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method. r = 2, β = .95, γ/β = 1, ν = 0.001 to 0.025, m = 10. . . . . 106

3.29 Periodic orbits in the vicinity of the L4, L5 using spherical harmonics
expansion. r = 2, β varies from 0.25 to 0.95, γ/β = 1, ν = .03, m
varies from 6 to 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.30 Periodic orbits in the vicinity of the L4, L5 using spherical harmonics
expansion. Parameters: r = 2, β = .90, γ/β = 1, ν = .02, m varies
from 6 (outer ring) to 20. . . . . . . . . . . . . . . . . . . . . . . . . 108

xiv



3.31 Stability region of periodic orbits using Poincare’s method. The re-
gion below the line indicates stable points. The mass ratio is on the
y axis and the orbit ratio on, x. r = 2, β = .90, γ/β = 1 . . . . . . . 109

3.32 Stability region of periodic orbits in the vicinity of the L4, L5 using
spherical harmonics expansion. r = 2, β = 0.9 and γ/β = 1 . . . . . 110

3.33 Bifurcation diagram for periodic orbits in the vicinity of the L4, L5

for r = 2: µ as function of m. The star point is the value of the Routh
criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.34 Bifurcation diagram for periodic orbits in the vicinity of the L4, L5

for r = 2: µ as function of ν. The star point is the value of the Routh
criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.35 Bifurcation surface for periodic orbits in the vicinity of the L4, L5 for
r = 2. The star point is the value of the Routh criteria. . . . . . . . 111

3.36 Geometry of the Restricted Full Three Body Problem . . . . . . . . 113
3.37 RF3BP dynamics using a periodic model for the F2BP. Initial condi-

tions: [q, p] = [3.407; 0; 0; 6.1063]. Parameters: ν = 0.03, β = γ = 0.9. 115
3.38 RF3BP dynamics using a periodic model for the F2BP. Initial con-

ditions: [q, p] = [0.3983;−0.0356; 1.9293; 0.0434]. Parameters: ν =
0.02, β = γ = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.39 RF3BP dynamics using a periodic model for the F2BP. Initial condi-
tions: [q, p] = [0.3983;−0.0356; 1.9293; 0.0434] simulated over 10 time
periods of the F2BP. Parameters: ν = 0.02, β = γ = 0.9. . . . . . . . 116

3.40 RF3BP dynamics using a periodic model for the F2BP. Initial con-
ditions: [q, p]1 = [1.0315; 0.0006; 1.7722;−0.0006] , [q, p]2=[1.0706;
0.0063; 1.7956; -0.0065] and [q, p]3=[1.1972; 0.0131; 1.8618; -0.0142].
Parameters: ν = 0.98, β = γ = 0.9. . . . . . . . . . . . . . . . . . . . 117

3.41 Closer view of the RF3BP dynamics using a periodic model for the
F2BP. Initial conditions: [q, p]1 = [1.0315; 0.0006; 1.7722;−0.0006] ,
[q, p]2=[1.0706; 0.0063; 1.7956; -0.0065] and [q, p]3=[1.1972; 0.0131;
1.8618; -0.0142]. Parameters: ν = 0.98, β = γ = 0.9. . . . . . . . . . 117

4.1 Hopping motion on asteroids. . . . . . . . . . . . . . . . . . . . . . . 122
4.2 Dynamics of collisions for a particle on a flat surface with restitution

and friction coefficient cr and µ respectively. . . . . . . . . . . . . . 123
4.3 Geometry for 3D dynamical model of surface landers on small bodies. 125
4.4 Gravity field of an ellipsoidal body. The gray scale corresponds to

the deviation of the gravity vector from the centroid, where the dark
regions have the largest deviations. . . . . . . . . . . . . . . . . . . . 126

4.5 Gravity field of a binary system. The gray scale corresponds to the
deviation of the gravity vector from the centroid, where the dark
regions have the largest deviations. . . . . . . . . . . . . . . . . . . . 126

4.6 Dynamics of collisions for a particle on an inclined surface with resti-
tution and friction coefficient cr and µ respectively. . . . . . . . . . . 128

4.7 Elastic impacts for a particle moving on the surface of an ellipsoid. . 131

xv



4.8 Top view of a particle moving along equator for perfectly elastic im-
pacts under friction of 1 and 0.5. . . . . . . . . . . . . . . . . . . . . 132

4.9 Effect of initial velocities on surface motion considering a surface mod-
eled with a restitution and friction coefficients of 0.25 and 1, respectively.132

4.10 Influence of the Coriolis and centripetal accelerations. . . . . . . . . 134
4.11 Dynamics around stable and unstable points of a rotating ellipsoid.

The point along the y-axis, P2, is stable. . . . . . . . . . . . . . . . . 137
4.12 Dynamics around the stable polar point of a rotating ellipsoid, P3. . 137
4.13 Top view of the dynamics close to a stable pole. The trace is made

of hops under ideal conditions with zero friction and elastic impacts. 138
4.14 Dynamics close to a stable pole assuming restitution and friction fac-

tors of 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.15 Dynamics close to a stable equatorial axis assuming restitution and

friction factors of 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.16 Controlled dynamics of a single rover with coefficient of restitution

and friction factor set to 0.5. K are the control variables and ηd is
the desired end position. . . . . . . . . . . . . . . . . . . . . . . . . 142

4.17 Triangular Formation for Collaborative Hoppers. . . . . . . . . . . . 144
4.18 Controlled dynamics of a linear robot formation with coefficient of

restitution and friction factor set to 0.5 and control parameters K=1.5
and Kr=0.5. Hoppers 1, 2, and 3 have reached their final position. . 147

4.19 Controlled dynamics of a triangular robot formation with coefficient
of restitution and friction factor set to 0.8 and 0.1, control parameters
of K=1.5 and Kr=0.5, and a longitudinal distance to cover less than
100 meters. Hoppers 1, 2, and 3 have reached their final position. . . 148

4.20 Controlled dynamics of a triangular robot formation with coefficient
of restitution and friction factor set to 0.8 and 0.1, and control pa-
rameters K=1.5 and Kr=0.5, with a distance to cover of 200 meters
while the polar region is stable. Hoppers 1, 2, and 3 have reached
their final position. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1 Model of the binary system KW4. . . . . . . . . . . . . . . . . . . . 151
5.2 The Restricted Full Three Body Problem modeled for the binary as-

teroid system 1999 KW4. Note that ν ∼ 1 and Alpha has its own
spin rate different than the binary orbit rate. Beta keeps the same
configuration with respect to Alpha. . . . . . . . . . . . . . . . . . . 151

5.3 Zero-velocity curve plot for 1999 KW4 with r = 2.54 km. The circle
and ellipse around α and β represent the bodies. . . . . . . . . . . . 153

5.4 Retrograde orbit around the binary system 1999 KW4. . . . . . . . 155
5.5 Retrograde orbit around the binary system 1999 KW4, over a year

period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6 Unstable retrograde orbit around Beta, secondary body of 1999 KW4,

1.35 km from Beta’s center of mass. . . . . . . . . . . . . . . . . . . 156
5.7 Unstable retrograde orbit near Beta, secondary body of 1999 KW4,

0.5 km from Beta’s center of mass. . . . . . . . . . . . . . . . . . . 157

xvi



5.8 Binary system approach of a spacecraft through L3. . . . . . . . . . 158
5.9 Regions of motion restricted to Beta and Alpha only. . . . . . . . . . 159
5.10 Close view of hoppers’ distribution on Beta x-y plane of the rotating

frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.11 Top view of the dynamics close to the stable pole of Beta. . . . . . . 161
5.12 Controlled dynamics of a triangular formation of hoppers, surveying

one end to the other along the equator. Hoppers 1, 2, and 3 have
achieved their formation. Their trajectory is deflected due to Beta
having stable pole regions. . . . . . . . . . . . . . . . . . . . . . . . 161

5.13 Transition to Alpha. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.14 Transition and non-transition paths from Beta to Alpha. . . . . . . . 163
5.15 Effective gravitational sloped on KW4. . . . . . . . . . . . . . . . . 166
5.16 Stable retrograde periodic orbits around the massive spherical body

of a binary system. The spacecraft is at an altitude of 15 meters from
the surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.17 Unstable retrograde periodic orbits around the massive spherical body
of a binary system. The spacecraft is at an altitude of 100 meters from
the surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.18 End of mission scenario: the hoppers can leave α through L2 and
rendezvous with the spacecraft in orbit about KW4. . . . . . . . . . 169

xvii



LIST OF TABLES

1.1 Current mission proposals by space agencies presented at the First
Meeting of The International Primitive Body Exploration Working
Group (IPEWG), held in Japan in January 2008 [62]. See references
[56, 98, 95, 41, 16, 39, 42, 34, 38, 51, 48, 47, 43, 36]. . . . . . . . . . 2

2.1 Summary of stability conditions for a periodic orbit described in sec-
tion 2.5.5. Ψ’s are the components of the monodromy matrix while
h’s are derivatives with respect to a free parameter of the system,
like the energy, denoted C. qx and px are x-component of the posi-
tion and inertial velocity. The notation “2 RE” indicates two relative
equilibrium solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Hardware needed for a robotic surface explorer at a binary asteroid
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Lagrangian points for the binary system 1999 KW4 with correspond-
ing Jacobi constants and stability. . . . . . . . . . . . . . . . . . . . 153

5.2 Orbital, physical, and ∆V characteristics of Near Earth Asteroid sys-
tems [30, 71, 96] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3 Orbital parameters of target binary systems. . . . . . . . . . . . . . 174
5.4 Close approaches of asteroids [31] . . . . . . . . . . . . . . . . . . . 177

xviii



CHAPTER 1

INTRODUCTION

1.1 Missions to Small Bodies of our Solar System

Over the past decade, robotic missions have been sent to small bodies, providing a

basic understanding of their environment. Although some missions such as Galileo

visited a few small bodies on their way to other planets, NASA launched its first

asteroid mission in early 1996 with NEAR, arriving at the asteroid Eros in 2000

and landing on it in 2001 around Valentine’s day [32]. Stardust followed by taking

samples of a comet’s tail, comet Wild 2, in 2004, after a flyby of asteroid Annefrank

two years earlier [37]. Deep Impact was sent to comet Tempel 1 and impacted it in

2005, revealing its internal structure in more details [35]. Then, NASA launched

New Horizons Pluto-Charon in early 2006 to the Pluto-Charon system, which

is the first mission going to that binary system. New Horizons is scheduled to

arrive at Pluto in 2015, continuing its exploration to the Kuiper Belt objects in

the 2016-2020 time frame [33]. The NASA mission DAWN was just launched in

the Fall 2007, on its way to asteroids Vesta and Ceres arriving in 2011 and 2015,

respectively [29]. The European Space Agency (ESA) sent Rosetta in 2004 to comet

67P/Churyumov-Gerasimenko. Rosetta will fly by two asteroids, Stein and Lutetia,

on September 2008 and July 2010, respectively, before orbiting Gerasimenko for 17

months when it reaches its target in 2014 [40]. The Japanese Aerospace Exploration

Agency (JAXA) may have the first sample return mission, Hayabusa (Muses-C),
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Mission Space Agency Comments

Hayabusa-2 JAXA 2nd sample return (SR) to asteroid

Marco Polo JAXA, ESA SR to dormant comet or binary system

LEONARD CNES Binary system 1999FG3 as possible target

Ishtar UK Study of internal composition of asteroid

Simone UK Collaborating spacecraft to NEAs

Apies UK Collaborating spacecraft to NEAs

Don Quijote ESA Orbiter and impactor study at asteroid

NEASR-TRS ESA Asteroid SR mission

Phobos-grunt Russia, ESA Landing on Phobos, moon of Mars

PRIME CSA (UWO) Landing on Phobos, moon of Mars

AsteroidFinder DLR Asteroid observation program

ASTEX DLR In situ investigation of NEAs

Stardust-Next NASA Study comet Tempel-1 in more details

WISE NASA IR survey mission for NEO population

NEOStar NASA Space-based NEO detection

Table 1.1: Current mission proposals by space agencies presented at the First Meeting of The
International Primitive Body Exploration Working Group (IPEWG), held in Japan in January
2008 [62]. See references [56, 98, 95, 41, 16, 39, 42, 34, 38, 51, 48, 47, 43, 36].

reaching the asteroid Itokawa in 2005. The mission is now on its way back to Earth

[49, 21, 57].

New missions to small bodies are under development or under concept studies

by several space agencies. The mission proposals are listed and described in Table

1.1. Note that a few of them, such as Marco Polo and LEONARD are looking at a

recently discovered type of asteroid system, binary asteroids, as possible targets.

Since these small bodies have not been subjected to erosion or high pressures, and

are believed to have formed during the early stage of our solar system, studying small

bodies on a close scale may answer some fundamental questions about the formation

and evolution of our solar system. Some of these small body systems are found to be

in pairs with the two bodies in orbit about each other, and are usually called binary

asteroids. It is currently estimated that about sixteen percent of the Near Earth

Asteroid population may be binaries [55]. Current interest in studying Near Earth

2



Objects involves finding more about their external and internal composition. A

few studies have looked at the possible formation path of binary systems, involving

formation through fission of a single asteroid [82], planetary flybys [96, 73, 17], or

capture of one or more bodies [87, 54]. To give support to these theories, research

into small body ephemerides from the JPL Near Earth Object Program [31, 30] also

indicates that some of these systems have gone through frequent flybys of the Earth

and other planets of our solar system. A binary system formed from a single body

may give a direct view on its interior. Hence, a binary asteroid system can give

insights into both the geology and dynamics of asteroids, motivating this research.

Sending a spacecraft to these systems is not trivial. A binary system is in fact a

mini “three-body problem” such as the motion of a spacecraft in the Earth-Moon

system. However, in the binary case, one needs to account for the non-spherical

shape of the bodies. Despite the low gravity accelerations, astronomical observations

indicate that the time scale of motion around these systems are on the order of 10’s

of hours. It has also been shown that the motion is strongly perturbed by the system

itself, close approaches to other bodies and solar effects [71, 55, 87, 81, 17, 96].

Hence, this research develops and investigates dynamical models for the motion of a

binary system, as well as for a spacecraft in its vicinity.

1.2 Literature Review and Contributions

1.2.1 The Full Two Body Problem

Studying the motion of two bodies in space is not a new problem in itself. The

Two-Body Problem is commonly used for trajectory analysis. The problem becomes

computationally hard when the mass distribution of the bodies are taken into

account, referred to as the Full Two-Body Problem shown in Figure 1.1, where R,

V , Ω1, and Ω2 are the position, velocity, and angular velocities of the system. The

problem formulation of the “full” binary system itself has been posed and studied in
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Figure 1.1: Full 2-Body Problem (F2BP).

earlier works, see [53, 80, 79, 84, 86, 52, 22]. A general formulation is possible, and

was first discussed in [53, 15] for different shapes, where mutual potential expressions,

methods of reduction, and equilibrium solutions were also derived. Among other

derived methods of computations, reference [86] approached the problem using

polyhedral mutual potential and potential derivatives while other studies have used

other mathematical methods such as Lie group computations [52].

To reduce the number of degrees of freedom, a method of reduction for the

F2BP is to assume one of the bodies to be a sphere, as shown in Figure 1.2. Note

that the angular velocity of the sphere is now trivial. At the simplest, one can

retrieve the problem of asteroid orbiters. The conditions for relative equilibria

and their stability in the F2BP are derived in [80] for a system with one of the

bodies being a sphere while the other one is of arbitrary shape. An ellipsoid-sphere

system was further investigated in [79, 84], on which the current document builds

up. The ellipsoid-sphere system provides a first-order approximation giving accurate

insights on the dynamics of the real system, and can easily accommodate the partial
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Figure 1.3: Geometry of the Full Two Body Problem for an ellipsoid-sphere system.

astronomical data obtained through observations. The ellipsoid-sphere model is

shown in Figure 1.3, where CM is the system’s center of mass, and Ω represents the

ellipsoid spin which may be different than the mutual orbit rate. In this research,

the conditions for equilibrium are further investigated, and perturbations are studied

leading to periodic orbits. Results show that the equilibrium states are the minimum

energy points of nearby periodic families. Simulations also indicate possible paths

from unstable to stable configurations, giving insights on how these binary systems

may evolve in time.
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1.2.2 The Restricted Full Three Body Problem

Having defined the dynamics of the F2BP, the problem of binary system orbiters

can then be studied. This problem integrates two other classical problems of

astrodynamics: the Hill Problem and the Restricted Three Body Problem (see also

[85]). The Hill problem studies the dynamics of two mutually orbiting bodies in orbit

about a larger mass. The Restricted Three body Problem (R3BP) investigates the

dynamics of a massless particle in the gravitational field of two spherical primaries.

The Hill problem and the R3BP have been studied extensively [91]. At the limit

of having two spherical bodies, the binary system orbiter problem studied here

retrieves results from the R3BP. Since the mass distribution is taken into account,

the problem is referred to as the Restricted Full Three Body Problem (RF3BP).

Under the ellipsoid-sphere assumption, the RF3BP is shown in Figure 1.4 where

ρ̃ is the position of the massless spacecraft with respect to the system’s center of

mass. For this case, the research looks at the effect of the non-spherical body on

the dynamics of particles in this gravitational field by characterizing the equilibrium

solutions and their stability, and by developing analytical methods for investigating

more general dynamics. At the limit, the results match the R3BP. Investigating the

analogue L1 Lagrangian point, the research also looks at transit paths between the
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Figure 1.5: Hopping motion on asteroids.

bodies and their associated surface conditions. These transfer paths also exist in the

R3BP although the small scale environment of binary asteroids offer a practical and

justifiable application of these transits.

1.2.3 Surface Dynamics and Control

Since a non-spherical shape is now included for one of the primaries, surface

constraints become important to consider. For scientific investigations, rendezvous

missions carrying small landers to small bodies receive an increased interest as

landers can perform autonomous tasks on the surface. There is some heritage

from previous missions such as the Mars probes, however, wheeled vehicles would

be difficult to control and keep track of on an asteroid due to its low gravity

environment. One alternative is to use a “hopping” mechanism, as originally

designed for the Hayabusa mission. The “hopper”, MINERVA, is a good example

that uses a torque driving system as the main driver [101, 100]. Ball Aerospace has

also designed a spherical robot for studying the surface [89]. A schematic of a hopper

motion is drawn in Figure 1.5. Thus, this research looks at the impact dynamics
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on asteroids and develops an analytical method to estimate the distance covered

and time of travel. Since, the motion takes place on a rotating asteroid, the effect

of the rotating asteroid itself is also investigated, where it is shown that the surface

dynamics follow the surface equilibria stability of the asteroid.

Then, the next question is how one can control such robot applications on these

small bodies. The advantage of hoppers is that they could easily investigate the

surface by controlling their initial bounce velocity and orientation from estimating

the jumping distance to be covered for a set desired location. Hence, the research

looks at control of both single and multiple hoppers to allow a variety of exploration

applications. Many control strategies have been considered, especially for rovers,

unmanned aerial vehicles and spacecraft formation [2, 27, 94, 66, 92, 3]. Some of

them involve leader-follower approaches [28] or string and mesh-stable approaches

[90, 66]. Other possible approaches include virtual structures [3, 92] and potential

methods [103]. These methods are difficult to implement in the asteroid environment.

However, one can modify some of these techniques, such as sliding-mode control

method [63, 102], to successfully carry out missions. Therefore, the research develops

a first order model for impact dynamics and control of single probes as well as

collaborating hoppers.

1.2.4 Mission Design to a Binary Asteroid System

Finally, this research integrates results and findings from the F2BP, the RF3BP,

and the surface dynamics in order to develop a mission to a binary asteroid system,

taking advantage of the binary system’s dynamical features. The proposal uses the

binary system 1999 KW4 as a case study, where the bodies can be approximated

as a small ellipsoid and a larger sphere. The mission is designed such that the

approach to the binary is made through the smallest ellipsoidal body; from an

energy consideration, this side of the binary system becomes available first, and,
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from astronomical observations, the small body is usually more stable. From an

orbiting platform, small landers can be ejected and placed on the surface for further

exploration. After hopping to the other side of the small ellipsoidal body, facing the

spherical primary, they can then travel across the analogue L1 Lagrangian point

region to reach the massive body using a simple jump. The mission design can

also be applied to other accessible binary systems, which is briefly explored in this

research.

1.3 Thesis Outline

This dissertation is divided into four main sections. In Chapter 2, the dynamics of

two orbiting bodies is first studied, the Two Body Problem (2BP). Since the mass

distribution of the bodies is taken into account, it is referred as the Full Two Body

Problem (F2BP). In this chapter, both the time-invariant and time-varying problems

are investigated. The relative equilibrium configurations are studied and linked to

periodic orbits. It is shown that the stable equilibria are the minimum energy state

of a periodic family given a value of angular momentum. From these computations,

it is also possible to expand on possible evolution scenarios for binary systems.

In Chapter 3, the dynamics of the F2BP is used in the study of the dynamics

of a particle, or a spacecraft, in this gravitational field. The problem is called the

Restricted Full Three Body Problem (RF3BP). Equilibrium solutions and energy

constraints are investigated in order to map the region of motion of a particle in this

gravity field. Considering that the bodies have a specific shape, transfer between

the bodies may also be allowed under certain conditions, which can lead to natural

mass and momentum transfer characteristics of binary systems. The more general

problem of non-equilibrium is then studied, especially for periodic orbits near the

equilateral Lagrangian points using two different approximation methods.

Motivated by current plans on Near Earth Objects sample return missions,
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the dynamics and control of surface exploration hopping robots are modeled and

simulated in Chapter 4. A prediction model on the bouncing dynamics is developed

to estimate the distance traveled and time to reach a stop. The effect of an asteroid

spin and an ellipsoidal gravity field on surface motion is investigated giving a

motivation for control of single and multiple collaborating landers.

Finally, Chapter 5 discusses a case study for a mission design to the binary

system 1999 KW4 that can take advantage of the particular dynamics of binaries,

explaining the different phases from approaching the system to landing on the bodies

themselves. The dynamics of the F2BP and of the RF3BP of Chapters 2 and 3 are

used, as well as the surface dynamics and control from Chapter 4. Finally, the last

section compares the 1999 KW4 system to other available systems in terms of ∆V

requirements and surface velocities and constraints.
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CHAPTER 2

THE FULL TWO-BODY PROBLEM

2.1 Problem Definition

The study of binary systems constitutes an important field of celestial mechanics

and astronomy. Studies have looked at binary systems ranging in size from stars to

the small bodies of our solar system. Understanding the dynamics of two orbiting

bodies has a fundamental impact on the system evolution and on practical concerns

related to spacecraft navigation. We call the situation the Two-Body Problem

(2BP) when we look at the translational dynamics of two bodies. When we consider

non-spherical mass distributions of these bodies, this problem is referred to as the

Full Two-Body Problem (F2BP) and involves coupling between translational and

rotational motion. In general, the system has twelve degrees of freedom, which are

the position vectors R1 and R2, as shown in Figure 2.1, and the two attitudes of

the bodies, A1 and A2. We can combine R1 and R2 into R = R2 −R1, removing

three degrees of freedom. An additional three degrees of freedom can be removed by

taking the relative attitude AT
2A1. However, the angular momentum still include

both attitudes.

The research from A. Maciejewski and from J.M.A. Danby [53, 15] gives

fundamentals of the Full Two Body Problem by discussing systems of a number

of extended rigid bodies. They give basic equations of motion, discuss reduction

of these systems’ parameters, relative equilibria, and mutual potential expressions

11



R

Ω

Ω

V

2

1

M

M

1

2

dm

dm1

2

ρ
2

1
O

~

~
ρ

R2

R1

Figure 2.1: Full 2-Body Problem (F2BP) in an inertial frame.

which depend on the shape, mass distribution and orientation of these bodies. As

the “full” problem is complex, one can simplify the problem by modeling one of

the bodies as a sphere eliminating its attitude dynamics. Conditions for relative

equilibria and their stability in the F2BP are derived in [80] for the second body

being of arbitrary shape. With the equations of motion written in a frame fixed

to the general body, one can also remove three more degrees of freedom from its

attitude dynamics. The next sections build up on an ellipsoid-sphere model, first

introduced in [79, 84], which keeps interesting dynamical features and has useful

symmetry properties.

2.2 Mutual Potential

The mutual potential is an integral over two massive bodies, written as

Ũ = −
∫

M1

∫

M2

Gdm1dm2

|ρ̃1 − ρ̃2| , (2.1)
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where G is the universal gravitational constant, M1 and M2 represent the two

bodies, R1 and R2 represent their position vector from an inertial origin, dm1 and

dm2 are two mass elements in each body, and ρ̃1 and ρ̃2 are the position vectors of

these two mass elements. The computation of the mutual potential is not trivial in

this case. Current and past researches have looked into methods and expressions to

compute the mutual potential. In reference [86], the authors have derived polyhedron

potential computations to model irregularly shaped bodies. Other methods involve

the use of Lie Group computations [52].

The problem is simplified by letting one of the bodies be a sphere while allowing

the second body to have a general shape as shown in Figure 2.2. Using this sphere

restriction allows one to simplify the computations as the rotational velocities of

a sphere are trivial, leaving now nine degrees of freedom, the position vectors R1,

R2 shown in Figure 2.2, and the attitude of the general body, A2, but keeping

the interesting characteristics from the general body dynamics. Taking the relative

dynamics R = R2 −R1 allows to remove three other degrees of freedom. In [15],

Danby discusses properties of rigid bodies and potential expressions of some bodies

such as a sphere and an ellipsoid, which will be used in later sections.

In the general case of the sphere restriction, Ũ is the mutual potential, defined as

Ũ = −GM1

∫

M2

dm2

|ρ̃1 − ρ̃2| , (2.2)

where M1 here is the mass of the sphere and M2 represents the general body.

This problem can be expressed in a few ways depending on the reference frame;

in a inertial frame as shown in Figures 2.2 and 2.1, or a rotating frame fixed at

the system’s center of mass or fixed at one of the bodies. If the frame is fixed to

the general body, the mutual potential is time-invariant, which is independent of

whether the system is in relative equilibrium or not. Note that it is always possible

to transform back to an inertial frame.
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Figure 2.2: Simplified Full Two Body Problem; F2BP under “Sphere Restriction” in the inertial
frame.

Hence, for a frame fixed at the center of mass of the non-spherical body,

Ũ = −GM1M2Û(rb), (2.3)

where

Û =
1

M2

∫

β2

dm2(ρ̃)

|rb + ρ̃| , (2.4)

rb is the relative position between the sphere and the other body in the body fixed

frame, and ρ̃ is the position vector of a mass element of the general body. These

parameters are shown in Figure 2.3. Note that Û is a point mass potential that

has been normalized. Previous work has investigated the equations of motion of

a binary system, mostly describing conditions for equilibrium configurations of a

system composed of a sphere and a general body, and the stability conditions of

these equilibria [80].

A general method of approximation is to express the general body potential

using spherical harmonics [45], which simplifies if the coordinate frame is along the
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principal moments of inertia of the general body. It is usually expressed in the form

Ũ =
∞∑

l=0

l∑
m=0

(
R0

r

)l

Plm sin δ (Clm cos(mλ) + Slm sin(mλ)) , (2.5)

where the P ′
lms are associated Legendre functions and the C ′

lms and S ′lms are

the spherical harmonics coefficients, and where δ and λ are the usual spherical

coordinates of latitude and longitude in the general body. This model will be used

in a later chapter. However, a closed form for the mutual potential would be more

convenient to work with.

