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Abstract 

 

Squeeze flow behavior was experimentally tested for Newtonian fluids. 

The results show that the squeezing force as a function of the gap gives force  

gap−2.5 and gap−4 for constant area and constant volume respectively. These 

results were compared with the Stefan, perfect slip, and Rady-Laun partial slip 

equations and found not to match exactly, but best approximated the Stefan 

equation.  The results also show that squeezing force as a function of squeezing 

speed matched predictions by Stefan, perfect slip, and Rady-Laun equations, 

while force as a function of viscosity for these equations overestimates the force 

at high viscosities.  

Squeeze flow behavior of zeolite suspensions was also considered. The 

results matched the force vs. gap of the Newtonian fluids tested. The relative 

viscosities of the suspensions determined by squeeze flow matched the shear 

viscosity measurements at less than 15% vol concentrations. Likewise at less 

than 15% vol concentrations the data was shown to match the Maron-Pierce 

equation. 

Electrorheological (ER) fluids were then examined under electric field in 

squeeze flow using constant volume conditions to eliminate the ―sealing effect‖ 

that prevented knowing the concentration of particles in the fluid. The results 

show that increasing the concentration significantly increases the gap at which 

the fluid takes on large (>100 lbs) loads. Increasing the carrier oil viscosity 

decreased the steepness of the force vs. gap curves. 

Filtration was assessed in squeeze flow of ER fluids using the Pe number 

as a predictor. Decreasing squeezing speed and viscosity were both shown to 

encourage filtration in electrorheological squeeze flow. Similarly increasing 

squeezing speed and viscosity were both shown to encourage convection in 

squeeze flow for ER fluids.  

Squeeze flow of magnetorheological (MR) fluids showed similar behavior 

as ER fluids in the effects of concentration of particles. For MR the results on the 

effect of the viscosity of the suspending oil was done at a lower—5% vol—

concentration, and showed similar behavior to the results seen for filtration in ER 

fluids.  



1 
 

 
 
 
 

Chapter 1 

Introduction 
  

Compression has many implications in material science, physics and 

structural engineering. For example by inducing compression, mechanical 

properties such as compressive strength or modulus of elasticity, can be 

measured. Squeeze flows are flows in which a material is compressed between 

two parallel plates and thus squeezed out radially (Figure 1.1). A more general 

definition could be ―a flow in which a material is deformed between two parallel or 

nearly parallel boundaries approaching each other.‖ Squeeze flows are by nature 

of their changing geometry, inherently transient and inhomogeneous flows.  

 

 

 

 

 

Figure 1.1 Constant Volume Squeeze Flow with black mass compressed between plates 

http://en.wikipedia.org/wiki/Material_science
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Structural_engineering
http://en.wikipedia.org/wiki/Compressive_strength
http://en.wikipedia.org/wiki/Modulus_of_elasticity
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Squeeze flow rheometry, which involves compressing a material in order 

to determine its rheological and mechanical properties has in the past two 

decades experienced a resurgence.  At least one of the reasons for this is that 

squeeze tests are often utilized as a straightforward technique to determine the 

rheological properties of highly viscous materials such as concrete, molten 

polymers and ceramic pastes. In industrial uses motors, bearings, and lubrication 

all involve squeezing flows. Compression moulding processes of metals and 

polymers (filled or unfilled) are essentially squeeze flows, often further 

complicated with a temperature gradient. Valves and diarthroidial joints are 

examples of squeeze flow relevant in biology and bioengineering. Even some 

phenomena occuring during food intake can and has been modeled using 

squeeze flow. The compression of food between the tongue and the palate can 

be approximated as a squeeze flow.  

While all of these applications are definitely of interest and much of the 

research developed in these applications has aided in the development of this 

work, the focus of this dissertation is on the compression of smart materials. The 

―smart‖ adds an element of adjustability to these compression situations. Rather 

than having a fixed set of mechanical properties, smart materials can adjust their 

behavior and properties based on external stimuli such as electric and magnetic 

fields. This allows for adjustments to be made by the material where in one case 

it can‘t support a single pound of force, but after adjusting to a field in that same 

situation it can support a load of hundreds of pounds of force. It is these 
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remarkable properties of smart materials that is the motivation of the research in 

this dissertation.  

This introduction will begin with the brief history of squeeze flow, in order 

to point out the main difficulties experienced in the field and to lead up to the 

current state of the field of squeeze flow rheometry. Next it will briefly describe 

electrorheology and magnetorheology and describe the research that has been 

done in squeeze flow of ER and MR fluids. Finally this chapter will introduce the 

research of this dissertation and the problems that it intends to address.  

History of Squeeze Flow 

  

 An early publication on squeeze flow dates back to 1874 by Josef Stefan. 

His classic paper actually dealt with measuring the squeezing force between two 

plates that were being pulled apart. Likewise his paper also used plates that were 

fully submerged in fluid. Nevertheless his relationships for squeeze flow remain 

the most dominant theories for squeeze flow. Below is the equation derived by 

Josef Stefan for the squeezing force between two plates for constant area(Stefan 

1874) and the expression developed later by Diennes and Klemm(Diennes and 
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Klemm 1946) for constant volume. 

 

Figure 1.2 Coordinate System and Basic Dimensions Used To Describe Axisymmetric Squeeze 

Flows 
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Constant Volume  

gaph

hRVolumeV

ityvis

ForceF

h

hV
F











)(

cos

2

3

2

0

5

2

0







 

 

Equation 1.2 

 Shortly after this popular equation for squeezing force was developed by 

Josef Stefan and in his paper he also verified it experimentally, Reynolds in 

England used the lubrication approximation to solve for the squeezing force 

R (plate radius) 

h (gap height) 

F (Squeezing Force) 
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(Gap Speed) r 
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using the Navier-Stokes equation.  Using this approximation it was found that the 

Navier-Stokes equation actually reduces to Stefan‘s Equation for the normal 

force in squeezing flow. 

 While this equation was restricted to Newtonian fluids it wasn‘t until 1931 

that J. R. Scott extended this relationship to power law fluids(Scott 1931). In his 

classic paper J. R. Scott put forth the following relationship.  


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(1.3) 

For a power law fluid defined as  

nm   

Where m and n are power law parameters  

representing the preexponential consistency  

and the power law index respectively.  

 

  It can quickly be shown that if in the Scott equation n = 1 and m is set to 

equal the fluid viscosity that the equation reduces to Stefan‘s Law. The Stefan‘s 

Law and the Scott equation form the widely used basis for applications and for 

most other theories in squeeze flow(Engmann, Servais et al. 2005).  

 Squeeze flow rheometry prior to many advances in technology was done 

using constant force measurements. For these a constant load of known weight 

was placed on the upper plate and the gap was recorded as a function of time. 

For these types of measurements an inherent problem was that of inertial 

considerations. But for many applications during this time inertia wasn‘t an issue 
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(Wolfe 1965). One published treatment of this was by Jackson in 1962 (Jackson 

1962). Dennis Kuzma developed an expression for squeeze flow that included 

the effects for inertia(Kuzma 1968). Below is the original expression: 


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By adjusting the expression to Stefan‘s it‘s easier to see the inertial contribution 

to squeezing force (making some adjustments). 
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(Bird 1987)     (1.5) 

 As squeeze flow rheometry developed and more and more confidence 

was placed in using squeeze flow to determine rheological parameters many 

non-Newtonian fluids began to be tested. Phillip Leider took several fluids and 

compared their properties in squeeze flow with what was expected in terms of 

their rheological properties. (Leider 1974; Leider and Bird 1974)  

 Soon after these developments in 1981 Chaetraei, Macosko, and Winter 

developed a parallel plastometer or squeeze flow device to measure biaxial 

elongation(Chatraei, Macosko et al. 1981). Here they treated the plates so that 

they were fully lubricated so that ―full slip‖ could be used as a boundary condition.  

That is rather than assuming a no slip boundary condition for the fluid being 

squeezed at the surface of the plate, they were able to treat the plate as a 

frictionless surface.  
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 While it was well known that in the case of squeeze flow between parallel 

plates there obviously were situations where slip was occurring that didn‘t 

necessarily indicate ―full slippage‖(Bagley, Christianson et al. 1985). It wasn‘t 

until 1999 that Hans Martin Laun developed an analytical expression to evaluate 

partial slip occurring at the surface of the plate(Laun, Rady et al. 1999). It should 

also be noted that he used an internal report at BASF written by Hassager ten 

years earlier in 1989 and included Hassager‘s work in the publication. The Laun-

Rady equation for squeezing force with partial slip occurring at the surface is: 

   







 


21

4
21

8

3
2

2

3

4

0

R

h

h

Rh
F



           

(1.6) 

 = slip parameter 

 Since this publication many other papers have developed that include 

frictional models for squeeze flow(Burbridge and Servais 2004; Meeten 2004; 

Estelle, Lanos et al. 2006; Estelle and Lanos 2007). Some of the more recent 

work has been attempts of solving for the slip parameter in the squeeze flow 

equation, which actually is not straightforward in practice(Kalyon and Tang 

2007). This is because in applications and rheometry the slip parameter is 

varying. This again is due to the transient nature of the squeeze flow as was 

stated in the beginning.  

Electrorheology 
 

 Electrorheological (ER) fluids are suspensions of extremely fine non-

conducting particles (up to 100 micrometres diameter) in an electrically insulating 
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fluid.(Larson 1999) Electrorheological fluids are fluids that solidify or become 

extremely viscous under an electric field. Electrorheology was first observed by 

Duff  and Quinke over a hundred years ago(Duff 1896; Quinke 1897). It took 

another 50 years after this discovery for Winslow in Colorado to publish his 

finding that certain particle suspensions formed ―fibrous mass‖ under an electric 

field. (WInslow 1949)  

 Unfortunately, early reports of the performance of such fluids indicate they 

were abrasive, chemically unstable, and liable to suffer rapid deterioration. 

Consequently the early promise of commercial exploitation did not materialize. It 

was not until 30 years after the reports of Winslow‘s pioneering efforts that 

interest in engineering applications of ER fluids was rekindled, this time by 

developments in the United Kingdom. In particular Stangroom (1983) described 

the composition of ER fluids containing nonabrasive, micron sized polymer 

particles dispersed in a silicone oil carrier fluid. Commercially produced ER fluids 

have been and continue to be available, but despite the design, construction, and 

testing of numerous prototype devices, the first mass produced ER device is still 

awaited.  

Magnetorheology 
    

Magnetorheological suspensions are the magnetic analogs to 

electrorheological suspensions. It is a suspension of micrometer-sized magnetic 

particles in a carrier fluid, usually a type of oil. Just like ER Fluids when subjected 

to a magnetic field, the fluid greatly increases its apparent viscosity. It is 

http://en.wikipedia.org/wiki/Suspension_%28chemistry%29
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/w/index.php?title=Apparent_viscosity&action=edit&redlink=1
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important to note the difference between MR fluid and ferrofluid. MR fluid 

particles primarily consist of micron-scale particles which are too heavy for 

Brownian motion to keep them suspended, and thus will settle over time due to 

the inherent density difference between the particle and its carrier fluid. The 

particles in a ferrofluids primarily consist of nanoparticles which are suspended 

by Brownian motion and generally will not settle under normal conditions. 

Additionally ferrofluids contain monodomain particles, which behave differently 

than MR fluids. As a result, these two fluids have very different applications. 

Magnetorheological fluids were first discovered by Jacob Rabinow in 

1948. Except for a flurry of interest after their initial discovery there has been 

hardly any information published about MR Fluids until the past 15 years. In the 

early 1990s, an unexpected watershed occurred in the development of smart 

fluids when MR fluids were ‗rediscovered‘.(Stanway 2004). Consequently mass-

produced devices began to appear. Some of the most significant mass-produced 

devices have been in the automotive industry for smart suspension damping and 

vibration control of vehicle seats, including the Cadillac 2002 STS.(Stanway 

2004) 

 The difficulties that challenged ER technology and the consequent 

overtaking of the smart materials market demand by MR fluids has been recited 

throughout the literature many times(Sims, Stanway et al. 1999; Stanway 2004). 

These include the requirement for high voltages for electrorheological fluids — 

even though it should be pointed out the power consumption is less on the order 

of micro or nanowatts. Another problem dealt with the so-called yield strength of 

http://en.wikipedia.org/wiki/Ferrofluid
http://en.wikipedia.org/wiki/Brownian_motion
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ER materials in shear mode. It has been reported that MR fluids have higher 

yield strengths than ER fluids. It has been suggested by others that the 

―measured yield stresses‖ are a result of the slippage of the particle structures 

across the surface of the electrodes. If this were so the structures — both ER 

and MR — would be much stronger than previously thought, and more 

importantly the measurements of the yield strengths in shear would only be a 

measure of slippage or adherence to the electrode/plate.(Filisko 2007) 

ER/MR Applications 
 

 

  

 

 

Figure 1.3 The Formation of Particle Structures in ER/MR fluids under an electric/magnetic field.   

   

The cause for the change in properties for ER/MR fluids is very similar in 

both cases: the polarization of particles induced by either electric or magnetic 

fields cause the particles to form structures or particle chains which eventually 

bridge the electrodes. (Sims, Stanway et al. 1999) In this way the ER/MR fluids 

provide an elegant interface between mechanical systems and 

electrical/electronic control systems.  

For most industrial applications and devices the use of smart materials 

has been divided into three modes of operation.(Jolly, Bender et al. 1999) The 

Field 

Off 

Field 

On 
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first mode of operation is flow mode. Here the ER/MR fluid  is contained between 

a pair of stationary electrodes. An example of this would be as a flow control 

valve. Another mode of operation is one that allows relative motion between the 

electrodes either in translation or in rotation. This type of relative motion causes 

shear in the ER/MR Fluid and is thus referred to as the shear mode. The final 

mode and the one of concern in this dissertation is that squeeze mode. Here the 

plates are free to move in a direction roughly parallel to the applied field, resulting 

in placing the ER/MR fluid in tension and compression. For ER it has been 

shown that the stresses that have been generated in these different modes follow 

the pattern Couette (Shear)< Pouiselle (Flow) < Squeeze Flow, which leads to 

the current motivation for examining smart materials in applications with squeeze 

mode operations (Havelka and Pialet 1996).  

