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PREFACE

Information is often unequally dispersed among people, and people seek advice from

experts. This dissertation considers three topics related to professional advising and

forecasting.

Chapter 1 and 2 are joint essays with Jooyong Jun. We consider an uninformed

principal wishing to give the best prediction of the true state by hiring informed

experts. The precision of the private signal of each expert is heterogeneous and

unknown to the principal. The principal should decide the compensation scheme

and employment policy. In this situation, screening the precision of each expert is

valuable since it allows the principal to aggregate information efficiently and to make

a clear cut employment policy.

Chapter 1 presents a model in which a principal tries to design the compensation

scheme optimally to screen the type of each expert. Under a Gaussian specification,

it is shown that there exists a payoff function which achieves the first best outcome:

each expert is induced to report honestly on the true state, truthfully revealing his

own type, and is paid only his reservation utility. The optimal contract is a linear

function with respect to the mean squared error to the power of a certain degree.

The result comes from 1) the single crossing property of the linear payoff function,

and 2) the cheap talk feature of the professional advising.

Chapter 2 explores the optimal employment with experts. Assuming Gaussian

noise, the objective function of the principal becomes a function of the sum of types

of employees and is submodular and monotone in the sets of experts. Thus, the pro-
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duction exhibits decreasing marginal returns. We transform the production function

from a set function to a function on Euclidian space, depending on the current employ-

ment set and the type of an additional employee. The marginal production function

decreases more quickly for higher types than lower ones, as the current employment

set is enlarged.

The property of the optimal employment set depends on the reservation utility.

It is shown that if the reservation utility is proportional to the marginal single pro-

duction, the optimal employment set follows a cut-off property in which experts with

higher precision are employed. In this case, sequential hiring from the highest type

leads to the global optimum.

The chapter also develops a few extensions of the main result. We show that the

cut-off property holds with a general set production function when it is submodular

exhibiting the decreasing curvature property, and the reservation utility is propor-

tional to the marginal single production. We also propose an efficient algorithm to

find the optimal set with a general submodular set function.

Chapter 3 considers forecasting behavior by an expert when the arrival timing

of a new signal is uncertain. The forecaster needs to infer the arrival time since

he does not know whether the information he possesses is new or already reflected

in the predecessors’ forecasts. We analyze the Bayesian updating procedure in this

situation.

Assuming Gaussian noise, it is shown that the optimal forecast depends on the

deviation of the signal from the consensus. This is because, as the signal of the

forecaster moves out from the consensus forecast, the forecaster assigns more weight

to his own signal, believing that it is more likely to be new. This leads to a tendency

towards more extreme forecasts.

The result sheds light on recent empirical studies on a herding or anti-herding

bias. Without resorting to behavioral assumptions or unusual payoff functions, our
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model shows that statisticians may observe forecasters placing more weight on private

information rather than the consensus.
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Chapter 1

Getting Advice from Experts: Optimal Contracts

1.1 Introduction

This chapter1 explores mechanisms through which a principal can best elicit infor-

mation from multiple experts. We in particular focus on a contractual situation,

implicitly assuming the information the principal needs to gather is at least partially

specific to him. Two important issues emerge as the principal makes contracts with

multiple experts. Firstly, the principal should consider how to aggregate information

from multiple sources. Secondly, she should determine the wage offer to each expert,

which may depend on the information quality if available.

Efficient information aggregation crucially depends on whether the principal can

screen the precision of information each expert possesses. To see this, consider an

environment in which experts have heterogeneous private signal distributions and

the signal is independently informative of the true state. The heterogeneity reflects

different abilities in processing raw information, analytic technologies, and/or levels

of ‘animal spirits.’

Provided the principal knows the precision of each expert, she can easily aggregate

information from multiple experts by Bayesian updating. Assuming the compensation

scheme is designed so that experts are paid off according to the ex-post accuracy, and

experts have no payoff other than the wage paid by the principal, each expert must

submit the report on the true state at his posterior mean given his available informa-

1This chapter represents jointly work with Jooyong Jun.

1



tion2. Without message pooling, the one-to-one relationship between posterior mean

and private signal allows the principal to discern each expert’s private information.

It follows that the principal’s best prediction on the true state is then the weighted

average of the prior and all private signals, where the weights are determined by the

precision of the signal.

When the precision of each expert’s signal is unknown to the principal, however,

information aggregation cannot be achieved with the simple compensation scheme

described above. A posterior mean is no longer matched to the private signal in

a one-to-one relationship, and the principal would not know the weight she should

assign to the report of each expert. The compensation must be more sophisticated.

It should be designed not only to induce the honest report on the true state but also

to elicit the precision of expert’s report.

Sorting through compensation helps the principal via another channel. When

the information quality of each expert is heterogeneous and the reservation wage

depends on the quality, the principal also needs to decide the wage offer and it would

be beneficial if the wage offer can be contingent on the information quality.

We show, in an environment where the reservation wage is type dependent, that

there exist payoff function(s) in which the true type revelation is implemented and

the honest report on the true state is induced. In addition, the compensation scheme

induces the first-best outcome in the sense that no information rent exceeding the

reservation utility is paid in equilibrium. When the reservation wage is convex in

type, a simple linear payoff function with respect to the mean squared error of the

report on true state achieves the first-best. In the case when the reservation utility

is concave, the optimal payoff function is more complicated but keeps the linearity in

a certain form of performance measure.

2Experts’ payoff other than the wage from the principal, including nonpecuniary or implicit
compensation, may drive shaded or pooled messages on true state. For example, reputation concern
induces experts to shade or pool messages in the model of Ottaviani and Sørenson (2006a, 2006b).
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The intuition behind this sorting mechanism is straightforward. In the optimal

compensation scheme we propose, the principal asks each expert what his type is. The

optimal contract is designed so that the penalty for the incorrect report is increasing

in type announced. The less accurate expert then incurs more cost when he pretends

to be more accurate type, barring untruthful type revelation. Moreover, due to the

cheap talk feature of the ‘production’ of advice, there is no intrinsic utility or cost

for experts. This implies the virtual surplus is linear in the control variable of the

principal, and the principal makes the information rent arbitrarily small up to the

reservation utility to achieve sorting.

We then propose a game in which the principal achieves not only the efficient in-

formation aggregation but also the optimal employment. In the game, the principal

announces the payoff function which depends on the type, the precision of the private

signal announced by each expert, the report on true state, and the true state to be re-

vealed ex-post. Experts from population then apply for the job (pre-screening stage.)

Among those applicants, the principal decides which experts to hire (employment

stage.) Compensation is paid after the true state is revealed.

This chapter is organized as follows: A brief literature survey follows the intro-

duction. We describe the model and present the optimization problem in the next

section. In section 3, we derive the optimal contract in which honest reporting and

truthful type revelation are achieved and the participation constraint is binding. In

section 4, we propose a game to achieve the optimal employment. Section 5 concludes

and addresses issues for further research.

1.2 Related Literature

The sorting mechanism in the paper is an application of a screening problem under

asymmetric information. For example, Maskin and Riley (1984) address the problem

in the context of an optimal quantity discount by a monopolist. The main difference
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is that in professional advising, the information asymmetry occurs not only in the

type of each agent but also in the true state which is realized ex-post. Indeed, the

type, or the information quality of each expert is revealed ex-post through the realized

true state and the forecast. The principal, therefore, needs to get messages from each

agent about her type in addition to the forecast on the true state. In a sense, the

model presented here is a hybrid model of screening and moral hazard because the

latter message is often sent after the principal’s employment decision is made.

Bhattacharya and Pfleiderer (1985) is more directly related to our work in the

motivation and the model specification. They examine the compensation problem for

risk-averse portfolio managers whose signal and signal distribution are both private

information. They also derive the compensation scheme which achieves the first best

outcome. It differs from ours in the objective function and the risk attitude. They

assume the utility function of both principal and agents exhibits constant absolute risk

aversion, which makes sense in the context of the delegation of portfolio management.

With risk neutral agents, as in our model, the problem is not well defined since the

portfolio choice position would be extreme. In this sense, the first main result of

this paper is a risk neutral agent version of section 4 in Bhattacharya and Pfleiderer

(1985). The second main theorem is new. While Bhattacharya and Pfleiderer (1985)

derives the first best outcome under some regularity conditions on the reservation

utility, we show it for quite general case by varying the performance measure.3

Crémer and McLean (1985, 1988) study mechanisms in which a principal, or a

seller, extracts full surplus in the context of the independent value auction. In their

model, the valuations of the bidders are correlated and they know this fact. The

seller then designs an auction mechanism in which payments depend on the types

announced by bidders. Under some regularity conditions, the seller can induce each

3Osband (1989) also studies the incentive provision problem for forecasters. The precision of each
forecaster in his model depends on the effort level, so the focus is on the moral hazard problem, not
on the hidden type problem as ours.
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bidder to announce his type truthfully, which results in the full surplus extraction.

The types of experts in our model are also correlated, but they are conditionally

independent. The true state itself, which is assumed to be verifiable ex-post, becomes

a reference point that each expert’s type is measured. Each expert, thus, is induced

to announce his type truthfully without guessing other experts’ type. This allows

us to develop an independent compensation scheme that does not depend on the

type announcements by other experts. Auctions with state-dependent payments are

studied in Hansen (1985), but it deals with very special cases.

Recent literature on professional advisors is based on the cheap talk game model

first introduced by Crawford and Sobel (1982). Departing from partisan bias ex-

ogenously given to the payoff functions, Scharfstein and Stein (1990) explores how

reputation concerns affect the pattern of messages in equilibrium. They show the rep-

utation concern drives experts to herd in a binary model. The model is generalized

in Ottaviani and Sørensen (2006a, 2006b).

The main difference between this paper and the previous literature on professional

advising is twofold. First, we give the principal an active role in determining the

compensation scheme. Secondly, our focus is on efficiency in information aggregation

and employment, not on the strategic bias. To do so, we assume the principal has

no private information, and experts are not concerned the reputation effect of the

current report.