An ellipsoid-sphere system has also been studied in [84, 79], investigating relative

equilibria and stability. As described in [15], the potential of an ellipsoid can be

written in terms of elliptic integrals. The exterior potential of an ellipsoid with sides

α, β, γ and uniform density ρ, is expressed as

Ũ = Gραβγ

∫ ∞

λ

(
1− x2

α2 + v
− y2

β2 + v
− z2

γ2 + v

)
dv

∆(v)
, (2.6)

where

∆(v) =
√

(α2 + v)(β2 + v)(γ2 + v), (2.7)
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0 < γ ≤ β ≤ α, γ and β correspond to the z and y semi-axes of the ellipsoid, and λ

satisfies

(
1− x2

α2 + λ
− y2

β2 + λ
− z2

γ2 + λ

)
= 0. (2.8)

Because of the symmetry properties of the ellipsoid, and the closed form expression

for the potential, in the current work, the dynamics of an ellipsoid-sphere system is

studied in more detail and used as a base for modeling the dynamics of particles in

the gravity field of a binary system.

2.3 Equations of Motion

Defining a rotating coordinate system in the frame fixed to the general body allows

us to discard its attitude dynamics from the equations of motion; in this frame

the mutual potential is time-invariant. The ellipsoid was chosen for its symmetry

properties and its closed form potential energy expression. The geometry of the

problem is represented in Figure 2.4. The system is defined as M1 and M2 for the

sphere and the ellipsoid, respectively, and the relative distance from the bodies’

center of mass is rb. The two bodies orbit about their center of mass indicated as

“CM” on Figure 2.4. If the mass ratio is defined as

ν =
M1

M1 + M2

, (2.9)

then, relative to their center of mass, they each orbit at,

r1 = (1− ν)rb (2.10)

and

r2 = −νrb. (2.11)
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Figure 2.4: Geometry of the Full Two Body Problem for an ellipsoid-sphere system.

In this frame, the two bodies’ relative dynamics are defined by

r̈b + 2Ω × ṙb + Ω̇ × rb + Ω × (Ω × rb) = G(M1 + M2)
∂Û

∂rb

(2.12)

and the rotational dynamics of the ellipsoid are described by

Î · Ω̇ + Ω × Î · Ω = −GM1rb × ∂Û

∂rb

, (2.13)

where Ω is the angular velocity of the ellipsoid and Î is its inertia matrix [77]. Note

that Eq. (2.12) is defined for any non-spherical body in general with the mutual

potential expressed in Eqs. (2.3,2.4) [79].

To simplify the computation, the maximum radius of the ellipsoid, α, and the

mean orbital motion of the system at this radius, n =
√

G(M1 + M2)/α3 from

relative motion in the point mass two-body problem [72], are chosen as length and

time scales, respectively. The normalized distance between the two bodies and

angular velocity of the ellipsoid are expressed as

r =
rb

α
(2.14)

and

ω =
Ω

n
. (2.15)

Let r = rxı̂ + ry ̂ + rzk̂. As derived in [77], the Lagrangian form of the F2BP
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dynamics can be written as follows,

r̈ + 2ω × ṙ + ω̇ × r + ω × (ω × r) =
∂U

∂r
(2.16)

and

I · ω̇ + ω × I · ω = −νr × ∂U

∂r
. (2.17)

For the ellipsoid, the normalization above is used to express the potential as

U =
3

4

∫ ∞

λ

φ(r, v)
dv

∆(v)
(2.18)

with

φ(r, v) = 1− r2
x

1 + v
− r2

y

β2 + v
− r2

z

γ2 + v
(2.19)

and

∆(v) =
√

(1 + v)(β2 + v)(γ2 + v), (2.20)

where 0 < γ ≤ β ≤ 1, γ and β correspond to the z and y semi-axes of the ellipsoid,

and λ satisfies φ(r, λ) = 0. The normalized principal moments of inertia are

Ixx = 1
5
(β2 + γ2), Iyy = 1

5
(1 + γ2), and Izz = 1

5
(1 + β2). In the ı̂− ̂− k̂ frame, Eqs.

(2.16-2.17) become

ω̇ = − ν

Izz

(
rx

∂U

∂ry

− ry
∂U

∂rx

)
, (2.21)

r̈x = ω2rx + 2ωṙy + ω̇ry +
∂U

∂rx

, (2.22)

r̈y = ω2ry − 2ωṙx − ω̇rx +
∂U

∂ry

, (2.23)

and

r̈z =
∂U

∂rz

, (2.24)

where U is given by Eqs. (2.18-2.20).

Although general motion can be studied, with the Coriolis and centripetal

accelerations acting in the plane, the planar problem is a rich problem to study.

When considering planar motion, the ellipsoid-sphere model also allows to write the
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problem as a two degree of freedom Hamiltonian system. The position of the sphere

relative to the ellipsoid in the plane is denoted as q = r, and the inertial velocity is,

p = ṙ + ω × r. Using this set of coordinates, the energy and momentum integrals in

normalized units can be written as

E =
1

2
p · p +

1

2ν
Izzω

2 − U(q) (2.25)

and

K =
1

ν
Izzω + ẑ · (q × p). (2.26)

The rotation rate ω can be solved as function of K, q and p, which gives

ω =
ν

Izz

[K − ẑ · (q × p)] . (2.27)

Hence, for given values of K, q and p, ω can be substituted for into the energy

equation, Eq. (2.25),

E =
1

2
p · p +

ν

2Izz

[K − ẑ · (q × p)]2 − U(q). (2.28)

Note that, in this case, the energy integral is the Hamiltonian, or E = H(q,p) with

angular momentum K as a free parameter. For general three dimensional motion

the angular momentum cannot be eliminated in the same way for the Hamiltonian

form of the equations, as its elimination would couple the relative attitude of the

body into the energy [80].

In explicit form for planar motion, Eq. (2.28) becomes

H(q,p) =
1

2
p · p +

ν

2Izz

[K − ẑ · (q × p)]2 − U(q). (2.29)

Then, the dynamics can be computed from

q̇ = Hp (2.30)
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and

ṗ = −Hq, (2.31)

or, in components,

q̇x = Hpx = px + qy
ν

Izz

[K − (qxpy − pxqy)] , (2.32)

q̇y = Hpy = py − qx
ν

Izz

[K − (qxpy − pxqy)] , (2.33)

ṗx = −Hqx = py
ν

Izz

[K − (qxpy − pxqy)] +
∂U

∂qx

, (2.34)

and

ṗy = −Hqy = −px
ν

Izz

[K − (qxpy − pxqy)] +
∂U

∂qy

, (2.35)

where the subscripts denote partial differentiation.

The first order derivatives of the ellipsoid potential were given by [79],

∂U

∂qx

=
∂U

∂rx

= Ux = −3

2
qx

∫ ∞

λ

du

(u + 1)4(u)
, (2.36)

∂U

∂qy

=
∂U

∂ry

= Uy = −3

2
qy

∫ ∞

λ

du

(u + β2)4(u)
, (2.37)

and

∂U

∂qz

=
∂U

∂rz

= Uz = −3

2
qz

∫ ∞

λ

du

(u + γ2)4(u)
. (2.38)

Using the substitution v = u + λ, these derivatives can be solved using Carlson’s

standard integrals of the third kind. The algorithm wa taken from [19], giving the

following expression for the three axis of the ellipsoid, α, β, and γ,

Rjα =
3

2

∫ ∞

0

du

(u + λ + 1)4(u + λ)
, (2.39)

Rjβ =
3

2

∫ ∞

0

du

(u + λ + β2)4(u + λ)
, (2.40)

Rjγ =
3

2

∫ ∞

0

du

(u + λ + γ2)4(u + λ)
, (2.41)
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and, the elliptic integral of the first kind is used to write the potential,

Rj0 =
1

2

∫ ∞

0

du

4(u + λ)
, (2.42)

Therefore, using the notation above, the mutual potential is expressed as

U =
3

2
Rj0 − 1

2

[
q2
xRjα + q2

yRjβ + q2
zRjγ

]
, (2.43)

and the first derivatives are expressed as,

Ux = −qxRjα, (2.44)

Uy = −qyRjβ, (2.45)

and

Uz = −qzRjγ. (2.46)

2.4 Relative Equilibria of an Ellipsoid-Sphere

System

A particular solution of the F2BP is for the two bodies to be in relative equilibrium.

Relative equilibrium conditions are found by setting all velocities and accelerations

to zero in Eqs. (2.16-2.17). Equation (2.16) shows that the gravitational acceleration

must be perpendicular to the spin axis. Also, with the current symmetry assumption

on the gravitational potential, the position and gravitational acceleration have to be

parallel. With this constraint, Eq.(2.17) is satisfied if the ellipsoid spins about one

of its other principal axes. Note that the spin is parallel to the inertia vector and it

is independent of the principal axis the ellipsoid is rotating about [79, 84].

Hence, relative equilibria exist when one of the principal axes of the ellipsoid is

pointed at the sphere. Then, as a general expression, given a solution along the “q”

axis, from Eq.(2.16) and using Eqs. (2.18-2.20) due to the ellipsoid, the spin rate is
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expressed as,

ω2 =
3

2

∫ ∞

λ

dv

(αq
2 + v)4(v)

. (2.47)

For the present problem, αq represents the ellipsoid radius along which the sphere is

located. Note that here λ = r2 − αq
2, where q is the distance between the primaries

at a relative equilibrium, q = r. Also note that for a general mass distributions,

relative equilibria will not necessarily be along a principal axis. A more complete

discussion can be found in [80].

For the case of an ellipsoid-sphere system, two configurations exist: with the

minimum moment of inertia aligned with the axis joining the two bodies and where

it is perpendicular to it. The two cases are shown in Figure 2.5. In the case of the

short-axis configuration, the maximum radius of the ellipsoid, α, is aligned with the

y-axis. Hence, from this perpendicular assumption, the Rj expressions to be used in

this case are,

Rjα =
3

2

∫ ∞

0

du

(u + λ + β2)4(u + λ)
, (2.48)

Rjβ =
3

2

∫ ∞

0

du

(u + λ + 1)4(u + λ)
, (2.49)

and

Rjγ =
3

2

∫ ∞

0

du

(u + λ + γ2)4(u + λ)
. (2.50)

Note that for ν ≈ 0, the case of a point mass orbiting a general body is retrieved,

in which solving for the equilibria gives rotations about the principal axes of inertia

of the rigid body. The long-axis configuration in this case is always unstable. Now,

on the other hand, ν ≈ 1 indicates a general body orbiting a point mass. In this case,

the long-axis solution is stable whereas short-axis solutions are always unstable. In

the present work, the long-axis case is usually the only one considered as only it can

have energetically stable solutions [79], hence being more commonly found in space

[30, 71, 96].

Now, for convenience, consider the Hamiltonian system as defined by Eqs.
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Figure 2.6: Geometry of the Full Two Body Problem under relative equilibrium. The system
maintains this same configuration at all time, and the orbit rate is solved from Eq. (2.47).

(2.32-2.35), in which all time derivatives are zero, and where the two bodies are in

equilibrium configuration, aligned along the x-axis, as pictured in Figure 2.6.

The solutions are given by

q = [q, 0]T (2.51)

and

p = [0, p]T . (2.52)

Note that the first derivatives of the mutual potential at a relative equilibrium gives

Uqx = −qxRjα = −qRjα = −qI(q), (2.53)

Uqy = 0, (2.54)

and

Uqz = 0. (2.55)

23



Solving for q with q̇ = ṗ = 0 in Eqs. (2.33-2.34) gives

1 =
νq

Izzp
[K − qp] (2.56)

and

I(q) =
νp

Izzq
[K − qp] . (2.57)

Note that ẑ · (q × p) = qp. From Eq. (2.56), the inertial velocity component p, is

expressed as

p =
(νqK/Izz)

(1 + νq2/Izz)
, (2.58)

and substituting p in Eq. (2.57) gives

I(q) =
(νK/Izz)

2

(1 + νq2/Izz)
2 . (2.59)

Given values of angular momentum, mass ratio and ellipsoidal parameters,

the possible distances between the bodies, q, for which the system is in relative

equilibrium can be solved for. As a binary system will most likely lose energy

through internal dissipation and conserve angular momentum (see [87] for a case

study of 1999 KW4 or [55] for a more general discussion), it is of interest to study

its dynamics under constant angular momentum. For a given value of angular

momentum and a value for the system mass ratio in Eq. (2.59), one can solve for at

most two relative equilibria, as shown by the C-shaped curve, or Locus of solutions,

in Figure 2.7. Note that having a more pronounced ellipsoid flattened this C curve.

There is one single solution, or bifurcation value, at the mass ratio, ν∗, and solution

q∗, which is at the left end of the locus of solutions in Figure 2.7. For ν > ν∗,

the system has two relative equilibrium solutions, one stable and one unstable, as

described in the next section.
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Figure 2.7: Locus of solutions q as function of the mass ratio, for a constant angular momentum.
The upper and lower branches represent stable and unstable solutions, respectively. The system
angular momentum is K=1.715 (nondimensional), and ellipsoidal parameters are β = 0.5 and
γ = 0.25.

2.4.1 Stability of Relative Equilibria

Stability of relative equilibria is composed of two parts, spectral stability and

energetic stability. Spectral stability is related to the system eigenvalues associated

to an equilibrium solution while energetic stability is derived from the system’s

energy state. A system is energetically stable if there is no state at the same angular

momentum with a lower energy value.

As mentioned in the previous section, in general it is possible to find two solutions

for given values of angular momentum, mass ratio and ellipsoidal parameters. There

is always one stable and one unstable solution, and we find that the spectral stability

is tied with the energetic stability.

The conditions for spectral stability of a relative equilibrium of the F2BP were

derived in [79]. In this case, for the planar problem, it is more convenient to write

them in terms of the Hamiltonian form of the equations of motion.
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Given Eqs. (2.32-2.35), a small perturbation to the nominal path is




δq̇

δṗ


 = JHxx




δq

δp


 , (2.60)

where J has the form

J =




02×2 I2×2

−I2×2 02×2


 , (2.61)

and 02×2 and I2×2 are the 2× 2 zero and identity matrix, respectively.

For an ellipsoid-sphere, Eq.(2.60) can be used where Hxx represents the second

derivatives of the Hamiltonian defined by Eq. (2.29),

Hxx =




−σω2 + Uqxqx 0 0 ω(1− σ)

0 Uqyqy −ω 0

0 −ω −1 0

ω(1− σ) 0 0 −(1 + σ)




. (2.62)

In these expressions, σ = νqx
2/Izz, and ω = (νK/Izz)

(1+σ)
=

√
I(q), where I(q) is given by

Eq.(2.53).

The characteristic equation of JHxx is found to be

ζ4 + aζ2 + b = 0, (2.63)

where

a = 2ω2(1− σ) + B − (1 + σ)Uqyqy , (2.64)

b = ω2(1− σ)2(Uqyqy + ω2)−B(Uqyqy + ω2)(1 + σ), (2.65)

and B = σω2 − Uqxqx . For stability to hold, the conditions to satisfy are

a > 0, (2.66)

b > 0, (2.67)
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and

a2 − 4b > 0. (2.68)

In the case of a stable equilibrium solution, the system only has a center manifold

and two sets of imaginary eigenvalues can be computed. For an eigenvalue of the

type ζ = ±iλ, the period of oscillation is computed using

T =
2π

λ
. (2.69)

Hence, each stable solution has two frequencies associated with it.

An unstable solution will have one pair of imaginary and one pair of real

eigenvalues. The real eigenvalues are associated with a hyperbolic manifold which

make the solution unstable. Note that it is still possible to obtain the associated

frequency of oscillation for the system. Reference [79] provides a more detailed

derivation of these stability conditions.

Stability of a dynamical system can also be defined from its energy evaluation.

In [80], the energetic stability conditions are derived for a general gravity field in the

F2BP under constant angular momentum assumption. This corresponds to nonlinear

stability. For energetic stability of the equilibrium states, one needs to investigate

the second variation of the energy functional, which can be written in the following

form

d2H = dx ·Hxx · dx > 0, (2.70)

where Hxx is the matrix of the second derivatives of the Hamiltonian, and the dx

are chosen arbitrarily. Thus the condition is that Hxx be positive definite.

The energetic stability conditions are found from Eq.(2.70) using the eigenvalues

of Hxx. The characteristic equation is then

η4 + α3η
3 + α2η

2 + α1η + α0 = 0, (2.71)
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where the coefficients are expressed as

α3 =
(
Uqyqy − 2− σ −B

)
, (2.72)

α2 = B
(−Uqyqy + (2 + σ)

)
+ 1 + σ − Uqyqy(2 + σ)− ω2 − ω2(1− σ)2, (2.73)

α1 = B
(
Uqyqy(2 + σ) + ω2 − (1 + σ)

)
+ ω2(−Uqyqy + 1)(1− σ)2 + (Uqyqy + ω2)(1 + σ),

(2.74)

α0 = −B(Uqyqy + ω2)(1 + σ) + ω2(Uqyqy + ω2)(1− σ)2, (2.75)

and B = σω2 − Uqxqx . Note that all the second order partial derivatives should be

evaluated at the equilibrium points when investigating stability. When the system is

in relative equilibrium, Uqxqx and Uqyqy are given by

Uqxqx = Rjβ + Rjγ (2.76)

and

Uqyqy = −Rjβ. (2.77)

For a system to be stable, the real part of the eigenvalues all need to be positive.

In this case, the energy is at a local minimum and the system cannot decrease its

energy without decreasing its angular momentum. The Routh criteria can be applied

to find analytical conditions for energetic stability. The Routh criteria states that all

roots of a polynomial of degree 4 have negative real parts if

α3 > 0, (2.78)

α3α2 − α1 > 0, (2.79)

α2α1 − α0α3 > 0, (2.80)

α0 > 0. (2.81)

There exists a relation that links the spectral and the energetic stability in the

F2BP. By comparing Eq. (2.63) and Eq. (2.71), it is clear that the expression for b
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and α0 are equivalent. Also, it is found that spectral stability is lost as b transitions

from b > 0 to b < 0. When the F2BP becomes spectrally unstable, α0 < 0,

which places one root of Eq. (2.71) in the left half plane. Hence, the system also

becomes energetically unstable since Hxx needs to be positive definite for stability.

Conversely, when the system is spectrally stable it is energetically stable for the

assumed configuration.

Figure 2.8 shows the corresponding energy of the relative equilibria under

constant angular momentum, shown in Figure 2.7. For a given mass ratio, the two

solutions don’t have the same stability properties; they are either spectrally and

energetically stable or unstable. The lower branch of Figure 2.8 corresponding to

the upper branch of Figure 2.7 are stable points. Hence, closer relative equilibria are

unstable and associated with a larger energy than the more distant relative equilibria,

which are stable. For a system dissipating energy due to external perturbations, it

could easily transition from a closer unstable configuration to a more distant stable

one. Note that the stability of the bifurcation point is indeterminate.

The second order derivatives of Ue have the form,

Uqxqx = −3

2

∫ ∞

λ

du

(u + 1)4(u)
+

3qx
2

(1 + λ)24(λ)
CL, (2.82)

Uqyqy = −3

2

∫ ∞

λ

du

(u + β2)4(u)
+

3qy
2

(β2 + λ)24(λ)
CL, (2.83)

Uqzqz = −3

2

∫ ∞

λ

du

(u + γ2)4(u)
+

3qz
2

(γ2 + λ)24(λ)
CL, (2.84)

Uqxqy =
3qxqy

(1 + λ)(β2 + λ)4(λ)
CL, (2.85)

Uqxqz =
3qxqz

(1 + λ)(γ2 + λ)4(λ)
CL, (2.86)

and

Uqyqz =
3qyqz

(γ2 + λ)(β2 + λ)4(λ)
CL. (2.87)

For the long-axis configuration, the second derivatives of the potential can be
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Figure 2.8: Energy plot of relative equilibrium solutions as function of the mass ratio ν, with
constant angular momentum. The lower and upper branches represent unstable and stable
solutions, respectively. The system angular momentum is K=1.715 (using the normalization
introduced in section 2.3), and ellipsoidal shape parameters are β = 0.5 and γ = 0.25.

expressed as follows,

Uqxqx = −Rjα +
q2
x

(1 + λ)2
(Rjα + Rjβ + Rjγ)CL, (2.88)

Uqyqy = −Rjβ +
q2
y

(β2 + λ)2
(Rjα + Rjβ + Rjγ)CL, (2.89)

Uqzqz = −Rjγ +
q2
z

(γ2 + λ)2
(Rjα + Rjβ + Rjγ)CL, (2.90)

Uqxqy =
qxqy

(1 + λ)(β2 + λ)
(Rjα + Rjβ + Rjγ)CL, (2.91)

Uqxqz =
qxqz

(1 + λ)(γ2 + λ)
(Rjα + Rjβ + Rjγ)CL, (2.92)

and

Uqyqz =
qyqz

(β2 + λ)(γ2 + λ)
(Rjα + Rjβ + Rjγ)CL, (2.93)

where CL =

[
1

q2
x

(1+λ)2
+

q2
y

(β2+λ)2
+

q2
z

(γ2+λ)2

]
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For the short-axis configuration, the second derivatives now become,

Uqxqx = −Rjα +
q2
x

(β2 + λ)2
(Rjα + Rjβ + Rjγ)CS, (2.94)

Uqyqy = −Rjβ +
q2
y

(1 + λ)2
(Rjα + Rjβ + Rjγ)CS, (2.95)

Uqzqz = −Rjγ +
q2
z

(γ2 + λ)2
(Rjα + Rjβ + Rjγ)CS, (2.96)

Uqxqy =
qxqy

(1 + λ)(β2 + λ)
(Rjα + Rjβ + Rjγ)CS, (2.97)

Uqxqz =
qxqz

(β2 + λ)(γ2 + λ)
(Rjα + Rjβ + Rjγ)CS, (2.98)

and

Uqyqz =
qyqz

(1 + λ)(γ2 + λ)
(Rjα + Rjβ + Rjγ)CS, (2.99)

where CS =

[
1

q2
x

(β2+λ)2
+

q2
y

(1+λ)2
+

q2
z

(γ2+λ)2

]

2.4.2 Energy vs Stability at a Relative Equilibrium

A binary system can be at a relative equilibrium solution associated with a positive

energy or not. For this application, the energy is the Hamiltonian given by

Eq. (2.29). For positive energy, the equilibria are found to always be unstable.

Furthermore, a positive total energy indicates that the system can disrupt under its

mutual dynamics [78]. For negative energy, the system is bound and the solutions

can be stable or unstable.

Figure 2.8 showed clearly that a system in the closer equilibrium configuration

has more energy. It was also shown that, at a given mass ratio ν, the closer

equilibrium is always unstable while its conjugate solution is always stable. Hence,

for a system dissipating energy, the “free energy” is defined by

∆E = EURE − ESRE, (2.100)

where EURE is the energy at the unstable configuration and ESRE is the one at
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Figure 2.9: Stability diagram for planar motion, for the distance between the bodies as function of
the system mass ratio. The clear region denotes spectral stability while the shaded one denotes
spectral instability from a single hyperbolic manifold instability. The solid line indicates transition
from positive to negative total energy of the system and the pointed dashed line assumes equal
density of the binary bodies. Parameters are α = 1, β = 0.5, γ = 0.25. [79]

the stable equilibrium, which is also the minimum energy state as described in the

previous section. Eq. (2.100) gives a measure of the energy that must be dissipated

to transition from an unstable to a stable state.

Previous work has mapped relative equilibria solutions as a function of the mass

ratio, also characterizing their stability and energy properties [79]. Figure 2.9 shows

results for an ellipsoid with semi-major axes of α = 1, β = 0.5 and γ = 0.25. On

this plot, every point is a relative equilibrium and the shaded region indicates the

transition between stable and unstable equilibrium. The solid line represents the

transition from negative to positive total energy of the system, i.e. E = 0. For

E > 0, this indicates the capability of the binary system to evolve into an escaping

system with sufficient perturbation. Finally the pointed dashed line indicates the

distance between the bodies when resting on each other, assuming they have the

same density. Note that each relative equilibrium in Figure 2.9 corresponds to a

different value of angular momentum in general.
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Figure 2.10: Stability diagram for planar motion, for the distance between the bodies as function
of the system mass ratio. The clear region denotes spectral stability while the shaded one denotes
spectral instability from a single hyperbolic manifold instability. The U -shape represents a locus of
solutions q as function of the mass ratio, for a constant angular momentum; we can find at most
two solutions given a value of angular momentum. The upper and lower branches are unstable and
stable solutions, respectively. The dashed and pointed dashed lines are equal density solutions with
their conjugate. Ellipsoidal parameters are α = 1, β = 0.5, γ = 0.25.

Comparing Figure 2.9 to the case shown in Figure 2.7 where the angular moment

was kept constant, the C-shaped curve, or Locus of solutions, has its tip sitting

on the stability transition of the relative equilibria solutions. The resulting plot is

shown in Figure 2.10. The lower branch is situated in the unstable shaded region

of the plot while the upper branch is in the stable region. The C-shaped curve fits

with the “far” solutions, or conjugate solutions; the dashed line in Figure 2.10 are

the conjugate solutions to the equal density solutions (pointed dashed line). The

intersections of the C-shaped curve with the dashed line correspond to two solutions

for equal density and the same angular momentum, having mass ratios of ν = 0.5

and ν = 0.96 in this case.

In addition to energy and stability properties, an extension of Figures 2.7 and 2.8

gives further information on the system evolution in terms of energy and momentum

exchange. Looking at Figure 2.11, the Locus of solutions shifts to the right as
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Figure 2.11: Bifurcation solution q as function of the mass ratio ν, and values of angular
momentum K, from 1.65 to 1.85 (normalized) β = 0.5 and γ = 0.25. The lower and upper
branches represent stable and unstable solutions, respectively.

the angular momentum is decreased. Thus, for a system in relative equilibrium at

a solution located on the lower branch of a given C-shaped curve, that is, in an

unstable configuration, losing angular momentum would make this solution move

upwards. Hence the bodies become more distant when losing angular momentum

while approaching more stable configurations. Finally, a system with a higher value

of angular momentum may have a solution with its energy being positive. In this

case, the system would first need to lose energy in order to become bound (E < 0)

and then evolve towards a more stable configuration.

2.5 Non-Relative Equilibrium Dynamics for an

Ellipsoid-Sphere System

2.5.1 Problem Definition

Non-equilibrium dynamics of the F2BP are more commonly found in nature since the

asteroids of a binary system may not have formed together. Each of them may have

their own velocities and angular momentum. In this case, the complete equations of
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motion defined by Eqs. (2.32-2.35) need to be solved. Again, the problem involves

up to twelve degrees of freedom. With the ellipsoid-sphere system, the situation is

now back to the ellipsoid having a different spin compared to the system orbit rate,

which is shown again in Figure 2.12 for clarity. As a next step to the simplification

using the relative equilibria assumption, the regions near these relative equilibria

are investigated, especially for symmetric periodic orbits. The goal is to link this

dynamics of small motion near the equilibrium states to possible evolutionary paths

in the F2BP.

2.5.2 Periodic Orbits: Poincaré Map Reduction Method

The computation of periodic orbits is performed using a Poincaré map reduction

method as discussed in [97]. For this work, a surface of section normal to the flow,

denoted S(q), is chosen in the vicinity of a given solution, which allows one to find

symmetric periodic orbits. A convenient choice is a coordinate axis, or qi = 0 in

the Cartesian space. The Poincaré map is defined as the solution q(t) crosses the

surface with the condition that q(t)|qx=S · ∇(S) > 0. With this surface of section,

it is possible to remove one dimension from consideration using S(q) = 0. If the

system has a conserved quantity, another dimension can be removed. The Poincaré

map reduction method is pictured in Figure 2.13.
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Figure 2.13: The Poincaré map reduction method.

