 2 :
H(:,i) = 6 (a?||e]l3+03);
— 2 2
c"He=|ell3(a2]|e]3+03).
Substituting these relations into the expression (4.5r76";(§)f (x), we obtain:

0° _ _ _
5 | (®)la=z=8] ]l P cf(a?||ell3 +03) — 4llel = (07 €3+ 03) + 2] ~* (6P + 0F).
1
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By the independence of the elementginwe obtain:

02
Elei 05 f(c)er] = o%;a—xizf@

(4.58) = ||e]l~*(10—4n)a®oF + ||| ~* (8 2n)ofa?.
Substituting this quantity into (4.56) provides:
E[6%] ~ a®+ ||| ? 05+ |lel| (5 —2n)a’0% +[|c]|~* (4—n)oios.

Together with the estimation fdg[d] obtained in (4.55), this equation yields an ap-

proximation forVar{a} as:

Var{G} = E[6%]—E[a]?

(4.59) = |lel7* (@®0% +03) - ||| ~*oil(n—-4)03 - (n—2)?a’c]].

Expressions (4.55) and (4.59) reveal some interestingtsirel. For large enough(in
fact for n > 6), the variance estimat@t.59) becomes upper-bounded Hyg] 2 (0?03 +
03), which we will show later is the Craér-Rao Boundfor the statistical model. This
implies that it cannot be unbiased. In fact, the bias quantéasured by2—n) ||| 2 o%a

also increases accordingly.

Alternatively, we can follow [30], and use implicit functidheorem and Taylor expan-
sion to approximate the bias and variancéads the minimizer of (4.48). The data point
z at which to perform Taylor expansion is mainly a choice ofveience rather than con-
siderations of asymptotic behavior. One natural choicéhefdaxpansion point would be
the noiseless data. Letdenote the noiseless observatioanda denote the true param-
eter values, withe anda denoting the resulting estimates in (4.47) and (4.49) whé

observed. Thes = [c;a¢], and
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Bias for the M-estimate

Figure 4.1: Bias and variance approximation obtained fraplieit solution for conventional M-estimate.

(4.60)
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—— Approx with Exact Soln
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Variance for the M—estimate
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As the minimizer for (4.48) satisfies:

a=

0
(0,2 o

227

0

3

P 10~
— Approx with Exact Soln
3.5 —— Numerical Result
CRB
3l
2.5f p
/%N/\s
T
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(a2) variance approximatian= 5
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45210

—— Approx with Exact Soln
— Numerical Result
CRB
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0.2 0.4 0.6 0.8
0'1

(b2) variance approximatian= 50

[t 2 ]o=0

Taking derivative with respect te and invoking the chain rule, we obtain:

02

002 " oz

d
o+

oJa

02

=0
0z ’



where
02

4.61 —
and

92 T
4.62 d=2
(4.62) 9002 o

Therefore,
0 . 92

000z
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| 0
®=2|z5= 22" 2,

00
—I al O 2al -1
+ =2z
0 —1 0 -1 0
R B 2al  —|
toaa =l ? e

-1 0

Evaluating (4.63) at = z, we obtain an estimate of covarianCev{a} atd = Gz as

. 0 d
Cov{G(z)} =~ 5ZG(E)COV{Z}EEGT(£)
) _
-1 B o1l —1 | ol | _
= ZC_T al —I 2 &
el g§| el —1
252 1 2
(4.64) _ 90rtoy
lell2

This quantity (4.64) coincides with the CrémRao Boundobtained from the statistical

model as we will show later.

To estimate the bias fax, we present the first and second-order Taylor expansion for

E[d] as:

D [a]

(4.65)

Elh(z)]
E{h(z)+0:h(Z)(z—2)}

h(Z)+E{0.h(Z)(2 - 2)}.
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E@@a ~ E

—N

h(2)+0.h(2)(z—2) + %(z —2)T02h(2)(2 —5)}
(4.66) = h(Z)+E{0:h(2)(z—2)} + 3 E{ H)T2h(z)(z—2)}.

Notice that wherz is chosen to be, the quantity(z — 2) is zero mean Gaussian. It
follows that the first order ternt {{0,h(Z)(z — 2)} = 0 in (4.65) and (4.66). Therefore,
the first order Taylor approximation yields:

(4.67) EV[a]=h(2) =h(z) =q,

corresponding to zero bias.
The second-order approximation (4.66) requires complififig( ), which can be ob-
tained up to second order [30] via:

(4.68)

2h=[-= i S 0 —o0,h"O,h+ —— o o0, h+0,hT o ¢+6DZCD
=1 da2 a3 0020z 0020z  oda

Terms involved in the above expression are computed asasilo

63

Taking derivative of (4.61) with respect toyields

93 I O
— P =2z" ::Z{zT 0}.

2 1
0040z 00

Taking derivative of (4.62) with respect toyields

93 201 —I
&=
0aodz 10
Evaluating atz z and substituting into (4.68) yields:
(4.69)
1 2| c _2 | ac 2al I
2 _
th(z)=- [ac_T ET}Jr— {ET O]+2
2)lell3 | llell? | o lelz | —& 0
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o2l 0
Sincez — 2 ~ N < 0, ! , the second-order term in (4.66) only involves the
0 ol
diagonal elements dfiZh(z). We extract the corresponding blocks from (4.69) as:
® ) L ) a2 iaq);
—5Nz) = — — G ;
0z (i)? 2ellz | flell
02
(4.70) azl<i)zh(a = 0.
Thus
T2 v , 07
E{(z—2) Uzh(z)(z- %)} = Izolmh(z_)
2
— 2L (26— 2an)
lell2
02
(4.71) = 2(1-n)a

||5I|z

It follows that the second-order estimation fd] is

(4.72)
2

2
1 1— O
Az {” ”>ua|2}

Forn > 1 and reasonable signal-to-noise rafi? [a] implies shrinkage in magnitude,

é%m:EUm4-E{z 2)T02h(z)(z — %)} =a+(1-n)

which WLOG, we refer to as “negative bias” hereafter.

Notice that the choice of = z is mainly due to computation convenience (so thatz
is zero mean Gaussian). It is feasible to perform the santenefor different data point
z.[50,109] proved that under certain regular conditions,Mhestimate is asymptotically

normal with mear® where

Under reasonable regularity conditions, we can exchangeottler of expectation and

differentiation, and take
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Figure 4.2: Bias and variance approximation for M-estinwitained from expansion abo{d, z).
Note thath can be interpreted as a local minima for an “average” costtfanE[®(a, z)],
ie.,

(4.73) a=arg rr&inE[dJ(a,z)].

The expectation of the objective function with respect ® distribution of the obser-

vation noise

elo@.2) — El| a1 ]| T
Oc+ &2

3 —al c+¢€
:E[|:C_T+EI aEﬂLsZ} [—all} B
oc+ €&
2
= (a—a)?|le]3+n(a’o] +0%)

(4.74) = (||e]3+no?)a? - 2a]|c]50 + a2 | e]3
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is convex quadratic it and the minimizer reads

v

a = arg rginE[CD(a, z)]

2
(4.75) _ ez g
Hﬂ|§+n0%

For simplicity, letp3 = ”a"ﬁ% then %(Y. Sincef > 1, the expansion poirt is a
shrinkage with respect to the true scale
We can construct an expansion paint 1Bc; acl. Then the minimizer o (2) = %o_(:

d, which satisfies the requirement (4.73).

Evaluating (4.63) atC, 2) results in:

- B 201 I
S-a(2) = —|lzly?s"
-1 0
1 -B_T V_] 2al -1
= - C Oc
B2lle] L ~10
( ) C_T [ 2B-1
4.76 = — L2al —pl }
B2llelz L P
The approximated covariance @fevaluated at the poiritt, Z) is given by:
Cov{O}|,=56-a0 = iO((é)Cov{z}iO(T(é)
B P 0z
2 2B—1 =
B - ofl O =s=al | _
= BlelteT [ E2al —pl P c
0 dil —BI

@.77) — (105642~ 5)%%7 + o).

We know from previous analysis that the M-estimate is aswyiigzlly unbiased, so its
variance is to be bounded below by CramiRao Boundasymptotically. Therefore, it is
curious to find whether there exists a consistent relatipnistween the pre-asymptotic

variance in (4.77) and the Cr&mRao Boundi.e.,

(4.78) \Ia\5284((2—%)2_20§+ 02) = |all;2 (6202 + 62)?



134

The quantity on the right-hand-side is the C&rRao Boundobtained from the statistical

generative model (to be shown later).

Claim 4.1. The covariance of the M-estimator is boundabdoveby the Cranrér-Rao

Bound. Moreover, it asymptotically approaches the GegaiRao Boundas; — O.

Proof. To compare the left and right hand sides in (4.78), it suffietermine the sign of

their difference:
RHS—LHS = ||c]|; *B~2(B® — 4B? + 4B — 1)0 0 + (B* — 1)0%.

For simplicity, we drop the positive quantitt,EHg2 in later analysis as it does not affect

the sign. LeA 2 4202, B = 03, and we want to determine the sign for:
T(A,B;B) = B~*(B° 4%+ 4B~ DA+ (B* -~ 1)B.
The polynomial(B® — 432 4- 4B — 1) factors into
B°—4p*+4p—1=(B—1)(B*+B—1)(B°+2B—1).

By construction > 1, thus(B® — 4%+ 4B — 1) > 0, sortis linear inA, B with positive
coefficients. MeanwhileA,B are both positive, so(A,B; ) > 0. This result translates
into the claim that in the nondegenerative case-£ 0), the variance of the M-estimate
is bounded above by the Cr&@&mRao Bound. It is easy to check that when= 0, the

variance equals the Cr@arRao Bound. O

Now we approximateé=[a] with (4.65) and (4.66) by expanding corresponding terms
about(a, z).

The first order coefficientl,h is obtained in (4.76), and the corresponding first-order
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approximation for the mean is:

EVE) = h(2)+ED:h(2)(z—2)

o cl { L } c+e1—Be
= —+E{ - 2p-1 _
C I B e
B g_ a g B =
TR TEag P
o, (2B-1)(B-1)
2
(4.79) = %&

Since > 1, (B—1)° = B3~ 302+ 3B~ 1= B3 (3p>~38+1) > 0, and®*F+1 < 1.

Equivalently,%a} < 1, indicating a shrinkage in magnitude, which agrees cpialdly

with the result from exact solution.

Expression in (4.79) can be rewritten as:

el = ¥ P
(4.80) = [1- (BE31)3]°_('

. . . A a2
Denote the signal-to-noise ratiozn ass = % and
1

E[d] 1

a (s+1)3
To approximate the bias with second-order Taylor expansi@use (4.68) and evalu-

ate at(ad = a/B, 2).

sy 1 1 Bc {23_1_ ]
) usar%{ @la| o | L 7 oe ke
21— | a
1 “5-a { ~ 1+ 251 I }
@las | g [P 01T L o
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c+¢&1—Bc
&2

To compute(z — 2)T02h(2)(z — 2) in (4.66), it suffices to use only the diagonal blocks
P . (1-B)c+er
of 0<h(2), because the componentsof- z =
Oc+€—0c
are independent. Partitioa — z into the deterministiap and random part) so that
(1-B)c € : :
andn = Then the quadratic term in the second-order Tay-

0
lor expansion in (4.66) can be written as:

E[(W-+n)TOZh(Z)(W+n)] = W OZh(2)@ +E"OZh(2)n]

&

where expectation of cross terms betwgeandn are dropped sincg is zero-mean.

The diagonal portion ofl2h(2) reads:
NYril a
481 mhz=—2> ) b B(2B—1)ace e
B?llell2 | B?lell 0 0
It follows that
Trepsy — 2B=D2[(B=Dllel- |lel3-
VEEY = T { @lag B
2B—1)2 (2B—-1 _
- ANy
(4.82) _ 2(58_11)30—(_
2 2
TRh(zn = 2 B<ZB—1>0%||a|2-_nol_}
T ancw%{ ®ja B
(4.83) L S PT
B lell3

B—-1°%_ 202 e
O(+|36||E||§[(ZB 1) — nBja.

Summing (4.82) and (4.83) yields:
El(=—£) 2N (- 1) = 2oy

(4.84)
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Combining (4.84) with the first order estimation Bft], we obtain the second order

approximation folE[a] as:
E@4] = h(2)+E {Dzh(é)(z —2)+ %(z —2)T02h(2)(z - z)}

= EW[6]+ 5E[(z— £)T02N(2)(z - 2)]
{Bs_(ﬁ_1>3+<s—1>3}o—(+(2—n>B—1 o &

= a
p? B SN EF
B*-(B-1)*_ (2-np-1 of _
(4.85) = o+ a.
i B Jlell3
2
Recall thaf3 = |a||2_T|n0%, so for reasonable SNF%B’1 ~ 1—n. Using thes= ”n—f'j'é
|3 1
we can rewriteE (%) [a] approximately as:
. 1 (1-n)s® _
4.86 E@a) =[1— .
(4.86) =1 (s+1)4 T n(1+s)4]0(

Notice that when SNR is high (larg, then

1 (1-ns® _

7+ 7)0
(s+1)* ' n(1+s)

1-n &

n(1+s)

1-n  no? . _
N e]z+nof

02 _

2 2 a,
le]l2+not

E@[@E] = [1-

Q

1+

= [1
(4.87) ~ [1+(1-n)

which closely resembles the result (4.72) obtained fronaading about noiseless data

2 2
In fact, for high enough SN@ ~ €2 g0 that (4.87) and (4.72) are approximately
1 1

(¢}

equal. This relation is expected, as for small SMRy z andd =~ a, the small error

analysis is essentially performed on the same neighbothood
ML Estimator for the Statistical Model
The maximum likelihood estimator from (4.23) aims to joyndistimatec anda via:

A A 1 2 1 2
(4.88) 8.8 =argin ; o~ el + 5 12~ aelf.
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Figure 4.3: Bias and variance approximation of M-estimdt@imed from expansion abo(d, z).