 

 

 

 

ER Squeeze Flow  
 

The first efforts at studying ER fluids in squeeze mode were done by 

Stanway and Sproston et al. (Stanway, Sproston et al. 1992) They prepared an 

ER damper cell and tested it and measured it‘s transmissibility characteristics. 

ER/MR 

Fluid 

Flow Mode 
(Stationary 
Electrodes) 

Shear Mode Squeeze Mode 

Figure 1.4 Three Modes of Smart Material ER/MR Operation 
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Some of the first experimental squeeze flow data using different ER fluids and 

voltages was taken by G.J. Monkman  (Monkman 1995). Here Monkman 

measured a property that he termed the hardness of the fluids under the electric 

field. This was actually a plastic modulus.   

 During this period several models and applications were developed for 

industrial use of ER fluids in squeeze mode(Williams, Sproston et al. 1993; 

Sproston, Stanway et al. 1994). The most popular models during this time treated 

the ER fluids as yield stress fluids, either Bingham bodies or biviscous fluids. 

Williams used the biviscous model to develop some mathematical relationships 

that deal specifically with oscillatory squeeze flow for an engine mount.(Williams, 

Sproston et al. 1993)  

In 2000 Chu, Lee and Ahn published a study in squeeze flow of ER fluids 

where for one of the first times the ―sealing effect‖ in electrorheological squeeze 

flow is mentioned. This paper describes the ―sealing effect‖ as the electric field 

concentrating the powder in between the plates. This paper uses the assumption 

that all the powder stays between the plates, but it does recognize that in the 

case of high concentrations and or low voltages the assumption fails. But the 

paper makes no mention of the effect of the carrier fluid.  

In 2005 Meng and Filisko published findings that pushed the limits on the 

compressive stress for ER Materials.(Meng and Filisko 2005) They applied 

compression beyond stresses of 500 kPa. In this paper they also tested if the 

Williams continuum non-Newtonian equation for ER in oscillatory squeeze flow 
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would be able to predict the compressive stresses of the ER fluids. It was found 

that the Williams equation underestimated these stresses and that any attempt at 

modeling the behavior of these smart materials would have to include adjusting 

for the particle columnar structures that form between the plates during 

squeezing. (Williams et. al. 1993) The sealing effect was also said to be strongly 

influenced by the aspect ratio of the columns at the start of the test, or the initial 

gap size. (Meng and Filisko 2005) 

In 2006 Lynch, Meng and Filisko published a study where they applied 

stresses of over 300 kPa on ER fluids in compression, compared with the 10 kPa 

applied in the previous study by Chu et. al. (Lynch, Filisko et al. 2006)This was a 

significant improvement over the previous experiments. In the paper the authors 

took notice that the ER fluids with higher viscosity oils took greater amounts of 

compression — strain — to reach the same stresses that the lower viscosity oils 

did. The authors attributed this however to the sealing effect — or the fact that for 

the more viscous fluids more powder was being squeezed from between the 

plates.   

In 2007 McIntyre and Filisko proposed a technique in an article that would 

keep the particles in between the plates.(McIntyre and Filisko 2007) This study 

presented data showing that using this constant volume squeeze flow technique 

the effects of concentration and viscosity could be presented without having the 

sealing effect add uncertainty to the resulting forces that were developed.  
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 MR Squeeze Flow 

Unlike electrorheological squeeze flow, magnetorheological squeeze flow 

has been studied extensively and intensively by both industry and at the 

university level. The compressive behavior of magnetorheological (MR) fluids has 

been studied for industrial applications such as in dampers and as a mechanism 

for strengthening the materials by increasing their yield stress(Tang, Zhang et al. 

2000; Tang, Zhang et al. 2001; Vieira, Ciocanel et al. 2003). The overall thrust in 

these studies was either towards higher yield stresses or the utilization of a 

commercial MR fluid that already had a high yield stress(Klingenberg, 

Kittipoomwong et al. 2005). Almost all studies conducted on MR fluids in 

squeeze mode either used about 30% by volume  suspensions, usually only 

testing a single concentration, or used a commercially available MR fluid.  

 For industrial applications it has been demonstrated that MR fluids require 

a very high yield stress, which has been accomplished by increasing 

concentrations of suspensions of MR fluids to roughly 30% by volume. Recent 

efforts have shown that for MR fluids bidisperse suspensions with particles of two 

different sizes actually increases the yield strength of the fluid and decreases the 

off-state viscosity which leads to a greater increase in the shear stress when the 

field is applied.  Most recently studies have shown that using microwires instead 

of spherical iron carbonyl particles shows a great increase in the yield stress and 

reduces settling at the same time.(Bell, Karli et al. 2008)  Problems of settling in 

MR fluids have hindered their use as well. Often to solve this, proprietary  

thixotropic agents are typically added to MR fluid which cause the viscosities of 
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the suspending oils in MR fluids to remain very high. While in most studies 

involving MR Devices these two observations of requiring a highly concentrated 

suspension to allow for a high yield stress and avoiding settling through using 

high viscosity solutions have both been used to help optimize MR studies toward 

industrial applications, knowledge of the overall effects in compression for MR 

fluids would contribute towards researching these fundamental problems as well.  



16 
 

Introduction To My Research 

 

The broad purpose of my research is to perform a comprehensive study 

on the compression behavior of smart materials. By examining squeeze flow of 

electrorheological and magnetorheological fluids this study seeks to clarify the 

relationships between how concentration, viscosity of the carrier oil, and other 

variables of interest affect the squeezing force-gap behavior. More importantly 

overall this research seeks to examine the overall strength of the ER/MR particle 

structures in compression.  

Initially Chapter 2 seeks to assess the known squeeze flow theories by 

utilizing simple fluids (Newtonian) and seeing how well the squeeze flow data 

matches each of the known theories. This study required looking at single 

parameter partial slip equations for squeeze flow as well.  

Chapter 3 involved doing a similar study, but with a more complex 

suspension, instead of a pure Newtonian fluid. Here squeeze flow theory was 

examined and the effect of concentration on squeeze flow behavior was 

analyzed. Also in order to further judge the rheometry these initial results were 

compared to some well-known suspension theories to see how well the results 

matched.  

Chapter 4 was the first study done involving ER fluids under an electric 

field. In this study a new method of testing ER squeeze flow using constant 

volume was proposed in order to overcome the sealing effect. By doing this the 
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effect of concentration and viscosity were able to be examined in a situation 

where all the particles and fluid remained in between the plates.  

Then in Chapter 5 from this insight the phenomenom of ER Squeeze flow 

was further examined in light of the Peclet number. Here the Peclet number was 

used to determine the influence that filtration had on the compressive behavior of 

ER fluids under an electric field. This chapter provides support that the 

separation and strength of the particle structures may be related to the Peclet 

number and the filtration that is occurring.  

Finally Chapter 6 does a very similar study on magnetorheological fluids 

and finds that the results for MR fluids resemble closely what occurs for ER at 

low concentrations. This study goes on to suggest that there might be filtration 

occurring in MR fluids in compression under a magnetic field as well, even 

though it is not directly observable as it is in ER fluids in compression under an 

electric field.   
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Chapter 2 

 

An Experimental Study on Squeeze Flow of Newtonian Fluids 

Including Slip 
 

Introduction 

 Over the past decade there‘s been a renewed interest in squeeze flow 

rheometry. Much of the interest is due to its usefulness in determining the 

rheological properties of highly viscous materials. These include several 

industrial fluids such as concrete, molten composites, food pastes, ceramic 

pastes, and concentrated suspensions to name a few. In squeeze flow ―a 

material is deformed between two parallel or nearly parallel boundaries 

approaching each other.‖ (Engmann, Servais et al. 2005) Assuming a rheological 

model, the flow parameters of the material are inferred by fitting the model with 

the experimental measurements. (Collomb, Chaari et al. 2004) 

 This paper seeks to characterize the behavior of simple (Newtonian) 

fluids, where shear viscosity is known throughout the test, utilizing several 

existing squeeze flow theories. This paper uses an experimental approach to 

assess the fluid behavior of the simplest case for squeeze flow, Newtonian fluids, 

using existing squeeze flow theory.  In order to assess flow behavior for 

Newtonian fluids this paper utilizes two different experimental setups — constant 

volume and constant area squeeze flow. Stefan‘s equation, which is the 



22 
 

dominant theory used in the Newtonian squeeze flow, was taken as a starting 

point for analysis. The data required that effects described by recent work and 

current theories be utilized as well. 

 The experiments showed that partial slip could be used to describe the 

relationship between the squeezing force and the gap. The relationship between 

gap speed and force in the experiments matched what was predicted in all of the 

equations examined — Stefan‘s Law included. The effect of viscosity on the data 

agreed with Stefan‘s Law for low viscosity, but for the high viscosity experiments 

the data was unable to match Stefan‘s Law.  By utilizing the Rady-Laun partial 

slip equation the power law relationship between force and gap shown by the 

data was able to be matched, but the magnitude of the force was better 

approximated using Stefan‘s assumptions. 

Theory 

The dominant theory that will be looked at is Stefan‘s Equation, but this 

study will take into account the effects described by more current theories 

qualitatively as well.  Stefan‘s equation at constant area and constant volume 

is(Stefan 1874; Diennes and Klemm 1946): 
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In matching squeeze flow theories to experimental data two major 

problems have arisen. The first effect, which occurs in experiments is that of 

inertial considerations. This effect is more problematic in using constant force 

squeezing tests, whereas in our study utilized a constant speed apparatus 

instead. Inertial effects on squeezing flow has been addressed extensively in the 

squeeze flow literature(Kuzma 1968; Grimm 1976) Using a perturbation 

approach to solve for the inertial terms in the Navier-Stokes equation researchers 

arrived at an equation that includes the influence of inertia on the Force(Bird 

1987) (with an adjustment for h): 
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(2.3) 

In the above equation for an experimental setup where the plates are 

squeezed together with a constant velocity (as is the case in this setup) the third 

term vanishes. The second term becomes negligible also because such slow 

speeds are being applied, which a quick order of analysis would reveal. (Gap and 

speed in the numerator are less than one, while viscosity which is in the 

denominator is at least three orders of magnitude greater than one.) In looking at 

this equation which includes inertial effects for our experiment it quickly reduces 

to Stefan‘s equation.     

The second effect that occurs in squeeze flow rheometry that must be 

accounted for is slip at the surface of the plates. Stefan‘s equation assumes a no 
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slip boundary condition. There have been experiments where it was 

demonstrated that this doesn‘t always hold.(Chatraei, Macosko et al. 1981; 

Shirodkar, Bravo et al. 1982; Burbridge and Servais 2004) One attempt at 

resolving this is to treat the plate surfaces so that they are fully lubricated and 

assume a perfect slip boundary condition. The squeeze flow equation that is 

derived for perfect slip (after adjusting parameters for the Newtonian fluid) 

is(Raphaelides and Gioldasi 2004): 
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(2.4) 

For a constant volume Newtonian fluid sample squeezed between two 

rigid plates assuming perfect slip requires a slight modification to the expression 

given below as stated before(Campanella and Peleg 1987): 
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By converting (HFO−Vt) to H(t), changing V to (dh/dt) and replacing R0 with 

Volume (V equal to R0
2*HF0) the following equation is defined for constant 

volume with perfect wall slip: 
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The difference of a factor of 1/h in going from a constant area setup to a 

constant volume setup should be observed for the condition of perfect wall slip. 

However for our experiments the plates were not treated in order to lubricate the 

surface. These two equations are still important in that they express the lower 

limit for forces generated in the experiments. These equations also show the 

drastic reduction in the force when moving from a frictional (no slip) surface to a 

lubricated (perfect slip) surface.  

Each of the two above instances represents what occurs at the limits for 

squeeze flow. The more important case for examining slip occurring in squeeze 

flow is neither perfect slip nor no slip at the surface, but partial slip occurring at 

the surface. The best way to look at partial slip is by examining the velocity 

profile at the plate surface. As expected the velocity in the z direction at the plate 

surface is going to be equal to the gap speed. The radial velocity at the wall gives 

a clear picture of what is going on in terms of slip.  

For no slip the radial velocity at the plate surface is zero. For a frictionless 

surface the radial velocity is given below.(Chatraei, Macosko et al. 1981) For 

Laun‘s equation on partial slip the velocity at the surface of the wall takes on the 

linear form given below.  
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For partial slip there is a slip parameter — vs — which can be adjusted 

between no slip at a minimum (vs = 0) and full slip at a maximum: 

h

Rh
vs

2
max,





. This parameter is actually nothing more than the radial velocity at 

the edge of the plate (vs = vr(R, H)). It can also be adjusted to include partial slip 

that occurs between these two extremes. Thus partial slip describes a situation 

when the velocity profile at the surface of the wall is not frictionless but the fluid is 

still moving at the surface. 

There have been and continue to be several efforts in squeeze flow for 

quantifying partial slip into the squeeze flow equation.(Laun, Rady et al. 1999; 

Kalyon and Tang 2007) Laun developed such an equation(Laun, Rady et al. 

1999): 
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In this equation  is a dimensionless parameter that relates a slip rate and 

a compression rate. 

 
dt

dR

vs


    →0 corresponds to no slip, while →0.5 corresponds to perfect 

slip. A very similar equation has been developed by Hassager(Laun, Rady et al. 

1999): 
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 For Hassager‘s equation pure equibiaxial elongation (perfect slip) occurs 

with →∞. In this case only the second term remains. For no slip →0 and we 

arrive at an expression that approximates Stefan‘s equation again. These 

equations deal with approximating partial slip at the surface.  