In our model, the information asymmetry is two dimensional: the signal and its

distribution. Except for a few papers, most existing papers on professional advis-

ing assume experts share the common private signal distribution, and asymmetric

information lies only in realized value of their private signal. Avery and Chevalier

(1999), Levy (2004), and Ottaviani and Sørensen (2006a) consider heterogeneous pri-

vate signal distribution but usually the uncertainty is assumed to be symmetric across

the players in the model. Trueman (1994) and section 6 in Ottaviani and Sørensen

5



(2006a) model asymmetric information on signal distribution. The information struc-

ture in this paper is mostly similar to Ottaviani and Sørensen (2006a). Battaglini

(2002) explores a cheap talk game with multi dimensional uncertainty and multiple

referrals, but his results are mainly derived from the orthogonality between uncertain

variables, which is different from our setting.

1.3 Model

An uninformed principal tries to make his best prediction of the true state, for

example the profitability of a project. To get better information, the principal wishes

to hire privately informed agents, who are called ‘experts’ hereafter. Experts are

heterogeneous in the precision of their private signal, which is labeled their type. The

principal designs a game as follows.

The true state x is drawn from a normal distribution with mean µx and variance

1/τx, which is common knowledge. We assume the true state is verifiable and thus

contractible. While the principal has no private information4, expert i ∈ I receives

a conditionally independent private signal si, where I is the set of experts who are

employed.5 The distribution of si is assumed to follow a normal distribution with

mean x and precision τi, or

si = x + εi, εi ∼ N (0, 1/τi) .

The precision, or type, of each expert τi is drawn from the population with dis-

tribution function F on the support of [τ , τ ] ⊂ R+. We assume F is continuously

differentiable so that the probability continuous density function f exists. The prin-

cipal cannot discern the type of each agent, but each expert knows his own type. In

4The assumption of a fully uninformed principal, in addition to that of the payoff being condi-
tioned on the true state, precludes the ‘yesman effect’ in Prendergast (1993).

5We fix the employment set of experts in this chapter, as though the employment decision is
made before the contract and the information aggregation. However, the order may be reversed in
order for the contract to be used as a pre-screening device. The whole recruiting, contracting, and
information aggregation process is discussed in the later section.
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the pre-screening stage, each expert is requested to submit a message on his own type

ti. Once hired, he has to submit a report on the true state, denoted by ri ∈ R for

expert i.6

The principal’s objective is to maximize revenue less payoffs to employed experts.

The revenue function R depends on the principal’s prediction on the true state,

denoted by x̂, and the true state. We assume the revenue is decreasing in the ex-post

error, | x̂ − x |. For example, the revenue can be the negative mean-squared error

where R(x, x̂) ≡ −a(x̂− x)2 for a constant a > 0. In this case, the revenue function

is a decreasing function of the mean squared error.

The only cost for the principal is the wage she pays to the experts, where the

payoff function is denoted by C(ri, ti, x). Note that the payoff does not depend on

other experts’ messages. In other words, we restrict the compensation to be indepen-

dent, which implies that the principal cannot use group incentives to implement the

information revelation and the performance must be evaluated through the absolute

performance basis7.

Experts are assumed to be risk neutral utility maximizers with the identical vNM

utility function u(c) = c. We assume that the only benefit from information provision

is the payoff from the principal. Each expert has a reservation utility which is type-

dependent. Type-dependent reservation utility function u(τ) is assumed to be strictly

6We follow the convention that each expert reports his best prediction, not directly revealing his
private signal. However, reporting the prediction is equivalent to reporting the signal in equilibrium
provided there is no message pooling, which is the case of this paper.

7Relative performance evaluation has been an important issue in contract theory with multi-
agent models. We exclude such evaluation on report for simplicity and tractability of the payoff
function, since we are focusing on the screening procedure. Extant literature in contract theory
find the merits of relative performance evaluation in that it reduces risk-sharing cost as to the
common noise. See Holmstrom (1982). Another branch of literature regarding relative evaluation
studies rank order compensation or tournament. While it has been shown that tournament scheme
can provide approximately the same incentive for agents as the standard contractual form(See,
for example, Green and Stokey (1983)), it is less susceptible to extreme output volatilities. Both
benefits mentioned above are not relevant to the current model. Ottaviani and Sørenson (2006b)
consider forecasting contest, an extreme case of compensation scheme based on relative performance
evaluation, in the context of reputational cheap talk game, but their information structure is different
from ours.
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increasing and continuously differentiable. Increasing reservation utility is realistic

when the private information is not fully relation-specific. The expert might use the

private information outside of the principal-agent relationship to derive some personal

benefits from it.8

The Principal’s action is denoted by (x̂, C). The optimization problem is formally

described as follows.

max
x̂,C

Ex

[
R(x̂, x)−∑

i∈I

C(ri, ti, x)

]

subject to the expert’s problem

(ri, ti) ∈ arg max
r,t

Ex [C(r, t, x) | si, τi]

subject to the participation constraint

Ex [C(ri, ti, x) | si, τi] ≥ u(τi).

In the next section, we begin our analysis with the pre-screening stage.

1.4 Compensation Scheme for Sorting

In this section, we aim at finding a compensation scheme which achieves the first-best.

We ask whether there exists a payoff function C(ri, ti, x) which induces the expert to

report his posterior mean, implements him to message his own type, and further the

expected payoff is just his reservation utility9. Formally, we want to find C satisfying

(
siτi + µxτx

τi + τx

, τi

)
∈ arg max

t,r
Ex [C(r, t, x) | si, τi]

and

8See Jullien(2006) for examples of type-dependent reservation utility and the general solution
in the context of screening problem. Bhattacharya and Pfleiderer (1985) also assume the type
dependent reservation utility.

9We assume the massage related to the true state is the posterior mean of each expert. However,
it is equivalent to assume that the private signal itself is reported.
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Ex

[
C

(
siτi + µxτx

τi + τx

, τi, x
)
| si, τi

]
= u(τi).

Note that once the sorting and truthful reporting are implemented, the principal’s

optimal action is straightforward. Provided the revenue R(x̂, x) is decreasing in error

| x̂ − x |, for a fixed I, the best prediction on the true state, x̂∗, is the posterior

mean given reports from |I| experts, where |A| is the number of elements in a set A.

Formally, we have

x̂∗ =

∑
i∈I ri(τi + τx)− (|I| − 1)µxτx∑

i∈I τi + τx

.

For example, if the revenue is negative mean squared error, the resulting expected

net gain is

E [R(x̂∗, x)]−∑

i∈I

u(τi) = − a

τx +
∑

j∈J τj

−∑

j∈J

u(τj).

Our strategy to show existence is as follows. We first restrict to a subclass of

payoff functions. We then solve the standard screening problem within the class and

check whether the participation constraint is binding for all types of expert.

Proposition 1 is our first main result. It states that if the reservation utility

function is non-convex, the first-best outcome is achieved through a payoff function

which is linear in the mean squared error of the report. With the linearity restriction,

the expert with precision τi should solve

(ri, ti) ∈ arg max
t,r

Ex

[
−α(t)(r − x)2 + β(t) | si, τi

]
(1.1)

We want to find α(t) and β(t) such that the solution to (1.1) satisfies the conditions

for both honest reporting and truthful type revealing, as well as the participation

constraint. We must therefore have the following conditions:

• Incentive Compatibility for Honest Reporting (ICR)

α(t) ≥ 0. (1.2)

9



• Incentive Compatibility for Truthful Type Revelation (ICT)

Given (1.2), the expert with precision τi will solve the following problem:

τi ∈ arg max
ti
− α(ti)

τx + τi

+ β(ti). (1.3)

• Participation Constraint (PC)

Once (1.2) and (1.3) are satisfied, the participation constraint for type τi be-

comes

max
ri,ti

Ex

[
−α(ti)(ri − x)2 + β(ti)

]
= − α(τi)

τx + τi

+ β(τi) ≥ u(τi). (1.4)

Proposition 1.1: Suppose the reservation utility is convex on the support of τ .

Then, the first-best is strictly implemented through the payoff function within the class

of linear functions in mean squared error. That is, it is the strict best response for

each expert to message his own type and submit his posterior mean, and the payoff is

only his reservation utility if the payoff function is designed to be

C(r, t, x) = −α(t)(r − x)2 + β(t)

where

α(t) = (τx + t)2u′(t)

and

β(t) = (τx + t)u′(t) + u(t).

Proof. Let α and β be C2 function on R++.10 Let α(t) ≥ 0 to satisfy (ICR). Define

C(τ, t) be the expected payoff when type τ expert announces that his type is t and

10It is required that α′(t) and β′(t) are right continuous at 0.
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he reports posterior mean honestly. Given (ICR), we have

C(τ, t) = Ex,s

[
C(

τs + τxµx

τ + τx

, t, x) | τ, s
]

= −α(t)Ex,s

(
τs + τxµx

τ + τx

− x
)2

+ β(t)

=
−α(t)

τ + τx

+ β(t)

The first order condition for (ICT) is then

∀τ ∈ [τ , τ ], − α′(τ)

τx + τ
+ β′(τ) = 0. (1.5)

To see the second order condition given (IRC) and the first order condition of

(ICT), consider the following formula.

∂C

∂t
(τ, t) = −α′(t) · t− τ

(τx + τ)(τx + t)
, (1.6)

which implies that t = τ is the global maximizer of C(τ, t) for all τ if and only if α(t)

is nondecreasing. We will temporarily ignore (1.6) to solve for the optimal contract

with (1.5), and then check whether the contract satisfies (1.6).

Let c(τ) be the utility of expert type τ at the optimum, so that c(τ) = C(τ, τ) =

−α(τ)/(τx + τ) + β(τ). Note that from envelope theorem,

c′(τ) =
α(τ)

(τx + τ)2
≥ 0 (1.7)

which implies that the experts with higher precision are paid more.

From (1.5), we have

β′(τ) =
α′(τ)

τx + τ

⇒

β(τ) = β(τ) +
∫ τ

τ

α′(s)
τx + s

ds

= β(τ)− α(τ)

τx + τ
+

α(τ)

τx + τ
+

∫ τ

τ

α(s)

(τx + s)2
ds (1.8)
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and

c(τ) = − α(τ)

τx + τ
+ β(τ) = β(τ)− α(τ)

τx + τ
+

∫ τ

τ

α(s)

(τx + s)2
ds.