Note that conditioned oa, (4.88) is quadratic ire with the solutionc{a, z) given by:

o

(4.89)

Remark:

¢ In the limiting case wheww; — 0 (with non-vanishings»), z; is a noise-free obser-

(b1) bias appro

1

ximation = 50

T

al

1 0a?
=

2 2
01 03

262 1 g2
a%0{+05

1
OEI 0

0 2
a3
Cx2

+ _)—1(?21_1_ —2)

1 03

(0321 + 00322).
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Variance for the M—estimate

x10°

—— Approx with \check{z}|
3.5 —— Numerical Result
CRB

2.5r

PITAVES s

15 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8
0'1

(a2) variance approximatian= 5
x10*

45
a —— Approx with \check{z}|
—— Numerical Result
CRB
3.5F
3l
2.5F
24,
15 . . . .
0 0.2 0.4 5 0.6 0.8

1

(b2) variance approximatian= 50

vation of¢, it is natural to estimate solely onz; as (4.89) reduces to

01—0

lim ¢ =2z,
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which coincides with (4.47) in the conventional method. @a tther hand, as the
noise level ine, becomes small relative to thatzm (o2 — 0 with non-vanishingy),
the estimate reduces to:

lim é=2z/a,
o,—0

which corresponds to the case of estimatirgplely fromz.

More precisely,

lime=2z asoi/02—0;

(4.90) limé=2/a asoy/op — .

e Itis easy to check that the estimator in (4.89) is unbiased variance

2.2 2
00, ., 07 |

202 1 g2 oz
01+ 1402
2

Var{¢} =

- . - - . . 2
It immediately follows that this quantity is upper-bound®dthe covariancesl of

the estimator foe: (4.47) resulting from conventional methods.

Now we can plug in the expression efni (4.89) and (4.88) reduces to a minimization

problem over only:

(4.91) = argmin

a = arg rginlv(a, z)

2
— ||z — 2|3
a a20§+0§” 122

This functionW is nonlinear ina. Note that¥ > 0. In the case of noise-free observation

= z, a achieves the zero value and is the global minimizer (we wilify this more

precisely later). Therefore, we can utilize the technigisedM-estimate as before, and

analyze the behavior @ in the neighborhood(z) = a.

Let & be the minimizer of the functioW(a, z), then it is true that

o]

0 0 1

a (@,2) da 0202 + 0% o

2
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0 1
—Y(a = —— (071 —2)"[221(0%0% 4 03) — 200%(a1zy — Z
g T (@, 2) (azo%Jro%)z( 1-2) [2z1(0%07 + 03) 1(0z, — 22)]
2 al
al aos3l o0l
LetQ2 B2 ao? 2 , then the derivative oz W with

—I
respect toz is given by:

2
—03l —ao?l

o - T (Q+Q")
0adz (0203 +03)2
2 . 2003] (020% — a3)l
(4.93) = (@221 022"
1772 (0202 —-03)l  —200%l

Evaluating (4.93) at = z anda = a yields:

il W@D) = 2
000z 7 0202 403

(4.94)

al -1 } .
Now we compute the derivative %%w with respect tax and evaluate at the minimizer

d =a with z = z:

a_qu _ 50 (0z1 —22)" (0521 4 00%2y)
002 oa (0202 + 02)2

2002

- 2{- (o207 23 (02~ 2) (0521 +a02) ..
1 2
1
+( o207 + 272 2] (0321 + 00%32,) + (az1 — zz)Tcr%zz]},
2

This is a convenient form to be evaluateckat z, and we obtain:

62
(4.95) 2% = g 19

To prepare for future use, we simplify the general form 098}.into:

(4.96) 0° W= 2 T (—3a%0f +03)031 (305 —a”0®)aotl
T 00t (aPof+od)]

z.
(302 —a20?)00?l (3002 — 03)0?l
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Estimating a yields:

0. 02 4 02
3050 = —3:2% 3002
1
(4.97) - —_— ¢ [ al  —I ]
|€ll3

The covariance evaluated @, z) is

. 0 0
Cov{a}|za) = gu(z_)Cov{z}aaT(z_)

5 _
ofl O al

0]

— ER @ |

2
0 o3l || -

(4.98) = |ellz? (a%0f +03).
Lower Bound for Covariance From Crameér-Rao Bound

The negative log-likelihood is given as the objective fimetin (4.88). It is straight-

forward to compute the sub-matrices for the Fisher-InfaramaMatrix.

0 1 T,..
a/\ = —O_—%(GC—ZZ) C,

02 1 -
—N=——c' ¢
002 03

02 -1
A= "5 (20c" 2
dadc = 03 P%¢ %)

resulting in

02 -1
—“oc'.

~—C|
2 2
oJa 05

The Fisher-information matrix (FIM) is thus given by:

El

T

Cc C GCT

1
FIM:? ) 02
2 ac (ac+3)l
1

Invoking block-matrix inversion, we obtain:

2
- 2 T T(n2, 92\-1
Cov{d} > 0o“c'c—ac'(a +0—%) ac]

(4.99) = |clz%(a?0% + o).
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Since the ML estimator is known to be asymptotically unbiagbe coincidence be-
tween (4.98) and (4.99) justifies the well-known fact that KL estimator is asymptoti-
cally efficient (thus is asymptotically a uniformly minimariance and unbiased estimator

(UMVUE)).

Approximate Bias of the ML Estimator

Not withstanding the value of asymptotic analysis for the BHtimator, it is often of
great interest to analyze the bias and variance before thedtimator enters the asymp-
totic zone. Hereafter, we focus on deriving analytical appnation for the bias of the ML
estimator. As in the covariance analysis previously, wemssthe estimate is over contin-
uous parametera and is computed by “completely” maximizing the objectivadtion
(likelihood in this case) without “stopping rules” that t@nates the iterations before the
maximum is reached. We derive the approximation using ioitpfiinction theorem, the
Taylor expansion (with different orders of approximatiarcaracy), and the chain rule.

The objective functiot¥ in (4.91) implicitly defines the M-estimate as a function of
z. Yet the absence of an explicit analytical expression ofithen & = h(z) (as the one
in (4.49)) makes it difficult to study the mean a@fdirectly. As in the previous section,
we apply Taylor expansion, chain rules and implicit functtbeorem to estimate the bias

with the first and second order approximation given by:

(4.100) E[6] ~ h(2)+E{0.h(2)(z—2)}.

(4.101) E[6] ~h(2)+E {Dzh(é)(z —2)+ %(z —2)T02h(2)(z — z)} .

We now determine the point of expansipand the approximation for first (linear) and
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second order (Hessian) coefficientgh, 02h. To obtain the best choice for
(4.102) a = arg n&inE[qJ(a,z)],

whered andz’in the Taylor expansions are related@y= h(z). We computéE[W(a, )]

as follows:
1 n . )
E[W(a,z)] = mi;((ﬂl(l) —25(i))%
For each index,
E[(azi(i) — 2(i))?] = E[a?z(i)%2—20z(i)z2(i) +22(i)?]
= 0o?(C+0%) —200C +a°C + 03
(4.103) = (02 —200a+ 0% + (0?05 + 03),

wherec; anda are the underlying “true” parameter values.

Substituting (4.103) yields:

(4.104) E[W(a,2)] (a—a)?|ell5+n.

Even thoughE[¥(a, z)] is nonlinear ina, its global minimizer is immediately observed
asa = a, becaus&[W(q, z)] = n achieves the lower bound f&{W(a, z)] as a function
of a. Thus we have found the proper point to expand araada.

Note that when noise free data is observiegl, z = z, the minimizerd in (4.91) is

obtained as:
6(2) = agmin——a— oz -z
a a%0%+05
— argn&in7a20%+cg||ﬂc_—ac—”%
(4.105) = argmin%-

o 0207+ 03
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Note this function is nonnegative, its global minimizer I#ta@ined an = q, i.e., h(z) =
a = d. This indicates that = z'is the proper choice to expahdaround, without requiring
to know the precise value of.

In this case, the bias analysis with first-order Taylor exgo@m as in (4.100) is simple

) , So that
o3l

E[a] = h(z)+E{0:h(z)(z—2)}

(4.106) = a

ol
by noting that{ z — z) ~ A( <0, !

This states that the estimator is unbiased if we approximatirst moment up to first
order dependence on the data.

The first order expansion is usually sufficient in practicd has been extensively used.
However, there are situations where (4.100) may be inadeqWse next derive a mean
approximation based on the second-order Taylor expandid®) which is expected to
be more accurate, but also computationally more intensive.

The first two (Oth and 1st order) terms in (4.101) are (4.160)t suffices to study the
Hessiar12.

For scalam, we follow the simplified expression in [30] to obtain the Hies ofh(z)

as.
(4.107)
92 83 a3 83 d
1Ph=[——W] 1 —wi,h'O,h WO, h+0,h ——— W+ — [P
h=1-5e" {60(3 30202 o 52z T T a

Some of the key ingredients are already availakle:h is given in (4.97) as well
as %LP in (4.95) (before evaluation) ang%w in (4.93). We still need to compute

3 — 3 —
LW(a,z), 2,02W(a, 2) and 202,
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Evaluating (4.95) ata, z) yields:

? 2|13
—y i Ll S
5oz P (®2) = 0202+ 03’

Taking derivative of (4.96) with respect toyields:

33 4 o | (~30%0%+0%)03l (305 —a’c?)ac]l

4108) —W=-—F—"53%
( ) 307z (0202 +03)3

(305 —a?0%)aosl (30203 —03)03l
Evaluating (4.108) afa, z) yields:

B 4 _ _
(4.109) mw(o‘aa:mc [(0‘21—040‘11)| 2002(0%02 + 03)

Taking derivative of (4.95) with respect toyields:

03 —12002 2 ) 2
5y = m 1 (0521 +00322) +

(4.110) +200%Z] (0521 4 0032) + 2(a0% + 03)0%Z] zz] .

2T (52 2
(0202 +02)3 [_ 40072 (052, +00712) +...

Evaluating (4.110) at (4.110) &, 2) yields:

. 12002||c||3
4.111 ~ Y = —12.
( ) aag (aa’a (_20.2+0.2)

The termg; DZW is obtained by taking derivative %%W in (4.93) with respect ta

as:
1 2 2003 a0? — a3l

(4.112) aimﬁwz (2 3) 2l (aoro)

a asor+ oz (ao?2—0a3)l  —200%l
Evaluating atx yields:
2.2 2
a_, 1 5 2003l (aco7—0o3)l
4,113 — W) =2(=———
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Substituting the expressions of all components into thHe+ignd-side of (4.107) yields:

PhE — _ 0%0f+03 ~12a02 al | .7 _
z (Z_) = 2 — 2 20 2 ol —1 [ +-..
2fellz (@01 +03)%elz | —
4 (05— o)l [ | |1+
cc o —
2 2 _
(@08 +03)3ll3 20002 (0202 + 02|
4 al . B B
5 cc' | (o3 —a%})l 200%2(0’c?+03)l |+
(_2°2+02) lellz | 2 ! ne

(4.114) +2(;)2

— 2 2 2 2
200! (acag — o)l

22 | 2

a“0f + 05

(ao?—03)l  —2007l
The second order term in (4.101) depends on the He&8lh(x) via (z — z) T 02h(2)(z —

o5l
Z) sincez’= z, wherez — z are exactly the noise componeant A (O, ! ) :
I

Because the elements efare mutually independenE {(z — z)T02h(z)(z—2)} only
depends on the diagonal elements of the HedSgi{ z).
When a component is located in tlag portion of z, the noise componerd(i) ~

A((0,0%), and the corresponding element in the Hessian is:

02 1 —120302¢? 8a(03 — a*of)c?
(4.115) 320 sh(z) = — 2{ 252 _2( 22 D 2+40(02}
2 (i) 2|3 | (@03 +03)[cl3  (a%0]+03)2||cl3
Similarly,
2 _1om 2 ~ 2.2
(4.116) aa-zh('z_):_ 1 2{ - 2120(c5c2 _21260(010 _0%}
2(i) 2|13 | (0 +03) 3 (0 +03)(cld
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Combining the above yields:

n 02
E[eTOZh(2)e] = Zla 21012 h(z) + 2210
B { ~12a30} 80((02—0( 01)05}
ma 0202+03) (0202 +03)2
{ 120(0%02 1600203 }
2||5H§ (a%01+03) (_202+02)
(4.117) _ o
el

The second order approximation of the estimator yields:
2

1

lell2

which indicates a bias toward positive magnitude. Comparighl tve bias analysis for

E[6]/a =1+

the conventional M-estimate, the bias of the ML estimatadgpendent of the data length
n, which indicates that even though both estimators are amtioglly unbiased, they
approach the asymptotic region with different rate (royghi n).

In summary, we have tested with a simple example the estihiagées and variance of
the conventionally used M-estimate and the ML-estimatomfthe statistical generative
model. With the particular form of the example, the M-estienean be obtained in closed
form, and we have estimated bias and variance from the éxpbtution. To reflect the
more general scenario, where such explicit solution is aitable, we have used implicit
function theorem and Taylor expansion to estimate bias andnce up to first and second
order. Numerical results demonstrate reasonable agraeshére theoretically predicted
values and empirical statistics. Qualitatively, all methavere able to capture the neg-
ative bias of the M-estimate.e., the estimated parameter is a shrinkage relative to the
true value. Furthermore, it could be shown that as an asyioplly unbiased estimator,

the variance of the M-estimate is in fact upper bounded, aydpatotically approaches



148

SRE LA ‘ ‘ ‘ e ‘ ‘
| —— Approx with \bar{z} (= CRB)
2.51] —— 1st-order Approx. with \bar{z} I —— Numerical Result \/
2nd-order Approx. with \bar{z “\ | o 350 Y 1
@  2f|—— Numerical Result ‘\ [ & E )
& ‘ =
£ I 3
¢ | 2 3
= A
= £ )
[} : P "/
= S 25¢ V
“9 o
3 8
o 3
>l
-1 . . . . 15 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(¢} g
1 1
(al) bias approximation=5 (a2) variance approximation=5
—4
X107 ‘ ‘ ‘ 45%10 ‘ ‘
—— Approx with \bar{z} (= CRB)
1.5r 4k —— Numerical Result

(NN
NN [

Bias for the ML-estimate

Variance for the ML-estimate

—— 1st-order Approx. with \bar{z}

-1.5¢ 2nd-order Approx. with \bar{z;
—— Numerical Result
-2 : : : : 15 : - : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
01 U1
(b1) bias approximation = 50 (b2) variance approximatian= 50

Figure 4.4: Bias and variance approximation of ML-estinattained from expansion abo(d, z).

the Crangér-Rao Boundas the SNR increases. The ML-estimator acaptdithe statisti-
cal model, being asymptotically UMVUE, has positive bias gigproaches unbiasedness
faster (proportional to data length) than the M-estimatiee &stimated covariance agrees
with the CRB to second order. As a work in progress, this ingasibn is far from conclu-
sive. More specifically, the ML-estimate demonstrates athge in that it approaches the
asymptotic unbiasedness with a faster rate; yet it has higiveance than the M-estimate
in general. This leads to the familiar issue in estimatoec#n: the (pre-asymptote) bias
and variance tradeoff needs to be studied carefully. Nwahy| we observe that the M-
estimate demonstrates variance close to the €rdRao Bound, so it is possible that by
including higher order expansion in estimating the vareggrwe could obtain an approx-

imate rate at which the variance of the M-estimate appraatie Crarér-Rao Bound.
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Such information would allow us to reach either a consistentlusion of the superiority
between the M-estimate and the ML-estimate, or a partitidheparameter space so that

each estimate would be the method of choice over certaiomsgi



CHAPTER 5

Summary and Future Work

5.1 Summary

We have conducted research addressing two key aspects gé iguaded respiratory
motion analysis: time series analysis to track semi-pé&istynal structure from noisy
observations and image registration to model motion betvelgale-exhale image pairs.
To track and predict the slowly varying mean position of aathéng signal, we have pro-
posed a dynamic ellipse tracking method in an augmented sgatce. Formulated as a
minimization problem in terms of algebraic distance, we/pted a recursive algorithm for
solving the static data case, utilizing stochastic appnation techniques. Assuming slow
variations, we presented a natural extension of the remutsi an adaptive framework, to
account for newly available samples. To accommodate naisykes and missing obser-
vations, we modified the objective using robust fitting fumies instead of the quadratic
cost. Having shown that the feasible parameter region isuthen of two convex sets
and noting about the symmetric structure of the solutionapplied the projection gra-
dient algorithm to solve the minimization problem. Analogdo the quadratic case, we
took advantage of the recursive structure of the algoritimeh @xtended it to incorporate
adaptivity. To our knowledge, our method was the first toireatomplete unsupervised

tracking of respiratory motion in the presence of uncettasin basic pattern, magnitude

150
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and phase. It has the potential to improve significantly #ségomance of both real-time
adaptive treatment delivery and real-time gating systems.