 Taking these partial slip equations as models some attempts have been 

made at solving for the slip parameters  or . One method of parameter 

identification was developed by Laun (Laun, Rady et al. 1999) that utilized a 

Mooney type analysis of data to arrive at the equation: 
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Using the above expression plotting the rim shear rate at a constant rim shear 

stress against 1/H should give a line with a slope of 6vs. Then using this,  can 

be calculated from a single squeeze experiment.  

 Another approach at arriving at the slip parameters used by Kalyon 

(Kalyon and Tang 2007) involves using a least squares regression of the 

equation for slip. The equation that is used is 
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For the Newtonian fluid m is the viscosity,and V is the gap rate. In this approach 

a parameter for a least squares error is defined J: 

gapgiven at  forcefor  data alexperiment

gapgiven  aat  abovegiven  forcefor  expression analytical  
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Taking the above error and minimizing it by adjusting the parameters m and  

one can arrive at an approximation for both m and . The disadvantage of this 

approach aside from its lengthy calculation is that the estimation is only a 

statistical one, that yields little insight into what is happening aside from the 

calculation of the slip parameters. Aside from this it assumes that the data must 

match the equation given above to arrive at the correct parameters. (i.e. 

Assumes Stefan‘s Law always applies to no slip while ignoring other effects). Still 

it is a very promising method for approximating the parameters m and  in 

Newtonian as well as other types of fluids.  

 There are certainly other effects in squeeze flow other than inertial 

considerations and slip. For example the effects of temperature on squeeze flow, 

or non-Newtonian behavior are two other problems that have been and are still 

being investigated. For isothermal Newtonian fluid behavior the chief focus in the 

literature has been on inertial considerations and slip. There are other types of 

fluid behavior looked at in squeeze flow and an excellent review of some of this 

work has been published by Engmann (Engmann, Servais et al. 2005).  
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Materials and Methods 

  

 Three different fluids were used in these experiments. Two were viscosity 

standards with known viscosities. The third was silicon oil, which also had a 

known viscosity. The properties of these fluids are given in Table One.  

 

Materials Viscosity 
(mPa s) 

Kinematic 
Viscosity 
(mm2/s) 

Density 
(g/cm3) 

Cannon Instrument 
Company  

Certified Viscosity 
Standard: S300001 

71,720 
@25°C 

80,521 0.8907 

Cannon Instrument 
Company  

Certified Viscosity 
Standard: S20001 

4,546  
@ 25°C 

5,202 0.8739 

Dow Corning 
FS-1265 Silicon Oil2 

7,874 10,000 1.27 

Table 2.1 Three Newtonian Fluids used in experiments. Calculated values 

are italicized. 

 

 A rheometer (RDS II, Rheometrics Inc.) was used for all three of the 

squeeze flow experiments. For all of these tests the recorded initial gap between 

the plates was 1.0 mm, but the test started at a gap of 1.2 mm to eliminate 

transient effects.   For all of these tests a constant plate speed was used to bring 

the plates together by moving the upper plate while the lower plate remained 

stationary.  The normal force developed during the test was measured by the 

                                                           
1
 All Certified Viscosity Standards conform to ASTM D 445/446 and have been tested and confirmed by 

Cannon Instrument Company according to ASTM D 2162 

 
2
 Dow Corning FS-1265  
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normal force transducer connected to the upper plate, and recorded by an online 

computer.  

 Three experimental setups were used. For the constant area test two 

identical 25 mm plates were used. For the second one 25 mm and one 50 mm 

plate was used. The constant volume test used two 50 mm plates. When the 

same size plates were used, the fluid was allowed to pour out the sides of the 

plates; however when the larger bottom plate was used this eliminated the 

problem. The boundary conditions at the edge of the top plate in both cases were 

difficult to predict. While both cases had some uncertainty involved in the 

measurements, the apparatus with the larger plate where there was some 

stagnant fluid at the plate edge resembled closer to the ideal case. Therefore, the 

two equal diameter plates were used to test a single squeeze speed, 0.10 mm/s; 

while the second instrumental setup with a larger bottom plate was used to test 

three different squeezing speeds—0.01mm/s, 0.05 mm/s, 0.10 mm/s.  

 The final apparatus used constant volume test geometry. In this test two 

50 mm diameter plates were used. The fluid only partially filled the gap between 

the upper and lower plates initially and expanded as the plates were squeezed 

together. For this setup all of the fluid stayed between the plates throughout the 

entire test. The fluid that was placed between the upper and lower plates was 

measured at about 0.5 mL by syringe. The three fluids were tested at three 

different squeezing speeds—0.01 mm/s, 0.05 mm/s, 0.10 mm/s.  
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Results 

 

Figure 2.1 The results from the squeeze flow experiments on three different Newtonian fluids 
using two different constant area setups. SETUP 1 used two 25 mm plates, while SETUP 2 
replaced the bottom plate with a 50 mm one. The squeezing speed of 0.10 mm/s was the 
samefor both setups.  
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Figure 2.2 The results from both constant area squeeze flow setups at 0.1 mm/s are shown on a 
logarithmic scale in order to determine the relationship between the force and the gap. Lines with 
a slope of −2.5 are drawn to show how closely the data matches that slope regardless of which 

setup is used.  

 

 The results for squeeze flow experiments for three different Newtonian 

fluids using two different constant area experimental setups are shown in Figures 

2.1 and 2.2. Figure 2.1 shows how the force increases as the fluid is squeezed 

out. Figure 2.2 shows the relationship between the force and gap by plotting 

them on a logarithmic scale. The slope of the line reveals the power dependence. 

The data matches approximately the slope of −2.5 which is drawn in. For the 

silicon oil there is a slight deviation occurred initially, but still the slope remains 

approximately −2.5. 

Figure 2.1 shows that the squeezing force for the two different setups 

gave two distinctly different results. This confirms the importance of testing both 
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setups. Figure 2.1 also shows that the squeezing force for the second setup was 

greater for all three fluids. The thing to notice is that in Figure 2.2 despite these 

differences the slope remains approximately the same for both setups regardless 

of the end effects.  

Qualitatively the data in Figure 2.1 shows several trends are shown. For 

example the squeezing force increases as the fluid viscosity gets larger. Figure 

2.2 shows all the squeeze flow data show an approximate linear fit on the 

logarithmic scale with approximately the same slope or are roughly parallel.  

Quantitatively several points can be made from Figures 2.1 and 2.2 as 

well. First in Figure 2.2 the data has a slope close to −2.5. Even with extensive 

testing varying the speed did not give a significant variation in the slope. Also the 

effect of viscosity can be examined in Figure 2.1. The viscosity of S30000 is at 

least six times greater than that of silicon oil, Stefan‘s Law predicts that the 

squeezing force should be six times greater as well. A force of 1 N crosses the 

curve for silicon oil in the second setup at about 0.53 mm. Going up to S30000 in 

the second setup it should give a value of at least 6 N at the same gap, but 

instead falls below 5 N. All these tests were done at the same speed 0.10 mm/s, 

and so the effect of speed is not shown in Figures 2.1 and 2.2.  

In addition to using the constant area apparatuses this study included 

constant volume squeeze tests. Constant volume squeeze tests not only give an 

additional apparatus to compare with the constant area apparatuses, but 

constant volume tests give an entirely different kind of squeeze flow, that can be 

used to characterize the squeeze flow behavior of the liquids. For constant 
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volume the radius is now expanding, whereas in constant area the radius of the 

fluid in contact with the moving plate remained constant. The radius must 

therefore be replaced by the volume of the sample which remains constant. 

However, in order to maintain the same flow situation it must be assumed or 

required that the volume remains cylindrical in shape.  

 
Figure 2.3 The squeeze flow result of the constant volume setup shows the relationship between 

the force and the gap. A line with a slope of −4 is drawn to compare with the data. 

 

 Figure 2.3 shows the squeeze flow data for the constant volume 

apparatus, which can then be compared with Figure 2.2. Comparing Figures 2.2 

and 2.3, for constant volume the slope is closer to −4 which is greater than that 

for constant area which is −2.5. Qualitatively the trends exhibited in Figure 2.2 for 

increasing the viscosity and the fact that the curves form parallel lines are 

consistent in both plots.  
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 In order to assess the effect of gap speed on each setup more 

experiments were performed. The effect of gap speed goes beyond its effect on 

the squeeze force. The gap speed can cause any number of additional effects to 

distort the entire flow situation.  

 

Figure 2.4 Constant area squeeze flow results using Setup 2 were done at 3 different squeeze 
speeds — 0.10 mm/s, 0.05 mm/s and 0.01 mm/s. For 0.01 mm/s some of the measurements fell 
below the sensitivity of the instrument and were excluded.  

 

 For constant area squeeze flow Stefan‘s Law predicts that the force is 

directly proportional to the gap speed. Therefore assuming Stefan‘s equation 

holds, an experiment can be done for various gap speeds using the same 

experimental setup with the same fluid. If the force is then divided by the gap 

speed the data should overlap. Figure 2.4 shows that such an experimental 
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curve, and the data are shown to overlap. The divergence of the curves in this 

figure at smaller gaps can be attributed to the compliance of the instrument. The 

data in Figure 2.4 therefore matches the result predicted by Stefan‘s Law.  

 

 

Figure 2.5 Constant volume squeeze flow results done at 3 different speeds —0.10 mm/s, 0.05 
mm/s, 0.01 mm/s. Again for 0.01 mm/s some of the results fell off the sensitivity of the instrument 
and were excluded. Drawn on the figure are two lines for comparison of slopes −4 (dashed) and 
−5 (solid). 

 

 Figure 2.5 shows the results using the same material as Figure 2.4 except 

using a constant volume apparatus. The data nearly overlaps but not as well as 

that in Figure 2.4 or as obtained from the constant area apparatus. There are 

some similarities in the data, however worth consideration. First the slope 

decreases as the speed increases. The slopes for each speed show a similar 
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behavior. For example the data for 0.05 mm/s is always on top of the other two 

speeds. The curves for 0.01 mm/s have a slope that causes the curve to cross 

over 0.10 mm/s and then converge with 0.05 mm/s for all fluids. Finally 0.10 is 

usually the lowest curve. Looking very closely at Figure 2.4 these same 

observations could be made, but the data overlaps better and the slope doesn‘t 

change as much. This data suggests that the plate speed could have an effect on 

changing the slope.  

 

 

Figure 2.6 Constant Area Squeeze Results done at 0.10 mm/s showing the force divided by the 
viscosity. When the force is divided by the viscosity for different fluids squeezed at the same 
speed using the same apparatus, the data should overlap.  

 

 It has already been shown by looking at Figure 2.1 that for these 

experiments the squeezing force does not vary directly with the viscosity. In order 
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to examine the effect of viscosity further, Figure 2.6 shows a logarithmic plot of 

force divided by viscosity vs. gap. By dividing through by the viscosity according 

to Stefan‘s Law the data for the three fluids should overlap. Figure 2.6 shows that 

the S2000 and the Si Oil overlap, but the S30000 does not. Stefan‘s prediction 

for our experimental results overestimates the force for the high viscosity fluid. 

However, in previous work the apparent viscosity derived from Stefan‘s equation 

for high viscosity fluids has been shown to disagree with squeeze flow data as 

well. (Winther, Almdal et al. 1991) 

 

Figure 2.7 Squeeze flow results for constant volume setup showing how the force varies with the 
viscosity. Again the data should overlap. Also the data overlaps better for the constant area 

setup.  
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 Figure 2.7 shows the results for the same materials tested at the same 

speed for the constant volume setup. Both Figures 2.6 and 2.7 show that in both 

setups the high viscosity fluid deviates from the other two fluids. The overlap for 

the data for Si Oil and S2000 in Figure 2.6 is better than for Figure 2.7. In 

conclusion Figures 2.6 and 2.7 highlight the need for an explanation for the 

viscosity behavior. 

 Another possibility that has arisen and developed significantly recently is 

that of partial slip in squeeze flow. If slip is occurring it can change the slope from 

between −3 to −1 in constant area squeeze flow setups and −5 to −2 in constant 

volume setups. Thus it agrees with what was observed in Figures 2.2, 2.3 and 

2.4. However, the effect of viscosity on the slip parameter equation is also the 

same as Stefan‘s Law, so it could not be used to explain the effects seen for the 

viscosity. Below is the Laun-Rady Equation for partial slip for a Newtonian Fluid: 
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(Laun, Rady et al. 1999)          (2.7) 

The partial slip parameter  can range from 0 (no slip) to 0.5 (full slip).  
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Figure 2.8 Constant Area Squeeze Flow Data for S2000 shown to compare with Laun prediction. 
The plot shows both how the slope varies with the slip parameter delta and how the magnitude of 
the force is affected by slip. Even though it is possible to arrive at a value for the slip parameter 
that will account for the slope the magnitude of the force doesn‘t match for that slip parameter.  

 

 The result in Figure 2.8 shows that for the magnitude of the force no slip 

matches the data the best. This is the same as Stefan‘s equation. However for 

fitting the slope of the data the best match is given by a slip parameter very close 

to 0.495. Figure 2.9 shows the same estimates for Laun‘s equation alongside the 

data for the highest viscosity fluid tested S30000. This fluid actually matches 

Stefan‘s equation well initially then as the gap decreases the force deviates from 

that ideal. This suggests that as small gaps are approached deviations from the 

assumptions for Stefan‘s Law are increased. Comparing the Figures 2.8 and 2.9 

the effect of viscosity can quickly be seen as a result of the slopes of the two 

Constant Area

S2000 at 0.10 mm/s 

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Log Gap

L
o

g
 F

o
rc

e

Experiment

Laun (0)

Laun (0.1)

Laun (0.2)

Laun (0.3)

Laun (0.4)

Laun (0.45)

Laun (0.49)

Laun (0.495)

Laun (0.5)

=0 (Stefan's)

=0.1
=0.2

=0.3

=0.4

=0.45

=0.49

=0.495

Slope = -2.4

Slope = -3.0

Slope = -2.96

=0.50
Slope = -1.0



41 
 

curves. For S2000 notice that initially it is greater than the force predicted by the 

solid line (Stefan‘s Law), but then at smaller gaps it becomes less than the solid 

line. For S30000 it initially matches the solid line and fall below it at smaller gaps.  