In the planar problem, the full state is defined as

x =




qx

qy

px

py




, (2.101)

and C is a vector of parameters. If the first return of the Poincaré map is

x1
i = Q(x0

i , C), i ∈ 1, 2, · · · (2.102)

where xi is a variable of the full state, then the nth iterate is

xn
i = Qn(xi, C). (2.103)
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A periodic orbit is defined as a point x∗ such that

x∗ = Q(x∗, C). (2.104)

Since a given initial condition x0 would not necessary give a true periodic orbit, the

correction to the state can be computed such that

x0 + ∆x = Q(x0 + ∆x, C) = Q(x0) +
∂Q

∂x

∣∣∣∣
x0

∆x + ... (2.105)

Then,

∆x = [I − Φ(T )]−1 (Q(x0)− x0), (2.106)

where Φ(T ) = ∂Q
∂x

∣∣
x0

. The method converges if started close enough to the fixed

point, x∗, and if the matrix in Eq. (2.106) is nonsingular (also see [19] for details on

solutions of linear equations).

This method is used with the Hamiltonian form of the equations of motion. The

surface of section is chosen to be the qx axis, i.e. qy = 0. To extend the map to its

first linear variation, the four dimensional state transition matrix of the system is

computed, denoted as Φi,j, where i, j = 1, 2..4. Since in this time-invariant system, a

closed trajectory has 2 unity eigenvalues, the state transition matrix is degenerate at

the periodic orbit. Due to this, variations along the surface of section and the energy

integral must be removed. In the following, the method described in [88] is applied.

With the surface of section and the energy integral, it is possible to remove two

coordinate dimensions, qy and py, leading to a two-dimensional monodromy matrix.

In order to do so, the linear variation is constrained to lie on the Poincaré surface.

In the vicinity of a periodic orbit, the first return of qy is not necessarily zero. It

is expressed as

∆qy(T ) =
4∑

j = 1
j 6=2

Φ2j(T, 0)∆xj(0), (2.107)

where i, j = 1, 3 or 4, and T is the return time. To force ∆qy(T ) to be zero, a small
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variation of return time ∆T is introduced such that

∆qy(T + ∆T ) =
4∑

j = 1
j 6=2

Φ2j(T, 0)∆xj(0) + q̇y∆T = 0. (2.108)

In solving for ∆T , the linear variation of the Poincaré map becomes

Ψi,j = Φi,j(T )− ẋi

q̇y

Φ2j(T ). (2.109)

Now using the energy integral, the py coordinate which is transverse to the

surface of section can be solved for to remove one more dimension. This gives

∆py = − 1

Epy

(Eqx∆qx + Epx∆px), (2.110)

where E is the energy integral given by Eq. (2.28). Applying this at the initial time,

t=0, and substituting for ∆py gives the final form of the 2 × 2 monodromy matrix,

Ψ(T ),

Ψi,j = Φi,j(T )− ẋi

q̇y

Φ2,j(T )− 1

q̇y(0)

[
Φi,4(T )− ẋi

q̇y

Φ2,4(T )

]
∂E

∂xj

(0), (2.111)

where i, j = 1, 3.

Therefore, the dynamical system is integrated for until the condition qy = 0 is

met, then the monodromy matrix can be computed from the state transition matrix

using Eq. (2.111). If the reduced state is defined as

y =




qx

px


 (2.112)

in the vicinity of a periodic orbit, the correction to the initial reduced state is

calculated from

∆y = (I −Ψ(T ))−1(Q(y0)− y0), (2.113)

where Ψ(T ) is the 2 × 2 monodromy matrix, Q(y0) is the computed reduced state

and y0 is the initial reduced state.
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This procedure gives corrections to qx and px as two degrees of freedom are

removed from the map reduction method and energy integral. Correction to py is

computed from conservation of the energy integral evaluated after one period,

∆py = − 1

Hpy

(Hqx∆qx + Hpx∆px) (2.114)

or

∆py = − 1

q̇y

(−ṗx∆qx + q̇x∆px). (2.115)

Having obtained ∆y and ∆py, the new initial full state is then updated by

x0 = x0 + ∆x, and the process is iterated until the difference between the computed

state Q(y0) and the initial state y0 is comparable to numerical solver tolerances.

In the following sections, for convenience the numerical values reported converge to

within 1% after the first iteration. However, the simulations shown were carried to

absolute tolerance of 1× 10−8.

2.5.3 Continuation Methods

Varying a parameter C may have show some interesting characteristics and effects

on periodic orbits. It is possible to continue a periodic family with respect to one of

the system parameters C. From the assumption that a periodic orbit is expressed as

y∗ = Q(y∗, C), a nearby periodic orbit will satisfy

y∗ + ∆y = Q(y∗ + ∆y, C + ∆C). (2.116)

Expanding Eq. (2.116) gives

y0 + ∆y = Q(y0 + ∆y, C + ∆C) = Q(y0, C) +
∂Q

∂y

∣∣∣∣
y0

∆y +
∂Q

∂C

∣∣∣∣
y0

∆C... (2.117)

These results are now applied to continuation with respect to the system energy

and period. Equation (2.117) can be re-written to express the new correction term,
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∆yC , as a function of ∆C,

∆yC = [I −Ψ(T )]−1 ∂Q

∂C

∣∣∣∣
y∗

∆C. (2.118)

In the current problem, the method was applied for variation of the energy, E,

and for the period, T . In the case of energy, the new correction term, ∆yE, is found

by,

∆yE = [I −Ψ(T )]−1 ∂y

∂E

∣∣∣∣
y∗

∆E. (2.119)

The expression for
∂y
∂E

is given by,

∂yi

∂E
=

[
Φie − Φpeẏi

q̇y

]
1

∂E
∂py

, (2.120)

where i is either 1 (y1 = qx) or 3 (y3 = px), p is the index of the Poincaré map

reduction (2, for qy), and e is the index of the removed variable (4, for py).

Since the period is related to the energy, continuation with respect to the period

has a slightly different form to account for this,

∆yT = [I −Ψ(T )]−1

(
+

∂y

∂T

∣∣∣∣
y∗

∆T +
∂y

∂E

∣∣∣∣
y∗

∆E

)
. (2.121)

From the current Poincaré map definition, the variation in qy is written as

qy(T + ∆T ) = 0 = qy(T ) + q̇y∆T +
∂qy

∂E
∆E. (2.122)

Or,

q̇y∆T = −∂qy

∂py

∂py

∂E
∆E. (2.123)

A variation in the reduced state y can also be written as

∆y = ẏi∆T +
∂yi

∂py

∂py

∂E
∆E, (2.124)

where i takes value for qx and px, i.e. i=1, 3. Hence, for a continuation using the

period, substituting Eq. (2.123) into Eq. (2.124), the following final expression for
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the correction term ∆yT is obtained from

∆yT = [I −Ψ(T )]−1

(
ẏi − q̇y

∂yi

∂py

∂py

∂qy

)∣∣∣∣
y∗

∆T . (2.125)

The corrected initial full state is then fed into the Poincaré map method to

converge to a periodic orbit again. Note that for cases of singularity with respect

to the energy and the period, the periodic orbit families are terminated by doing a

linear analysis, such as is presented in the next section.

2.5.4 Stability Analysis of Periodic Orbits

The stability of periodic orbits is analyzed from investigating the eigenvalues of

the monodromy matrix. In [26] and [76], an analytical procedure is described to

characterize critical points of periodic orbits and periodic orbit families in the

Restricted Three-Body Problem (R3BP) and for motion close to rings, respectively.

These methods are applied for the current problem to find periodic orbits in the

F2BP.

First, recall the general expression for the monodromy matrix in Eq. (2.111),

Ψ =




Ψ11 Ψ12

Ψ21 Ψ22


 . (2.126)

The monodromy matrix is a linearization around the fixed point of the full

(nonlinear) Poincaré map. Points on the surface of section are mapped according to




∆qx

∆px


 =




Ψ11 Ψ12

Ψ21 Ψ22







∆qx0

∆px0


 . (2.127)

Note that the entries of the monodromy matrix are evaluated at the initial conditions

for a periodic orbit and its determinant is

Ψ11Ψ22 −Ψ12Ψ21 = 1. (2.128)
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Since the initial conditions are chosen to be qy0 = 0 and px0 = 0, the symmetry of

the periodic orbit in space and time implies that qx(t) = qx(−t) and px(t) = −px(−t).

Hence, one can write,




∆qx0

∆px0


 =




Ψ11 −Ψ12

−Ψ21 Ψ22







∆qx

∆px


 . (2.129)

Now, inverting Eq. (2.129),




∆qx

∆px


 =




Ψ22 Ψ12

Ψ21 Ψ11







∆qx0

∆px0


 . (2.130)

Therefore, comparing Eqs. (2.127-2.130), the condition needed is Ψ11 = Ψ22, or




∆qx

∆px


 =




Ψ11 Ψ12

Ψ21 Ψ11







∆qx0

∆px0


 . (2.131)

Note that the determinant of the monodromy matrix is then written as,

Ψ2
11 −Ψ12Ψ21 = 1. (2.132)

The stability of the periodic orbit is investigated using the eigenvalues of the

monodromy matrix, computed from Eq. (2.131),

λ2 − 2Ψ11λ + 1 = 0. (2.133)

For the system to be stable, the only condition is on the first entry of the monodromy

matrix, Ψ11, stated as

−1 ≤ Ψ11 ≤ 1. (2.134)

Providing Eq. (2.134), λ will have unit magnitude or |λ| = 1, resulting in stable

periodic orbits. A change in stability happens as Ψ11 goes through ±1.

Now let’s look at the monodromy matrix as given by Eq. (2.126) and the
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following expression for ∂Q
∂C

∣∣
y0

,

∂Q

∂C
= [h1, h2]

T . (2.135)

Using Eqs. (2.126-2.135) into Eq. (2.117), ∆y can be expressed in the following

form,



∆qx

∆px


 =




Ψ11 Ψ12 h1

Ψ21 Ψ11 h2







∆qx

∆px

∆C




. (2.136)

From the symmetry property in space and time, a variation in px will have no

effect on qx or the system parameter C, as px0 = 0. Hence, this allows to decouple

the system and re-write Eq. (2.136) as




0

0


 =




Ψ11 − 1 h1

Ψ21 h2







∆qx

∆C


 (2.137)

and [
0 0

]
=

[
Ψ12 Ψ11 − 1

]
∆px. (2.138)

For the system to have a non-trivial solution, from Eq. (2.137), the condition is

∣∣∣∣∣∣∣
Ψ11 − 1 h1

Ψ21 h2

∣∣∣∣∣∣∣
= 0, (2.139)

giving

(Ψ11 − 1)h2 − h1Ψ21 = 0. (2.140)

In investigating for possible singular values in Eqs. (2.132-2.140), three cases need

to be considered, Ψ11 = 1, Ψ11 = −1 and Ψ11 6= 1.
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2.5.5 Properties of the Monodromy Matrix

In the case Ψ11 = 1, Eqs. (2.132-2.140) become,

Ψ12Ψ21 = 0 (2.141)

and

h1Ψ21 = 0. (2.142)

At this value, a stability transition can occur. First, if Ψ21 6= 0 and Ψ12 = 0, an

explicit relation is found between ∆qx and ∆C,

∆qx = − h2

Ψ21

∆C. (2.143)

In addition, h1 = 0 in order to satisfy Eq. (2.137). Then, from Eq. (2.138), ∆px is

found to be arbitrary, implying an intersection with a non-symmetric periodic orbit

of the same period [97].

On the other hand, if Ψ21 = 0 and Ψ12 6= 0, Eqs. (2.137) become

h1∆C = 0 (2.144)

and

h2∆C = 0. (2.145)

Also, from Eq. (2.138), a third condition is now

Ψ12∆px = 0. (2.146)

From these equations above, ∆px = 0, implying that intersection with a non-

symmetric family does not occur.

If h1 = h2 = 0, ∆qx and ∆C are arbitrary, not unique and free to vary, this

indicates an intersection with another symmetric family of the same period. On the

other hand, if h1 or h2 are not null, ∆C = 0. In this case, there is no intersection
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with another family and the periodic orbit family is at a local extremum of the

system parameter C [97].

Now consider the case of Ψ11 = −1. Again, a stability transition can occur.

Equations (2.132-2.140) become

Ψ12Ψ21 = 0, (2.147)

and

h1Ψ21 = 2h2. (2.148)

Both situations can again be considered where Ψ12 = 0 and Ψ21 = 0. If Ψ12 = 0,

Eqs. (2.137-2.138) become

−2∆qx + h1∆C = 0 (2.149)

and

Ψ21∆qx + h2∆C = 0, (2.150)

with

∆px = 0 (2.151)

and

−2∆px = 0. (2.152)

This implies an intersection with a symmetric family of twice the period [97].

In this case, there is no condition on h1 and h2. A similar result is obtained when

considering Ψ21 = 0. However, h2 = 0 is needed to satisfy Eq. (2.148). From Eqs.

(2.137-2.138), ∆qx is

∆qx =
h1

2
∆C. (2.153)

Note that, in these cases, one can look at the nature of the double period family

itself which should be consistent with the current monodromy matrix analysis. If

Ψ is the monodromy matrix for the single period family, then at the intersection
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point, the monodromy matrix of the double period family should have the form Ψ2 .

Hence, this should correspond to cases described at the beginning of this subsection

where the double period family would most likely be at an extremum in one of its

parameters.

Finally, let’s consider the case of Ψ11 6= 1. In this case, the general equations

given by Eqs. (2.132-2.137-2.140) are considered. Since both of the ∆px coefficients

are non zero, ∆px = 0 is the condition, which indicates that there is no intersection

with a non-symmetric family.

Equation (2.137) define the tangent curves to the family

∆qx = − h1

Ψ11 − 1
∆C (2.154)

and

∆qx = − h2

Ψ21

∆C. (2.155)

The case h1 = 0 or h2 = 0 implies h2 = 0 or h1 = 0, respectively. This leads

to having a local extremum with respect to qx. Otherwise there is a one-to-one

relationship between the periodic family and parameter C. In general, two solutions

can be found for ∆qx as shown in Figure 2.10.

Table 2.1 summarizes the cases mentioned. Notice that no cases lead to

intersections with asymmetric periodic orbits, which explains why the methods and

investigations were not extended to asymmetric periodic orbits.

2.5.6 Near Relative Equilibria Approximation

To simplify the analysis, an approximation method is also derived to model the

dynamics in the F2BP near relative equilibria. The approach is to use the method

of perturbations using eigenvalues and eigenvectors to generate the appropriate

dynamics and solve for periodic orbits.
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Cases Ψ11 Ψ12 Ψ21 h1 h2 ∆qx ∆px ∆C Remarks

a 1 0 6= 0 0 6= 0 − h2

Ψ21
∆C 6= 0 6= 0

Intersection with a

asymmetric periodic

orbit family of

the same period

b 1 6= 0 0 6= 0 6= 0 6= 0 0 0

No intersection with

symmetric families,

the periodic orbit

family is at a local

extremum of C

c 1 6= 0 0 0 0 6= 0 0 6= 0

Intersection with another

symmetric family of

the same period

d -1 0 6= 0 6= 0 6= 0 6= 0 0 6= 0

Intersection with a

symmetric family of

twice the period

e -1 6= 0 0 6= 0 0 h1

2
∆C 6= 0 6= 0

Intersection with an

asymmetric family of

twice the period

f 6= 1 6= 0 6= 0 6= 0 6= 0 2 RE 0 6= 0 No intersection

g 6= 1 6= 0 6= 0 0 0 0 0 6= 0
No intersection, local

extremum in qx

Table 2.1: Summary of stability conditions for a periodic orbit described in section 2.5.5. Ψ’s are
the components of the monodromy matrix while h’s are derivatives with respect to a free
parameter of the system, like the energy, denoted C. qx and px are x-component of the position
and inertial velocity. The notation “2 RE” indicates two relative equilibrium solutions.
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Given Eqs.(2.30,4.23), a small perturbation to the nominal path is,




δq̇

δṗ


 = JHxx




δq

δp


 , (2.156)

where J has the form

J =




0 I

−I 0


 , (2.157)

and Hxx represents the second derivatives of the Hamiltonian defined by Eq.(2.28).

Using the eigenvalues and eigenvectors of the system given by Eqs. (2.60-2.62), a

solution is given by 


δq

δp


 = eλat




u

v


 , (2.158)

where λa is an eigenvalue and u and v are the corresponding eigenvectors.

For stable motion, λa = ±iωa. And the general orbit is described by the

corresponding set of eigenvectors, u = α± iβ. Therefore, the periodic perturbation

can be written as



δq

δp


 =

1

2
(aα− bβ)

[
eiωat + e−iωat

]− 1

2
(bα + aβ)

[
eiωat − e−iωat

]
. (2.159)

Note that the constants (a± ib) satisfy the condition for a real solution.

Using trigonometric identities, Eq. (2.159) is written as




δq

δp


 = (aα− bβ) cos(ωat)− (bα + aβ) sin(ωat). (2.160)

In order to solve for the constant and initial conditions, first assume




δqx0

δqy0


 =




aαqx − bβqx

aαqy − bβqy


 =




δq0

0


 . (2.161)
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Then, solving for a and b from




a

b


 =

1

αqyβqx − αqxβqy



−βqyδq0

−αqyδq0


 , (2.162)

initial conditions on δp can then be solved,




δpx0

δpy0


 =

δq0

αqyβqx − αqxβqy




0

αqyβpy − αpyβqy


 . (2.163)

Hence, to first order approximation, a periodic orbit near a relative equilibrium

is described by 


qRE + δq

pRE + δp


 , (2.164)

where qRE and pRE are values at relative equilibrium, δq, δp, a and b are given

by Eq. (2.160) and Eq. (2.162) respectively. The initial conditions are written as

follows, 


qx0

qy0

px0

py0




=




qxRE + δq0

0

0

pyRE +
(

αqyβpy−αpyβqy

αqyβqx−αqxβqy

)
δq0




. (2.165)

The method of eigenvalues gives a good approximation to the results obtained

using the Poincaré map method in the vicinity of the relative equilibria. Figure 2.14

shows a periodic orbit using the approximation, which can be compared to periodic

orbits in the next section. The periodic orbit is computed in the vicinity of a stable

equilibrium solution, with ν = 0.5, r = 2.0749, β = 0.5, and γ = 0.25.

It is important to note that the two methods developed to find periodic orbits

in the F2BP can complement each other. The computations and initial guesses to

converge to a periodic orbit using the Poincaré map can be tedious. By using the

approximation method to generate the initial conditions, one can then use these
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Figure 2.14: Periodic orbit using approximations in the vicinity of the stable relative equilibrium
solution, ν = 0.5, r = 2.0749, γ = 0.5β = 0.5.

values as initial guesses to start the Poincaré map method. The procedure is very

useful to compute periodic orbits close to each other but from different families and

to converge on unstable periodic orbits.

2.5.7 Periodic Orbits near Relative Equilibria for an
Ellipsoid-Sphere System

Applying the method described in the previous sections, a family of periodic orbits

in the neighborhood of a given relative equilibrium is investigated. A simple

assumption is for the bodies to have equal density, and the system parameter space

is investigated with this particular constraint. The second solution found for this

same angular momentum defines the “conjugate” relative equilibrium. As shown in

Figure 2.15, cases of mass ratio, ν = 0.15, ν = 0.5, and ν = 0.85, were studied.

Let’s first concentrate on an equal mass ratio, ν = 0.5, with equal density of

the bodies. Using Eq. (2.27), the spin rate, ω, and the corresponding value of the

angular momentum, K, are computed. Then all solutions of the distance, q, between

the bodies are solved for from Eq. (2.59). For this specific case, there exists two
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Figure 2.15: Stability diagram for planar motion in the long-axis solution. We investigate families
of periodic orbits and the general dynamics near ν = 0.15, ν = 0.5 and ν = 0.85. Ellipsoid
parameters are α = 1, β = 0.5, and γ = 0.25.

relative equilibrium at q = 1.500 and q = 2.075, which are the unstable and stable

solutions, respectively (also shown in Figure 2.10). Note that at q = 1.500 the two

bodies are sitting on each other.

For this specific value of the angular momentum, at q = 1.500 it is possible to

compute one pair of imaginary eigenvalues and two sets of stable eigenvalues for

q = 2.075. This allows to find one family of periodic orbit for the unstable point and

two for the stable one. The absolute minimum energy state, at q = 2.075, is the

stable relative equilibrium point itself. Figures 2.16a-b show the evolution of one of

the periodic orbits as they get closer to the equilibrium point; these periodic orbits

usually enclose the equilibrium point and shrink in size as the energy is decreased.

At the limit, the periodic orbit becomes a single point where the period of the

periodic orbit matches the period of oscillation of the relative equilibrium. For the

unstable family, for the unstable equilibrium, the period is TURE = 6.852. For the

stable equilibrium, the period is found to be TSRE = 13.558 or 38.336 in normalized

time units.
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Figure 2.16: Periodic orbit families for ν = 0.5, K = 1.715 and ellipsoid parameters, α = 1, β = 0.5
and γ = 0.25. Evolution of periodic orbits in a qx-qy coordinate frame near the q = 2.075 relative
equilibrium having a period TSRE = 13.558. a - Periodic orbit: qx0 = 2.182 and py0 = 0.698 with
E = −0.195. b - Periodic orbit: qx0 = 3.021 and py0 = 0.507 with E = −0.176. The energy of the
equilibrium solution, indicated by the starred point, is E = −0.197.

From using the continuation method, Figure 2.17 shows the unstable family near

q = 1.500 and the two families of periodic orbits, converging to q = 2.075. Note that

these families have the same particular value of angular momentum but different

energy. On this plot, the distance between the primary, qx0 is plotted as a function

of the energy of the system, E. The star point represents the relative equilibrium or

minimum energy point for this value of angular momentum. From this point, the

upper and lower branches of each family are the two values of qx0 at which orbits of

the family cross the qy axis.

In Figure 2.17, a change in stability is marked at the ”o” point. In the region

closer to the equilibrium point, the periodic orbits are stable. Otherwise, they

are unstable. This critical point is found from investigating the eigenvalues of

the monodromy matrix but can also be analyzed from entries of the monodromy

matrix itself as described in the section on stability and continuation properties

and shown on Table 1. In the present case, the critical point in Figure 2.17 for

which the stability changes has energy E = −0.186. This point intersects with a
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Figure 2.17: Periodic orbit families for ν = 0.5, K = 1.715 and ellipsoid parameters, α = 1, β = 0.5
and γ = 0.25. Continuation for all three families of periodic orbits: qx0 vs E. The two vertical
dashed lines indicate the location of the two periodic orbits shown in Figures 2.16a-b. Note that
for the unstable RE at qx0, the bodies are sitting on each other.

space-symmetric family of twice the period and conditions as specified by case e on

Table 2.1 are retrieved.

The previous analysis was obtained for an equally divided binary system. Having

a dominant ellipsoid or a dominant sphere also affects these periodic orbit families.

In Figures 2.18-2.19 periodic orbits and family continuations are plotted for cases

of equal density binary systems with mass ratios of 0.15 and 0.85, respectively, in

the vicinity of the stable relative equilibrium (see Figure 2.15). For ν = 0.15, stable

and unstable equilibria are q = 6.913 and q = 1.285, respectively, where the periods

of the stable equilibrium are TSRE = 230.431 and 112.000, labeled in Figure 2.18b.

Note that only the shorter period family is shown for ν = 0.85 in Figure 2.19b, where

TSRE = 9.814 for its stable equilibrium at q = 1.893. This stable equilibrium has

a long period TSRE = 27.988. One can see that the periodic orbits are reduced in

size for small mass ratio; for similar wideness on the qx axis, the orbits become taller

as the mass ratio increases. Periodic orbits can also have the relative equilibrium
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Figure 2.18: a) Periodic orbit: qx0 = 6.974 and py0 = 0.379 with E = −0.069625. b) Periodic orbit
families for ν = 0.15, shown as qx0 vs E. Note that the unstable family exists but is not shown. In
a) and b), the ellipsoidal parameters are [α : β : γ] = [1 : 0.5 : 0.25]. The vertical dashed line
indicates the location of the periodic orbit shown in a). The starred point is the stable relative
equilibrium state, which has E = −0.0696.

solution outside of the orbit for large mass ratio.

Also note that periodic orbits can be found in the vicinity of the bifurcation point

where stable and unstable relative equilibria meet (see Figure 2.10) for all values of

the mass ratio. Looking at the 2× 2 monodromy matrix, these points can be linked

to the minimum energy case in Table 1, i.e. case b. Finally, case c is retrieved for

ν = 0.68 and q = 1.641, associated with an energy E = −0.223, which corresponds

to the meeting point of the equal density solution and its conjugate solution.

The results on periodic orbits in the F2BP are an important contribution, linking

periodic perturbations to the relative equilibrium solutions and their stability. The

techniques and models used to compute these periodic orbits will also serve as a

basis in the analysis of spacecraft dynamics in this environment, introduced in the

next chapter. However, a natural extension is to investigate the possible transition

of a binary system evolving from an unstable to a stable state, which is discussed in

the following last section.
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Figure 2.19: a) Periodic orbit: qx0 = 1.985 and py0 = 0.795 with E = −0.219. b) Periodic orbit
families for ν = 0.85, shown as qx0 vs E. In a) and b), the ellipsoidal parameters are
[α : β : γ] = [1 : 0.5 : 0.25]. The vertical dashed line indicates the location of the periodic orbit
shown in a). The starred point is the stable relative equilibrium state, which has E = −0.222.

2.6 Evolutionary Scenarios for an Ellipsoid-Sphere

System

The results obtained on the relative equilibria and the periodic orbits give insights

on the possible evolution scenarios of a binary system. Theories of binary systems

formation include ones where a system may have dissociated from a single body [82].

Since a closer equilibrium configuration is unstable and the system may dissipate

energy, it is natural to investigate possible transition of the system to reach a

more stable orbit. Figures 2.20-2.22 show simulations for mass ratios of ν = 0.15,

ν = 0.25 and ν = 0.5 when the equal density binary system starts near an unstable

relative equilibrium, with the bodies sitting on each other. In Figure 2.20, since

the system starts with a positive energy, that is E = 0.265, the bodies may escape

from each other. However, one can see that the trajectories following the unstable

manifold may cross the stable trajectories. Under energy dissipation, the system

may eventually reach stable periodic orbits or even arrive at a stable equilibrium

configuration at the minimum energy state, E = −0.070. Figure 2.21 shows the same

55



−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

qx

qy

stable RE

unstable RE

Figure 2.20: Dynamics in the F2BP when the bodies are close to being at the closer unstable
relative equilibrium. The trajectories following the unstable manifold cross the stable trajectories.
Under energy dissipation, transition from an unstable to a stable state may be possible. The
system mass ratio is ν = 0.15 with a “free energy” ∆E = 0.335. Ellipsoidal parameters are
[α : β : γ] = [1 : 0.5 : 0.25].

simulation for ν = 0.25. In this case, the system starts at the unstable configuration

with a negative energy, E = −0.016. In this case, the orbit is bounded and the

bodies do not escape. Reaching E = −0.119 from energy dissipation, the system

could achieve a stable configuration. The case of ν = 0.5 is described in Figure 2.22

where the two equilibria are much closer to each other, starting with E = −0.192,

and with a stable configuration at E = −0.196.

This possible transition between an unstable and a stable configuration can be

quantified from values of energy at the two relative equilibria, defined earlier by

the “free energy” of the system ∆E in Eq. (2.100). For the dynamics in Figure

2.20, the system has ∆E = 0.335 starting near the unstable point with a positive

energy. It needs to dissipate 80% of its free energy before getting bound, with E = 0.

For ν = 0.25, the system is already bound and has a free energy of ∆E = 0.135.