For image registration, we focused on designing regulagmdo incorporate physical
priors. In particular, we have proposed to use tissue-tygidity regularization so that
bone and soft tissue structures are regularized differecitording to their own elasticity.
To account for the commonly observed sliding effects alomgionm boundaries, we have
first proposed a regularizer based on integrating some geharctional of the Jacobian
magnitude. We derived axiomatically the conditions on duittionals so that disconti-
nuities are preserved. Then we further noticed the negassilistinguish among different
types of singularities, namely, folding and vacuum showdtevented yet shear should
be preserved. With this in mind, we utilized the Helmholtzamposition and regularized
the divergence and curl component differently for the defation field. The experimen-
tal results showed that the proposed decomposed reguilanzffectively combines the
advantage of isotropic smoothing as in conventional Hooh &chunk, and discontinuity
preserving regularizers such as total variation. Suchieffténcorporation of prior knowl-
edge shapes the registration process towards more phgsloéibns, which leads to better
planning and treatment accordingly.

Furthermore, we have initiated a preliminary principleddst on the fundamental per-
formance limit of image registration problems. We propoaatitistical generative model
to account for the noise effect in both the source and tamgages. The Craar-Rao
Boundfor the corresponding maximum-likelihood estimat@s computed. Meanwhile,
we interpreted the conventional optimization based imaggstration results as an M-
estimate. Using the implicit function theorem and Taylop&xsion to estimate the local
curvature of the objective function, we approximated itsar@nce accordingly. Not-

ing that both the ML and M-estimates are asymptotically aséd, we studied the pre-



152

asymptotic performance by estimating the mean and cowaiah each estimator with
finite SNR. With a simple example, we have demonstrated tleabtas of the proposed
ML estimator decreases faster than the M-estimate as theiséd€ases. This result, un-
fortunately, is still insufficient to determine the relaiguperiority of the two estimators
under consideration; because both ML and M- estimatorsiase8 in the pre-asymptote
region, and their variance is not lower-bounded by the @@aReao Bound. Further inves-
tigation is necessary to study the deviation of the covaedrom the Crarar-Rao Bound,

which can be possibly conducted with higher-order Taylgramsion, similar to the bias

analysis.

5.2 Future Work

e We have proposed a general framework for adaptive elligszking. The adaptivity
pace controls the balance between response efficiency dapdt@moothness, and
should be determined properly. To this end, we have used bhseganent of training
data and retrospectively estimated the period with sulespegjection method. After
that, a static adaptivity parameter value (the window lerigr sliding adaptivity
and the forgetting factor for exponential discounting) s$ed throughout the course.
This is based on the assumption that frequency drifts ave ahal that the robustness
from ellipse fitting could tolerate the frequency variatiarhis presumption may be
violated for long fractions, since the training segmentdmees less correlated with
the state as time progresses. An adaptive frequency dyiftindel is desirable to

cope with such situation.

¢ Inrobust ellipse fitting, we need to determine the scalerpatar for robust objective,
e.g, din the Huber function. Without assuming prior knowledgewattibe proportion

of outliers relative to the normal samples or their disttibn, we have used Otsu’s
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method to find a threshold value for the residual error anected the scale parameter
accordingly. The scale selection problem falls into theupesvised classification
category, where normal and abnormal samples are to be atitathadistinguished.

This is worth further investigation.

We have proved asymptotic convergence with stochasticoappation techniques.
Recognizing the similarity between the proposed iteratigih the recursive least
squares (RLS) algorithm, we believe it is feasible to estiinthe error statistics in

our model, analogous to the performance analysis work el filters.

In the augmented state space, the distribution of the sancple be viewed as noisy
observations of some latent random process. The distibaepends on the respira-
tory phase and other parameters. Itis possible to conatbeist statistical quantities
such as rank order statistics to implicitly estimate thente€’ of the observed cluster
in the augmented state space. A potential advantage withastatistical interpre-
tation is that quantities such as confidence intervals arat distribution may be

derived to facilitate the detection of changes in systemadyios.

We have developed a tissue-type-dependent regularizatethod, which accounts
for inhomogeneity of elasticity among different tissuedgp Physically, anatomies
not only exhibit inhomogeneous, but also anisotropic defdfon properties, such
as directional elongation of muscles. It would be desirablproperly incorporate
such anisotropic physical prior as well. Furthermore, weeh@ssumed access to an
X-ray CT image, and obtained local tissue elastic propemgequently. Alternative

methods to classify tissue types will be necessary for athage modalities.

We have conducted preliminary discontinuity preservirgjseation for 2D images.
We will further investigate the quantitative aspect of threlgpem and the 3D im-

plementation. In particular, we will study possible sabms, such as introducing
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viscosity or surface tension regularization, to allevitte rolling artifacts observed

in 3D.

e We would like to further study unsupervised or semi-supatischemes to choose

the regularization parameters in penalized image registrgroblems.

¢ In this thesis, we have focused on the pair-wise image ragish problems. When
multiple frames are available over time, it is natural toeext the current work into
a joint estimation setting where the temporal sequence fofghation fields is to be
estimated. In this case, temporal correlation should berparated to encourage
structured solution, such as smooth evolution. Moreowarjrhage sequences ob-
tained mainly under respiration-induced motion, this esponds to an integration of
our work in time series analysis that accounts for semieukcity and the regularized

nonrigid image registration methodology.

e To analyze the fundamental performance limits of imagestegfion, it is necessary
to study the pre-asymptote variance for both the ML and Mraeges. The complex-
ity of using high-order Taylor expansion and the limitasoof small error analysis
gives rise to the question as to whether there are more pfeampproximation tools

for such tasks. This is a challenging topic, but one well twqursuit.

e It is desirable to utilize the performance analysis of imaggistration problems
to predict the statistical properties of the solutions fogigen objective function.
Knowledge about the fundamental limitations in image regign may help choose
system parameters properly. For example, it is only necgs$sabtain images with
resolution corresponding to acceptable uncertainty imsteggion to avoid excessive
imaging dose. The threshold for detecting abnormality fhbe set above the pre-

dicted local variance from the performance analysis withhrad noise distribution.

e Given the theoretical development in this study, it is ouicsre hope that practical
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benefit could be harvested. This will require thorough stofdglinical implications,
including effect on various dose metrics, and predictivecome statistics such as

tumor control probability (TCP) and normal tissue complicatprobability (NTCP).
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Introduction to Appendices

In speech proceesing, audio signal processing, and musthesis, aquasiharmonic
signal refers to a waveform that is virtually periodic miscopically, but not necessarily
periodic macroscopically. In many biological phenomemagonstrast, there widely ex-
ist signals that are virtually periodic, yet demonstratéhbaiscroscopic and macroscopic
variations. With a little abuse of notation, we use the tesarti-periodic” to describe
such class of signals. A typical example of a “semi-periddignal is respiraotry motion.
Respiration is an involuntary action, the cycle of which egulated through chemore-
ceptors byt he level of C§& O,, and PH in the arterial blood. Anatomically, the lungs
reside in the thoracic cavity, encased by theliquid-fillattapleural space. Inhalation
requires active participation of respiration muscleshwvilie diaphragm being the most
important. As the diaphragm contracts, and descends cé$ahe abdomen inferiorly and
anteriorly, increasing the superior-inferior (SI) dimemsof the chest cavity. The inter-
costal muscles pull the ribs superiorly and anteriorlyréasing both the lateral (LR) and
anterior-posterior (AP) diameters of the thorax. Exhalais passive for quiet breathing.
Due to the complex respiratory pressuure volume relatipnshthe lung and chest wall,
deflating lung volume is larger than the inflating volume &t $ame transpulmonary pres-
sue, and breath-in time is typically longer than breathtoné. This commony observed
phenomenon is calleldysteresis

With the advent in targert conformal radiothrepy, such aersity Modulated Ra-
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diotherapy (IMRT), it is important to monitor tumor moventemith high precision in
real-time. Internal tumor position can be extracted fronagmes obtained from electronic
portal imaging detector (EPID) or orthogonally placed y-flat panels, as in Integrated
Radiotherapy Imaging System (IRIS) [54] or CyberKnife Rab&adiosurgery System
(Accuracy M Inc, Sunnyvale, CA), with or without implanted markers arduhe tumor
regioin. Moreover, it is desirable to minimize diagnostisaging dose for safty con-
cerns, and external surrogates such as thermistors, tikeuptes, strain gauges, pneumo-
tachographs [60], and infrared skin markers are utilizedhter internal tumor position.
In either cases, it is important to characterize the comgl@f internal motion, track both
instantanous and long term variation, and predict futumeciuposition to account for sys-
tem latency. When external surrogate is applied, it is @&itto accurately infer internal
tumor postion from external observations. Chapter A prop@sscalar complexity index
to characterize the irregularity level of a breathing tcagey [102]. Chapter B describes
a nonparametric predictio approach based on local regmressChapter C addresses the

hysteresis issue in external-internal inference via statgmentation.
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APPENDIX A

A Breathing Pattern Irregularity Index with Projection-based Method

Characterization of organ motion is important in radiatibarapy, including dose plan-
ning and treatment delivery [12, 18, 36, 37,53]. Tumor mutiespecially in lung/liver re-
gions, is highly correlated with breathing patterns. Thame an index that characterizes
breathing regularity can facilitate treatment planningttonors in those regions, particu-
larly for individualized treatment planning.

Periodicity has been a major assumption in breathing trajg@nalysis, as good re-
producibility indicates the potential for a simple struetd treatment plan tailored towards
the fundamental breathing pattern. Harmonic analysis bas kmployed widely to char-
acterize respiratory patterns [43, 87, 94]. Peaks of thei€ospectrum are often used to
determine the dominating periodic behavior of the temptyeéctory. Such approaches
lack a “goodness” measureg,, it is not clear how a periodic signal having the dominant
frequency differs from the true trajectory. Consequenttyfumdamental periodic pattern
is available to judge the soundness of such a result.

We propose a rigorous general framework for periodicitylgsia based on subspace

projections. For each period within a physiologically r@aasble range, a measured breath-

1This chapter is based on materials from [102]
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ing signal is projected onto the subspace of all signalstugiviat period to obtain the “best
fit” periodic signal in the Least Sqaured Error (LSE) sensesiBual errors for each such
period are then compared to yield the overall best periogdpr@imation. The estimated
trajectory obtained by this “projection” method is thenefthe closest periodic signal with
respect to observed data. We derived the method in contmsignal space to account for
the sampling effect explicitly. We also allow temporal sd@sgo be non-uniformly spaced

to offer more freedom for the data acquisition procedure.

A.1 An Irregularity Index based on Projection Distance

Given a set of discrete samples of a breathing trajectorywamt to find the peri-
odic signal that best matches the observation data. Thiguaent to reconstructing a
periodic signal of unknown period from its noisy discretengdes. For this problem to
be feasible, we assume that there is some maximal frequemapanent in the signal.
This assumption is physiologically reasonable. We thusisoan the subspace of band-
limited periodic signals. We formulate the problem in a rilajter optimization setup
where we search over all possible periods for the “best-fihal. For each period within
a reasonable range, the observed breathing trajectorgjeqted onto the subspace of all
band-limited signals having that period to obtain the cdbseatching periodic function.
Projections from each such subspace are then comparedddlygeoverall best periodic
approximation. This method accounts for the discrete teaimampling explicitly, and
allows for the possibility of nonuniform sampling.