 

Figure 2.9 Constant Area Squeeze Flow Data for S30000 shown to compare with Laun 
prediction. The plot shows both how the slope varies with the slip parameter delta and how the 
magnitude of the force is affected by slip. Even though it is possible to arrive at a value for the slip 
parameter that will account for the slope the magnitude of the force doesn‘t match for that slip 
parameter for S30000 either. 

  

  

Discussion 

 Prior to discussing how well the experiments matched the available 

squeeze flow theories it must be reemphasized that the purpose of this paper is 

to test the applicability of various squeeze flow theories using simple (Newtonian) 

fluids. Many of these theories are based upon assumptions that could possibly 
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not have held during our experiments. Any claims to be able to make 

suggestions about any theory requires a far more detailed analysis including 

much more theoretical analysis, simulation, flow visualization, and verification 

through experimentation as the minimum threshold.  

For constant area squeeze flow Figures 2.1 and 2.2 show the differences 

in the squeezing force between the two constant area setups due to effects at the 

edge of the plates. At the edge of the upper plate in the Setup 1 is air at 

atmospheric pressure. Because the setup used identical size plates, the fluid 

sample squeezes out and falls along the sides of the bottom plate. While this 

setup appears ideal in matching with squeeze flow theory and simulation, 

experimentally, effects such as fluid pouring and gravity can affect the force due 

to surface tension on the sample contained between the plates, which made an 

additional constant area setup desirable. For the second setup the same upper 

disc was used, but the lower disc was replaced by one with twice the diameter of 

the first. At the edge of the upper disc in the second setup was more fluid, so that 

as the fluid squeezes out it is pushed out, but did not pour down the sides of the 

bottom plate.  

Even though for constant area Force  gap−2.5 for both of the setups, the 

data in Figure 2.1 shows that the relationship between force and gap is different 

for each setup. The squeezing force is greater for Setup 2. In Setup 2 the upper 

plate not only has to squeeze the fluid out from between the plates, it must also 

force out the fluid sitting at the edge of the plate. Whereas for Setup 1 gravity 

removes the fluid that exits the plates, in Setup 2 the fluid must be forced out 

radially. Essentially this involves squeezing out more fluid  than is between the 

two plates surface area. Therefore the contribution of the exuded material to the 

squeezing force is analogous to a slight extension of the plate radius. The data 

shows in the log-log plot that while there is a difference between the two setups 

for the most part the curves line up parallel, which suggests the difference in end 

effects does not affect the force vs. gap−2.5 dependence. This agrees with the 

explanation given for a slight extension of the plate radius.  
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Figures 2.2 and 2.3 show the relationship between the force and the gap 

for each of the setups for all fluids tested. From these two figures, based on the 

linearity of the data, the relationship between the force and the gap in these 

squeeze flow experiments follows power law behavior, Force  gap a. Figure 2.2 

shows in the case of constant area squeeze flow a ≈ −2.5, and Figure 2.3 shows 

for constant volume a ≈ −4.  

Viscosity is one of the most important fluid parameters that can be 

identified from rheological testing. The dependence of the viscosity on the force 

predicted by Stefan‘s Law is therefore very relevant. In order to ascertain the 

effect of the viscosity on the force, the viscosities of the fluids had to be 

determined beforehand. Because they were ASTM standards the viscosities 

were listed on the containers, but in order to test the fluids their viscosities were 

verified experimentally as well. Because Stefan‘s Law predicts a direct 

relationship between the force and the viscosity, the data in Figures 2.6 and 2.7 

should fall directly on top of each other. For the highest viscosity standard 

however, Stefan‘s Law overestimates the force.   

In a previous study by Winther et. al (Winther, Almdal et al. 1991) showed 

that measurements for viscosity do not coincide with what was expected for the 

apparent viscosity for Stefan‘s equation. Furthermore the paper concludes that 

for high viscosity solutions the corrected viscosity determined by squeeze flow 

was shown to be lower than the steady-shear viscosity. This was even after 

including normal stress effects. This previous work supports the observations 

made for the high viscosity fluid for this study.  

 The relationship between gap speed and the force predicted by Stefan‘s 

Law matched the data. For the same fluid tested at different squeeze speeds the 

log-log plots showed an overlap, converging at around a gap of 0.5 mm. The 

exception was the high viscosity standard, which showed increasing divergence 

as the gap decreased.  
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 The slight divergence of the curves can be attributed to the compliance of 

the instrument. While the compliance of the instrument is accounted for in the 

measurements of the force, it is assumed that the speed is kept constant. As the 

forces become larger, due to compliance the speed actually decreased, causing 

the force to decrease as well.   

 The relationship between force and plate speed that was able to be 

predicted by Stefan‘s Law in the case of constant volume does not match the 

experimental data as well as for the constant area case. This is due to 

compliance of the instrument. As the sample area increased it increased the 

force causing a decrease in the gap speed.  

The relationship between the squeezing force and the gap is an essential 

component in all squeeze flow theories and equations. Stefan‘s Law is an 

equation developed from squeeze flow theory assuming no slip at the plate 

surface. The relationship between force and gap for Stefan‘s equation is force  

gap−3 for constant area setups and force  gap−5 for constant volume setups. 

Figures 2.2 and 2.3 show that the data deviate from this relationship in all the 

squeeze flow experiments. 

 In order to further explain and characterize the data other squeeze flow 

theories using different assumptions were tested against the squeeze flow data 

in this experiment. The two main objectives in looking at these other squeeze 

flow theories are to explain the difference in the slope for our data, and the 

viscosity behavior of our data. The theories examined were those that deal with 

Newtonian fluids, since all the fluids in this study were Newtonian. The Scott 

Equation is included, but only to address concerns that power law or shear 

thinning behavior, might be to blame for the lower slopes.  
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 The first assumption to address is that of inertial effects. Stefan‘s Law 

ignores inertial effects in the analysis, therefore it is possible that the inertial 

contribution to the squeeze force creates the effects that are seen on the slope. 

The equation that was developed for squeeze flow to include inertial effects is 

given below: 
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(Bird 1987)       (2.3) 

The first term is given by Stefan‘s Law, and the acceleration cancels out the last 

term with a constant squeeze speed apparatus in steady state. That only leaves 

the second term, which is just a fraction of the Reynold‘s Number for squeeze 

flow.  

 

Figure 2.10 Shows the second term for the inertial equation is negligible. This was calculated for 
the lowest possible viscosity and the highest speed used thus maximizing the term. Still the term 
remained insignificant. The term should be compared to the value of 1 in the equation.  
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Figure 2.10 shows the 2nd term at its highest value (minimum viscosity and 

maximum speed and gap) falls between 7e−6 and 2.3e−5. Comparing this to 1 

leads to the conclusion that the inertial contributions to the force are negligible 

and do not account for the experimental effects observed.  

 Another possible explanation is that the material is shear thinning. All 

fluids were tested both by manufacturer and within our lab and determined to be 

not only correct viscosity standards, but also Newtonian as well. However, 

Scott‘s Equation for squeezing flow of a power law fluid can quickly be broken 

down and examined to address this concern based on experimental evidence as 

well: 
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(Scott 1931)             (2.12) 

In the above equation m and n are power law parameters and v is the plate 

velocity. By plotting log (Fh) vs. log (v/h2) you get n as the slope and m can be 

calculated from the intercept.  
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Figure 2.11 Scott Analysis gives approximate slopes to the data. The Scott Equation does not 

apply to these fluids because they are Newtonian.  

 

 Figure 2.11 shows that one method of matching the slope is to use the 

Scott Equation and just assume that the fluids are shear thinning with whatever 

value of power law parameters match the equation. There are two problems with 

this approach, the first is that the fluids were experimentally determined to be 

Newtonian through standard viscosity measurements done at constant shear 

rates. The second arises from the need to confirm experimentally that the fluid 

can be constitutively described by the power law parameters beyond the single 

experiment and analysis.  

Even though using the Scott Equation allows for a slope of approximately 

−2.5 by adjusting the n value, and appears to provide an explanation of the 

slope; it must be matched with other experimental observations. First the Scott 

equation could be adjusted to match almost any slope within the limits of fluid 

behavior. For example if the slope had been −3.5 instead of −2.5 adjusting n to 
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1.25 would have given a correct adjustment to the slope, but may not have 

explained what was actually occurring. Finally the Scott equation combined with 

Figure 2.11 using the n-values and assuming power law squeeze flow fluid 

behavior for the three different fluids do not match the results shown in Figure 2.4 

where the squeeze speeds overlap. Figure 2.11 shows that n ≠ 1 and actually 

there are 2 different values for n. This suggests that the curves in Figure 2.4 

shouldn‘t be overlapping in any of the cases. Therefore shear thinning behavior 

is discounted as a potential explanation of this behavior, both from the above 

analysis and the experimental testing.  

Another equation referred to as perfect slip or full slip which is developed 

from squeeze flow theory assuming full slip or a frictionless plate surface, gives a 

relationship between force and gap as force  gap−1 for constant area and force 

 gap −2 for constant volume. In order to achieve full slip in squeeze flow 

rheometry usually requires the surfaces of the plates must be treated. Because 

our setup used unlubricated plates, Figures 2.2–2.3 show that the data deviates 

from this relationship for all three setups as well. Whereas Stefan‘s equation with 

no slip gives an exponent that is too high, perfect slip gives an exponent that is 

too low.  

The data falls in between the predictions of Stefan‘s Law at the upper limit 

and full slip at the lower limit. Because of this, an equation or relationship that 

utilizes partial slip would seem to be the best choice available. The Laun-Rady 

equation developed from squeeze flow theory gives a relationship for partial slip.  

 Looking at the model for partial slip at the surface developed by Laun et. 

al, the Rady-Laun expression for constant area is given as: 
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By adjusting the parameter delta a slope of −2.5 could be arrived at. For constant 

area R is a constant and the parameter delta could be adjusted to account for a 



49 
 

slope of −2.5. Because this expression is developed by assuming fluid behavior 

at the edge of the plate it does not easily extend to constant volume, like the 

other expressions were able to.  

 While the prediction for the above equation allows for a slope between −1 

and −3 by adjusting the parameter delta, looking at the prediction for the force 

reveals that no slip is actually the best approximation to the magnitude of the 

force. The figure for the constant area experiment shows the curve that gives a 

slope of −3 gives a better approximation then the slope of −2.5 for the above 

expression. Therefore slip in the manner that it is approximated by Laun‘s 

equation does not provide an reasonable explanation to the squeeze data that 

was collected.  

 It should be noted that while the above equation provides for the 

progression from no slip to full slip by varying the slip parameter delta, it is 

unable to describe a system where slip is evolving with time as was noted by 

Engmann. Such a situation is more realistic in applications, but at this time could 

not be determined to be a factor in dealing with our experimental data. 

 In conclusion while the data for squeeze flow of Newtonian fluids has been 

examined using different squeeze flow theories, some even including the effects 

of inertia and slip, the best approximations for out data continue to be those put 

forth by Stefan‘s Law. Notwithstanding Stefan‘s Law was unable to predict a lot 

of the trends that were observed in our data. The other squeeze flow theories 

showed greater deviation from our data then Stefan‘s Law did. However since 

only one partial slip model was examined in this study, it is still very likely that 

another partial slip model could used to be match the data.  
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Chapter 3 
  

Squeeze Flow of Zeolite Suspensions 
 

Introduction 

 Squeeze flows are found in industrial, automotive, food, biological, and 

engineering domains. Squeeze flow rheometry is often used as a straightforward 

tool to determine the flow properties of highly viscous liquids (Collomb, Chaari et 

al. 2004). When examining lower viscosity solutions and suspensions where 

particle-particle interactions can become more pronounced the technique 

becomes more complicated. Published reports on the squeezing flow of highly 

concentrated suspensions show that as the concentration of a suspension gets 

very large heterogeneities come into the flow profile and cause fluid behavior that 

is incongruous with most models.  

The rheology of suspensions of particles may differ from that of pure 

Newtonian liquids in at least three ways. First in suspensions it is possible to 

reach a concentration of the suspended (solid) phase that is so high that 

heterogeneous flow occurs. Heterogeneous flow is flow where more than one 

phase is present, in the case of a concentrated suspension the suspended phase 

would form aggregates of solid phase in the dispersion. Already mentioned 

above this case has yet to be dealt with quantitatively, although several quite 
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useful qualitative reports have been published on this(Collomb and Chaari et al. 

2005, Narumi et al. 2005, Sherwood 2002, Delhaye et al. 2000, Chaari et al. 

2003). Even more significant are the particle-particle interactions between 

suspended particles that occur in suspensions that don‘t exist in pure Newtonian 

liquids. Finally the effect that the concentration of particles have on macro-

phenomena such as viscosity becomes important as well. This paper examines 

experimentally the effects of some of these on the squeeze flow of zeolite 

suspensions and contrasts this with what is theoretically expected.   

 These experiments attempted to avoid the problems associated with 

heterogeneous flow by using low concentrations of suspensions. Even so the 

effects of particle-particle interactions and the effects that concentration had on 

the viscosity will be examined. The effects of particle-particle interactions (the 

ability of particles to form stable structures) were reduced in this experiment by 

using two relatively high viscosity fluids. Our experiments showed that these 

effects still could not be ignored in the analysis of the data.   