Given that the expert reports his posterior mean, the principal’s problem is

min
α(τ)

Eτ [c(τ)] =
∫ τ

τ

(
β(τ)− α(τ)

τx + τ
+

∫ τ

τ

α(s)

(τx + s)2
ds

)
f(τ)dτ

=
∫ τ

τ

(
β(τ)− α(τ)

τx + τ
+

α(τ)

(τx + τ)2

1− F (τ)

f(τ)

)
f(τ)dτ (1.9)

subject to the participation constraint

c(τ) = β(τ)− α(τ)

τx + τ
+

∫ τ

τ

α(s)

(τx + s)2
ds ≥ u(τ). (1.10)

We can solve this problem through point-wise minimization. Since the formula in

the bracket of (1.9), the so called virtual cost, is linear in α, the principal can let α(τ)

be the least possible cost c(τ) for all τ . That is, the participation constraint (1.10)

should bind for all τ . Differentiation of the binding participation constraint gives

α(t) = (τx + t)2u′(t)

and from (1.8),

β(t) = β(τ)− α(τ)

τx + τ
+ (τx + t)u′(t) + u(t)− u(τ).

Let β(τ) = (τx + τ)u′(τ) + u(τ) for the participation constraint of the lowest

type to bind. We now solve for α and β to satisfy the first order condition of (ICT)

and binding participation constraint (PC). Finally we need to check the second order

condition, which is equivalent to α monotone nondecreasing. Since

α′(t) = 2(τx + t)u′(t) + (τx + t)2u′′(t),

the second order condition is satisfied provided u is non-concave. This completes the

proof.11

11The result still holds in the case of type-independent reservation utility. Suppose w is the
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The following examples show how the concave reservation utility function ob-

structs the truthful type revelation.

Example 1.1: Suppose τx = 1 and u(τ) = τ for τ ≥ 0. From Proposition-

1, we have C(r, t, x) = −(1 + t)2(r − x)2 + (1 + 2t), and since (ICR) is satisfied,

Ex [C(r, t, x)] = −(1 + t)2/(1 + τ) + (1 + t). The first order condition gives t = τ and

the second order condition is satisfied.

Suppose now τx = 1 and u(τ) = 1 − 1/(1 + τ)2. Note the concavity of the reser-

vation utility function. If we construct the compensation function with α and β in

Proposition 1, we have

Ex [C(r, t, x)] = − 2

(1 + t)(1 + τ)
+ 1 +

1

(1 + t)2
.

The first order condition still gives t = τ , but the second derivative of the expected

compensation is

∂2

∂t2
Ex [C(r, t, x)] = − 4

(1 + t)3(1 + τ)
+

6

(1 + t)4

which is positive at t = τ , violating the second order condition.

The result of Proposition 1 holds only for non-concave reservation utility func-

tions. When the reservation function is sufficiently concave, the compensation scheme

derived from the first order condition becomes convex, barring the expert from re-

vealing his own type to maximize compensation. To achieve the first best outcome

constant reservation utility. From (1.7), the participation constraint is binding for the lowest type,
i.e., β(τ)− α(τ)/(τx + τ) = w.

Then, the principal should solve

min
α(τ)

E [c(τ)] =
∫ τ

τ

(
w +

α(s)
(τx + s)2

1− F (τ)
f(τ)

)
f(τ)dτ

Point-wise minimization gives α(τ) = 0 for all τ and consequently β(t) = w for all τ . That is, the
optimal contract indicates that the principal offers flat wage.

The problem in this case is that the honest reporting and the truthful type revelation are imple-
mented only weakly: experts are indifferent between sending truthful messages and lying. However,
the principal can achieve the first best with arbitrary small cost by setting α(t) to be increasing in
t very slowly but still keeping β(t) = w.
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with a concave reservation utility function, the principal needs to make the compen-

sation function more concave in equilibrium. This can be done by restricting the

expected payoff to be linear in a geometric power of variance. We state this result in

Proposition 2.

Proposition 1.2: Suppose u is a strictly increasing C2 function and the support

of types is bounded, i.e. τ < ∞. Then, there exist p ∈ N such that the compensation

scheme

C(r, t, x) = −α(t)(r − x)2p + β(t)

achieves the first best outcome, where

α(t) =
2p(p− 1)!

(2p)!
(τx + t)p+1u′(t)

and

β(t) =
(τx + t)

p
u′(t) + u(t).

Proof. Let α and β be C2 functions on R++. Let α(t) ≥ 0 to satisfy (ICR). Then,

the expected payoff for type τ is

Ex [C(r, t, x)] = −α(t)µ2p(τ) + β(t)

where µ2p(τ) is the (2p)’th central moment. Under the Gaussian specification, we

have

µ2p(τ) = E(r − x)2p =
(2p)!

2pp!

(
1

τx + τ

)p

The first order condition for (ICT) is

∀τ ∈ [τ , τ ], −α′(τ)µ2p(τ) + β′(τ) = 0 (1.11)

Defining C(τ, t) as in proposition 1, we have

∂C

∂t
(τ, t) = −α′(t) · t− τ

(τx + t)
µ2p(τ),
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which implies that t = τ is the global maximizer of C(τ, t) if and only if α(t) is

nondecreasing.

The expected payoff at the optimum, c(τ), is now c(τ) = C(τ, τ) = −α(τ)µ2p(τ)+

β(τ). From (1.11), we get

β(τ) = β(τ) +
∫ τ

τ
α′(s)µ2p(s)ds

= β(τ)− α(τ)µ2p(τ) + α(τ)µ2p(τ)−
∫ τ

τ
α(s)µ′2p(s)ds (1.12)

and

c(τ) = −α(τ)µ2p(τ) + β(τ) = β(τ)− α(τ)µ2p(τ)−
∫ τ

τ
α(s)µ′2p(s)ds.

The principal’s problem is now

min
α(τ)

Eτ [c(τ)] =
∫ τ

τ

(
β(τ)− α(τ)µ′2p(τ)− α(τ)µ′2p(τ)

1− F (τ)

f(τ)

)
f(τ)dτ. (1.13)

Note that the virtual cost in (1.13) still keeps the linearity in α, which implies the

participation constraint should bind for all τ in the optimal contract, i.e.,

c(τ) = β(τ)− α(τ)µ2p(τ)−
∫ τ

τ
α(s)µ′2p(s)ds = u(τ). (1.14)

Differentiating (1.14) with respect to τ , we get

α(t) = − u′(t)
µ′2p(t)

and from (1.12) and the appropriate boundary condition,

β(t) = −µ2p(t)

µ′2p(t)
u′(t) + u(t).

The remaining part is to check the second order condition or monotonicity of α.

Since µ′2p(t) = −pL(τx + t)−p−1 < 0 and µ′′2p(t) = −p(−p − 1)L(τx + t)−p−2 where

L = (2p)!/(2pp!), we have

α′(t) = −u′′(t)µ′2p(t)− u′(t)µ′′2p(t)(
µ′2p(t)

)2 > 0
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or

u′′(t)
u′(t)

>
µ′′2p(t)

µ′2p(t)
=
−p− 1

τx + t
. (1.15)

Since t is defined on a compact set and u′ and u′′ are continuous, the left side of

(1.15) is bounded. Therefore, for large p, the inequality holds for all t in the support

of τ .

The logic of proposition 2 is as follows. To satisfy the second order condition,

the sorting variable α(t) must be monotone increasing.12 The α(t) derived from the

first order condition is the product of u′(t) and a function of the announced posterior

precision, which we call here h(τx+t). In the proposition, h(τx+t) = M(τx+t)p+1 for a

constant M . Though h turns out to be increasing and positive, α is not guaranteed to

be monotone increasing for a concave u. The principal, however, can take arbitrarily

large p so that h increases fast enough to cover the effect of decreasing u′(t) so that

the product is monotone increasing. Indeed, for a given reservation utility, we can

find p∗ such that any payoff function with p > p∗ achieves the first best. We present

an example.

Example 1.2: Let τx = 1 and u(τ) = 1 − 1/(1 + τ)2, as in the second case in

example 1. Then, from proposition 2, the expected payoff given honest reporting on

the true state is, in the optimal contract with p = 3,

Ex [C(r, t, x)] = −α(t)µ2p(τ) + β(t) = −2

3

1 + t

(1 + τ)3
+ 1− 1

3(1 + t)2
.

The first order condition gives

2

3(1 + τ)3
− 2

3(1 + t)2
= 0 ⇒ t = τ

and the second order condition is satisfied since

∂2

∂t2
Ex [C(r, t, x)] = − 2

(1 + t)4
< 0.

12This is indeed equivalent to the supermodularity of the objective function in (t, τ).
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Figure 1.1 shows how the power of the ex-post error affects the expected payoff.

If the compensation is linear in mean squared error (p = 1), the truthful report

t = τ = 1 does not maximize the expected payoff. When the performance measure

is more sensitive to the error, for example with p = 3 in this example, the truthful

report becomes optimal for the expert.

0 1 2 3

0

1

2

1

0 1 2 3

0.0

0.5

1.0

1

Figure 1.1: Expected Payoffs when p = 1 (right) and p = 3 (left)

The results in this section are interesting from two perspectives. First, sorting

and honest reporting are implemented through a simple linear-form payoff function.

This is because the linear payoff function under honest reporting satisfies the Spence-

Mirrlees condition, or −α(t)/(τx + τ) is supermodular in α and τ . Moreover, it is

supermodular in t and τ provided α is increasing in t. This simplifies the problem

since the second order condition is equivalent to the monotonicity of α.

Another striking result is that the minimal information rent is paid in equilibrium.

This is because, unlike the standard screening problem, the professional advising has a

cheap talk feature in the sense that the sorting variable α does not affect the intrinsic

cost or utility of the expert. This makes the virtual surplus (or virtual cost) linear in

α. Therefore, the principal can fully control the payoff so the participation constraint

is binding for all types of experts.

It is worthwhile noting that this mechanism is not a unique. One may design other

mechanisms that achieve truthful type revelation and honest reporting. In addition,
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we should emphasize the compensation of each expert depends only on each expert’s

own report, not others’. This independent compensation scheme, in conjunction with

the binding participate constraint, is beneficial to the principal because she can design

the employment policy independent of the compensation scheme. We now turn our

focus to the employment stage.

