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ABSTRACT 
 

 

 

Improving furnace efficiency is a high priority need for steel, aluminum, glass and other 

metal casting industries. Consequently, there has been a great deal of research for 

developing efficient burners for furnaces motivated by pollutant prevention and global 

warming concerns. This work attempts to address these needs. It is different from the 

previous attempts because it considers the furnace as a system rather than furnace and 

burners separately.  Fuel and air are injected separately as turbulent jets and mixed, 

heated and diluted inside the furnace. Thus, the flame pattern and emissions depend on 

the jet interaction and mixing in multiple turbulent jet flames. This study is divided into 

two parts: The first part presents an experimental and numerical investigation into mixing 

characteristics and the resulting concentration fields in unconfined, non-reacting multiple 

turbulent jets. An experimental study [1] is performed to investigate the effects of the 

separation distance and momentum ratio on jet interaction and mixing in multiple jets. 

The experimental results [1] are compared with predictions using a modified version of a 

LES code called the Fire Dynamics Simulator (FDS) developed by NIST.  

In the second part, a laboratory-scale furnace is constructed to test the reacting turbulent 

jet concept and experiments are conducted to find parameters that increase combustion 

efficiency and reduce pollutant emissions. Intense flue gas recirculation with buoyancy 

stabilized mixing is employed to reduce the flame temperatures and thus thermal NO. 
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Local temperature, gas composition distributions and UV emission intensities are 

measured and analyzed for various oxidizer jet momentums, oxygen enrichments, and 

overall equivalence ratios. FDS is again used to simulate these buoyant confined reacting 

jets which are relevant for furnaces, and the computational results are compared with the 

experimental measurements to validate a code that can be used for designing furnaces.  

The computational results were found to be in good agreement with the measurements.    

Numerical investigations show that the large scale recirculation is well established for 

higher momentum of the oxidizer jet. This is very helpful in obtaining the homogeneous 

combustion condition. The oxidizer jet momentum plays a very important role in mixing 

and achieving the homogeneous combustion condition.  It was also found that the 

temporal UV emission is uniform with low intensity under homogeneous combustion 

conditions. 
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CHAPTER 1 
 

Introduction 
 

 

1.1. Background 

Improving thermal efficiency is the highest priority need for furnaces used in industries 

such as aluminum, glass, steel and other metal casting. However, there is a conflict 

between high thermal efficiency and low pollutant emission. The resolution of these 

incompatible demands has been the goal of many research projects. Therefore, a great 

deal of activity has been conducted in developing efficient burners for furnaces motivated 

by pollutant prevention and global warming concerns.  

It has been long recognized that significant energy savings in industrial furnaces can be 

accomplished by either recycling heat or reducing the flue gas volume (reducing the 

nitrogen concentration by oxygen enrichment) or combining both of them. In the heat 

recycling method, combustion air is preheated by recovering heat from the exhaust gases 

and transported back into the furnace using recuperators or regenerators [2]. However, 

the immediate drawback of these processes is an increase in the combustion temperature, 

leading to high NOx emission [3, 4]. In order to reduce NOx emission, innovative NOx 

reducing techniques have been developed and adopted in industrial applications. These 

are: exhaust gas recirculation, water and/or steam injection, air and fuel staging, and pure 

oxygen combustion. 

Among these methods, Internal Exhaust Gas Recirculation (IEGR) has been found to be 

most effective technique in controlling NOx emissions [5]. Combining exhaust gas 

recirculation and above mentioned methods has led to the development of new 

combustion technologies. They are Flameless Oxidation (FLOX), High Temperature Air 

Combustion (HiTAC), and Moderate and Intense Low oxygen Dilution (MILD) which is 

being actively developed in Europe and Japan [6-8]. These technologies exhibit superior 
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combustion characteristics in terms of high energy efficiency, uniform heat flux 

distributions and low NOx emissions. Thus, these technologies enable overcoming the 

limitations of conventional combustion and achieve maximum energy savings and 

minimize pollutant emissions.  

 

1.2. Literature Review 

1.2.1. Principle  

The different names of the above mentioned technologies originates from emphasizing 

the characteristic for each combustion phenomena, invisible flame, high preheating of air 

and low oxygen concentration. However, the concept of heat and exhaust gas 

recirculation is common to these technologies. Based on this work we find that the 

essential conditions for achieving the flameless oxidation are direct and separate injection 

of fuel and oxidizer with high momentum, producing intense recirculation of hot product 

gases, either internally or externally. These conditions strongly suppress early ignition 

and temperature hot spots of that are present in conventional burner flames. In addition, 

high preheating of combustion air, above the auto ignition temperature, along with 

excessive dilution by exhaust gases is able to make reaction possible even with very low 

oxygen concentration atmospheres and ensures a stable flame. The principal consequence 

of these conditions is that the temperature rise due to reactions is minimal everywhere 

resulting in a relatively uniform temperature field. The elimination of peak temperatures 

reduces thermal NOx production. The avoidance of temperature peaks also suppresses the 

emission in the visible spectrum if the flame is not sooty, hence the ‘flameless’ 

appellation [8]. 

Notable characteristics of the flameless oxidation are very wide flame stability limits, no 

flame color, and uniform thermal field. Many researchers have investigated the 

characteristics of flameless oxidation using experimental and numerical techniques. 

These aspects of the flameless oxidation will be briefly discussed below. 

 

1.2.2. Flame Stability and Characteristics 

Wünning and Wünning [8] reported that flame stabilization was enhanced through the 

high recirculation of the combustion products (>1000°C), and the flame can then no 
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longer be seen [9, 10], and combustion is distributed throughout the volume of the 

combustion chamber. Hasegawa and Gupta [11] investigated on the thermal and chemical 

characteristics of high temperature air combustion (HiTAC) using liquefied petroleum 

gas (LPG) as the fuel. The authors concluded that the flame stability limits and thermal 

field uniformity in the combustion zone were much wider under high-temperature air 

combustion conditions than conventional combustion. The uniformity of temperature in 

the furnace was found to be far greater with extremely low oxygen concentration 

combustion air preheated to 1000 ℃ as compared to that obtained with room temperature 

air or that found in conventional fames. Gupta [12] noted the flame stability limits 

increase significantly at high air preheats and even with low oxygen concentration air. 

Under high temperature air combustion conditions the flame stability are infinite. The 

results also suggested that it is possible to use exhaust gases from a furnace as oxidant 

since these gases often contain several percent of oxygen. Lille et al. [13] observed the 

addition of nitrogen to methane and the increase of fuel jet inlet velocity gives a less 

visible flame, decreases flame luminosity, and increases lift-off distance. The author also 

noted that reduced oxygen concentration in the flue gases increases the flame size, lift-off 

distance and decreases luminosity and visibility. The author reported the flame becomes 

bluish first and then non-visible at oxygen concentration in the oxidizer below 15%. The 

flame volume was found to increase with increase in air preheat temperature and decrease 

in O2 concentration in the combustion air. 

The majority of researchers believe that higher momentum of the fuel jet ensures higher 

scalar of dissipation closer to the jet exit [6, 8, 10], which suppresses the flame ignition in 

this region and ensures mixing of the fuel with vitiated air before it reacts. This is an 

essential criterion for flameless oxidation combustion to occur. 

Many researchers have also investigated the ignition delay in the lift-off flame with 

preheated combustion air. Kishimoto et al. [14] reported a large ignition delay of natural 

gas flames as well as lift-off flame due to combustion air dilution with nitrogen. The 

authors also measured the reduction of the flame lift-off height with higher temperature 

of preheated air. Bolz and Gupta [15] also noted a decrease of the flame standoff distance 

(ignition delay) from the nozzle exit with an increase in the air preheat temperature and 

observed that the ignition delay was smaller for methane than for propane flames. 
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Fujimori et al. [16] observed in methane flames that the lift-off height changed with the 

air temperature and the fuel mass fraction of the jet. In their work, two types of lifted 

flames (near-lifted and far-lifted flames) were observed. As the fuel was diluted by 

nitrogen, a rapid decrease of the NOx emission level by the far-lifted flame occurred in 

the high temperature oxidizer flow. Plessing et al. [7] found that the momentum of the 

fuel jet has a large effect on the distance of the reaction location above the jet exit. 

 

1.2.3. NOx emission 

The methods to reduce NOx emission are based on schemes to reduce either peak flame 

temperature or the residence time and oxygen concentration in high temperature zones 

[17, 18]. The flameless oxidation mode allows a large reduction of NOx emissions by 

avoiding peaks of operating temperature and by reducing the concentration of oxygen 

through high internal recirculation. This high internal recirculation leads to a significant 

dilution of the air by the combustion products before the reaction. The local volumetric 

concentration of O2 can achieve values of between 3 and 15%. 

In conventional burner and furnace systems, such pre-heating of the air leads to very high 

local temperatures in the flame, and therefore high NOx emissions. The temperature 

profile induced by a flameless combustion is relatively flat. The emissions of nitrogen 

oxides strongly influenced by the local temperature in the flame are thus greatly reduced 

and the homogeneity of the temperature in the enclosure is improved. As a result of the 

reduction of temperature peaks in the flame, the mean temperature level of the furnace 

zone can be increased, without leading to local hot spots in the vicinity of the burners. 

The heat transfer to the product can thus be considerably increased. In addition, the noise 

level induced by the combustion is greatly reduced [6, 8]. 

Gupta [12] observed very low NOx emission under high temperature and low oxygen 

concentration combustion conditions. The experimental results showed NOx emission at 

air preheat temperature of 1150°C decreased from 2800 ppm at 21% O2 to 40 ppm at 2% 

O2. The emission of CO and UHC was negligible (below the detection limits). Hasegawa 

and Gupta [11] reported emission of NOx and CO was much lower with combustion air 

preheated to high temperatures with low oxygen through lowered operating flame 

temperatures.  
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The main reason for this excellent result stems from the well known circumstance, that 

thermal NO formation is extremely sensitive to flame temperature peaks or spikes and 

these are now cut away in flameless firing. But also the other known NO formation 

mechanisms are positively modified, as prompt NO depends on radicals (that are 

abundant in a flame front, but much reduced in flameless mode [7] and also fuel NO may 

undergo reburning effects capable of reconverting NO into N2 species [19, 20]. Plessing 

et al. [7] observed instantaneous measurements of temperature and OH concentration 

along with NOx emission from recuperative furnace. They found a threefold drop in the 

total NOx emission under the flameless oxidation mode in comparison with standard 

flames and homogeneous distribution of OH in the burnt side of the flame. Dally et al. 

[21] noted that dilution of the fuel stream with inert gases can help achieve moderate and 

intense low oxygen combustion and reduced NOx emission. 

 

1.2.4. Heat Flux Distribution 

A large volume reaction zone recognized by a moderate temperature rise with low 

luminosity is a typical feature of highly preheated air combustion that is definitely 

different from ordinary combustion burning with luminous flames. Nevertheless, heating 

furnaces run by highly preheated air show efficient heating ability.  

Gupta [12] concluded that high heat flux in HiTAC flames is due to high velocity of the 

air in the test section, which increases the convective heat flux. In addition the radiative 

heat flux is higher due to enhanced radiation heat flux from the furnace walls resulting 

from uniform heating. It can, therefore, be concluded that the heat flux from HiTAC 

flames is much higher and uniform. This can be translated to uniform heating of the 

material to be heated and reduced energy requirement. Lallemant et al. [22] showed that 

the percentage of the total heat release radiated by the flame exceeds the range of 10- 

15% quoted for radiative heat transfer in non-luminous conventional flames of natural 

gas. Awosope and Lockwood [23] noted that radiative losses from the reaction zone are 

larger than for conventional flames due to the large recirculation ratio of high emissivity 

product gases. The authors also reported that enhance thermal radiation is essential to 

reduce the NOx emission in flameless oxidation application.  
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The uniformity in temperature distribution allows raising the mean furnace chamber 

temperature, and this leads to an improvement of heat transfer and high energy savings 

[2]. 

 

1.2.5. Homogeneous Combustion 

Atreya et al. (2004) proposed a novel solution for efficient energy saving in industrial 

furnaces. The authors combined both concepts of recapturing wasted flue gas enthalpy to 

preheat the combustion air and reducing the total amount of exhaust by using oxygen-

enriched air. Clearly, reducing or eliminating the exhaust of hot N2 by using oxygen-

enriched air will significantly increase the energy utilization efficiency. However, it will 

also create significant temperature non-uniformities (or hot spots) and increase NO 

production if nitrogen is present without uniform burning in reaction zones and energy 

transfer via radiation.  

This concept is diametrically opposite to the flameless oxidation concept. In the flameless 

oxidation concept, high regenerative preheating (above the auto ignition temperature) of 

combustion air along with excessive dilution by exhaust gas recirculation is utilized to 

enable burning in a very low oxygen concentration atmosphere. However, both these 

concepts can be profitably combined to yield additional advantages under the conditions 

that uniform burning is accomplished in distributed reaction zones and flame 

temperatures are reduced by intense flame radiation, thus energy is transferred at a very 

high rate from these reaction zones via radiation. Since radiation is the primary mode of 

heat transfer in the furnace, intense and spatially uniformly radiating reaction zones are 

desirable. Thus, oxygen enriched conditions can be beneficial as long as they are 

accompanied by significant flue gas dilution and high flame radiation. 

 

1.3. Turbulent jet mixing 

Multiple turbulent jet configurations are widely employed in many industrial applications 

such as a furnace, diesel engine and aircraft propulsion system. In most industrial 

furnaces, fuel and oxidant are injected with high momentum through a nozzle, orifice and 

diffuser. As a result, the flame pattern and emissions strongly depend on the jet 

interaction and mixing under this configuration. Therefore, it is very important to 
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understand the mutual interaction of multiple jets from the practical point of view. The 

essential conditions for achieving homogeneous combustion mode are direct and separate 

injection of fuel and oxidant with high momentum, and the high recirculation of hot 

exhaust products. Another important condition is that the fuel and oxidant should be 

sufficiently diluted by the surrounding fluid before they react. Thus, the analysis of the 

interaction, mixing and dilution patterns between the separate jet flows is essential for 

understanding the homogeneous combustion process.  

Although numerous works on a single turbulent jet are available in literature, very little 

investigations have been conducted on the flow structure and passive scalar transport of 

multiple jets due to the complicated characteristics of the multiple turbulent jets. 

Krothapalli et al. [24] investigated the detailed structure of the flow field with an array of 

rectangular lobes. Raghunathan and Reid [25] showed that a multiple jet configuration 

with five nozzles have an advantage in terms of noise reduction without significant 

momentum reduction of the jet. Mostafa et al. [26] performed the experimental and 

numerical studies on three rectangular turbulent jets. In this work, the authors confirmed 

that there is a strong mutual entrainment and turbulent transport between jets. Theoretical 

approaches to parallel rectangular multiple jets were conducted by Chuang et al. with a 

kinetic theory of turbulence [27] and Wang et al. with the thin layer theory [28]. 

Experimental studies on twin round interacting jets were performed by Becker and Booth 

[29], Moustofa [30], and Okamoto et al. [31]. 

The co-flowing plane jets with different velocity and momentum ratio have been studied 

by Grandmaison et al. [32]. The effect of the nozzle spacing on jet interaction was 

studied by Wlezien et al. [33]. Manohar et al. [34] presented the experimental and 

numerical results of the interaction between multiple incompressible air jets. The authors 

found that the merge distance between jets increase for larger jet spacing and the 

entrainment is more enhanced under multiple jet configurations than a single jet. Yimer 

and Becker [35] investigated the strong-weak jet coupling for developing a new concept 

for low-NOx burners. They found that the point of jet confluence strongly depends on the 

jet separation distance and momentum ratio between jets. However, the majority of these 

works were mainly focused on the behavior of the velocity flow field. Research on the 
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fundamental aspects of passive scalar mixing such as the concentration and temperature 

fields in multiple turbulent jets is very limited. 

This study presents an experimental and numerical investigation of the mixing 

characteristics and the resulting concentration fields in unconfined, non-reacting multiple 

turbulent jets in Chapters 2 and 3. Experimentally, Planar Laser Induced Fluorescence 

(PLIF) was employed to study the effects of the Reynolds number, separation distance, 

and momentum ratio on jet interaction and mixing in three round collinear jets. The 

experimental results are compared with numerical predictions presenting extensive 

investigations in a representative five turbulent jet configuration with a center fuel jet 

surrounded by four oxidizer jets.  

The situation of real industrial furnaces is quite different from the unconfined conditions. 

The confinement due to the existence of wall alters considerably the flow fields, 

entrainment and resulting mixing characteristics. Thus, the effects of the confinement 

should be considered to investigate the characteristics of flow and mixing in industrial 

furnaces. However, there are relatively less studies on the confined multiple turbulent jets 

while considerable experimental and numerical efforts have been performed on the study 

of turbulent jets issuing into a free environment. The numerical study on the effects of the 

confinement for non-reacting turbulent jets is presented in Chap. 4.  

Finally, confined and reacting jets are studied for real furnace applications. The 

experimental methods and procedure for the reacting flow study are presented in Chapter 

5, and the numerical methods are presented in Chapter 7. The experimental results of 

reacting flow are discussed in Chapter 6, and compared with the numerical calculations in 

Chapter 8.  

 

1.4. Objectives 

This work is motivated by the need to develop the innovative combustion technology to 

reduce energy usage and pollutant emissions while improving productivity. To 

investigate the structure of homogeneous combustion operating in a combustion furnace, 

a laboratory scale furnace has been constructed with the objective of increasing the 

efficiency within the strict constraints on NOx, CO, total unburned hydrocarbons (THC) 

and particulate emissions.  
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The objectives of this work are: 

 Increase combustion efficiency and reduce pollutant formation by intense 

exhaust gas recirculation and oxygen enrichment. 

 Conduct experiments on the resulting homogeneous combustion to identify the 

viable operative range.  

 Conduct numerical simulations for developing a simulation and design tool and 

validate it by comparing with the experimental results.  This code will enable 

determining the optimal value of control parameters. 

 Based on the experimental and numerical investigation, this work will provide 

the optimized operating parameters such as fuel type, jet arrangement, jet 

concentration, jet momentum, and overall equivalence ratio for industrial 

application and control. 
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CHAPTER 2 
 

Experimental and Numerical methods for unconfined non-reacting 
turbulent jets 

 

 

2.1. Experimental apparatus and method 

These experiments were done by Dr. Hyoseok Lee.  They are briefly described here 

because the results were used by the author to validate the numerical model that was used 

to design the furnace.  While the author did not write the Fire Dynamics Simulator 

computer code, it had to be adapted for the present simulations.  Thus, comparison with 

experiments was necessary to determine appropriate sub-grid models and the required 

grid resolution.  A more complete description may be found in [1]. 

 

2.1.1. Experimental Setup 

Figure 2.1 (a) shows the schematic of water reservoir and water jet supply unit. The large 

rectangular water reservoir 1.5 1.5× m wide and 1.0 m high contains quiescent fresh water 

0.75 m deep. Three circular nozzles of 10.4 mm exit diameter are installed vertically 

below the water surface. They are aligned in series at distance S  separated from each 

other, measured from the centers of the circular nozzles. The separation distance between 

the jets can be adjusted to 38.1, 57.2 and 76.2 mm, which equals 3.66, 5.50 and 7.33 

times the jet diameter. The jet flows are injected downward from the nozzles into the 

water in reservoir. 

The flow velocity from the nozzles is maintained nearly constant during the experiment 

by two water supply units with two tanks and pumps which are designed to keep water 

level constant in tanks 2. The head from the water surface of the reservoir to the water 

surface in the tanks 2 is about 2 m. The center jet (containing the dye to simulate the fuel) 

is driven by one unit and the two other jets are driven by the other unit. To identify fluids 
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from each jet, either one of the water supply units may contain the fluorescent dye 

(Rhodamine WT). The dye is well dissolved in one of the water supply units to obtain a 

concentration of about 1.5 mg per 1 L of water. 

To obtain the concentration profile, planar Laser Induced Fluorescence (PLIF) is used as 

the flow visualization technique. Schematic of the PLIF system is illustrated in Figure 2.1 

(b). Nd-YAG laser (Surelite I PIV 10 Hz, Continuum) having a wavelength of 532 nm 

and power of about 2 W is used as a light source and the laser is synchronized with the 

CCD camera (PIVCAM 10-30, TSI Inc.) having 1000 1016×  resolution and 8 bit 

dynamic range. The pulsed laser beam passes through a pinhole to adjust the size and 

then passes through the cylindrical plano-concave lens which expends it vertically to a 

laser sheet. Finally by a slit the laser sheet is trimmed into a thin layer sheet about 1 mm 

wide. 

The vertical laser sheet is adjusted to pass through the centerline of the aligned center of 

the three jet nozzles. When the jet containing the fluorescent dye is injected from the 

nozzle, the dye is excited by the laser light sheet to create the fluorescent image. The 

image is taken by the CCD camera. Laser pulse duration time is 6 ns, camera shutter 

exposure time is 255 sμ , and laser pulse repetition rate is 10 Hz. The resolution based on 

the camera setup is 0.64 0.64× mm per pixel.  

 

2.1.2. Experimental Method 

In this study, all the jet image data are averaged during 25s, i.e. 250 laser shots, after the 

flows turn to be steady and fully developed. Even though the data is averaged over time, 

there is still the possibility of instrumental noise. Specially, in case of the pulsed laser 

used in this experiment, the laser light intensity of shots varies randomly within in a 

range. While there is other instrumental noise involved together, the prediction of the 

proper noise level for each event and each pixel is indistinct. After series of calibration 

applications by Dr. Hyoseok Lee [1], it was determined that the noise can be optimally 

removed by the convolution of 55×  matrix. 

The range of Reynolds’ numbers in the experimental work were 
4 40 96 10 2 4 10. Re .× < < × . The Reynolds number was calculated based on the nozzle 

diameter and the mean jet velocity of the exit flow. Water is used as the working fluid for 
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the experiments. It has a Schmidt number, 600>Sc  implying little diffusion-enhanced 

mixing. The turbulent jet is injected into the quiescent water with the same temperature. 

Since the density of the jet flow and the ambient fluid is the same, no buoyant effect is 

involved in these experiments. 

While the pulsed laser light sheet passes vertically through the center of the aligned jets, 

the fluorescent dye is injected through the middle jet into the water reservoir. The 

fluorescent images are taken by the CCD camera synchronized with the laser pulse. In the 

beginning, the experimental setup and procedure is validated by measuring the 

concentration characteristics of turbulent single jet. The single jet was tested for four 

different jet exit velocities: 1.0, 1.5, 2.0 and 2.5 m/s. Corresponding Reynolds numbers 

were 4 4 41.16 10 ,  1.75 10 ,  2.33 10 ,× × × and 42.91 10 .×  

In order to investigate the effect of the separation distance and in particular to evaluate 

the effect of the side jets on the middle jet, three different separation distances, S/D = 

3.66 , 5.50 and 7.33, were tested. The effect of the momentum ratio between jets is 

investigated by changing the velocity of the jets while the diameter and flow rate of the 

jets are kept the same.  

After performing the calibration procedure, mean concentration is obtained. In 

experimental studies, the measurements are made up to Z/D=50 because of the spatial 

limitations. The coordinate system used in this experimental study is given in Figure 2.1 

(c).  
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Figure 2.1: Schematics of: (a) The water reservoir and water jet supply system (b) The PLIF system 
(c) The coordinate system nomenclature [1] 

 

 



 

15 

2.2. Numerical Simulation Method 

In this study, the numerical simulations are performed by using the Fire Dynamics 

Simulator (FDS) developed at the National Institute of Standards and Technology (NIST) 

[36]. This model has so far been used for compartment fires and had to be adapted for 

this study.  NIST itself is looking for calibration of FDS.  One such calibration is 

provided by this work & reference [37] has been provided to NIST. 