In order to assess squeeze flow behavior of the suspensions this paper 

utilizes two different experimental setups—constant volume and constant area 

squeeze flow. The dominant theory which will be examined in both of these 

cases is Stefan‘s Law which assumes no slip. The purpose of this study is to 

examine and explain the squeeze flow behavior of suspensions based on what is 

known about the rheology of these suspensions and squeeze flow techniques 

employing Stefan‘s Law as a guidepost.  
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Increasing the concentration has been shown to increase the viscosity of 

the suspension in many different studies including Einstein‘s relationship. 

Particularly that increasing the volume concentration of particles increases the 

viscosity of the suspension. These increases in viscosity were shown to only give 

a partial explanation of the experimental data.  

 In this paper first the squeeze flow data will be compared with what‘s 

predicted by the predominant theory (Stefan‘s Law). Then using the theory an 

assessment of the suspension viscosity in squeeze flow will be made. Finally the 

effect that the concentration of the zeolite suspension has on the relative 

viscosity will be examined based on the squeeze flow behavior.  

  



55 
 

Materials and Methods 

Apparatus 

This experiment utilized a Rheometrics RDS-II with parallel plates setup. For the 

constant area test parallel plates with diameter 2.5 cm were used. For constant 

volume squeeze test parallel plates with 5.0 cm were used. For the constant 

volume test a syringe was used to squeeze 0.5 mL of the suspension or oil 

between the plates. All tests were done at a constant squeeze speed of 0.10 

mm/s. Compliance of the instrument was included in all of the measurements. 

Below is a figure of the compliance 

 

Figure 3.1 Instrument Compliance 
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Materials 

The zeolite suspensions were prepared using aluminosilicate powder (SG 1.1 @ 

25° C) the density of which was measured and determined to be 1.96 g/cm3. This 

study examined both a high viscosity— 10,000 cSt (SG 1.30 @ 25° C) and a 

lower viscosity — 1,000 cSt (SG 1.28 @ 25° C) silicon oil. By weight 10,20 and 

30% suspensions were prepared with the high viscosity oil. Similarly by weight 

10, 20, 30 , and 40% solutions were prepared with the lower viscosity oil 

suspension.  
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Results 

 

Figure 3.2 Constant Volume Squeeze Flow of Aluminosilicates in 1,000 cs Silicon Oil. Log-log 
Chart of Force vs. Gap shows the effect of increasing the %wt concentration of the suspension on 
the force. The lines represent what would be predicted by Stefan‘s Law for a Newtonian fluid in 
constant volume (Slope =−5).  
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Figure 3.3 Constant Volume Squeeze Flow of Aluminosilicates in 10,000 cs Silicon Oil. Log-log 
Chart of Force vs. Gap shows the effect of increasing the %wt concentration of the suspension on 
the force. The line represents the average slope for the data.  
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Figure 3.4 Constant Area Squeeze Flow of Aluminosilicates in 1,000 cs Silicon Oil. Log-log Chart 
of Force vs. Gap shows the effect of increasing the %wt concentration of the suspension on the 
force. The line represents the average slope for the data.  
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Figure 3.5 Constant Area Squeeze Flow of Aluminosilicates in 10,000 cs Silicon Oil. Log-log 
Chart of Force vs. Gap shows the effect of increasing the %wt concentration of the suspension on 
the force. The line represents the average slope for the data. 
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and area respectively, while Figures 3.3 and 3.5 show the same test on the 

higher viscosity zeolite suspension.  

 The results for the constant volume squeeze tests are shown in Figures 

3.2 and 3.3. Both figures show that increasing the concentration of the 

suspension causes an increase in the force at a given gap as expected. For 

Figure 3.2 as the lower viscosity zeolite suspension‘s concentration is increased 

at 0.4 mm gap from 0% wt.to 10% wt. to 20% wt. to 30% wt. to 40% wt. the force 

goes from 0.51 N to 0.61 N to 0.93 N to 1.91 N to 4.47 N respectively. Likewise 

as the high viscosity zeolite suspension is increased in concentration from 0% to 

10% to 20% to 30% at 0.4 mm gap the force is increased from 3.45 N to 3.85 N 

to 4.78 N to 6.29 N. As the concentration is increased in the log-log chart the 

force increases by shifting the curves up for both high and low viscosity 

suspensions. 

 The results also show that the slopes in Figure 3.2 and 3.3 actually don‘t 

match the force vs. gap relationship predicted by Stefan‘s Law for constant 

volume. This predicts a slope of −5. This relationship requires an assumption that 

the liquid sample volume remain cylindrical between the plates. Figure 3.2 shows 

the lower viscosity zeolite suspension with a slope that varies between    −5 and 

−4. The slope actually decreases as the concentration increases. It drops from 

approximately −4.5 at 0% wt to about −4 for 40% wt. While it might be assumed 

that particle particle effects due to increasing concentration, actually the larger 

concentrations match more closely with the higher viscosity results. Examining 

Figure 3.3 for the high viscosity zeolite suspension the slope stays approximately 
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at −4. Recall that for high viscosity oil suspensions the particle-particle effects 

become smaller.  

 The results for the constant area squeeze tests are shown in Figures 3.4 

and 3.5. Unlike constant volume, constant area doesn‘t require any assumptions 

to be made about the sample volume, but effects at the edges of the plates can 

affect the measurements. For this setup the increase in concentration of the 

suspension again resulted in an increase in the force. But the forces were 

smaller than those reported for the constant volume. For the low viscosity zeolite 

suspension increasing the concentration from 0% wt to 10% wt to 20% wt to 30% 

wt to 40% wt at a gap of 0.40 mm led to increases in the force of 0.22 N to 0.28 

N to 0.42 N to 0.70 N. Similarly for the high viscosity zeolite suspension 

increasing the concentration from 0% wt to 10% wt to 20%wt to 30% wt. at a gap 

of 0.40 mm led to an increase in force from 1.57 N to 1.89 N to 2.25 N to 3.57 N 

respectively. Likewise with constant area testing the observation that the 

increase in concentration causes an increase in force can be seen in the shifting 

of the data up on the force axis as concentration increases.    

 

Relative Viscosity 

 The relative viscosity or the viscosity ratio is the ratio of the viscosity of the 

dispersion to the viscosity of the pure dispersion oil or carrier fluid. By utilizing 

Stefan‘s relationship the squeeze data can be quickly manipulated to arrive at the 
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relative viscosity for the suspensions. This can be done by taking the ratio of the 

squeezing force at the same gap.  
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For each test the plate radius (R), the plate speed (ĥ), and the gap (h) is kept the 

same then to get the relative viscosity of the viscosity ratio divide by the Force for 

the dispersion by the force for the pure oil.  
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 By plotting the ratio of the forces vs the gap the relative viscosity of the 

suspension can be determined. Because the relative viscosity of the sample 

doesn‘t change for a Newtonian suspension the data for each suspension should 

all fit on a single line. Additionally the viscosity should be independent of the test 

being used so both tests should give data very close to each other.  
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Figure 3.6 The Force Ratio of the dispersion (10,000 cs) is shown, by plotting the force ratio 
against the gap . The two lines represent the relative viscosity of the dispersions determined 
experimentally by shear. 
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between two plates at a set gap and the samples were sheared instead of 

compressed and the viscosity was recorded. These values are given in the figure 

for comparison by the solid lines. The 10% dispersion concentration in shear 

matched with that taken using the squeeze flow data. For the 30% concentration 

the range between the constant area and the constant volume tests was so large 

as to be inconclusive as to the exact relative viscosity measurement. However, 

the measured shear viscosity did fall between the two determined relative 

viscosities.  

 

Figure 3.7 The force ratio of the dispersion (1,000 cs) is shown by plotting the force ratio against 

the gap.  
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 Figure 3.7 shows the relative viscosity of the dispersion using the low 

viscosity carrier fluid. Again it is shown that at lower concentrations the data for 

constant area and constant volume fall on top of each other and the data from 

the two tests tend to agree. For the lower viscosity suspension an even higher 

concentration (40%) dispersion was able to be tested. For the viscosity ratio the 

data did not fall on a horizontal line, and the determined relative viscosity varied 

between the two tests by as much as 2.   

Effect of Concentration on Viscosity 

 Taking the data from Figures 3.6 and 3.7, an average relative viscosity 

could be determined for each dispersion with each test. Those results are 

tabulated in Table 1.  
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Conc. 

 % Wt  

(%Vol) 

Dispersin

g Oil (cs) 

Relative 

Viscosity 

(Constant 

Area) 

Relative 

Viscosity 

(Constant 

Volume) 

10 (5.1) 10,000 1.19 ± 0.022 1.13 ± 0.011  

10 (5.1) 1,000 1.26 ± 0.050 1.24 ± 0.083 

20 (10.2) 10,000 1.45 ± 0.038 1.39 ± 0.024 

20 (10.2) 1,000 1.93 ± 0.067 2.29 ± 0.193 

30 (15.3) 10,000 2.39 ± 0.111 1.86 ± 0.085 

30 (15.3) 1,000 3.24 ± 0.175 4.75 ± 0.868 

40 (20.4) 1,000 8.43 ± 0.665 10.79 ± 1.58 

 

Table 3.1 The Average Relative Viscosity for Each Dispersion. 

 

 Using this data the concentration vs. viscosity curve could be determined 

to show how the relative viscosity varies with concentration as determined in 

squeeze flow. While the data may not be as precise as that determined in shear, 

by examining the relative viscosity vs. concentration and comparing it to different 
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relationships from theory certain effects could be observed that are unique to 

squeeze flow. 

 

Figure 3.8 The average relative viscosity vs. concentration for (10,000 cs) suspension. It also 
shows the two theoretical relationships Einstein, and Maron and Pierce (Kitano, Kitaoko). for 
comparison.  
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This equation is only applicable within a vanishingly small range of solids 

concentrations. In addition the very useful empirical expression first developed by 

Maron and Pierce and later carefully evaluated by Kitano, Kataoka and their 

coworkers was also compared with the viscosity concentration data. This 

relationship is: 
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Aspect Ratio Value of A 

1.0 0.68 (for smooth spheres) 

to 0.44 (for rough crystals) 

6 to 8 0.44 

18 0.32 

23 0.26 

27 0.18 

 

Table 3.2 Values for the empirical parameter A 

 

Using this expression and the table above the value of A can be varied 

depending on the kind of particles are in the suspension. For zeolites in a 
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suspension Einstein‘s approximation for dilute suspensions of noninteracting 

hard spheres isn‘t going to be the best formula. Figure 3.9 shows a picture of a 

zeolite. It is doubtful looking at Figure 3.9 that even the empirical equation for 

smooth spheres will can be applied. The data is Figure 3.8 shows that the actual 

behavior falls between the smooth spheres and the rough crystals using the 

empirical equation.  

  

Figure 3.9 Picture of Zeolite 
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Figure 3.10 The average relative viscosity vs. concentration for (1,000 cs) the suspension. It also 
shows the two theoretical relationships Einstein, and Maron and Pierce (Kitano, Kitaoko). for 
comparison. 
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Discussion 

 Although the squeeze flow data does not exactly match Stefan‘s Law, 

Figures 3.3–3.5 do reflect a consistent power-law relationship, and Figure 3.2 is 

only slightly inconsistent in the slope of the data. The results show in Figures 3.4 

and 3.5 that instead of the predicted slope of −3 the slope actually is −2.5, and 

for Figures 3.2 and 3.3 instead of a slope of −5 the slope is actually 

approximately −4. This difference between the model and the suspensions can‘t 

be attributed to particle effects, because even the particle-free fluids show the 

same behavior. While slip or partial slip at the surface gives a plausible 

explanation for a reduction in the slope, comparing the pure fluids to partial and 

full slip models reveals that ―no slip‖— Stefan‘s Law — gives the best 

approximation for the forces generated. Therefore, while the data do not exactly 

fit Stefan‘s relationship for the slope, Stefan‘s relationship is the closest 

approximation of all models looked at for this study.  

 Since Stefan‘s model gave the best approximation for the pure Newtonian 

fluids, it can reasonably be assumed that Stefan‘s model can be used as a 

starting point to analyze the differences between the particle free fluids and the 

suspensions. By qualitatively examining Figures 3.2–3.5, every test shows that 

increasing the concentration of particles in the suspension increases the 

squeezing force. The greater the concentration of particles added to the pure 

fluid the greater the force is. The only fluid parameter in Stefan‘s Law is the 

viscosity. Therefore the increase in the force according to Stefan‘s relationship is 

due to an increase in the viscosity. The viscosity dependence on concentration 
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agrees with this conclusion. Therefore the explanation for the increase in the 

force as the concentration goes up in the suspension is due to an increase in the 

viscosity.  This is not to conclude that it is only due to an increase in viscosity in 

all instances. But in this regime where homogenous flow dominates and particle-

particle interactions are assumed at a minimum it is reasonable.  

Relative Viscosity 

 Coming to the conclusion that the viscosity is the key parameter Stefan‘s 

Law can quickly be manipulated to arrive at an relative viscosity for the 

dispersions which is shown in Figures 3.6 and 3.7. Several assumptions were 

made to arrive at the relative viscosity. Therefore an additional test using a 

parallel plate rheometer shear test to determine the viscosity was done on the 

high viscosity sample in order to verify this method. The reason the high viscosity 

suspension was tested was to minimize particle-particle effects which can‘t be 

handled by Stefan‘s Law. Since the shear tested viscosity agreed with the results 

it was assumed the method worked.  