1.5 Optimal Employment

In the previous section, we showed that the principal can elicit each expert’s

precision and induce the honest reporting through a compensation scheme. Those

features do not change when the principal wishes to hire more than one expert, since

the optimal compensation scheme proposed is independent. Each expert would not

care what types of experts he will co-work. Furthermore, since each expert will be

paid at his reservation utility level, he would not concern about whether he will be

hired or not. This implies that once pre-screening is done before the employment

decision is made, the employment policy can be independent of the compensation

scheme.

Specifically, consider the following game. At the beginning of the game, the true

state is realized, but not revealed to anyone in the game. Then the pre-screening

stage begins. The principal announces the compensation scheme, which is designed

to screen the type of each applicant. Each expert, drawn from the population, applies

for the job positions and send a message t on his own type. In the employment stage,

the principal decides which applicants he will hire, based on the information he learns

from the pre-screening stage. Once hired, each expert submits his report on the true

state. Finally, the true state is revealed and payoffs are made according to the

compensation scheme.

The screening through compensation simplifies the optimization problem. After

the principal pre-screens experts, she knows the type of each applicant and how much

18



she should pay if she hires some of them. Since experts hired are expected to submit

honest reports on the true state, the objective function of the principal becomes

a function of the precisions of employed experts less the sum of their reservation

utilities. With the mean squared error specification of the revenue, for example, we

have the optimization problem as follows:

max
S⊂I

(
− a

τx +
∑

j∈S τj

)
− ∑

j∈S

u(τj) (1.16)

where I is the set of all applicants. Now, the optimization problem becomes

a combinatorial optimization, or a discrete portfolio problem, which is covered in

Chapter 2 of this dissertation.

1.6 Conclusion and Discussion

This paper studies issues involving a principal wishing to hire possibly multiple ex-

perts for advice. To aggregate information from multiple sources and pay minimum

amount to each type of expert, the principal needs to design a mechanism induces

truthful type revelation and honest reporting on the true state. Under a Gaussian

specification, it is shown that there exists a payoff function which achieves this first-

best outcome. In the optimal contract proposed, the penalty for incorrect report is

increasing in type (precision) revealed by experts, preventing less precise experts to

hide behind more precise experts.

We derive the optimal compensation scheme in the class of linear functions in a

specified performance measure. We show that if the reservation utility is convex, the

first-best outcome is achieved with a payoff function linear in mean squared error. In

the case with concave reservation utility, the performance measure should be more

sensitive to the ex-post error, but still we can design the payoff function which is

linear in the power of mean squared error.

In the paper, we assume each expert’s gain from providing information depends

only on the current period compensation paid by the principal, and his ability is
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elicited through it. However, from a dynamic perspective, the ability or precision of

each agent may be evaluated by two parties: the decision maker (the principal) and

the outside evaluator (the market). In this case, the gain from information provisions

would come, at least partly, from future payoffs which depend on the reputation

built on today. Recent empirical studies show that career concerns matter in expert

advising. Ottaviani and Sørenson (2006a, 2006b) explore the theoretical approaches

on this topic.

However, Ottaviani and Sørenson (2006a) assume the compensation is solely de-

termined by reputation. In this sense, the approach of the paper is in the opposite

direction to ours. It would be a complete theory only when we consider the com-

pensation determined by both factors: future payoff from reputation and current

payoff from compensation. As two parties are involved in evaluation, there would be

a conflict of interests between the decision maker and the evaluator. Since the report

tends to be shaded or biased in the presence of reputation concerns, the principal’s

objective is to reduce such effect, without paying too much. We leave these topics for

future research.
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Chapter 2

Getting Advice from Experts: Optimal

Employment

2.1 Introduction

People seek advice from better informed people, or experts. Corporate CEOs often

make decisions based on reports submitted by informed employees or sometimes from

outside consultants. Governments operate and/or keep close contact with research

institutes whose main objective is to advise clients of policies based on correct and

accurate information. Stock market analysts help traders make best decisions by

enlarging their information. In every situation mentioned above, the decision maker

may need advice from more than one expert.

This chapter1 explores the optimal employment when a monopolistic information

demander, a principal, wishes to gather information from multiple experts. We as-

sume each expert has heterogeneous information quality, or precision of the signal,

and his reservation wage depends on the quality. When the information quality is

known to the principal, his objective is to select the set of experts which provides the

best information.

Even when the information qualities are private, the principal needs to elicit

them to achieve the efficient information aggregation and minimal type dependent

wage payment. In Chapter 1, we show that there exist compensation schemes with

which the principal can screen the precision of each expert’s signal and pays only the

1This chapter represents joint work with Jooyong Jun.
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reservation utility. Through the proposed compensation scheme as a pre-screening

device, the employment problem the principal faces becomes the same as one under

full information on the precision.

We assume the principal’s objective is to minimize the expected mean squared

error of her own prediction on the true state less the wage payments. Under the

Gaussian specification, the expected mean squared error is the principal’s posterior

variance, or the reciprocal of the posterior precision. The objective function of the

principal’s optimization problem is the set function, but with the assumptions and

specifications of the model, it is transformed to the function of the sum of precisions.

With the nonlinear objective function and an arbitrary reservation utility func-

tion, it is hard to characterize the optimal employment set in general. We could,

however, find interesting results under a specification on reservation utility. When

the reservation utility is proportional to the marginal single information contribution,

we show that the optimal employment set satisfies a cut-off property where experts

with higher precision are hired. This strong result is derived because the marginal

information contribution function becomes less concave than the reservation wage

function as information is accumulated. We also discuss the case in which the cut-

off rule does not hold, and relate the problem with the ‘combinatorial optimization

problem,’ recently introduced to literature in economics.

As far as we know, there has been no paper which studies multiple experts and

associated employment decision problem. However, the problem is analogous to the

newly developed combinatorial optimization technique. In economics, Kelso and

Crawford (1982) pioneered the technique, first introducing the ‘gross substitutes con-

dition’ which guarantees a greedy algorithm to be optimal. The technique has since

been used in cooperative game theory, matching models, and multi-item auctions.

For recent literature, refer to Gul and Stacchetti (1999) which develops equivalent

conditions with gross substitute condition and relates it to the Walrasian equilibrium,
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Lehmann et. al. (2006) and Milgrom and Strulovici (2006) for auctions, and Chade

and Smith (2005) which develops a greedy algorithm to solve a simultaneous search

problem with single stochastic prize without gross substitutes condition.

This chapter is organized as follows: We describe the model and present the

optimization problem in the next section. In section 3, we present the main result:

under a specification of the reservation utility function, we derive the property of the

optimal employment set. Section 4 generalizes the result and propose the conditions

under which the main result holds. Section 5 relates the result with the recent

literature on combinatorial optimization. Section 5 concludes and addresses issues

for further research.

2.2 Model

An uninformed principal tries to make the best prediction of the true state, for

example the profitability of a project. To get better information beyond common

prior, the principal wishes to hire privately informed agents, who are called ‘experts’

hereafter. Experts are heterogeneous in the precision of their private signals on the

true state, which is labelled their type.

The true state x is drawn from a normal distribution with mean µx and variance

1/τx, which is common knowledge. We assume the true state is verifiable and thus

contractible. While the principal has no private information, expert i ∈ I receives a

conditionally independent private signal si, where I is the set of experts who applied

for the job positions. The distribution of si is assumed to follow a normal distribution

with mean x and precision τi, or

si = x + εi, εi ∼ N (0, 1/τi) .

The precision, or type, of each expert τi is drawn from the population with dis-

tribution function F on the support of [τ , τ ] ⊂ R+. We assume F is continuously
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differentiable so that the probability continuous density function f exists. The type

of each expert is assumed to be either common knowledge, or known to the principal

through costless pre-screening before the principal makes the employment decision.

Once hired, each expert should submit a report on the true state, denoted by

ri ∈ R for expert i. We assume the compensation scheme is designed for each expert

to report his posterior mean. In other words, the honest report is a priori assumed.

Since the principal knows the precision of each expert, the honest report on the true

state is equivalent to the honest report on the signal received. Formally, we have the

one-to-one relationship between the private signal and the honest report:

si =
(τx + τi)ri − τxµx

τi

Experts are assumed to be risk neutral utility maximizers with the identical

vNM utility function u(c) = c. Each expert has a reservation utility which is type-

dependent. With risk neutrality, the reservation utility can be seen as the reservation

wage. The reservation wage, or the outside option might be from the experts’ labor

market, or from the single production through the private information. We focus

on the second interpretation, noting that the principal is a monopolistic information

demander. We will discuss the first interpretation in later section. Type-dependent

reservation utility function u(τ) is assumed to be strictly increasing and continuously

differentiable.

The principal’s objective is to maximize revenue less payoffs to employed experts.

The revenue function R depends on the principal’s prediction on the true state,

denoted by x̂, and the true state. We specify it as R(x, x̂) ≡ K − a(x̂ − x)2 for

constants K > 0 and a > 0. I.e., the principal tries to minimize the mean squared

error2.

2The qualitative results of this chapter hold provided the principal minimizes any power function
of ex-post error, | x̂− x |. This is because the expectation of the power of error is a constant times
the power of the posterior variance. One can easily transform the optimization problem into one
with the mean squared error.
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With known precisions and honest reports, the principal’s best prediction is the

posterior mean of the true state given all information available for her. If J ⊂ I is

the employment set, we have

x̂ =

∑
j∈J rj(tj + τx)− (|J | − 1)µxτx∑

j∈J tj + τx

,

This prediction is unbiased, so the expected mean squared error becomes the posterior

variance, τx +
∑

j∈J τj. Principal’s objective is to select the best subset S ⊂ I which

maximizes the revenue less the wage payments. The optimization problem is formally

described as follows.

max
S⊂I

Ex


K − a(x̂− x)2 −∑

j∈J

u(tj)


 =

(
K − a

τx +
∑

j∈S τj

)
− ∑

j∈S

u(τj) (2.1)

In principle, the problem can be solved through computing values of the objec-

tive function over the power set of alternatives (in our setting over the power set of

applicants). It belongs to the class of combinatorial optimization problems, which

aims at finding the best subset from a finite set of alternatives. Indeed, the optimiza-

tion problem is a special case of a firm’s employment decision problem in Kelso and

Crawford (1982) even though the focus is quite different from ours.3

In our model, we can consider the expected information gain of the principal as a

joint production by employed experts. As will be shown in the next section, the joint

production set function is submodular with respect to the set inclusion operation.