In Figure 2.22, with a mass ratio of ν = 0.5, the system’s free energy is low,

∆E = 0.004, making the trajectories near the unstable point stay close to the stable
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Figure 2.21: Dynamics in the F2BP when the bodies are close to being at the closer unstable
relative equilibrium. The trajectories following the unstable manifold cross the stable trajectories.
Under energy dissipation, transition from an unstable to a stable state may be possible. The
system mass ratio is ν = 0.25 with a “free energy” ∆E = 0.135. Ellipsoidal parameters are
[α : β : γ] = [1 : 0.5 : 0.25].
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Figure 2.22: Dynamics in the F2BP when the bodies are close to being at the closer unstable
relative equilibrium. The trajectories following the unstable manifold cross the stable trajectories.
Under energy dissipation, transition from an unstable to a stable state may be possible. The
system mass ratio is ν = 0.5 with a “free energy” ∆E = 0.004. Ellipsoidal parameters are
[α : β : γ] = [1 : 0.5 : 0.25].
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orbits. At ν = 0.85, in this case there is no “free energy” at the unstable resting

equilibrium point since this point lies inside the ellipsoid. Hence, at q = 1.893, the

system is already at its lowest energetic point.

As mentioned, these simulations provide insights on the system evolution, which

can be studied in much more detail. However, having knowledge of this possible

transition path may be of use when sending a science mission, and depending on the

astronomical data of a binary system. On a much smaller time scale, the models

and results on relative equilibria and periodic orbits will be used as underlying

dynamics when studying the motion of a particle or spacecraft in this gravitational

environment, which is introduced next.
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CHAPTER 3

THE RESTRICTED FULL THREE-BODY

PROBLEM

3.1 Equations of Motion

Having defined the dynamics of the Full Two-Body Problem (F2BP), let’s now

consider a point mass particle, or spacecraft, in the gravitational field of the binary

system. Since the particle does not affect the motion of the primaries and the mass

distribution of one of the primaries is taken into account, the problem is referred

as the Restricted Full Three Body Problem (RF3BP). As for the F2BP, the sphere

restriction is used in order to reduce the complexity of the problem. And again,

as for the F2BP, the equations of motion can be developed in a few different ways

using either an inertial coordinate frame, a frame rotating with the orbit, or a frame

rotating with the non-spherical body. As mentioned in Chapter 2, a frame fixed to

the non-spherical body is more convenient to work with as it allows to eliminate its

attitude from the equations of motion. In addition, the rotating frame is chosen to

be fixed at the binary system’s center of mass. In this frame, the two binary bodies

may not have a synchronized motion. However, the normalization introduced for the

F2BP can also be used for the RF3BP.

As for the F2BP, the symmetry of a tri-axial ellipsoid is used to model the general

body in order to simplify the problem while keeping the interesting dynamical

features. The RF3BP is shown in Figure 3.1 where a spacecraft, treated as a point

mass particle, is added to the binary system studied in Chapter 2. In this figure, the
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Figure 3.1: The Restricted Full Three-Body Problem

added variable, ρ̃, is the position vector of the spacecraft relative to the center of

mass of the system.

The equations of motion for the RF3BP were originally derived in [84]. The

dynamics are expressed as,

¨̃ρ + 2Ω × ˙̃ρ + Ω̇ × ρ̃ + Ω × (Ω × ρ̃) =
∂Ũ12

∂ρ̃
, (3.1)

with the potential having contributions from the sphere and the ellipsoid, expressed

as

Ũ12 =
GM1

|ρ̃− (1− ν)rb| + GM2Ũe(ρ̃ + νrb), (3.2)

and where Ω is the general body angular velocity and Ue is given by Eqs. (2.18-2.20).

It is possible to look at two different cases for the RF3BP by using the dynamics

defined in the F2BP. First, the bodies can be in relative equilibrium, keeping the

same configuration as they orbit each other. The first section looks at the dynamics

of particles under this assumption. In this case, one can investigate the energy

constraints on the motion of spacecraft or particles from the integral of motion,

zero-velocity curves, and analogue Lagrangian points. Other trajectories such as

periodic orbits can also be computed under this assumption.
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When the relative equilibrium assumption is dropped, the problem becomes

time dependent, and in general the system no longer has an integral of motion nor

equilibrium points. For example, in such cases, the analogue Lagrangian points are

not points anymore but become periodic orbits synchronized with the ellipsoid spin

or with the period of the binary system. These dynamics are investigated in the

second half of this chapter.

3.2 Dynamics of the Restricted Full Three Body

Problem (RF3BP) under Relative Equilibria

in the Full Two Body Problem (F2BP)

As a start, it is assumed that the binary system is in the long-axis locked relative

equilibrium discussed in the first half of Chapter 2. As shown in Figure 3.2, the same

geometry as defined in Figure 2.6 is kept for the F2BP and the position of a particle

is expressed as ρ = xı̂ + y̂ + zk̂ relative to the center of mass of the system.

For convenience and consistency with the work developed in Chapter 2, the

maximum radius of the ellipsoid, α, and the mean motion of the system at this

radius, n =
√

G(M1 + M2)/α3, are again chosen as length and time scales again,

respectively. In normalized units, Eq.(3.1) becomes

ρ̈ + 2ω × ρ̇ + ω × (ω × ρ) =
∂U12

∂ρ
, (3.3)

where ρ =
ρ̃
α

is the normalized distance of the particle with respect to the system’s

center of mass. The potential U12 is given by

U12 =
ν

|ρ− (1− ν)r| + (1− ν)Ue(ρ + νr), (3.4)

where Ue is the normalized ellipsoid potential, as given by Eqs. (2.18-2.20), and r

is the normalized distance between the primaries. With the ellipsoid-sphere system

in relative equilibrium, and having a coordinate frame fixed to the ellipsoid, U12 is a

61



CM

rr

M
2

M
1

ρ

x

y

ω

12

r

r
.

Figure 3.2: The Restricted Full Three-Body Problem under relative equilibrium of the F2BP.

time-invariant potential energy expression.

The free parameters of this system are the mass ratio, ν, the distance between

the two bodies, r = |r|, and the size parameters of the ellipsoid, β and γ. Given

these parameters, the spin rate ω is given by Eq.(2.27). The equations of motion in

the ı̂− ̂− k̂ plane are written as

ẍ− 2ωẏ − ω2x =
−ν(x− (1− ν)r)

[(x− (1− ν)r)2 + y2 + z2]
3
2

− (1− ν)(x + νr)Rjα, (3.5)

ÿ + 2ωẋ− ω2y =
−νy

[(x− (1− ν)r)2 + y2 + z2]
3
2

− (1− ν)(y)Rjβ, (3.6)

and

z̈ =
−νz

[(x− (1− ν)r)2 + y2 + z2]
3
2

− (1− ν)(z)Rjγ. (3.7)

The Rj expressions are elliptic integrals taking into account the mass distribution of

the ellipsoid, given in Chapter 2.

3.2.1 Jacobi Integral

With the two bodies being in relative equilibrium, this system allows for one integral

of motion, the Jacobi integral. For a spacecraft navigating in this system, the Jacobi

integral gives a measure of the spacecraft energy. In order to compute the integral,
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let’s re-write Eqs.(3.5-3.6) in the following form,

ẍ− 2ωẏ =
∂V

∂x
, (3.8)

ÿ + 2ωẋ =
∂V

∂y
, (3.9)

and

z̈ =
∂V

∂z
, (3.10)

where

V = − ν

|ρ − rs| − Ue(ρ − re) +
1

2
ω2(x2 + y2) (3.11)

with r1 =
√

(x− (1− ν)r)2 + y2 + z2 and r2 =
√

(x + νr)2 + y2 + z2.

To derive the Jacobi integral, each equation above is multiplied by ẋ, ẏ, and (̇z),

respectively, and added to find

ẍẋ + ÿẏ + z̈ż − ω2(ẋx + ẏy) =
∂V

∂x
ẋ +

∂V

∂y
ẏ +

∂V

∂z
ż. (3.12)

Substituting ẍ = dẋ
dt

= dẋ
dx

dx
dt

, and integrating with respect to time, Eq.(3.12) becomes,

C =
1

2
(ẋ2 + ẏ2 + ż2)− V, (3.13)

where C is called the Jacobi constant, the integral value of this system. Or, more

generally,

C =
1

2
v2

R − V, (3.14)

where vR is the speed of a particle or a spacecraft relative to the rotating frame.

Relating the relative velocity to inertial velocity, the Jacobi constant is then

written as,

C =
1

2
v2

I − (ω × r) · vI − U12, (3.15)

where we have

vI = vR + ω × r. (3.16)
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And v2
R can be substituted using

vR · vR = v2
I − 2(ω × r) · vI + ω2(x2 + y2). (3.17)

In either form, given values of the Jacobi constants, there exist constraints on the

motion of a particle, starting with a study of the zero-velocity curves.

3.2.2 Zero-Velocity Curves

Computing the Jacobi integral value is also important as it can be used to indicate

the regions where the spacecraft can move and provides necessary conditions for

when it may escape the system. In Eq.(3.14), the solutions of C = −V delineate

between the allowable and non-allowable motion of a spacecraft in this gravitational

field, or the zero-velocity curves. If C ¿ −1, then V À 1, meaning x and y can be

either large or very small to satisfy the relation. This restricts the motion of the

spacecraft to be either far away from the bodies or very close to them. In Figure 3.3,

these two cases correspond to the regions exterior to the large circular line around

the bodies, referred to as the outer region, and the small circle near the bodies.

Note that the small darker circle and ellipse represent the two components of the

binary system. In the outer region, a spacecraft can escape from the system while

in the interior region it cannot. Note also that with “mass distributions” it becomes

necessary to account for impact on the surface.

Increasing the value of C allows one to define the three collinear Lagrangian

points. First, the two zero-velocity curves close to each body will meet at one point

on the x axis, between the bodies. This defines the L1 Lagrangian point with its

Jacobi constant, C1, associated with it.

Then, increasing C again allows the inner region to meet with the outer region

of allowable motion, on one side of the binary system and then on the other side,

defining the L2 and L3 Lagrangian points. The point where the two regions meet
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Figure 3.3: Zero-velocity curves in the x, y coordinate frame for an ellipsoid-sphere system with
distance between the bodies of r = 1.8, ellipsoid parameters, α = 1, β = 0.5 and γ = 0.5, and mass
ratio of ν = 0.3. The small darker circle and ellipse represent the bodies themselves.

first depends on the free parameters of the system. Generally, the L2 point appears

on the outer side of the smallest body. In the R3BP, the two points will appear at

the same time for a mass ratio of ν = 0.5. In the RF3BP, this transition depends on

the distance between the bodies and the ellipsoid parameters, which is investigated

in the next section. Note that the same notation on the Lagrangian points is kept

throughout the text, independently of the point L2 or L3 appearing first. The

convention on Lagrangian points is introduced in Figure 3.4.

Finally, as for the R3BP, L4 and L5 are defined as being the two points forming

in the vicinity of the equilateral triangle points in the R3BP. Note that these two

Lagrangian points are mirrors of each other about the x-axis. In general, they are

stable only for very small or very large mass ratios.
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3.2.3 Equilibrium Solutions

As outlined in section 3.2.2, investigating the Jacobi integral allows one to find

equilibrium solutions of the RF3BP, which are analogs to the Restricted Three Body

Problem (R3BP). These five locations are shown qualitatively in Figure 3.4 above.

These five equilibrium solutions can also be computed from the RF3BP equations of

motion. Hence, when velocities and accelerations are set to zero in Eq. (3.3), the

solutions are computed from

ω × (ω × ρ) =
∂U12

∂ρ
. (3.18)

In components, the equilibrium solutions are then computed from,

ω2x =
ν(x− (1− ν)r)

[(x− (1− ν)r)2 + y2 + z2]
3
2

+(1− ν)(x + νr)Rjα, (3.19)

ω2y =
νy

[(x− (1− ν)r)2 + y2 + z2]
3
2

+(1− ν)yRjβ, (3.20)

0 =
νz

[(x− (1− ν)r)2 + y2 + z2]
3
2

+ (1− ν)(z)Rjγ, (3.21)

66



where ω is given by Eq. (2.27). By setting z = 0 and y = 0, the solutions for x

correspond to the three collinear points. As for the R3BP, these points remain

unstable as the potential will be a saddle at each point. However, for the purpose of

surface exploration and mission design, there are some key observations that can be

made.

First, the ellipsoid having a finite size adds one interesting constraint on the

location of the L1 point. The L1 point defines the limit between the two gravitational

fields for the binary system, also called the Roche limit. The region around each

body is defined as the Roche lobe. Section 3.2.8 discusses possible exchange of

material through depending on the location of L1 (for an illustrative example see

[20]). The limiting case is when L1 sits on the ellipsoid, facing the sphere. Figure

3.5 provides a closer view of this situation. In this case, the location of L1 can be

written as

xL1 = 1− νr. (3.22)

Substituting xL1 with y = z = 0 into Eq. (3.19) and solving for the mass ratio as a

function of the distance between the bodies, r give

ν =
ω2 − I(q)

(ω2r − 1
(r−1)2

− I(q))
. (3.23)

Note that the spin rate ω is given by the F2BP, Eq. (2.27).

Hence, given a value of the distance between the bodies, Eq. (3.23) gives the

corresponding mass ratio in order to have L1 sitting on the edge of the ellipsoid,

facing the sphere. Depending on the system parameters, L1 can be either inside

or outside of the ellipsoidal body. Figure 3.6 shows the mass ratio as a function of

the distance between the primaries satisfying Eq. (3.23). The upper region of the

curve defines the parameters for which L1 is outside of the ellipsoid; the lower region

represents cases of L1 being inside the ellipsoid. A variety of trajectories can be

computed for motion in the vicinity of L1, and they are addressed in the following
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on the ellipsoid surface, facing the sphere. The system parameters is at r = 1.8, with ν = 0.5586,
and β = γ = 0.5 for the ellipsoid. The shaded regions represent the bodies themselves.

section.

The primary interest in L2 and L3 is to investigate the free parameters that

give a transition between the point opening first. Since the R3BP is modeled

with two spherical primaries, the L2-L3 transition happens at ν = 0.5 always. In

the RF3BP, for given values of the distance between the primaries and ellipsoid

parameters, varying the mass ratio from having a large ellipsoid to a small one, the

L2-L3 transition shifts towards smaller mass ratios. Figure 3.7 gives an example

for r = 2 and β = 2γ = 0.5, where the Jacobi values of L2 and L3 are plotted as

a function of the mass ratio. In this case, at ν = 0.42, L3 has a smaller Jacobi

constant making it appear first over L2. Varying the other free parameters, it is

found that this transition point gets even lower as either the ellipsoid parameters or

the distance between the primaries are reduced. At a close distance, say r = 1.5,

L2-L3 transitions at ν = 0.36. This indicates that, preserving the Lagrangian point

notation as defined in Figure 3.4, L3 opens first for small ellipsoid, or large mass
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Figure 3.6: Values of the distance between the bodies, r, as a function of the mass ratio ν to have
the L1 Lagrangian point sitting on the ellipsoid body, facing the sphere. The ellipsoid parameters
are [α : β : γ] = [1 : 0.5 : 0.5].

ratio, for up to 20% more compared to the R3BP. As some of the binary systems

are made of a small ellipsoidal body and a large sphere, L3 on the outer side of the

ellipsoid can be the unique entry and exit point for particles or spacecraft, which

may make it an interesting scientific location to investigate first.

The two “equilateral points” L4 and L5 are of interest as they can potentially be

used for observation and scientific purposes. Their stability will be affected by the

properties of the general body and the system parameters such as the mass ratio and

the distance between the bodies. For the long-axis configuration, Figure 3.8 shows

the locations of the analogue equilateral points and their stability as the ellipsoid

goes from being spherical to highly oblate and as it becomes massively dominant.

The normalized distance is r = 2. In this figure, the mass ratio ν varies from 0 to 1

horizontally from left to right and γ = β varies from 0 to 1 vertically from bottom

to top. These plots have been shifted by rν and scaled by 1/r so that the ellipsoid

is located at the origin and the sphere at a distance of 1 from it. Starred points

are stable while dotted ones are unstable. Note that the stability methods used are
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[α : β : γ] = [1 : 0.5 : 0.5]. The L2-L3 transition happens at ν = 0.42.

further explained in the next section.

The effect of the ellipsoid is easily noticed by considering ν = 0 (when the

ellipsoid is the sole attractor) and ν = 1 (when the sphere has all the mass). In the

first case, we find the equilibrium solutions lie along the intermediate axis of the

ellipsoid. For ν = 1 and γ = β = 1, the ellipsoid has no effect and, as for the ideal

solutions of the R3BP, all points are located at x = 0.5 and y =
√

3/2 as expected

for this shifted system. For γ = β < 1, they are not located at the known Lagrangian

points as the rotation rate is different than the normal Keplerian rotation rate of the

R3BP, due to the non-spherical body.

Similar results were found for the short-axis configuration (see Figure 2.5). They

are shown in Figure 3.9 for r = 2 with the same normalization as for the long-axis

configuration. However, as opposed to this case, the mass ratio ν varies from 0 to

1 horizontally from right to left and γ = β varies from 0 to 1 vertically from top

to bottom. For ν = 0 and smaller β, the equilibrium points are unstable on the y

axis. Note that the distribution of the equilibrium points is markedly different for
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Figure 3.8: Locations of the analogue equilibrium points for r = 2 in the x-y coordinate space for
the long-axis configuration. The mass ratio ν varies from 0 to 1 horizontally from left to right and
γ = β varies from 0 to 1 vertically from bottom to top. Starred points are stable while dotted ones
are unstable.

this case, and that the stability intervals are highly constrained. However, as for the

long-axis configuration, for ν = 1 and γ = β = 1, the solutions agree with those of

the R3BP.

3.2.4 Stability of the Equilibrium Solutions

As for the R3BP, for all values of the free parameters, L1, L2 and L3 are unstable

while L4,5 may be stable. Looking at small deviations from the equilateral position,

we can investigate their stability. In the R3BP, the stability criteria for L4,5 is

usually given by the Routh criteria and is only function of the mass ratio,

ν <
1

2

[
1−

√
23

27

]
= 0.0385... (3.24)

Since the mass distribution of the general body is now taken into account, the

stability of some of the equilibrium solutions are expected to deviate from the R3BP.

Using perturbations to x and y, x = x̃ + dx and y = ỹ + dy, the potential energy
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Figure 3.9: Locations of the analogue equilibrium points for r = 2 in the x-y coordinate space for
the short-axis configuration. The mass ratio ν varies from 0 to 1 horizontally from right to left and
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expression is expanded giving the following equations,

¨̃x− 2ω ˙̃y − ω2x̃ = x̃(Uxxs + Uxxe) + ỹ(Uxys + Uxye) (3.25)

and

¨̃y + 2ω ˙̃x− ω2ỹ = ỹ(Uyys + Uyye) + x̃(Uyxs + Uyxe). (3.26)

The second order partial derivatives for the ellipsoid potential were given in Chapter

2. The characteristic equation for the system is found from,

∣∣∣∣∣∣∣
λ2 − ω2 − Uxx −2ωλ− Uxy

2ωλ− Uxy λ2 − ω2 − Uyy

∣∣∣∣∣∣∣
= 0, (3.27)

where Uxx = Uxxs + Uxxe, Uyy = Uyys + Uyye and Uxy = Uxys + Uxye. Expanding the

determinant, the characteristic equation can also be written in the form,

λ4 + Aλ2 + B = 0, (3.28)
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where

A = 2ω2 − Uxx − Uyy (3.29)

and

B = ω4 + ω2(Uxx + Uyy) + UxxUyy − Uxy
2. (3.30)

For the system to be linearly stable, the following conditions must be satisfied,

A > 0 (3.31)

B > 0 (3.32)

A2 − 4B > 0. (3.33)

The long-axis case is shown in Figure 3.10, for a distance between the two bodies

set as r = 2 while varying the ellipsoid parameters α and β. The stability was found

to be decreased from the known R3BP. In Figure 3.10, each line corresponds to

different values of γ/β, and equal 0.25, 0.5, 0.75 and 1.0. Stable regions lie above

the lines in the upper figure and below the lines in the lower figure. The horizontal

dotted line corresponds to the Routh criterion. It is easy to see that the stability

region is reduced from the R3BP although exceptions exist for small mass ratios. In

the case of a short-axis configuration, the stability region is even further reduced, as

shown in Figure 3.11. Note that r = 2 also in this figure.

Finally, as the distance between the two binary bodies is increased, the stability

of the RF3BP merges with the one for the known R3BP, as shown in Figures 3.12

and 3.13, for the long and short-axis configurations, respectively.

Note on the stability in the F2BP and the RF3BP

It is interesting to compare the results from the RF3BP with the stability in the

F2BP. For the long-axis configuration, as the distance r between the bodies increases,

the F2BP becomes more and more stable. For the short-axis configuration, it was

shown in [79] that the F2BP is usually unstable with some exceptions for small ν
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Figure 3.10: Stability regions of the long-axis configuration for r = 2 as a function of β and ν.
Each line corresponds to different values of γ/β, and equal 0.25, 0.5, 0.75 and 1.0. Stable regions
lie above the lines in the upper figure and below the lines in the lower figure. The horizontal
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Figure 3.11: Stability regions of the short-axis configuration for r = 2 as a function of β and ν.
Each line corresponds to different values of γ/β, and equal 0.5, 0.75 and 1.0. Stable regions lie
above the lines in the upper figure and below the lines in the lower figure. The horizontal dotted
line corresponds to the Routh criterion.
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Figure 3.12: Stability regions of the long-axis configuration for γ/β = 1 as a function of β and ν.
The lines correspond to different values of r, and equal 2, 3, and 4. Stable regions lie above the
lines in the upper figure and below the lines in the lower figure. The horizontal dotted line
corresponds to the Routh criterion.

Figure 3.13: Stability regions of the short-axis configuration for γ/β = 1 as a function of β and ν.
The lines correspond to different values of r, and equal 2, 3, and 4. Stable regions lie above the
lines in the upper figure and below the lines in the lower figure. The horizontal dotted line
corresponds to the Routh criterion.
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and large r.

Now, in the RF3BP, for the long-axis configuration, the standard R3BP Routh

criteria is recovered for r larger than 3 and large mass ratio, ν, that is, the system

having a massive sphere. In this case, the F2BP is generally stable. When the

primary is of an ellipsoidal shape, i.e., for small ν, r needs to be larger than 5 to

have both systems stable. The common regions for both the F2BP and the RF3BP

are shown in Figure 3.14. Although not shown, for the short-axis case, interestingly,

stability of both the F2BP and the RF3BP is only possible for small ν and r larger

than 5.

An extension to this is to investigate the transfer properties and stability of the

ellipsoid-sphere system when L1 sits on the ellipsoid. This topic is introduced in the

following sections, 3.2.5-3.2.8.
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3.2.5 Transition Trajectory near L1

Motivational Background

A future mission to a binary system may want to carry out surface motion for

scientific investigations or sample return objectives. Other than surface and gravity

constraints, situations such as the body spin rates need to be taken into account. In

terms of mission design, for a small ellipsoid case, it would be interesting to have a

vehicle approaching a binary system from the small ellipsoid body, through L3, as

the primary is often spinning more rapidly than the orbit rate[87]. Given a value

of the Jacobi integral, the spacecraft would have enough energy to travel close to

the system, visiting both bodies, without escaping through the L3 region. Hence, it

is important to look into possible mission scenarios and to characterize the surface

conditions and requirements for possible transit trajectories between the bodies.

For certain parameters of the system, L1 is on the outside of the ellipsoid,

providing a channel for possible transit trajectories. However, due to the instability

of L1, only certain conditions on the position and velocity of a spacecraft can lead to

transit. Moreover, certain velocity limits are required in order to prevent a vehicle

from escaping the system.

Linearization at L1

Different trajectories such as transit and non-transit trajectories between the bodies

can be analyzed from linearizing near L1 and computing its manifolds. In the

following the methodology of Conley [14] is applied to the current problem. This

is possible by investigating the eigenvalues and eigenvectors of the state transition

matrix evaluated about L1. The L1 equilibrium point has one pair of real and one

pair of imaginary conjugate eigenvalues. The corresponding eigenvectors, one pair of

hyperbolic manifolds and one center manifold, respectively, make L1 unstable.

To find the manifolds at L1, it is necessary to first compute the eigenvalues of the
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linearized dynamics. For a system of the form ẋ = F (x, t), the linearized equations

are computed using the first derivative of F (x, t), that is ∂F
∂x

. For the dynamics

defined by Eqs. (3.5,3.6), ∂F
∂x

is expressed as

∂F

∂x
=




0 0 1 0

0 0 0 1

ω2 + (Uxxs + Uxxe) (Uxys + Uxye) 0 2ω

(Uxys + Uxye) ω2 + (Uyys + Uyye) −2ω 0




. (3.34)

Note that the second order derivatives for the sphere and ellipsoid potential are

given in Chapter 2.

Because of the nature of L1, the eigenvalues can be written as ±λ1 and ±λ2,

where λ1 is real and λ2 is imaginary. The associated eigenvectors are µ1
± and

µ2 = µ2
RE+ iµ2

I . The solution for the particle dynamics can be written as a

superposition of the eigenvectors,

q = α+µ+
1 e(λ1t) + α−µ−

1 e(−λ1t) + 2Re(βµ2e
(iλ2t)), (3.35)

where α+, α− and β are constants.

Now, let’s substitute

β = βRe + iβI (3.36)

and

e(iλ2t) = cos(λ2t) + i sin(λ2t). (3.37)

Equation (3.35) then becomes

q =α+µ+
1 e(λ1t) + α−µ−

1 e(−λ1t)

+ 2βRe(µRe
2 cos(λ2t)− µI

2 sin(λ2t))− 2βI(µRe
2 sin(λ2t) + µI

2 cos(λ2t)). (3.38)
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Subsituting t = 0 in Eq.(3.38) gives

q = [µ+
1 , µ−

1 , 2µRe
2 , −2µI

2]




α+

α−

βRe

βI




. (3.39)

Then, writing Eq.(3.39) in the form q = [µ]αµ, the components of αµ are found

from,

αµ = [µ]−1q. (3.40)

Having the constant α+, α−, βRe and βI , trajectories of a particle near the L1

Lagrangian point can be investigated from its linear dynamics. Depending on the

value of α+ and α−, the system will excite different manifolds, leading to different

types of trajectories. As shown in Figure 3.15, there are three cases to consider,

transit trajectories, non-transit trajectories and asymptotic trajectories, respectively,

with

α+α− < 0, (3.41)

α+α− > 0, (3.42)

and

α+α− = 0 (3.43)

In order to find regions allowing transit and non-transit trajectories, the α

constants were computed along the y-axis of the L1 point with varying the direction

of the velocity vector. The geometry is sketched in Figure 3.16. Results on

the trajectories are shown in Figure 3.17. The dark and white region represents

non-transit and transit trajectories, respectively, for a system with r = 2, β = γ = 0.5

and ν = 0.3, and for an interval on the y axis of [−0.5, 0.5].
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Figure 3.16: Geometry of the transit/non-transit trajectories investigation at L1 when it is outside
of the ellipsoid body.
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Figure 3.17: Results on transit and non-transit trajectories at L1 for r = 2, β = γ = 0.5 and
ν = 0.3 across y = [−0.5 : 0.5]. The dark region indicates non-transit trajectories.

Finally, note that the condition

α+α− = 0 (3.44)

gives small unstable periodic orbits around L1, shown in Figure 3.18. In this figure,

r = 1.8, β = γ = 0.5 and ν = 0.3 in nondimensional units.

3.2.6 Surface Conditions Leading to Transit and Non-Transit
Trajectories

Knowing the conditions giving transit and non-transit trajectories from linear

investigation at L1, the system can be integrated backward and forward in time to

find initial and final conditions of the particle dynamics on the surface of either body.