 

2.2.1. Governing equation 

In the FDS code, the flow field is modeled by solving the conservation equations for 

mass, species, momentum and equation of state for the gas with low Mach number 

assumption. Under this assumption, the basic governing equations are simplified to, 

0=⋅∇+
∂
∂ uρρ

t
         (2-1) 

( ) lllll mYDYY
t

′′′+∇⋅∇=⋅∇+
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∂ ρρρ u        (2-2) 
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ρ ρ τ∂⎛ ⎞+ ⋅∇ +∇ = + +∇⋅⎜ ⎟∂⎝ ⎠
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i
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Y
TRtp ρ)(          (2-4) 

Where, ( , , )u v w=u is the velocity field, f is the external force on the fluid, τ is the 

viscous stress tensor, and lm ′′′  is the mass production rate of the ith species per unit 

volume. 

 

2.2.2. The turbulence model 

The effect of the flow field turbulence is modeled using LES, in which the large scale 

eddies are computed directly and the sub-grid scale dissipative processes are modeled. To 

approximate the turbulent stress, the Smagorinsky model with a constant coefficient sC is 

used everywhere in the flow field. In this model, the dynamic viscosity is defined at cell 

centers as, 
1
22 22( ) 2( ) ( ) ( ) )

3LES sC def defμ ρ ⎛ ⎞= Δ ⋅ − ∇ ⋅⎜ ⎟
⎝ ⎠

u u u     (2-5) 
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Where, sC is the Smagorinsky constant, Grid size
1
3( )x y zδ δ δΔ = , and the deformation 

term is related to the dissipation  
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   (2-6) 

 

The key coefficient in this model is the Smagorinky constant sC which is the sub-grid 

scale model coefficient that is flow dependent and has been optimized over a range from 

0.1 to 0.25 for various flow configurations. As reported in literatures, the Smagorinsky 

coefficient is not a universal constant. It should be noted that the optimization of sC  in 

numerical simulation is generally ad hoc [38]. It was found that good results with the 

Smagorinsky model can be obtained when sC =0.1 for channel flow [39, 40], sC =0.12 

for the flow around a bluff body [41], sC =0.16 for a mixing layer [38] and an indoor 

airflow with force convection [42], and for homogeneous isotropic turbulence [40, 43] 

sC  ranges from 0.17 to 0.20 [38]. Geurts et al. [44] concluded that sC =0.1 roughly 

corresponds to the averaged dynamic coefficient in the developed flow condition. Even 

though there are some suggested values of the Smagorinsky constant for various flow 

configurations, theoretical guidelines have never been provided [38]. It is therefore 

necessary to find the optimum value of sC  for each flow configuration.  

 

2.2.3. Numerical method 

Figure 2.2 shows the Smagorinsky constant effects on the decay rates of the centerline 

velocity and concentration for a free single turbulent jet. It is observed that the case of 

sC =0.14 overestimates the length of potential core region, and low decay rates of the 

centerline velocity and concentration for the case of sC =0.10. On the other hand, the 
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cases of sC =0.11 and 0.12 are in good agreement with the results in literature as shown 

in Figure 2.3 and 2.4. However, it is observed from Figure 2.4 that the value of scaled 

centerline concentration with sC =0.11 is near the upper limit of previous works. 

Therefore, it is found that sC =0.12 is the best value for the current configuration in this 

study. This value of the Smagorinsky constant is used for further numerical calculations 

without change. Even though the Smagorinsky model has some shortcomings, it is still 

widely used for a number of applications. 
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Figure 2.2: The effect of the Smagorinsky constant on mean centerline (a) velocity and (b) 

concentration decay profile for a free single turbulent jet. 
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Figure 2.3: The effect of the Smagorinsky constant on mean centerline velocity for a free single 
turbulent jet, and comparison of current results with the previous works for the mean centerline 

velocity, □ (a) Hussein et al. [45], ○ (b) Webster et al. [46], △ (c) Fukushima et al. [47], ◇ (d) 
Panchapakesan and Lumley [48]. 

 
 

0

3

6

9

12

15

0 10 20 30 40 50 60 70 80

(Z-Zo)/D

C
on

ce
nt

ra
tio

n,
 C

o/
C

c

(a)
(b)
(c)
(d)
(e)
(f)
Cs=0.10
Cs=0.11
Cs=0.12
Cs=0.14

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80
(Z-Zo)/D

(C
c/

C
o)

*(
Z

-Z
o)

/D

(a)
(b)
(c)
(d)
(e)
(f)
Cs=0.10
Cs=0.11
Cs=0.12
Cs=0.14

 
 

(a)     (b) 
 

Figure 2.4: The effect of the Smagorinsky constant on mean centerline (a) concentration decay profile 
and (c) scaled centerline concentration for a free single turbulent jet, and comparison of current 

results with the previous works for the mean centerline velocity, ■ (a) Becker et al. [49], ▲ (b) Birch 
et al. [50], ◆ (c) Dahm [51], ○ (d) Dowling and Dimotakis [52], □ (e) Lockwood and Moneib [53], 

△(f) Wilson and Danckwerts [54]. 
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The effects of the grid numbers on the mean centerline velocity and concentration for a 

free single turbulent jet are shown in Figure 2.5 and 2.6. The numerical predictions are 

carried out for three different grid numbers, 0.26, 1.64 and 2.05 million with the same 

Smagorinsky constant sC =0.12. It can be seen that the length of the potential core region 

is over-predicted with 0.26 million grids. The case of 1.64 and 2.05 million grids are 

found to be in very good agreement with previous works in the literature. Considering the 

prediction ability and computing times, 1.64 million grids are used in this study.  

Figure 2.7 shows the schematic diagram of the computational domain used in the current 

study. The computational domain is 20 20 80D D D× × for single and three jets and 

40 40 160D D D× ×  for the five jet configuration based on the center jet diameter. The 

domain consists of 1,638,400 grid points for all cases. It has been proven that this 

resolution is sufficient to describe the flow and concentration fields considering the 

accuracy and computation time. Thus, all numerical calculations in this study have been 

performed within a domain that is made up of rectangular mesh, each with its own 

rectilinear grid.  
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Figure 2.5: The effect of the grid numbers on mean centerline velocity for a free single turbulent jet, 
and comparison of current results with the previous works same as plotted in Figure. 2.4.  
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Figure 2.6: The effect of the grid numbers on mean centerline (a) concentration decay profile and (c) 
scaled centerline concentration for a free single turbulent jet, and comparison of current results with 

the previous works same as plotted in Figure 2.5. 
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Figure 2.7: Schematic diagram of the computational domain and coordinates. 
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CHAPTER 3  
 

Experimental and numerical results of unconfined non-reacting 
turbulent jets 

 

 

In this section, the experimental and numerical results of velocity and passive scalar 

concentration field for single and three collinear water jets are presented. The 

experimental results were obtained by Dr. Hyoseok Lee [1] and the numerical results 

were obtained by the present author [37].  Results of an extensive numerical study 

conducted on five gas phase multiple turbulent jets, used in the experimental furnace, are 

also presented.  In this study, the Reynolds number of the jets is kept above 104 for 

sustaining the fully developed turbulence condition according to Dimotakis [55].  The 

parameters and properties of the turbulent jets in this study are listed in Table 3.1. 

 

3.1. Free single turbulent jet 

For validation, experiments and numerical simulations are performed on an unconfined 

single water jet. In addition, numerical simulations are conducted on a single gas jet as 

the basis of investigation of multiple turbulent gas jets. For a single jet, the working and 

the ambient fluid are the same, thus no density effect is involved.  

The mean centerline stream-wise velocity and mean concentration along with the 

centerline of the longitudinal axis are plotted in Figure 3.1 and 2 (a), and scaled mean 

centerline concentrations are shown in Figure 3.2 (b) along with the results of current [1] 

and previous experimental works [49-54]. As shown in Figure 3.1 and 3.2(a), the value of 

the mean centerline stream-wise velocity Uc and concentration cC  are constant in the 

potential core region, and decays linearly with the stream-wise distance after becoming 

fully developed as expressed in equation (3-1) and (3-2). 
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In above equations, oU  and oC  are the injection velocity and concentration, respectively, 

and d is the jet diameter. The mean decay rate for the velocity uK  and concentration cK , 

and the virtual origin of the centerline velocity ouZ , concentration ocZ  for each condition 

are obtained according to equation (1) and (2). The decay rates and virtual origins 

obtained from the current experiments and numerical simulations are listed in Table 3.2. 

In Figure 3.2 (b), the mean centerline concentration is scaled by ( / )( ) /c o oC C Z Z d− , 

same as that used in Ref. [52], and plotted as a function of the distance from the jet 

virtual origin.  

It is seen from Figure 3.1 and 3.2 that both of the experimental and numerical results 

show good agreement with the previous works in literature. The numerical simulation 

predicts a little longer potential core region up to Z/d=10. However, the numerical 

predictions of the value of the decay constant uK and cK  for all calculations are almost 

the same, and ( / )( ) /c o oC C Z Z d− is nearly constant irrespective of the Reynolds number 

and the working fluids. Experimental measurements, on the other hand, show 

considerable scatter. The scatter in the experiments is attributed to the uncertainty in the 

initial conditions of the jet. Since the simulations have much less uncertainty, the curves 

are closer together.  Nevertheless, the general similarity for a single turbulent jet is well 

established both experimentally and numerically [56].  

The mean radial concentration profiles at different axial positions are plotted in Figure 

3.3. Literature data are also plotted for comparison [49-52]. As shown in the literature, 

the profiles appear self-similar and Gaussian-like for (Z-Zo)/d>20. Clearly, the 

experimental results and numerical calculations agree well with the results in literature. 
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Table 3.1: The parameters and properties of turbulent jets in experiments [1] and numerical 
simulations. 
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Jet phase Exit velocity  
Decay rate 

uK  

Virtual origin 

ouZ  

Decay rate 

cK  

Virtual origin 

ocZ  

Water Jet Vel=1.0 Experiment 4.69 5.30d 4.69 5.30d 

  FDS 6.33 6.42d 5.30 4.71d 

 Vel=2.0 Experiment 5.59 4.70d 5.59 4.70d 

  FDS 6.13 7.05d 5.12 5.65d 

Air Jet Vel=10 FDS 6.06 5.90d 5.23 4.21d 

 Vel=20 FDS 6.31 4.91d 5.23 4.30d 

 
Table 3.2: Decay rate uK , cK  and virtual origin oZ of a single turbulent jet obtained from 

experiment [1] and numerical simulation. 
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Figure 3.1: The mean centerline stream-wise velocities obtained from numerical simulation for a 
single jet, and (b) comparison of current results with the previous works for the mean centerline 

velocity, □ (a) Hussein et al. [45], ○ (b) Webster et al. [46], △ (c) Fukushima et al. [47], ◇ (d) 
Panchapakesan and Lumley [48]. 
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Figure 3.2: (a) The mean centerline concentration obtained from experiment [1] and numerical 
simulation for a single jet, and (b) comparison of current results with the previous works for the 

scaled mean centerline concentration, (a) Becker et al. [49], (b) Birch et al. [50], (c) Dahm [51], (d) 
Dowling and Dimotakis [52], (e) Lockwood and Moneib [53], (f) Wilson and Danckwerts [54]. 
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Figure 3.3: The mean radial concentration profiles obtained from experiment [1] and numerical 

simulation at exit velocity 1.0 m/s for a water single jet, and results of (a) Dowling and Dimotakis [52] 
(b) Becker et al. [49], (c) Birch et al. [50] and (d) Dahm [51]. 
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3.2. Unconfined multiple turbulent jets 

3.2.1. Water 3 Jets 

To investigate the characteristics of mixing and concentration for the unconfined multiple 

turbulent jets, experimental [1] and numerical studies are performed on three collinear 

water jets. In this section, the effects of the separation distance and momentum ratio 

between jets as the control parameters in jet mixing are examined. The separation 

distance S/d and momentum ratio MR investigated in this study are listed in Table 3.1. 

For identification of the concentration of the center jet, salt water having the same 

properties as the side water jets is used as the center jet fluid in the numerical study. 

 

Separation Distance Effects 

Figure 3.4 shows the numerical predictions of the decay rate of the mean centerline 

stream-wise velocities of the center jet for three different separation distances S/d=3.66, 

5.50 and 7.33 with fixed jet velocity, 1.0-1.0-1.0 m/s. The radial velocity profiles at 

different axial positions for the above cases are shown in Figure 3.5. In this study, the 

velocity is normalized by the injection velocity of the center jet. 
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Figure 3.4: The results of numerical simulations for the mean centerline stream-wise velocity of the 

center jet for S/d=3.66, 5.50 and 7.33 with jet velocity, 1.0-1.0-1.0 m/s for three water jets. 
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Figure 3.5: The radial velocity profiles at different axial positions for (a) S/d=3.66, (b) S/d=5.5 and (c) 

S/d=7.33 with jet velocity, 1.0-1.0-1.0 m/s for three water jets. 
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It is clearly observed from Figure 3.4 that the values of the reciprocal normalized 

centerline velocity /o cU U  in multiple jets are lower than that of a single jet, which 

indicates that the mean centerline velocity of the center jet in the multiple jets decays 

slower than a single jet. This can be attributed to the observation from Figure 3.5 that jets 

finally merge into one jet after some distance from the jet exit, thus the momentum of the 

center jet in multiple jets can be enhanced by momentum addition from the side jets. 

Another observation from Figure 3.4 is that the decay rate of the mean centerline velocity 

of the center jet is higher with increase of the separation distance. It might be thought that 

the jets merge into one jet early with small separation distance, and the center jet begins 

to be affected by the side jets early as shown in Figure 3.5. On the other hand, jet 

merging is delayed to further downstream with large separation distance, thus each jet 

acts like a single jet for a longer downstream distance. As a result, the behavior of the 

centerline velocity becomes closer to that of a single jet with large separation distance.  

The mean centerline concentration and scaled concentration of the center jet for three 

different separation distances S/d =3.66, 5.50 and 7.33 with fixed jet velocity, 1.0-1.0-1.0 

m/s, are plotted in Figure 3.6 (a) and (b). It is clearly observed that the linearity of the 

mean centerline concentration is broken and the value of ( )( )/ /c o oC C Z Z d−  is no 

longer constant in multiple turbulent jets, which means that the general similarity is no 

longer valid in multiple jets. Even though using the concept of the virtual origin and scale 

factor ( ) /oZ Z d−  for the mean centerline concentration is not proper for the multiple 

jets, it is still useful to investigate that how the behavior of the multiple jets is different 

from a single jet. For this purpose, the virtual origin of the single jet is used for 

describing the value of ( )( )/ /c o oC C Z Z d−  in multiple jets.  

As observed in Ref. [24, 27], Figure 3.6 (a) and (b) clearly show that the center jet 

initially follows the single jet path, and then deviates from the path after some distance. 

This deviation distance is the merge distance where the center jet begins to be affected by 

the side jets. From the merge distance onward, the concentration of the center jet shows a 

completely different trend from that of a single jet. It is seen from Figure 3.6 (a) that the 

values of the reciprocal normalized centerline concentration /o cC C  of the center jet in 

multiple jets are higher than that of a single jet, which indicates that the centerline 
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concentration in the multiple jets decays faster than that of a single jet because of 

enhanced mixing and interaction between jets by exchange of momentum with side jets. 

It is also reported that multiple jets relatively entrain more surrounding fluid than a single 

jet, thus the mean centerline concentration decays faster in the multiple jet configuration 

[34, 57]. The mean centerline concentration of the center jet decays rapidly with 

decreasing the separation distance, which can be thought that strong mutual entrainment 

and turbulent transport between jets starts earlier at shorter distance from the jet exits for 

the case of small separation distance. Thus, the centerline concentration of the center jet 

drops rapidly. 

The radial concentration profiles do not fall on a single curve for multiple jets and show a 

narrower width than a single jet as shown in Figure 3.7. This can be attributed to the fact 

that the mutual interaction between jets creates a sub-atmospheric pressure region and in 

this region, the jets attract each other toward the centerline and thus the transverse 

transport rate decreases more than that of a single jet [26].  

The discrepancy in the scaled mean concentration is observed between experiments and 

numerical prediction, because of the sensitivity of the scale factor ( ) /oZ Z d− to the 

virtual origin.  As stated before, the virtual origin of a single jet was used for multiple 

turbulent jets. While there is some discrepancy between the experimental results and 

numerical predictions, the trend shows good agreement.  
 

Momentum Ratio Effects 

The effects of the momentum ratio between jets are investigated by changing the velocity 

of the jets while the diameter and flow rate of the jets are kept constant (see Table 3.1). 

The results of numerical calculations for the mean centerline stream-wise velocities of the 

center jet for three different momentum ratios MR=0.25, 1.0 and 4.0 with same separation 

distance S/d=3.66 are shown in Figure 3.8. The radial velocity profiles at different axial 

positions for above cases are shown in Figure 3.9. In this study, the momentum ratio MR 

is defined as the ratio of center jet momentum to side jet momentum.  

As described in previous section, the decay rate of the mean centerline stream-wise 

velocity of the center jet in multiple jets is higher than that of a single jet due to 

momentum addition from the side jets by strong interaction between jets. It is observed 
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that the behavior of the centerline velocity of the center jet approaches that of the single 

jet at high momentum ratio MR=4.0. This can be attributed to the fact that the center jet 

having higher momentum is better able to penetrate into the side jets having lower 

momentum. Thus, the side jets are merged more rapidly into the center jet with increase 

of the momentum ratio between jets as shown in Figure 3.9.  
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(b) 

Figure 3.6: Comparison of current experimental results [1] with the numerical simulations for (a) 
mean centerline concentration and (b) scaled mean centerline concentration of the center jet for 

S/d=3.66, 5.50 and 7.33 with jet velocity, 1.0-1.0-1.0 m/s for three water jets. 
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Figure 3.7: Comparison of current experimental results [1] with the numerical simulations for radial 
concentration profiles at different axial positions for (a) S/d=3.66, (b) S/d=5.50 and (c) S/d=7.33 with 

jet velocity, 1.0-1.0-1.0 m/s for three water jets. 
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Figure 3.8: The results of numerical simulations for the reciprocal mean centerline stream-wise 
velocity for MR=0.25, 1.0 and 4.0 with separation distance S/d=3.66 in three water jets. 

 

Figure 3.10 shows the mean centerline concentration and the scaled mean concentration 

of the center jet for three different momentum ratios MR of 0.25, 1.0 and 4.0 with fixed 

separation distance S/d=3.66. 

As shown in Figure 3.10, numerical predictions are in very good agreement with the 

experimental results. It is clearly observed that the centerline concentration of the center 

jet decays rapidly with decrease of the momentum ratio (increase the momentum of the 

side jet). The centerline concentration deviates quite rapidly from a single jet for small 

momentum ratio MR=0.25. An explanation could be that the entrainment of the ambient 

fluid into the side jets is enhanced due to their high momentum, and the side jets are also 

able to penetrate into the region of the center jet because of their higher momentum than 

the center jet.  Thus, the center jet decays rapidly due to mixing with the side jets having 

enhanced entrainment of the ambient fluid.  This is important from the combustion point-

of view.  Assume that the side jets are air, the center jet is fuel, and the ambient fluid is 

combustion products.  Then, the entrainment of the side jet into the center jet will start 

combustion early before appropriate dilution, which is an undesirable consequence.  On 

the other hand, if both the side and the center jets are appropriately diluted by the ambient 

fluid due to the high momentum of the side jets, then it is a desirable consequence. 
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Figure 3.9: The radial velocity profiles at different axial positions for (a) MR=0.25, (b) MR=1.0 and 

(c) MR=4.0 with separation distance S/d=3.66 in three water jets. 
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Figure 3.10: Comparison of current experimental results [1] with the numerical simulations for (a) 

mean centerline concentration and (b) scaled mean centerline concentration for MR=0.25, 1.0 and 4.0 
with separation distance S/d=3.66 in three water jets. 
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Figure 3.11: Comparison of current experimental results [1] with the numerical simulations for 

radial concentration profiles at different axial positions for (a) MR=0.25, (b) MR=1.0 and (c) MR=4.0 
with separation distance S/d=3.66 in three water jets. 
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It is also observed that the behavior of the centerline concentration of the center jet 

becomes closer to the single jet path as with higher momentum ratio, which results from 

the quite same reason explained in trend of the centerline velocity.  

The radial concentration profiles at different axial positions are shown in Figure 3.11. As 

same trend in previous section, the radial concentration profiles do not fall on a single 

curve for multiple jets and the general similarity is no longer valid in multiple jets. 
 

3.2.2. Unconfined gas-phase five Jets (Fuel & Oxidizer jets) 

In this section, methane and normal air are used as a fuel and oxidizer, respectively. The 

center fuel jet is of 0.05 m diameter and the diameter of the four side oxidizer jets is 

varied to maintain the same flow rate and the overall equivalence ratio of 1.0 for all cases. 

There are two available sources of jet dilution – one is the ambient fluid (combustion 

products) and the other is the jet fluids. For the current configuration, it is desirable that 

the jets are diluted by the entrainment of the ambient fluid and not by the other jets for 

achieving the homogeneous combustions. Therefore, it is important to identify the 

dilution source of the jets. For this purpose, methane and normal air are used as fuel and 

oxidizer, respectively, and water vapor is used as the ambient fluid. Thus, it is easy to 

investigate the dilution sources and mixing pattern between jets. It is noted that the 

background species cannot participate in the reaction except as a diluent in the FDS [36]. 

Numerical simulation for the configuration of a center jet (fuel) surrounded by four 

equidistant oxidizer jets are carried out for Reynolds number 46.5 10× of the center jet. 

The separation distance is varied as S/d=4.0, 8.0, 12 and the momentum ratio MR=0.39, 

1.03 and 1.57. 

 

Separation Distance Effects 

The mean centerline concentration of the center (fuel) jet, and scaled mean centerline 

concentration of the center jet for three different separation distances with jet momentum 

ratio MR=0.39 in the five multiple jet configuration are shown in Figure 3.12. For more 

detailed analysis, the mean concentrations of oxygen in the center (fuel) jet and methane 

in the side (oxidizer) jet are plotted in Figure 3.13. The mean centerline velocity of the 
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center jet and radial velocity profiles at different axial positions for S/d=4.0, 8.0 and 12.0 

are plotted in Figure 3.14 and 15, respectively. 
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Figure 3.12: The mean centerline concentration of the (a) center (fuel) jet and (b) scaled mean 

centerline concentration of the center jet for S/d=4.0, 8.0 and 12.0 with jet momentum ratio MR=0.39 
in five multiple jet configuration. 
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Figure 3.13: The mean concentration of the (a) methane in the side (oxidizer) jet and (b) oxygen in 

the center (fuel) jet for S/d=4.0, 8.0 and 12.0 with jet momentum ratio MR=0.39 in five multiple jets. 
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Figure 3.14: The mean centerline stream-wise velocities of the center (fuel) jet for S/d=4.0, 8.0 and 
12.0 with jet momentum ratio MR=0.39 in five multiple jet configuration. 