This implies that the production function exhibits the decreasing marginal returns:

the marginal contribution by a single agent to a subset of alternatives decreases as

the subset becomes larger. Though the submodularity is a nice property for the

objective function in maximization problems, it does not guarantee that we have a

simple algorithm to get the solution. Indeed, it is well known that the maximization

3The utility maximization problem given a price vector in Gull and Stacchetti (1999) is also
isomorphic to ours, where the utility and the price are analogue to the information gain and the
reservation wage, respectively.
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of a general submodular set function is computationally intractable4. This makes it

difficult not only to find the efficient algorithm but also to characterize the property

of the optimal set.

Nonetheless, the objective function of our model has a nice feature. Any set of

experts can be characterized by a single real number, the sum of precisions of experts

in the set. This allows us to transform the objective set function to a function on the

two dimensional Euclidian space. This transformation allows us to solve the problem

through a greedy algorithm, as will be discussed later.

Yet the optimal employment set is quite arbitrary since it depends heavily on the

form of reservation utility function. We make a critical but reasonable assumption

on the reservation utility in the next section: the reservation utility is proportional to

the marginal single information contribution. Under this specification, the optimal

employment set is shown to follow a cut-off property. We then discuss on general

cases, providing an example of complicated optimal employment set. The comparison

of our model and other combinatorial optimization problem is presented in the final

subsection.

2.3 Properties of Optimal Employment Set

Before we begin the analysis, we define some functions for notational convenience.

Definition 2.3.1: (Objective function)

1) A set function g, called information gain function hereafter, is a mapping from the

power set of I to R+, which is defined as

g(S) ≡ K − a

τx +
∑

j∈S τj

, S ⊂ I.

4In the combinatorial optimization problem theory, the problem is known to be so called NP-
hard: there is no algorithm for the problem to be solved in a polynomial time. See, for example,
Lovàsz (1982).
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If S is a singleton, g(S) is called a single information gain function. We abuse notation

by denoting g(i) = g({i}) for i ∈ I.

2) We call f the information contribution (IC) function, denoted by f(TS) where T is

the sum of the precisions in the set S ⊂ I5;

f(T ) ≡ K − a

T
.

Note that T ∈ [τx, τx +
∑

i∈I τi].

3) The marginal information contribution (MIC) function is derived from information

contribution function. For prior T and precision of a new signal τ , we let

M (T, τ) ≡ f(T + τ)− f(T ) =
aτ

T (T + τ)
.

Similarly we define the information loss when we remove a signal with precision τ

from a set whose precision is T .

O(T, τ) ≡ f(T )− f(T − τ) =
aτ

T (T − τ)
.

We have the following properties of the information contribution function.

Lemma 2.1: (Properties of IC function)

(a) (Monotonicity of information gain function) For any A ⊂ B ⊂ I, g(A) ≤ g(B).

(b) (Monotonicity of information contribution function) f(T ) is increasing in T .

(c) (Submodularity of information gain function) For any A and B in 2I , we have

g(A) + g(B) ≥ g(A ∪B) + g(A ∩B).

(d) (Concavity of IC function) For any τ1 > τ2 and for any T1 > T2, the inequality

f(T1 + τ1)− f(T1 + τ2) < f(T2 + τ1)− f(T2 + τ2) is satisfied.

5We sometimes suppress S.
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Proof. It is easy to show that (a) and (b) are equivalent and (c) and (d) are

equivalent. (b) is obvious by definition. To see (c) holds, it suffices to show that

g(A)− g(A ∩B) ≥ g(A ∪B)− g(B)

⇔
1

τx +
∑

j∈A∩B τj

− 1

τx +
∑

j∈A τj

≥ 1

τx +
∑

j∈B τj

− 1

τx +
∑

j∈A∪B τj

.

This inequality holds since

∑
j∈A\B τj

(τx +
∑

j∈A∩B τj)(τx +
∑

j∈A τj)
≥

∑
j∈A\B τj

(τx +
∑

j∈A∪B τj)(τx +
∑

j∈B τj)
.

We now make a critical assumption on the reservation utility. We assume that it

is proportional to the marginal single information contribution6, that is, for k > 1,

u(τ) ≡ 1

k
M (τx, τ) =

aτ

kτx(τx + τ)
.

We also normalize a = τx = 1. The assumption is quite strict but reasonable.

It says that if the expert utilizes his private information outside of the relationship

with the principal, his gain is proportional to the marginal single information gain.

Behind the assumption we think all potential principals in the market share the same

information on each expert so that the gain inside of the market should be the same

across principals. Since all employers do not know who is what type, the reservation

utility cannot be type dependent. The only situation where an expert with higher

ability gains more lies in the case when he uses the private information for his own

gain.

To prove the key characterization of the optimal employment set, we need the

following lemma:

6We strongly conjecture that the main result still hold if the reservation utility is a concave
function of the marginal single information contribution. This is because, as will be clarified later,
the main result depends on the fact that the marginal contribution function near the global opti-
mum crosses the reservation utility only once and from below. The fact is still satisfied when the
reservation utility is concave in the marginal single contribution.
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Lemma 2.2: The net information gain from adding τ from a set with collective

precision T , M (T, τ) − u(τ) crosses zero on τ > 0 at most once and from below.

Likewise, the net information gain from dropping τ , u(τ) − O(T, τ) crosses zero at

most once and from above.

Proof. M (T, τ) − u(τ) > 0 if and only if T (T + τ) − k(1 + τ) < 0. Since it is

linear in τ , for some τ > 0 to satisfy the equality we must have either k − T 2 > 0

and T − k > 0 or k − T 2 < 0 and T < k. However, the latter inequality cannot

hold because k > 1. Thus, we need to check only the case of
√

k < T < k. Then,

T (T + τ) − k(1 + τ) is a decreasing function of τ and crosses zero only once rom

above. This implies that M (T, τ)− u(τ) crosses zero at most once from below.

For the dropping case, u(τ) − O(T, τ) > 0 if and only if (T + k)τ − T 2 + k < 0.

This crosses zero at most once regardless of the value of T . Since it crosses from

below, u(τ)− O(T, τ) crosses from above.

The intuition of Lemma 2 is as follows. For the marginal information contribution

function to cross the reservation utility function, T must be in an appropriate range.

Since the MIC becomes less concave as T increases, it is flat relative to the reservation

wage function in the range of T .

We need an additional lemma to prove the main proposition.

Lemma 2.3: Suppose that T 2 > k. Let τ2 satisfy M (T, τ) − u(τ) = 0 and τ1

satisfy u(τ)− O(T, τ) = 0. Then, τ1 < τ2.

Proof. The existences of τ1 and τ2 are immediate from the proof of lemma 2. We

have (T−k)τ2+T 2−k = 0 and (T +k)τ1−T 2+k = 0. But then, (T +k)τ2−T 2+k >

−(T − k)τ2 = T 2 − k. Thus, u(τ2)− O(T, τ1) < 0, which implies that τ1 < τ2

Proposition 2.1: Under the current reservation utility specification, the optimal

employment set follows the cut-off property. That is, there exists τ ∗ such that experts

i is in the optimal set if and only if τi ≥ τ ∗.
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Figure 2.1: Marginal Gain from Adding/Dropping an Expert with τ (k = 4, T = 3)

Proof. Let S ⊂ I be the optimal set and let TS be the associated collective

precision. Note first that if T 2
S < k, S cannot be the optimum unless S = I since

adding any expert in I \S yields positive net gain. We only consider the case T 2
S > k.

Define τ1 and τ2 as in the proof of lemma 3. Suppose s ∈ S is less than τ1.

Then, dropping it improves net gain, contradicting the optimality. Similarly, any

u ∈ I \ S cannot be bigger than τ2. The only thing we need to check is the case in

which there are i and j such that both are between τ1 and τ2, τi < τj, and τi ∈ S but

τj ∈ I \S. Consider S \{τi, τj}. The optimality implies that M (TS−τi, τi)−u(τi) >M

(TS − τi, τj) − u(τj). But then M (T − τi, τ) − u(τ) crosses zero from above, which

contradicts Lemma 2. (Refer to Figure 1) This completes the proof.

It should be noticed that the cut-off property is a property of the optimal em-

ployment set, not a decision rule. A decision rule is a method to find the optimal

set given the knowledge of the applicants’ types from the pre-screening stage. Even

though the cut-off type τ ∗ depends on the types of applicants, it does not mean that
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we can specify a decision rule as a function τ ∗(τ1, · · · , τ|I|).

However, the cut-off property suggests a simple algorithm work to find the optimal

set. We propose two algorithms. The first one is the Marginal Improvement Algorithm

(MIA), as in Chade and Smith (2005). The principal begins with the null set and

search the best expert and add him into the employment set. She searches the best

expert given the current employment set (and thus the current T ) among experts not

in the employment set. She repeats this procedure until the marginal net information

gain is negative. The second algorithm is as follows. The principal first sorts the

applicants by type, then begins checking starting with the highest type of applicant.

She adds the applicant to the employment set as long as the marginal net gain is

positive. After all, she hires all applicants before the applicant whose marginal net

gain is negative. Both algorithms solve the problem in O(|I|2), steps but they are

different in orders of experts added to the employment set.

The following example shows the optimal employment set when |I| = 2.

Example 2.1: Consider the two applicants case: |I| = 2. Let a = 1, tx = 1, and

ti ∈ (0, 2]. Also, assume that the reservation utility for the expert with type τ is half

of his marginal single production. That is,

u(τ) =
1

2
(g({τ})− g(∅)) =

τ

2τx(τx + τ)
.

The graph shows the outcome of the optimal employment decision. We have
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Figure 2.2: Optimal Employment Set for Two Applicants

Area Net Gain for the Principal

A {1, 2} Â {1} Â {2}
B {1, 2} Â {2} Â {1}
C {2} Â {1, 2} Â {1}
D {2} Â {1} Â {1, 2}
E {1} Â {1, 2} Â {2}
F {1} Â {2} Â {1, 2}

We can easily check the monotonicity of the optimal employment set: there is

no case in which the higher type is not employed while the lower type is. This is

equivalent to the cut-off property of the optimal set. It shows also that both applicants

are hired together only when they are all of low type.
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2.4 Discussion on the Specification

2.4.1 Other Reservation Utility Specification

In the previous section, we show a nice property for the optimal employment set. The

result crucially depends on the quasi-convexity of the marginal net information gain,

which is due to the fact that, roughly speaking, the marginal information contribu-

tion is less convex than the reservation wage. Moreover, the marginal information

contribution becomes less concave as T gets large. This implies that even though

the marginal information contribution is more concave than reservation utility at the

initial state (when T = τ), it might become less concave when T approaches the op-

timal cut-off point. The specification of reservation utility in the previous subsection

shows exactly this case. Initially, the curvature of the reservation utility is the same

as that of the marginal information contribution. For T > τx, however, the curvature

of the former is always bigger than the latter.