From the results on transit and non-transit trajectories shown in Figure 3.17, the

surface conditions for transit trajectories were studied. Figure 3.19 shows a typical

non-transit trajectory for parameter r = 2, β = γ = 0.5 and ν = 0.3 and two transit

trajectories in the center and outer regions of the surface of the bodies. The small

arrows show the locus of transit trajectory surface conditions; the region facing the

81



−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x

y

Figure 3.18: Unstable periodic orbit around L1 due to the hyperbolic manifold at L1, satisfying
the asymptotic condition. Parameters are r = 1.8, β = γ = 0.5 and ν = 0.3. The shaded regions
represent the bodies themselves.

bodies gives more transfer options while the conditions need to be more precise for

the outer regions on the surface.

Different conditions were investigated for transit and non-transit trajectories

crossing the L1 region. The point A in Figure 3.20a represents a fixed value on the y

axis at L1 through which trajectories are crossing with varying directions δ defined

in Figure 3.16. We see that the corresponding surface conditions and nature of the

trajectories differ widely while attempting to cross the L1 region. Figure 3.20b shows

different initial velocity vectors for a vehicle leaving from the surface of the ellipsoid

at B. In this case, the direction of the launching velocity at the surface was varied

while the initial surface location and the velocity magnitude were fixed. It can be

seen that small differences in angle could lead to transfer or not. We also note that

some initial conditions may lead to transfer to the back side of the spherical body.
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Figure 3.19: Transit and non-transit trajectories for a binary system with r = 2, ν = 0.3 and
ellipsoid parameters β = γ = 0.5. The arrows are initial and final conditions on the surface of the
bodies leading to transit trajectories.

3.2.7 Bounds on Transfer Velocity

To keep the spacecraft close to the bodies, attention is needed to monitor the

velocity involved in transferring from the ellipsoid to the sphere. Getting to an

large orbit encircling the binary system would make a spacecraft more susceptible to

escape. Given a Jacobi integral value, conditions on the velocity can be computed

to make sure a spacecraft would not be able to escape from the system. Using these

conditions, it is possible then to perform the necessary maneuvers in order to satisfy

the surface conditions leading to transit without possibilities of escaping.

Knowing that a spacecraft with enough energy could have access to the outer

region of the binary system by leaving through the L2 or L3 region, upper bounds

on the transit velocity are computed from their Jacobi integral values, C2 and C3

respectively. For the spacecraft being close to the back side of the ellipsoid, an

energy value close to C3 would be a good upper bound as L3 opens first. If the

spacecraft makes a transfer to the spinning sphere, an energy value larger than C2
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Figure 3.20: Transit and non-transit trajectories for a binary system with r = 2, ν = 0.3 and
ellipsoid parameters β = γ = 0.5. a) The point A represents trajectories crossing L1 at fixed value
of y, y = 0.1, with varying direction δ. b) The point B indicates different initial directions of
launching velocities for a spacecraft leaving the surface of the ellipsoid.

84



might be more suitable, depending on the mass ratio.

Hence, in the design of a mission approaching by the ellipsoid side, say, and

transferring to the sphere, a value of energy larger than C2 corresponding to an orbit

encircling the binary can be chosen as an upper bound on the spacecraft velocity.

It is referred to as the outer region with a value Couter corresponding to its Jacobi

value. Given a value of Couter, Eq.(3.14) is reversed to obtain the corresponding

velocity at the specific location on a body surface, and set it as vmax. This gives a

bound on the velocity for the spacecraft to stay in orbit close to the binary system.

The velocity correction for the spacecraft leaving the surface of the ellipsoid with a

velocity vsfc can be found from,

4v = vmax − vsfc. (3.45)

In the case of a spinning spherical primary with a spin rate given by Ωα, a vehicle

on a spherical surface of radius rsfc would have a tangential velocity component

given by,

vT = (Ω − Ωα)rsfc. (3.46)

Note that the sphere spin Ωα is usually faster than the binary orbit rate Ω, and that

the Jacobi integral is not constant anymore. The transit velocity on the surface of

the sphere with respect to the binary system is then,

vT ransit = vT + vsfc. (3.47)

From the results on the surface conditions given by Figure 3.19, a vehicle would

only need to hop in the right direction to bring the total launch velocity to the

required magnitude and direction for transit. It is necessary to make sure that the

energy of the spacecraft stays low enough when it hits the spinning sphere. Hence,

arriving at the sphere the velocity can be monitored using Eq. (3.45) and the

necessary maneuvers can be performed.

85



Note that these velocity bounds are defined for L1 located between the two

bodies, outside of their physical shape. For a system with the two primaries being

closer to each other, the velocity limits will vary with the Jacobi integral, and if L1

is located within one of the two bodies. This case also indicate possible material

exchange between the bodies, which is discussed next.

3.2.8 Dynamical Evolution and Momentum Transfer for
Binary Asteroid Systems

The results on relative equilibria combined with analysis of the dynamics of

particles in the vicinity of such binary system situation provide insights on mass

and momentum exchange that may occur between the two bodies. Since the mass

distribution of one of the bodies is now taken into account, L1 is a key element

for transfers between the bodies. It was shown in section 3.2.3 that L1 can be

situated between or inside the bodies depending on the free parameters of the system

modifying the transfer possibilities.

Equation (3.23) plotted in Figure 3.21 shows the distance between the primaries

r as a function of the mass ratio ν in order to have L1 sitting on the ellipsoid facing

the sphere. The region above the solid line defines the parameters for which L1 is

outside the ellipsoid; the region below the solid line represents cases of L1 being

inside the ellipsoid.

A reasonable assumption for binary systems is that they have the same density

between the two bodies, as the two binaries may have formed from a single one.

To provide a better physical insight it is useful to compare the results of having L1

sitting on the ellipsoid given above to the case of equal density between the two

bodies. First, let’s expand on an equal density binary system. The definition of the

mass ratio, ν, gives

ν =
M1

(M1 + M2)
=

4π
3

ρR3
s

4π
3

ρ(R3
s + αβγ)

, (3.48)
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where Rs is the radius of the sphere. Solving for Rs gives

Rs =

[
αβγ

(
ν

1− ν

)] 1
3

. (3.49)

Since the distance between the bodies can vary, and hence the location of L1, the

simplest situation is to have the two bodies stay in contact with each other. Then

the distance between them can be varied. Here, with α = 1 from the normalization

used, the distance between the bodies is denoted as R and written as,

R = 1 + Rs. (3.50)

Substituting Rs from Eq. (3.49) into Eq. (3.50), the distance between the bodies

can be expressed as

R = 1 +

[
βγ

(
ν

1− ν

)] 1
3

. (3.51)

Equation (3.51) is the dashed line plotted in Figure 3.21, that is the distance R as a

function of the mass ratio ν.

From Eqs. (3.51) and (3.23), the conditions are found for L1 to be inside or

outside of a binary system with equal density. Given a value of the distance between

the two bodies, r, the value of the mass ratio required to have L1 touching the

ellipsoid is computed from Eq. (3.23). Using this same mass ratio in Eq. (3.51),

the corresponding distance R between two bodies with the same density can then

be calculated. The meeting point in Figure 3.21 indicates that L1 is sitting on the

ellipsoid for a case of equal density, which occurs for r = 1.22 and ν = 0.08. Note

that, in this simple case, the sphere is also touching the ellipsoid. As the ellipsoid

parameter β increases, this transition limit is shifted up.

In Figure 3.21, the region below the solid line indicates that r < R meaning L1

would be located inside the ellipsoid if the bodies were to be of equal density and

resting on each other. In the region above the solid line, r > R and L1 is in the

exterior region of the ellipsoid. As the distance between the bodies increases, the
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Figure 3.21: Equations (3.51-3.23) are plotted together. The dash line represents the value of the
two body distance for the case of constant density with the two bodies in contact. The solid line
represents the locus of the mass ratio ν and the distance r between the bodies for L1 to be sitting
on the ellipsoid, facing the sphere. For an equal density binary, the transition for L1 from inside to
outside the ellipsoid happens at r = 1.22, ν = 0.08. Ellipsoidal parameters are
[α : β : γ] = [1 : 0.5 : 0.25].

path from the sphere to the ellipsoid would be open to particles leaving one of the

body. The connecting region is found from computing the zero-velocity limits on the

spherical body given a value for the Jacobi integral. Then, the conditions allowing

particles to transit from one body to the other are computed using the method from

section 3.2.5.

Finally, this topic on L1 can be related to the relative equilibria cases at the end

of chapter 2. In the case of equal density of the binary bodies, for lower mass ratios,

L1 is inside the ellipsoid for the unstable equilibrium configuration while it is located

between the bodies for the conjugate binary equilibrium configuration. As the mass

ratio of the binary system is increased, L1 slowly gets closer to the ellipsoid. The L1

transition from outside to inside the ellipsoid happens for a mass ratio of ν = 0.6.

Note that this L1 transition is slightly different than the equilibrium configuration

bifurcation of ν = 0.68, as shown in Figure 2.10.
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Figure 3.22: Dynamics of particles close to the point of contact of a binary system where L1 is
situated inside the ellipsoid. The arrows show the direction of motion when the particles are
released on the surface of the ellipsoid.

This can be related to the Roche limit and the Roche lobe of binaries which

affect the distribution of mass between the bodies. For a binary system, the Roche

limit is the location where the net gravitational field of the two bodies meet, which

is L1. The Roche lobe is the region around the body within which orbital particles

are gravitationally bound to that body. If the bodies overflow its Roche lobe, some

material will most likely start “falling” into the other body. For binary systems

in close proximity with L1 being inside the bodies such as the case pictured in

Figure 3.22, simulations show that particles on the surface tend to move toward the

spherical primary. In this case, L1 is inside the ellipsoid. The system mass ratio is

0.85 and the bodies are 1.9 units apart.The equilibrium configuration is stable in

this case.

Starting from the Hill approximation [15, 91], the Hill sphere distance can be

stated as

x = ±
(

µ2

3µ1

)1/3

r, (3.52)

where µ1 and µsys are the gravitational constant of the primary and secondary
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bodies, and r is the distance between the two bodies. With the ratio of gravitational

parameters expressed as

µ2

µ1

≈
(

r3
1

r3
L + r3

1

)
, (3.53)

where r1 is the radius of the primary, at the limit, Eq. (3.52) is written as

x =
r1r

(3(r3
L + r3

1))
1/3

≈ r1r

31/3rL

. (3.54)

Hence, the system becomes unstable if x → r1. Hence, if rL denotes the Roche limit,

then the system becomes unstable if

rL

r
≈ 1

31/3
. (3.55)

Other parameters such as the spin of a larger spherical primary may also influence

particle distribution near the point of contact of binary bodies. In addition, looking

at the angular momentum and energy properties for relative equilibria, as given in

Figure 2.8 of section 2.4.1, one can map and characterize the mass distribution and

momentum exchange that may occur within a closely formed binary system.

3.2.9 Reconnaissance Periodic Orbits

For systems where the F2BP is under a relative equilibrium assumption, it is possible

to investigate orbits that can be used for close approach operations. Periodic orbits

are particularly of interest for regions around the binary system or around one

of the bodies. Two types of periodic orbits can be computed, direct orbits and

retrograde orbits. Retrograde orbits tend to be more stable in general as the particle

or spacecraft orbits a body in the opposite angular direction from the system orbital

motion. Since, in this case, the relative velocity between a spacecraft and the body

is higher, the perturbations are reduced or averaged.

Retrograde periodic orbits can be computed using a Poincaré map reduction

90



method as discussed in [97], also detailed in section 2.5.2. In brief, a surface normal

to the flow is chosen and the dynamics given by Eqs. (3.3) are integrated until the

trajectory crosses that surface again. Using this approach, the symmetric periodic

orbits can converge after correcting the initial states and iterating until the orbit

comes back to the same starting point. The stability of the periodic orbits is found

from investigating the eigenvalues of the monodromy matrix and methods such as

the ones described in section 2.5.4 can be used to characterize critical points [26, 76].

The circular orbital velocity is used as a first guess to start the Poincaré map

iterations, for periodic orbits encircling both bodies or only a single one. The velocity

is computed in the rotating frame, along the y-axis, from the expression relating the

inertial and rotating frames, defined earlier as

vI = vR + ω × r, (3.56)

where vI is the inertial velocity of the particle or spacecraft, vR is its relative

velocity in the rotating frame, ω is the binary spin rate, and r is the position vector

of the spacecraft relative to the system or body center of mass. The magnitude of

the inertial velocity is given by

vI = ±
√

µsys

r
, (3.57)

where µsys is the system gravitational constant. Since the periodic orbits computed

are symmetric about the x-axis, the inertial velocity is along the y-axis as well. For

orbits encircling the binary system, µsys = G(M1 +M2). Therefore, using Eq. (3.56),

the relative velocity is

vR = ±
√

µsys

r
+ ωr. (3.58)

For orbits encircling only one body, the more massive body may have less pronounced

gravitational disturbances as compared to the smaller one. In the case of a massive
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Figure 3.23: Stable retrograde periodic orbits around the binary system.

sphere, say, the specific gravitational constant is taken as µ1 = GM1. Figure 3.23 and

3.24 show stable periodic orbits around the binary system and around a spherical

primary of this binary system, respectively.
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Figure 3.24: Stable retrograde periodic orbits around the massive spherical body of a binary
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3.3 Non-Synchronized Case in the RF3BP

3.3.1 Overview

Some binary systems have been observed to have one of the bodies in synchronized

rotation. In some cases, however, the bodies do not have synchronized motion, as

astronomical observations show for binary systems such as 1991VH or 2003YT1

[71]. Although the analysis for such systems is fundamentally different, the stability

results presented in the previous section provide insights for this non-equilibrium

case.

This section focuses on the non-synchronized case of the binary system. With

the system being in non-equilibrium, the geometry of the problem can be viewed as

shown in Figure 3.25, where the ellipsoid spin, ωr, is now different than the orbit

period of the binary system, ω0. For such problem, the full time-varying nonlinear

equations of motion defined by Eqs. (3.1) need to be solved. As the gravitational

attraction of the binary system is changing in time, the trajectories in the vicinity of

the analogue equilateral points of the RF3BP become periodic orbits with a period
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equal to the period of the binary.

The first few sections describe a first order approximation method where the

ratio of these two angular velocities is defined as an arbitrary free parameter in

the RF3BP. The periodic orbits are computed using a Poincaré map reduction

method. They are then compared to approximate results from expanding the

ellipsoid potential using spherical harmonics and applying a perturbation method.

The similarities in the results allow to simplify the computations in investigating the

effect of the free parameters of the system. It is found that periodic orbits exist for

low values of the mass ratio. The stability of these periodic orbits is also investigated

using the two methods described. The stability region is reduced from the known

R3BP and from results derived in the synchronized case of the RF3BP in the first

part of this chapter. Finally, a method to investigate bifurcation limits is developed

in the approximate system.

In the later sections, for a more realistic model, periodic perturbations to the

F2BP are used in the RF3BP model. The goal is to integrate the F2BP to the

RF3BP. Therefore, at each step of the integration, the F2BP dynamics are solved

for and substituted into the RF3BP.
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3.3.2 Binary System First Order Approximation

In the first subsection, the ratio between the mutual orbit rate and the spin rate

of the ellipsoid is an added free parameter. As an approximation, this spin ratio

is defined as m = ωr/ω0, where the ellipsoid angular velocity, ωr, is assumed to be

greater than the mean motion of the mutual orbit, ω0. For m 6= 1, the L4,5 points

should bifurcate into periodic orbits. The length scale is still taken as the longest

axis of the ellipsoid, α. Hence, r = rb

α
, where rb is the position vector of the sphere

relative to the ellipsoid. However, from using the added free parameter m, it is

now more convenient to normalize the RF3BP equations with the mean motion

ω0 =
√

G(M1+M2)
r3 .

Since the motion is periodic in time, the position vector in the ellipsoid frame is

expressed as ρ̃e = (ρ̃ − re) Tr = [xe, ye] where

Tr =




cos (m− 1)t sin (m− 1)t

− sin (m− 1)t cos (m− 1)t


 (3.59)

and m = ωr/ω0.

In components, Eqs.(3.5-3.5) are written as follows

ẍ− 2ẏ − x =
−ν(x− (1− ν)r)r3

r3
1

− (1− ν)r3(xe)Rjα, (3.60)

ÿ + 2ẋ− y =
−νyr3

r1
3

− (1− ν)r3(ye)Rjβ, (3.61)

and

z̈ =
−νzr3

r1
3

− (1− ν)r3(ye)Rjγ, (3.62)

where r1 is defined as before,

r1 =
√

(x− (1− ν)r)2 + y2 + z2. (3.63)

The Rj’s expressions are the elliptic integrals representing the mass distribution of
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the ellipsoid expressed in the previous chapter.

To derive analytic results to periodic orbits in the RF3BP, spherical harmonics

are used as an approximation, with the general expressions given in section 2.2 on

the mutual potential in the F2BP. In this case, the ellipsoid potential is expressed as

Ue =
(1− ν)

r

[
1 +

1

2

(
1

r

)2

C20(3sin2 δ − 1)+

3

(
1

r

)2

C22(1− sin2 δ) cos(2λ) + ...

]
, (3.64)

where δ and λ are the usual spherical coordinates. Converting to the current

Cartesian frame and using trigonometric identities, the ellipsoid potential becomes,

Ue =
(1− ν)

r2

[
1− C20

2r2
2

+
3C22

r2
4

Pel

]
(3.65)

where

r2 =
√

(x + νr)2 + y2 + z2, (3.66)

Pel = ((x + νr)2 − y2)cos(2(m− 1)t)− 2(x + νr)ysin(2(m− 1)t), (3.67)

C20 =
1

10
(2γ2 − β2 − 1), (3.68)

and

C22 =
1

20
(1− β2). (3.69)

In components, and using the modified normalization above, the planar equations
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of motion in the RF3BP are

ẍ− 2ẏ − x =
−ν(x− (1− ν)r)r3

r1
3

− (1− ν)(x + νr)r3

r2
3

+
3(1− ν)r3C20(x + νr)

2r2
5

+
3(1− ν)r3C22

r2
5

[
∂cos 2λ

∂x

]
(3.70)

and

ÿ + 2ẋ− y =
−νyr3

r1
3

− (1− ν)yr3

r2
3

+
3(1− ν)r3C20y

2r2
5

+
3(1− ν)r3C22

r2
5

[
∂cos 2λ

∂y

]
, (3.71)

where

∂cos 2λ

∂x
= 2(x + νr) cos 2(m− 1)t− 2ysin 2(m− 1)t

and

∂cos 2λ

∂y
= −2y cos 2(m− 1)t− 2(x + νr)sin 2(m− 1)t.

As expected, Eqs.(3.70) and (3.71) have small perturbation from the R3BP which

are given by the spherical harmonics terms, i.e. the C20 and C22 terms.

3.3.3 Stroboscopic Poincaré Map Reduction Method

As the ellipsoid body is rotating at a different rate than the orbit rate, its

gravitational attraction is periodically changing in time relative to the sphere. In

the current problem, the period can be expressed as,

T = 1/2

(
2π

m− 1

)
, (3.72)

and represents a 180o rotation of the ellipsoid relative to the sphere. Note that this

is not the period of the orbital motion of the F2BP nor is it the rotation period of

the ellipsoid. A Poincaré map reduction method is used to compute the periodic

orbits. Since the period is explicitly given by Eq.(3.72), similar to the method

97



outlined in section 2.5.2, a stroboscopic map is used where the coordinate chosen for

the Poincaré map is time with t0 = nT .

Using continuation of periodic orbits derived in section 2.5.3, the method was

applied for variation of the mass ratio for the current application. Let’s define

x =




x

ẋ

y

ẏ




. (3.73)

The new correction to the initial state x, ∆x, is found from,

∆x = [I − Φ(T )]−1 ∂x

∂ν

∣∣∣∣
T

∆ν, (3.74)

where I is the identity matrix and Φ is the state transition matrix. As for the

equations of motion, the state transition matrix is integrated over a full period T of

the system and used in the computation of ∆x. The initial conditions on Φ is the

identity matrix. Φ should always have a determinant of +1. The corrected initial

state is then fed into the Poincaré map method to converge to a periodic orbit again.

Note that ∂x
∂ν

∣∣
T

is calculated from the following differential equation,

d

dt

(
∂x

∂ν

)
=

∂F

∂x

∂x

∂ν
+

∂F

∂ν
. (3.75)

Note that ∂x
∂ν

∣∣
t=0

= 0. The matrix ∂F
∂x is found from linearizing the equations of

motion given by Eqs. (3.60-3.62), which gives

∂F

∂x
=




∂F1

∂x1

∂F1

∂x2

∂F1

∂x3

∂F1

∂x4

∂F2

∂x1

∂F2

∂x2

∂F2

∂x3

∂F2

∂x4

∂F3

∂x1

∂F3

∂x2

∂F3

∂x3

∂F3

∂x4

∂F4

∂x1

∂F4

∂x2

∂F4

∂x3

∂F4

∂x4




, (3.76)

where the components ∂Fi

∂xi
are,
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∂F1

∂x1
= 0, ∂F1

∂x2
= 1, ∂F1

∂x3
= 0, and ∂F1

∂x4
= 0,

∂F2

∂x1
= 1 + r3(Uxxs + Uxxe),

∂F2

∂x2
= 0, ∂F2

∂x3
= r3(Uxys + Uxye), and ∂F2

∂x4
= 2,

∂F3

∂x1
= 0, ∂F3

∂x2
= 0, ∂F3

∂x3
= 0, and ∂F3

∂x4
= 1,

∂F4

∂x1
= r3(Uxys + Uxye),

∂F4

∂x2
= −2, ∂F4

∂x3
= 1 + r3(Uyys + Uyye), and ∂F4

∂x4
= 0.

The second order partial derivatives were given in Chapter 2. Note that, for

the ellipsoid, the second derivatives are transformed from inertial to the rotating

coordinate system fixed at the ellipsoid by,

Ue = TrŨeT
−1
r . (3.77)

Now, the expression for ∂F
∂ν

is given by,

∂F

∂ν
=




∂F1

∂ν

∂F2

∂ν

∂F3

∂ν

∂F4

∂ν




, (3.78)
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where the components ∂Fi

∂ν
are,

∂F1

∂ν
=0 (3.79)

∂F2

∂ν
=− (x− (1− ν)r + νr)

[(x− (1− ν)r)2 + y2]
3
2

+
3rν(x− (1− ν)r)2

[(x− (1− ν)r)2 + y2]
5
2

+ (x + νr − (1− ν)r)Rjα

+
r(1− ν)(x + νr)2

(1 + λ)2

(
(Rjα + Rjβ + Rjγ)

[
1

(x+νr)2

(1+λ)2
+ y2

(β2+λ)2
+ z2

(γ2+λ)2

])

(3.80)

∂F3

∂ν
=0 (3.81)

∂F4

∂ν
=

−y

[(x− (1− ν)r)2 + y2]
3
2

+
3rν(x− (1− ν)r)y

[(x− (1− ν)r)2 + y2]
5
2

+ yRjβ

+
r(1− ν)(x + νr)y

(1 + λ)(β2 + λ)

(
(Rjα + Rjβ + Rjγ)

[
1

(x+νr)2

(1+λ)2
+ y2

(β2+λ)2
+ z2

(γ2+λ)2

])
.

(3.82)

3.3.4 Analytic Computation of Periodic Orbits using
Spherical Harmonics

To develop an analytical method, the spherical harmonics are now used to

approximate the potential of the ellipsoid. In order to compute periodic orbits, the

equations of motion given by Eqs. (3.70-3.71) can be written in the following form,

ẋi = gi(xj) + µfi(xj, t), (3.83)

where fi(xj, t) are periodic functions [60]. Comparing Eq. (3.83) to Eqs.(3.70-3.71),

gi(xj) are given by the undisturbed expressions of the R3BP, µ is the spherical

harmonic coefficient C20 or C22 and fi(xj, t) are the small perturbation introduced

by the ellipsoid potential.

To get a general expression, let the solution be given as an expansion in the
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parameter µ,

xi = xi
0 + µxi

1 + µ2xi
2 + ... (3.84)

Equation (3.84) is substituted into (3.83), and only terms up to the first order in µ

are kept. Then, solving each order in µ, up to the first order, gives

ẋi
0 = gi(xj

0), (3.85)

and

ẋi
1 =

∂gi

∂xj

∣∣∣∣
xj

0

xj
1 + fi(xj

0, t). (3.86)

For convenience in the notation, Eq. (3.86) is written in matrix form,

ẋi
1 = Axj

1 + B(t), (3.87)

which has solution,

xi
1 = exp(At)x0j

1 +

∫ t

0

exp(A(T − t))B(t)dt, (3.88)

where x0j
1 is the initial conditions for xj

1.

For a periodic orbit, Eq.(3.88) satisfies the condition

xj
1(T ) = xj

1(0). (3.89)

Hence, the initial conditions to give a periodic orbit are

x0j
1 = (I − exp(AT ))−1

∫ T

0

exp(A(T − t))B(t)dt. (3.90)

These initial conditions are used in the solution of the xj
1 equations. Then, the

complete solution is given by Eq.(3.84).
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3.3.5 Analytic Determination of Stability

The stability of these periodic orbits are then addressed using Floquet theory. In

general, the stability can be investigated for a periodic system written in the form,

ẋi = θij(t)xj (3.91)

where the θij(t) are periodic functions of time, with period T [60]. To relate to the

current problem, a special case can be used where θij(t) are expanded as power series

in a small parameter of the form

θij(t) = aij + µθij(t) + ..., (3.92)

where each θij are periodic in time with period T and aij are constant. In matrix

form, this translates to

ẋ = (A + µΘ) x. (3.93)

Now, applying this method for the current problem given by Eq. (3.83), let’s

expand about the periodic solution, xpi = xi
p + δxi, where each xi

p has the form

xp0 + µxp1, to then substitute into Eq. (3.83). This reduces to

δẋ =

(
∂g

∂x

∣∣∣∣
xp

+ µ
∂f

∂x

∣∣∣∣
xp

)
(δx) + ...

=

[
∂g

∂x

∣∣∣∣
xp0

+ µ

(
∂2g

∂x2

∣∣∣∣
xp0

(xp1) +
∂f

∂x

∣∣∣∣
xp0

)]
(δx) + ... (3.94)

Comparing Eq. (3.94) with Eq. (3.93), A is defined as

A =
∂g

∂x

∣∣∣∣
xp0

, Θ =
∂2g

∂x2

∣∣∣∣
xp0

(xp1) +
∂f

∂x

∣∣∣∣
xp0

.

Note that A is a matrix of constants and Θ is periodic. Over one period T, the

stability of the system can be evaluated by finding the roots to the equation,

|λI − Φ(T, 0)| = 0, (3.95)
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where Φ is the state transition matrix and λ is an eigenvalue of Φ. Note that Φ

satisfies

Φ̇ = (A + µΘ) Φ. (3.96)

For a periodic system, from Floquet theory, the eigenvalues and the state

transition matrix have the form λ ∼ eαT and Φ ∼ eαT P , where P is a periodic

Lyapunov transformation with period T , and α is a constant [60]. The characteristic

exponent of the eigenvalues is expanded as

λ =eαT = e(α0+µα1+...)T = eα0T (1 + µα1T + ...)