 

As shown in Figure 3.12 and 14, the behaviors of the mean centerline concentration and 

velocity of the center jet are similar to those of the three water jets. The center jet 

deviates from the single jet path after interacting with the side jets. It is also observed that 

the mean centerline concentration of the center jet decays rapidly with decreasing the 

separation distance, whereas the decay rate of the centerline velocity increases with larger 

jet spacing. Both of the behavior of the mean centerline concentration and velocity are 

close to that of a single jet at large separation distance. In addition, the merge distance 

increases for larger jet spacing, which means that the separation distance between jets 

governs the distance after which the jets begin to interact [28, 30]. 

Figure 3.13 shows lots of oxygen in the center (fuel) jet and some methane in the side 

(oxidizer) jets at a separation distance S/d=4.0. These concentrations begin to increase 

sharply near the jet exit and keep increasing up to Z/d=50, where the jet merging is 

completed, they then decrease far downstream. It is also observed from Figure 3.15 that 

the velocity profiles rapidly merge into the center jet after Z/d=40 and the peak of 

velocity exists only at the centerline of the center jet for S/d=4.0 case. This can be 

attributed the fact that there exists a strong interaction between jets due to rapid merging 

into one jet, thus, strong mixing of fuel and oxidizer occurs earlier. Therefore, for S/d=4.0, 
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the center jet concentration decays faster by mixing with side jets in the upstream region. 

After merging with the side jets, the jets act like a single jet. Consequently, the jets are 

diluted by the entrainment of the ambient after merging. 

On the other hand, for large separation distance, the S/d=12.0 case shows that much small 

amount of oxygen and methane exist in the center (fuel) and side (oxidizer) jets, 

respectively. It is observed that the concentration of methane and oxygen start to increase 

after Z/d=40, and then show quite flat profiles. Clearly, the mixing between jets is 

delayed by increasing the separation distance and meanwhile the jets are being diluted by 

the ambient fluid. This is a mechanism to control homogeneous combustion. Comparing 

the velocity profiles with the small separation distance, the S/d=4.0 case, the peaks in the 

velocity profiles still exist near the centerline of the side jets up to Z/d=100 and the 

velocity profiles become quite flat after merging. This indicates that there exits a lot of 

entrainment of the ambient fluid for large separation distance. In other words, each jet 

follows the behavior of a single jet before merging and the concentration decays by the 

entrainment of the ambient fluid. After merging, all jets decay by mixing between jets 

and the entrainment of the ambient fluid. Similar trends were reported in Ref. [34] where 

multiple jets were shown to entrain more ambient fluid than a single jet, especially for 

larger separation distances.  

Thus, it can be concluded that the entrainment of the ambient fluid is promoted before 

mixing between jets at large separation distances, while the mutual interaction between 

jets in the upstream region is enhanced for small separation distances. To get 

homogeneous combustion, the separation distance should be sufficiently large so that the 

jets are sufficiently diluted by the ambient fluid before they meet.  
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(c) 

Figure 3.15: The radial velocity profiles at different axial positions for (a) S/d=4.0, (b) S/d=8.0 and (c) 
S/d=12.0 with jet momentum ratio MR=0.39 in five multiple jet configuration. 
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Momentum Ratio Effects 

Figure 3.16 shows that the mean centerline concentration of the center and scaled mean 

centerline concentration of the center jet for three different momentum ratios with 

separation distance S/d=10.0 in the five multiple jet configuration, and the mean 

concentrations of oxygen in the center jet and methane in the side are plotted in Figure 

3.17. The mean centerline velocities of the center jet and radial velocity profiles at 

different axial positions for MR=0.39 and 1.57 are shown in Figure 3.18 and 19, 

respectively. 

It is seen from the Figure 3.16 that the center jet shows the larger decay rate of the mean 

centerline concentration at low momentum ratio MR=0.39, while relatively small amount 

of methane and oxygen exist in the side and center jet, respectively for MR=0.39, as 

shown in Figure 3.17. This indicates that both jets are more diluted by the entrainment of 

the ambient fluid than the high momentum ratio cases. It is clearly shown in Figure 3.19 

(a) that the peaks in the velocity profiles of the side jets still exist up to Z/d=80 and 

overall level of the velocity profiles is larger than the large momentum ratio case 

MR=1.57 because the side jets have higher momentum. Therefore, the side jets continue 

to entrain the ambient fluid, and as a result of mixing with side jets, the centerline 

concentration of the center jet also decays faster than the large momentum ratio case 

MR=1.57.  

On the other hand, the mean centerline concentration of the center jet decays slowly at 

high momentum ratio MR=1.57, and lots of oxygen in the center jet and methane in the 

side jet are found, as shown in Figure 3.17. This can be attributed the fact that the 

interaction between jets is promoted with high momentum ratio due to rapid merging into 

the center jet, thus advection of scalar is enhanced. As a result, mixing between jets is 

enhanced at high momentum ratios [58]. However, as shown in Figure 3.19 (b) that the 

peaks of the velocity profiles of the side jets decrease rapidly and merge into one jet with 

relatively lower level of the velocity than small momentum ratio MR=0.39 case and at 

relatively shorter distance, about Z/d=60. The entrainment of the ambient fluid is less for 

the high momentum ratio case, as a result, less decay rate of the jet fluid concentrations. 

Moderate momentum ratio MR=1.03 shows similar trends in the mean centerline 

concentration of the center jet and methane concentration in the side jets as the MR=1.57 
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case. The difference is the behavior of the side jets, which have intermediate momentum 

when compared with the momentum ratio MR=0.39 and 1.57 cases.  

Thus it may be concluded that the entrainment of the ambient fluid is promoted at low 

momentum ratio, while the mutual interaction between jets is enhanced at high 

momentum ratio. However, the overall behavior of the three momentum ratio cases is 

very similar; the difference between cases is not big due to the narrow range of the ratios. 

It should also be noted that the mixing between jets starts at the same distance and at the 

same rate.  However, it is observed that the entrainment of the ambient fluid is enhanced 

by decreasing the momentum ratio.  

Considering the small separation distance case, it is possible that the reaction occurs early 

and near the jet exit region with high momentum ratio because of enhanced mixing 

between jets. Therefore, lower momentum ratio between jets is preferable for small and 

moderate separation distance to promote the dilution by the ambient fluid before mixing 

between jets occurs, whereas higher momentum ratio is preferable for larger separation 

distance to enhance fuel dilution with ambient fluid before mixing between jets to 

achieve homogeneous combustion. 
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Figure 3.16: Mean centerline concentration of the (a) center (fuel) jet and (b) scaled mean centerline 

concentration of the center jet for MR=0.39, 1.03 and 1.57 with jet separation distance S/d=10.0 in 
five multiple jets. 
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Figure 3.17: Mean concentration of the (a) methane in the side (oxidizer) jet and (b) oxygen in the 

center (fuel) jet for MR=0.39, 1.03 and 1.57 with jet separation distance S/d=10.0 in five multiple jets. 
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Figure 3.18: The mean centerline stream-wise velocities of the center (fuel) jet for MR=0.39, 1.03 and 
1.57 with jet separation distance S/d=10.0 in five multiple jets. 
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(c) 

Figure 3.19: Mean radial velocity profiles at different axial positions for (a) MR=0.39, (b) MR=1.03 
and (c) MR=1.57 with jet separation distance S/d=10.0 in five multiple jets.
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CHAPTER 4 
 

Numerical investigations on the effects of confinement for non-reacting 
multiple turbulent jet flows 

 

 

The patterns of flow and mixing in confined turbulent jets are quite different from those 

of unconfined jets because of the existence of the walls. The confinement alters 

considerably the flow fields, entrainment and resulting mixing characteristics. Thus, the 

confined multiple turbulent jets are complex flows involving turbulent shear layer, 

boundary layer and pressure gradients. In addition, the situation of real industrial furnaces 

is quite different from the unconfined conditions in previous study. The effects of the 

confinement and chemical reaction must be considered to investigate the characteristics 

of flow and mixing in industrial furnaces. However, there are relatively few studies on 

confined jets while considerable experimental and numerical efforts have been spent on 

the study of turbulent jets issuing into a free environment. 

In this study, the numerical investigations of the mixing characteristics and the resulting 

concentration fields in confined, non-reacting multiple turbulent jets are performed by 

using FDS. In addition, extensive numerical studies in a representative five turbulent jet 

configuration with a center fuel jet surrounded by four oxidizer jets are presented to 

provide fundamental guidelines for optimization of the control parameters, jet spacing, 

momentum ratio of fuel to oxidizer jet, for industrial furnaces with multiple turbulent jets. 

 

4.1. Numerical method 

Figure 4.1 shows the schematic diagram of the computational domain used in the current 

study. The computational domain is composed of 40 40 160d d d× ×  for the five jet 

configuration based on the center jet diameter. The domain consists of 1,638,400 grid 

points for all cases. It was proved earlier that this resolution is sufficient to describe the 
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flow and concentration fields considering the accuracy and computation time based on 

the experimental results in author’s previous work [37]. All numerical calculations in this 

study have been performed within a domain of this size that is made up of rectangular 

mesh, each with its own rectilinear grid. It is noted that the steady state is decided by 

monitoring the mass production in the domain, and all data is averaged after reaching the 

steady state. 
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Figure 4.1: Schematic diagram of the computational domain and coordinates 
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Table 4.1: The parameters and properties of confined turbulent jets in numerical simulations 
a: /rD W d= , b : /rL H W=  
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4.2. Results and Discussion 

In this section, first the numerical results of a confined single turbulent jet are presented 

to investigate the basic characteristics of confined turbulent jets. Later, an extensive 

numerical study of five gas phase confined multiple turbulent jets is presented. The 

Reynolds number of the jets is kept above 104 for sustaining the fully developed 

turbulence condition as recommended by Dimotakis [55]. The parameters and properties 

of the confined turbulent jets are listed in Table 4.1. 

 

4.2.1. Confined Single Jet 

Figure 4.2 shows the centerline stream-wise velocities for various confinement ratios. In 

this study, the confinement ratio is defined as /rD W d= , where W  is the width of the 

domain and d  is the diameter of the jet. In addition, the centerline stream-wise velocity 

is scaled in the same manner used in the concentration for comparison.  

It can be seen from Figure 4.2 that the centerline stream-wise velocities of the confined 

jets decays much faster compared to the unconfined single jet. The main difference 

between unconfined and confined jets is the availability of surrounding fluid. In 

unconfined configuration, the entrainment from surrounding fluid which is unlimited in 

amount occurs, whereas the quantity of surrounding fluid is limited in confined 

configuration. Hence, the recirculation flow is established as a stable part of the flow. As 

a result, the turbulent dissipation should increase, and the jet velocity decays fast and has 

enhanced radial spreading that promotes the mixing of the jet in the confined 

configuration [59-61].  

It is also clearly observed that the decay rate of the centerline velocity increases with 

decrease of the confinement ratio. This means that the effect of the wall becomes more 

significant with decrease of the confinement ratio. The case of Dr=5, the smallest 

confinement ratio, shows that the centerline stream-wise velocity is nearly constant after 

Z/d=50, which is similar to the fully developed pipe flow. On the other hand, the 

behavior of the centerline velocity approaches the unconfined single jet for large 

confinement ratio because the effect of the wall becomes weak. According to the 

Kandakure et al [62], the confinement effect diminishes for Dr>50.  
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Figure 4.2: The scaled centerline stream-wise velocity of confined single turbulent jets for various 

diametric confinement ratios, Dr=5, 10 and 20.  
 

Figure 4.3 shows the radial stream-wise velocity profiles at Z/d=20 for unconfined and 

confined single jet (Dr=10), respectively. It is clearly seen that there are re-circulating 

flow regions near the walls in confined jet even far upstream region, Z/d=20, which it is 

not found in unconfined jet. It is generally known that re-circulating flow exists as a 

stable part of the flow under certain circumstances [60]. In addition, the confined jet loses 

momentum faster than unconfined jet because of the re-circulating flow entrained by the 

jet. In confined jet, the quantity of entrainment is limited, thus re-circulating flow is 

established and entrained by the jet if the jet fluid fails to fill up the domain completely.  
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(a)     (b) 

Figure 4.3: The radial velocity profiles of (a) unconfined and (b) confined single turbulent jet with 
Dr=10 at Z/d=20 
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Another main difference between the unconfined and confined jets is that the pressure is 

the same everywhere in the unconfined jet, whereas the pressure varies axially in the 

confined jet [61]. It is clearly observed from Figure 4.4 that the flow induced perturbation 

pressure shows the negative peak in confined jets. The pressure decreases sharply and 

hence pressure gradient increases with decrease of the confinement ratio, which means 

that the effect of wall become significant as decrease of the confinement ratio. As seen in 

Figure 4.4, the pressure recovers sufficiently before the exit of the domain for Dr=5 and 

10, thus the jet can push the flow out of the domain. However, the pressure still remains 

below the atmospheric pressure and recovery of the pressure is small for large 

confinement ratio Dr=20. This adverse pressure gradient caused by the confinement 

considerably alters the entrainment and mixing [62]. 
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Figure 4.4: The centerline perturbation pressure profiles of confined single turbulent jets for various 
diametric confinement ratios, Dr=5, 10 and 20.  

 

Figure 4.5 shows the centerline concentration for various confinement ratios. It is clearly 

seen that the concentration is constant and is equal to that of a jet all over the domain for 

small confinement ratio, Dr=5 and 10. This can be attributed the fact that the jet flow 

becomes like a fully developed pipe flow when the jet can expand to the width of the 

domain, thus the jet fluid fills up the domain. However, as the confinement ratio 

increases, the concentration is not constant because infiltration from outside of the 

domain occurs at the exit of the domain due to short length ratio, H/W. In other words, 
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the length ratio H/W decreases with increase of the confinement ratio W/D, and thus the 

effect of the confinement becomes weaker. 
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Figure 4.5: The scaled centerline concentration of confined single turbulent jets for various diametric 
confinement ratios Dr=5, 10 and 20  

 

Consequently, the jet fluid fails to fill up the whole domain and infiltration from outside 

of the domain should occur to make up for the deficient flow amount. However, the value 

of the centerline concentration of the confined jets shows still higher than that of the 

unconfined jet because the sufficient amount of surrounding fluid is not present for the 

entrainment in the confined jet. The quantity of surrounding fluid is unlimited in the 

unconfined jet, thus the jet can be diluted continuously by the surrounding fluid in the 

unconfined jet. On the other hand, in the confined jet, the main source of entrainment by 

the jet is the jet fluid itself because of the re-circulating flow and lack of the amount of 

surrounding fluid. Consequently, the jet is diluted mainly by its fluid which is the re-

circulating flow entrained by the jet, thus the centerline velocity decays faster and 

concentration remains relatively constant compared to the unconfined jet. 

 

4.2.2. Gas-phase Five Jets (Fuel & Oxidizer jets) 

In this section, methane and normal air are used as the fuel and oxidizer, respectively. 

The diameter of central fuel jet is 0.05 m while the diameter of the four side oxidizer jets 
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is varied to maintain the same flow rate and the overall equivalence ratio, Φoverall=1.0 for 

all cases.  

Numerical simulation for the configuration of a central jet (fuel) surrounded by four 

equidistant oxidizer jets are carried out for Reynolds number 46.5 10× of the central jet. 

The separation distance is varied as S/d=4, 8, 12, which are corresponding to S/W=0.1, 

0.2 and 0.3, respectively. The momentum ratio varied as MR=0.39, 1.03 and 1.57.  It is 

noted that all properties presented in this section are normalized by those of center jet. 

 

4.2.2.1. Confinement Effects on multiple turbulent jets 

Figure 4.6 shows the scaled centerline stream-wise velocity and concentration in the 

center jet of unconfined and confined turbulent multiple jets, respectively, with same 

momentum ratio, MR=0.39, and separation distance, S/d=10 (S/W=0.25). It is clearly seen 

from Figure 4.6 (a) that the confinement considerably alters patterns of the centerline 

stream-wise velocity. The value of scaled centerline velocity increases along the axial 

direction because of adding momentum from side oxidizer jets for unconfined multiple 

jets. On the other hand, the turbulent dissipation increases by re-circulating flow for 

confined multiple jets, as a result, the jet decays faster and has enhanced radial spreading 

that promotes the mixing of the jet. Therefore, the value of scaled centerline stream-wise 

velocity of the confined jet decays faster than that of the unconfined jet. It is also 

observed from Figure 4.6 (a) that there are negative velocity zones in confined multiple 

jets, which indicates that re-circulating flow occurs. 

It is observed from Figure 4.6 (b) that the scaled centerline concentration of the confined 

multiple jets initially shows flat shape that is the similar trend of the unconfined single jet 

at upstream region of the computational domain, which means that the centerline 

concentration Cc/Co keeps decreasing by entraining ambient fluid like a single free jet. 

After some distance from the jet exit, the value of the scaled centerline concentration 

increase is nearly linear, this means that the centerline concentration remains almost 

constant at middle region of the computational domain. Finally, the scaled centerline 

concentration of the confined multiple jets again becomes flat that is the similar trend of 

the unconfined single jet at further downstream region. It may be attributed the fact that 

the center jet entrains the surrounding fluid before merging with side jets, thus initially 
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follows the path of the free single jet in unconfined multiple jets. After merging with side 

jets, the center jet can still entrain surrounding fluid and mix with the side jets, thus the 

centerline concentration falls lower than that of the free single jet. On the other hand, the 

source of jet dilution is not surrounding fluid, but mainly the mixture of the fuel and 

oxidizer jets in confined multiple jets as explained before. Therefore, the mixing between 

jets and re-circulating flow of the mixture of the jets are simultaneously occurred in 

confined multiple jets. In other words, the jet mixed with other jets by the interaction 

between jets as same way in unconfined jets, and also diluted by the re-circulating flow 

of the mixture of the jets in confined multiple jets. Therefore, the confined multiple jets 

initially has lower concentration due to re-circulating flow entrained by the jets, and 

remains nearly constant over the middle region of the computational domain. 

The radial stream-wise velocity profiles for unconfined and confined jets at Z/d=40, 80 

and 160 which correspond to upstream, middle and downstream region of the 

computational domain are shown in Figure 4.7. It can be seen that the confined multiple 

jets lose momentum faster than the unconfined multiple jets from upstream region. In 

unconfined multiple jets, the jets are finally merged into center jet and the peak of the 

velocity is located at the center jet region, whereas the confined multiple jets lose 

momentum quite fast and re-circulation flow region appears near the walls at even quite 

upstream region Z/d=40, and center jet flow region at Z/d=80 in confined multiple jets. It 

might be thought that the turbulent dissipation increases in confined multiple jets due to 

confinement, thus radial spreading is enhanced and the jets keep entraining their mixture. 

As a result, the confined multiple jets lose momentum faster than unconfined multiple 

jets and re-circulating flow exists.  

It should be noted that the flow patterns may vary with control parameters such as the 

separation distance and momentum ratio between jets. Thus, the effects of these 

parameters on flow and concentration fields are investigated in the next sections. 
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Figure 4.6: The scaled  centerline (a) stream-wise velocity and (b) concentrations of unconfined and 
confined multiple turbulent jets with momentum ratio MR=0.39 and separation distance S/d=10. 
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Figure 4.7: The radial velocity profiles of (a) (c) (e) of unconfined and (b) (d) (f) confined multiple 

turbulent jets at Z/d=40, 80 and 160 with momentum ratio MR=0.39, and separation distance S/d=10. 
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4.2.2.2. Separation Distance Effects on multiple turbulent jets 

The scaled centerline stream-wise velocity and concentration in the center jet of confined 

multiple turbulent jets for various separation distances S/d=4, 8 and 12 (S/W=0.1, 0.2 and 

0.3) with same momentum ratio MR=0.39 are shown in Figure 4.8 and 4.9. It is observed 

that there are two kinds of trend in the scaled centerline stream-wise velocities. The first 

is one parabolic shape with positive peak for S/d=4 and 8. In these cases, the separation 

distance between jets is relatively small, thus the jets are merged earlier than large 

separation distance cases. As mentioned in previous work [37], the behavior of multiple 

jets with small separation distance is close to that of the single jet. Therefore, the jets are 

merged into one jet quickly and act like a single jet, consequently have positive peak of 

velocity at some distance from the jet exit and finally centerline velocity decreases by 

momentum change. The second is two parabolic shapes with positive and negative peak 

for S/d=12. For large separation distance, each jet acts like a single jet before merging, 

thus the behavior of the centerline velocity of the center jet is similar to that of a single jet 

even though the magnitude of the peak is lower than that of the unconfined single jet. 

After merging, the center jet loses momentum quickly due to high momentum of side jets 

which promotes the re-circulating flow. As a result, re-circulating flow occurs at the 

region of center jet, and the center jet has negative velocity peak.  As close to the exit of 

the domain, the velocity recovers as flow goes out.  
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Figure 4.8: The scaled centerline stream-wise velocity in the center jet of confined multiple turbulent 

jets for S/d=4, 8 and 12 with momentum ratio MR=0.39. 
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It is observed from Figure 4.9 that there are also two kinds of behavior in centerline 

concentration of the center jet in confined multiple jets with various separation distances 

S/d=4, 8 and 12. The one is that the slope of the scaled centerline concentration is nearly 

linear from (Z-Zo)/d=40 for S/d=4 and 8, which means that the centerline concentration 

Cc/Co is almost constant. This behavior is very similar to that of the confined single jet. 

The other is that the concentration initially increases linearly and then decreases sharply, 

finally follows the same path of other cases from (Z-Zo)/d=60 for S/d=12. For large 

separation distance case, the center jet is more prone to act like a single jet before 

merging with side jets [37]. Therefore, the centerline concentration approaches the path 

of a single jet at upstream region, and then shows the trend of the confined jet which is 

similar to small separation distance cases after merging with side jets. 

 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140
(Z-Zo)/d

C
c/

C
o*

(Z
-Z

o)
/d

S/d=4
S/d=8
S/d=12

 
 

Figure 4.9: The scaled centerline concentration in the center jet of confined multiple turbulent jets 
for S/d=4, 8 and 12 with momentum ratio MR=0.39. 

 

The radial stream-wise velocity profiles at Z/d=20, 40 and 80 for various separation 

distances with same momentum ratio MR=0.39 are shown in Figure 4.10. It is clearly 

observed that the jets merge into one jet faster with decrease of the separation distance 

between jets, and the peak of stream-wise velocity is located at the center jet region and 

becomes lower with decrease of the separation distance for S/d=4 and 8. However, the 

peak of velocity appears at the side jet region, and the re-circulating flow exists at the 
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center jet region for S/d=12. This might be thought that the jets merge very quickly and 

act like a confined single jet with small separation distance because of strong interaction 

between jets, thus recirculation pattern is formed from the center jet to side jet region, as 

a result, re-circulating flow appear near the walls. On other hand, the case of large 

separation distance shows that the recirculation of flow occurs from the side jets toward 

the center jet with given momentum ratio MR=0.39 that the side jets have higher 

momentum than the center jet. Thus, the re-circulating flow appears at the center jet 

region. 

Figure 4.11 shows the radial equivalence ratio profiles at Z/d =20, 40 and 80 for various 

separation distances with same momentum ratio MR=0.39. It is observed that the radial 

equivalence ratio reaches quite combustible range quickly for all cases even at Z/d=40. 