 Had the suspension been shear thinning it was not enough to look at 

Figures 3.6 and 3.7 and assume that since the viscosity didn‘t go down at higher 

shear rates (smaller gaps) that the suspension was Newtonian. Since the 

viscosity being determined is not absolute, but relative the fact that the relative 

viscosity didn‘t drop at higher shear rates only reveals that the non Newtonian 

behavior (power law exponent) was similar for both the suspension and pure 

silicon oil. This can further be demonstrated by looking at the Scott Equation 

(Scott 1931).  
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 For high viscosity oil suspensions the viscous forces tend to dominate the 

particle-particle interactions. Therefore Figure 3.6 will more closely approximate 

the ideal conditions described by Stefan‘s Law. The small differences in the 

relative viscosity measurements can be attributed to systematic errors in 

measurement. For the low viscosity sample it is necessary to go back to Figure 

3.2 to explain the data. The slope changes for the low viscosity test by about 0.4 

for the 30% and 0.3 for 40%. The effects on the other samples are minimal. This 

results in an unequal method as shown below. 
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This must be corrected for these two values and adjusting the chart by dividing 

by ha. Below is the corrected data.  
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Figure 3.11 Figure showing corrections for suspensions 

 

 While this in one way corrects the data it doesn‘t explain the difference 

between the 30% and 40% constant volume and constant area measurements. 

This effect can be explained by particle-particle interactions. Up to this point it 

has been assumed that the only effects the particles had on the fluid was to 

increase the suspension viscosity. The zeolites agglomerating and forming 

particle structures in the fluid was not examined. At higher concentrations of 

particles with thinner fluids these effects become more significant (Metzner 

1985).  

1,000 cs Si Oil

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Gap (mm)

F
o

rc
e
 D

is
p

e
rs

io
n

 (
N

)/
 F

o
rc

e
 P

u
re

 O
il
 (

N
)

10% CA

10% CV

20% CA

20% CV

30% CA

30% CV

40% CA

40% CV



76 
 

 The agglomeration of particles have a greater effect in squeeze flow for 

constant volume measurements in that the particles are not spread over the plate 

surface area. The concentration of particles remains the same for both tests, but 

the geometry of the constant volume test gives a greater height to surface area 

ratio. Taking this into account the fact that constant volume results in greater 

relative forces can be understood.  

 Looking back however, the high viscosity oil suspension in Figure 3.6 at 

30% wt concentration has a constant area force ratio that is greater then the 

constant volume force ratio. The same above explanation can be used. For low 

viscosity suspensions the agglomerates of particles significantly increase the 

squeezing force, because the viscous forces are lower. For high viscosity fluids 

the particles that agglomerate do not significantly increase the squeezing force, 

because the viscous forces dominate. The agglomeration of particles reduces the 

concentration of particles in the bulk of solution. Therefore when phase 

separation occurs in a high viscosity suspension during squeeze flow the 

viscosity is reduced, which reduces the dominant viscous forces thereby 

reducing the overall squeezing force. Therefore in a high viscosity suspension 

the relative viscosity for constant area would be greater and for a low viscosity 

suspension the relative viscosity for constant volume would be greater.  

Effect of Viscosity on Concentration 

 Having arrived at how particle-particle effects combine with the effects of 

suspension viscosity, the effect that particle concentration has on the relative 

viscosity of a suspension can be examined. Although there are numerous 
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theories that exist in looking at the effect of concentration on viscosity, only 

Einstein‘s relationship and an empirical equation derived by Kitano and Kataoko 

will be looked at (Kitano et al. 1981). Einstein‘s relationship is one of the simplest 

that exists for dispersions, and the empirical relationship derived by Kitano and 

Kataoko using the Maron-Pierce equation (Maron and Pierce 1956) has been 

shown to be one of the most broad useable relationships covering several 

different effects in suspensions(Metzner 1985, Cross 1975) 

 Einstein‘s correlation for a suspension of noninteracting hard spheres is 

given in Figure 3.8. In the figure it only matches at the lowest concentration and 

this agrees with other suggestions that his equation is only useful at very small 

volume fractions. The empirical equation requires an empirical constant A. For A 

= 0.68 which corresponds to spherical particles it gives a slight improvement 

above Einstein‘s equation. The equation doesn‘t agree with the expression 

because zeolites as shown in Figure 3.9 are not represented well by spheres in 

solution. When the empirical constant is set to 0.44 the curve agrees with the 

data at the highest concentration using constant area. This suggests not only that 

the suspension is better matched by a rough crystal than by the non interacting 

spheres, but further validates the relative viscosity calculations for squeeze flow.  

 The plot of the low viscosity sample is shown in Figure 3.10. This figure 

demonstrates that similar to the high viscosity suspension the spherical models 

don‘t work. However, the rough crystal model matches only at low values, but at 

higher values the relative viscosity values are much greater. This is due again to 

particle-particle interactions creating a larger overall force. Even the high aspect 
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ratio of 18 doesn‘t account for the increases in relative viscosity. Particle-particle 

interactions therefore offer the best explanation here.  

Conclusions 

 

 From the results of the zeolite suspension squeeze flow investigation, it 

can be concluded that suspension concentration has at least two effects on the 

squeezing force. The suspension concentration increases the suspension 

viscosity in squeeze flow resulting in an increase in the squeeze force. Also the 

increasing the suspension concentration increases the likelihood that phase 

separation will occur, and in the case of the zeolites studied that phase 

separation will result in a particle-particle interactions that create a greater 

squeezing force for lower viscosity fluids, but a decrease in the squeezing force 

for high viscosity fluids.  

 The investigation reveals also the effects of the carrier fluid viscosity on 

the sample. The effect that the oil has on dependence of the concentration on the 

squeezing force in this test showed that this effect increased with increasing 

concentration. At low concentrations the suspension for high and low viscosity 

oils were very close to the same relative viscosities, but as the concentration 

increased the effect that the concentration had on viscosity for both oils diverged. 

The higher viscosity oils minimize particle-particle interactions for the zeolites in 

the suspension. The lower viscosity oils produced suspensions more prone to 

particle-structural effects.  
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 Finally the investigation revealed that both effects of viscosity and 

concentration in a suspension for squeeze flow need to be examined not just in 

isolation, but synergistically. This is not just because of phase separation, but 

due to the nature of squeeze flow, which is transient and is strongly affected by 

small changes in the bulk of the material.    
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Chapter 4 

 

Squeeze Flow of Electrorheological Fluids Under Constant 
Volume 

 

 
Introduction 
 

Compression studies of electrorheological fluids have been impeded by the 

―sealing effect‖ (Ahn et al. 2000, Monkman 1995, Vieira et al. 2001, Filisko and 

Meng 2005). Using a constant area parallel plate apparatus this sealing effect is 

responsible for squeezing out an unknown quantity of particles from between the 

plates while the rest are held between the plates because of the electric field. 

Previous studies by Ahn, Chu and Lee have dealt with this problem by assuming 

that all particles remain in between the plates (Ahn et al. 2000). This is an 

approximation that gets worse as the viscosity of the fluid is increased. 

 The present study avoids these restrictions by using a constant volume 

apparatus. In a constant volume apparatus, instead of knowing that the area of 

the plate in contact with the fluid is constant throughout the test, instead the area 

of the plates in contact with the fluid is changing throughout the test, but the 

volume of the fluid contained in between the plates remains constant throughout 

the tests. The experiment and equation developed for this type of squeeze flow 

was done by Diennes and Klemm (Diennes and Klemm 1946)  
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By using a constant volume apparatus for conducting this experiment the 

concentration of particles that stay in between the plates is known throughout the 

experiment. Because there is already a model for homogeneous Newtonian 

fluids in constant volume squeeze flow, the results for compression of a 

electrorheological fluid could be compared with this model and an analysis of 

both the effects of the ER fluid composition on squeeze flow and the effects of 

geometry and squeeze speed could be made. This study is concerned with the 

effects of the concentration of particles in the dispersion.  

Materials and Methods 

Apparatus 

                                           
 

Figure 4.1 Experimental Apparatus and Setup 

 

A Weissenberg rheometer with an added step motor-leadscrew loading 

system and an LVDT displacement sensor was used to make the measurements. 

For each test a syringe was used to measure a constant volume of 0.5 mL of ER 

fluid which was placed between the plates.Before compression, a DC voltage 

was imposed on the sample and was kept constant in the whole period of 
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compression. A PC and a laptop computer were used to record the output of the 

load cell and the displacement sensor.  

 

Materials Preparation 

The electrorheological fluids were prepared using dried aluminosilicate powder 

(SG 1.1 @ 25 C) in silicon oil. This study examined both a high viscosity —

1,000 cSt (SG 1.27 @ 25C) and a low viscosity — 10 cSt (SG 0.963 @ 25C) 

silicon oil. By weight 10, 20, 30, and 40% solutions were prepared by weighing 

the aluminosilicates out and adding the silicon oil dropwise into vials. The 

solutions were immediately mixed and capped.   

 

Results 

Figure 4.2 shows how the compression force develops during compression of 

the ER fluids containing the low viscosity silicon oil without an electric field. The 

compression force shows that the fluid squeezes down until there is a monolayer 

of particles where the force increases at the very end. There isn‘t a large 

difference in the way the squeeze force increases as the concentration is 

increased for the ER fluid containing the low viscosity silicon oil.  

Figure 4.3 shows that the compression force in squeeze flow when an electric 

field (E= 1,000 V) is applied. Because of the ER effect, the electric field causes 

an increase in the compression force for all the concentrations. The 

electrorheological effect is greater for larger concentrations. For example at a 
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gap separation of 0.1 mm the force generated by 10% and 40% ER fluid is 

around 0–3 N without an electric field. When the electric field is applied at 0.1 

mm the force is 200 N for 10% and >>450 N for the 40% ER fluid.  

 

 

 

Figure 4.2.  Force vs. Gap Chart using constant volume to show the effect of concentration of 

particles in low viscosity fluid with no electric field 

 

 

Figure 4.3.  Force vs. Gap Chart using constant volume to show the effect of concentration of 
particles in low viscosity fluid under 1.0 kV electric field.  
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 Figure 4.4, like Figure 4.2, shows how the compression force develops 

during compression of the ER fluids without an electric field, except this ER fluid 

contains the high viscosity silicon oil. Even though these fluids are much thicker 

and the forces generated by thicker fluids are larger even without an electric field, 

the curves still fall almost on top of each other with the exception of the most 

concentrated suspension 40% wt. Because this suspension had the largest 

concentration of particles, it is believed that compaction of those particles caused 

the deviation.   

Figure 4.5 shows the compression force for the ER fluid with the high 

viscosity silicon oil under an electric field (E=1,000 V). Again the electric field 

causes an increase in the compression force for all the concentrations. The 

electrorheological effect is greater for larger concentrations. If a gap separation 

of 0.3 mm is taken for Figures 4.4 and 4.5, for 10% and 40% ER fluid the force 

generated at that gap is around 5–10 N. Under an electric field the force 

generated at 0.3 mm is 15 N at 10% and 200 N at 40%. 
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Figure 4.4.  Force vs. Gap Chart using constant volume to show the effect of concentration of 

particles in high viscosity fluid with no electric field.  

 

 

Figure 4.5.  Force vs. Gap Chart using constant volume to show the effect of concentration of 

particles in high viscosity fluid with 1.0 kV.  
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line with a slope of −5. The diagonal line on the graph has a slope of −5. The 

data shows a dependence greater than −5. Figure 4.7 is a similar plot for the ER 

fluid containing the high viscosity silicon oil under an electric field. Again the 

slopes of the data curves are greater than −5.    

  
Figure 4.6.  A log-log chart of Force vs. Gap for the low viscosity ER fluid at different 
concentrations of particles. The line represents the slope that would be predicted by Stefan‘s law 
for a constant volume Newtonian fluid.  

 

Figure 4.7.  A log-log chart of Force vs. Gap for the high viscosity ER fluid at different 
concentrations of particles. The line represents the slope that would be predicted by Stefan‘s law 
for a constant volume Newtonian fluid.  
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Discussion 

Figures 4.2–4.7 show that the effect of particle concentration on the force is 

greater under an electric field than without one. This was true for both the high 

and the low viscosity fluids. Because this experiment was done using a constant 

volume setup where the concentration of particles between the plates was known 

throughout the test this suggests that the concentration of particles are a strong 

factor in the compressive forces generated by an ER fluid. While this result was 

implied in similar studies done using a constant area setup this is the first 

experiment where the concentration of particles is known and the experimental 

setup is unaffected by the ―sealing effect‖   

Comparing Figures 4.3 and 4.5 the effect of the continuous phase of the ER 

fluid can also be better understood. In previous studies the effect of the 

concentration was unable to be isolated. In fact the concentration was not even 

able to be accurately determined once the particles started squeezing beyond 

the plates. Therefore any attempt to assess the effect of the continuous phase by 

such studies would have been contaminated by the inability to pin down the 

effects of the changing concentration of the ER fluid. 

One observation was made for the compression experiments about the 

viscosity of the continuous phase under an electric field. It was observed that in 

fluids containing low viscosity oils, only pure oil is exuded radially during 

compression. Whereas for fluids containing high viscosity oils the powder 

particles and oil were exuded radially during the compression.  
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The effect of the viscosity is best illustrated in plots 4.5 and 4.6 where the 

dependence of the force on the gap is shown in a log-log plot. Using the 

extension of Stefan‘s law for constant volume for a log-log plot of force vs. gap it 

should give a linear plot with a slope of −5. Looking at both Figures 4.6 and 4.7 

the data for the ER fluids containing both the high and low viscosity oils gave 

slopes that were larger then −5. The ER fluid containing the high viscosity oil had 

a slope closer to −5 than the ER fluid containing the low viscosity. First this 

shows that ER fluids do not exhibit behavior described by the ideal models for 

squeeze flow. More importantly this suggests that the behavior deviates from the 

ideal model for squeeze flow systematically based on the viscosity of the 

dispersing oil. This has been found to be the case with other fluid systems as 

well (Collomb et al. 2004).  