= eα0T + µα1Teα0T + ... = λ0 + µα1Tλ0 + ... (3.97)

Now, let Φ = Φ0 + µΦ1, with the initial conditions Φ0
0 = I and Φ0

1 = 0 and

substitute into Eq.(3.96). As before, one can solve for the zeroth and first order in µ,

which gives

Φ0 = exp(At) (3.98)

and

Φ1 =

∫ t

0

exp(A(t− τ))ΘΦ0dτ. (3.99)

Substituting into Eq.(3.95), the characteristic equation is found from,

∣∣λ0I − Φ0(T, 0) + µ[α1Tλ0I − Φ1(T, 0)]
∣∣ = 0. (3.100)

A Taylor series expansion is applied for small µ. In doing this, all orders of µ will

equal 0 independently, leading to

∣∣λ0I − Φ0(T, 0)
∣∣ = 0 (3.101)

and

∂

∂µ

∣∣λ0I − Φ0(T, 0) + µ[α1Tλ0I − Φ1(T, 0)]
∣∣
µ=0

= 0. (3.102)

Now, let C = A + µB be the expression inside the absolute value in Eq. (3.102)
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with each entry in C being cij. Then,

∂

∂µ
|C| =

n∑
i=1

n∑
j=1

∂

∂cij

|C|∂cij

∂µ

=
n∑

i=1

n∑
j=1

(−1)i+j|C|ij,µ=0
∂cij

∂ν

∣∣∣∣
µ=0

= 0, (3.103)

where |C|ij is the minor of C corresponding to the ith row and the jth column. Then,

n∑
i=1

n∑
j=1

(−1)i+j|A|ijBij = 0. (3.104)

Now substituting for C and rearranging,

n∑
i=j=1

α1Tλ0|λ0I − Φ0(T, 0)|ij

=
n∑

i=1

n∑
j=1

(−1)i+j|λ0I − Φ0(T, 0)|ijΦ1(T, 0)ij. (3.105)

Hence, for each λ0, the corresponding α1 is computed as

α1 =

∑n
i=1

∑n
j=1(−1)i+j|λ0I − Φ0(T, 0)|ijΦ1(T, 0)ij

Tλ0

∑n
i=j=1 |λ0I − Φ0(T, 0)|ij , (3.106)

and the characteristic exponent of the eigenvalue is given by Eq. (3.97).

The previous result leads to defining stability limits for a range of parameters,

ν, m, r, β and γ. When a periodic orbit is stable, there will be two characteristic

exponents, say α1T and α2T , and their complex conjugates. We can assume that

the system bifurcates when α1T = α2T . Substituting for α, we have

α0
1 + µ∗α1

1 = α0
2 + µ∗α1

2. (3.107)

Hence, given a mass ratio and a ratio of orbits, the corresponding µ∗ is function of

r, β and γ, giving results of stability on a 3-dimensional plot.
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Figure 3.26: Periodic orbit in the vicinity of the L4, L5 using a Poincaré map method. r = 2,
β = .95, γ/β = 1, ν = .02, m = 10.

3.3.6 Comparison of Results obtained using the Poincaré
Map and the First Order Perturbations Approximation

Periodic orbits were computed using the Poincaré map and the perturbation

methods. Figures 3.26 and 3.27 show periodic orbits obtained with the two methods

while keeping the same parameters. In these cases, r = 2, β = γ = 0.95, ν = 0.02

and m = 10 as it is difficult to converge on a periodic orbit using the Poincaré map

for a more pronounced ellipsoid. As one can notice, the orbits are slightly offset and

the ones from the approximation are slightly smaller in size. Despite these small

differences, the initial conditions agree to the fourth digit.

When using the full non-linear equations, i.e. Eqs. (3.60 and 3.61), periodic

orbits exist for low values of the mass ratio. Figure 3.28 shows the variations in the

initial conditions of the periodic orbits on the ı̂− ̂ plane for mass ratios varying from

0 (bottom right) up to 0.025. This plot has been shifted by rν so that the ellipsoid

is at the origin and the sphere at a distance 1 from it on the x axis.

The Poincaré map reduction method has been used extensively to study periodic
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Figure 3.27: Periodic orbit in the vicinity of the L4, L5 using the approximate system and a
perturbation method. Parameters: r = 2, β = .95, γ/β = 1, ν = .02, m = 10.
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Figure 3.28: Initial conditions of periodic orbits for continuation with respect to the mass ratio, ν,
in the vicinity of the L4, L5 using a Poincaré map method. r = 2, β = .95, γ/β = 1, ν = 0.001 to
0.025, m = 10.
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Figure 3.29: Periodic orbits in the vicinity of the L4, L5 using spherical harmonics expansion.
r = 2, β varies from 0.25 to 0.95, γ/β = 1, ν = .03, m varies from 6 to 14.

systems. Continuations for other free variables than the mass ratio, i.e.β, γ and

the distance r, are mathematically difficult to compute when working with elliptic

integrals. The similarity in the results indicate that the approximation using

spherical harmonics recovers the results from the analytical system. Hence, the

perturbation method provides insight into this behavior and is time efficient. This

allows to run through the parameters without performing the difficult numerical

computations.

Varying r, ν, β and γ have different effects on the periodic orbits. Decreasing the

parameter β of the ellipsoid makes the orbit larger in size and shifts it away from the

equilibrium solutions. In this case, the effect of the ellipsoid become more important

as it becomes less spherical. On the other hand, increasing the ratio of the rotation

rate, m, makes the periodic orbit smaller in size. This is because, in the limit, a fast

rotating ellipsoid would resemble an oblate sphere. Figures 3.29 and 3.30 show the

effect of changing the β-size of the ellipsoid and the orbit ratio.
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Figure 3.30: Periodic orbits in the vicinity of the L4, L5 using spherical harmonics expansion.
Parameters: r = 2, β = .90, γ/β = 1, ν = .02, m varies from 6 (outer ring) to 20.

3.3.7 Stability Comparison Analysis

For the periodic orbits computed using the Poincaré map method on the nonlinear

equations, as before, the stability of the periodic orbits can be investigated by

computing the eigenvalues of the state transition matrix. Since there is no integral

of motion, Φ has no unity eigenvalues at a periodic orbit. In this system, a periodic

orbit is stable if all the eigenvalues are 1 in magnitude. Investigating stability

indicates that the region of stable motions is fairly reduced from previous results

of the equilibrium case. Figure 3.31 is a plot of the stability region as function

of the mass ratio and the ratio of orbits. The region below the line represents

stable periodic orbits. Note that it is difficult to compute the periodic orbits across

the entire range of parameter values. The stability was only computed near the

boundaries. We see that stable orbits exist for small mass ratio up to 0.0235. We

also notice a small region of stability near an orbit ratio of 2.

In general, it is found that the results from stability using Floquet theory diverge

from the results using the nonlinear system. The difference between the two stability
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Figure 3.31: Stability region of periodic orbits using Poincare’s method. The region below the line
indicates stable points. The mass ratio is on the y axis and the orbit ratio on, x. r = 2, β = .90,
γ/β = 1

regions is not fully understood. Figure 3.32 below shows the stability region as

function of the mass ratio and the ratio of orbits using perturbation methods.

Periodic orbits are stable in the shaded area. The resonance case is also not observed

for low values of the orbit ratio as for the nonlinear equations. However, the ellipsoid

size and the distance between the primaries reduce the stability region for decreasing

β and small distance r.

Finally, a three-dimensional surface can be obtained representing the stability

bifurcation limits from Eq. (3.107). Figures 3.33 and 3.34 show the relation between

the spherical harmonic coefficient, µ, the orbit ratio, m, and the mass ratio, ν in the

plane for easier visualization. The complete stability bifurcation surface is shown in

Figure 3.35. Note that the value given by the Routh criteria is shown as a star point

on the plots. As the orbit ratio gets closer to 1, i.e. closer to the synchronous case

in the F2BP, the system shows more chaotic behavior as the system approaches the

singularity at m=1. From the definition of µ, i.e. C20, results allow values of β and

γ only for small C20. This happens for mass ratios close to 0.035.
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Figure 3.32: Stability region of periodic orbits in the vicinity of the L4, L5 using spherical
harmonics expansion. r = 2, β = 0.9 and γ/β = 1
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Figure 3.33: Bifurcation diagram for periodic orbits in the vicinity of the L4, L5 for r = 2: µ as
function of m. The star point is the value of the Routh criteria.
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Figure 3.34: Bifurcation diagram for periodic orbits in the vicinity of the L4, L5 for r = 2: µ as
function of ν. The star point is the value of the Routh criteria.
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Figure 3.35: Bifurcation surface for periodic orbits in the vicinity of the L4, L5 for r = 2. The star
point is the value of the Routh criteria.
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The next step is the computation and general description of periodic orbits in

the Full Two-Body Problem. The motion of the primaries can then be included into

the model of the RF3BP.

3.4 Periodic Orbits in the RF3BP using Pertur-

bations in the F2BP

In the previous section, the motion of the binary system was set as constant, where

the ratio of the ellipsoid angular spin and the system orbit rate was a free parameter.

The next step is to account for the true motion of the F2BP and to make the

connection between the dynamics of the RF3BP and the F2BP. In order to do so,

the dynamics of the RF3BP can be expressed under periodicity in a frame fixed to

the general body with origin at the ellipsoid center of mass. In this frame, a periodic

model is developed for the F2BP and substituted in the RF3BP. The periodic

approximation uses the method of eigenvalues and eigenvectors described in section

2.5.6.

This problem can again be investigated in a few ways depending on the reference

frame chosen. When considering a rotating frame fixed to the binary system center

of mass, it is hard to define a normalizing time scale such as a mean motion. As for

working in an inertial frame, the computation of an orbit could be difficult since it

may not make a closed trajectory in this frame. Hence, it was found more convenient

to express the dynamics of the RF3BP under periodicity in a frame fixed to the

general body with origin at the general body center of mass.

For better clarity, the dynamics of a particle in this frame are restated. First,

let the position of a particle relative to the center of mass of the system denoted as

ρ in a frame rotating with the ellipsoid. With this frame, the same normalization

introduced for the F2BP can be used. Then, the equations of motion can be written
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Figure 3.36: Geometry of the Restricted Full Three Body Problem

in the following form,

ρ̈ + 2ω × ρ̇ + ω̇ × ρ + ω × (ω × ρ) =
∂U12

∂ρ
.

Note that U12 is a time varying potential energy expression, as the bodies are not in

mutual equilibrium.

Since the F2BP is solved in a frame fixed to the ellipsoid, let ρE be the position

of a particle relative to the center of the ellipsoid. Then, ρ = ρE − rE, as shown in

Figure 3.36.

In an inertial frame, differentiating ρ twice with respect to time gives

ρ̈ = ρ̈E + r̈E =
∂U12

∂ρ
=

∂U12

∂ρE

. (3.108)

Or,

ρ̈E =
∂U12

∂ρE

− r̈E. (3.109)

In this case, the potential energy expression is expressed as,

U12 =
ν

|ρE − r| + (1− ν)Ue(ρE). (3.110)

Again, Ue represents the normalized expression for the ellipsoid body and it is

113



defined by Eqs. (2.18-2.20). Hence, in a frame rotating with the ellipsoid with origin

at the ellipsoid center, Eq. (3.109) becomes,

ρ̈E + 2ω × ρ̇E + ω̇ × ρE + ω × (ω × ρE) =
∂U12

∂ρE

+ ν
∂Ue

∂r

∣∣∣∣
r

.

Note that the extra term in Eq. (3.111) appears as the origin is shifted from

the two-body system center of mass to the ellipsoid center, for which the mutual

potential of Eq. (2.16) can be substituted. Since the underlying F2BP dynamics

is periodic, the added potential is also time varying. The free parameters of this

system are the mass ratio, ν, the energy, E, the angular momentum, K, and the

size parameters of the ellipsoid, β and γ. The angular velocity ω is substituted from

the solution of the F2BP, computed from the angular momentum integral, i.e. Eq.

(2.27). The angular acceleration, ω̇ is computed from deriving this same equation,

given by Eq. (2.21) or differentiating Eq. (2.27).

3.4.1 Results and Stability Properties of Periodic Orbits

As a first step, one can look at the general dynamics under these conditions. Far

from the system, the effect of the ellipsoid is small. Figure 3.37 shows the particle in

the vicinity of L4 for the case r = 7. In the absence of the periodic perturbations this

equilibrium point is stable. When the perturbations to the F2BP is large enough,

the particle leaves the L4 region and gets in orbit around the system. Thus the

F2BP periodic orbits can destabilize motion in the RF3BP.

Figure 3.38 shows an orbit near the analogue L4 point. In this case, the ellipsoid

dominates with ν = 0.02 and r = 2.0749, giving a stable equilibrium point of the

RF3BP but an unstable relative equilibria in the F2BP. This orbit is computed for

the same period as the periodic model in the F2BP but it is not periodic. Figure

3.39 shows the orbit evolution on a longer simulation time.

Figure 3.40 shows a periodic orbit for a sphere dominating system with ν = 0.98
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Figure 3.37: RF3BP dynamics using a periodic model for the F2BP. Initial conditions:
[q, p] = [3.407; 0; 0; 6.1063]. Parameters: ν = 0.03, β = γ = 0.9.
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Figure 3.38: RF3BP dynamics using a periodic model for the F2BP. Initial conditions:
[q, p] = [0.3983;−0.0356; 1.9293; 0.0434]. Parameters: ν = 0.02, β = γ = 0.9.
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Figure 3.39: RF3BP dynamics using a periodic model for the F2BP. Initial conditions:
[q, p] = [0.3983;−0.0356; 1.9293; 0.0434] simulated over 10 time periods of the F2BP. Parameters:
ν = 0.02, β = γ = 0.9.

and r = 2.0749. The plots show three different periodic orbits from having three

different perturbations in the F2BP. As the perturbation gets large, the periodic

orbit amplitude increases and the periodic orbit is shifted from encircling the

equilibrium location. Note that these periodic orbits are stable. These parameters

give a stable equilibrium point in the RF3BP and a stable relative equilibria in the

F2BP. Figure 3.41 is a closer view of one of the periodic orbits.

The results above show that the stability properties of the equilibrium conditions

in both the RF3BP and the F2BP have different effects on the dynamics of the

RF3BP. It was found that periodic orbits exist for systems with a massive spherical

primary, which differ from the results obtained when the ratio of the ellipsoid spin

to the orbit rate is assumed to be a free parameter. However, having a model for

the motion of the F2BP included in the RF3BP is a higher fidelity model of the

problem. Although left as future research, other periodic orbits around the system

or around one of the bodies may be interesting to compute. Then, looking at the

three dimensional motion is certainly a rich problem to study.
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Figure 3.40: RF3BP dynamics using a periodic model for the F2BP. Initial conditions:
[q, p]1 = [1.0315; 0.0006; 1.7722;−0.0006] , [q, p]2=[1.0706; 0.0063; 1.7956; -0.0065] and
[q, p]3=[1.1972; 0.0131; 1.8618; -0.0142]. Parameters: ν = 0.98, β = γ = 0.9.
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Figure 3.41: Closer view of the RF3BP dynamics using a periodic model for the F2BP. Initial
conditions: [q, p]1 = [1.0315; 0.0006; 1.7722;−0.0006] , [q, p]2=[1.0706; 0.0063; 1.7956; -0.0065] and
[q, p]3=[1.1972; 0.0131; 1.8618; -0.0142]. Parameters: ν = 0.98, β = γ = 0.9.
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Having described the dynamics of particles or spacecraft in the field of binary

systems, a natural extension is to look into mission design. Having surface constraints

for the bodies introduce interesting robotic applications, which is introduced next.
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CHAPTER 4

ROBOTIC EXPLORATION ON BINARY

ASTEROID SYSTEMS

4.1 Goals and Assumptions

Robotic exploration is a natural extension of modeling the dynamics of particles in

the gravitational field of two primaries. There is some heritage of rover exploration of

other worlds such as the Spirit and Opportunity rovers on Mars, and landing on small

bodies has been achieved by NEAR and Hayabusa [32, 49, 21, 57]. The advantage

for in situ investigation is clear, and among the current small body proposals, a

few are to send micro or nano rovers for sample return missions [94, 100, 46, 34].

In general, the robots will have some power generation capabilities to support their

navigation tools and science instruments, as well as ways for communicating data

to the spacecraft, and means of moving on the surface using small thrusters or

equivalent driving systems. However, the details of a robotic mission hardware are

left for future studies. The focus here is instead on the dynamics and control of these

robots. Some assumptions are made on their design and subsystems, summarized in

Table 4.1.

The goal in sending robots for surface investigation is to maximize the search

area for mapping, imaging, and taking geological/scientific measurements or samples.

Collaborative spacecraft or robot applications increase the range of scientific

measurements and chance of success. A number of studies have looked at spacecraft

formations and cooperative rovers applications for planetary exploration (to name a
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Subsystems Instruments

Navigation
Star tracker, relative tracking to spacecraft,

relative tracking to other rovers

Telecommunications Transmit and receive to spacecraft and to rovers

Science payload Sensors, Langmuir probes, imagers, temperature probes

Power generation/storage Solar arrays, batteries

Driving mechanism Hopping devices, small thrusters

C&DH Small processor, onboard memory

Table 4.1: Hardware needed for a robotic surface explorer at a binary asteroid system.

few, see [92, 3, 25, 27, 2, 16, 39]). Here, the proposed robotic mission is composed of

a mother ship and a number of cooperative robots for surface exploration. However,

for asteroid applications, one needs to design for very low gravity fields, about 1/1000

of the Earth’s gravity. In such an environment, wheeled rovers might be difficult

to control and navigate. There has been interest in looking at surface motion for

“hoppers” on the asteroid surface, as a vehicle would most likely bounce from hitting

the surface and loose traction. In addition, “hoppers” would be able to investigate

a larger area in quicker time and might be easier to control. These conditions and

ideas of hopping motion have already been explored for the Hayabusa mission sent

to Itokawa by JAXA as it included a small hopper type robot called MINERVA,

and used surface target markers as reference point [100, 75, 99]. Unfortunately,

MINERVA was lost after deployment before reaching the surface.

For the current study, a spacecraft is assumed to be in orbit about a binary from

which landers could be launched to the surface for further exploration. It can be

assumed that the hoppers have their own star tracker, from which, by using fixed

astronomical objects, they can compute their position and report their location to

the spacecraft in orbit. For surface exploration purposes and collaborative work, the
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hoppers also need to interact among themselves, which can be done through the

use of sensors, vision systems and microprocessors. Hence, a hopper could easily

move on the surface, investigating the region while taking scientific data. For surface

motion, one needs to use impact dynamics in order to develop a model that predicts

the distance traveled and the time it takes in reaching a given destination. This topic

is introduced first and validated with simulations of hopping dynamics within the

dynamics of rotating ellipsoids. The current model treats the vehicle as a particle,

future work should investigate the rover as a rigid body with a size and shape. The

landers could be released at one end of the asteroid, sent on a predefined grid and

move to the other end. Hence, the second part of this chapter looks at the control

required for such operations.

4.2 Surface Motion

4.2.1 Hopping on a Flat Surface

MINERVA, originally designed for the Hayabusa mission is a good example of a

“hopper” application, where the robot uses a torque driving system as the main

driver [101, 100]. Ball Aerospace also designed a sphere robot being controlled by a

set of small thrusters, and having three sides opening for stability on the surface [89].

In all cases, the motion of these hoppers looks like the ballistic trajectory shown in

Figure 4.1. Hoppers could easily investigate the surface by controlling their initial

bounce velocity and orientation from estimating the jumping distance to be covered

for a given desired location.

As shown in Figure 4.2, in general, a particle on a flat surface impacts with a

velocity v0 at a certain angle α0. In order to solve for the subsequent motion, it

is necessary to solve for the tangential and normal components of the velocity. If

there is no impulse or friction in the tangential direction, this component will stay

unchanged. Then, if a particle impact has no loss associated with the impact, the
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Figure 4.1: Hopping motion on asteroids.

normal velocity is reversed in direction but keeps the same magnitude. As a first

step, the impact can be modeled as a perfectly inelastic impact with no sliding,

that is cr = 0 and µ = inf. This results in the particle staying at the same location

when touching the surface, or getting ”stuck” at impact. Similarly, one can look

at the ideal elastic collision with cr = 1. In this case, a particle impact has no loss

associated with it.

However, since small bodies are most likely made of rubble pile, the particle will

have a coefficient of restitution cr < 1, and may be closer to 0. And, in the current

application, the contact between the two objects will have a finite coefficient of

friction, µ, adding an impulse opposite to the direction of motion. With a coefficient

of restitution cr and friction force µN at the impact point, where N is the normal

reaction force, the normal and tangential components of the velocity after impact

are,

v1
n = crvn0 = crv0 sin(α0) (4.1)

v1
T = v0 cos(α0)− µ(1 + cr)v0sin(α0) (4.2)
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Figure 4.2: Dynamics of collisions for a particle on a flat surface with restitution and friction
coefficient cr and µ respectively.

Therefore, the velocity after impact has a new direction, α1,

tan α1 =
v1

n

v1
T

=
cr sin(α0)

cos(α0)− µ(1 + cr) sin(α0)
(4.3)

A first order model of the dynamics of hoppers on the surface is to estimate the

total time and distance from an initial jump to a stop due to friction and restitution

coefficients. In order to do so, one needs to model the frame at the surface, and the

non-uniform gravity field of a binary system.

4.2.2 Surface Modeling

In the numerical simulations of surface motion on asteroids, the dynamics of particles

in the RF3BP is used, as well as the dynamics of impacts. A new surface frame is

defined at each impact using the surface gradient and velocity direction.

The surface motion is modeled in three dimensions, with a tangential t̂, normal

n̂, and cross track, d̂, frame fixed at the initial impact point on the surface, as shown

in Figure 4.3. The normal is defined as being the unit vector in the direction of the
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surface gradient,

n̂ =
∇S

|∇S| , (4.4)

where S is the ellipsoid surface function expressed as S = x2 + y2

β2 + z2

γ2 − 1 = 0. Note

that this provides the boundary conditions the dynamics. The tangential direction

is then defined as the unit vector perpendicular to the velocity,

t̂ =
t̂× V

|t̂× V | , (4.5)

where V is the impact velocity expressed in the binary fixed frame, or the RF3BP.

The cross track unit vector is obtained from orthogonality of the two first unit

vectors,

d̂ = t̂× n̂. (4.6)

Note that the cross track unit vector is always tangent at the impact point in the

direction of the velocity but that the total acceleration can act in an arbitrary

direction.

The velocity components computed after impact can be converted back to the

RF3BP frame for numerical integration until the next impact. Having defined the

unit vectors at the surface of the ellipsoid with respect to the rotating binary fixed

frame, the rotation matrix of cosines is used to transform the resulting velocity from

the surface frame to the RF3BP frame.

4.2.3 Effect of a Non-Uniform Gravity Field

While the surface modeling above can be applied on the surface of any single

asteroid or binary asteroid system, the major difference is in the gravitational

field. The general assumption for impacts on a flat surface, as shown in Figure 4.2

is that the particle moves in a uniform gravity field. For a non flat surface, the
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Figure 4.3: Geometry for 3D dynamical model of surface landers on small bodies.

gravity vector is dependent on the mass distribution of the body. For a sphere,

the gravitational field is equivalent to the one of a point mass [15]. In the case of

an ellipsoid, the gravitational field is not uniform, as shown in Figure 4.4. Note

that the gray corresponds to the deviation of the gravity vector from the centroid,

where the dark regions have the largest deviations. The ellipsoid has parameters

[α; β; γ] = [1; 0.8; 0.6].

In the case of a binary system, the gravity field is surely not uniform either, and

also not pointed toward the center of one of the bodies, as shown in Figure 4.5. In

this case, the binary has a mass fraction of 0.95, with a distance of 9 units between

the bodies and ellipsoid parameters of [α; β; γ] = [1; 0.8; 0.6]. Note that only the

ellipsoid is shown. The gray corresponds to the deviation of the gravity vector from

the ellipsoid centroid, where the dark regions have the largest deviations.

The modeling for the surface dynamics on one of the bodies of a binary system

needs to include the effect of the second body gravity field. Using the RF3BP model

described in Chapter 3, the direction of the combined gravity field is found using the
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Figure 4.4: Gravity field of an ellipsoidal body. The gray scale corresponds to the deviation of the
gravity vector from the centroid, where the dark regions have the largest deviations.
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Figure 4.5: Gravity field of a binary system. The gray scale corresponds to the deviation of the
gravity vector from the centroid, where the dark regions have the largest deviations.
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equations of motion given by Eqs. (3.5-3.7),

gx = ω2x− ν(x− (1− ν)r)

[(x− (1− ν)r)2 + y2 + z2]
3
2

− (1− ν)(x + νr)Rjx, (4.7)

gy = ω2y − νy

[(x− (1− ν)r)2 + y2 + z2]
3
2

− (1− ν)yRjy, (4.8)

and

gz = − νz

[(x− (1− ν)r)2 + y2 + z2]
3
2

− (1− ν)zRjz. (4.9)

The following analytical method is developed for approximating the dynamics on a

curved surface, under a non-uniform gravity field. The method approximates the

local surface as a flat surface, taking the initial gravity vector as constant over that

surface. For numerical simulations, the gravity vector needs to be calculated at

every point of impact using Eqs. (4.7)-(4.9). Note that the gravity vector needs to

be transformed to the surface frame defined in section 4.2.4.

4.2.4 Analytical Model for Dynamics on a Curved Surface
in a Non-Uniform Gravity Field

Having defined a surface frame within the binary system environment, the geometry

for modeling the surface dynamics is described in Figure 4.6. At the impact point,

an object is again subjected to a local coefficient of restitution and surface friction

factor, cr and µ respectively. The incoming velocity v, just before the next impact,

is influenced by the general gravity vector g and the rotational acceleration. Note

that the geometry is shown for a bounce in the normal - cross track plane, n̂− d̂. By

approximating the local surface as a flat surface, that is considering the motion on a

local tangent plane at the point of impact, it is possible to find general expressions

for the time, distance and velocity components between jumps as function of the

initial velocity and gravity vectors.

The normal component of the velocity is affected by the local coefficient of
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Figure 4.6: Dynamics of collisions for a particle on an inclined surface with restitution and friction
coefficient cr and µ respectively.

restitution, giving

vn1 = −crvn0 , (4.10)

where vn0 and vn1 are the normal components before and after impact, respectively.

In the tangential direction, the velocity expression is

v
′
d0

= vd0 − µ(vn0 + vn1) = vd0 − µ(1 + cr)vn0 , (4.11)

where v
′
d0

and vd0 are the tangential components before and immediately after

impact, respectively. When the particle arrives at the next impact, the velocity is

influenced by the gravity due to its general direction from the binary environment.

Hence, the change in the cross track velocity vd0 is written as

vd0 = v0d
+ gd0t01, (4.12)

with

t01 =
2vn0

gn0

, (4.13)
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and where gn0 and gd0 are the normal and cross track components of the initial

gravity vector.

Continuing the process, it is then possible to find general expressions for the

velocities before and after impacts. In vector form, the velocity after the n + 1th

impact is expressed as

V ′
n+1 = −crn̂n̂ · Vn + (1− µ(1 + cr)(n̂ · Vn))[U − n̂n̂] · Vn, (4.14)

where U is the unity dyad. Similarly, the velocity just before the n + 1th impact

is influenced by the general gravity vector and the rotational acceleration. This

velocity is given by

Vn+1 = −crn̂n̂ · Vn + (1− µ(1 + cr)(n̂ · Vn))[U − n̂n̂] · Vn + ∆t[U − d̂d̂] · g,

(4.15)

where

∆t =
2|vn0|
gn0

. (4.16)

Note again that, because of the ellipsoidal shape, the gravity field is not uniform

in the numerical simulations, whereas it is kept constant for this analytical model.