Though the assumption on reservation utility in the previous subsection is rea-

sonable, there are other possibilities where the property we discussed above does not

hold. To motivate, we provide an example in which the simple greedy algorithm

described above fails to lead to the optimum.

Example 2.2: Figure 3 shows a linear reservation utility function u(τ) = 1
16

τ

and marginal information contribution functions when a = 1, T being varied. Let

τx = 1, and the support of τ is (0, 3]. Note first that when the principal is to hire

only one expert, the highest type is always preferred since M (1, τ) ≡ f(1, τ)− u(τ) is

increasing when τ ≤ 3.

Suppose three applicants have applied for the job and from the pre-screening the

principal knows their types are τ1 = 1, τ2 = 2, and τ3 = 2.8. The global optimum

is to hire expert 1 and expert 2. However, if the principal solves locally, he will first

hire expert 3, and then will not hire any more expert, as demonstrated in Figure 3.
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(Failure of MIA)

Consider now three applicants of type τ1 = 1, τ2 = 1.5, and τ3 = 2. The global

optimum is to hire expert 1 and expert 3. (Failure of monotonicity)

The above example shows that the marginal improvement algorithm does not

lead to the global optimal solution7, and the optimal employment set may be non-

monotonic. The key point in this example is the quasi-concavity of the marginal net

gain. As the reservation utility function is close to linear, the marginal net gain is

always more concave than the reservation utility function. If the reservation utility is

linear or convex, the marginal net gain is always concave due to the submodularity of

f . This implies that as the employment set is enlarged, or equivalently the information

is cumulated, the lower type has a better chance of being hired than the higher type,

though initially the higher type contributes more. This breaks down the monotonicity

and the MIA may not lead to the global optimum.

7This does not mean that no greedy algorithm solves the problem. Greedy algorithm is a broader
concept than MIA. It is, roughly speaking, a way to find the global optimal solution to a discrete
optimization problem through finding local optima in each step. If such algorithm leads to the global
optima, it reduces calculation time dramatically (from an exponential time to a polynomial time.)
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2.4.2 General Conditions for the Cut-off Property

As we discussed in the previous section, the cut off property crucially depends on

the fact that, near the global optimum, marginal information contribution crosses

the reservation utility only once and from below. One may ask the general condition

for the objective function under which the property holds. This subsection shows

the single crossing property holds when the objective function satisfies the decreasing

curvature property. This type of function is referred to as DARA for utility functions.

We define this property in terms of discrete choices.

Definition 2.4.1: A set function f on 2S, where S = {s1, . . . sn}, is said to

satisfy decreasing curvature (DC, hereafter) if for a given , if for all i = 1, 2, · · · , n−2,

−f(si)− 2f(si+1) + f(si+2)

f(si)− f(si+1)

is decreasing in i.

We first assume that the objective function f is a set function defined on 2E where

E is a finite set, and there exists a complete order among elements in E with respect

to a binary relationship º. Suppose, as in the main model, that the reservation

utility u is proportional to the individual’s single production, or u(a) = αf(a) where

0 < α < 1. Assume f(∅) = 0 so that the marginal single production is the single

production. Then, for a set of applicants A, the maximum profit is f(A)−α
∑

e∈A f(e).

The positive single crossing condition is satisfied if there exists a∗ ∈ S such that

f(a∗ ∪ A)− α

(∑

e∈A

f(e) + f(a∗)

)
≥ 0

then, for any b < a∗ and b /∈ A,

f(b ∪ A)− α

(∑

e∈A

f(e) + f(b)

)
≥ 0

and for any b 4 a∗,

f(b ∪ A)− α

(∑

e∈A

f(e) + f(b)

)
≤ 0
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are satisfied.

Because f is an increasing, submodular set function, if the positive single crossing

condition is satisfied, then for a subset A′ ⊇ A, if there exists b∗ such that for any

b < b∗,

f(b ∪ A′)− αf(b) ≥ α
∑

e∈A′
f(e)

is satisfied, we have b∗ < a∗.

The following proposition states that the positive single crossing condition is sat-

isfied if the submodular production function shows a decreasing curvature and the

reservation utility is given as a fraction of single production.

Proposition 2.2: For an increasing submodular set function f (·) and a subset

A ∈ 2S, if the reservation utility is given as a fraction of single production, or u(s) =

αf(s) where s ∈ S, f(·) satisfies the positive single crossing condition if f(·) satisfies

decreasing curvature.

Proof. First, we explain the decreasing absolute risk averse property, a decreasing

curvature, of a set function with a complete subset order for its domain. It also leads

that if a non-empty subset A does not include si, si+1, nor si+2, then the inequality

−f(si ∪ A)− 2f(si+1 ∪ A) + f(si+2 ∪ A)

f(si ∪ A)− f(si+1 ∪ A)
< −f(si)− 2f(si+1) + f(si+2)

f(si)− f(si+1)

is satisfied.

If there exists such n∗, the inequality

f(sn ∪ A)− f(sn∗ ∪ A) ≥ αf(sn)− αf(sn∗) (2.2)

needs to be satisfied. From DC property, the following inequality

0 > f(sn ∪A)− 2f(sn+1 ∪A) + f(sn+2 ∪A) > α(f(sn)− 2f(sn+1) + f(sn+2)) (2.3)

is satisfied, which implies that the decrease of production difference is slower than

the decrease of reservation utility difference and, therefore, for any sn < sn∗ (or
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n ≤ n∗) and sn /∈ A, (2.2) is always satisfied, which implies that f(sn ∪ A) −
α

(
∑

e∈A
f(e) + f(sn)

)
≥ 0.

If (2.2) is violated, from decreasing curvature, the decrease of reservation utility

difference is slower than the decrease of production difference, which leads to the

violation of (2.3). Then, there may exists s∗ such that any sn such that sn < s∗ < sn∗

violates the inequality f(sn ∪ A) − α

(
∑

e∈A
f(e) + f(sn)

)
≥ 0, which contradicts the

definition of n∗.

Finally, we want to show that f(sn∪A)−α

(
∑

e∈A
f(e) + f(sn)

)
< 0 for all sn ≺ sn∗ .

Suppose there exists such s′ /∈ A that s′ ≺ sn∗ but f(s′∪A)−α

(
∑

e∈A
f(e) + f(s′)

)
≥ 0

and there exists s′′ such that s′ ≺ s′′ ≺ sn∗ and it satisfies f(s′′∪A)−α

(
∑

e∈A
f(e) + f(s′′)

)
<

0. Then, we have the following inequality f(s′′ ∪ A) − αf(s′′) < f(s′ ∪ A) − αf(s′)

which clearly violates (2.2) and from decreasing curvature, no s Â s′ satisfies the

inequality f(s ∪ A)− α

(
∑

e∈A
f(e) + f(s)

)
≥ 0 . This result, however, clearly violate

the assumption sn∗ Â s′. This completes the proof.

2.5 Efficient Algorithm

2.5.1 Gross Substitute and Efficient Algorithm

In an analysis of labor market equilibrium, Kelso and Crawford (1982) introduce

the Gross Substitutes (GS) condition to show the existence and the stability of the

equilibrium. Gul and Stacchetti (1999), in a slightly different setting, also consider

the objective set function satisfying GS condition in addition to a new condition of a

set function, the Single Improvement (SI) property. Though focuses of their papers

are on the existence of market equilibrium, not on the optimal decision itself as ours,

their results provide some implications for our model. The following definitions are

ones slightly modified from Gul and Stacchetti (1999).

Definition 2.5.1: Denote S(w) be the optimal set of the optimization problem.
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A function f : 2I → R

(i) satisfies the GS condition if for any two reservation wage vectors w1 and w2 in

[w,w]I such that w1 ≤ w2, and any A ∈ S(w1), there exists B ∈ S(w2) such that

{i ∈ A|w1
i = w2

i } ⊂ B.

(ii) has the SI property if for any reservation wage vector w in [w, w]I and set of employees

A /∈ S(w), there exists a bundle B such that g(A)−∑
j∈A wj < g(B)−∑

j∈B wj and

|A \B| ≤ 1, and |B \ A| ≤ 1.

Gul and Stacchetti (1999) show that if f is monotone then the GS condition is

equivalent to the SI condition. Chade and Smith (2006) states in the appendix that

the SI condition, or equivalently M \-concavity from Murota and Shioura (2003),

guarantees that a greedy algorithm leads to the global optima. The greedy algorithm

using SI condition, which is called the steepest ascent algorithm (SAA), can be roughly

as follows. Start with an arbitrary subset of the whole set. If the set is locally optimal,

then stop. Otherwise, add or subtract a single element to/from the subset or replace

one element in the set with an element from outside, which improves the objective in

the best way. Repeat this procedure until we reach the local optimum.

MIA is a special case of the SAA in that the procedure does not contain a sub-

straction nor a replacement in each local step. It solves the problem more efficiently

than the SAA, but it is not guaranteed for the algorithm to lead the global optima

even in the case when the objective function satisfies the SI condition. However,

Proposition 3 implies that the principal in our model can solve the problem through

the MIA, thus through the SAA.

In fact, the SI property holds for the objective function in our model since given

a set of applicants, one can find the best among the applicants outside of the set

and/or the worst among those inside the set, which is illustrated in Figure 1. This

can be generalized even further. Once the objective function is a function of the sum

of types of a subset, that is, if the set function can be transformed to a function whose
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domain is a Euclidean space, the SI property always holds for the objective function.

The SI property of the objective function in our model provides a weak com-

parative statics result. Due to the equivalence of the GS and SI conditions, the

information gain function satisfies the GS condition. This implies that an increase

in reservation wages for part of the applicant pool does not affect the employment

decision on applicants whose reservation wages do not change.