One description as stated in the observation made in the previous paragraph 

is that this can be the result of particles staying in the center of the fluid for the 

low viscosity sample. The high viscosity oil sample as noted above would push 

both particles and oil together resembling a homogeneous flow situation which is 

closer to the ideal case where the slope is equal to five for constant volume. In 

the low viscosity case the oil could be spreading out between the plates while the 

particle structures stayed close to the center, which would deviate from the ideal 

flow case. This description is supported by both observations for the fluid 

squeezing out from the plates in previous studies, as well as observations of the 

particles staying in the center after the plates were separated.  
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Chapter 5 
 

Structuring Related To Peclet Number in  
Electrorheological Squeeze Flow 

 

Introduction 

 While the separation of particles from dispersing oil under an electric field 

for ER fluids has been well documented in the literature, a thorough investigation 

on the impact of filtration on electrorheological squeeze flow has yet to be 

completed (Monkman 1995, Chu et al. 2000, Vieira et al. 2001, Meng and Filisko 

2005, Lynch, Filisko and Meng  2006). One hindrance to such an investigation is 

that the concentration of particles between the plates changes due to the fluid 

being squeezed out from between the plates during compression. Previous work 

showed that by using a constant volume ER squeeze flow approach that one can 

account for the  effects of concentration (McIntyre and Filisko 2007). However an 

additional complication arises due to the aggregation of particles under the 

electric field. This paper uses this approach to examine the effects of both 

squeezing speed and viscosity on filtration that occurs in ER squeeze flow. 

Furthermore because the Peclet number (Pe) has been speculated to measure 

filtration effects in ER squeeze flow (Lynch, Filisko and Meng 2006) this study 

examined how filtration and the Pe number can be related to electrorheological 

compression behavior.  
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One qualitative observation often made in compression studies of ER 

fluids with low viscosity oils (<100 mPa s) is that during compression the electric 

field holds most of the powder between the plates and the dispersing phase 

(clear oil) is squeezed out (Vieira et al. 2001, Meng and Filisko 2005, Lynch, 

Filisko, and Meng 2006). This is a function of the electric field and the 

compression rate, but at high enough fields and low compression rates, only 

clear oil is observed to exude from the plates.  An approximation made in one 

article assumed that all the powder always stays in between the plates during the 

squeeze test, while the liquid squeezed out is 100% dispersing phase (clear oil) 

(Chu et al. 2000).This approximation is not adhered to strictly as the viscosity of 

the fluid or the squeeze rate is increased or as the electric field is decreased.  

This highlights the need for a better understanding of filtration in 

electrorheological squeeze flow.  

 An earlier study used Darcy‘s law to show that filtration (solid-liquid 

separation) in squeeze flow of a concentrated suspension with a Newtonian fluid 

and shear thinning fluid can actually be related to the dimensionless parameter 

Pe — the Peclet Number (Collomb et al. 2004). This parameter has previously 

been used in other studies to provide an explanation of ER squeeze flow (Lynch, 

Filisko and Meng 2006). This parameter gives a ratio of viscous or convective 

forces to diffusive terms.  

The Peclet number is defined as (Collomb et al. 2004) : 

Ak

hU
Pe

mm

w

11 




                  (5.1) 
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μw= Suspending Fluid Viscosity 

U = squeeze velocity; dh/dt 

h = gap size 

k = Darcy‘s Permeability  

A = consistency for power law fluid, pre-exponential mA   

m = shear thinning index for power law fluid 

 

The importance of this definition is that a decreasing Peclet number reflects an 

increasing filtration rate. The two obvious methods to enhance filtration are to 

greatly decrease the squeezing speed and to decrease the viscosity of the 

suspending fluid. Increasing the electric field will also increase the strength of the 

particle structures and affect the results as well.  

 

Since fluid filtration is a diffusive phenomenon and suspension 

deformation is an convective one, this dimensionless parameter gives a good 

measure of the influence of filtration effects on squeeze flow. Another way of 

looking at this is that under an electric field the separation that occurs is actually 

a function of both the viscosity of the oil and the compression speed. This study 

explores this observation on ER fluids where this separation is known to occur.  

 In the end this study accomplished two things. First to document for the 

first time using a constant volume squeezing apparatus for electrorheological 

fluids that at low viscosities separation (filtration) occurs. The compression 

behavior of the ER fluid was further shown to be a strong function of the 
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squeezing speed for low viscosity fluids. The higher viscosity fluids where 

separation either didn‘t occur or was much less so, were shown to have a 

different dependence on the squeezing speed. The effect of changing the 

viscosity of the oil on the compression behavior was shown to be similar at both 

high and low squeezing speeds.  

Materials and Methods 

 

Apparatus 

 

 A modified Weissenberg rheometer with a step motor added to drive the 

leadscrew loading system, an LVDT displacement sensor to record the gap and 

a 400 N Entron quartz transducer added to the upper plate was used to make the 

measurements. In some instances the capacity of the transducer was pushed to 

1200 N. For each test a syringe was used to measure a constant volume of 0.5 

mL of ER fluid which was placed between the plates. Before compression, a DC 

voltage was imposed on the sample and was kept constant during the whole 

period of compression. Therefore the field between the plates increased as the 

gap decreased. A PC and a laptop computer were used to record the output of 

the load cell and the displacement sensor. 

 



96 
 

Materials 

The electrorheological suspensions were prepared using aluminosilicate powder 

(SG 1.1 @ 25° C). Silicon oils were used with the following viscosities 1,000 cSt 

(SG 1.28 @ 25° C),40 cSt, 0.65 cSt (SG 0.765@ 25 C), 10 cSt , and 10,000 cSt. 

By weight 30% suspensions were prepared with the all of the oils. The solutions 

were immediately mixed and capped.    

Results 

 

Figure 5.1 Squeeze flow data for ER Fluid using low viscosity oil under 1.0 kV Voltage. The data 
was taken at very low squeezing speeds in order to observe the effects of filtration flow (phase 
separation) 
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Figure 5.2 Squeeze flow data on log scale for ER Fluid using 40 cs oil under 1.0 kV Voltage.  

 

 Figure 5.1 shows compression data for an ER fluid using a constant 

volume setup to account for concentration and a low viscosity suspending oil. 

Notice that there is a trend showing the effect of squeezing speed on the ER 

squeeze flow behavior in this case. Under these conditions the slower gap 

speeds actually produce larger forces at similar gaps. This is the opposite of 

what is expected in squeeze flow. While it appears that there is a jump between 

0.0077 mm/s and 0.0193 mm/s, the speed is actually increased by a larger factor 

of 2.5 in this case. From this figure there is shown to be an effect of the 

squeezing speed on the electrorhelogical squeeze flow behavior even at the very 

slow speeds.  
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 Figure 5.2 shows similar data on a log scale. Notice that decreasing the 

speed not only increases the force at the same gaps as was shown in Figure 5.1, 

but even the slopes in the log plot become greater as the speed decreases. This 

further suggests the importance of speed in the compression behavior of ER 

fluids under an electric field.  

 

Figure 5.3 Squeeze flow data for 1000 cs viscosity oil ER Fluid under 1.0 kV Voltage. 
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suspension. Even though the effect of squeezing speed is not apparent from 

examining Figure 5.3, the electrorheological effect is still evident in Figure 5.3 for 

the higher viscosity suspending oil ER fluid. 

 In order to examine visually the separation that was occurring in Figures 

5.1 and 5.2, a constant area test was done. This was done by examining the fluid 

squeezing out from between the plates. Figure 5.4 (A,B,C) shows that filtration 

rate is significant for the 40 cs ER fluid under an electric field. Likewise the Figure 

5.4 (D, E, F) shows that the filtration rate was not as significant for the 1,000 cs 

ER fluid under an electric field.  For both of these tests the squeezing speed was 

reduced to the slowest speed tested-0.0024 mm/s. For the 40 cs solution clear oil 

is seen to be squeeze out Figure 5.4 (B, C). Contrast this with what is shown for 

the high viscosity fluid where white suspension of powder and oil are squeezed 

out together under an electric field Figure 5.4 (E, F).  
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Figure 5.4 Shows 40 cs and 1000 cs ER Sample Compression Under 1.0 kV Voltage (A) 40 cs 
ER Sample on plate before squeezing (B) during squeezing and (C) after squeezing. (D) Shows 
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1,000 cs ER Sample before squeezing, (E) during squeezing and (F) after squeezing — 
squeezing was done at 0.0024 mm/s.  

 

  

 

Figure 5.5 shows the comparison of the two fluids at the slowest 

squeezing speed. Using this figure the effect of the viscosity of the oil can be 

seen. The shape of the curve actually changes as the viscosity of the dispersing 

oil changes. Notice the 40 cs ER fluid eventually supports a greater force than 

the 1,000 cs fluid. This figure shows by comparing these two fluids that at higher 

loads a lower viscosity suspending oil supports more force at a given gap, 

implying that the particle structures are more intact and structurally stronger than 

for the 1,000 cs fluid. 

Figure 5.5 also reveals the squeezing behavior of the two ER fluids. The 

1,000 cs higher viscosity suspending oil ER fluid supports more of the load at a 

larger gap. From about 0.8 mm down the 1,000 cs ER fluid rises gradually but 

more rapidly than the 40 cs ER fluid. The 40 cs ER fluid doesn‘t begin to rise until 

the gap is about 0.4 mm, then it rises very rapidly ultimately crossing over the 

1,000 cs data at about 0.3 mm gap and continues to rise more rapidly upon 

continued compression.  
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Figure 5.5 Compares the squeeze flow behavior for two ER Fluids under 1.0 kV Voltage at 

0.0024 mm/s squeezing speed.  

 

Figure 5.5 only compared two fluids and they were compared under 

conditions which would not be reasonable in practice — extremely slow squeeze 

speeds. So to test these conclusions an additional experiment was done with 

more ER fluids using different viscosity suspending oils at reasonable speeds. 

Figure 5.6 shows data for several different viscosity oils in electrorheological 

squeeze flow. Notice that 10 cs and 0.65 cs approximately overlap. But the curve 

consistently shows that as the viscosity of the oil increases the force increases at 

larger gaps, but at the same time as the viscosity of the oil is increased the 

steepness of the curve decreases. This relationship is seen in a log-log plot 

(Figure 5.7). 
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Figure 5.7 also reveals that for the highest viscosity suspending oil ER 

fluids the curve behaves like an ideal squeeze flow situation with a slope of −5. 

Stefan‘s Law for squeeze flow of a homogenous Newtonian fluid predicts Force 

 gap−5. As the viscosity is decreased the curve behaves more and more like an 

ideal close packed powder with a vertical ascent or a slope of infinity—assuming 

failure doesn‘t occur. These two figures show that the previous results on the 

effects of the viscosity from Figure 5.4 are similar at the higher and more 

practical squeeze speeds.  

 

Figure 5.6 Five ER Fluids with different viscosity suspending oils tested at squeezing speed of 
0.0193 mm/s  
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Figure 5.7 Log-log plot showing five ER fluids with five different viscosity suspending oils at 
0.0193 mm/s. The figure also shows the predicted behavior for constant volume squeeze flow 
and close packed powder behavior.   

 

Discussion 
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electric field. There are regions where the filtration rate is significant, which 
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oil (10,000 cs) complete homogeneity isn‘t observed, because the 

electrorheological effect in compression shows the particle structures are still 

present creating a composite or heterogenous situation. 

 In the case of the low viscosity fluid (40 cs) compressed at different 

speeds, the data shows that the force increases as the squeezing speed 

decreases. This is not normal for homogeneous squeeze flow situations where 

the force normally is shown to increase with increasing squeezing speeds 

(Collomb et al. 2004, McIntyre and Filisko 2007) . Previously in the case of 

concentrated spheres in a fluid this was shown to be an effect of filtration (solid-

liquid motion). In an electrorheological fluid, though, solid-liquid motion is 

continuously occurring due to formation and reformation of particle structures 

from the imposed electric field. It is therefore necessary to clarify what is meant 

by ―filtration‖ in this regime.  

 In compression of electrorheological fluids under an electric field there are 

at least three different kinds of solid-liquid motion occurring, which need to be 

specified since filtration can occur with any of these. First there is the initial 

formation and reformation of the particle structures or columns due to the electric 

field. These structures form very quickly in low viscosity liquid after the field is 

turned on and continue to evolve to lamellae throughout the squeezing or 

shearing of fluid. In this case, the particles move through the liquid to form 

structures due to the imposed electric field. The destruction or the breaking up of 

the particle structures by the dispersing oil squeezing against them is another 

kind of solid-liquid motion. Here the particle structures are stationary or fixed and 
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the liquid is either squeezing past the structures or the liquid is busting the 

structures apart if the viscous forces are strong enough. Finally the diffusive flow 

that occurs in all concentrated suspensions previously reported for concentrated 

suspensions is also occurring for particles that did not form structures or came 

from structures that had been broken and not reformed in the ER fluid.  

 While dealing with these three phenomena occurring at once can seem 

overwhelming in terms of an overall quantitative model, many qualitative models 

have been put forth to describe this behavior.  The unique solid-liquid motion in 

terms of the compressive behavior under an electric field is that which relates to 

the particle structures. The effects of both the strength and building of these 

particle structures in ER fluids in squeeze flow has been well documented. The 

importance of filtration and the Peclet number is that for low Pe the structures are 

more stable.  Low Pe flows allow for ER fluid compression behavior to be 

observed where the particle structures are compressed and broaden but don‘t 

break whereas the oil is squeezed out, in other words where the structures are 

strongest,   

 Examining Figure 5.1 again shows that for the low viscosity oil squeezed 

at very slow speeds shows the trend that as the squeezing speed decreases the 

force increases. This agrees with data for concentrated suspensions, where at 

very slow speeds close packing occurs in the center. However, the speeds used 

in the present study are much lower than those used previously. It could be 

argued for Figure 5.1 that the particle structures when broken up were pushed 
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radially outward resulting in structures further from the center in each case as the 

speed increased resulting in smaller forces.  

 However, for this very low viscosity fluid with extremely slow squeezing 

speeds the viscous forces on the structures would be minimal. Another possibility 

is that as the plate compresses the columns of particles, the columns become 

shorter but thicker as some particles break away and reform on the structure. 