Then, the distance covered between the nth and n + 1th hop is expressed as,

dn,n+1 = v
′
tn−1

tn,n+1 +
1

2
g sin γ0t

2
n,n+1. (4.17)

The time of travel and the distance covered can be estimated using summations

of the interval expressions given by Eqs. (4.16-4.17). Hence, in order to find the

total time and distance from the first hit to the N th hit, we express

tTotal,N =
2vn0

gn0

N∑
n=1

cn−1
r =

2vn0

gn0

(
(1− cN

r )

1− cr

)
(4.18)
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and

dTotal,N =
2vn0v0d

gn0

(
1− cN

r

1− cr

)
− 2µv2

n0
(1 + cr)

gn0(1− cr)

(
(1− cN

r )

(1− cr)
− (1− c2N

r )

1− c2
r

)

+
4gd0v

2
n0

g2
n0

(
(1− cN

r )

(1− cr)
− (1− c2N

r )

1− c2
r

)
+ 4

1
2
gd0v

2
n0

g2
n0

(1− c2N
r )

1− c2
r

. (4.19)

Now letting N →∞ in Eq. (4.18), the time for the rover to reach a stop is

t∞ =
2vn0

gn0

(
1

1− cr

)
. (4.20)

Similarly, summing Eq. (4.19) with N → ∞, gives the distance traveled by the

hopper to reach a stop, given by

dd,∞ =
2vn0v0d

gn0(1− cr)
+

2v2
n0

gn0(1− cr)2

(
−µcr +

gd0

gn0

)
. (4.21)

These two quantities should agree with numerical simulations for small hops.

However, the numerical distance may have a certain tangential deviation from its

initial start as opposed to the analytical result due to the non-uniform gravity vector

and the effect of a rotating body. The next section looks into a range of hops in

order to validate this analytical model and to investigate and review the general

effect of the different parameters of the surface such as the coefficient of restitution

and the friction factor, as well as the initial hopping conditions.

4.2.5 Validation and Numerical Analysis of Surface Motion

Figure 4.7 shows an ideal case of surface hopping, where the surface is frictionless

and under elastic impacts. For physically meaningful results, the surface needs to

be modeled with some friction, and allowing energy loss during impact. Typical

values for these surface parameters are close to those of semisolid environment, with

surface made of dirt and some loose gravel [101, 75]. The resulting motion is damped

compared to Figure 4.7, as shown in Figures 4.8 and 4.9. In Figure 4.8, the particle

moves along the equator on a surface having a friction of 0.1 and 0.5. The effect of
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Figure 4.7: Elastic impacts for a particle moving on the surface of an ellipsoid.

both restitution and friction coefficients is shown in Figure 4.9, where each impacts

looses about 75% of their initial kinetic energy. In addition, Figure 4.9 shows the

effect of different initial velocities, also launching from different angles. For these

simulations, the surface was modeled with a restitution of cr = 0.25 and a friction

factor of µ = 1. As expected, the motion is damped quickly for all cases.

For the numerical cases shown in Figures 4.7-4.9, the total time is calculated

using the numerical integrator scheme, adding every interval of time between hops.

Similarly, the total distance traveled can be calculated, accounting for the curvature

of the ellipsoid in this case. In order to validate the method developed using the

analytical surface dynamics, these values of time and distance can be compared to

Eqs. (4.20) and (4.19), that is t∞ and dd,∞, respectively. It was found that, provided

the jumps don’t exceed 5 meters, the analytical model agree within 1 % compared to

the numerical simulations. The amplitude of such a jump is represented in Figure 4.9

by the hop with initial velocity vector of v = [0.01; 0.05] corresponding to an initial

velocity of 1-2 cm/s. These simulations were done for an asteroid size of 600 m ×
500 m × 300 m. This also provides a stopping condition for numerical integration,
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Figure 4.8: Top view of a particle moving along equator for perfectly elastic impacts under friction
of 1 and 0.5.
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Figure 4.9: Effect of initial velocities on surface motion considering a surface modeled with a
restitution and friction coefficients of 0.25 and 1, respectively.
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avoiding the infinite number of bounces that occur when the craft settles.

4.2.6 Condition for Zero Velocity

Since there is friction between the particle and the surface, mathematically the

frictional term could overcome the transversal velocity at impact and make the

resulting transversal velocity to be negative, which is physically impossible. In the

present analysis, the particle can only achieve a zero transversal velocity. In reality, a

negative transverse velocity will lead to a lateral stop. Figure 4.8 shows simulations

for varying friction factors. We see clearly that adding more friction slows down any

dynamical motion rapidly.

For arbitrary initial conditions, the number of bounces can be computed in order

for a vehicle to reach a stop. If N is the stopping bounce, then v′tN−1
= 0. We want

to compute the condition from Eq. (4.14) such that,

v0d
− µvN0(1 + cr)(1− cN

r )

(1− cr)
+

2vN0gd0(1− cN
r )

gn0(1− cr)
≤ 0 (4.22)

where the N th bounce makes the particle stop its lateral motion. Note that the

particle may still have a normal velocity. Now, to compute N , the condition is that

v0d
≤

[
µ(1 + cr)− 2

gd0

gn0

]
vN0(1− cN

r )

(1− cr)
. (4.23)

It can be assumed that
[
µ(1 + cr)− 2

gd0

gn0

]
> 0, otherwise N = 1. Then,

v0d

vN0

(1− cr)[
µ(1 + cr)− 2

gd0

gn0

] ≤ 1− cN
r , (4.24)

or

cN
r ≤ 1− v0d

vN0

(1− cr)[
µ(1 + cr)− 2

gd0

gn0

] . (4.25)
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Figure 4.10: Influence of the Coriolis and centripetal accelerations.

Hence, given initial conditions, the stopping bounce N obtained is,

N ≥
ln

[
1− v0d

vN0

(1−cr)(
µ(1+cr)−2

gd0
gn0

)
]

ln cr

, (4.26)

or, knowing the initial direction γ0 as in Figure 4.6,

N ≥
ln

[
1− v0d

vN0

(1−cr)
(µ(1+cr)−2 tan γ0)

]

ln cr

. (4.27)

Having defined all mathematical tools for this analytical method to be valid and

consistent, the next step is to look at the dynamics on the surface of a rotating body.

4.2.7 Influence of a Rotating Ellipsoid on the Surface
Dynamics

On a rotating ellipsoid, a particle is influenced by the Coriolis and centripetal

accelerations. As shown in Figure 4.10, on the side leading the rotational motion

denoted by A, both the centripetal and Coriolis accelerations are pointed away from

the body. The particle on the surface would then be assisted in its jump, allowing to

cover a longer distance. On the other side, at B, the two accelerations are opposite

to each other, which causes the particle to slow down.

In addition, for an ellipsoidal body, it is possible to find points on the surface
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where an object could stay in equilibrium. The stability of these equilibrium points

depends on the ellipsoid spin and shape parameters. One would expect that the

dynamics of hopping robots on the surface of a small body are affected by these

equilibria and their stability. Because of this, control of the dynamics of any surface

landers may be required in order to investigate specific regions.

In [24], the authors use classical dynamics and geometrical analysis to investigate

the stability of surface equilibrium points for a rotating ellipsoid. For convenience,

some of their results are recalled here. The dynamics on the surface of a single

rotating ellipsoid can be written using Lagrange coefficients,

¨̄ρ + 2ωr × ˙̄ρ + ωr × (ωr × ρ̄) =
∂Ue

∂ρ̄
+ λ∇S, (4.28)

where ρ̄ is the nondimensional position vector of a particle on the surface relative

to the ellipsoid center of mass, ωr is the ellipsoid spin, and Ue is the ellipsoid

potential, as defined by Eqs. (2.18-2.20) in Chapter 2. Solving for equilibrium, three

equilibrium points can be computed, P1(1,0,0), P2(0, β, 0), and P3(0, 0, γ). Their

stability satisfies the following conditions [24]. For P1 to be stable, the ellipsoid

needs

0.5(Rjα − β2Rjβ) < ω2(1− β2)

0.5(Rjα − γ2Rjγ) < ω2. (4.29)

For P2 to be stable,

0.5(Rjα − β2Rjβ) > ω2(1− β2)

0.5(β2Rjβ − γ2Rjγ) < ω2β2. (4.30)
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Finally, for P3 to be stable,

0.5(Rjα − γ2Rjγ) > ω2 (4.31)

0.5(β2Rjβ − γ2Rjγ) > ω2β2. (4.32)

Note that two points cannot be stable at the same time. The Rj’s expressions are

derived from the ellipsoid potential and defined in section 2.3.

It is observed that, for small perturbations, a moving object on the surface of a

rotating ellipsoid tends to stay closer to a stable equilibrium point and stay further

away from an unstable one. Figure 4.11 shows the dynamics of a particle being

dropped near the unstable pole, where the stable point is P2 along the y axis of the

ellipsoid. Note that the simulations are obtained for an ideal surface. It is clear

that the particle stays away from the unstable region, even as it moves toward the

opposite side. The particle generally tends to stay near the stable region around P2.

Figures 4.12 and 5.11 shows an example where the polar regions are stable. The

curves shown are made of a series of hops under perfect surface conditions, where the

disturbances are smaller in Figure 5.11. Again, note that, in order to see the general

dynamical tendencies, the simulations were also obtained under perfect conditions.

Figure 4.14 shows a simulation of surface dynamics under non ideal conditions,

with restitution and friction coefficients of 0.5, although keeping the same asteroid

parameters and spin rate as in Figure 5.11. In this case, it is clear that the general

surface dynamics are influenced by the stability of the polar region.

An ellipsoid rotating at a fast spin rate or a more prolate ellipsoidal body are

the typical cases to have the conditions satisfied for surface equilibria at the equator

instead of at the polar regions. A particle situated at the same relative latitude as

the case shown in Figure 4.14 will tend to stay away from the unstable polar region,

and instead go toward the stable one at the equator, which is shown in Figure

4.15. The binary system 1999 KW4 provides an interesting real case example of
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Figure 4.11: Dynamics around stable and unstable points of a rotating ellipsoid. The point along
the y-axis, P2, is stable.

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

Figure 4.12: Dynamics around the stable polar point of a rotating ellipsoid, P3.
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Figure 4.13: Top view of the dynamics close to a stable pole. The trace is made of hops under
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Figure 4.14: Dynamics close to a stable pole assuming restitution and friction factors of 0.5.
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Figure 4.15: Dynamics close to a stable equatorial axis assuming restitution and friction factors of
0.5.

such situation [87], which is presented as a case study for a robotic mission design

in the next chapter. In this case, the primary binary body was found to be in an

almost disruptive state, which results in the asteroid having an equatorial bulge.

In fact, the stability of surface equilibria explains current observations of asteroids

where material is accumulated near the equator while some other asteroids have

accumulation near the poles (also see [24]).

4.3 Control Algorithms

4.3.1 Motivation

The goal in surface investigation is to cover the maximum search area of the asteroid

for mapping, imaging, and taking geological/scientific measurements or samples. To

this date, only single probes were sent to small bodies. Current thoughts are to

include more than one small landers or probes on the surface for better mapping,

seismology, sampling, and to increase the mission reliability. Robots can be sent on

a predefined grid and move accordingly. With the spacecraft in orbit, they could all
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get feedback on their respective position on the surface.

In order to reach a desired location, hoppers could estimate the jumping distance

to be covered and compute the required velocity. Having a dynamical model with

knowledge of the environment, control algorithms can further be developed. There

are many variables to consider in making efficient moves: time and distance to

travel, fuel consumption, external disturbances, obstacles, collaborative tasks, etc.

Too many jumps would consume time and energy while making high jumps could be

hard to track. For efficient surface investigation, a discrete control law is developed

for a single hopper, and the method is extended for multiple cooperative vehicles

as they increase the range of scientific investigations and the probability of success.

Many control strategies have been considered, either for unmanned aerial vehicles,

cars, buses, boats, or underwater vehicles. Some of them involve leader-follower [28]

or string and mesh-stable approaches [90, 66]. Other possible approaches include

following virtual structures [3, 92] and potential methods [103]. These methods

are difficult to implement in asteroid applications due to the discrete nature of the

hopping dynamics.

The current control design is a leaderless control taking reference on sliding-mode

control techniques [63, 102]. The next sections explain how the dynamical model can

be used in the design a discrete control law for cooperative hoppers.

4.3.2 Control Law for a Single Hopper

Keeping in mind the surface dynamics model from section 4.2.4, the goal is to

minimize the error associated with the travel. For doing so, a discrete control law

can be developed acting on the error between hops. If the position at the nth jump

is represented in the cross track-tangential plane, d̂− t̂, by

ηn =




dd

dt


 . (4.33)
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The n + 1th location is then the sum of the previous location and the distance

covered from jumping

ηn+1 = ηn + ∆η, (4.34)

where ∆η is to be solved in such a way that the error on the position decreases in

time. If the error at the nth jump is defined as

εn = ηn − ηd, (4.35)

where ηd is the desired end position, then a control parameter K can be chosen such

that the error decreases over each bounce, that is,

εn+1 = e−Kεn. (4.36)

Substituting for εn+1 and εn in Eq. (4.36) gives

ηn+1 − ηd = (ηn − ηd)e
−K . (4.37)

Or, substituting Eq. (4.34) and solving for ∆η give

∆η = (ηn − ηd)
[
e−K − 1

]
. (4.38)

Hence, Eq. (4.38) determines the distance to be covered given a desired position

and control parameter K. Using this result in the surface dynamics model, Eq.

(4.21) can be inverted to find the initial velocity component. Hence, the cross track

velocity component is given by

v0d
=

gn0(1− cr)

2vn0

[
dd +

2v2
n0

µcr

gn0(1− cr)2
+

2v2
n0

gt0

g2
n0

(1− cr)2

]
. (4.39)

Therefore, a jump distance ∆η is computed from Eq. (4.38), with a given

value of the control parameter K. Then, from Eq. (4.39), the initial velocities

are computed in order to achieve that distance ∆η. Some results are shown in
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Figure 4.16: Controlled dynamics of a single rover with coefficient of restitution and friction factor
set to 0.5. K are the control variables and ηd is the desired end position.

Figure 4.16, for a single hopper. We compare three different controlled dynamics,

K = 0.75, K = 1.5 and K = 2.5, under the same surface conditions, with cr = 0.5

and µ = 0.5 corresponding to a semi-hard sandy surface. The desired end position

is set at x = −2.3 km in the binary frame, labeled ηd in Figure 4.16. It is clear

that increasing the control K reduces the number of hops necessary to reach ηd.

However large values of the control parameter, such as K = 2.5, make the hopper

overshoot ηd. Undershooting a target might be a better strategy. A hopper would

need to relocate itself and estimate its required distance to reach ηd again. In this

case, more jumps are needed in order to reach the objective, which takes more time

but increases the chance of success.

To map the entire surface, a hopper would need to make a series of controlled

jumps. In order to maintain low energy and stay within the influence of the small

body, a threshold value on the launch velocity would be needed. After each jump,
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the distance to be covered can be updated from the new position, and the procedure

is re-iterated until the final position is reached. For better efficiency, a hopper

formation would cover a larger area. Hence, a natural extension is to look at control

of collaborative hoppers, which is discussed next.

4.3.3 Control Law for Cooperative Hoppers

For collaborative hoppers, sliding-mode control, also used for collaborative unmanned

aerial vehicles, is applied. As described in [102], The goal is to have a formation

to navigate to a desired end point while maintaining or achieving a certain

configuration. For collaborative robots, the notation ηn
i is used for the ith hopper at

the nth location. The n + 1th location is then defined as

ηn+1
i = ηn

i + ∆ηi, (4.40)

where, again, the distance, ∆ηi, is solved in such a way that the error on the position

decreases in time. For the current application, the error expression needs to take

into account the absolute error, i.e., the error with respect to the hopper’s desired

location, as well as the relative error for each hopper relative to its neighbors. The

error term is then defined as,

εn
i =(ηn

i − ηn
d,i) + Kr(η

n
i,j − ηn

i−1,j + ηd,i−1,j)

+ Kr(η
n
i,j − ηn

i+1,j + ηd,i+1,j) + Kr(η
n
i,j − ηn

i,j−1 + ηd,i,j−1), (4.41)

where Kr is a weight factor giving precedence on the absolute or relative hopper end

position.

Earlier work has shown mesh stability of a triangular formation as illustrated

in Figure 4.17 [102]. Hence, for the current work, a triangular formation of three

hoppers is investigated as a first step. As for the single hopper, a control parameter
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Figure 4.17: Triangular Formation for Collaborative Hoppers.

K is chosen such that the error decreases in time, that is

εn+1
i = e−Kεn

i . (4.42)

And, using a control parameter Kr on the relative position of the hoppers, the error

expression for the three hoppers are written as

ε1 = (η1 − ηd,1) + Kr(η1 − η2 − ηd,12) + Kr(η1 − η3 − ηd,13), (4.43)

ε2 = (η2 − ηd,2) + Kr(η2 − η1 − ηd,21) + Kr(η2 − η3 − ηd,23), (4.44)

and

ε3 = (η3 − ηd,3) + Kr(η3 − η1 − ηd,31) + Kr(η3 − η2 − ηd,32). (4.45)

Substituting for εn+1 and εn from Eq. (4.42) for all three hoppers gives

(ηn+1
1 −ηd,1) + Kr(η

n+1
1 − ηn+1

2 − ηd,12) + Kr(η
n+1
1 − ηn+1

3 − ηd,13) =

e−K [(η1 − ηd,1) + Kr(η1 − η2 − ηd,12) + Kr(η1 − η3 − ηd,13)] , (4.46)
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(ηn+1
2 −ηd,2) + Kr(η

n+1
2 − ηn+1

1 − ηd,21) + Kr(η
n+1
2 − ηn+1

3 − ηd,23) =

e−K [(η2 − ηd,2) + Kr(η2 − η1 − ηd,21) + Kr(η2 − η3 − ηd,23)] , (4.47)

and

(ηn+1
3 −ηd,3) + Kr(η

n+1
3 − ηn+1

1 − ηd,31) + Kr(η
n+1
3 − ηn+1

2 − ηd,32) =

e−K [(η3 − ηd,3) + Kr(η3 − η1 − ηd,31) + Kr(η3 − η2 − ηd,32)] . (4.48)

Then using Eq. (4.40) for ∆η1, ∆η2, and ∆η3, Eq. (4.46-4.48) become

∆η1(1+2Kr)−Kr∆η2 −Kr∆η3 =

ηn
1 (1 + 2Kr)(e

−K − 1) + ηn
2 Kr(1− e−K) + ηn

3 Kr(1− e−K)

+ nd,1(1− e−K) + nd,12Kr(1− e−K) + nd,13Kr(1− e−K), (4.49)

∆η2(1+2Kr)−Kr∆η1 −Kr∆η3 =

ηn
2 (1 + 2Kr)(e

−K − 1) + ηn
1 Kr(1− e−K) + ηn

3 Kr(1− e−K)

+ nd,2(1− e−K) + nd,21Kr(1− e−K) + nd,23Kr(1− e−K), (4.50)

and

∆η3(1+2Kr)−Kr∆η1 −Kr∆η2 =

ηn
3 (1 + 2Kr)(e

−K − 1) + ηn
1 Kr(1− e−K) + ηn

2 Kr(1− e−K)

+ nd,3(1− e−K) + nd,31Kr(1− e−K) + nd,32Kr(1− e−K). (4.51)

Hence, solving for the three ∆η’s gives the distance the three hoppers should jump

to. As for the case of a single hopper, given a distance to cover, Eq. (4.21) can

be inverted to find the initial velocity components for the required move. The

overall motion is governed by the control parameters K and Kr. The next section

investigates different scenarios of interest.
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4.3.4 Results and Discussion on the controlled dynamics for
surface motion

Applying the control law developed in the previous section, preliminary results are

shown in Figures 4.18-4.20 for a collinear motion used as a validation case, and a

triangular formation of three robots. In Figure 4.18, the three hoppers are released

from a same point and move along the equator, each having a different set of final

position as indicated in the figure. Note that the control scheme assumes the hoppers

can update their position using star trackers and sensors before making the next

hop. In Figure 4.19, the hopper formation achieves the desired configuration and

position within a few hops using control parameters K = 1.5 and Kr = 0.5, for

a longitudinal separation distance less than 100 meters. Reducing the control Kr

makes the triangular path wider before reaching the desired position, which may be

desired depending on the application.

In order to have more insight in the control efficiency, the distance to cover was

increased by 3 in the simulation shown in Figure 4.20. Having a desired position far

from the starting point, the dynamics of the asteroid has a more dominant influence

on the dynamics and control of the hoppers. In the case shown in Figure 4.20, the

asteroid has stable polar regions. It is clear that the hoppers are “attracted” by

the polar regions, making slight curves toward the pole in their trajectory. Even

though the following hop attempts to correct the situation, the hoppers 2 and 3

located closer to the polar regions are again attracted to it. This effect could make

it impossible for a hopper to reach the desired position and configuration. Note that

the paths shown in Figure 4.19-4.20 are made of a series of hops from bouncing on

the surface, while the hops that are indicated represent controlled jumps.

Hence, the control developed above give good results for small motion, within 100

meters. For large distance to cover, having a higher gain Kr will keep the formation

tight before reaching the final desired location, which may prevent the hoppers to
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Figure 4.18: Controlled dynamics of a linear robot formation with coefficient of restitution and
friction factor set to 0.5 and control parameters K=1.5 and Kr=0.5. Hoppers 1, 2, and 3 have
reached their final position.

have their trajectory deflected by stable or unstable regions of the asteroid. However,

further investigation is needed in order to design an optimal control system valid for

longer travel distance and to possibly counteract stronger nonlinear perturbations

from the asteroid’s dynamics.

As shown in Figure 4.15, a more rapidly rotating body can have a stable

equilibrium at the equator instead of the polar region. In this case, hoppers will

tend to stay closer to either one of the principal axes at the equator. However, the

disadvantage comes in when the asteroid spins close to its disruption rate, as in

the case of Alpha in the binary system 1999 KW4 [87]. In this particular case, the

analytical model looses its accuracy as even a low energy hop can make a particle,

or a hopper, stay in orbit for a few revolutions.

The next chapter is an interesting application looking at a possible robotic

mission design to the binary system 1999 KW4. All the methods developed in

the previous chapters are applied during different phases of the mission, from

approaching the system to investigating the surface of both bodies.
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Figure 4.19: Controlled dynamics of a triangular robot formation with coefficient of restitution and
friction factor set to 0.8 and 0.1, control parameters of K=1.5 and Kr=0.5, and a longitudinal
distance to cover less than 100 meters. Hoppers 1, 2, and 3 have reached their final position.
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Figure 4.20: Controlled dynamics of a triangular robot formation with coefficient of restitution and
friction factor set to 0.8 and 0.1, and control parameters K=1.5 and Kr=0.5, with a distance to
cover of 200 meters while the polar region is stable. Hoppers 1, 2, and 3 have reached their final
position.
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CHAPTER 5

MISSION DESIGN TO A BINARY SYSTEM:

APPLICATION TO 1999 KW4 AND OTHER

CASE STUDIES

5.1 Motivation and Assumptions

Missions such as NEAR, Stardust, Hayabusa, Rosetta, and now DAWN have proven

that a spacecraft can be sent to a small body at modest cost. From a science point of

view, studying these systems provides a testbed for new technologies and contributes

to our understanding of the solar system. As part of the planetary exploration effort,

this section looks at the design of a mission to a binary asteroid system, taking 1999

KW4 as a case study. The objective is to define the requirements for the mission

operations near the binary system or on the surface of the bodies. The mission

phases are developed in order to take advantage of the binary system’s dynamical

features. For this, the dynamics of the F2BP, the RF3BP, and the surface motion of

previous chapters can be integrated, extended, and specialized to KW4.

The mission is designed such that a spacecraft can approach the binary through

the smallest primary, and place small landers on the surface for further exploration.

Eventually, robots would hop to the side facing the primary, and then travel across

the L1 region using a simple jump to investigate the massive body. The next sections

describe the reasoning for why this approach may be the best one. Each phase is

then described in details, from approach to departure.

Since 1999 KW4 is one binary system among many, and may not be the most
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easily accessible, the last section of the chapter compares this case study to others

and describes how this approach is applicable and suitable to other systems.

5.2 1999 KW4 Parameters

The binary system 1999 KW4 is one of the few binary systems in the Near Earth

Asteroids population observed by radar or photometry [64, 71]. It is located on an

eccentric orbit crossing the path of Earth, Venus, and Mercury, with a semi-major

axis of about 0.64 AU, eccentricity of 0.69, and inclination of 39◦. Detailed models

of both bodies are available [87, 64], as shown in Figure 5.1, and precise dynamical

simulations of the system has been performed using geometrical analysis and Lie

group computations [18]. However, the ellipsoid-sphere model is found to be a good

approximation for the current work, where the dynamics developed in chapter 3 is

used. The two bodies are referred to as Alpha and Beta, representing a massive

sphere and a smaller ellipsoid, respectively.

The physical parameters of 1999 KW4 were found from high-resolution radar

imaging. The distance between the body’s centers of mass was found to be rb = 2.54

km and the total mass of the binary system is M1 + M2 = 2.472 × 1012 kg, which

gives G(M1 + M2) = 1.65× 10−7 km3/s2. The binary system has a mass fraction of

ν = 0.9457, an orbit period T of 17.458 hrs, and an orbit rate of Ω = 1.00 × 10−4

rad/s. Alpha has a radius of 0.0786 km while the Beta shape parameters are

[2α : 2β : 2γ] = [0.57 : 0.455 : 0.343] km. From the orbital parameters, the distances

of Alpha and Beta relative to their center of mass are r1 = 0.138 km and r2 = −2.402

km. Alpha itself has its own spin rate, with a period of 2.8 hrs, written also as

Ωα = 6.23 × 10−4 rad/s. Note that Alpha’s spin doesn’t affect the dynamics of

the two bodies but it is a characteristic to consider in designing the mission. Beta

is locked in a gravity gradient orbit which is represented by the F2BP in relative

equilibria from section 2.4. This geometry is shown in Figure 5.2.
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Figure 5.1: Model of the binary system KW4.
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Figure 5.2: The Restricted Full Three Body Problem modeled for the binary asteroid system 1999
KW4. Note that ν ∼ 1 and Alpha has its own spin rate different than the binary orbit rate. Beta
keeps the same configuration with respect to Alpha.
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To work with non-dimensional units, the scaling length and time are defined

as α = 0.57/2, and n =
√

(G(M1+M2)
α3 ) = 2.67 × 10−3 rad/s. The non-dimensional

distance between the bodies becomes r = 8.9123, and the rotation rate of the system

is then ω = 0.0377. Note that ω agrees with the angular velocity of the F2BP in a

relative equilibrium given by Eq. (2.27). For Alpha, the non-dimensional spin rate

is then, ωα = 0.233.

The next sections explain how the energy constraints and zero-velocity curves

are used as a base for a mission design to such a system.

5.2.1 Equilibrium Points, Stability and Jacobi Constant

The collinear equilibrium solutions are solved using Eq. (3.19) with y = 0 and z = 0.

For the equilateral solutions, one needs to compute them numerically with the known

results of the R3BP taken as a first guess. Looking at the stability conditions given

by Eqs. (3.33), as expected, the collinear points are unstable. And, as expected, the

results indicate that L1 is outside the ellipsoid. In addition, for the mass fraction

of 1999 KW4, L4,5 are also unstable. Following the convention on the Lagrangian

points notation given in Figure 3.4, the results on Lagrangian points, their associated

Jacobi constant, and their respective stability are listed in Table 5.1.