2.5.2 Efficient Algorithm for a Submodular Set function

In the main model of this chapter, we consider a specific set function where it is a

reciprocal of the sum of elements. This subsection considers the optimization of a

general submodular set function. Though myopic local search does not lead to the

global optima, we propose an algorithm from some properties of the submodular set

function which reduces the calculation time.

Let Sn := {s1, . . . , sn}, and Sn+1 := Sn ∪{sn+1} for a given set of N applicants I.

For sets A,B, and C, define [A,B,C] ≡ (A\B) ∪ C.

The following lemma states that once an element x ∈ S is not included in the

optimal subset of one set, x is not included in the optimal subset of any bigger set

including the original set. It is a critical property which is used for the employment

algorithm later.

Lemma 2.4: If τ ∈ Sn and τ /∈ An, then for any Sm such that Sn ⊂ Sm ⊆ S (or

for any m > n), τ /∈ Am.

Proof. It is obvious that you cannot be better off by removing any element

from an optimal subset or including any other element into it. In other words, for

any τ ∈ An, where An is the optimal subset for a given Sn ⊆ S, the inequality

f(An\{τ}) ≤ f(An) − u(τ) must be satisfied, and for any a /∈ An, f(An\{a}) ≥
f(An)− u(a). We also know that f(An) ≤ f(Am).

Suppose there exists an element τ /∈ An but τ ∈ Am. Then the inequalities
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f(An∪{τ})− u(τ) < f(An) and f(Am\{τ}) < f(Am)−u(τ) must be satisfied. From

these inequalities, we know that f(An ∪ {τ}) + f(Am\{τ}) < f(An) + f(Am) must

be satisfied, which contradicts the submodularity assumption. Therefore, if τ /∈ An,

then τ /∈ Am.

The following lemma states that if including an additional element leads to the

better payoff but not to an optimum, exchaging an element will do so.

Lemma 2.5: If f(An ∪{sn+1})−u(sn+1) > f(An) and An+1 6= An ∪{sn+1}, then

there exists a unique a ∈ An which satisfies An+1 = [An, {a}, {sn+1}].

Proof. Note that Sn+1\Sn = {sn+1}. Lemma 1 implies that any element not in

An cannot be included in An+1. Therefore, including any element x /∈ An ∪ {sn+1}
does not leads to An+1. Therfore, there exists at least one a ∈ An such that f(An ∪
{sn+1}) − u(a) ≤ f([An, {a}, {sn+1}]) and the additional gain from hiring sn+1 is

strictly positive.

Now we check uniqueness. Because a < τn+1, the following inequality

f([An, {a}, {τn+1}]) ≤ f(An)

must be satisfied, which also implies that [An, {a}, {τn+1}] 4 An. We already know

that for any τ ∈ An, the following inequality f(An)− u(τ) ≥ f(An\{τ}) is satisfied.

Therefore, with Assumption 1, the following inequality

f([An, {a}, {τn+1}])− f([An, {a}, {τn+1}]\{τ}) ≥ f(An)− f(An\{τ})

is satisfied for any τ ∈ [An, {a}, {τn+1}].
Suppose now that there exists another element a′ ∈ An and a′ 6= a which satisfies

f ([An, {a}, {τn+1}])−u(a′) ≤ f ([An, {a}, {τn+1}]\{a′}). Then, from f(An)−u(a′) ≥
f(An\{a′}), f ([An, {a}, {τn+1}]) + f(An\{a′}) ≤ f(An) + f ([An, {a}, {τn+1}]\{a′})
must be satisfied, which violates the submodularity assumption. Therefore, for any
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τ ∈ [An, {a}, {τn+1}], the following inequality

f([An, {a}, {τn+1}])− u(τ) > f([An, {a}, {τn+1}]\{τ})

is always satisfied, which implies that there is no element to be removed other than

a. Therefore, only one element in An needs to be removed to reach the new optimal

subset An+1 if An ∪ {sn+1} 6= An+1.

Here is the optimal algorithm of simultaneous hiring:

Proposition 2.3: The following algorithm finds the global optimum.

(a) Sort the N applicants by the decreasing order of capability.

(b) If f(An ∪ {τn+1}) − u(τn+1) < f(An), then set An+1 = An and move on to the

next applicant.

(c) Otherwise, if f(An ∪ {τn+1}) − u(τn+1) > f(An), then find a ∈ An which

minimizes f(An ∪ {τn+1}) − f([An, {a}, {τn+1}]) − u(a). If this value is pos-

itive, then set An+1 = An ∪ {τn+1}. If this value is negative, then set An+1 =

[An, {a}, {τn+1}].
(d) Repeat 2-3 until reaching the final applicant.

2.6 Conclusion and Discussion

This paper studies issues involving a principal wishing to hire possibly multiple

experts for advice. Based on the result in the pre-screening stage, we examine the

optimal employment decision. We show that under a realistic specification on the

reservation utility, a cut-off rule employment policy is optimal. We also provide an

example in which the monotonicity and the marginal improvement algorithm break

down. It turns out that the property of the optimal employment set crucially depends

on the relative concavity of the marginal information gain to the reservation utility.
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In general, it can be shown that if the production function is a function of the sum

of the types of employees, and it is submodular in set inclusion operation, then the

production would exhibit decreasing marginal returns as shown in Gul and Stacchetti

(1999). Then the optimal employment policy depends on the relative concavity of

the marginal gain to the reservation utility, or quasi-convexity (quasi-concavity) of

the marginal net gain. We raise two issues: what the characteristics of the optimal

employment set are, and whether we can find a greedy algorithm in which local search

leads to the global optimum. We leave these topics for future research.
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Chapter 3

Uncertain Arrival Timing of a Signal and

Forecasting Behavior

3.1 Introduction

Consider a forecaster who wishes to predict a firm’s earnings. He has heard news from

an insider which is informative for the forecasting. He also observes other forecasters’

forecasts from which she may get some information on the earnings. He should now

figure out whether the news has already been incorporated in the previous forecasts,

since otherwise he may doubly count the same information.

This paper presents a parsimonious forecasting model to examine the effect of

a common signal on the forecast when the arrival time of the signal is uncertain.

We are in particular interested in the Bayesian updating procedure through which

the forecaster fully utilizes the information contained in the consensus from past

forecasters and the new signal. We then examine the empirical implication of the

model.

Most literature on this topic, both in empirical and in theoretical studies, assumes

a simple information structure in which every private signal is long-lived, and all

public information is contained in the prior. On the contrary, some information in

real world is short-lived, and shared by forecasters.1

This chapter examines another type of information. A signal is issued at some

1Even in the case where private signals are short-lived, if successors know who among predecessors
have the signal and when it gets revealed, the outcome is equivalent to the assumption of a long-lived
private signal.
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point in time, but forecasters who receive it do not know when it is issued. Examples

include leaked information from insiders, informative rumors, and public information

transmitted slowly. In the model we present, the consensus may already reflect the

new signal. Facing this uncertainty, the forecaster needs to estimate the chance that

his information has been stale. This estimation procedure affects the estimate of the

true state.

Under a Gaussian specification, it is shown that the forecaster’s weight on his own

information increases in the gap between his own information (the new signal) and

the consensus. This is because, as the private signal of the forecaster moves out from

the consensus, he believes his signal is more likely to be new. As a result, the forecast

is more dispersed compared to the case with certain arrival timing.

The result sheds light on recent empirical studies on herding/anti-herding bias in

earnings’ forecasts. Chen and Jiang (2006) and Bernhardt et al. (2006) show that

forecasters tend to anti-herd in the sense that they assign more weight on the pri-

vate information than on the public information, or consensus, compared to rational

Bayesian updating. Since the private information is not observable, they use the fact

that the expected forecast error is uncorrelated with deviation from the consensus.

In other words, the forecast error should not be predictable by available information.

Without resorting to behavioral assumption or strategic behavior due to certain

features of the payoff, this paper shows that statisticians observe forecasters to weight

more on private information rather than the consensus. This is contrary to the

argument in Bernhardt et al. (2006) that their result is not affected by variations in

the information structure.

The article is organized as follows. We present our model in the next section.

We then analyze the Bayesian updating procedure for the forecaster and derive the

properties of the forecasts. The empirical implications are proposed in the following

section. In the last section, we discuss a few related issues and conclude.
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3.2 Model

A forecaster tries to give her best forecast on the true state x. We call her the

forecaster to distinguish her from past forecasters. A priori the true state is assumed

to follow normal distribution with mean µx and precision τx, i.e., x ∼ N (µx, 1/τx).

We assume this prior mean µx is unknown to the forecaster, but τx is known. This is

critical assumption for the main model. Instead, she observes a consensus from past

forecasters. We denote the consensus by c.2 The distribution of the consensus will

be discussed later.

The forecaster observes an informative signal s and it is the sum of the true state

and the error term where the error term is independent to the true state.3 Formally,

we have

s = x + εs, εs ∼ N (0, 1/τs)

The consensus can be interpreted as the aggregate information from past fore-

casters. In the perspective of the forecaster, the consensus c is the prior information

available. The consensus provides information on true state, but the forecaster does

not know whether it already contains the information from the signal she has ob-

served. This is the case when the signal has arrived before the consensus is made, or

before the current forecaster’s turn.

To model this environment, we assume there are two events about the arrival time

of the new signal, which is represented by a random variable t ∈ {0, 1}. If t = 0, the

signal is arrived in the past and the signal is incorporated in the consensus. If t = 1,

it is new to the forecaster. The ex-ante probability of the former event is 1 − p for

p ∈ (0, 1).

The observed consensus c now depends on whether the signal s has been arrived

2We slightly abuse notations to denote by c both the random variable and a realization of it.
3In principle, we need to assume the forecaster receives her own pure private information. We

ignore this private information to focus only on the effect of common signal.
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before the forecaster or he is the first forecaster who observes it. When t = 1, it is

the mean of the distribution

N
(
µx,

1

τx

)
,

while when t = 0, it is the mean of the distribution

N
(

τxµx + τss

τx + τs

,
1

τx + τs

)

Note that µx is unknown, which implies that observing s does not guarantee the

forecaster knows the arrival timing of the signal.

After observing c and s, the forecaster should submit her forecast on the true state.