This might be attributed the fact that the mixture of the jets fills the domain up in the 

confined multiple jets, thus the main source of jet dilution is the mixture of the jets, not 

the surrounding fluid that is different from the jet fluids. Therefore, the jet mixes with 

other jet by the interaction between jets as same way in unconfined multiple jets and 

simultaneously entrains the mixture of the jets by re-circulating flow, which is the same 

effect of mixing with other jet again in confined multiple turbulent jets. Consequently, 

the mixing is enhanced by both of interaction between jets and entraining re-circulating 

flow of the mixture of the jets. As a result, the concentration can remain similar level, and 

reach the local equilibrium state very quickly over the domain in confined multiple jets. It 

is observed that the case of moderate separation distance S/d=8 shows nearly flat shape of 

radial equivalence ratio profiles even at Z/d=40, which indicates the well mixing in the 

domain in views of combustion. On the other hand, the highest separation distance 

S/d=12 shows the highest equivalence ratio near the region of center jet flow at Z/d=20 

and 40 because mixing between jets at upstream region is less with large separation 

distance as explained in unconfined multiple jets, and the case of S/d=4 is in between two 

cases. This result is quite interesting because interaction between jets is strongly 

promoted as the separation distance decreases, whereas dilution of the jet is enhanced for 

large separation distance in the unconfined multiple turbulent jets according to the 

previous work on unconfined multiple turbulent jets [37]. Thus, it is expected that the 
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case of small separation distance S/d=4 shows well mixing and flat radial equivalence 

ratio profiles.  

However, it should be noted that the interaction between jets occurs intensively with 

small separation distance while the entrainment of re-circulating flow of the jet mixture is 

less because the area of re-circulating flow region is formed narrowly as shown in Figure 

4.10. On the other hand, wide re-circulating flow region exists in the center jet region for 

the case of large separation distance while the interaction between jets is weak at 

upstream region. Therefore, it is believed that the entrainment of jet mixture is stronger 

than the case of small separation distance before merging distance, and the intensity of 

interaction is between the cases of small and large separation distance with moderate 

separation distance. As a result, the entrainment of jet mixture and interaction between 

jets occur very ideally with moderate separation distance.   

In terms of the homogeneous combustion, the reaction should be delayed to further 

downstream region of the domain, not near the region of the jet exit. For this purpose, the 

jets are sufficiently diluted by the surrounding fluid before they react in real furnace. 

Therefore, the separation distance should be sufficiently large to avoid early reaction 

between jets. In addition, the large separation distance is preferable to form large scale of 

re-circulating flow region over the domain for concentration fields to reach the local 

equilibrium state quickly over the domain in confined multiple jets. 
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Figure 4.10: The radial stream-wise velocity profiles of confined multiple turbulent jets (a) Z/d=20 (b) 

Z/d=40 (c) Z/d=60 and (d) Z/d=80 for S/d=4, 8 and 12 with momentum ratio MR=0.39. 
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Figure 4.11: The radial equivalence ratio profiles of confined multiple turbulent jets at a) Z/d=20 (b) 

Z/d=40 (c) Z/d=60 and (d) Z/d=80 for S/d=4, 8 and 12 with momentum ratio MR=0.39. 
 

 

 

 

 

 



 

65 

4.2.2.3. Momentum Ratio Effects on multiple turbulent jets 

The scaled centerline stream-wise velocity and concentration in the center jet for various 

momentum ratio MR=0.39, 1.03 and 1.57 with same separation distance S/d=10 are 

shown in Figure 4.12 and 4.13. It is observed from Figure 4.12 that the scaled centerline 

velocities show similar patterns for various momentum ratios, the value of scaled 

centerline velocity initially shows the trend of the free single jet and then decreases along 

with the axial distance after merging point where the center jet begins to be affected by 

the side jets. This might be thought that the jets act like a single jet before merging other 

jets, and then the turbulent dissipation occurs actively due to confinement, thus the jets 

lose momentum quickly. Another observation is that the value of scaled centerline 

velocity decreases with decrease of momentum ratio MR in order, and the re-circulating 

flow regions are found with MR=0.39, which indicates that the effect of the side jets on 

the center jet becomes more significant with decrease of momentum ratio.  
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Figure 4.12: The scaled centerline stream-wise velocity in the center jet of confined multiple 
turbulent jets for MR=0.39, 1.03 and 1.57with separation distances S/d=10. 

 

It is seen from Figure 4.13 that all cases show similar trend of the scaled centerline 

concentration in the center jet. The scaled centerline concentration initially follows the 

path of the unconfined single jet, and deviate from the path after about Z/d=40 where the 

side jets begins to affect the center jet. After the deviation point, the value of scaled 



 

66 

centerline concentration is nearly proportional to the scale factor (Z-Zo)/d, which means 

that the centerline concentration remains nearly constant after Z/d=40 for all cases. This 

can be attributed the fact that the mixture of the center and side jets fills the domain, thus 

the concentration is nearly constant in the middle of the domain.   

Both of the scaled centerline stream-wise velocity and concentration show the larger 

decay rate with decrease of momentum ratio as shown in Figure 4.11. It might be thought 

that radial spreading of the jets is more enhanced with low momentum ratio because the 

momentum of the side jets increases with lower momentum ratio, thus the side jets with 

high momentum promote the entrainment of mixture of the jets. As a result, the center jet 

loses momentum quickly, and shows lower concentration with lower momentum ratio.  
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Figure 4.13: The scaled centerline concentration in the center jet of confined multiple turbulent jets 
for MR=0.39, 1.03 and 1.57 with separation distances S/d=10. 

 

The radial stream-wise velocity profiles at Z/d=20, 40, 60 and 80 for various momentum 

ratios MR=0.39, 1.03 and 1.57 with same separation distance S/d=10 are shown in Figure 

4.14. It is observed that the jets merge into the center jet and the peak of velocity is 

located at the center jet, and becomes flat at further downstream region for MR=1.03 and 

1.57. On the other hand, the peak of velocity appears at the center of side jets, and the 

center jet lose momentum quickly and then negative velocity region is shown at Z/d=80 

for MR=0.39. For large momentum ratio, the jets merge into one jet so early that the jets 

act like the confined single jet, hence the region of re-circulating flow is distributed 
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narrowly near the walls as seen in Figure 4.14. On the other hand, the flow pattern from 

the side jets to the center jet is established because of high momentum of the side jets for 

small momentum ratio, thus the region of re-circulating flow is distributed widely at the 

center region.  

Figure 4.15 shows the radial equivalence ratio profiles of confined turbulent jets at 

Z/d=20, 40, 60 and 80 for various momentum ratios with separation distance S/d=10. It is 

observed that low MR case shows quite flat radial equivalence ratio profiles and reaches 

the local equilibrium state very quickly, whereas other two cases show similar trend.  

In general, the entrainment of surrounding fluid is enhanced for low MR while the mixing 

between jets is promoted for high MR In unconfined multiple jets [37], which is also true 

in the confined multiple jets. However, the mixing between jets in the confined multiple 

jets is achieved by both interaction between jets and entrainment of the mixture of the jets. 

Considering the mixing characteristics of confined multiple jets, the interaction between 

jets is enhanced because the jets merge into one jet so early that the jets act like the 

confined single jet while the region of re-circulating flow is distributed narrowly near the 

walls for large momentum ratio. On the other hand, the entrainment of the jets is 

promoted for small momentum ratio due to high momentum of the side jets; consequently 

the jets can entrain more mixture of the jets. In addition, the mixing in the domain is 

more enhanced with the aids of the widely distributed re-circulating flow region of 

mixture for small momentum ratio. Therefore, the radial equivalence ratio profiles can 

converge to equilibrium state quickly and show well mixing patterns in the domain. It is 

noted that the radial velocity and equivalence ratio profiles become identical for all cases, 

and converge equilibrium state after Z/d=80. 

Based on above results, it can be concluded that high momentum ratio between jets is 

preferable for large separation distance to enhance interaction between jets, whereas 

lower momentum ratio is preferable for small separation distance to promote the re-

circulating flow for better mixing in multiple turbulent jets with the configuration used in 

this study. In addition, the combination of higher momentum ratio and small separation 

distance should be avoid to obtain the homogeneous combustion because of strong 

interaction between jets, hence early reaction at upstream region.  
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Figure 4.14: The radial stream-wise velocity profiles of confined multiple turbulent jets at (a) Z/d=20 

(b) Z/d=40 (c) Z/d=60 and (d) Z/d=80 for MR=0.39, 1.03 and 1.57 with separation distance S/d=10. 
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Figure 4.15: The radial equivalence ratio profiles of confined multiple turbulent jets at (a) Z/d=20 (b) 

Z/d=40 (c) Z/d=60 and (d) Z/d=80 for MR=0.39, 1.03 and 1.57 with separation distance S/d=10. 
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CHAPTER 5 
 

Experimental methods for reacting flows 
 

 

5.1. Experimental Setup 

5.1.1. Experimental Setup 

Based on previous guiding principles, a furnace has been designed to increase the 

efficiency within the strict constraints on NOx, CO, total unburned hydrocarbons (THC) 

and particulate emissions. A newly constructed mid-sized laboratory furnace is illustrated 

in Figure 5.1. It is noted that these experimental study were done with Dr. Hyoseok Lee 

[1]. The furnace is divided into upper and lower chambers in order to access the inside of 

the furnace. The combustion takes place inside a cylindrical chamber (840 mm diameter 

and 1170 mm height). The nozzle of the fuel jet is located in the center of the reaction 

chamber ceiling, and four air nozzles are located in a square pattern around the fuel jet 

and are 280 mm apart from the fuel jet. The separation distance between the fuel and 

oxidizer jet is fixed in this study. This separation distance is intended for enhancing 

entrainment of product gases to achieve the homogeneous combustion condition. 

According to previous work, entrainment can be promoted at large separation distance 

[37]. In addition, the jets are issued vertically down from the ceiling for promoting 

recirculation of hot product gases with aids of buoyancy effect. Therefore, it can be 

expected that strong internal recirculation of product gases is achieved by buoyancy 

effect and large separation distance between the fuel and oxidizer jets. Six exhaust vents 

are located in the bottom of the reaction chamber. After passing through the exhaust 

vents, the exhaust gas travels through the co-annular channel between the inner and the 

outer shells and is extracted into a hood installed on the top of the furnace.  

The heat sink with 810 mm diameter is located at the bottom surface of the furnace and 

cooling water flows inside the heat sink. This acts as the furnace load. The flow rate of 
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the cooling water (250 cm3/s) was controlled by flow-meter and the flow-in and out 

temperature was recorded. Therefore, the amount of heat absorption from the combustion 

furnace can be calculated using flow rate and temperatures. The effective surface area of 

the heat sink is about 0.5 m2. 

Along the circumference of the furnace, three sets of five sampling ports are made of 

ceramic tubes. Sampling probes are inserted to measure the temperature and the reacting 

gases. The behavior of flame in the reaction chamber is visually monitored through the 

window opening in the center of the lower chamber of the furnace. Because the window 

is made of 3.175 mm quartz plate, the radiation emission in the spectral range from UV to 

IR passed through the window and can be captured by a photo detector. The shop 

laboratory air and pure oxygen are mixed to obtain the desired enrichment of oxygen in 

the oxidizer. The flow meters are calibrated and the four oxidizer flow streams are 

equally distributed by adjusting valves. 

 

5.1.2. Measurement Setup 

The spatial distribution of temperature and gas compositions (total unburned hydrocarbon, 

oxygen, carbon monoxide, carbon dioxide and nitric oxide) in the reaction zone and 

additionally total ultraviolet (UV) emission from the reaction zone are measured under 

various conditions. There are twelve K-type thermocouples on the wall and the ceiling of 

the reaction chamber to measure the surface temperature of the reaction zone. 

Temperature and gas composition in the reaction zone are sampled by using sampling 

probe made of quartz tube. The sampling probes are designed based on aerodynamic 

quenching techniques [63]. The nozzle on the tip of the probe is tapered to 1.5 mm ID. 

While K-type thermocouple is installed, the probe can be applied for both temperature 

measurement and gas sampling. A metal bellows pump is used to extract gas through the 

sampling nozzle. The sampled gas in the suction line passes through a particulate filter 

and is distributed into two lines. The first line is connected to the total hydrocarbon 

analyzer and heated to avoid condensation of water vapor. These measurements are on a 

wet basis. The second line is connected to the other analyzers and passed through a cold 

bath and a water trap to remove water vapor. These gases are measured on a dry basis. 
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A modified flame ionization detector (Shimadzu Gas Chromatograph GC-3BF) is used to 

measure the total hydrocarbons (THC) contained in the sampling gas [64]. To measure 

the concentration of oxygen, carbon monoxide, and carbon dioxide, SIEMENS 

Ultra/Oxymat 6E is used. It consists of two parts: a non-dispersive infrared analyzer for 

measuring carbon monoxide and carbon dioxide, and a paramagnetic oxygen analyzer for 

the oxygen measurement. The nitric oxide concentration is measured by a 

chemiluminescence analyzer (Thermo 42C High Level NO-NO2-Nox analyzer). A 

calibration gas (10.03 % CO2, 4.04 % CO, 22.98 % CH4, 1.99 % H2, 1.01 % N2 and He as 

balance) is used to calibrate CO, CO2 and CH4. A calibration gas of 0.21 % CO, 1.01 % 

CH4 and N2 as balance is used to calibrate low span of CO and CH4. A calibration gas of 

57.6 ppm NO and N2 as balance is used for NO analyzer and air is used for O2 analyzer, 

while N2 is used as a zero gas. All gas compositions are reported on volume basis in this 

study. 

 

5.1.3. Experimental Procedure 

Since the furnace configuration used in this work has no preheating, the inlet temperature 

of the fuel and oxidizer flows into the reaction chamber is about room temperature. The 

oxidizer is heated and diluted by internal exhaust gas recirculation since the nozzles are 

located on the ceiling, and the jets are injected downward. 

Natural gas supplied by DTE Energy in Ann Arbor, Michigan is used as the fuel. Typical 

natural gas component supplied by DTE Energy is 89.5 ~ 92:5 % methane, 5.1 ~ 2:0 % 

ethane, 2.1 ~ 0.7 % propane, 1.6 ~ 0.5 % butane, 0.6 ~ 1.9 % nitrogen and 1.1 ~ 2.4 % 

carbon dioxide. The heat of combustion is about 32~ 35 MJ/m3 and the flammability 

range is 5~15 %. 

In these experiments, the flow rate of fuel is fixed to 1900 cm3/s and the flow rate of 

oxidizer is adjusted for various equivalence ratios and oxygen fractions. The diameter of 

the circular fuel nozzle is 15.2 mm, the velocity is 10.4 m/s and the flow momentum is 

0.0142 N. Three circular air nozzles of varying diameters are used (7.94, 15.9 and 31.8 

mm). By changing the air nozzle diameter or the oxygen enrichment in the air streams, 

the experiments can be performed at various conditions of the oxidizer velocity (or flow 

momentum) and/or equivalence ratio. In this study, the condition of overall equivalence 
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ratio is in the range of Φoverall = 0.8, 0.9, 1.0 and 1.1. By mixing oxygen with air, the 

oxygen fraction in the oxidizer jet is adjusted to XO2;ox =0.21, 0.30 and 0.40 for the 

oxidizer. The parametric conditions for measuring the temperature or the gas composition 

are listed in Table 5.1, where Φoverall is overall equivalence ratio, XO2;ox oxygen fraction in 

the oxidizer, Dox the diameter of the oxidizer nozzle, Vox the exit velocity from each 

oxidizer nozzle, and Jox the flow momentum of each oxidizer nozzle. In the measurement 

column, 'T' is for the temperature measurement, 'U' is for the UV emission intensity 

measurement, 'P' is the visual image taken, and 'G' is the gas sampling for gas 

composition analysis, respectively. 

To ignite the furnace, the fuel stream is heated with a ceramic igniter. In the beginning 

stage, the color of flame is yellow and then shifts to blue, which indicates that the flame 

is unstable and has the potential to be extinguished. After the furnace wall is fully heated 

to the auto-ignition temperature of the fuel, the reaction transitions to the homogeneous 

combustion mode and becomes stable. After the stable conditions are achieved, the 

temperature and gas composition are measured. The coordinate used to locate the 

measurement point is defined in Figure 5.2. The Y-direction passes through the center of 

the oxidizer nozzle with the center of the fuel nozzle as the origin. The X-direction is 

rotated 45 degrees from the Y-direction. The measurement positions for temperature and 

gas sampling are the matrix made by X = 0, 75, 150, 230, 305 mm and Z = 220, 430, 640, 

850, 1060 mm; and by Y = 0, 75, 150, 230, 280 mm and Z = 220, 430, 640, 850, 1060 

mm, where X = 0 mm (or Y = 0 mm) is the location of the fuel nozzle and Y = 280 mm is 

the location of the oxidizer nozzle. The thermocouples are installed on the wall at Z = 

220, 430, 640, 850, 1060 mm of X and Y direction (i.e. X = 420 mm, and Y = 420 mm).  

In the homogeneous combustion mode, the fluctuation of temperature is minimal, so the 

temperature data is averaged over the test duration. The response of the gas analysis 

system is slow because of the length of the suction line connecting the sampling probe to 

the gas analyzers. The gas composition data is averaged after all the measurements 

converge to a stable value. In order to verify the stability of the reaction, UV emission 

from the reaction zone is measured and the visual appearance of the flame is also 

recorded. In the homogeneous combustion regime, it has been reported that conventional 

flame detectors can not work normally [8, 65]. OH radical (radiation bands of 281.1 nm 
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and 306.4 nm) associated with chemical reaction is the main source of UV emission in a 

normal flame. However, the concentration of the OH radical is significantly lower in 

homogenous combustion mode than in conventional flame [7, 65]. From this idea, the 

intensity of the UV emitted from the flame zone is considered as a standard measurement 

to evaluate the activation of homogenous combustion. 

In order to measure the UV emission, Si photodiode (Hamamatsu S1226-5BQ) and UV 

filter (HOYA U-340) are used. Radiation emission from the reaction zone passes through 

the fused quartz plate (GE Type 124, 1/8 in thickness) of the window beneath the furnace 

to the UV filter. The transmittance of the quartz plate and the UV filter, and the 

sensitivity of the photodiode are summarized in Figure 5.3. Signals from all the 

thermocouples, gas analyzers and UV photodiode are collected by a data acquisition 

device about every 0.5 to 1 sec. 
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Figure 5.1: (a) The definition of coordinates and data measuring points and the structure of (b) 

furnace interior and exterior, and (c) heat sink 
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Figure 5.2: Schematic diagram of the gas analysis 
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Figure 5.3: (a) Spectral sensitivity of the photodiode (Hamamatsu S1226-5BQ), (b) spectral 
transmittance of UV filter (HOYA U-340) (c) spectral transmittance of quartz plate (GE Type 124) 

and (d) total transmittance. 
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Case No. dox (mm) XO2,ox Φoverall Vox (m/s) Jox (N) Measurement

D1O30E090 
D1O30E101 
D1O30E100 
D1O30E109 
D1O31E110 
D1O40E089 
D1O41E102 
D1O40E109 
D2O21E081 
D2O21E090 
D2O21E100 
D2O21E103 
D2O21E111 
D2O29E091 
D2O30E091 
D2O30E102 
D2O30E101 
D2O30E110 
D2O31E110 
D2O40E090 
D2O41E103 
D2O41E102 
D2O40E111 
D3O21E079 
D3O21E090 
D3O21E099 
D3O21E111 
D3O30E090 
D3O29E099 
D3O30E098 
D3O31E110 
D3O31E113 
D3O39E090 
D3O39E102 
D3O41E111 

7.94 
7.94 
7.94 
7.94 
7.94 
7.94 
7.94 
7.94 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
15.9 
31.8 
31.8 
31.8 
31.8 
31.8 
31.8 
31.8 
31.8 
31.8 
31.8 
31.8 
31.8 

0.30
0.30
0.30
0.30
0.31
0.40
0.41
0.40
0.21
0.21
0.21
0.21
0.21
0.29
0.30
0.30
0.30
0.30
0.31
0.40
0.41
0.41
0.40
0.21
0.21
0.21
0.21
0.30
0.29
0.30
0.31
0.31
0.39
0.39
0.41

0.90 
1.01 
1.00 
1.09 
1.10 
0.89 
1.02 
1.09 
0.81 
0.90 
1.00 
1.03 
1.11 
0.91 
0.91 
1.02 
1.01 
1.10 
1.10 
0.90 
1.03 
1.02 
1.11 
0.79 
0.90 
0.99 
1.11 
0.90 
0.99 
0.98 
1.10 
1.13 
0.90 
1.02 
1.11 

71.04 
62.83 
63.31 
57.81 
56.28 
53.61 
45.93 
43.63 
28.14 
25.15 
22.78 
22.03 
20.48 
17.98 
17.58 
15.58 
15.67 
14.33 
14.11 
13.36 
11.45 
11.46 
10.76 
7.16 
6.29 
5.72 
5.12 
4.52 
4.09 
4.12 
3.50 
3.39 
3.39 
3.02 
2.65 

2.92E-01 
2.29 E-01 
2.32 E-01 
1.94 E-01 
1.84 E-01 
1.69 E-01 
1.24 E-01 
1.12 E-01 
1.81 E-01 
1.45 E-01 
1.19 E-01 
1.11 E-01 
9.60 E-02 
7.49 E-02 
7.16 E-02 
5.63 E-02 
5.69 E-02 
4.76 E-02 
4.62 E-02 
4.19 E-02 
3.08 E-02 
3.09 E-02 
2.72 E-02 
4.69 E-02 
3.62 E-02 
3.00 E-02 
2.40 E-02 
1.89 E-02 
1.55 E-02 
1.57 E-02 
1.13 E-02 
1.06 E-02 
1.08 E-02 
8.53 E-03 
6.63 E-03 

T, U, P 
T, U, P 
T, G, U 
T, U, P 
T, G, U 
T, U, P 
T, U, P 
T, U, P 
T, U, P 
T, U, P 
T, U, P 
T, G, U 
T, U, P 
T, U, P 
T, G, U 
T, U, P 
T, G, U 
T, G, U 
T, U, P 
T, U, P 
T, U, P 
T, G, U 
T, U, P 
T, U, P 
T, U, P 
T, U, P 
T, U, P 
T, U, P 
T, G, U 
T, U, P 
T, G, U 
T, U, P 
T, U, P 
T, U, P 
T, U, P 

 
Table 5.1: Experiment test conditions  
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CHAPTER 6 
 

Experimental results and discussion of reacting flows 
 

 

6.1. Overall characteristics of combustion 

6.1.1. UV emissions and visual images 

In general, it has been known that a bright flame with large fluctuation can be easily 

observed in the non-homogeneous combustion (conventional combustion) which emits a 

large amount of UV emission from OH radicals and others that are abundant in a flame 

front. On the other hand, the glowing reaction zone without visible flame and low UV 

emission with small fluctuation are characterized as homogeneous combustion. Therefore, 

the visible flame image and UV emission intensity can be important criterions to judge 

for homogeneous combustion condition.  

Figure 6.1 shows the visible images of combustion and its corresponding UV emission 

intensities in the range of injection oxygen concentration, XO2;ox = 0.21 ~ 0.40 and overall 

equivalence ratio, Φoverall = 0.9 ~ 1.1 for oxidizer jet diameter, dox =7.94, 15.9 and 31.8 

mm. The homogeneous combustion modes are marked by the solid line, and transient 

modes between the homogeneous and non-homogeneous combustion conditions are 

indicated by dashed line in Figure 6.1. It is observed from Figure 6.1 that the 

homogeneous combustion mode shows quite smaller intensities of UV emission and 

fluctuations than those of the non-homogeneous combustion modes. The intensities of 

UV emission for homogeneous combustion modes are in the range of 0.016 ~ 0.054 (a.u.) 

with standard deviation 1.8 ~ 3.9 % of the mean intensity, while the intensities of UV 

emission for non-homogeneous combustion mode are in the range of 0.07 ~ 0.59 (a.u.) 

with standard deviation 17 ~ 36 % of the mean intensity.  