We model the observation dagaas a temporal trajectory sampled{ia,l},»i'\‘:1 with addi-

tive noise:
(Al) ylzf(tl)+nl7 |:13277N7

where f is the unknown ground-truth continuous periodic functionose spectrum has
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finite support betweef-y,y] andn; denotes the additive noise.
If f(t) is a band-limited function with period, then we follow [29] to rewrite it as
linear combination of Fourier harmonics:

K o
(A.2) i)=Y aed®™, K=|
k=—K

.
2

wherecy’s are the coefficients for Fourier harmonics, gnfidenotes the floor function.
Evaluation of the above representation[ta}{\‘: 1 can be compactly rewritten in vector

form as:
(AB) .f = GTC7

wheref = [f(t1), f(t2),..., f(tn)] denotes the discrete samples of the underlying function
f; ¢ =[c_k,C_k+1,-...,Ck] IS the concatenation of Fourier coefficients; and the magtix

is defined as
(A.4) Gr(i,k) = el T,

Therefore, given the observed sample trajectpry [y1,Y2,...,yn]", the optimal pe-

riod T* is the solution to the following optimization problem:

(A.5) T*=argmin min ||y — Gre|j%,
T  ceC2K+1

whereC%*+1 is the set of vectors of lengtf2k + 1), and|ly||> = TN, |yi|*>. The closest
periodic signal to the sampled trajectory in LSE sense is tjieen by:
K i 21
(A.6) )= 5 &t
k=—K
whereK = LT—;J andcy are obtained as the components of solution to (A.7) belownwhe

T=T"
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For a given candidate period, the bandwidth parameté& = L%J is a constant, and

the inner optimization problem becomes an ordinary legages minimization:

(A7) c¢; = argmin|ly — Grel|?.

ce@ZKJrl
From classical optimization theory [68], the optimgl of (A.7) satisfies the normal

equation:
(A.8) (G1Gr)y = Gicr,

whereG7 is the conjugate transpose @fr andG7 G is known as the Gram matrix.
Moreover, when the sample size is large enough, specifidally2K + 1, which we
assume hereaftayt has full column rank, and th@k+ 1) x (2k+1)Gram matrixG; Gt

is invertible [41]. The optimal solution for equation (A.8xn be written explicitly as:
(A.9) ¢t = (G7GT1)'Gry.

At this point, we have solved the inner optimization problientA.5) in closed form.
The feasible range of periodsin the outer minimization can be designed by incorporating
physical knowledge. Forinstance, normal breathing is etqueto have a period between 1
to 10 seconds. Moreover, even though the peak of the Foymsatisim is not informative
enough by itself, it turns out to be a reasonably good ind#dion for our method. Notice
that if exhaustive search ovéris to be applied in A.5, we need to evaluate (A.9) and (A.6)
for eachT of interest. Thus the computation cost depends both on helyfime sample
the period parameteF and the range of search. Using a good initial guessTfocan
reduce the search range and thus reduce computation stdigtanAlso, reasonable ini-
tialization helps to prevent the algorithm from fallingarmionphysical local minima. Since
it is now a simple 1-dimensional optimization problem to fiht) we use an exhaustive

line search over a relatively small interval thanks to a géodrier-based initialization.
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Alternative optimization approaches like multi-resodutior incremental refinement could
be used to speed up the process. Due to the use of supemadiiarmonics to describe
periodic functions, projection to the subspace correspantb periodic functions with
period ZI' would naturally yield a better data fit than the projectionootie subspace for
periodT. In other words, a function of period is certainly a function of period 2, but
not vice versa. However, the additional descriptive poway mot always be desirable,
since this could cause over-fitting introduced by noisdidlization by detecting the peak
of the Fourier Spectrum picks out the dominant harmonic camept and the algorithm
only needs to search over a relatively small neighborhoodrat that initialization point,
with the confidence that the local minimal obtained would bgsologically optimal.
Finally, our proposed irregularity index is the Root Mearu&ed Error (RMSE) be-

tween the overall optimal periodic signal and the measuggddtory:

_ 1 s * (¢, 12
(A.10) RMSE= \/N i;Hf (t) — il
A.2 Material and Verification Design

We used the Real-Time Position Management (RPM, Varian é&@ystems, Palo
Alto, CA) system to obtain the trajectory of an external figuiglaced on each patient’'s
chest wall. This fiducial tracking system records data iretidisplacement pairs that are
generally assumed to be highly correlated with superiteriar diaphragm motion [126].
This system is most useful for treating patients with tumiarshe chest or lung area
without compromising their breathing.

Twelve such clinical breathing signals were used in thislgturhe characteristic pa-
rameters of this population of data are listed in Table A.1 .

Under Institutional Review Board (IRB) approved protosed have used the RPM sys-

tem (Varian, Palo Alto, CA) to obtain breathing trace datarded at 10Hz with duration
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[IDVS.Parameter] 1 [ 2 [ 3 [ 4 | 5 [ 6 [ 7 [ 8 [ 9 [ 10 [ 11 [ 12 |
Data Characterization
STD (cm) [ 0.158] 0.210[ 0.266] 0.242] 0.206] 0.259] 0.242] 0.267] 0.283[ 0.313] 0.335] 0.202
Breathing Trajectory Fitting with Modified Cosine Model
period (sec) 4.7 4.6 4.9 5.3 5.3 4.3 4.9 6.4 9.5 5.6 3.0 5.3

RMSE (cm) 0.138| 0.171| 0.216| 0.139| 0.193| 0.224| 0.145| 0.208| 0.153| 0.096 | 0.337| 0.169
dose error (%) || 1.667| 2.793| 3.527| 2.092| 3.217| 3.580| 2.402 | 3.293| 2.496 | 1.454| 6.144| 2.161
PTV margin (cm) || 5.940| 5.900| 5.523| 5.723| 5.727| 5.859| 5.646 | 5.338| 5.724 | 5.522| 5.951| 5.835
95% dose coverage 0.909| 0.887 | 0.850| 0.904 | 0.878| 0.851| 0.906 | 0.858| 0.890| 0.938| 0.811| 0.888
Breathing Trajectory Fitting with Projection Method

period (sec) 4.7 4.4 4.5 54 4.1 4.6 4.7 7.2 9.7 5.6 3.1 5.2

RMSE (cm) 0.135| 0.155| 0.102| 0.132| 0.162| 0.127| 0.115| 0.075| 0.148| 0.090| 0.328| 0.166
dose error (%) 1.595| 2.440| 1.638| 1.983| 2.352| 1.721| 1.832| 1.210| 2.471| 1.431| 6.137| 2.066
95% dose coverage 0.915| 0.903| 0.934| 0.903| 0.876| 0.910| 0.924| 0.949| 0.905| 0.942| 0.836| 0.895
Result for 20sec Training, 10sec Testing
period (secf 42 | 42 | 45 | 52 [ 43| 48 | 48 [ 73 [ 90 [ 57 | 30 | 50
RMSEain (cm)* || 0.153] 0.151| 0.089] 0.126| 0.082| 0.075| 0.121] 0.042| 0.116| 0.078| 0.228| 0.049
RMSEtest(cm)5 0.177] 0.256| 0.150| 0.231| 0.318| 0.283| 0.141| 0.147| 0.290| 0.150| 0.580| 0.3062

Table A.1: Dataset information and Experiment Results

30secfrom 12 different patients . The recorded RPM data haveivelaiits. To better
illustrate the major idea in this paper, we normalize thetedlbreathing trace data to have
uniform zero mean and 1cm peak-to-peak variation. Shiffiregmean does not introduce
any bias into any treatment simulation since it is a globamiy; while normalizing the
amplitudes makes the data more representative of typioabtunotion induced by respi-
ratory motion. The standard deviations of these normaldzgd are listed in Table A.1. To
justify the soundness of the proposed irregularity indeg,have virtually simulated a 1-
dimensional phantom object of size 5cm that move accordirilyd observed trajectories,
to mimic the behavior of a 5cm size tumor with peak-to-peakiomoabout 1cm, which
is realistic in clinical situations. A single ideal 1-dingonal treatment beam, or in fact,
delivery pattern of the same size (5cm) is designed for dedigedty simulations. It has
no penumbra, and completely covers the simulated targhtumiform radiation intensity.
This idealized energy deposition model will be used heeedti illustrate the potential
impact of motion patterns and how they influence energy dépns

To verify that the proposed “irregularity index” and the flamental pattern obtained
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from the the projection model are clinically significant, Wave designed three sets of
experiments.

First, we show that the Root Mean Squared Error (RMSE), wigch mathematical
criterion, is well correlated with clinically critical mets. In this paper, we use dose
error, Planning Target Volume (PTV) margin and 95% dose @myeto characterize per-
formances. In particular, dose error is computed in per esrthe normalized difference
between received dose and the ideal dose that correspoagetéect overlap between the
target and treatment beam throughout the whole treatmectedure; PTV margin is the
expansion needed to ensure that the entire clinical takgame receives the prescribed
dose; and 95% dose coverage is computed as the portion @frgjed that receives no less
than 95% of the designated dose with no margin. To accourth®interplay between
target motion and treatment beam adjustment, the phant¢ectdb moved conforming
to the observed breathing trace and the treatment beamaslgleld accroding to a des-
ignated pattern. We evaluate both the periodic fundamergttiern extracted with the
projection model in A.6 and the one obtained with the optiomhmonly used modified
cosine model [70, 71] to control the movement of the treatrpiam. The modified cosine

model assumes that the breathing trajectory conforms ttotloeving formula:
(A.11) 2(t) = 20— acoS" (1t /1 — @),

wherezy,a,n,t,@ are assumed to correspond to exhalation position, motioplitude,
asymmetry degree, period and phase offset respectivetlyae parameters to be opti-
mized;z(t) represents the breathing trace index by time.

Dose error, PTV margin and 95% dose coverage are comparatse§&ISE in both
setup to demonstrate the correlation.

Second, we compare the projection-based model with thefraddiosine model (A.11)

to test the feasibility of the obtained fundamental pattdRMSE as well as dose error,
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PTV margin and 95% dose coverage are used for this comparison

Third, we illustrate the potential clinical use of the prgpd method to predict motion
induced by respiration. We partitioned the breathing tiat@two parts: a training part of
duration 2@ecand a testing part of duration 46c For each breathing trace, the projection
model is learned with the training trajectory only, and iuged to “predict” the breathing

behavior for the testing portion. This is essentially a tésemporal variance.
A.3 Results and Discussions

Fig. A.1 shows one patient dataset to illustrate the rolerieoinitialization plays in
avoiding suboptimal local minima. An exhaustive evaluatior RMSE was carried out
over a large range of candidate periods in Fig. A.1 (a). Fid.(®) illustrate the non-
physiological optimal obtained without proper prior infioation, due to reason we dis-
cussed previously: harmonic analysis has an inherentdnesrdl large period. Fig. A.1(c)
shows that initializing with peak location of Fourier Spat{in this example correspond-
ing to T = 4.3s) helps to correctly capture the physiologically sound i period and
enables us to restrict the period search to an even smalididagte set for further compu-

tation efficiency.

—— Observed breathing trajectory —— Observed breathing trajectory

—— Projection with period T = 8.2sec —— Projection with period T = 4.1sec|

Amplitude (cm)
.

Amplitude (cm)
)

RMSE (cm)

Local Miminum @ 4.1s

4 5 6 7 8 9 10 o 5 10 15 20 25 30 o 5 10 15 20 25 30
Candidate Period (sec) Time (sec) Time (sec)

(a) RMSE Evaluation (b) Fit fof = 8.2sec (c) Fitfor T = 4.1sec

Figure A.1: Proper initialization helps to avoid suboptin@onphysical) local minimum: (a) Exhaustive
evaluation of RMSE for difference candidate periods; (linested pattern at = 8.2s, this is
nonphysical even though it corresponds to slightly betténdj in RMSE sense; (c) estimated
pattern aflf = 4.1s, the physiologically sound optimal period.
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To validate the correlation between the root mean squared @MSE) and the clini-
cally critical metrics, we plot the performance charactéciparameters (dose error, PTV
margin, 95% dose coverage) vs. RMSE in Fig. A.2 for both mtope model based motion
compensated treatment and modified cosine model basedmoatinpensated treatment.
Quantitative results are listed in Table A.1. In both treatirplan simulations, dose error
and PTV margin demonstrate an increasing trend as RMSE heclamger while the 95%
dose coverage decreases. This validates the soundness@RMSE as the index for

“performance indicator”.

< Motion C According to Projection Model

4 Motion C According to Projection Model < wotion © ‘According to Projection Model

< 6

9 Motion C ‘According to Cosine Model] 6 > o.

D

a

o

©
95% Dose Coverage

0.3 0.35 0.4 .05 0.1 0.15 0.3 035 0.4 0.05 0.1 0.15 0.3 0.35 0.4

0.2 0.25 0.2 0.25 0.2 0.25
RMSE RMSE RMSE

a(2) b(2) c(2)

Figure A.2: Clinical significant performance metrics v.oad®RMean Squared Error (RMSE). Different met-
rics are indicated with letters [(a#)] dose error (%); [R@YV margin (cm); [c(#)] 95% dose
coverage. Different motion models for conmoving the treatrbeam are indicated with num-
bers: [X(1)] projection based model (treatment beam ttajgaescribed as linear combinations
of harmonics); [X(2)] modified cosine model.

Moreover, we carry out a comparison between the projediimsed model with the
commonly used modified cosine model described in Equatiohl(A Fig. A.3 shows the
RMSE of the best fit modified cosine model versus the propaseelxi (RMSE derived

from projection model), and it demonstrates that not onlgdour index capture how well
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the signal can be approximated by a well-recognized phlysicael, but the fundamen-
tal pattern obtained via the projection model uniformlymerforms the modified cosine
model in the LSE sense. For further clinically meaningfudtification, we calculate the
performance characteristic parameters correspondingrtodified cosine model in Table
A.1, and we can observe that our projection model yields IdASE, dose error, PTV
margin and higher dose coverage than the modified cosinelroverll (Fig. A.3). Fur-
thermore, the problem of fitting the data to the model descrityy Equation (A.11) is higly
non-convex with respect to its parameters which incurs sgaes: it is extremly sensitive
to initialization due to the numerous local minima; and t@nputationally expensive as a
nontrivial high dimensional search problem. In contrdst, proposed projection approach
offers a closed form solution for the inner optimization lplem in (A.5) and is thus sim-
plified to a 1-D line search, it has an obvious advantage inptaation efficiency over the
modified cosine model.

To further justify the above claims, Fig. A.4 shows some ef fitted trajectories with
“optimal” cosine model parameters with their counterpénmasn the projection-based ap-
proach. The fundamental patterns obtained by the projectiethod do indeed offer a
better match than the cosine model. This is a result of tmmgit “nonparametric” nature
of the projection based approach. Described as a linear ioatirdn of harmonics, the
fundamental pattern has essentig® + 1) degrees of freedom whet€ is determined
by the imposed band limit of the physical signal. The moditiedine model, on the other
hand, has explicitly assumed no more than 5 degrees of freedbich has restricted its
descriptiveness. For the same reason, our method impossgnmoetry on the funda-
mental pattern; in particular, the trajectory of inhalatdoes not have to be the inverse of
exhalation, unlike the modified cosine model.