It is assumed the compensation is decreasing in the ex-post mean squared error and

it is paid when the true state is realized. Thus, it is optimal for the forecaster to

submit the posterior mean of the true state given all information available to him.

We now consider the optimal forecast by a Bayesian rational forecaster.

3.3 Bayesian Update and Optimal Forecast

As a benchmark, suppose first that there is no uncertainty in t, i.e., the forecaster

knows which event with respect to t has occurred. Then, if t = 0, the forecaster has

no additional information, and therefore her forecast would be

r = r0 ≡ c,

while if t = 1, since she knows the signal s should be used to update the forecast of

the true state, we have

r = r1 ≡ τxc + τss

τx + τs

Now, suppose that the event t is uncertain. Then, the forecaster needs to deter-

mine from which distribution the signal has been drawn. Let π be the posterior belief
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that t = 1. Then, for a K which depends on s and the belief on µx, we have

π

1− π
=

Pr [t = 1 | c, s]
Pr [t = 0 | c, s]

=
f (c | t = 1, s) Pr [t = 1]

f (c | t = 0, s) Pr [t = 0]

= K(s, µx)
p

1− p
Exp

[
τs

2
(s− c)2

]

This results in the following lemma.

Lemma 3.1: Keeping K constant, the posterior belief on t = 1 is increasing in

| s− c |.

Proof. The likelihood ratio increases in | s− c |, and so does the probability.

The result is intuitive. The forecaster knows that the consensus is the mean of

the true state conditional on the information past forecasters possess, which is the

weighted mean of the prior mean and the signals they receive. As we can see in Figure

3.1, if the signal s is observed by past forecasters, the consensus must be close to the

signal compared to the case without it regardless of the belief on µx. In other words,

the closer c is to s, it is more likely that the consensus contains information of the

common signal, or t = 0 has occurred. We now state the main result in the following

proposition.

x
s

0
c1

c

Figure 3.1: The consensus and a signal

Proposition 3.1: For a fixed s, with uncertain timing, the forecaster weighs

more on the private signal as the signal moves away from the consensus.
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Proof. Note that

r = E[x | s, c] = Pr[t = 0 | s, c]E[x | s, c, t = 0] + Pr[t = 1 | s, c]E[x | s, c, t = 1]

= πr1 + (1− π)r0

This implies that as s deviates farther from the consensus, the forecaster weight more

on r1, resulting in more weight on s.

3.4 Forecasting Error and Anti-Herding

In recent empirical studies, Zitzewitz, Eric (2001), Bernhardt et al. (2006), and Chen

and Jiang (2006) argue that earnings’ forecasters exhibit anti-herding, rather than

herding that the previous literature had observed. They use the terminology anti-

herding in the sense that forecasters weight more on private information than on the

public information, or consensus, compared to the rational Bayesian updating. The

possible explanations on the anti-herding in the literature are i) behavioral forecasting

such as overconfident behavior, and ii) some payoff distortions which drive forecasters

to forecast more riskily. In this section, we argue that it is explained by the uncertain

arrival of some signals.

Bernhardt et al. (2006) base their argument on the fact that regardless of the

distribution of information, as long as the forecast is unbiased in the sense that

forecasters report their posterior mean or median, the probability that the realized

earning is bigger than the report should be half. Similarly, Chen and Jiang (2006)

examine the weight forecasters assign to private signal in an indirect way, and con-

clude that they assign more weight to private signal. In the following, we restate the

main empirical model in Chen and Jiang (2006) in terms of our model, and examine

the relationship between the forecasting error and the deviation from the consensus.4

4The probabilistic empirical model in Bernhardt et al. (2006) can be analyzed similarly. They
use the fact that when the state turns out to be above the prior mean, the honest forecast tends to
be lower than the realized value. In other words,
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Since the public and private information are not observable, Chen and Jiang

(2006) use the fact that, with the honest forecast on the true state, the expected

forecast error is uncorrelated with deviation from the consensus. In other words,

the forecasting error should not be predictable by available information.5 This logic

works for our model with certain timing. To see this, fix t = 1 and consider s as a

private signal. Let h be the weight on s in Bayesian update, k be the actual weight

on the signal in the actual forecast, and r be the actual forecast. In our model,

h = τs/(τx + τs). Then, if the forecast is the posterior mean of the true state,

E[x | c, s] = hs + (1− h)c.

But since r = ks + (1− k)c,

E[FE | c, s] = E[r − x | c, s] =
k − h

k
(r − c) = β0Dev.

for a constant β0, or k = h. If the actual report is the posterior mean of the true

state, it must be that β0 = 0.

In our model, we assume the signal s could be either private or public. Nonethe-

less, if the timing is certain, the expected forecast error is uncorrelated to the deviation

since without the private signal (t = 0) the deviation is zero. We now consider the

case of uncertain timing. The following proposition shows if the signal deviates from

the consensus far enough, then the expected forecast error is positively correlated

with the deviation.

E [ri | x > µx] = E

[
µxτx + siτi

τx + τi
| x > µx

]
=

µxτx + xτi

τx + τi
< x.

However, this analysis is not valid if the prior mean is stochastic as is our model.
5Indeed, the expected forecasting error is uncorrelated with the forecast. In general, for the

optimal forecast ri by the forecaster with private signal si, we have

E [ri(si)Ex(ri(si)− x)] = E [E(x | si)E (E(x | si)− x)] = E [E(x | si)E (E(x | si)− x | si)] = 0
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Proposition 3.2: Suppose π > p (π < p). Then, the expected forecast error

given c and s is positively (negatively) correlated with the deviation from the consen-

sus.

Proof. The following calculations are straightforward.

E [r − x|c, s, t = 1] = π
τxc + τss

τx + τs

+ (1− π)c− τxc + τss

τx + τs

= (1− π)
τs(c− s)

τx + τs

,

E [r − x|c, s, t = 0] = π
τxc + τss

τx + τs

+ (1− π)c− c = π
τs(s− c)

τx + τs

.

The forecast error FE ≡ r − x is now in expectation,

E [FE | c, s] = pE [r − x|c, s, t = 1] + (1− p)E [r − x|c, s, t = 0]

= p(1− π)
τs(c− s)

τx + τs

+ (1− p)π
τs(s− c)

τx + τs

=
τs(π − p)

τx + τs

(s− c) (3.1)

Recall that the forecast r with uncertain timing is

r = π
τxc + τss

τx + τs

+ (1− π)c.

Therefore, the deviation of the forecast from the consensus, Dev ≡ r − c, follows

r − c = π
πτs

τx + τs

(s− c).

From (3.1),

E [FE | c, s] =
π − p

π
(r − c),

which completes the proof.

Proposition 3.2 shows that when the signal timing is uncertain, the forecast error

is not independent with the deviation from the consensus. The sign of the correlation

depends on the the relationship between the ex-ante and ex-post belief on the arrival

timing. Note that in the previous empirical literature, the positive correlation is

considered as an evidence of anti-herding. In our model, the statistician may observe
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either herding or anti-herding, depending on the realization of the consensus and

signal.

The result may be extended to the expected forecasting behavior, considering the

distribution of the signal and the belief on the prior mean. This is left for the future

research, but we can propose some conjecture here. Sine the ex-post belief increases

in the gap between the consensus and the signal, as the signal distribution has higher

variance or the consensus is less informative, it is more likely for the statistician to

observe anti-herding.

3.5 Conclusion and Discussion

In this chapter, we examine through a parsimonious model the effect of common

information on the forecast when the arrival timing of the information is uncertain.

We show that the posterior distribution of the arrival timing depends on the deviation

of the signal from the consensus. This implies that the optimal forecast also depends

on the deviation, which may result in the seemingly anti-herding behavior. The

result has an empirical implication: without resorting to the behavioral or payoff-

relevant distortion, we can observe that the expected forecast error may be positively

correlated with the deviation.

Though we explain the puzzle raised in recent empirical studies on anti-herding

behavior in earnings’ forecasts through a non-standard information structure, there

are other models consistent with the finding such as one with a behavioral approach

and one with non-standard payoff. Which model provides a more plausible explana-

tion would be an important and interesting empirical issue.

The generalization of the model is left for future research. The final goal of the

generalization would be explaining the time series properties of actions (buy/sell

decision, forecast, etc.) when public information arrives with stochastic timing. The

main issue here is how the learning procedure affects the assessment of the timing, and
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we believe that it would provide some empirical regularities such as the short-term

under-reaction and the long-term over-reaction to news event.6

6Short-term momentum and long-term mean reversion is a version of this regularity in the finan-
cial market. As far as we know, the only plausible model to explain this is through the behavioral
approach, for example in Hong and Stein (1999).

52



Bibliography

53



[1] Abrue, Dilip and Markus Brunnermeier (2002a), “Synchronization Risk and
Delayed Arbitrage,” Journal of Financial Economics, Vol. 66.

[2] Abrue, Dilip and Markus Brunnermeier (2002b), “Bubble and Crashes,” Econo-
metrica, Vol. 71, No. 1.

[3] Avery, C. N. and J. A. Chevalier (1999), “Herding over the Career.” Economic
Letters, Vol. 63.

[4] Bernhardt, Dan, Murillo Campello, and Edward Kutsoati(2006), “Who Herds?”
Journal of Financial Economics, Vol. 80, No. 3.

[5] Bhattacharya, Sudipto and Paul Pfleiderer (1985), “Delegated Portfolio Man-
agement.” Journal of Economic Theory, Vol. 36, No. 1.

[6] Brunnermeier, Markus (2005), “Information Leakage and Market Efficiency,”
Review of Financial Studies, Vol. 18, No. 2.

[7] Chade, Hector and Lones Smith (2005), “Simultaneous Search,” Mimeo.
[8] Chade, Hector and Lones Smith (2006), “Simultaneous Search,” Econometrica,

Vol. 74, No.5.
[9] Chen, Qi and Wei Jiang(2006), “Analysts’ Weighting of Private and Public

Information,” The Review of Financial Studies, vol. 19, no. 1.
[10] Chu, Jennifer(2005), Does Bayesian Updating Occur? Evidence from Analyst

Earnings Forecasts, mimeo
[11] Crawford, V. and Joel Sobel (1982), “Strategic Information Transmission.”

Ecoometrica, Vol. 50, No. 6.
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