Based on the visual images and UV emissions, the homogeneous combustion condition
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  Figure 6.1: Visual images and UV emission intensities for (a) dox = 7.94 mm, (b)  dox = 15.9 

mm and (c) ) dox = 31.8 mm 
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for normal air injection in the oxidizer jets, XO2,ox = 0.21, is obtained in the range of the 

overall equivalence ratio, Φoverall = 0.8 ~ 1.1 with dox = 15.9 mm, and Φoverall = 1.0 ~ 1.1 

with dox = 31.8 mm. It is noted that a stable reaction is not achieved for dox = 7.94 mm 

with XO2,ox = 0.21 because the oxidizer jet momentum is so high that the flame easily 

blows out. It is believed that the furnace temperature falls lower than the auto-ignition 

temperature for these cases. For oxygen enrichment in the oxidizer jets, XO2,ox = 0.30, the 

homogeneous combustion condition is observed in the range of the overall equivalence 

ratio, Φoverall = 0.9 ~ 1.1 with dox = 7.94 mm, and Φoverall = 1.0 ~ 1.1 with dox = 15.9 mm. 

However, the stable homogeneous combustion condition for XO2,ox = 0.40, could not be 

achieved within the range of experimental conditions covered in this work. Only transient 

condition can be obtained for XO2,ox = 0.40, which might be thought that dilution by 

product gases in the oxidizer jets is not enough to get the homogeneous combustion 

condition due to lack of sufficient momentum of the oxidizer jets. Thus, It would be 

recommended that the oxidizer jet diameter should be smaller than 7.94 mm to achieve 

the stable homogeneous combustion for XO2,ox = 0.40. 

It might be concluded that it is easier to obtain the homogeneous combustion condition 

for smaller diameter of the oxidizer jet, hence higher momentum of the oxidizer jet with 

same oxygen enrichment and the overall equivalence ratio. Thus, in case of oxygen 

enrichment combustion, the oxidizer jet with smaller diameter needs to be used to obtain 

the homogeneous combustion condition for enhancing dilution of the jets by recirculation 

of product gases.  

 

6.1.2. Temperature profiles 

The centerline temperatures of the fuel and oxidizer jets along with the axial distance for 

homogeneous combustion condition are shown in Figure 6.2. It is seen that the centerline 

temperature increases quickly at quite upstream region, Z/H=0.29, even without 

preheating, and shows flat profiles from middle range to bottom of the furnace. This 

supports that there is strong recirculation of product gases in the furnace with the aid of 

buoyancy effects and uniformity of combustion. The centerline temperatures of fuel jet 

are quite similar for all cases, while oxidizer jet centerline temperatures become flat 

faster with smaller oxidizer jet diameter. For smallest oxidizer jet diameter, dox=7.94 mm, 
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the centerline temperature of the oxidizer jet shows flat profile quickly from quite 

upstream region even at Z/H=0.15, whereas the increase of temperature is slower for 

dox=31.8 mm than other oxidizer jet diameters. This might be attributed the fact that the 

higher momentum of the oxidizer jet could enhance the jet entrainment and mixing 

intensity, and oxygen concentration in re-circulated flue gas also increases. Therefore, the 

reaction rates increase near the oxidizer jet exit region, as a result, the temperature 

increases [66].  
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Figure 6.2: The centerline temperature of the (a) fuel and (b) oxidizer jet for homogeneous 

combustion condition. 
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Figure 6.3 shows the radial temperature profiles for homogeneous combustion condition. 

It can be seen from Figure 6.3 that the overall profiles of radial temperature are quite 

uniform and flat, which means that the reaction occurs widely and uniformly. It is also 

observed that the cases of dox=31.8 mm show less uniformity of temperature at upstream 

region of the furnace because of low momentum of the oxidizer jet and hence less mixing 

intensity. Another observation is that the temperature is high at upstream region near the 

jet exit, and then becomes lower along with the axial distance. It might be thought that 

the jets are less sufficiently diluted by product gases near the region of jet exit, thus the 

reaction occurs with high fuel and oxygen concentrations. However, the dilution of the 

jets increases to lower the reaction rate along with the axial distance, and hence the 

temperature decreases. It may be concluded that the sufficient dilution of the jets to lower 

the reaction rate is essential to obtain the homogeneous combustion mode, and uniformity 

of reaction can be enhanced by strong recirculation of product gases. As a result, the 

quite uniform and flat temperature profiles can be seen in homogeneous combustion 

mode without hot spots in temperature. 

 

6.1.3. Gas composition profiles 

Figure 6.4 shows the centerline THC and oxygen concentrations in the fuel and oxidizer 

jets, respectively. It is observed that the THC decreases very sharply along the axial 

distance due to dilution by product gases and combustion while the oxygen concentration 

in the oxidizer jet also decreases fast up to middle region of the furnace even with high 

oxygen injection cases. However, oxygen concentration in the oxidizer jet remains nearly 

constant at the lower region of the furnace. It is also observed that the radial oxygen 

concentration remains almost constant after Z/H=0.44 for some cases as shown in Figure 

6.4. This can be attributed the fact that the oxidizer jet momentum is always higher than 

that of the fuel jet, thus the oxidizer jet can easily penetrate into the region of the fuel jet. 

In addition, the recirculation of the jet flow occurs strongly after some axial distance 

from the jet exit due to the confinement effect which makes the flow toward the fuel jet. 

As a result, the oxygen concentration can remain nearly constant in the lower part of the 

furnace. Another reason may be that the flow of the oxidizer jet bounces from the bottom 

of the furnace, and can reach up to middle range of the furnace due to high momentum of 
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the oxidizer jet for small oxidizer jet diameter or lean cases.  
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Figure 6.3: The radial temperature profiles for the homogeneous combustion condition at (a) 
Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) Z/H=0.72 

 

The radial THC and oxygen concentration at different axial distance are shown in Figure 

6.6 and 7, respectively. It can be seen that the THC concentration decays slowly, and the 

oxygen concentration spreads less laterally with lower decay rate of oxygen 

concentration in the centerline of oxidizer jet decays for dox=31.8 mm with XO2;ox=0.30. 

This might be thought that the oxidizer jet momentum decreases with increase of 
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diameter and injection oxygen concentration, thus the penetration of the oxidizer jet into 

the region of fuel jet flow becomes weak and hence less intensity of recirculation from 

the oxidizer jet. As a result, the THC concentration decays slowly and oxygen 

concentration spreads less in lateral direction. It is noted that the THC concentration is 

not detected at Z/H=0.72 for all cases as shown in Figure 6.6 (d). 
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Figure 6.4: The centerline of (a) THC in the fuel jet and (b) oxygen concentration in the oxidizer jet 

for homogeneous combustion condition. 
 

Figure 6.5 shows the carbon dioxide concentrations in the centerline of fuel and oxidizer 

jets for homogeneous combustion condition. It is observed that the carbon dioxide 



 

 87

concentration in the fuel and oxidizer jets increases with a certain slope along with the 

axial distance and then remains nearly constant. This means that recirculation of product 

gases occurs very well near upstream region, and quite uniform reaction is achieved in 

the latter region of the furnace. In addition, the radial profiles of carbon dioxide are really 

flat from the middle domain of the furnace as shown in Figure 6.8, which is the another 

evidence indicating the uniform and wide range of reaction in the furnace. It is noted that 

the cases of XO2;ox=0.21 shows less carbon dioxide concentration because of low injection 

oxygen concentration in the oxidizer jet. 
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Figure 6.5: The centerline carbon dioxide concentration of the (a) fuel and (b) oxidizer jet for 

homogeneous combustion condition. 
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Figure 6.6: The radial THC concentration profiles for the homogeneous combustion condition at (a) 
Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) Z/H=0.72 
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Figure 6.7: The radial oxygen concentration profiles for the homogeneous combustion condition at 
(a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) Z/H=0.72 
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Figure 6.8: The radial carbon dioxide concentration profiles for the homogeneous combustion 
condition at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) Z/H=0.72 
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6.1.4. Pollutant emissions 

The efficient methods to reduce NOx emission are based on technologies to reduce either 

peak flame temperature or the residence time and oxygen concentration in high 

temperature zones [17, 18]. The homogeneous combustion can achieve a large reduction 

of NOx emissions by avoiding peaks of operating temperature and by reducing the 

concentration in oxygen through the high internal recirculation. The high internal 

recirculation leads to a significant dilution of the oxidizer by the combustion products 

before the reaction. In conventional burner and furnace systems, such pre-heating of the 

air leads to very high local temperatures in the flame, and therefore to high NOx 

emissions. The temperature profile induced by homogeneous combustion is relatively flat 

and uniform. The emissions of nitrogen oxides strongly influenced by the local 

temperature in the flame are thus very greatly reduced and the homogeneity of the 

temperature in the furnace is improved. As a result of the reduction of temperature peaks 

in the flame, the mean temperature level of the furnace zone can be increased, without 

leading to local hot spots in the vicinity of the burners [6, 8]. 

Figure 6.9 shows the radial NO emission profiles at Z/H=0.72, where is close to exhaust 

vents, for the homogeneous combustion condition. It is clearly seen from Figure 6.9 that 

quite low NO emission with one digit level is achieved for all homogeneous combustion 

conditions in this experimental work. The main reason for this excellent result stems from 

the well known circumstance, that thermal NO formation is extremely sensitive to flame 

temperature peaks and these are now cut away in homogeneous combustion mode. In 

addition, the other NO formation mechanisms are positively modified, as prompt NO 

depends on radicals that are abundant in a flame front, however, much reduced in 

homogeneous combustion mode [7].  

For various performing conditions, the NO emissions in the exhaust gas are summarized 

in Figure 6.10. All of the NO concentration data are converted to 3 % oxygen on a dry 

basis. The NO emission data in the current experiments are compared with the previous 

researches of the homogeneous combustion burners in Figure 6.10. The data of the 

current work are located in low furnace temperature region due to the no air-preheat. 
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Figure 6.9: The radial NO emission profiles for the homogeneous combustion condition at Z/H=0.72 
 

 

 
 

Figure 6.10: NOx emission data of the current work compared with previous results from literature. 
NOx is corrected to 3 % oxygen on a dry basis. NO data are used in the current work, and NOx data 
are used in the others. The current works ●, and the compared data with the fuel used: natural gas 

([51] ○, [67] □, [68] △, [24] ▽), and methane ([69] ◁, [70] ▷, [31] ◊, [30] +). The representative 
working domains for the air staged jet-burner and the radiant tube were adopted from [51]. 
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The radial carbon monoxide profiles at different axial distance for homogeneous 

combustion condition are shown in Figure 6.11. It is observed that the CO concentration 

is high at the region of the fuel jet and interface between the fuel and oxidizer jets. The 

high CO concentration at the region of the fuel jet is related to overly rich equivalence 

condition, as expected. On the other hand, less mixing with sufficient oxidizer or 

insufficient time for complete combustion due to high momentum of the jets is 

responsible for high CO concentration at the interface region between the fuel and 

oxidizer jets. It is also found that high CO concentration region moves with the high 

temperature region, and decreases after some axial distance. This might be thought that 

the reaction occurs under the condition that the jets are less sufficiently diluted by 

product gases at upstream region, whereas the dilution of the jets increases at further 

downstream region because of large scale of recirculation of the flow and hence the 

production of CO decreases. 

The cases of dox=31.8 mm with XO2;ox=0.30 show higher CO concentration than other 

cases, which is the same trend as the THC concentration profiles. It might be thought that 

the oxidizer jet momentum decreases with increase of diameter and injection oxygen 

concentration, thus the dilution of the jets becomes weak and reaction occurs with high 

fuel and oxygen concentration.  
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Figure 6.11: The radial carbon monoxide concentration profiles for the homogeneous combustion 
condition at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) Z/H=0.72 

 

 

6.2. The effects of Control parameters 

In this section, the effects of the experimental control parameters for homogeneous 

combustion are presented. For more detailed analysis, extensive experimental studies on 

the effects of the oxidizer jet diameter, inlet oxygen concentration, and overall 

equivalence are performed in terms of temperature and gas compositions.  

 

6.2.1. The effect of oxidizer jet diameter 

The jet momentum plays a key role in achieving the homogeneous combustion condition 

as investigated in previous section. The most direct way to change the jet momentum is to 

change the size of the jet diameter. For this purpose, experimental studies are performed 

on three different sizes of the oxidizer jet diameter, dox=7.94, 15.9 and 31.8 mm, with 

same overall equivalence ratio, Φoverall =1.0, and inlet oxygen concentration in the 

oxidizer jet, XO2,ox =0.30, whereas the diameter and flow rate of the fuel jet is kept same 

in this study to avoid the complexity. The properties of three cases are summarized in 

Table 6.1. 
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Case No. dox (mm) XO2,ox Φoverall Vox (m/s) Jox (N) Mode.
D1O30E100 7.94 0.30 1.00 63.31 2.32 E-01 H 
D2O30E101 15.9 0.30 1.01 15.67 5.69 E-02 H 
D3O29E099 31.8 0.29 0.99 4.09 1.55 E-02 T 

 
Table 6.1: The properties of three sizes of the oxidizer jet diameter. 

  

 

6.2.1.1. Temperature 

Jet Centerline Temperature  

Figure 6.12 shows the centerline temperature of the fuel and oxidizer jets for different 

oxidizer jet diameters. It is observed that the centerline temperatures of the fuel and 

oxidizer jet increase faster with smaller oxidizer jet diameter. This trend is especially 

clearly shown in the oxidizer jet centerline. It might be attributed the fact that the 

momentum of oxidizer jet increases with smaller diameter, thus entrainment of product 

gases by the jets is enhanced. As a result, the rise of the centerline temperature is larger 

with smaller oxidizer jet diameter at the upstream region of the furnace. 

 

Radial Temperature Profiles along with axial distance 

The radial temperature profiles along with the various axial distances for different 

oxidizer jet diameters are shown in Figure 6.13.  

It is observed that the temperature is high at upstream region near the jet exit, and then 

becomes lower along with the axial distance. This might be thought that the jets are less 

sufficiently diluted by product gases near the region of jet exit, thus the reaction rate is 

still high. However, the dilution of the jets increases to lower the reaction rate along with 

the axial distance, and hence the temperature decreases. It is observed that the 

temperature is lower for smallest oxidizer jet diameter than other cases. This might be 

attributed the fact that the recirculation of product gases occurs strongly with small 

oxidizer jet diameter because of increasing oxidizer jet momentum, and hence enhanced 

dilution of the jets. As a result, the reaction is delayed and temperature decreases due to 

enhanced dilution of the jets.  
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Figure 6.12: The centerline temperature of the (a) fuel and (b) oxidizer jet for different sizes of the 

oxidizer jet. 
 



 

 97

500

700

900

1100

0.0 0.2 0.4 0.6 0.8
Radial Distance, Y/R

T
em

p(
℃

), 
Z

/H
=0

.2
9

D1O30E100
D2O30E101
D3O29E099

 

500

700

900

1100

0.0 0.2 0.4 0.6 0.8
Radial Distance, Y/R

T
em

p(
℃

), 
Z

/H
=0

.4
4

D1O30E100
D2O30E101
D3O29E099

 
 

(a)     (b) 
 

500

700

900

1100

0.0 0.2 0.4 0.6 0.8
Radial Distance, Y/R

T
em

p(
℃

), 
Z

/H
=0

.5
8

D1O30E100
D2O30E101
D3O29E099

 

500

700

900

1100

0.0 0.2 0.4 0.6 0.8
Radial Distance, Y/R

T
em

p(
℃

), 
Z

/H
=0

.7
2

D1O30E100
D2O30E101
D3O29E099

 
 

(c)     (d) 
 

Figure 6.13: The radial temperature profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) Z/H=0.72 
for different sizes of the oxidizer jet 

 

6.2.1.2. Gas compositions 

Jet Centerline gas composition  

The THC (Total Hydrocarbons) concentration in the fuel jet centerline and oxygen 

concentration in the oxidizer jet centerline are shown in Figure 6.14. For the fuel jet 

centerline, the smallest oxidizer jet diameter shows the fast decay rate of the THC while 

other cases have similar values. However, the THC decays fast with decrease of the 

oxidizer jet diameter in the lower region of the furnace. The same trend is observed in 
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oxygen concentration in the oxidizer jet. Therefore, it can be concluded that both of the 

fuel and oxidizer jets decay faster as the oxidizer jet diameter decreases because of larger 

momentum of the oxidizer jet which promotes entrainment and dilution of the jets. 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
Axial Distance, Z/H

C
c/

C
o,

 T
H

C
 in

 th
e 

fu
el

 je
t

D1O30E100
D2O30E101
D3O29E099

 
(a) 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
Axial Distance, Z/H

C
c/

C
o,

 O
2 i

n 
th

e 
ox

id
iz

er
 je

t

D1O30E100
D2O30E101
D3O29E099

 
(b) 

 
Figure 6.14: The centerline (a) THC in the fuel jet and (b) oxygen concentration in the oxidizer jet 

for different sizes of the oxidizer jet. 
 

The scaled centerline THC in the fuel and oxygen concentration oxidizer jet for different 

oxidizer jet diameters are shown in Figure 6.15. In Figure 6.15, the centerline 

concentration is normalized by inlet concentration of each jet. The virtual origin is not 
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included in Figure 6.15 because the value of the virtual origin is generally small and 

negligible. It is clearly observed that the scaled THC in the fuel jet centerline decreases 

along with the axial distance, whereas the scaled oxygen concentration in the oxidizer jet 

increases. This indicates that the recirculation occurs from the oxidizer jet toward the fuel 

jet, thus the THC in the fuel jet can continue to decrease because the entrainment of 

product gases and inflow from oxidizer jet occur simultaneously. On the other hand, the 

oxygen concentration in the oxidizer jet initially decreases by entraining product gases 

like a free jet, and then decreases slowly or remains almost constant after the point where 

the recirculation of the jet flow occurs, which is the characteristic of the confined jet. 

Thus, the scaled values of the oxygen concentration in the oxidizer jet centerline increase 

along with the axial distance in the lower part of the furnace due to the confinement 

effect. 

Another observation is that the scaled value of the THC and oxygen concentrations 

becomes lower with smaller oxidizer jet diameter. In addition, the onset point of 

confinement effect appears earlier with small oxidizer jet diameter, Z/H=0.30, 0.44 and 

0.60 for dox=7.94, 15.9 and 31.8 mm, respectively. It might be attributed the fact that the 

recirculation of jet flow is enhanced and occurs early with increase of momentum under 

confined condition, and dilution of the jets is also promoted. Therefore, both of the fuel 

and oxidizer jets decay faster with decrease of the oxidizer jet diameter (increase of 

oxidizer jet momentum). 
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Figure 6.15: The scaled centerline (a) THC in the fuel jet and (b) oxygen concentration in the 

oxidizer jet for different sizes of the oxidizer jet. 
 

Jet entrainment 

For investigation of the jet entrainment, CO2 concentrations in the fuel and oxidizer jet 

centerline are shown in Figure 6.16. CO2 is one of the combustion products and a good 

gauge for jet entrainment. It is seen from Figure 6.16 that more CO2 is found in the 

centerline of the fuel and oxidizer jets with smaller oxidizer jet diameter, whereas the 

difference between cases is relatively small in the fuel jet centerline. On the other hand, it 

is clearly observed that more CO2 is found in the centerline of the fuel and oxidizer jets 

with smaller oxidizer jet diameter in order. This can be attributed the fact that the 

oxidizer jet momentum increases with decrease of the oxidizer jet diameter, and hence 

entrainment of product gases is promoted. Therefore, the CO2 concentration in the 

oxidizer jet centerline increases with smaller diameter thanks to strong recirculation of 

product gases.  

In terms of the fuel jet centerline, the flow rate and jet diameter are kept same for all 

cases and hence momentum is same. Thus, the amount of product gases entrained by the 

fuel jet can be assumed same for all cases in this study. However, the difference may 

occur between cases because of the effects of the oxidizer jet which has different 

diameters, inlet oxygen concentrations and momentums. In addition, the difference may 

also result from the effects of the combustion.  
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Figure 6.16: The centerline carbon dioxide concentration in the (a) fuel jet and (b) oxidizer jet for 

different sizes of the oxidizer jet. 
 

According to the scaled THC concentration in the fuel jet centerline, the onset point of 

recirculation is earlier with smaller oxidizer jet diameter. Thus, it might be thought that 

the smallest oxidizer jet diameter shows higher CO2 concentrations in the fuel jet 

centerline because of the strong recirculation of the jet flow and mixing from the oxidizer 

jet up to middle region of the furnace, whereas other cases show quite similar CO2 

concentrations because the recirculation of the jet flow begins later. In the more 

downstream region, the fuel jet can reach further downstream region of the furnace with 
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larger oxidizer jet diameter because of less momentum of the oxidizer jet. As a result, the 

reaction still occurs in further downstream region with larger oxidizer jet diameter, hence 

higher CO2 concentration. 

 

Radial gas composition profiles 

The radial THC concentration profiles for different oxygen enrichments are shown in 

Figure 6.17. The profiles are almost identical for all cases at the upstream region of the 

furnace because the diameter and flow rate of the fuel jet are kept same for all cases. 

However, the fuel jet begins to be affected by oxidizer jets for the smallest diameter after 

Z/H=0.29, which is corresponding to the onset point of recirculation of the jet flow. Thus, 

other cases show quite similar pattern and value of the THC up to this region, and then 

the middle size of oxidizer jet diameter starts to show less THC than the largest diameter 

after Z/H=0.44, which is also corresponding to the onset point of recirculation of the jet 

flow for the middle size of diameter. In overall, the THC concentration decays faster with 

smaller oxidizer jet diameter. It might be thought that the oxidizer jet momentum 

increases with decrease of the oxidizer jet diameter, and hence the fuel jet is able to 

penetrate into the region of the oxidizer jet more easily and further downstream region of 

the furnace.  
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Figure 6.17: The radial THC concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) 
Z/H=0.72 for different sizes of the oxidizer jet. 

 

The radial oxygen concentration profiles for different oxygen inlet concentrations are 

shown in Figure 6.18. It is clearly seen that the oxygen concentration is lower with 

smaller oxidizer jet diameter in the oxidizer jet centerline, while higher at other regions. 

In addition, the oxygen concentration spreads more laterally with smaller oxidizer jet 

diameter. It can be attributed the fact that the oxidizer jet momentum increases with 

smaller oxidizer jet diameter, and hence the oxidizer jet is able to entrain more product 

gases. In addition, the oxidizer jet can penetrate into the region of the fuel jet more easily 

with increase of momentum, which is related to recirculation of the jet flow. As a result, 

the oxygen concentration decays faster in the oxidizer jet centerline and spreads more 

widely with smaller oxidizer jet diameter.  

The radial carbon dioxide concentration profiles for different oxidizer jet diameters are 

shown in Figure 6.19. It is observed that the overall shape of the CO2 concentration 

profile becomes flat across the radial direction along with the axial distance. However, 

the largest oxidizer jet diameter shows relatively less flat profiles of the CO2 

concentration, which means lack of uniformity in mixing and reaction. The CO2 

concentration is lower with the smallest oxidizer jet diameter than other cases except the 

fuel and oxidizer jet centerline, which is exactly opposite trend of the radial oxygen 

concentration profiles. In other words, the low carbon dioxide concentration at the region 
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between the jets results from the high oxygen concentration due to recirculation of the jet 

flow with high momentum. 
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Figure 6.18: The radial oxygen concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) 
Z/H=0.72 for different sizes of the oxidizer jet. 
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Figure 6.19: The radial carbon dioxide concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) 
Z/H=0.58 (d) Z/H=0.72 for different sizes of the oxidizer jet. 