A “good” fit of the breathing trace with a periodic pattern istained (lowRMSE by
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Figure A.3: RMSE, Dose errgi%), PTV margin (cm), 95% dose coverage of modified cosine model v
projection model.

the proposed irregularity index) indicates that the briegthrace under examination is
highly regular, and vice versa. Similar argument holds lher telationship between “bad”
fit (high RMSE) and high irregularity. Instead of examinidgetcombination of a whole
bunch of quantities, such as standard deviation of amm@itatkan positions, periods of
breathing cycles, etc, this single number (the RMSE) saasédle irregularity index, since
it is designed specifically for this purpose. Therefore,estaig a low RMSE increases
the confidence and feasibility for potential dynamic treatinfor the mobile target. In

particular, Synchronized Moving Aperture Radiation Thsr§SMART) [84] and simi-

lar motion compensation based treatment schemes are jadlieapplicable. Moreover,

the fundamental pattern, which is obtained as a free siddyat during the process of
estimating period and computing the irregularity indexaigood indicator of what the

radiation beam pattern should be, serving the same purmoagesiage tumor trajectory
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Figure A.4: Trajectory fitting with projection model and mified cosine model. Left column: projection
model vs. true trajectory; right column: modified cosine mlogs. true trajectory.

(ATT) introduced in [84]. In other words, it can be regardedaa alternative derivation of
ATT without having to examine individual cycles too closetypotential merit of the pro-
posed method for extracting ATT is that it is much less sesgsib additive noise due to its
global nature - every sample on the observed breathing t@agibutes to the estimation
of the fundamental pattern.

To show the potential application of the proposed projecbhased scheme to predict
target motion, we derive the fundamental pattern with th& Gsecof breathing trace
(the training portion) and apply it to the remainder of théadathe next 18ecof breathing

trajectory is called “testing portion” since it is not seey thhe projection model. We
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illustrate some examples in Fig. A.5. The irregularity irele derived from the learning
portion, the corresponding optimal period and the evadumatif its fit to the the ground-

truth trajectory for the testing portion using RMSE are pded in Table A.1.

——Observed breathing trajectory
<= = Projection with T = 5 on trainin
- Learned Projection on Testing
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Amplitude
|
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.
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Figure A.5: Prediction of breathing trajectory with prdjen model.

The quality of the prediction depends on how repetitive the breathing trajectory is,
which again can be measured by the proposed regularity intfeen we examine closely
the RMSE computed from training portion and test portion,wikt see that the latter is
uniformly larger, which is expected (since optimizatioraplied only to training data).
Moreover, when we examine across cases, there is a posuiveation between RMSE
computed during training and RMSE computed from testingis Tidicates RMSE dur-
ing recent historical trajectory is a good predictor for REJ&nd thus irregularity level for
near future. Generally, being a global regularity measine@proposed index may not cap-
ture time varying properties of the breathing signal. Thgtatioin can be overcoome by
applying the proposed method to smaller sliding time irdésvnstead of the whole trace.
Despite this limitation, the projection model based predicappears to provide reason-
able predictions within approximately a 2 second responselaw given a sufficiently
regular breathing trace. Even though this number is sigmtig larger than the .@ sec-
ond discussed in [126], we armt claiming that the proposed algorithm is preferable to
adaptive filtering, since regularity in breathing trace @etty stringent assumption. Mod-

eling of free form breathing is a hard and unsolved problegeneral. It is often desirable
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to have a simple and descriptive model even if some conditi@ed to be checked in the
first place. Moreover, the proposed irregularity index ioawenient tool for such a sanity
check. By examining this single index, we can determine twdrethe breathing trace is
regular enough for the periodicity assumption to hold, leethe corresponding prediction

or synchronized motion compensation with ATT may be applied

A.4 Summary

We have derived a general framework to find the closest peerisidnal that best
matches the temporally sampled observation of breathajgdiory. Experimental results
have shown good consistency with physical knowledge anetally critical parameters as
dose percentage error, PTV margin and 95% dose volume. C@uopdretween the pop-
ular modified cosine breathing model and the projectioretbagpproach shows that being
consistent with the residual error from fitting the modifieasine model, our approach
offers additional computation efficiency and robustnesh@optimization process. Fur-
thermore, we get the fundamental breathing pattern whidbshe justify the soundness
of the results and can serve as a valuable reference in furdament planning. Potential
applications of the fundamental pattern to dynamic motiomgensation and prediction
are illustrated with preliminary experiments. It is aldaeliy that knowledge of the periodic
signal can aid in reconstruction of 4-dimensional compad@sographic models.

In this study, we have focused on finding the optimal periatfjnal in the LSE sense.
As future work, we would like to investigate alternative med that are potentially more
tolerant to transient pathological breathing patternsoAfor a particular treatment plan-
ning scheme, some choice of matching metrics could be matabel than others, and
the design of plan-dependent irregularity indexes wouldnberesting. Finally, we have

used in this study the RMSE resulting from the projectionhndtas an irregularity in-
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dex. Potential variants, for instance, a normalized versizay be more desirable in some

applications.
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APPENDIX B

Real-time Prediction of Respiratory Motion based on Nonparametric
Local Regression Methods

1 Current developments in radiotherapy such as Cyberknife ateth$ity Modulated Ra-
diotherapy (IMRT) offer the potential of precise radiatidase delivery for moving ob-
jects. Accurate target volume tracking is necessary fofaromal treatment plans to fully
utilize their capacity. Image-guided radiotherapy needsdnsider system latencies re-
sulting from image acquisition, communication delay, datacessing, and mechanical
processing. For treatment over multiple fractions, or Igngcedures, the diagnostic ra-
diation dose can be significant, so it is desirable to redbeeirnage acquisition rate.
To address this issue, hybrid tumour tracking approachasdbmbine episodic radio-
graphic imaging and continuous monitoring of external sgates have been investigated
[80, 81, 86, 105, 106]. There are two active areas of reseaieled to hybrid tracking:
(1) study of feasibility and effective use of external sgates (including the placement
mechanism) such as thermistors, thermocouples, straigegapneumotachographs and
infrared skin markers [1,47,57,59,73,118,125]; (2) pcédn algorithms [110, 126, 134].
In particular, even if perfect information about the cutrstate is assumed, the lag between

observing tumour location and treatment delivery still essitates having predictors that

1This chapter is based on materials from [99]
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can “look ahead” enough, yet behave reasonably well everefatively low input sam-
pling frequencies.

This study belongs to the second category where we are stéerén predicting target
motion located in the lung area or its vicinity. Such motismiainly caused by breathing,
and exhibits semi-periodicity as observed in normal briegtlignals. This is a very ac-
tive research area [37,53, 110, 126]. The semi-periodicciire of the breathing signals
make explicit modeling challenging, since parametric ni@adten fail to capture local
variations. On the other hand, overly flexible models thateael only on temporally lo-
cal information fail to use correlated historical infornmat. Among the most investigated
methods are linear predictors with various covariate leagteural networks, and Kalman
filters.

We propose a prediction method based on local weightedssigre Adopting a classic
approach in modeling dynamical systems, we first generataugmented state with the
most current observation and one or more preceding samfles. augmented state is
designed to capture the local dynamics about the time pdintterest, and it is used
as the covariate for the predictor system. For a pre-spdcif@k-ahead” length, the
target response pattern of the predictor is obtained froentthining data. Those state-
response pairs form a scatter-plot in a high-dimensionatspvhere we apply locally
weighted regression. Intuitively, the predictor infessnésponse map from the behavior of
its neighbors in this state space, since it is probable tieat &re. The regression weights
are designed to reflect the “distance” between the stateerEst and the training samples.

For the purpose of real-time tracking and prediction, wepaiglaly adjust the inference

weights to incorporate the decaying temporal correlatioto@g response patterns with
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longer time lags.

We discuss the proposed methods in detail in Section B.1. riéhod is applied
to clinical RPM data (RPM Varian Medical System, Palo Alto, }GhAat is described in
Section B.2. We report the test results and the comparisaltdmative methods in Section

B.3. Finally, we discuss future directions in Section B.4.

B.1 Methods

In this section, we propose a prediction method based otlyosaighted regression.
For simplicity, we describe the model in terms of scalar tmoss, i.e., 1-D observation.
The extension to vector observation is straightforwardcti®a B.1.2 first introduces a
primitive version that ignores the change of temporal datien with time lag, and Section

B.1.3 and Section B.1.3 extend it to include time indexing.

B.1.1 Model Setup and General Notations

Let the continuous scalar functidn: 0 — [J denote a motion index signal. At time
instantt, we are given a set of discrete sampjas= f(t(i)),i =1,2,...,k} of the breath-
ing trajectory prior tor, with t(k) < 1. For simplicity, we assume that the observed signal
is sampled uniformly with frequency Hz, i.e, t(i+1) —t(i) = 1/y. We assume that
the look ahead length is an integer multiple of the samplimgrval 3/ seconds, and for
later convenience, we represent it in the discrete urif,a look-ahead lengthindicates a
L /W seconds prediction. We ugao denote the state dimension used to capture system dy-
namics. To draw an analogy to ordinary differential equa@DE) based systenp,= 2
corresponds to first order difference system with locatind approximate velocity; and

p = 3 corresponds to a second order difference system with tiiéi@a of acceleration.

2|n fact, this corresponds to augmenting the state with the time index as arleweasion.
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B.1.2 Basic Local Weighted Regression

At current time instant, the available observations asg ..., s, whereK < 1 x (.
Then for anyi < K — L we construct lengtlp state vectore; = [s_(p_l)A, ...,S], and re-
sponse variablg; = s, .. The parameteA is an integer that indicates the “lag length”
used to generate the augmented state. It should be choseoptrly reflect system dy-
namics: small lags are more sensitive to dynamical changesfiss noise; big lags are
more robust to the presence of noise yet average out thensgsteamics at the same scale.
The set of hyper-pairgr;, yi) form a scatter plot in th@ + 1 dimensional space. Assum-
ing that the state thus constructed conveys all the infaonatbout system dynamics, then

the scatter-plot summarizes the noisy realizations of tediption mapg: OP — O:

(B.1) i = g(xi),

where the predictog is a smooth function. This is a reasonable model as we do ettpec
prediction to vary smoothly with the historical trajecto@ur goal is to predict the target
location at time(t + L /) seconds, which is equivalent to estimating "

Respiratory motion is not stationary, in fact, both the sgstdynamics and its local
statistics vary in a semi-periodic fashion. Unfortunatehost existing methods in esti-
mating the prediction mag fail to take this “phase-dependent” phenomena into acgount
with the exception of [104] and [134] where a discrete settafs-wise models are con-
structed and updated adaptively. The idea is to train (@r)rd predictor at a given state
with (only) those historical data samples that behave amhyjlor vaguely speaking, belong
to a similar respiratory stage. Yet the existing stage-wigelels require predetermining
the number of discrete stages and often involve segmenthtised training. To circum-
vent these difficulties, we hereafter provide a means tdlpeatimateg in the state-space

neighborhood ofck, based on local regression (LOESS) from nonparametric oastin
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the statistical literatures [19].

Letr be a pre-determined constamihat specifies the size of the neighborhood whose
members affect the estimate in the scattefpd- 1)-dimensional space. Léi be the
distance fromxk to therth nearest neighbor in terms of Euclidean distance inghe
dimensional subspacee., hk is therth smallest number among the distance betweaen

i=12,...,K—Ltoxk. Letk(-) be a symmetric kernel function that satisfies:

1. k(x) > 0 for |x| < 1 andk(x) = O for |x| > 1;

3. K(x) is a non-increasing function for> 0.

We select local inference weight according to:
(B.2) wi = K(hi* ||z — 2 ).

Figure B.1 illustrates the idea of weighting based on distan state space. For sim-
plicity, one delay tap is use = 2), so the state:; = [s_a,S]. The goal is to estimate the
responsgy for current state vectatk, from available covariate-response pdirs, y; ) for
i <K —L. Notice thatKk — L < i <K are not used in the regression, since their response
valuesy; are not yet available at time instaft Distances between current staje andzx;
are computed and the kernel function is used to determinestiression weightg; as in
(B.2). The assigned weights emphasize those training smtipht share similar dynamics
as the current state of interest as shown in the lower partgefr€ B.1.

We subsequently estimatelocally using a polynomial of degree, i.e., we use a
predictor of the forng(x) = Z(?zl BqZg(z), whereQ = (d+1)P andzy(x) = ﬂlex?j and

(d,...,dp) € {0,1,...,d}P that corresponds to the badeepresentation o,

SEquivalently, it could also be specified as a ratio with respect to the totabeuai data points.
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Figure B.1: State-space distance and local regressionhtvagsignment. Upper subfigure: lllustration of
prediction quantities with 1st order dynamig = [S_a,S], current data poinsc, prediction
locationyk = sk+L, available covariant-response pé&ifi, yi)i<k—L; lower subfigure: distance
map (blue dash-dot line)) in the state spdce- ||x; — x« || and inferred regression weighis
(green solid line).

We estimate the coefficients of the local polynomial by mizing the weighted local

squared error:

K—-L

Q
. o )2
argﬂmln i; Wi (i qzl Baza(xi))

(B.3) = (Z'W21zTwy,

whereZ is theK — L by Q matrix with elementsq = zg(i). The weighting matrixV

is a diagonal matrix witW(i,i) = w;. Since the local weightv has a limited bandwidth
hg as designed in (B.2), there are onlynonzero diagonal elements in the weighting
matrix W. Correspondingly, the outer summati@{ ;- can be equivalently written as
supported only on a local neighborhood of radmige., 3 i:/z—z«||<h- Therefore, the data

vectors involved have length< K — L rather tharK — L. It is desirable to choose a small
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neighborhood size to decrease computation cost, yet not overly small to seerifie
regularity of (B.3),i.e., the invertibility of ZTW Z
For subsequent prediction from a given observatign we use the estimated polyno-

mial coefficients:

(B.4) g« = Y BoZa(zk)-

The algorithmic flow chart is as follows:

Algorithm 2 Predictyk from (i, yi)i<k—L, xk With local regression.
Selectr (size of regression neighborhood), obthinfrom order statistics ofjxi — xk||.
Select kernek and compute regression weightsaccording to (B.2).
Compute prediction model coefficientsaccording to (B.3). For lag-one state augmentation with sec
ond order polynomial prediction modgd,= 2, d = 2, andQ = 9, so computing3 requires the inversion
of a 9x 9 matrixZ"W Z and then multiplying it by a & 1 vector.
predict the responsg using (B.4).