These re-formed structures are actually stronger than the original. Now the 

squeezing process is actually continuous it doesn‘t stop or slow down, the 

reforming of the structures while very fast is not instantaneous. So if the 

structures are not being broken up by the fluid the lower squeezing speeds will 

produce stronger structures all other conditions being equal. 

 For the higher viscosity oil no clear trend emerges for the force as a 

function of the squeezing speed. In this case the viscous forces are not only 

disrupting the particle structures, but also are disrupting the reformation of the 

particle structures. The net result is that due to the complexity of the ER squeeze 

flow situation the effect of speed could not be determined for the high Pe 

Number.  

 Comparing the high and low viscosity oils at the slowest squeezing speed 

where the viscous forces are minimized shows that viscosity of the dispersing oil 

has a strong effect on the behavior of the fluid. (Figure 5.5) This has been 

observed previously, but not at very slow speeds where the contribution of the 

dispersing oil due to squeezing to the force was minimal. For the high viscosity 
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oil, where the Pe Number is greater and the dispersing oil contribution to the 

force is greater, the force builds up more gradually. It can be presumed that this 

initial buildup is due to the fluid and not the particle structures. Once the 

structures are strong enough they take over the load. For the low Pe number flow 

the force doesn‘t build up gradually but once the particle structures are strong 

enough they take the load and quickly surpass the forces of the high viscosity oil 

ER fluids.  

 Figure 5.5 not only shows the differences of the effect of viscosity of the oil 

on squeeze flow, but reveals the overall impact of filtration on ER squeeze flow 

behavior. Here the amount of particles between the plates is the same and the 

speed is the same for both fluids, but the difference shown is between a case 

where filtration is definitely occurring and one where filtration recedes to the 

edges of the fluid. Looking at the upper limit where the data shows that the 

structures generate the highest forces where filtration is the strongest. Thus 

filtration is shown to contribute to the ER squeeze flow effect.   

In order to validate that this didn‘t only occur at very slow speeds another 

experiment was done at a much higher speed with three other oils. Figure 5.6 

shows that the effect of decreasing the viscosity is consistent with Figure 5.4 

across all three oils. Figure 5.7 furthermore shows the effect of viscosity on 

filtration is consistent with the earlier effects on the compressive behavior of ER 

fluids under electric fields.  
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 The effect of increasing the viscosity of the dispersing oil at higher speeds 

would be to cause both particles and fluid to be pushed out radially in a situation 

resembling but not the same as homogenous flow. Here filtration was decreased 

as can be seen by the significant increase in Pe. While this explanation was 

rejected in the case for lower speeds in favor of filtration, at these higher speeds 

this explanation still holds. This explanation matches observations made in 

previous studies( Lynch, Filisko, and Meng 2006, McIntyre and Filisko 2007) 

Interestingly though in this study unlike in others on viscosity the curves reach 

approximately the same point, but at different rates as is shown in Figure 5.6. 

This is believed to be a result of having the same amount of particles between 

the plates for every test, which was known due to the fact that the constant 

volume apparatus was used, and therefore is a consequence of eliminating the 

―sealing effect‖. Furthermore these studies suggest that the point at which this 

occurs would be determined by concentration of the particles and possibly by 

squeeze speed, but not viscosity. (McIntyre and Filisko 2007) 
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Chapter 6 
 

Magnetorheological Fluids in Squeeze  
Mode at Low Concentrations 

 

Introduction 
 

 The compressive behavior of magnetorheological (MR) fluids has been 

studied extensively both for industrial applications such as in dampers and as a 

mechanism for strengthening the materials by increasing their yield stress (Tang 

et al. 2001, Tang et al. 2000, Vieira 2003). The overall thrust in these studies was 

either towards higher yield stresses or the utilization of a commercial MR fluid 

that already had a high yield stress (Klingenberg 2005). Almost all studies 

conducted on MR fluids in squeeze mode either used 30% vol. concentrated 

suspensions, usually only testing a single concentration, or used a commercially 

available MR fluid. The scientific aim of this paper is to examine MR fluids in 

squeeze mode by looking at effects of concentration, viscosity of suspending oil, 

and magnetic field. This paper first presents the effects of changing the 

concentration of particles in MR fluids in squeeze mode. Then the effects of 

magnetic field and viscosity of suspending oil are investigated in a low 

concentration MR fluid. The low concentration MR fluid is used for the purposes 

of investigation because in very concentrated suspensions the MR effect in 
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compression is much stronger, possibly making other effects of the suspension 

more difficult to observe.  

  Magnetorheological fluids, a suspension consisting of magnetic particles 

in a carrier fluid, are able to show a dramatic increase in their apparent viscosity 

and the appearance of a yield stress with the application of a magnetic field. For 

industrial applications it has been demonstrated that MR fluids require a very 

high yield stress, which has been accomplished by using 30% by volume 

suspensions of MR fluids. Recent efforts have shown that for MR fluids 

bidisperse suspensions with particles of two different sizes actually increases the 

yield strength of the fluid and decreases the off-state viscosity, which leads to a 

greater increase in the shear stress when the field is applied.  Most recent 

studies have shown that using microwires instead of spherical iron carbonyl 

particles gave a great increase in the yield stress and reduces settling at the 

same time (Bell 2008).  Problems of settling in MR fluids have hindered their use 

as well. Often to solve this thixotropic agents are typically added to MR fluid 

which cause the viscosities of the suspending oils in MR fluids to remain very 

high. While in most studies involving MR Devices these two observations of 

requiring a highly concentrated suspension to allow for a high yield stress and 

avoiding settling through using high viscosity solutions have both been used to 

help optimize MR studies toward industrial applications, knowledge of the overall 

effects in compression for MR fluids would contribute towards researching these 

fundamental problems as well.  
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 Looking at compressive behavior of MR fluids this paper examines the 

effect of concentration in mineral oil — a relatively low viscosity suspending oil. 

The concentration of the particles in MR fluids in squeeze mode affects the gap 

between the plates at which the force sharply increases. This paper then goes on 

to examine the effects of the magnetic field and the viscosity of the carrier fluid 

for a low concentration of MR particles—where the structures while still present, 

have a less significant effect. For the low concentration MR fluids the shape of 

the compressive curves is shown to be a strong function of both the magnetic 

field and the viscosity of the suspending fluid. It is proposed that this is because 

of the filtration flow occurring at very low viscosities of oils, whereas a situation 

more closely resembling homogenous flow occurs for higher viscosity oils.  

Materials and Methods 
  

Apparatus 

 

A Weissenberg rheometer with an added step motor leadscrew loading system 

and an LVDT displacement sensor was used to make the measurements. Two 

different plates were used in this test. In testing the effect of concentration two 50 

mm plates were used with an electromagnet. For all other tests 25 mm plates 

were used with iron cylinders attached to the sides in order to increase the 

magnetic field strength. Figure 6.1 below displays the setup for all the other 

compression tests that were done with the Weissenberg.  
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Figure 6.1 Experimental Setup #2 

 

   

Materials Preparation 

The MR fluids were prepared using iron carbonyl powder from BASF (density 

7.18 g/cc @ 25 C) in both mineral oil (density 0.85 g/cc) and silicon oil—10,000 

cSt, 1,000 cSt, 40 cSt, and 10 cSt. Small amounts of fumed silica (~⅛ Teaspoon) 

were added to samples (~10 mL) in order to prevent settling.  

Experimental Procedure 

All compression tests were done on the Weissenberg rheometer. The 

magnet was connected to a power supply and the fluid was placed on the bottom 

plate to cover the entire plate. Then the upper plate was lowered to an initial gap 
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of 1.0 mm. The plates were brought together at a constant speed of 1.27 

mm/min.  

Initially to measure the effects of concentration 50, 70, and 80% wt 

carbonyl iron suspensions were prepared, corresponding to approximately 10, 

20, and 30% vol. For each measurement a new sample was placed between the 

plates. Enough sample was placed to cover the entire area of the upper plate.   

For the low concentration MR fluid with different viscosity oils each was 

prepared and thoroughly mixed with an ultrasonic mixer immediately before 

being placed between the plates as settling could have become an issue with the 

very low viscosity fluids (e.g. 10 cSt).  
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Results 

 

Figure 6.2 Graph showing the compression behavior for three different concentrations of 
magnetorheological fluid with and without magnetic fields.  

 

 Figure 6.2 shows compression behavior for three different concentrations 

of magnetorheological fluids both with and without a magnetic field. The 

magnetorheological effect can be seen in the presence of the magnetic field, 

because all of the fluids gave an increased force at a greater gap under a 

magnetic field. The effect of concentration in Figure 6.2 shows that as the 

concentration increased the force at a given gap increases. For example at a gap 

of 0.7 mm the compressive force for a 10% volume concentration is close to 30 

N, but the force increases to 80 N and to 200 N for 20% and 30% volume 

concentrations.   
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 Figure 6.3 shows the effect of the magnetic field on the compression 

behavior of a 5 % vol. MR fluid. Even at low concentrations the magnitude of the 

magnetic field has a strong effect on the compressive behavior of the 

magnetorheological fluids. Increasing the magnetic field also increases the force 

at a given gap in compression. This figure shows that the rate at which the force 

changes with respect to the gap depends on the magnetic field. However at large 

forces the data converge, which is something that did not occur in Figure 6.2.    

 

Figure 6.3 Graph showing the effect of the magnetic field on a magnetorheological fluid that has a 
relatively low concentration of powder.  

  

 The effects of the concentration and magnetic fields were shown to be 

very important in Figures 6.2 and 6.3. Figure 6.4 shows a magnetorheological 
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suspending oils without a magnetic field. The two lowest oil viscosity solutions 

gave greater values at larger gaps than the high viscosity suspending oils without 

a magnetic field. This could be due to a wetting of the plate surface by these low 

viscosity fluids causing the particles to pile up.  

 Figure 6.5 shows the results of these magnetorheological fluids using four 

different viscosity suspending oils under a magnetic field. The 

magnetorheological effect of these solutions can be seen by comparing Figures 

6.4 and 6.5. The effect of the viscosity can also be seen. The greater the 

viscosity of the oil the sooner or the larger the gap when the force began to rise. 

The exception to this was the 39 cSt oil.  At the same time the forces of the lower 

viscosity suspending oils eclipsed those of the higher viscosity suspending oils at 

small gaps.  

Also shown in Figure 6.5 are two lines where pure iron carbonyl powder 

was placed between the plates and compressed for comparison. The powder 

compression changed gave higher forces at larger gaps for the field turned on 

than it did without the field.  

Figure 6.6 shows a log-log plot of the data for the four different viscosity 

oils and for the compressed powder. The rate of increase in the force is shown to 

increase with a decrease in the suspending oil viscosity. While the plots are not 

linear the linear portions of the plots reveal this to be the case.  
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Figure 6.4 Graph showing the effect of the viscosity of the suspending oil has on the 

compression behavior of the magnetorheological fluid without a magnetic field.  
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Figure 6.5 Graph showing the effect of the viscosity of the suspending oil has on the 
compression behavior of the magnetorheological fluid under a magnetic field.  
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Figure 6.6 Log Plot showing the relationship between viscosity and the relationship between the 
force and the gap.   

Discussion 

 The behavior of magnetorheological fluids in compression can be best 

understood by examining the complete picture, rather than examining each 

component — concentration, viscosity, magnetic field — in isolation. By gaining 

an overall understanding of the mechanical behavior of MR fluids the solutions 

for the problems facing this smart technology will become clear.   
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revealed by the greater forces at a given gap. The concentration also affects the 

difference between the gap for given force with no field and the gap for a given 

force with the magnetic field turned on. For example in Figure 6.2 at 10% 

concentration by volume for 100 N the difference between 0.11 mm with no field 

and 0.49 mm with the magnetic field gives a difference of 0.38 mm for a field vs. 

without a field. Using the same procedure at 100 N gives a difference of 0.50 mm 

and 0.54 for 20% and 30% respectively. 

It has previously been shown that under a magnetic field in compression 

the MR particles form column-shaped structures. It has also been shown that the 

thickness of these structures increases as the concentration of particles 

increases to a limit. The data in Figure 6.2 suggest that small increases in the 

thickness of these column-shaped structures results in much larger contributions 

to the force than the viscosity increases caused by these increased 

concentrations.   

 Examining a low concentration suspension where the structures are not as 

thick, Figure 6.2 shows that the magnetic field still has a significant effect on the 

overall compressive behavior of the MR suspension. Even small changes have a 

noticeable effect. While this would be expected in a concentrated MR suspension 

this reveals even at very small concentrations the MR particles have a significant 

effect in compression behavior and not just with small gaps. While the fluid in this 

case mineral oil had a relatively low viscosity, the data in Figure 6.3 shows that 

the strength of the structures formed in the MR fluid depends on the magnetic 

field.  
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 While the structures are therefore very important in understanding the 

mechanical behavior of MR fluids in compression, the contribution of the carrier 

fluid must also be examined to gain a more complete understanding of the MR 

fluid. Figures 6.4 and 6.5 reveal the effect of the viscosity of the suspending oil 

on the MR fluid. The effect of increasing the viscosity of the suspending oil is 

seen to increase the force at larger gaps for all the MR fluids.  

Increasing the suspending oil viscosity causes a decrease in the rate at 

which the force rises under a magnetic field. This is further seen in Figure 6.6. It 

is possible that what is being seen in Figure 6.6 is similar to the sealing effect in 

ER. While no observations have been made in MR where the fluid squeezes out 

and the powder stays between the plates, in ER the electric field significantly 

drops off outside of the two plates, for the magnetic field this is not the case.  

 Using this explanation the MR suspension would act more like a 

homogenous flow exhibiting convective flow in the case of large viscosity oils or 

Pe numbers. Likewise it would exhibit filtration flow at very low viscosities. This is 

a possible explanation of the behavior in Figure 6.6. It should still be pointed out 

that other factors play a role in the compressive behavior as well, which can be 

seen from the shape of the curves.   
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