 

Figure 6.20 shows the radial carbon monoxide profiles along with the axial distance with 

different oxidizer jet diameters. It is observed that the CO concentration is high at the 

region of the fuel jet and interface between the fuel and oxidizer jets. The high CO 

concentration at the region of the fuel jet is related to overly rich equivalence condition, 

as expected. On the other hand, less mixing with sufficient oxidizer or insufficient time 

for complete combustion due to high momentum of the jets is responsible for high CO 

concentration at the interface region between the fuel and oxidizer jets.  
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Figure 6.20: The radial carbon monoxide concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) 
Z/H=0.58 (d) Z/H=0.72 for different sizes of the oxidizer jet. 

 

It is found that high CO concentration region moves with the high temperature region, 

and decreases after the axial distance, Z/H=0.44, 0.58 for dox=7.94 and 15.9 mm, 

respectively. In other words, the CO concentration decreases in accordance with the onset 

point of recirculation of the flow. This might be thought that the reaction occurs under the 

condition that the jets are less sufficiently diluted by product gases at upstream region, 

whereas the dilution of the jets increases at further downstream region because of large 

scale of recirculation of the flow and hence the production of CO decreases.  
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The case of dox=31.8 mm shows the high CO concentration at quite downstream region, 

Z/H=0.72, which means that there is still incomplete combustion even near the bottom of 

the furnace. It can be attributed the fact that the jets are insufficiently diluted before the 

reaction occurs because of less oxidizer jet momentum, which induce the less uniformity 

of reaction and temperature. This is another main difference between the homogenous 

and non-homogenous combustion modes. 

 

6.2.2. The effect of the inlet oxygen concentration 

Atreya et al. (2004) proposed the novel solution in efficient energy saving method in 

industrial furnaces. The authors combined both concepts of internal recirculation of 

product gas to preheat the combustion air and oxygen-enriched combustion to reduce the 

volume of exhaust for enhancing the energy utilization efficiency. For this purpose, 

experimental studies are performed on three different inlet oxygen concentrations in the 

oxidizer jet, XO2,ox =0.21, 0.30 and 0.40, with same overall equivalence ratio, Φoverall =1.0, 

and oxidizer jet diameter, dox=15.9 mm. The properties of three cases are summarized in 

Table 6.2. 

 

Case No. dox (mm) XO2,ox Φoverall Vox (m/s) Jox (N) Mode.
D2O21E103 15.9 0.21 1.03 22.03 1.11 E-01 H 
D2O30E101 15.9 0.30 1.01 15.67 5.69 E-02 H 
D2O41E102 15.9 0.41 1.02 11.46 3.09 E-02 NH 

 
Table 6.2: The properties of three inlet oxygen concentrations in the oxidizer jet. 

 

 

6.2.2.1. Temperature 

Jet Centerline Temperature  

Figure 6.21 shows the centerline temperature of the fuel and oxidizer jets for different 

inlet oxygen concentrations in the oxidizer jet. It is observed that the peak and gradient of 

the jet centerline temperature increases with increase of the inlet oxygen concentration. In 

addition, the profile of the jet centerline temperature shifts from flat to more parabolic 

with higher inlet oxygen concentration, which indicates lack of uniformity in temperature. 

This ununiformity of the temperature induces non-homogeneous combustion condition. 
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Figure 6.21: The centerline temperature of the (a) fuel and (b) oxidizer jet for different inlet oxygen 

concentrations in the oxidizer jet. 
 

Radial Temperature Profiles along with axial distance 

The radial temperature profiles along with the various axial distances for different inlet 

oxygen concentrations in the oxidizer jet are shown in Figure 6.22. It is observed that the 

temperature increases in order of inlet oxygen concentrations in the oxidizer jet because 

the reaction rate increases with high inlet oxygen concentration. This might be also 

attributed the fact that the recirculation of product gases occurs strongly with low inlet 
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oxygen concentration in the oxidizer jet because of increasing oxidizer jet momentum, 

and hence enhanced dilution of the jets. As a result, the reaction is delayed and 

temperature decreases due to enhanced dilution of the jets.  
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Figure 6.22: The radial temperature profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) Z/H=0.72 
for different inlet oxygen concentrations in the oxidizer jet. 

 

6.2.2.2. Gas compositions 

Jet Centerline gas composition  
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The Total Hydrocarbons in the fuel jet centerline and oxygen concentration in the 

oxidizer jet centerline are shown in Figure 6.23. It is observed that the normal air inlet 

case, XO2,ox=0.21, shows fast decay rate of the centerline THC in the fuel jet, while the 

decay patterns of the THC for XO2,ox=0.30 and 0.40 are almost identical. On the other 

hand, the oxygen concentration decays slightly more with increase of the inlet oxygen 

concentration, however, the difference between cases is small as shown in Figure 6.23 (b).  
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Figure 6.23: The centerline concentrations of (a) THC in the fuel jet and (b) oxygen in the oxidizer jet 

for different inlet oxygen concentrations in the oxidizer jet. 
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It is noted that the initial inlet concentrations of oxygen are different, while the oxidizer 

jet diameter is same for above cases. In Figure 6.23 (b), the centerline oxygen 

concentration, CcO2, is normalized by the inlet oxygen concentration, CoO2. Thus, the real 

values of the centerline oxygen concentration, CcO2, are different between cases even 

though the decay rates of (Cc/Co)O2 are nearly same for above cases. Considering the real 

values of the centerline oxygen concentration, the less inlet oxygen concentration shows 

the lower value of the centerline oxygen concentration as shown in Figure 6.24. This can 

be explained by the turbulent jet theory which states that the centerline concentration is 

proportional to initial inlet concentration and jet diameter. Thus, the higher oxygen 

concentration in the oxidizer jet centerline with increase of inlet oxygen concentration 

results from high initial oxygen concentration in oxidizer jet. 
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Figure 6.24: The centerline concentrations of (a) THC in the fuel jet and (b) oxygen in the oxidizer jet 
for different inlet oxygen concentrations in the oxidizer jet. 

 

Another investigation is that the decay rate of the normalized centerline oxygen 

concentration in the oxidizer jet, (Cc/Co)O2,, is nearly same even with high inlet oxygen 

concentration. However, the oxygen concentration should decrease more for high oxygen 

inlet case to obtain the homogeneous combustion mode. Therefore, the decay rate of the 

normalized centerline oxygen concentration, (Cc/Co)O2, should be more less than normal 

air inlet within the range of the inlet oxygen concentration in this study. Based on the UV 
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emission and visual image, the case of XO2,ox=0.21 and 0.30 are in the homogeneous 

combustion mode, whereas the highest oxygen inlet case, XO2,ox=0.40, is in the non-

homogeneous combustion mode. It might be thought that the dilution of the oxidizer jet is 

not sufficient to obtain the homogeneous combustion for XO2,ox=0.40 because the decay 

rate of (Cc/Co)O2 is almost same as XO2,ox=0.30, which means that the real value of the 

oxygen concentration is higher than that of less inlet oxygen concentration cases. This 

higher oxygen concentration induces the non-homogenous combustion. 

 

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8
Z/H

C
c/

C
o*

Z
/H

, T
H

C
 in

 th
e 

fu
el

 je
t

D2O21E103
D2O30E101
D2O41E102

 
(a) 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8
Z/H

C
c/

C
o*

Z
/H

, O
2 i

n 
th

e 
ox

id
iz

er
 je

t D2O21E103
D2O30E101
D2O41E102

 
(b) 

Figure 6.25: The scaled centerline concentrations of (a) THC in the fuel jet and (b) oxygen in the 
oxidizer jet for different inlet oxygen concentrations in the oxidizer jet. 
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Figure 6.25 shows the scaled centerline THC in the fuel jet and oxygen concentration in 

the oxidizer jet for different inlet oxygen concentrations. It is observed that the centerline 

THC in the fuel jet falls steeply, whereas the scaled centerline oxygen concentration in 

the oxidizer jet increases after showing flat shape along with the axial distance. This can 

be thought that the (Cc/Co)THC falls because of combustion, and the (Cc/Co)O2 increases 

due to the recirculation of the oxidizer jet flow as explained in previous section. The each 

jet acts like a free single jet before the onset point of the recirculation the jet flow, as a 

result, the jets continue to be diluted. This can be shown as flat shape in Figure 6.25. 

However, the centerline oxygen concentration in the oxidizer jet drops slowly or remains 

nearly constant after occurring of the recirculation of the oxidizer jet flow. On the other 

hand, the scaled THC in the fuel jet decreases fast by mixing with oxidizer and 

combustion due to the recirculation the jet flow. 

The scaled value of the centerline THC in the fuel jet fall fast for XO2,ox=0.21, whereas 

other cases show nearly identical values of the THC concentration. On the other hand, the 

scaled centerline oxygen concentration in the oxidizer jet is slightly higher with less 

oxygen inlet. It might be attributed the fact that the oxidizer jet momentum increases with 

less oxygen inlet, and the recirculation of the jet flow occurs earlier. As a result, large 

scale of the mixing between the fuel and oxidizer jet occurs earlier and thus the centerline 

THC decreases fast. However, this trend is not found clearly between XO2,ox=0.30 and 

0.40. The onset point of the recirculation is almost same, and the centerline THC and 

oxygen concentration are quite identical. It might be thought that the dilution of the 

oxidizer jet is less achieved for considering the high oxygen inlet due to small momentum 

of the oxidizer jet, which induces the non-homogeneous combustion mode and makes the 

effect of the control parameter ambiguous for XO2,ox=0.40.   

 

Jet entrainment 

For investigation of the jet entrainment, CO2 concentrations in the fuel and oxidizer jet 

centerline are shown in Figure 6.26. It is noted that the injecting oxygen concentrations 

are different between cases because of various oxygen enrichments. Considering different 

initial inlet oxygen concentrations, the centerline concentrations of CO2 are divided by 

inlet oxygen concentrations as shown in Figure 6.26 because the amount of CO2 is 
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approximately proportional to inlet oxygen concentration. It is seen from Figure 6.26 that 

more CO2 is found in the centerline both of the fuel and oxidizer jets for lower oxygen 

inlet concentration. This can be attributed the fact that the oxidizer jet momentum 

increases with lower oxygen inlet, and hence entrainment is promoted. On the other hand, 

the case of XO2,ox=0.40 shows lower CO2 concentration in the centerline for both of the 

jets than normal air inlet case even with high oxygen enrichment, which indicates the 

lower level of recirculation of product gases. However, more strong level of recirculation 

of product gases is needed to obtain the homogeneous combustion mode for high oxygen 

inlet case.  
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Figure 6.26: The normalized centerline carbon dioxide concentrations of in the (a) fuel jet and (b) 
oxidizer jet for different inlet oxygen concentrations in the oxidizer jet. 

 

Radial gas composition profiles 

Figure 6.27 shows the radial THC concentration profiles at various axial distances for 

different oxygen inlet in the oxidizer jet. The profiles are almost identical for all cases at 

the upstream region because the diameter and flow rate of the fuel jet are kept same for 

all cases. However, the THC concentration drops in centerline of the fuel jet for 

XO2,ox=0.21 while other cases show identical values of the THC at Z/H=0.29, which is 

corresponding to the onset point of the recirculation of the jet flow for XO2,ox=0.21. On 
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the other hand, the case of XO2,ox=0.30 and 0.40 show very little difference within 

measuring error range. It might be thought that the case of XO2,ox=0.40 is in the non-

homogeneous combustion mode while XO2,ox=0.30 is in the homogeneous combustion 

mode, thus it is hard to differentiate the effect of inlet oxygen concentration between 

cases because of lack of the uniformity in mixing and combustion.  
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Figure 6.27: The radial THC concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) 
Z/H=0.72 for different inlet oxygen concentrations in the oxidizer jet. 
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The radial oxygen concentration profiles for different oxygen inlet concentrations are 

shown in Figure 6.28. It is observed that the oxygen concentration is lower with less 

oxygen inlet in the oxidizer jet centerline, while higher at other regions. However, the 

oxygen concentration spreads more laterally with less oxygen inlet concentration. It can 

be attributed the fact that the oxidizer jet momentum increases with lower oxygen inlet 

concentration, and hence the oxidizer jet is able to penetrate into the region of the fuel jet 

more easily with increase of momentum. As a result, the oxygen concentration spreads 

more widely with lower oxygen inlet concentration.  
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Figure 6.28: The radial oxygen concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) 

Z/H=0.72 for different inlet oxygen concentrations in the oxidizer jet. 
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Figure 6.29: The radial carbon dioxide concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) 
Z/H=0.58 (d) Z/H=0.72 for different inlet oxygen concentrations in the oxidizer jet. 

 

The radial carbon dioxide concentration profiles for different oxygen inlet concentrations 

in the oxidizer jet are shown in Figure 6.29.  

The CO2 concentrations is definitely higher with high oxygen inlet in the oxidizer jet, 

thus it is hard to investigate the effect of different oxygen inlet on jet entrainment. For 

this purpose, the CO2 concentrations are normalized by oxygen inlet concentrations as 

same way mentioned in the jet entrainment. It is observed from Figure 6.29 that the case 

of XO2,ox=0.30 shows the higher CO2 concentration, while XO2,ox=0.40 have lower CO2 
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concentration than normal air inlet case even with high oxygen enrichment. This 

indicates less production of CO2 in the furnace for XO2,ox=0.40. It might be thought that 

the production of CO2 reduces because of the less uniform mixing and combustion.  

Figure 6.30 shows the radial CO concentration profiles along with the axial distance with 

different oxygen inlet concentrations. It is observed that high CO regions correspond to 

rich regions, and CO concentration decreases after from the onset point of recirculation of 

the flow. The reason is quite same as discussed in the effect of the oxidizer jet diameter. 
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Figure 6.30: The radial carbon monoxide concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) 

Z/H=0.58 (d) Z/H=0.72 for different inlet oxygen concentrations in the oxidizer jet. 
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6.2.3. The effect of overall equivalence ratio 

In this section, the effect of the overall equivalence ratio are investigated on three 

different overall equivalence ratios, Φoverall =0.9, 1.0, and 1.1 with same inlet oxygen 

concentration, XO2,ox =0.30 and oxidizer jet diameter, dox=15.9 mm. The properties of 

three cases are summarized in Table 6.3. 

 

Case No. dox (mm) XO2,ox Φoverall Vox (m/s) Jox (N) Mode 
D2O30E091 15.9 0.30 0.91 17.58 7.16 E-02 H 
D2O30E101 15.9 0.30 1.01 15.67 5.69 E-02 H 
D2O30E110 15.9 0.30 1.10 14.33 4.76 E-02 H 

 
Table 6.3: The properties of three overall equivalence ratios. 

  

 

6.2.3.1. Temperature 

Jet Centerline Temperature  

The centerline temperatures of the fuel and oxidizer jets for different equivalence ratios 

are shown in Figure 6.31. It is observed that there is no clear difference between cases. 

All cases show quite similar trend in fuel jet centerline temperature, whereas the 

centerline temperature increases slightly with increase of the equivalence ratio for the 

oxidizer jet centerline, however, the increment is very small. This might result from the 

narrow range of the oxidizer jet momentum. The range of the oxidizer jet momentum 

ratio to reference momentum of Φoverall=1.0 is between 0.84 and 1.26 for Φoverall=1.1 and 

0.9, respectively, which is relatively close to each other comparing with that of other 

parameters. Therefore, it is hard to see the differences due to the effect of equivalence 

ratio. 

 

Radial Temperature Profiles along with axial distance 

Figure 6.32 shows the radial temperature profiles along with the various axial distances 

for different equivalence ratios. As same with the centerline temperatures, all cases show 

quite similar profile and value of temperature because of narrow selection in oxidizer jet 

momentum. It is observed that the gradient of temperature becomes small, and radial 
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temperature profiles become quite flat from Z/H=0.44 where corresponds to middle 

region of the furnace, which indicates that uniform reaction occurs in the furnace. 
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Figure 6.31: The centerline temperature of the (a) fuel and (b) oxidizer jet for different overall 

equivalence ratios. 
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Figure 6.32: The radial temperature profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) Z/H=0.72 
for different overall equivalence ratios. 

 

6.2.3.2. Gas compositions 

Jet Centerline gas composition  

The THC concentration in the fuel jet centerline and oxygen concentration in the oxidizer 

jet centerline are shown in Figure 6.33. The decay patterns of the THC for different 

equivalence ratios are quite similar, which might be attributed the fact that the fuel jet 

momentum is kept same for all cases and little differences in the oxidizer jet momentum 

between cases. On the other hand, oxygen concentration in the oxidizer jet decays faster 
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with increase of equivalence ratio (decrease of oxidizer jet momentum). This is the 

different tendency from the jet mixing theory which the entrainment of the jet is 

enhanced with increase of momentum and hence dilution is promoted. However, the 

amount of available oxygen is less for high equivalence ratio. Thus, the oxygen 

concentration decays faster with higher equivalence ratio because of less amount of 

available oxygen for combustion while excess amount of oxygen remains for low 

equivalence ratio. 
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Figure 6.33: The centerline concentration of the (a) THC in the fuel jet and (b) oxygen in the oxidizer 

jet for different overall equivalence ratios. 
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Figure 6.34 shows the scaled values of the THC and oxygen concentration in the fuel and 

oxidizer jet centerline, respectively. It is observed that the THC falls down while oxygen 

concentration increases along with axial distance, which means that the recirculation of 

oxidizer flow occur toward the region of the fuel jet. The steeper slope of the oxygen 

concentration indicates more active recirculation of the oxidizer flow and slow decay of 

the oxygen concentration. The slope becomes steeper with decrease of the equivalence 

ratio because the oxidizer jet momentum increases with low equivalence ratio. As a result, 

the THC falls faster and the oxygen concentration shows higher value for Φoverall=0.9 due 

to strong recirculation of the oxidizer flow.  
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Figure 6.34: The scaled centerline concentrations of (a) THC in the fuel jet and (b) oxygen in the 
oxidizer jet for different overall equivalence ratios. 
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Jet entrainment 

For investigation of the jet entrainment, CO2 concentrations in the fuel and oxidizer jet 

centerline are shown in Figure 6.35. CO2 is one of the combustion products and a good 

gauge for jet entrainment. The difference between cases is small as seen in Figure 6.35, 

however, less CO2 is found in both of the fuel and oxidizer jet centerline for Φoverall=0.9. 

It might be thought that the excess oxygen remains and strong recirculation of the 

oxidizer flow occurs toward the fuel jet for low equivalence ratio, thus the other gas 

concentrations becomes less. However, the difference is very small, and lots of CO2 are 

found in each jet centerline for all cases, which indicates the sufficient recirculation of 

product gases in the furnace chamber. 

 

Radial gas composition profiles 

The radial THC concentration profiles for different equivalence ratios are shown in 

Figure 6.36. It is observed that the profiles are initially almost identical for all cases, 

however, the difference occurs at the region of the fuel jet from Z/H=0.44. As the 

equivalence ratio decreases, the THC concentration decays faster. This might be thought 

that the oxidizer jet momentum increases with lower equivalence ratio, and hence the 

oxidizer jet is able to penetrate into the region of the fuel jet more easily with increase of 

momentum. As a result, the THC concentration in the fuel jet centerline falls faster with 

lower equivalence ratio. It is noted that the THC concentration is not detected at 

Z/H=0.72 for all cases as shown in Figure 6.36 (d). 

The radial oxygen concentration profiles for different equivalence ratios are shown in 

Figure 6.37. The oxygen concentration is higher with decrease of the equivalence ratio, 

and spreads more laterally. It can be attributed the fact that the oxidizer jet momentum 

increases with lower equivalence ratio, and hence the oxidizer jet is bale to penetrate into 

the region of the fuel jet more easily with increase of momentum. As a result, the oxygen 

concentration spreads more widely with lower equivalence ratio. Another reason is that 

the available oxygen exists more with low equivalence ratio due to excess supply of 

oxidizer. Therefore, the oxygen concentration is higher with lower equivalence ratio. 



 

 125

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8
Axial Distance, Z/H

C
O

2 i
n 

th
e 

fu
el

 je
t

D2O30E091
D2O30E101
D2O30E110

 
(a) 

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8
Axial Distance, Z/H

C
O

2 i
n 

th
e 

ox
id

iz
er

 je
t

D2O30E091
D2O30E101
D2O30E110

 
(b) 

 
Figure 6.35: The centerline carbon dioxide concentration in the (a) fuel jet and (b) oxidizer jet for 

different overall equivalence ratios. 
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Figure 6.36: The radial THC concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) 
Z/H=0.72 for different overall equivalence ratios. 
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Figure 6.37: The radial oxygen concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) Z/H=0.58 (d) 

Z/H=0.72 for different overall equivalence ratios. 
 

 

The radial carbon dioxide concentration profiles for different equivalence ratios are 

shown in Figure 6.38. As shown in Figure 6.38, the CO2 concentrations are quite flat for 

all equivalence ratios. This indicates the strong recirculation of product gases and 

uniform reaction in entire region of the furnace. It is observed that the difference between 

Φoverall=1.0 and 1.1 is quite small, whereas lowest equivalence ratio, Φoverall=0.9, shows 

less amount of CO2 because of the excess supply of oxidizer. 
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Figure 6.38: The radial carbon dioxide concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) 

Z/H=0.58 (d) Z/H=0.72 for different overall equivalence ratios. 
 

Figure 6.39 shows the radial CO profiles along with the axial distance with different 

equivalence ratios. It is observed that high CO concentration is shown near the fuel jet 

region which is overly rich for all cases. In temperature and gas compositions, the 

difference between cases is quite small. Thus, it can be expected similar radial CO 

concentration profiles, however, the case of Φoverall=0.91 shows higher CO than other 

cases up to Z/H=0.44 and lower CO after Z/H=0.58 while the case of Φoverall=1.01 and 

1.10 show quite similar trend and value of CO concentration. This might be thought that 

high oxidizer jet momentum with low equivalence ratio could enhance the jet entrainment 
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and mixing intensity, however, the O2 concentration in the re-circulating flow at upstream 

region also increase. Therefore, the presence of excess oxygen promotes the reaction at 

upstream region for the lean case [66], and hence the temperature and formation of CO 

increase. On the other hand, the dilution of the jets increases at further downstream 

region because of large scale of recirculation of the flow and hence the production of CO 

decreases.  
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Figure 6.39: The radial carbon monoxide concentration profiles at (a) Z/H=0.29 (b) Z/H=0.44 (c) 

Z/H=0.58 (d) Z/H=0.72 for different overall equivalence ratios. 
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6.3. Elements & Heat balances for experiments on reacting flow 

The current furnace configuration in this study does not provide a proper arrangement for 

measuring the exhaust gas compositions. However, the exhaust gas compositions might 

be estimated by substituting the mean gas concentrations of 4 probing points at Z/H=0.72 

where are nearest to the exhaust vent of the chamber. Based on the temporal and spatial 

averaged temperature and product gas compositions near exhaust vent area, elements and 

heat balances are conducted as following, 

 

Element Balance 

Assuming measuring data of exhaust gas is correct, the reaction equation is, 

2

4 4

2

4 2 2 2 2

:
: : 2 2 2 2

:

4 2 2 2 2

2 ( ) ( 3.76 )N ox
CH In CH In

O ox

CH CO CO O H O N

O N O N

                             CH CO CO O H O N

χ
χ χ α

χ

χ χ χ χ χ χ

+ + + + →

′ + + + + +

 (6-1) 

 

Where,
4 :CH Inχ  is the input mole fraction of fuel, 

2:N oxχ  is the injection mole fraction of 

nitrogen in the oxidizer jet, α  is the air infiltration, and 
2:O oxχ  is the injection mole 

fraction of oxygen in the oxidizer jet. In above equation, the methane mole fraction is 

measured on wet basis while mole fractions of CO2, CO and O2 are measured on dry 

basis, and the element mole fraction on wet and dry basis is expressed as and χ χ′ , 

respectively. In addition, the relational equations can be obtained from elements balance,  

 

C balance, 
4 4 2:CH In CH CO CO=χ χ χ χ′ + +       (6-2) 

O balance, 
4 2 2 2:4 2CH In CO CO O H O+2 =2χ α χ χ χ χ+ + +     (6-3) 

H balance, 
4 4 2:4 2CH In CH H O=4χ χ χ′ +       (6-4) 

In addition, 2 2

2 2

2 2 2

, ,
1 1 1

CO OCO
CO CO O

H O H O H O

  
χ χχχ χ χ
χ χ χ

′ ′ ′= = =
− − −

  (6-5) 

4 2 2 2 2
1.0CH CO CO O H O Nχ χ χ χ χ χ′ ′ ′ ′ ′ ′+ + + + + =      (6-6) 
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Solving above equations, the amount of air infiltration in the furnace, α , can be 

calculated and the results are summarized in Table 6.4 and Figure 6.40. The amount of air 

infiltration is estimated in the range of 2.9 ~ 3.92 times the fuel input flow rate within 

7 % discrepancy in amount of mole fraction of N2, which indicates the error in 

calculations or measuring exhaust gas compositions. It might be thought that infiltrated 

air can not affect significantly the combustion in the main reaction zone because the 

infiltrated air would stay mainly in the bottom of the furnace due to lower temperature 

than that of the above main reaction zone. 