B.1.3 \Variations that Potentially Improve Prediction Performance

We now describe two design variations that have the polewtisnprove prediction
performance: using an iterative weighting scheme to irsgabustness to outliers in
regression (Section B.1.3), and dynamically updatingrdieing atlas to account for tem-

poral variations and/or trends (Section B.1.3 and Sectidn3}.

Robust Local Weighted Regression with Iterative Weight Asgnment

It is possible that the training set based on state spacandistincludes abnormal
covariate-response pairs due to noisy observation, ompaljamd non-repetitive) changes
such as patient coughing, and thus they may not be “repsesitof the predictor pat-
tern for the given state. To help the local regression methd robust to such outliers in
the (xj, y;) pairs, we can diminish the weight of a sample covariatearse pair when-
ever it is inconsistent with the smooth regression from ggghbors. To quantify such

inconsistency, we can compare each response yalwéh its predicted valugy; ™= g(x;).
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Intuitively, the distance between the observed respgnaad its estimatg; indicates how
different the particular covariate-response pair beh#lvas its neighbors. Cleveland [19]
has suggested a robust weighting scheme based on a bi-$gnetien B defined as fol-
lows:
(1—x2)?2, for|x| <1
B(x) =
0, for [x| > 1.

Letg = y; — yi be the residual of the observed response from the curresd fitilue. Let

sbe the median of thgg| fori =1,2,...,K — L. Define the robustness weights by
(B.5) 5 = B(e1/6s).

The original weightvi(xj) that determines the “contribution” of th#h sample covariate-
response pair in estimating thth responsey;"is then modified to b&i(x;) := dwi(xj),
reducing the effect of outliers in fitting the other data geinWe apply this re-weighting
procedure several times, and use the robust adjusteek ) in place ofw; in (B.3) for
estimating the local polynomial coefficiefit This is practical since thg values involved
in adjusting the local weight depend only on tHesample fitting quality, and are indepen-
dent of the predictor. Pluggin,é in (B.4) results in a predicted response valye Since
the estimation of local polynomial coefficients discoutis ¢ffect of outlier samples, the
result predictor is expected to be robust to outlier behawvidhe “training set” as well.

Note that robust local regression could be combined witemotiethods if needed.

Modified Weight Assignment with Exponentially Discounted Tenporal Correlation

Fading memory is present in many natural processes. Inthnggtrajectories, tempo-
rally adjacent sample points tend to be more similar tharsimple points further away
from one another. To incorporate this property in predittive adjust the weights by

applying an exponential discount as a function of the temlpdistance. Specifically, we



182

modify the weights as follows:
(B.6) Wi(xj) = exp(—ali — j|)wi(xj).

The positive constarit determines the decaying rate of influence of one sample on
another one as their temporal distance increases. As aa$pasie,0 = 0 corresponds
to no temporal discounting for the sample contributiond, dynamically adds the new

samples into the training atlas as they become available.

Temporally Windowed Training Samples

Alternatively, we can modify the weights using a temporabing window as follows:

wi(xi) |i—j|l<Tl
- o IR
0 otherwise

wherel is the window size. Here only samples that are close enouggmencontribute to
the local regression with weights determined by (B.2). Témth of the window needs to

be chosen long enough to guarantee enough samples for #iedgeession.

B.1.4 Baseline Methods for Comparison

It is desirable to decrease radiation dose due to imagingaye-guided radiotherapy
(IGRT). This means we would prefer to predict with low-fremey observation samples
(smally). On the other hand, it takes time to acquire each observegblea process it
and move the hardware (linac, MLC or cyberknife) accordindlhus a system capable
of large lookahead lengths is preferable. These two reméres are challenges in predic-
tion, and trade-offs between them need to be considerede Mjmecifically, with looka-
head length determined by the limitation of system respowsewant to determine the
smallest measurement rate that still guarantees certadigtion accuracy. We will study
the performance of the proposed method when lookaheadheiagid sampling rates are

varied, and compare that with some baseline approacheslsas follows.



183

Following [110], we use some commonly used predictors faeliae comparison. We
briefly describe their setups and optimization for free paters in this section.
e Most Recent Sample

This method simply uses the last sample value:
YK = K.

There are no parameters to be estimated.

e Linear Predictoft

The response is predicted as a linear combination of thaqarely known positions.

This corresponds to a simple model:
P
Yk = B xx + Po.

Given a training set, and for a fixed history length the optiowefficients3, o in

terms of mean squared error can be obtained by solving arlgyséem.

e Artificial Neural Networks (ANN)
We investigate a multilayer perception (MLP) with two fefedward layers as the
ANN predictor [63]. The first layer takes in a fixed history afrsples and a constant
value 1, linearly transforms the inputs and then uses a s@jfoaction to generate

the hidden values. The equation for the first layer is

B 1
1+ exp( @ +70)

hj(z)

The second layer is chosen to be a simple linear system, arautput is given by

4The “linear extrapolation” method described in [110] is a special cainesr prediction.
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Parameters andn are estimated from the training set. We use Netlab toolb8% [8

to implement ANN in Matlab.

We have also implemented a Kalman Filter for comparisomguBixpectation-maximization

(EM) method for parameter selection [78], and applied thadaes for prediction. Our
results agree with [110] that the Kalman Filter providesiidr performance compared
to ANN. For conciseness, we skip reporting them in this paperlated research worth
noting is the adaptive linear filter model introduced in [J,2@8hich can be interpreted as
Kalman Filter not in the state, but in linear regression fiokeint vector. Unsurprisingly, it

shares the limitation of Kalman Filter due to the nonstatitiy of respiratory signal.

B.2 Materials

We used the Real-Time Position Management (RPM, Varian é&@ystems, Palo
Alto, CA) system to obtain the trajectory of an external fidliglaced on the patient’s
chest wall. The recorded displacement-time relationshiyglieved to be highly correlated
with superior-inferior diaphragm motion [126], which isetimajor source of respiratory
motion for tumours in the chest or lung area (the displacamieneft-right and anterior-
posterior direction are normally on the order of one magtetlower). To better reflect
the behavior of physical superior-inferior motion, the tless RPM data were centered
and scaled so that their dynamic range matches that witkdly/Sl motion for chest and
lung tumours. Table B.1 summarizes the RPM data used in qerewen? . Figure B.2

illustrates two typical breathing trajectories.

5The data are adjusted to have globally zero mean; average periodstiaTated with subspace projection method
[102].
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[Subjectib]| 1T | 2 [ 3 | 4 | 5 [ 6] 7 | 8 | 9 [ 10 |
STD | 496 ] 499 ] 3.01] 1.99 [ 3.16 | 1.73] 6.27 | 5.65 | 2.74 | 5.29
P-P || 25.36] 23.65| 12.67| 11.24| 18.72] 9.70| 28.79| 21.89| 12.19| 21.55

Table B.1:RPM Dataset information.
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Figure B.2: Typical breathing trajectories: (a) rapid yegular breath; (b) slow yet irregular breath.
B.3 Results and Discussions

B.3.1 Scatter Plot in Augmented Space

We first consider a simplp = 2 dimensional state vectaf; = [s,S_a]. The response
variable is of the formy; = 5. Figure B.3 shows a 3-dimensional scatter plotaf y;)
with the base-line X-Y coordinate reflecting the covariateand the Z coordinate indi-
cating the corresponding response variable vajueThe covariate-response structure is
rather smooth, motivating our use of local regression tdigtea response from the sam-
ples in the neighborhood of the projection onto the X-Y plafmoughly speaking, the
pattern suggests the existence of a conceived functmptizt maps the covariate to the
response.

We started with a fine sampling rate ¢f= 30Hz and used onliag — onedelay with
A = 12 that corresponds ta#second to augment the state space. We investigate a looka-
head length of. = 30, which is equivalent to a 1 second prediction. We usecetpes
rameters as defaults in later experimerggy( in Section B.3.4). This lookahead length

is reported to be difficult by [126] and [110] with a wide spech of common predic-
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Figure B.3: Covariate-response relationship with lag-angmented state: (a) 3-dimensional Delaunay tes-
sellation plot; (b) 2-dimensional scatter plot with colndicating the response value.

tion techniques. In particular, in the comparative studylihO], the best performance
among linear predictors, Kalman filter and artificial neunatworks yields a RMSE of
about 5mm, with similar data statistics to our rescaled RR¥&8. Lag-one augmen-
tation corresponds to regression based on the most curentles and one preceding
observatiors_a, which is the most compact model possible. The temporahléy aug-

mentation should be chosen to reflect the system dynamigepycand robust enough in

the presence of observation noise, and does not have to tye uni

B.3.2 Local Weighted Regression without Temporal Discountig

To illustrate the performance of the simple local weightegiession method described
in Section B.1.2, we conduct two simple experiments withftll®wing configurations:
we used the “tricube” function [19] as the weighting kermend chose the effective

bandwidth so that the local regression is supported on létiesosamples. Specifically, we

6The research conducted in [110] uses 3-dimensional position, whimiessimably more complex than this study.
However, since motion in S| direction dominates the overall respiratatigti@n in general, we expect the prediction
error to be the major contributor to the overall tracking/prediction perforoe. Rescaling the RPM data to have similar
statistics as typical SI motion, we feel it fair and illuminating to compare quainttg the performance of our predictor
to that of the general 3D predictors.
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used
(1—|x®)3, for|x| <1
K(X) =
0, for |x| > 1.
The neighborhood sizewas chosen to be 200, which is equivalent to about 7 seconds

worth of samples. Accordinglyik is the 200th smallest number amojig; — x |-

B.3.3 Robust Local Regression with Iterative Weighting

We investigated the robust iterative weighting of Sectiof.B, but found that itera-
tive weighting did not significantly change the predictioroes in this experiment. This

suggests the absence of dramatic outliers in our experahéata.

B.3.4 The Effect of Dynamically Updating the Training Set

If the training set is determined before the treatment mecand is kept the same
thereafter, the corresponding local regression strustare also fixed. This is the “static”
inference scenario. It is also possible to “add” (or “sulng#” the oldest sample with)
new samples into the training set during the treatment EHcEs new responses become
available. We refer to the latter approach as “dynamicgbiglating of the training set”.

The computation for simple local regression is the samerdbgss of whether we up-
date the training atlas or not, as it uses only the trainimgpdes that fall into the neighbor-
hood of the target. On the other hand, when robust local ssgye with iterative weighting
is applied, choosing between static training and dynanaiaitng makes a difference. In
the static scenario, the robust weights can be computedeffipon the availability of
all the training samples, and are kept the same thereaftewekkr, if we use dynamic
updates, not only does the size of the “atlas” grow with tifmet there would also be
changes in the robust weights, since the newly availablaree-response samples can

potentially change the regression weights for those exjstamples whose supports over-
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lap with those of the new ones. This effect can propagateitirohe whole atlas.

At the cost of possible additional computation, dynamicajpdating the training atlas
admits new information as the time proceeds. This is pddibuvaluable when the under-
lying system dynamics demonstrate strong temporal vanasuch as frequency change
or home position drifting, which are both commonly observddw samples can either be
added to the training set as either simple addition, whichesponds to a collective history
case, or substituted for the oldest training sample, asimthdowed training history case.
In both cases, experiment results indicate that dynangicgktiating the training set yields
overall superior prediction performance in terms of rooamequared error (RMSE) and

mean absolute error (MAE), as we report in Section B.3.4 aeudién B.3.4.

Dynamically Expanding the Training set

Using a discount factan = 0 in (B.6) to adjust weight for the training samples up to
the most currently available one is equivalent to buildingpective atlas that includes
all previous covariate-response pairs. Of course, newitrgipairs are entered into the
the atlas as time proceeds. Table B.2 reports the prediptoiormance for one second
lookahead with 5Hz sampling using this dynamic traininginre as opposed to a static

20 second training at the beginning of the fraction.

Table B.2: Comparison of Prediction Performance amongcSTatining, Dynamic Expanding Training,
and Updating Training with Moving Window
SubjectiD]| 1 [ 2 [ 3[4 [ 5 [ 6] 7] 8] 9 |10] Average
Root Mean Squared Error (RMSE)

static 9.7/36|22]19|108|56|49|4.2|28|4.4 5.0
expand || 34(28|16|14| 25 |13|48|26|21]|3.7 2.6
update || 2.7/25[14|14| 26 |13/48[25|21|35 25
Mean Absolute Error (MAE)
static 75126|17|14| 39 |26|3.7|25|21|3.1 3.1
expand || 26(21]212(11| 1.7 |10|35|1.7|16]|26 1.9
update || 2.0/2.0(1.1|10| 1.7 |10|34|17|14|25 1.8

Figure B.4 illustrates improved prediction performancedygpamically expanding the
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training set for breathing traces that either exhibit meditiing or pattern changes. There
is minimal benefit when the breathing pattern is alreadyfaggular or irregular with
no “trend”, and new observations simply add to the alreadficsently dense training
atlas. Change detection may be used to locate some locdioasgbut this imposes extra

complexity”.
Dynamically Updating Training Set with Windowed History

Alternatively, a moving window can be used to update the $asgt. This corresponds
to substituting the oldest samples with the newly availablariate-response pairs, as dis-
cussed in Section B.3.4. We illustrate the effect of thisadgit updating method in Table
B.2 and Fig. B.5. A dynamic window of length 20 second is usedlliof our experiments.
We used the performance of dynamic expansion as a baselitteefvindowed study.

For the 20sec training window, the overall prediction parfance improves upon the
previously discussed dynamic expansion. The level of imgmeent, though, is much
smaller than the one we obtained by going from static trgirim dynamic expansion.
Some trade-offs are expected: for long fractions, it is mik&ly that the later samples
are decoupled from the samples acquired at the very begrwiithe procedure, thus
moving window method should be favorable; on the other hdgdamic expansion does
not require choosing a window length, and it is almost freehef risk of running into
insufficient samples for the local inference, thus has theathge of being simple and
stable. There is little difference in the prediction penfiance between the two methods
from Fig. B.5 except that in the mean drifting case, the wineld update may be slightly

better, which is also reflected quantitatively in Table B.2.