To have better insight on the allowable regions of motion around 1999 KW4,

Figure (5.3) shows the zero-velocity curve plot for 1999 KW4. The mission phases

are described in the following.
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Lagrangian Points
Distance

km
(normalized)

Jacobi
10−7 km2/s2

(normalized)
Stability

L1

−1.777(−6.236)
0
0

−1.121(−0.194) no

L2

2.594(9.100)
0
0

−0.993(−0.172) no

L3

−3.140(−11.016)
0
0

−1.097(−0.190) no

L4,5

−1.1318(−3.971)
±2.195(7.704)

0
−0.959(−0.166) no

Table 5.1: Lagrangian points for the binary system 1999 KW4 with corresponding Jacobi
constants and stability.
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Figure 5.3: Zero-velocity curve plot for 1999 KW4 with r = 2.54 km. The circle and ellipse around
α and β represent the bodies.
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5.3 Mission Design

5.3.1 Approach Strategy

Since the orbit of 1999 KW4 crosses the path of Earth, the binary periodically comes

close to the Earth. The next close approaches are in 2018, 2019, and especially in

2036, with close approach distances of 11.7× 106 km, 5.18× 106 km, and 2.3× 106

km, respectively [31]. Unfortunately, KW4 is in the low end of the available systems

due to its orbital parameters, a combination small semi-major axis, large eccentricity,

and high inclination. It is estimated that the velocity required to reach KW4, also

called ∆V , is on the order of 21.3 km/s [30]. The detailed trajectory analysis is left

for future study and the following focuses on the operations close to the binary, which

can also be applied to other systems as discussed in the second half of this chapter.

For a system such as 1999 KW4, the following sections show that approaching

through Beta first is the best option to consider, from both environmental stability

and mission operations.

5.3.2 Insertion Retrograde Orbits Characteristics

Arriving at the binary system, the spacecraft can first be placed on a retrograde

circular orbit around the binary system for better stability. Figure 5.4 provides an

example of such orbit. At about 4 km from the system center of mass, the retrograde

orbital speed is 0.203 m/s in the inertial frame with a period of 34.4 hrs, or 0.803

m/s in the rotating frame with a period of 7 hrs. Since the velocity of Beta is 0.27

m/s in the binary fixed space, the relative speed between the spacecraft and Beta is

about 1.073 m/s.

The spacecraft can also use this outer orbit as a platform for the rest of the

mission. An orbit inclination between 150o and 180o may facilitate communications

between the hoppers and the spacecraft, as the spacecraft would be able to view

the upper and lower hemispheres of Beta every 7 hrs. For the case shown in Figure
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Figure 5.4: Retrograde orbit around the binary system 1999 KW4.

(5.4), the retrograde periodic orbits are unstable, although the orbits only have a

weak instability. Figure (5.5) shows this same periodic orbit over a period of a year.

As the orbits get closer to Beta, retrograde orbits are difficult to compute since Beta

now has a more important influence.

If needed, the spacecraft can also stay temporarily in orbit around the small

ellipsoid Beta, which is shown in Figure 5.6. At this altitude, about 1.35 km from

the center of mass of Beta, the orbits are unstable. Closer orbits in the vicinity of

Beta are also found, shown in Figure 5.7. Note that these orbits are also unstable.

5.3.3 Approach to Beta

The choice of the approach is made considering both asteroid environments of the

binary system. Since the equilateral points L4 and L5 are unstable, they do not

provide interesting approach options. From the characteristic parameters of KW4,

Alpha has a more rapid spin and hence, a periodic motion relative to Beta. On the
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Figure 5.5: Retrograde orbit around the binary system 1999 KW4, over a year period.
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Figure 5.6: Unstable retrograde orbit around Beta, secondary body of 1999 KW4, 1.35 km from
Beta’s center of mass.
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Figure 5.7: Unstable retrograde orbit near Beta, secondary body of 1999 KW4, 0.5 km from Beta’s
center of mass.

other hand, being in relative equilibrium configuration, Beta has a fixed attitude

relative to Alpha. Hence, Beta would provide a more stable landing site. In addition,

its Lagrangian point L3 is the first to open after L1, as defined in Figure 3.4. This is

as expected from the observations made in section 3.2.3 since KW4 has a large mass

ratio. Hence, taking these facts into consideration, the spacecraft approaching the

binary system through L3, on the side of Beta, is the best approach to take. This

also limits the probability of escaping from the system as the spacecraft could only

exit from the same entrance region.

Figure 5.8 provides an example of an insertion trajectory going through L3 and

landing on Beta. From the orbiting platform, the spacecraft could eject the robots

with a simple spring mechanism while staying on this orbit for the remaining of the

mission. Near the crossing point between the landing trajectory and the spacecraft

orbit in Figure 5.8, the velocity of the robot would need to be 0.263 m/s oriented
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Figure 5.8: Binary system approach of a spacecraft through L3.

at 45.6o from the binary axis line. Hence, from simple relative motion, the ejecting

velocity ∆v is found to be 1.27 m/s oriented at 81.4o from the binary axis line.

The impact speed for this landing trajectory is 0.38 m/s in the binary fixed frame.

Note that this example has not been optimized. The design and mission goals may

influence landing velocities.

5.3.4 Surface Investigation of Beta

As the gravity is low, a lander on the surface will in general bounce several times

before settling. In order to escape, a hopper on Beta would need to jump at a speed

higher than 0.65 m/s relative to Beta, or about 0.2 m/s in the rotating frame,

which opens regions exterior to the large encircling orbits of the system in Figure

5.3. Instead, by maintaining a low energy state, the hoppers would be restricted to

a region close to Beta, as shown in Figure 5.9.

Landing on one end of Beta, a possible scenario is for the hoppers to be sent
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Figure 5.9: Regions of motion restricted to Beta and Alpha only.

to the other end of the small asteroid, maintaining an equally spaced grid between

them. Figure 5.10 provides a close up view of the bouncing dynamics. Note that

the trajectories shown are simulations of the nonlinear equations. As described in

section 4.2.7, the centripetal and Coriolis accelerations influence the dynamics of

landers. Being on the leading edge, a hopper can make a larger jump. In order for

the landers to communicate and update their position, the spacecraft in orbit can be

used to transmit scientific data.

The dynamics described in section 4.2.4 can be used to approximate small hops.

In the case of KW4, referring to section 4.2.7 on surface equilibria of an ellipsoid,

Beta is P3 stable meaning its pole is a stable point. The dynamics of a hopper close

to its pole is strongly influenced by its stability. As shown in Figure 5.11, hoppers

near the pole would stay around this region. Note that the trajectory is made of

small hops under ideal conditions. Robust control of the hoppers may be required in
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Figure 5.10: Close view of hoppers’ distribution on Beta x-y plane of the rotating frame.

order to access the equatorial regions, or leave a stable pole.

Using the dynamics and control algorithm developed in Chapter 4, Figure 5.12

shows a simulation of hoppers traveling on the surface, surveying one end to the

other along the equator. In this case, three hoppers released on the L3 side move

from their initial position to achieve a triangular formation and continue to the other

end. The trajectories shown are made of a series of bounces from the low gravity

environment. As one can see, the dynamics is not perturbed near the equator. After

a few hops, the hoppers have achieved the desired configuration although the slight

curve in the trajectory of hoppers 2 and 3 indicates the influence of the rotating

ellipsoid having stable poles. Note that, since a hopper will bounce a few times

before reaching a stop, it is assumed that the hoppers can update their position to

evaluate the required jumping velocity. For safety of the operation, a threshold value

was set to insure low enough velocities on the surface of Beta.
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Figure 5.11: Top view of the dynamics close to the stable pole of Beta.
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5.3.5 Transition from Beta to Alpha

One unique feature of a binary asteroid system is the possibility to transit from

one body to the other from a simple jump. As the hoppers reach the other end of

Beta, facing Alpha, transition to Alpha is possible provided that the Jacobi value

of the hopper is higher than that of L1. As outlined in section 3.2.5, knowing the

conditions for transit and non-transit trajectories from linear investigation at L1,

the system can be integrated backward and forward in time in order to find initial

and final conditions on the surface of either body. To insure a vehicle is still trapped

within the binary system, its velocity needs to be smaller than 0.65 m/s on Beta or

smaller than 0.9 m/s on Alpha in the binary frame.

Figure 5.14 shows a concrete example of a possible transit. At A, the hopper

jumps at a speed of 0.185 m/s oriented at 9.6o from the x axis, in the frame rotating

with the binary system. Arriving at Alpha, the landing velocity in the binary fixed

frame is 0.16 m/s, at 12.4o. Considering that Alpha is spinning, the surface velocity

on Alpha is given by (Ωα − Ω)rc = vs in the binary rotating frame, where rc is

the radius of the sphere. For 1999 KW4, this tangential velocity vs is 0.40 m/s.

Hence, the total velocity at B is 0.56 m/s, which is below the velocity limits for

escape. Other possible transfer trajectories are shown in Figure 5.14, from changing

the surface launching conditions. A non-transfer trajectory is also shown, jumping

towards the other body at first but not having proper conditions to transit.

The transition opportunity given by the environment of 1999 KW4 is also one

additional reason for making the landers go from Beta to Alpha instead of the

opposite. Since Alpha has its own spin faster than their mutual orbit, its periodicity

relative to Beta makes the launch window small. On the other hand, arriving at

Alpha is not an issue in terms of timing, and the robots can continue the surface

investigation. However, because of Alpha’s spin, special energy consideration needs

to be investigated, and is described next.
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5.3.6 Energy Constraints on Alpha

It is useful to first look at the energy involved for an object being on the surface,

and rotating with Alpha. For a circular orbit about Alpha, which is 0.786 km in

radius, the velocity in the Alpha frame is computed from

v =

√
µα

rc

= 0.445 m/s, (5.1)

where µα = GM1 = 1.5599× 10−7 km3/s2. Now, from Alpha’s spin itself, a particle

would have a velocity of

vα = ωαrc = 0.490 m/s. (5.2)

Since these two velocities, v and vα, are not far from being equal, one can infer that

the particles near the equator are close to being in orbit about Alpha.

It is useful to investigate the zero-velocity curves near Alpha in order to verify if

particles on the surface would be able to leave the system. If the spacecraft is located

on the x-axis on Alpha toward the ellipsoid, that is, at [−(0.786− 0.138); 0] km, its

associated Jacobi constant is Cx1 = −2.0362 × 10−7 km2/s2. If it is located on the

other side of the massive primary, at [(0.786 + 0.138); 0] km, its Jacobi constant is

Cx2 = −2.0114 × 10−7 km2/s2. Since these C values are smaller than all the three

values of the collinear points, these points have not opened up yet to the spacecraft

on the surface of Alpha. Hence, there is no escape possible from orbiting close to the

surface of Alpha.

In order to leave the system, from the zero-velocity curves shown in Figure (5.3),

a spacecraft or particle would need a Jacobi integral higher than C = −0.19 or

C = −1.0996× 10−7 km2/s2, which is referred to as Cout. This value corresponds to

the large circular zero-velocity curve around the binary system. Inverting Eq.(3.14)

for a spacecraft on the surface of Alpha, between the two primaries, the spacecraft

would need to have a velocity of at least vmaxα = 0.870 m/s in the rotating frame in
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order to have access to the outer region.

5.3.7 Surface Exploration of Primary Alpha

The surface model described for Beta can be applied to Alpha as well, together

with the discrete control law algorithm. However, since Alpha is rapidly spinning, a

hop at the equator can place a robot in orbit about it. A hopper would only need

to jump with a velocity greater than 0.05 m/s relative to the surface of Alpha in

order to stay in orbit around Alpha. With an energy state smaller than all three

values of the collinear points, these points wouldn’t have opened up yet and hence,

there could be no escape possible from orbiting in the regions close to L1 or L2. The

maximum velocity that a vehicle would need in order to escape the system is found

to be 0.5 m/s relative to Alpha surface, or 0.9 m/s in the binary frame.

Since Alpha spins rapidly, faster than Beta, moving particles or landers on

Alpha tend to “fall” toward the equator. In the current model, Alpha is modeled

as a sphere. Surface motion on a sphere is different than for an ellipsoid. To

have more accurate results, one would need Alpha to have parameters such as

[α; β; γ] = [1; 1; 0.8] parameters. Considering the true shape of Alpha, mapping its

effective gravity slopes as shown in Figure 5.15 shows that any loose particles on its

surface would have a tendency to accumulate at the equator [87, 64]. The arrows

indicate the angular deviation of the acceleration from the local downward direction

due to gravity and spin. This makes it difficult to explore the polar regions. This

would be of interest, however. Precise numerical simulations have also give more

insights into the effect of Alpha having a more oblate mass distribution on the

system orbital elements and the spin axis orientation [18].

5.3.8 Stable Periodic Orbits around Alpha

As for the binary reconnaissance orbits described in section 5.3.2, periodic

orbits around Alpha can be computed. These orbits can be used as part of the
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Figure 5.15: Effective gravitational sloped on KW4.

mapping investigation, for moving around the asteroid, or for station keeping orbit,

communicating with hoppers on Alpha. Direct or retrograde orbits can be computed.

It is found that retrograde periodic orbits are stable when very close to the surface.

Figure 5.16 shows a stable retrograde orbit at a 10-meter altitude from the surface

of Alpha. The stability of the periodic orbit changes near an altitude of 60 meters.

Figure 5.17 shows a periodic orbit at 100 meters from the surface. The instabilities

are strong and a spacecraft or particle may be brought on an impact trajectory

toward Beta.

5.3.9 End of Mission Scenario

Hoppers that have not been lost can meet again on the opposite side of Alpha

and eventually be brought to Earth. A possible option is for the hoppers to be

equipped with a small launching device that can put it in orbit with enough energy

to rendezvous with the spacecraft. Since Alpha is spinning at 2.15◦/min, timing of
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Figure 5.16: Stable retrograde periodic orbits around the massive spherical body of a binary
system. The spacecraft is at an altitude of 15 meters from the surface.

this operation might be a challenge. Figure 5.18 shows a departure scenario where

the hoppers leave Alpha through L2. In order to pass by L2, a hopper needs to

launch at 0.85 m/s at least.

Another option would be for the hoppers to meet with the spacecraft on an orbit

around Alpha as described in the previous section. The launching capability of the

hoppers can then be reduced greatly, simplifying the design of the surface probes.

Timing issues are also partially solved with this departure situation. The spacecraft

can then leave Alpha through the same L2 opening shown in Figure 5.18.
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5.4 Comparing 1999 KW4 to Other Known

Binary Systems

5.4.1 Known Binary Systems

Unfortunately, the binary system 1999 KW4 is one of the least accessible binary

systems in terms of ∆V , as calculated on the website “Binary near-Earth asteroids

detected by radar” by L. Benner [30]. However, the methods developed for the F2BP

and RF3BP and the mission design described in the previous sections can be applied

to a few known, more easily accessible binary systems. There are a number of

publications on observations of binary systems in the Near-Earth (NEA) and Main

Belt Asteroids (MBA) population. References [71, 58, 59, 68, 70, 65, 69, 67, 55, 96]

are only a few on radar imaging or photometry of binary asteroid systems within the

NEA population, from which data will be useful to compare with 1999 KW4.

Some of these binary systems are listed in Table 5.2, with some orbital and

physical characteristics of interest, and ∆V requirements relative to Earth. In this

table, ∆V is the velocity required in order to reach the binary system from Earth,

P1, P2, and Pmut are the periods of the primary, secondary, and mutual orbit of the

system, D1 and D2 are the primary and secondary projected diameter, and rb is the

distance between the two. The last column was added to give a nondimensional

distance between the binary bodies following the scaling defined for the F2BP and

the RF3BP. Although a few systems are missing key parameters such as the period of

the secondary body to determine the state of the system, i.e. in relative equilibrium

or not, it is possible to find interesting cases. In fact, most of the binaries where

the desired parameters have been obtained, binary systems 1 to 6, are in relative

equilibrium, and are among the cheapest in terms of ∆V .

Note that some observations have also even catalogued a few asteroid systems

composed of more than two asteroids [54]. This topic is left for future study.
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5.4.2 Comparison with 1999 KW4: Similarities and
Differences

From looking at Table 5.2, the system 1996 FG3 seems to be the closest to 1999 KW4.

The asteroid sizes and the distance between the bodies are very similar. Hence, the

velocities and orbits described in the previous section are fairly representative of this

system as well. However, 1996 FG3 requires about 3 times less ∆V than 1999 KW4.

Since the primary is spinning at a slower rate than Alpha, dynamics and control on

that asteroid may be easier to handle.

Didymos is about half the scale of KW4, and the ratio of the two asteroid

diameters is also 10% smaller. While the system is in relative equilibrium, the

small scale of the binary would make any surface motion on the small body difficult

to estimate and control from the low gravity at such a small scale. To date, the

smallest size asteroid visited by a probe was Itokawa with dimensions 535 m × 294

m × 209 m, target of the Hayabusa mission [49, 57, 21, 99], which is twice as big as

the secondary of Didymos. A mission may decide to avoid attempting to reach the

secondary in this case. With the primary still spinning much faster than the orbit

rate, navigation, control, and surface operations may be a great challenge.

While having a similar distance rb compared to KW4, the bodies of 2000

DP107 are also about half the size of Alpha and Beta. Hence, the system has a

nondimensional separation distance r twice as large as KW4. As for Didymos,

dynamics and control for surface exploration would be a challenge even though the

asteroids are at least the size of Itokawa.

1999 DJ4 has similar orbital periods for the primary and the mutual orbit of the

system compared to KW4. However, the overall system is at a much smaller scale,

with the primary being almost half the size of Beta. Although slightly bigger, the

system 1998 PG is a similar case as 1999 DJ4.

In order to have a better insight of the surface operations and the velocities
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involved on binary systems discussed above, Table 5.3 give preliminary computations

for the binary system energy constraints, orbital velocities, and surface velocities

for transfer between the two bodies. Note that r1, r2, are the distance of primary

and secondary with respect to their center of mass, and V1, V2, and Vsys are the

orbital velocities around the primary, the secondary, and around the binary system,

respectively. The orbital radius were chosen to be between 20 and 30 m away from

the surface of each body, and 2 km away from the system center of mass. The

computations assume equal density of 2.2 g/m3 for the binary bodies, with both

having a spherical shape.
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Observations for the other binary systems listed in Table 5.2 are missing period

of the secondary or distance between the bodies. Hence, it is not possible to infer

the state of the system, i.e. in stable relative equilibrium or not. However, from

the sizes reported and some periods, binary systems 1991 VH, Dionysus, Hermes,

and 1994 AW1 could be interesting options to pursue. It can be noted that Hermes

is the only asteroid system thought to have both the primary and the secondary in

synchronized motion. Also, although the bodies are small, 2000UG11 may also be of

interest since the distance between the body is smaller than other binary systems.

Again, further observations would be necessary to find other potential targets for a

mission to a binary and refine the above assumptions.

5.4.3 Extension to Planetary Flyby Opportunities

Since binaries are thought to have formed from rotational fission or planetary flybys

[82, 96, 12], it would be interesting to have a mission going to asteroids coinciding

with a flyby opportunity. In doing so, the change in rotation rate could be measured,

validating theories on rotational fission, tidal effects, and rubble-pile or aggregate

asteroid models. In the case of fission, the system would reveal its internal structure

directly. In addition, the event would also give further evidence of the evolution

paths of a binary, going from an unstable to a stable state say as the bodies drift

apart, described in Chapter 2.

In order to scientifically investigate a flyby opportunity, one of the best

approaches would be to have a net of surface probes acting as target markers. With

a small driving mechanism device, these probes could be designed to move in a

collaborating manner from a release location on the surface to a defined grid, as

approached in Chapter 4. As the shape of the body changes over time, a three

dimensional differential shape would be obtained from the network of probes, which

can be measured by a spacecraft in orbit close to the system.
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Looking at the JPL Near Earth Program, there will be opportunities to observe

the effect of planetary flyby on asteroid systems [31]. It was shown that binary

encounters with Earth or Venus out to 8 planet radii can alter orbit properties of

the binary [12, 11, 17]. Hence, in order to choose a close approach distance suitable

for science investigation, the search was done for flyby closer than the Moon relative

to Earth. Results are presented in Table 5.4. Asteroids 2005yr3, 2001av43, and

2001wn15 may be interesting targets to consider since they will flyby Venus, Earth,

and Mercury in a near time frame. Note that, to date, no binary systems are

predicted to make a flyby at such a close approach distance.
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Asteroid Date of CA Planet flyby Distance CA (AU)

2007eh 2012 Feb 14.6 Jupiter 1.77226

2005yr3 2012 Dec 21.5 Venus 0.00247

2001av43 2013 Nov 18.7 Earth 0.00742

2001wn15 2015 May 28.7 Mercury 0.0026

2006ec 2023 Mar 4.1 Earth 0.06975 (.000210 min)

2007eh 2024 Sep 19.3 Jupiter 1.74327

137108 2027 Aug 7.3 Earth 0.00261

153814 2028 Jun 26.2 Earth .001671

99942 2029 Apr 13.9 Earth 0.00025

1994vh8b 2031 Oct 30.3 Moon 0.00210

1994vh8b 2031 Oct 29.9 Earth 0.00218

2007hw4 2032 Sep 10.8 Venus 0.00256

2005ta 2034 Oct 5.3 Moon 0.00130

2002ta58 2061 Oct 8.3 Earth 0.0016

2002ta58 2061 Oct 8.3 Moon 0.0020

2000bm19 2063 Mar 3.0 Venus 0.00181

2006ec 2063 Mar 9.1 Moon 0.0024

2006ec 2063 Mar 9.3 Earth 0.00221

2000qx69 2064 Aug 23.1 Earth 0.00255

2001av43 2064 Nov 13.4 Earth 0.00438

2003jy2 2066 Jun 11.3 Venus 0.00228

2000sg344 2069 May 2.0 Earth 0.00129

2000sg344 2069 May 4.0 Moon 0.00033

2001oa14 2073 Feb 14.2 Mars 0.00220

2004ru10 2079 Nov 16.9 Mercury 0.00263

Table 5.4: Close approaches of asteroids [31]

177



CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Summary and Contributions

This final chapter summarizes the methods, findings and contributions of the

previous chapters. Then, future research directions are discussed.

6.1.1 The Restricted Full Three Body Problem

This objective of this work is to enable spacecraft missions to a binary asteroid

system. In order to solve the problem of spacecraft orbiters near a binary, one

needs to first solve for the dynamics of the two bodies themselves. By looking at an

ellipsoid-sphere system, the problem is greatly simplified while keeping interesting

dynamical features. This work first looks at the conditions for which the relative

configuration of the ellipsoid-sphere system is locked, and how the binary system

may evolve in time. It was found that two equilibrium states exist for a given a value

of angular momentum, where only the distance between the binary bodies differs. It

was also demonstrated that these solutions are opposite in stability, with the system

being unstable when the bodies are close to each other. Then, from looking at small

perturbations in the vicinity of these equilibrium solutions, periodic orbit families

were computed using a Poincaré map method. It is found that the lowest energy

state of these periodic families is precisely at the relative equilibrium state itself.

From looking at the energy of the system, it is possible to find paths where the

binary system may evolve from an unstable close configuration to a stable state.
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Then, having defined the dynamics of the binary system, one can then look

at the motion of particles or spacecraft in its vicinity. Two different problems

were investigated, when the two bodies keep the same configuration as they orbit

each other, and when periodic perturbations are introduced. In the first case, the

energy constraints were characterized and compared to the known Restricted Three

Body Problem. This can be done using current tools in astrodynamics, such as the

Jacobi integral, zero-velocity curves, and equilibrium solutions. Interestingly, the

results indicate that it may not be feasible to assume that the equilateral triangle

equilibrium point analogues in the RF3BP will be appropriate orbits from which to

observe a binary system. While the gravitational models used in this analysis are

rather approximate and simplified, it is probable that adding additional realism will

tend towards decreasing the stability regions even further.

Periodic orbits around the binary and around one of the two asteroids can also be

computed, and may be used as reconnaissance orbits. Then, looking specifically at

the mid-regions between the bodies, the nature of the collinear point allows transfer

trajectories. Knowing the transit conditions, the corresponding surface conditions on

the bodies can be computed from integrating the RF3BP equations of motion. This

is unique for binary systems and provides a novel research opportunity in terms of

small body exploration. As an extension to this, if the bodies are close to each other,

material exchange may be possible, providing insights on the system evolution.

Accounting for small perturbations, the challenge is to integrate the dynamics of

the binary into the model for the RF3BP. Assuming a constant motion in both the

F2BP and the RF3BP, periodic orbits near the equilateral Lagrangian points L4 and

L5 were computed. Then, using approximations for the ellipsoid potential, analytical

methods were derived in order to facilitate and complete the computations. Periodic

orbits can also be investigated using Poincaré maps and small approximations for

the dynamics of the F2BP itself, giving more accurate results and insights on the
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true dynamics.

6.1.2 Robotic Exploration and Applications

The models and findings from the F2BP and the RF3BP are integrated for

applications into robotic exploration of binary systems. Having a physical shape

for the binary components introduces surface constraints and forces one to develop

prediction methods for the dynamics and control of surface exploration landers.

Since the gravity is low on asteroids, an analytical model is derived using impacts,

predicting the total distance covered and time of travel while accounting for a

non-uniform gravity field, and coefficients of friction and restitution. However, it

was found that the dynamics of a rotating body has an important influence on the

dynamics of surface landers as they may get attracted to stable regions of the body.

Hence, control for surface motion may be desired in order to investigate certain

regions that are not dynamically reachable. The control is developed for a single

hopper and extended to collaborative probes.

Finally, integrating all methods, the last chapter showed a case study for the

binary system 1999 KW4 and provided a discussion on other binary systems of

interest. From energy constraint considerations and environmental stability, it

was shown how a mission can take fully advantage of the system dynamics by

approaching through the smallest body which is locked in configuration with respect

to the primary. Then, after landing on the small ellipsoid, the hoppers can make

their way to the other end of the small body, and transit to the primary.

The current interest in asteroid systems combined with the discussion presented

on the methods and findings of spacecraft orbiters at binaries can hopefully be

considered as a motivation to design one of the next low-cost Near-Earth Object

robotic missions towards such a system.
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6.2 Future Research Directions

There are many refinements and extensions that can be made to the current model.

The gravitational influence of the sun may be an important perturbation to the

dynamics of asteroids, which was not accounted for in the present work. The solar

radiation has also been shown to have an effect on the rotational state of an asteroid,

also called YORP effect [13, 81, 83]. Considering these effects on a binary system

will most likely give very rich dynamics to investigate. A natural extension is to

model systems of more than two bodies, such as the triple asteroidal system 87

Sylvia [54].

There may also be other regions or specific orbits of interest, especially considering

out of plane orbits, where these external perturbations may be coupled to the

in-plane dynamics. Then, taking a full model for the binary system, such as done

in [18, 52], and looking at the three dimensional motion, would take this analysis a

step further. These are also enabling elements for missions to binaries in order to

improve and develop more accurate and robust tools for guidance and navigation

near small bodies or on their surface.

In addition, beside improving on all mission subsystems, the robotic exploration

dynamics and control can be researched in more detail, and developed for specific

mission operations. As an example, one of the topics not fully well understood is the

effect of a planet on an asteroid as it flies by it. Tidal forces are difficult to evaluate

since the composition itself and type of aggregate are not well known. It would be

interesting to look into how robotic missions may be used to understand and provide

more data on these possible dynamical interactions. The next step is to develop

and prototype an actual surface robot for the exploration purposes. The attitude

dynamics would then need to be considered and studied, as there will be coupling

with the translational and rotational dynamics.

In the same line of thought, research is needed to develop accurate guidance and
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control law, and navigation methods for probe formations on small bodies. Current

interest is to have small landers on the surface or probes under the surface for

geological measurements. In terms of surface motion, the real surface of asteroids

may bring many disturbances in the motion of a lander if the surface is made of loose

regolith. A simple way to include these perturbations is to include and simulate the

dynamics using random errors added to the state variables. Then, surface motion

and operations may be designed with the help of a probabilistic knowledge on the

current position.

Finally, as a more futuristic topic, robotic missions to small bodies can also serve

as precursors to human exploration of asteroids [50]. The current Moon and Mars

programs from the U.S. Vision declared by President Bush in 2003 has revived the

interest in lunar activities, being the next step before sending human to Mars. In

order to prepare for such an endeavor, small bodies need to be further studied to

serve as possible human exploration missions, providing a short trip to outer space.
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