 

Case No. Air infiltration flow rate/Fuel flow rate 
D1O30E100(H) 3.27 
D1O31E110(H) 3.35 
D2O21E103(H) 3.92 

D2O30E091(NH) 3.23 
D2O30E101(H) 3.23 
D2O30E110(H) 3.47 

D2O41E102(NH) 3.47 
D3O29E099(T) 3.19 
D3O31E110(T) 2.91 

 
Table 6.4: Estimated air infiltration flow rate. 
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Figure 6.40: Estimated air infiltration flow rate. 

 

Assuming all reacted oxygen appears in CO2, CO and H2O, the amount of non-reacted 

oxygen concentration is almost 0.0% of total remained oxygen mole fraction in exhaust 

gas for most cases except lean cases. Therefore, it might be concluded that the oxygen 

concentration in exhaust gas results from mainly air infiltration in the furnace. However, 
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low equivalence case (lean condition) shows that about 24% of oxygen concentration in 

exhaust gas is from non-reacting with fuel, which is the excess oxidizer, as expected. The 

estimated amount ratio of oxygen concentration due to non-reacting and air infiltration is 

summarized in Table 6.5. 

 

Case No. Non-reacting oxygen Air infiltration oxygen 
D1O30E100(H) 0.01 0.99 
D1O31E110(H) 0.00 1.00 
D2O21E103(H) 0.00 1.00 

D2O30E091(NH) 0.24 0.76 
D2O30E101(H) 0.00 1.00 
D2O30E110(H) 0.00 1.00 

D2O41E102(NH) 0.00 1.00 
D3O29E099(T) 0.10 0.90 
D3O31E110(T) 0.00 1.00 

 
Table 6.5: The amount ratio of oxygen concentration in exhaust gas. 
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Figure 6.41: Heat losses in the furnace 

 

The heat input is transferred to product, heat sink in this study, and heat losses in 

different areas and forms as shown in Figure 6.41. The heat losses include losses from 

wall, radiation losses from openings, heat carried by the cold air infiltration into the 

furnace. For estimating the amount of the heat losses in the furnace, heat balance of the 

furnace is analyzed as shown Fig based on the temporal and spatial averaged temperature 

and product gas compositions near exhaust vent area. 
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Heatsink Losses( )Fuel R PQ n H H Q Q= − = +      (7) 

( ) ,  ( )R R R P P PH n h H n h h= = + Δ∑ ∑      (8) 

( )Flue Fuel P PQ n n h= Δ∑        (9) 

 

where, the subscripts R and P refer to the reactants and products, respectively. 

In calculating the heat losses from wall, the heat transfer coefficient can be obtained from 

thermal network. However, the heat transfer coefficient for convection is very small 

because of small Reynolds number of exhaust gas flow. Whatever the temperature of 

outgoing exhaust flow is, the heat losses of convection and conduction is very small 

comparing with other heat losses, less than 1.0 Kw which corresponds to 1.6% of heat 

input. The radiation heat losses from openings can be calculated from view factor 

between openings with emissivity for furnace inside, ε =1.0. 

The results of heat balances for experiments are summarized in Table 6.6 and Figure 6.42. 

In this table and figure, all heat loss amounts are expressed as the ratio to heat input. 

  
Heat loss ratio to Heat input 

Case Heat Sink Heat Flue Gas Heat Loss(Cond+Rad) Error
D1O30E100(H) 0.53 0.36 0.06 0.05 
D1O31E110(H) 0.56 0.35 0.06 0.03 
D2O21E103(H) 0.47 0.46 0.06 0.01 

D2O30E091(NH) 0.48 0.40 0.06 0.06 
D2O30E101(H) 0.47 0.38 0.07 0.08 
D2O30E110(H) 0.47 0.38 0.07 0.08 

D2O41E102(NH) 0.48 0.35 0.07 0.10 
D3O29E099(T) 0.45 0.42 0.07 0.05 
D3O31E110(T) 0.43 0.42 0.08 0.07 

 
Table 6.6: Heat balances for the furnace. 
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Figure 6.42: Heat balances for the furnace. 

 

It is seen from Fig that approximately 48% of heat input is transferred to heat sink, 40% 

flows out of the furnace, and 7% is heat losses from the furnace to surroundings in the 

forms of conduction and radiation through the furnace walls and openings. The remains 

of heat input is the error in estimating heat balances that is less than 10%. 

 

Heat Loss due to air infiltration 

Another heat loss in the furnace results from the air infiltration. The cold air becomes 

heated to the furnace exhaust gas temperature and then exits through the flue system, 

wasting valuable fuel. The heat loss due to air infiltration is estimated about 10% of heat 

input for most cases as shown in Table 6.7 and Figure 6.43. 

 

Case No. Heat loss (Air infiltration) ratio to Heat input 
D1O30E100(H) 0.10 
D1O31E110(H) 0.10 
D2O21E103(H) 0.11 

D2O30E091(NH) 0.10 
D2O30E101(H) 0.10 
D2O30E110(H) 0.11 

D2O41E102(NH) 0.11 
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D3O29E099(T) 0.10 
D3O31E110(T) 0.10 

 
Table 6.7: Heat loss due to air infiltration in the furnace. 
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Figure 6.43: Heat loss due to air infiltration in the furnace. 
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CHAPTER 7 
 

Numerical methods for reacting flows 
 

 

7.1. Combustion Model 

There are two kinds of combustion models implemented in FDS, which are the mixture 

fraction and finite rate reaction model. A conserved quantity, mixture fraction Z, is 

introduced in the first model. This quantity represents the mass fraction of gas mixture at 

a given point, and has the value of 1 for pure fuel and 0 for air by definition. The notable 

advantage of the mixture fraction model is that the mass fraction of all reactants and 

products can be simply tabulated from the empirical state relations, thus saving in 

simulation time. On the other hand, all gas species are defined by each reaction rate 

equation and tracked individually in the finite rate reaction model, as a result, more 

computation times and resources are inevitable. The combustion process can be evaluated 

by simplified global single step reaction or more detailed kinetics for different 

engineering applications in the finite rate reaction model. 

Figure 7.1 and 7.2 shows the comparison of mixture fraction and finite reaction models 

for the case of dox=15.9 mm, XO2;ox=0.21 and Φoverall =1.0. It is observed that the mixture 

fraction model over-predicts the centerline temperature of the fuel jet, whereas the finite 

rate model shows a good agreement with the experimental data. An explanation for over-

predicting the temperature in mixture fraction model is that the heat release rate per unit 

area (HRRPUA) should be prescribed at fuel side in mixture fraction model to sustain the 

reaction. Thus, the mixture fraction model is not suitable for simulating the current 

configuration where the fuel and oxidizer jet are injected separately with large separation 

distance between jets into the combustion chamber. On the other hand, the reaction 

occurs based on the feedback of temperature and gas species concentrations in finite rate 
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reaction model, thus it is more close to real combustion process.  
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Figure 7.1: Comparison of the mixture fraction and finite rate reaction model for the centerline 

temperature of the (a) fuel jet and (b) oxidizer jet with dox=15.9 mm, XO2;ox=0.21 and Φoverall =1.0, and 
compared with experimental data. 
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Figure 7.2: Comparison of the mixture fraction and finite rate reaction model for the decay patterns 

of the centerline (a) methane in the fuel jet and (b) oxygen concentration in the oxidizer jet with 
dox=15.9 mm, XO2;ox=0.21 and Φoverall =1.0, and compared with experimental data. 
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7.2. Finite-Rate Reaction model 

Considering the reaction of methane and oxygen, the following single-step expression 

would be suggested for the global reaction, 

 

4 2 2 24 2 2 2CH O CO H OCH O CO H Oν ν ν ν+ → +      (7-1) 

[ ] [ ] [ ]4 /
4 2

a b E RTd CH
A CH O e

dt
−= −       (7-2) 

 

Where, A is a constant termed the pre-exponential factor and E is the activation energy, 

and the values of exponents A, a, b and activation energy E are given in [71]. It would be 

possible to implement a multi-step set of reactions for more accurate prediction of the 

combustion behaviors in finite rate reaction model. For this purpose, carbon monoxide 

oxidation reaction is adopted in the finite reaction model as expressed in equation (7-3) 

and (7-4), and also compared with single-step reaction model for the case of dox=31.8 mm, 

XO2;ox=0.30 and Φoverall =1.0. as shown in Figure 7.3 to 7.6.  

 

[ ] [ ] [ ]1 1 14 /
4 2 2 1 4 21.5 2 , a b E RTd CH

CH O CO H O   A CH O e
dt

−+ → + = −   (7-3) 

[ ] [ ] [ ]2 2 2 /
2 2 2 20.5 , a b E RTd CO

CO O CO   A CO O e
dt

−+ → = −    (7-4) 

 

It is observed that the difference between two models is quite small and there is no 

advantage to add carbon monoxide oxidation in finite reaction model. This might be 

thought that the amount of carbon monoxide produced in the combustion chamber is 

relatively small comparing to other major combustion product gases, especially in large 

scale of fire such as the current configuration.  Even though the global reaction model can 

not provide the details of combustion, it is still useful for approximate engineering 

evaluation. Compromising the accuracy in prediction and computation time, it can be 

conclude that one step reaction model is able to simulate the current configuration. 

According to technical documents of FDS, the computation time will increase about 5% 

for adding each additional reaction. 
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Figure 7.3: Comparison of the (a) single-step and (b) two-step model with carbon monoxide oxidation 
in finite rate reaction model for the temperature contour profile with dox=31.8 mm, XO2;ox=0.30 and 

Φoverall =1.0. 
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Figure 7.4: Comparison of the (a) single-step and (b) two-step model with carbon monoxide oxidation 
in finite rate reaction model for the methane concentration contour profile with dox=31.8 mm, 

XO2;ox=0.30 and Φoverall =1.0. 
 



 

 140

Radial Distance, Y (m)

A
xi

al
D

is
ta

nc
e,

Z
(m

)

0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  Radial Distance, Y (m)

A
xi

al
D

is
ta

nc
e,

Z
(m

)

0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 
 

(a)    (b) 
 

Figure 7.5: Comparison of the (a) single-step and (b) two-step model with carbon monoxide oxidation 
in finite rate reaction model for the oxygen concentration contour profile with dox=31.8 mm, 

XO2;ox=0.30 and Φoverall =1.0. 
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Figure 7.6: Comparison of the (a) single-step and (b) two-step model with carbon monoxide oxidation 
in finite rate reaction model for the carbon dioxide concentration contour profile with dox=31.8 mm, 

XO2;ox=0.30 and Φoverall =1.0. 
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7.3. Thermal Radiation 

It is possible to assume the lightly sooting fuel such as methane as a gray medium that is 

independent of wavelength because soot has a continuous radiation spectrum and can be 

considered as a non-scattering material. Thus, the mean absorption coefficient can be 

reasonably used in the Radiation Transport Equation (RTE). The RTE for a non-

scattering gray gas is expressed as,  

 

[ ]( , ) ( , ) ( ) ( , )bI I Iλ λκ λ∇ = −S X S X X X Si      (7-5) 

 

Where, ( , )Iλ X S is the radiation intensity at wavelengthλ , S is the direction vector of the 

intensity, ( , )κ λX is the local absorption coefficient and ( )bI X is the source term given by 

the Planck function. The radiation spectrum can be divided into several discrete bands, 

and an individual RTE is derived as, 

 

,( , ) ( ) ( ) ( , ) , 1..n n b n nI I I  n Nκ ⎡ ⎤∇ = − =⎣ ⎦S X S X X X Si     (7-6) 

 

Where nI is the intensity integrated over the band n, nκ  is the mean absorption coefficient 

for each band, and the source term can be expressed as a fraction of the black body 

radiation.  

 
4

, min max( , ) /b n nI F Tλ λ σ π=        (7-7) 

 

Where, σ is the Stefan-Boltzmann constant. The use of mean absorption coefficient nκ  

results in reducing the amount of computation considerably since the values of nκ  is pre-

calculated in FDS by employing RADCAL [72]. Thus, total intensity is calculated by 

summing all individual bands 

 

1
( , ) ( , )

N

n
n

I I
=

=∑X S X S         (7-8) 
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In this study, the six spectral bands are implemented with 100 solid angles for a gray gas 

as shown in Table 7.1. 

 

1 2 3 4 5 6
Soot CO2 CH4 CO2 H2O Soot

H2O Soot Soot CH4

Soot Soot

6 Band
λ (μm)
ν (1/cm)

Major Species

10000
1.00

3800
2.63

3400
2.94

2174
4.70

2400
4.17

1000
10.0

50
200

 
Table 7.1: Limits of the spectral bands for 6 band model in FDS. 

 

As described in Equation (7-7), the radiative source term depends on the temperature 

raised to the fourth power. Therefore, inaccurate computation of temperature results in 

large error in the radiation calculation, especially temperatures inside the flame zone are 

under-estimated if the spatial resolution is not sufficient to resolve the flame since the 

flame sheet occupies only a small fraction of the cell volume. To compensate for this 

limitation, FDS provides two options for the calculation of the source term inside the 

flame zone: 

 
4

''' 4

/
max( / 4 , / )b

r

T                                 Outside flame zone
I

q  T        Inside flame zone 
κσ π

κ
χ π κσ π

⎧⎪= ⎨
⎪⎩

   (7-9) 

 

Where, '''q is the heat release rate per unit volume and rχ is the radiative fraction decided 

by an empirical estimation.  

In addition, the radiation intensity leaving a gray diffuse wall is given as 

 
4

' ' '1( ) ( )w
w w w

TI I dεσ ε
π π

−
= + ⋅∫S S S n S      (7-10) 

 

Where, ( )wI S is the intensity at the wall, ε is the emissivity, and wT is the wall temperature. 

The value of 0.9 is used for the wall emissivity, which is chosen from the material 

properties used for insulation of the furnace. 
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CHAPTER 8 
 

Numerical investigations on the effects of control parameters for 
reacting flows and comparison with experimental data 

 
 

In this chapter, the numerical investigations on the effects of control parameters on 

reacting flows are performed by using the Fire Dynamics Simulator (FDS) and also 

compared with experimental data. It is noted that the diameter of the fuel jet, volumetric 

flow rate of fuel and separation distance between jets are kept same with dF=15.2 mm, 

FV =0.0019 m3/s and S=280 mm, respectively in this study. The values of control 

parameters are adjusted by changing the diameter, flow rate and inlet oxygen 

concentration of oxidizer jets. 

 

8.1. Effects of the overall equivalence ratio on reacting flows 

8.1.1. Velocity field 

The radial velocity profiles at different axial positions for various overall equivalence 

ratios Φoverall=0.9, 1.0 and 1.1 with dox =15.9 mm and XO2;ox =0.30 are shown in Figure 

8.1.  

It is clearly observed that there are two large scales of recirculation pattern for all cases. 

One is formed between jets with relatively small scale near the jet exit region; the other is 

at the center jet region in lower part of the furnace. In general, it has been known that re-

circulating flow exists as a stable part of the flow under certain circumstances [59-61]. 

The recirculation at interface region between jets initially occupies widely and becomes 

smaller and weaker along with the axial distance. After some distance from the jet exit, 

the recirculation at the center jet region becomes more noticeable. 

The overall trend of velocity field for all cases is quite similar. However, the difference 
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between cases exists in onset point and magnitude of recirculation at the center region. 

As the overall equivalence ratio decreases, the recirculation at the center region occurs 

earlier and stronger as shown in Figure 8.1. This trend is also clearly shown in Figure 8.2 

showing the scaled centerline stream-wise velocity of the fuel jet. The region and 

magnitude of negative velocity increase with lower overall equivalence ratio.  
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Figure 8.1: The radial stream-wise velocity profiles at different axial positions obtained from 

numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44, (d) Z/H=0.58, (e) Z/H=0.72 and (f) 
Z/H=0.86 for various overall equivalence ratios Φoverall= 0.9, 1.0 and 1.1 with dox =15.9 mm and XO2;ox 

=0.30. 
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Figure 8.2: The scaled centerline stream-wise velocity of the fuel jet obtained from numerical 

calculations for various overall equivalence ratios Φoverall=0.9, 1.0 and 1.1 with dox =15.9 mm and 
XO2;ox=0.30. 
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Figure 8.3: The velocity vector profiles of numerical calculations for various overall equivalence 
ratios (a) Φoverall =0.9, (b) Φoverall =1.0 and (c) Φoverall =1.1 with dox=15.9 mm and XO2;ox =0.30. 

 

Figure 8.3 shows the velocity vector profiles obtained from numerical calculations for 

various overall equivalence ratios Φoverall=0.9, 1.0 and 1.1 with dox=15.9 mm and 

XO2;ox=0.30. It is observed that the fuel jet can expand more into the region of the oxidizer 

jet and farther downstream area of the furnace with higher equivalence ratio. The fuel jet 

reaches up to Z/H=0.48 for the case of Φoverall=0.9, while Z/H=0.6 and 0.72 for 

Φoverall=1.0 and1.1, respectively. This might be attributed the fact that the momentum of 

the oxidizer jet decreases with higher equivalence ratio due to less flow rate, thus the fuel 
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jet can penetrate more easily into the region of the oxidizer jet. In addition, the intensity 

of the velocity vectors in the recirculation zones increase with decrease of the overall 

equivalence ratio as shown in Figure 8.3. It might be thought that higher momentum of 

the oxidizer jet due to excess supply of oxidizers can enhance mixing intensity and 

entrainment, thus the large scale of recirculation pattern is formed earlier and its intensity 

also increases. This is well coincident with previous study on confined non-reacting 

multiple turbulent jets. The flow pattern from the side jets to the center jet is well 

established for small momentum ratio MR (ratio of center jet momentum to side jet 

momentum) because of high momentum of the side jets, thus the region of re-circulating 

flow is distributed widely at the center region.  

 

8.1.2. Temperature 

8.1.2.1. Jet Centerline Temperature  

The centerline temperature of the jets obtained from experiments and numerical 

calculations for various overall equivalence ratios Φoverall =0.9, 1.0 and 1.1 with dox =15.9 

mm and XO2;ox =0.30 are shown in Figure 8.4.  

The differences between the cases are not clearly shown in experimental data. However, 

the peak of the jet centerline temperature shifts slightly toward farther downstream with 

increase of the equivalence ratio in numerical calculations. In addition, the centerline 

temperature of the jet slightly increases with lower equivalence ratio up to Z/H=0.5, then 

opposite trend is shown at lower region of the furnace. This might be attributed the fact 

that the higher momentum of the oxidizer jet with low equivalence ratio could penetrate 

into the fuel jet region more easily at shorter distance from the jet exit, and enhance the 

mixing intensity and oxygen concentration in re-circulated flue gas. Therefore, the 

reaction rates increase near the jet exit region with the lower equivalence ratio [66].  

On the other hand, the momentum of the oxidizer jets decreases with higher equivalence 

ratio, thus the fuel jet can reach more downstream region and penetrate more into the 

flow region of the oxidizer jets as shown in Figure 8.3. As a result, the reaction zone can 

be extended farther downstream region. However, the overall trend of the centerline 

temperature for all cases is quite similar in both experiments and numerical calculations. 

This might result from the selection of narrow range of the oxidizer jet momentum. The 
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range of the oxidizer jet momentum ratio to reference momentum of Φoverall =1.0 is 

between 0.84 and 1.26 for Φoverall =1.1 and 0.9, respectively, which is relatively close to 

each other comparing with those of other parameters.  
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Figure 8.4: The centerline temperature of the (a) fuel jet and (b) oxidizer jet obtained from 

experiments and numerical calculations for various overall equivalence ratios Φoverall =0.9, 1.0 and 1.1 
with dox=15.9 mm and XO2;ox =0.30. 
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8.1.2.2. Radial Temperature Profiles along with axial distance 

The contour temperature profiles for Y-Z plane and radial temperature profiles at different 

axial positions for various overall equivalence ratios Φoverall =0.9, 1.0 and 1.1 with 

dox=15.9 mm and XO2;ox =0.30 are shown in Figure 8.5 and 6, respectively.  