7Segmentation based tracking/prediction model [134] follows similar logitrgquires further research to improve
robustness and automation.
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Figure B.4: Effect of dynamically updating the trainingeat! actual signal time history (blue solid line), pre-
diction from static training (black dash-dot line) and gegidn from dynamic expanding atlas
(red dashed line). (a) breathing with mean drifting (PatiEx (b) In the presence of chang-
ing breathing pattern (Patient 6); (c) with complicatedhsiant interrupting regular breathing
(Patient 8); (d) quasi-regular breathing pattern (Patlét
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Figure B.5: Comparison of prediction performance usingatygit update with moving windowed and ex-
panding training atlas: actual signal time history (blubidstine), dynamic expanding training
(black dash-dot line), moving window adaptive trainingiciashed line).

B.3.5 The Effect of Measurement Rate and Lookahead Length

We compared the local regression (LOESS) method using expgtraining atlas with
the baseline approaches described in Section B.1.4. licplart we compared with most
recent sample (MRS), linear prediction (Linear), KalmalteFi(KF) and Artificial Neural
Networks (ANN) when lookahead length and sampling ratesvaried. Figure B.6 and
Fig. B.7 report the results in terms of the collective rootamasquared error (RMSE) and
mean average error (MAE) across all patients. In generalptldiction errors increase

as sampling frequenay decreases and/or lookahead lengtimcreases, as expected. In-
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terestingly, the proposed local regression method is sisea to the sampling rate, and
performs almost consistently across different lookaheadths. Unlike the most recent
sample, linear model or Kalman filter, which not only makeuasgtions about the under-
lying model structure (linearity), but also try to expligisolve for the model parameters,
LOESS makes none of the above assumptions or effort. Theanametric nature of the
regression avoids assuming a fixed model structure, leeadotving for it. The only re-
guirement is consistent behavior (@xistenceof an underlying functional form). A poly-
nomial of sufficient order approximates this underlyingdtion via fitting samples in the
neighborhood of the point of interest. This also explainssdme extent, why ANN out-
performs the other approaches [79], as it is a combinatidocail linear perceptrons, with
extra nonlinearity provided by the sigmoid activation ftian. When lookahead length
is short and sampling rate is high, linearity holds appratly, and all methods provide
reasonably good prediction. However, when we need to lodkdéun ahead, linear models
are not sufficient to capture the dynamics, even though thgorese pattern may still be
consistent, and that is where LOESS (and ANN) demonstreeslvantage. Figure B.6
reports the relationship between collective predictianmefacross all testing subjects) and
lookahead length for sampling raje= 5Hz and Fig. B.7 illustrates how collective predic-
tion error change with different sampling rates. LOESS apph performs competitively
with ANN for lookahead length @ seconds, in particular for low sampling frequency, and

it demonstrates an obvious advantage for lookahead lenggiadnd.

B.4 Conclusion and Future Work

In this paper, we have proposed a local regression basedttdlpredict respiratory
motion. We compared the proposed method and conventiopabaghes such as most re-

cent sample, linear model, Kalman filtering, and artificialral networks. The proposed
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method had lower prediction error than the others for tasksiiring long lookahead pre-
diction. We have also discussed extensions and variatibtiedoasic method to provide
robustness to outliers that may be caused by low SNR or mas&ihg. We studied the
prediction performance with different error metrics (RM&kd MAE) for various com-
binations of lookahead length and sampling frequency. Thpgsed method showed the
most advantage for long lookahead lengths and low sampdites r

We have discussed the challenge of choosing a good discactot for weight adjust-
ment in local regression in Section B.1.3 and discussedihsimple cases corresponding
to either no forgetting or inference from windowed histatisample. The proper choice of
the temporal discount factor depends on the variation ofitieerlying breathing pattern,
and automatic schemes should be investigated.

As observed in our experiment, various phases of respyatation are predicted with
different accuracies. Respiratory motion demonstratesools non-stationarity: the sys-
tem variation at the transition phase could be very diffetkan that during extreme tidal
stages (end-inhale or end-exhale). From another perspedtiwe examine the signal-
to-noise ratio (SNR) over a windowed portion of the sign@lRSwould change as the
window covers different stages of the breathing: SNR wowddrddatively high during
transition stage, as the signal variation is big relativeécse, while SNR is low at the
plateau stages, which correspond to end of inhale or exii&lese observations motivate
a potential research topic: if we aim at homogeneous priedigterformance throughout
the breathing trajectory, it may be necessary to use adapampling. More precisely,
denser sampling may help where prediction uncertaintygswiiereas sparser sampling
should suffice where prediction is more reliable. This is@ddor future study.

The dynamics of respiratory motions change over variougestaof breathing, and

makes general prediction difficult. Models using state délpat transition probabilities
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have been investigated for stochastic tracking [104], aqudi@t segmentation was also
studied [134]. Our proposed method uses local kernel regmego capture this variation
implicitly by essentially limiting inference to a neighltimod of training samples that are
expected to behave similarly. Intuitively, this is almogti&zalent to training a local model
at each state of interest. Since the state distance (anthiaugerence weight) is assigned
with respect to Euclidean distance in state space, it is rapbthat clustering with this
distance reflect dynamic similarity. This is expected in trusses, except when home
(mean) drifting is high both in frequency and displacemeaitig. In the exceptional case
of dramatic mean drift, samples belonging to different breey stages may be clustered
together. One straight-forward remedy would be to incosmmean drifting compensa-
tion in the inference weight. A robust mean tracking aldoritfor respiratory motion is
provided in [100] that outputs mean position estimates fithlthe training samples and
the state of interest. We expect improved accuracy by adoaufor mean position drift-
ing. We plan to conduct further experiments and analyzedtfiect in more detail in the

future.
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APPENDIX C

Inference of Internal Respiratory Tumor Motion from External
Surrogates: A State Space Augmentation Approach in Modeling
Hysteresis

1 Respiratory motion affects tumours in the thorax and abdomia particular, breath-
ing is the major reason for intrafractional tumour motiom fong cancer patients. It
is important to monitor such motion during radiotherapyatreent to ensure the accu-
rate delivery of radiation dose in motion-compensatednisity Modulated Radiotherapy
(IMRT). Fluoroscopic imaging or portal imaging can monitamour motion during the
treatment process. To reduce x-ray exposure, hybrid tuntragking approaches that
combine episodic radiographic imaging and continuousreatesurrogates have been in-
vestigated widely [80, 81, 86, 105, 106]. Using externat@gaites to infer internal tumour
motion assumes that there is consistent relationship leetweernal and external motion.
Hysteresis is typical in lung tumour movements, with the aumtaking a different
path during inhale and exhale. Inhalation normally takegyéy than exhalation, and the
deflating lung volume exceeds the inflating volume at the saares-pulmonary pres-
sure [57]. Respiratory hysteresis makes inferring intetmaour locations from external
surrogate signals challenging. Most of the external sat®gystems, such as thermis-

tors, thermocouples, strain gauges, pneumotachographsaitd infrared skin markers as

1This chapter is based on materials from [101]
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applied in the Varian Real-time Position Managem&(RPM) system (Varian Medical
Systems, Palo Alto, CA), provide one-dimensional signalspse instantaneous ampli-
tude (or displacement) alone does not provide sufficierdrin&tion about the specific
breathing stages.

Previous studies about correspondence between intermalutumotion and external
surrogates can be classified into two categories. One clastidies investigates the
correlation between the two signals to justify the feagipibf using certain types of
surrogates, or compare different surrogate options (tholy the placement mechanism)
[1,47,59,73,118,125,128]. Alternatively, some othedsts assume priori the existence
of a strong correlation between internal and external $ggr@and aim to estimate the cor-
respondence map [107]. We adopt the latter perspectivetady with a general setup the
correspondence maps that take the external surrogatesisacput and output estimates of
the internal tumour location, including, but not restritte linear relations as reflected by
the correlation coefficient and its variants. The preserigespiratory hysteresis makes
this a challenging problem, as the same external surrogzeign can reflect different
internal tumour locations during different phases. Erigtnethods address hysteresis by
first separating empirically the breathing trajectorig® itwo distinct “directions” (inhale
v.s. exhale), and then constructing a piecewise phaseadepemap [66, 67,107, 108].
However, subdividing the breathing into inhale and exhdlases often requires manual
intervention, and is infeasible for real-time applicatidrecause a breathing “peak” or
“trough” can be only be identified retrospectively.

In this study, we propose to use a simple state augmentatithre @xternal surrogate
signal. Augmenting the state space with self-delayed obsien bestows the model with
“memory”, which is an alternative way to characterize thattpdependence” property of

hysteretic systems. This procedure captures system dgsaamd embeds the breathing
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phase information implicitly into the framework. We theropide the solution to a gen-
eral class of parametric inference models with the augndeabservations. As special
cases, we derive optimal solutions for the parameters eflimand quadratic correspon-
dence models. Furthermore, given a training internalfediedataset, we demonstrate
a computationally efficient approach to choose a patieatifip (or fraction-dependent)
augmentation scheme. Generalization to adaptive comeigpmaee models follows natu-
rally. We test the proposed approach on synchronized reugsaf internal gold marker
trajectories and external fiducial marker locations [5].

Section C.1 describes the clinical data used for this testudises the challenges caused
by hysteresis in converting the external surrogate pasitioectly to internal tumour lo-
cation and presents the proposed method. A general comdspoe model is formulated
with polynomial models as an example. Optimal model pararseire derived and gener-
alization is given to accommodate adaptivity. Section Cpdres testing results followed

by discussions. Section C.3 concludes this study with a busfmary.

C.1 Methods and Materials

C.1.1 Data Description

To study the internal/external motion correspondence,mained synchronized record-
ings of internal tumour motion trajectories and externaliéidl marker locations. The
paired trajectories from eight lung cancer patients weittkected with a Mitsubishi real-
time radiation therapy (RTRT) system at the Radiation OCogypIClinic at the Nippon
Telegraph and Telephone Corporation (NTT) hospital in Sempdéapan. Two to four
1.5mm diameter gold ball bearings (bb’s) were implanted ineanthe tumour [112] and
these internal markers were tracked in real time with diatjooc-ray fluoroscopy [111].

External surrogate signals were obtained with the AZ-733témal respiratory gating
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system (Anzai Medical, Tokyo, Japan) integrated with th&RRBystem. It uses a laser
source and a detector, both attached to the treatment catlckhvw beam placed orthogo-
nal to the patient’s abdominal skin surface. The deviceutales the change in the surface
amplitude by measuring the relative position of the reflédight [5] and outputs a one
dimensional relative position measurement of the abdosundace. The data acquisition
rate for the entire system is 30 frames per second. Table Gdriles the study partici-
pants. All patients included in this analysis had peakdakpmarker motion greater than
1cm. The KV fluoroscopy + Anzai system took multiple readifmyseach fraction from
several treatment field configurations to account for ob=tw-ray views as the gantry
rotated. The recording lengths varied between 20 and 25thgsowvith an average of 82

seconds. There are in total 128 readings, 46 of which wermgdothan 100 seconds.

Patient| Gender| Age Tumour Pathology # of bb's | Tumour Site| Prescribed Dose (Gy) # of Fractions
1 F 47 Adenocarcinoma 4 R S7 N/A 1
2 F 70 Adenocarcinoma 3 L S6 N/A 1
3 F 71 Adenocarcinoma 2 R S5 N/A 1
4 F 47 Adenocarcinoma 3 R S4 48 8
5 M 81 | Squamous cell carcinoma 3 R S6b 48 4
5 40 8
6 M 61 small cell lung cancer 3 R S10 40 8
7 M 68 | Squamous cell carcinoma 3 R S6 48 4
8 M 85 Adenocarcinoma 3 R S8 48 4

Table C.1:Description of study participants. Patients 1-3 were bhtuig for data acquisition purposes only,
so there is no prescription dose. Patient 5 was treated tatitke same site, with two months
between treatments. The tumour site is indicated usingdaheon anatomical notation for lung
segmentation: S1-3 is upper lobe, S4-5 is middle lobe antiCcg6-1ower lobe.

C.1.2 A General Correspondence Model

To minimize diagnostic imaging dose in IGRT systems, it ipamant to infer internal
tumour location from external surrogates. In principle, @aild use a correspondence
model that observes a trajectaryof the scalar external surrogateup to time instann
to infer the 3-dimensional internal tumour positipn= (x, y, z). We denote the collec-

: : : : : A
tive surrogate information available at tinmeast(n) = {r(m) : 0 < m< n}. However,
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it is challenging to estimate such a map that estimates tieena tumour position from
the complete collection of historical surrogate data, sitie length of the input variable
grows to infinity as time progresses. A more practical chasc® use some much more
compact quantity- that captures sufficient information fromfor inference. With inter-
nal and external motion both being smooth, it is reasonabl@pproximatep(r) using
polynomials. Therefore, we focus on estimating a class oespondence models that are

linear in their coefficients as follows:

(C.1) p(r)=Af(r),

wheref is a vector function of external surrogateall model parameters to be optimized
are contained in the coefficient matu&. In particular, two simple correspondence mod-
els,i.e,, a linear model and a quadratic model introduced in [107}spexial cases of the
form given in (C.1).

Linear models assume each coordinate of internal motiofffireean » = r(t). This

corresponds to the case where

(C.2) f(r)= andA = by ¢

b, ¢

Quadratic models map the external surrogate to each catedaf internal motion via

a quadratic relation. It can be expressed in (C.1) with

r2 bx cx dx
(C.3) fr)y=1r andA = by ¢ dy
1 b, ¢; d

The expression in (C.1) is linear in the model coefficieAtand yields a closed form

optimal solution in the least squared error (LSE) sensee®V sample point§rn, pn),
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n=12,...,N, the solution to the LSE problem:

A

(C.49) A =arg rr)linE(A),

whereE(A) = SN ||pn— Af(rn)||% is given by solving the normal equation [68], and

(C.5) A=P"F(F'F)7,
- fry)? - - pi -
whereF' = : andP = : | . The corresponding residual is given by:
i GO | I Py |
AP 2 P-FA'
(C.6) = (I-F(F'F)'F")P,

with overall residual error (summed over all 3-dimensicas)

E(A) = trace{APTAP}

(C.7) = trace{P"(I-F(F'F)'F")P}.

It may be preferable to have simpler models (with fewer fraeameters) over more
complicated models at the cost of small sacrifice in datadjtherformance. This model
selection preference can be incorporated into the optimizaetting by modifying the

objective function as:

~

(C.8) E(A) =E(A)+AR#A),

where #4 denotes the number of free parameters in the coefficientxndtrandR is a
monotonically increasing function that assigns highet<ts more complicated models.
The regularization weight controls the tradeoff between the data fittlBgA) and the

preference for lower-order models. A simple exampldrafould be the linear function



202

R(#A) = #A, which directly penalizes the number of componentdirthis is equivalent
to the Akaike Information Criterion [2]. Using the closedrooptimal solution (C.5) and
the expression for optimal residual error (C.7) for a giveedixnodel structure, the modi-
fied objective function can be minimized in two layers. We &y inference models have
the same‘model structure”if they only differ in parameter values. It follows immedi-
ately that all models with the same structure has equal nuoflzkegrees of freedom, thus
the same complexity regularizati®{#A) in (C.8). Therefore, to minimizer over models
of different complexity, it is natural to choose the “bestirameter setting within each
model structure (with fixed degrees of freedom thus a cohst@amplexity penalty), and
then compare across structures. Within each class, miaimizhe complexity penalized
objectiveE (A) is the same as that &(A), and can be solved and evaluated efficiently us-
ing the closed form optimal solution (C.5) and expressiorofatimal residual error (C.7).
This motivates the two-layer hierarchical algorithm shdvatow for finding the optimal

solution withinK candidate model structurezd= UK {G;}.

Algorithm 3 Two-layer Optimization Routine for Solviné =arg minE(A) (C.8).
1: E — +oojigpt— 0; A [|.
2: fori=0toK do
3:  Choose model structufg from the collection of modelg’,

4. ComputeR; = R(#A) for structureC;; .
5. ComputeA; within classC; according to (C.5) and its residual erfe(A;) from (C.7).
6: if E(A)+R <E then
7 E— E(Ai) +R;
9: A Ai.
10:  endif
11: end for

C.1.3 Hysteresis and State Augmentation

Conventional methods that explicitly segment the breatlpragess into inhale and
exhale phases have their limitations, as physical phassiti@ns (and delays) occur con-

tinuously rather than as discrete jumps. To circumventribi@isic difficulty of estimating
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breathing phases, we study the system dynamics direcihgating them to sufficiently
convey phase information. In a discretely observed systera,usually captures the sys-
tem dynamics with time-lagged samples. For the sake of siyphlnd to avoid over-
parameterization, we restrict this study to a single lage proposed method generalizes
to multiple-lag models naturally.

Given a discrete-time external surrogate), n=1,2,...,N, we augment each external
surrogate state with a time(in discrete unit) delayed sampleg., r(n) 2 (r(n), r(n—1)).
This augmentation captures first-order system dynamicthaslifference between(n)
andr(n—1) can be regarded as a measure of average local velocityr i8uniquely
determined by, it fits into the general formulation (C.1). We apply the metbprovided
in Section C.1.2 to estimate the coefficients for the augnadentedel. To demonstrate
the idea, we establish a linear model that is comparable @) @d a quadratic model
analogous to (C.3).

The augmented linear model (i) represents each internal coordinate as a linear com-

bination ofr(n), r(n—1) and a constant offset, corresponding to:

(C.9) p=Af(r), where f(r)=| r(n—1)

with a 3x 3 coefficient matrixA.

The augmented quadratic model (tip estimates each internal coordinate as a linear
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combination of2(n),r(n)r(n—1),r(n—1),r(n),r(n—1), 1, corresponding to:

(C.10) p=Af(r), where f(r)=

with a 3x 6 coefficient matrixA.
In both cases, linearity i results in the closed form solution given by (C.5) with the

correspondingF’ respectively.

C.1.4 Choice of Lag Length

The delayt should be chosen properly, since too long a lag providesmahlocal
dynamic information and too short a lag makes the estimat@msitive to observation
noise. For inference purposes, we desire a lag that maximasblves the ambiguity in
the estimated correspondence map. We choose the lag thatiz@s the fitting error for

training data:
(C.11) f:argrqinE(A(r)),

with the objective functiorkt defined in (C.4). The coefficientd and the erro depend
on T becausef contains both the current external surrogate displacementand its
lagged state(n—1).

Equations in (C.6) and (C.7) provides a closed-form expresEioE(A(r)) for each
givent. The optimization problem (C.11) simplifies to a simple omae&hsional line
search that we solve by searching over an interval with tmeesponding delay time be-

tween 0 (no lag) and about half of an average breathing period
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C.1.5 Adaptivity of the Correspondence Map

Adaptivity may be useful to accommodate gradual changdgioarrespondence mod-
els, due to drifting or variations in patients’ breathing.the case of linear and quadratic
models, the operation in (C.5) involves inverting fairly dhmaatrices (3x 3 and 6x 6 re-
spectively), so direct inversion is numerically feasidtawever, when more complicated
models with higher degrees of freedom are used, it is ddeitalreduce computation by
applying recursive algorithms that modify current estiesabased on newly available data.
The key to recursively updating (C.5) is to avoid recomputifiy F)~* from scratch ev-
ery time. This is effectively the inversion of empirical celation matrix with observation
fi. [100] provides rank-one update equations for sliding wim@nd exponential discount

adaptivities.
C.2 Results and Discussions

To illustrate the challenges caused by hysteresis, Fig.l@wsan example of the rela-
tionship between internal tumour location obtained by fhsoppic imaging and an exter-
nal surrogate from an abdominal surface measurement aslBsm Section C.1.1. We
depict only the anterior-posterior (AP) coordinate agaihe surrogate signal, as this axis
demonstrates the strongest hysteresis for this test dubjee optimal linear and quadratic
correspondence maps [107] provide reasonable inferenicgéeshal tumour motion from
external surrogates, yet they fail to describe the bregthimase dependency of an ideal
correspondence map. In fact, any function that tries to rhapstalar (n) to p would
experience the same problem, since this is a one-to-meilgdhtion with hysteresis.

Figure C.2 illustrates the internal tumour location in théegior-posterior (AP) direc-
tion v.s. the state augmented external surrogates fo5, which corresponds to a5l

second delay for 30Hz sampling rate. The scatter-plot in €ig(a) represents each data
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Figure C.1: Example of a breathing trajectory with respirathysteresis.
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Figure C.2: Scatter plot showing the data samples in augrdesternal state space with the colors indi-
cating internal AP value. Locally consistent colored saa@uggests the potential of resolving
hysteretic ambiguity by distinguishing among differerépiatory phases implicitly with state
augmentation.

sample in ther(n),r(n—1)) space with a circle, and uses color (or intensity if viewed in
gray-scale) to depict the internal AP coordinate valuesnin) from fluoroscopic readout.
The one-to-multiple discrepancy appears largely resobgdifferent colored circles are
not overlaid on each other, suggesting the existence ofggesiralued inference map.

To illustrate the idea of model fitting in augmented statecepave first apply the sim-
ple linear model in (C.9) to the dataset shown in Fig. C.1 witagaléngth of 15 seconds
(which may not be optimal), and illustrate the results in.FEg3. Even though there are
still noticeable differences between the observed interoardinates in the upper row of
Fig. C.3 and their linear fit in the bottom row, the aggregatstingation error (across

all patients and fractions) reduced t&4 mm from 201 mm with direct linear fitting as
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Figure C.3: Correspondence relations in augmented stateesd their linear fittings. Upper row: internal
tumour coordinate v.s. augmented state for observed samiie colors indicating internal AP
value; bottom row: estimates of tumour coordinate via lirfgavith hollow circles depicting
modeled hypersurface evaluated at regular grid points ald circles for the evaluation at the
sample locations, with colors indicating estimated AP galu

in (C.2) and 193 mm with direct quadratic fitting as in (C.3). In particulare observe
noticeable decreases in estimation error in the AP directihere hyesteretic ambiguity
is the most significant. Table C.2 reports the Root Mean Squiareor (RMSE) in each
direction respectively for the linear and quadratic modeth and without state augmenta-
tion?. Figure C.4 reports the paired (across patient/fractioffi@@inces between the RMS
error of the direct methods and the augmented methods. Th8ERdifference between
direct linear and augmented linear methods has mekdnim and a median of. D1mm;

the RMSE difference between direct quadratic and augmeqtadratic method has mean

2For comparison purposes, we have also computed estimate from thedgthpolynomial model with direct method,
which has the same degrees of freedom (18 parameters) as therdagrmgeadratic model. Its estimation error i3®,
1.25 and 111 (mm) in LR, Sl and AP direction respectively, with a 3D RMSE equa®#8ihm. A paired student t-
test between the RMSE for the 5th-order polynomial model and the augohguadratic model yields prvalue of
1.06 x 10~19, which indicates statistically significant error reduction by the augmentedrgtic model. This shows
that the improved performance of the proposed method is not a dwasequence of increased degrees of freedom, but
should rather be attributed to its capability of resolving hysteretic ambiguitytata augmentation.
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0.17mm and a median of D5mm. To assess statistical significance, we performedadai
student-t test with the null hypothesis that the perforneaoicthe direct and augmented
methods do not differ. The values for the linear method and the quadratic method are
4.96 x 10~13 and 408 x 1018 respectively, demonstrating that the error reductionsewer

statistically significant.

LR (mm) | SI (mm) | AP (mm)| 3D (mm)
Direct Linear 0.80 1.45 1.13 2.01
Direct Quadratic| 0.79 1.35 1.13 1.93
Aug. Linear 0.75 1.30 0.87 1.74
Aug. Quadratic 0.74 1.18 0.84 1.63

Table C.2: Estimation Error Table
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Figure C.4: Histogram of paired differences between the RI8rs of the direct and the augmented meth-
ods: (a) difference between the RMSE of the direct linear@ggh and augmented linear
approach; (b) difference between the RMSE of the direct matedapproach and augmented
guadratic approach.

Figure C.5 shows the estimated time series of these four appes for converting
external surrogates to internal tumour locations. The érigitvder models were more de-
scriptive with the extra degrees of freedom, as demonstiatehe relative performance of
guadratic models and linear models within each class réigpBc State augmentation en-
ables varying response patterns during different stagbseaithing as indicated implicitly
by the system dynamics.

As discussed in Section C.1.4, to properly choose the laghenge use a short training
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Figure C.5: Estimation performance comparison among riffemethods. Red-solid line depicts the in-
ternal tumour position obtained from fluoroscopic imagiagd dashed blue like provides es-
timated quantities from external surrogates. Each coluepmesents one internal motion co-
ordinate. Each row indicates the time series generatedam¢hestimation method: (1st row)
direct linear; (2nd row) direct polynomial; (3rd row) augnted linear; (bottom row) augmented
polynomial.

A

set with internal-external pairs to compute offline theraation performancg&(A(t)) de-
fined in (C.4) as a function of the lag lengthin practice, the lag length does not have to be
the exact optimum in (C.11); values near that optimum shoufiicgently convey system
dynamics. Reasonable insensitivity in the choice of lagtlem is desirable as this value

is determined prior to the treatment and remains fixed sules#ty. Figure C.6 illustrates
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Figure C.6: Estimation error as a function of lag length feats augmentation: linear fit (solid line);
guadratic fit (dashed line).

that the estimation error is a smooth function of the lag tenghich suggests the desired
robustness. For both the linear correspondence model (6dBh& second-order polyno-
mial model (C.10) with state augmentation, the optimabrresponds to about?1— 1.8
seconds delay. Without this knowledge, our previous expenis used .5 seconds de-
lay to augment the state space (Fig. C.2-Fig. C.5), and stillgd plausible results. The
asymmetric slopes in Fig. C.11 around the optimaliggests that it may be preferable to
use a relatively small time delay in the absence of precigenmation.

Assuming that the choice of lag length is robust to intergrdtand inter-fraction vari-
ations, we used a fixed lag length equivalent 1 deconds delay for simplicity, and il-
lustrate in Fig. C.7 the beam-wise 3D RMSE for patients 4,5 @nd/hose treatment
extended over multiple days. The minimum RMS error for nompensated treatment,
which corresponds to a constant estimate at the retrospetiean value, is also shown
for reference purposes. These results confirm that the aotgahenethods consistently
exhibit lower error.

Adaptivity is most beneficial for irregular respirationd¢es. Our test data had relatively
regular breathing patterns, so inclusion of adaptivity iayed the estimation accuracy

only slightly.
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C.3 Conclusion and Future Work

We have proposed a method to map external surrogate signadtetnal tumour po-
sitions. Breathing-phase dependent response patternt duyesteresis are incorporated
implicitly by using a simple state augmentation techniguegpture system dynamics. We
introduced a general class of correspondence models théihaar in model parameters,
with linear and quadratic (in external surrogate) modelsecial cases. We described
closed-form expressions for both the optimal model paramseind the corresponding er-
ror value. Based on the latter, we further investigated ttopgr choice of lag length in
state augmentation, and argued its relative robustnessréuilts on clinical data demon-
strated reduced inference error over the direct linear ayghpmial models.

The number of degrees of freedom in a correspondence motéehuaes the trade-off
between flexibility and robustness. We seek a model thatssrgive enough to fit the
data without undesired sensitivity to observation noisey &nown as “overfitting”. The
proposed method may have more degrees of freedom than psewiethods due to state
augmentation. On the other hand, because it incorporageshing-stage information im-
plicitly, it can use all available internal-external ca@p®ndence pairs, without subdividing
the training data as required for piecewise models [66,87].1n principle, using all the
data may compensate for the possible increased senstautyed by the extra flexibility.
The choice among different complexity levels in augmentedaets is still open. Both the
number of augmentations and the model degree contributeetoverall complexity. Fur-
ther studies should investigate methods for properly pengl model complexity based
on information criteria as explained in Section C.1.2.

Many research groups have observed phase shifts betwesnabdurrogate signal and

internal tumour motions [17, 32]. Typically, this phasefshias to be avoided to obtain



213

higher internal-external correlation. However, it is pbgsto compensate for consistent
phase shift, to simplify and improve the correspondence gsjmation. In particular,
we can artificially synchronize the internal-external phhg shifting one of them accord-
ing to a constant offset estimated from training data. We faither study phase-offset
estimation and its use in external-internal inference enfthure.

This work is a preliminary study to validate the existence oéasonably simple corre-
spondence map and the possibility to estimate it with higlugcy. In practice, internal-
external pairs are obtained at a much slower rate. Corregmmednaps must be extracted
from sparse imaging data and applied to continuously obthéxternal surrogate signals
to estimate the internal tumour locations. Our method caresas a critical module in this
overall framework, yet intensive simulations and validas are further required.

Even though our test data did not exhibit dramatic improvets@hen using adaptive
model estimation, model updates in response to change&eessary in general. Pursu-
ing this direction requires more thorough analysis of brg motion variations, change

detection and model adaptive rate.
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