It is observed from Figure 8.5 that the region of high temperature shifts toward the 

oxidizer jet with increase of equivalence ratio, which is coincident with the expansion of 

the fuel jet due to decrease of oxidizer jet momentum. The radial temperature profiles 

initially show steep gradient near the jet exit Z/H=0.15, then becomes quite flat over the 

furnace domain as shown in Figure 8.6. The differences are not recognizable in 

experiments, while the temperature increases slightly with lower overall equivalence ratio 

up to middle range of the furnace in numerical calculations. It is quite same reason 

explained in the centerline temperature of the jets, increase of oxygen concentration in re-

circulated flue gas due to high momentum of the oxidizer jet with low equivalence ratio. 
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Figure 8.5: The contour profiles of temperature obtained from numerical calculations for various 
overall equivalence ratios (a) Φoverall = 0.9, (b) Φoverall = 1.0 and (c) Φoverall = 1.1 with dox=15.9 mm and 

XO2;ox =0.30. 
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The discrepancies between experiments and numerical calculations occur at interface 

region between fuel and oxidizer jets while the peaks of temperature are well predicted at 

axial distance, Z/H=0.15 and 0.29 as shown in Figure 8.6. The temperature between jets 

at upstream region in experiments is higher than numerical predictions, which means that 

the more reactions occur between jets in experiments. This will be discussed later 

considering gas concentration profiles.  
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Figure 8.6: The radial temperature profiles at different axial positions obtained from experiments 
and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 for various 

overall equivalence ratios Φoverall= 0.9, 1.0 and 1.1 with dox =15.9 mm and XO2;ox =0.30. 
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8.1.3. Gas compositions 

8.1.3.1. Jet Centerline gas composition  

Figure 8.7 shows the decay profiles of the centerline methane and oxygen concentrations 

in the fuel and oxidizer jet obtained from experiments and numerical calculations for 

various overall equivalence ratios Φoverall =0.9, 1.0 and 1.1 with dox=15.9 mm and XO2;ox 

=0.30.  
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Figure 8.7: The decay profiles of the centerline concentration of the (a) CH4 in the fuel jet and (b) O2 
in the oxidizer jet obtained from experiments and numerical calculations for various overall 

equivalence ratios Φoverall =0.9, 1.0 and 1.1 with dox=15.9 mm and XO2;ox =0.30. 
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It is observed that the decay patterns of both jets are almost identical up to middle region 

of the furnace, Z/H=0.4, for all cases. Then the centerline methane concentration 

disappears faster, and the oxygen concentration increases with lower equivalence ratio in 

both experiments and numerical calculations. An explanation could be that the fuel jet 

can extend more axially and laterally because of less momentum of the oxidizer jets with 

higher equivalence ratio. Thus, the reaction zone can be extended farther downstream 

region, consequently higher methane and lower oxygen concentrations are observed at 

lower region of the furnace with high equivalence ratio. The higher oxygen concentration 

in the lower region of the furnace with low equivalence ratio results from the excess 

amount of oxidizer for low equivalence ratio. The difference between cases at lower 

region of the furnace is clearly shown in numerical predictions while less in experimental 

results. In addition, the oxygen concentration is higher in experiments while methane 

concentration is less than in numerical prediction. Therefore, it might be thought that the 

discrepancies between experiments and numerical calculations originate from the 

inaccuracy in controlling the flow rates of the jets, especially in oxidizer jet. According to 

the technical specification of flow meters and pressure gauges used in this study, about 

6% and 2% of measuring error exists in experiments, respectively. Based on comparison 

results with numerical calculations, there is a possibility of supplying more oxidizer flow 

than target value in experiments. As a result, the oxidizer jet can have more momentum, 

and it is believed that this operating error obscure the effects of the equivalence ratio. 

Figure 8.8 shows the scaled centerline methane concentration in the fuel jet and oxygen 

concentration in the oxidizer jet for different overall equivalence ratios Φoverall =0.9, 1.0 

and 1.1 with dox=15.9 mm and XO2;ox =0.30.  

It is observed that the scaled centerline methane concentration in the fuel jet falls steeply 

at Z/H=0.4 for Φoverall=0.9 and Z/H=0.6, 0.7 for Φoverall=1.0 and 1.1, whereas the scaled 

centerline oxygen concentration in the oxidizer jet increases after showing flat shape 

along with the axial distance. This can be thought that each jet acts like a free single jet 

before the onset of the recirculation the jet flow, thus the jets continue to be diluted. This 

can be shown as flat shape in Figure 8.8. However, the centerline oxygen concentration 

in the oxidizer jet drops slowly or remains nearly constant after occurring of recirculation 

flow due to confinement effect, whereas the scaled centerline methane concentration in 
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the fuel jet decreases sharply by mixing with recirculation flow and combustion. In other 

words, the (Cc/Co)CH4 falls sharply because of combustion, and the (Cc/Co)O2 increases 

due to the recirculation of the oxidizer jet flow.  

The scaled value of the centerline methane concentration in the fuel jet fall faster for the 

case of Φoverall=0.9 while other cases show nearly identical values in experiments, 

whereas the scaled centerline oxygen concentration in the oxidizer jet is higher with low 

overall equivalence ratio in both experiments and numerical calculations. However, the 

distinction between cases is more clearly shown in numerical calculations. The values of 

scaled centerline methane concentration decrease faster with low overall equivalence 

ratio. It might be attributed the fact that the oxidizer jet momentum increases with low 

overall equivalence ratio, and the recirculation flow occurs earlier. As a result, large scale 

of the mixing between the fuel and oxidizer jet occurs earlier and thus the centerline 

methane concentration decreases faster. The case of XO2;ox=0.40 shows large decay rate of 

the scaled oxygen concentration between Z/H=0.4 and 0.9, which is related to 

combustion in the region of oxidizer jet. 

 

8.1.3.2. Jet entrainment 

For investigation of the jet entrainment, carbon dioxide concentrations in the fuel and 

oxidizer jet centerline are shown in Figure 8.8. The difference between cases in 

experiments is very small as seen in Figure 8.9, however, less carbon dioxide is found in 

both of the fuel and oxidizer jet centerline for Φoverall=0.9. It might be thought that the 

excess oxygen remains and strong recirculation of the oxidizer flow occurs toward the 

fuel jet for low equivalence ratio, thus the other gas concentrations becomes less. 

However, the difference is very small, and lots of carbon dioxide are found in each jet 

centerline for all cases, which indicates the sufficient recirculation of product gases in the 

furnace chamber. 

In numerical calculations, the difference between cases is clearly captured. It is observed 

that the amount of carbon dioxide is almost identical for all equivalence ratios up to 

Z/H=0.45, then the case of high equivalence ratio shows higher amount of carbon dioxide 

in each jet centerline. This can be attributed the fact that the reaction zone is extended 
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farther downstream region because of momentum decrease of oxidizer jet with high 

equivalence ratio, thus reaction can still occur at lower region of the furnace.  

 

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0
Axial Distance, Z/H

C
c/

C
o*

Z
/H

, C
H

4 i
n 

th
e 

fu
el

 je
t

Φ=0.9 EXP
Φ=1.0 EXP
Φ=1.1 EXP
Φ=0.9 FDS
Φ=1.0 FDS
Φ=1.1 FDS

 
(a) 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0
Axial Distance, Z/H

C
c/

C
o*

Z
/H

, O
2 i

n 
th

e 
ox

id
iz

er
 je

t Φ=0.9 EXP
Φ=1.0 EXP
Φ=1.1 EXP
Φ=0.9 FDS
Φ=1.0 FDS
Φ=1.1 FDS

 
(b) 

 
Figure 8.8: The decay profiles of the centerline concentration of the (a) CH4 in the fuel jet and (b) O2 

in the oxidizer jet obtained from experiments and numerical calculations for various overall 
equivalence ratios Φoverall =0.9, 1.0 and 1.1 with dox=15.9 mm and XO2;ox =0.30. 
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Figure 8.9: The centerline carbon dioxide concentrations of the (a) fuel jet and (b) oxidizer jet 

obtained from experiments and numerical calculations for various overall equivalence ratios Φoverall 
=0.9, 1.0 and 1.1 with dox=15.9 mm and XO2;ox =0.30. 
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8.1.3.3. Radial gas composition profiles 

The contour profiles for Y-Z plane and radial profiles of methane concentration at 

different axial distances obtained from experiments and numerical calculations for 

various overall equivalence ratios Φoverall =0.9, 1.0 and 1.1 with dox=15.9 mm and XO2;ox 

=0.30 are shown in Figure 8.10 and 11. 

It is clearly seen from Figure 8.10 that the methane concentration is distributed more 

widely and deeply with higher equivalence ratio due to decrease of oxidizer jet 

momentum. The difference between the cases is quite small up to Z/H=0.44 in both 

experiments and numerical calculations as shown in Figure 8.11. However, the methane 

concentration increases with higher overall equivalence ratio after Z/H=0.58. This trend 

is clearly shown in numerical calculations while relatively not clear in experimental data. 

It is noted that methane is not detected near the exhaust vent area Y/R=1.0 at Z/H=0.72 

for all cases as shown in Figure 8.9 and 10. 
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Figure 8.10: The contour profiles of methane concentration obtained from numerical calculations for 
various overall equivalence ratios (a) Φoverall = 0.9, (b) Φoverall = 1.0 and (c) Φoverall = 1.1 with dox=15.9 

mm and XO2;ox =0.30. 
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Figure 8.11: The radial profiles of methane concentration at different axial distances obtained from 
experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 
for various overall equivalence ratios Φoverall= 0.9, 1.0 and 1.1 with dox =15.9 mm and XO2;ox =0.30. 

 

Figure 8.12 and 13 show the contour and radial oxygen concentration profiles at different 

axial positions obtained from experiments and numerical calculations for various overall 

equivalence ratios Φoverall =0.9, 1.0 and 1.1 with dox=15.9 mm and XO2;ox =0.30. 

It is clearly observed that the oxygen concentration is higher with decrease of the 

equivalence ratio, and spreads more laterally in both experiments and numerical 

calculations. This can be attributed the fact that the oxidizer jet momentum increases with 

lower equivalence ratio, and hence the oxidizer jet is able to penetrate into the region of 
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the fuel jet more easily. As a result, the oxygen concentration spreads more widely with 

lower equivalence ratio as clearly shown in Figure 8.12. Another reason is that the more 

available oxygen exists with low equivalence ratio due to excess supply of oxidizer, thus 

the oxygen concentration is higher with lower equivalence ratio. 

It is observed from Figure 8.13 that the numerical simulations predict the oxygen 

concentrations well comparing with the experimental data. The overall trend and peak 

values are in good agreement. However, the discrepancy between the experimental and 

numerical results appears from Z/H=0.44, and becomes large near the bottom of the 

furnace. This discrepancy might result from relatively inaccurate flow control in the 

experiments as explained in previous section. The higher momentum of the oxidizer jets 

in experiments could enhance the jet entrainment and mixing intensity, and oxygen 

concentration in re-circulated flue gas also increases. Thus, more oxygen concentration is 

found at interface region between jets in experimental data. In addition, the reaction rates 

increase near upstream regions [66], which is the reason for higher temperature at 

interface between jets at upstream regions in experiments. 
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Figure 8.12: The contour profiles of oxygen concentration obtained from numerical calculations for 
various overall equivalence ratios (a) Φoverall = 0.9, (b) Φoverall = 1.0 and (c) Φoverall = 1.1 with dox=15.9 

mm and XO2;ox =0.30. 
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Figure 8.13: The radial profiles of oxygen concentration at different axial distances obtained from 
experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 
for various overall equivalence ratios Φoverall= 0.9, 1.0 and 1.1 with dox =15.9 mm and XO2;ox =0.30. 

 

The contour and radial carbon dioxide profiles at different axial positions obtained from 

experiments and numerical calculations for various overall equivalence ratios Φoverall =0.9, 

1.0 and 1.1 with dox=15.9 mm and XO2;ox =0.30 are shown in Figure 8.14 and 15, 

respectively. 

As shown in Figure 8.14, the region of high carbon dioxide concentration extends farther 

downstream location with higher equivalence ratio, which is coincident with expansion of 

fuel jet. It is observed from Figure 8.15 that the radial profiles of carbon dioxide 
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concentration are quite flat for all equivalence ratios. This indicates the strong 

recirculation of product gases and uniform reaction in entire region of the furnace. The 

distributions of carbon dioxide are similar for all equivalence ratios, and the difference 

between cases is small in both experimental data and numerical calculations. The small 

amount of carbon dioxide concentration for the case of Φoverall =0.9 is caused by high 

oxygen concentration due to excess supply of oxidizer. The discrepancy between 

experiments and numerical calculations can be found at Z/H=0.44 and 0.58. The amount 

of carbon dioxide in experiments is less than in numerical predictions. However, the 

consumption of methane is higher at the lower region of the furnace while oxygen 

consumption is less in experimental data. It might be thought that the reaction front is 

located at shorter distance from the jet exit than in numerical simulation, which results 

from more oxidizer flow in experiments. 

 

Radial Distance, Y/R

A
xi

al
D

is
ta

nc
e,

Z/
H

0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0

   Radial Distance, Y/R

A
xi

al
D

is
ta

nc
e,

Z/
H

0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0

   Radial Distance, Y/R

A
xi

al
D

is
ta

nc
e,

Z/
H

0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0

0.13

0.11

0.10

0.08

0.07

0.05

0.04

0.02

0.01

 
 

(a)   (b)   (c) 
 

Figure 8.14: The contour profiles of carbon dioxide concentration obtained from numerical 
calculations for various overall equivalence ratios (a) Φoverall = 0.9, (b) Φoverall = 1.0 and (c) Φoverall = 1.1 

with dox=15.9 mm and XO2;ox =0.30. 
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Figure 8.15: The radial profiles of carbon dioxide concentration at different axial distances obtained 

from experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) 
Z/H=0.58 for various overall equivalence ratios Φoverall= 0.9, 1.0 and 1.1 with dox =15.9 mm and XO2;ox 

=0.30. 
 

In summary, the distinction between cases is not clearly shown in experimental data, 

whereas it is noticeable in numerical calculations. As the overall equivalence ratio 

decreases, the recirculation flow can be formed earlier and its intensity also increases 

because of higher momentum of the oxidizer jet. Thus, the fuel concentration decays 

faster. Even though the difference between cases is not big in temperature and gas 

compositions, it might be helpful to increase the equivalence ratio slightly for obtaining 
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the homogeneous combustion condition because the reaction zone can extend farther 

downstream and wider under the configuration used in this study. 

In overall, the numerical calculations predicts reasonably temperature and gas 

compositions comparing with experimental data for various overall equivalence ratio 

Φoverall =0.9, 1.0 and 1.1. However, discrepancies between experiments and numerical 

calculations can be found at the bottom region of the furnace. It might be thought that 

these disagreements originate from the inaccuracy in controlling the flow rates of the jets 

in experiments, especially in oxidizer jet. Basically, the flow meters and pressure gauges 

used in this study contain about 6% and 2% of measuring error according to the technical 

specifications. Comparing with numerical calculations, there is possibility of excess 

supply of oxidizer in experiments; as a result, the oxidizer jet can have more momentum 

than target value. Therefore, it is believed that this operating error may obscure the 

effects of the equivalence ratio. 

 

8.2. Effects of the inlet oxygen concentration on reacting flows 

8.2.1 Velocity field 

Figure 8.16 shows the radial velocity profiles at different axial positions for various inlet 

oxygen concentrations in the oxidizer jet XO2;ox =0.21, 0.30 and 0.40 with dox=15.9 mm 

and Φoverall =1.0.  
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Figure 8.16: The radial stream-wise velocity profiles at different axial positions obtained from 

numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44, (d) Z/H=0.58, (e) Z/H=0.72 and (f) 
Z/H=0.86 for various inlet oxygen concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with 

Φoverall =1.0 and dox=15.9 mm. 
 

It is observed that the radial profiles for all cases are identical at jet exit region. However, 

the area of the recirculation at interface region between jets becomes smaller and weaker 

with less inlet oxygen concentration, whereas recirculation at the center jet region 

becomes more noticeable along with axial distance. In addition, for the case of high inlet 

oxygen concentration, the recirculation at interface regime still sustains up to bottom of 
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the furnace and finally merges into recirculation at the center jet region. This can be 

attributed the fact that the fuel jet can expand more wider with higher oxygen 

concentration due to decrease of momentum in the oxidizer jet, thus the recirculation of 

the fuel jet becomes dominant rather than that of the oxidizer jet. As a result, the 

recirculation at the center jet region occurs latter and weaker while recirculation between 

jets can sustain up to more downstream region of the furnace with higher oxygen 

concentration in the oxidizer jet. This trend is also clearly shown in Figure 8.17 showing 

the scaled centerline stream-wise velocity of the fuel jet. The region and magnitude of 

negative velocity decrease with higher inlet oxygen concentration, which means weak 

recirculation at the center regime.  

 

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.2 0.4 0.6 0.8 1.0

Z/H

U
c/

U
o*

Z
/H

X=0.21
X=0.30
X=0.40

 
Figure 8.17: The scaled centerline stream-wise velocity of the fuel jet obtained from numerical 

calculations for various inlet oxygen concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with 
Φoverall =1.0 and dox=15.9 mm. 

 

Figure 8.18 shows the velocity vector profiles obtained from numerical calculations for 

various inlet oxygen concentrations in the oxidizer jet XO2;ox =0.21, 0.30 and 0.40 with 

dox=15.9 mm and Φoverall =1.0. It is observed that the fuel jet can expand farther 

downstream region of the furnace with higher inlet oxygen concentration in the oxidizer 

jet. The fuel jet can reach up to Z/H=0.6 for the case of XO2;ox =0.21 while Z/H=0.72 and 

0.8 for XO2;ox =0.30 and 0.40, respectively. This might be thought the fact that the 

momentum of the oxidizer jet decreases with higher inlet oxygen concentration, thus the 
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fuel jet can expand more easily in the furnace. The intensity of the velocity vectors in the 

recirculation region increase with decrease of the inlet oxygen concentration as shown in 

Figure 8.18. It might be thought that higher momentum of the oxidizer jet with lower 

inlet oxygen concentration in the oxidizer jet can enhance mixing intensity and 

entrainment, thus the large scale of recirculation pattern is formed earlier and its intensity 

also increases.  
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(a)   (b)   (c) 
Figure 8.18: The velocity vector profiles of numerical calculations for various inlet oxygen 

concentrations in the oxidizer jet (a) XO2;ox=0.21, (b) XO2;ox=0.30 and (c) XO2;ox=0.40 with Φoverall =1.0 
and dox=15.9 mm. 
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In terms of mixing and combustion, large scale of recirculation is preferable to achieve 

the homogeneous combustion because of enhanced mixing intensity and entrainment. 

However, the momentum of the fuel jet is too large, thus the recirculation of the fuel jet is 

dominant over the whole domain for the case of XO2;ox =0.40. As a result, small scale of 

recirculation at the interface region between jets prevails in the furnace.  

 

8.2.2. Temperature 

8.2.2.1. Jet Centerline Temperature  

Figure 8.19 shows the centerline temperature of the fuel and oxidizer jets obtained from 

experiments and numerical calculations for various inlet oxygen concentrations in the 

oxidizer jet XO2;ox =0.21, 0.30 and 0.40 with dox=15.9 mm and Φoverall =1.0. 

The peak and gradient of the centerline temperature for both jets slightly increases with 

higher inlet oxygen concentration in experiments as shown in Figure 8.18. However, the 

centerline temperature of the fuel jet increases with lower inlet oxygen concentration in 

the oxidizer jet, whereas the oxidizer jet centerline temperature increases with higher 

inlet oxygen concentration in order in numerical calculations. This indicates that the 

reaction zone shifts toward the oxidizer jet with higher inlet oxygen concentration, which 

might be related to the expansion of the fuel jet with less momentum of the oxidizer jet as 

explained in velocity field. 
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Figure 8.19: The centerline temperature of the (a) fuel jet and (b) oxidizer jet obtained from 

experiments and numerical calculations for various inlet oxygen concentrations in the oxidizer jet 
XO2;ox=0.21, 0.30 and 0.40 with Φoverall =1.0 and dox=15.9 mm. 

 

It is clearly seen from Figure 8.19 (b) that the profile of the oxidizer jet centerline 

temperature becomes more parabolic with higher inlet oxygen concentration, which 

means lack of uniformity in temperature field. This non-uniformity of the temperature 

induces non-homogeneous combustion condition for the case of XO2;ox =0.40. 

The difference between cases in experiments is not much noticeable as in numerical 

calculations. The numerical calculations predict the temperature reasonably comparing 

with experimental data for the case of XO2;ox=0.21 and 0.30, whereas large discrepancy is 

shown for the case of XO2;ox=0.40.  

 
8.2.2.2. Radial Temperature Profiles along with axial distance 

The contour profiles for Y-Z plane and radial temperature profiles at different axial 

positions for various inlet oxygen concentrations in the oxidizer jets XO2;ox=0.21, 0.30 and 

0.40 with dox=15.9 mm and Φoverall =1.0 are shown in Figure 8.20 and 21, respectively.  

It is clearly observed from Figure 8.20 that the high temperature region shifts and expand 

more toward the oxidizer jet with higher inlet oxygen concentration. The temperature 

between jets at upstream region is higher for the case of XO2;ox=0.21, which might be 

thought that the intensity of recirculation at this region is enhanced due to higher 
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momentum of the oxidizer jet with decrease of inlet oxygen concentration as shown in 

Figure 8.18. Thus, the oxygen concentration in re-circulated flue gas increases and 

reaction rate is also enhanced at upstream region. The non-uniformity in temperature 

becomes notable with increase of inlet oxygen concentration. The case of XO2;ox =0.40 

shows quite non-uniform temperature profiles, especially near the oxidizer jet region in 

numerical calculations as shown in Figure 8.21. According to the experimental 

observation of UV emissions and visual images, the case of XO2;ox=0.21 and 0.30 are in 

the homogeneous combustion mode, whereas the highest inlet oxygen concentration 

XO2;ox=0.40 is in the non-homogeneous combustion mode. The difference between 

homogeneous and non-homogeneous combustion conditions is clearly shown in 

numerical calculations, whereas it is hard to see the difference between cases in 

experimental data.  
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Figure 8.20: The contour profiles of temperature obtained from numerical calculations for various 
inlet oxygen concentrations in the oxidizer jet (a) XO2;ox=0.21, (b) XO2;ox=0.30 and (c) XO2;ox=0.40 with 

Φoverall =1.0 and dox=15.9 mm. 
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Figure 8.21: The radial profiles of temperature at different axial positions obtained from experiments 
and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 for various 

inlet oxygen concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with Φoverall =1.0 and dox=15.9 
mm. 

 
 

8.2.3. Gas compositions 

8.2.3.1. Jet Centerline gas composition  

The decay patterns of methane and oxygen concentration in the fuel and oxidizer jet 

centerline obtained from experiments and numerical calculations for different inlet 
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oxygen concentrations XO2;ox =0.21, 0.30 and 0.40 with dox=15.9 mm and Φoverall =1.0 are 

shown in Figure 8.22.  

It is observed that the case of XO2;ox=0.21 shows large decay rate of methane 

concentration in the fuel jet centerline, whereas less decay rate of the oxygen 

concentration in the oxidizer jet centerline for both experiments and numerical 

calculations. In experiments, the decay patterns of methane and oxygen concentrations in 

the jet centerline for XO2;ox=0.30 and 0.40 are almost identical. However, the distinction 

between cases is clearly shown in numerical calculations as shown in Figure 8.22. The 

numerical calculations show large decay rate of methane concentration and less decay 

rate of the oxygen concentration with lower inlet oxygen concentration in the oxidizer jet. 

An explanation is that the momentum of oxidizer jet increases with decrease of inlet 

oxygen concentration, thus the oxidizer jet can expand more easily into the region of the 

fuel jet. In addition, the recirculation flow pattern due to confinement is formed at shorter 

axial distance and the intensity of recirculation increases with high momentum as shown 

in Figure 8.18. As a result, the region of the fuel jet becomes smaller and the reaction 

front is located at shorter axial distance. Therefore, the fuel concentration decays faster 

with lower inlet oxygen concentration. On the other hand, the oxidizer jet can reach the 

bottom of the furnace without reaction with the fuel due to high momentum for the case 

of low inlet oxygen concentration while the most amount of oxidizer flow is consumed 

by reaction with the fuel for high inlet oxygen concentration as shown in Figure 8.20. 

Thus, the oxygen concentration is higher with low inlet oxygen concentration in the 

bottom region of the furnace. This explanation will be confirmed in later section of gas 

compositions. 

It is noted that the initial inlet oxygen concentrations in the oxidizer jet are different, 

while the diameter of oxidizer jet is same for above cases. In Figure 8.22, the centerline 

oxygen concentration (Cc)O2 is normalized by the inlet oxygen concentration (Co)O2. 

Thus, the decay patterns of the centerline oxygen concentration (Cc)O2 are different 

between cases. Considering the real values of the centerline oxygen concentration, the 

less inlet oxygen concentration shows the lower value of the centerline oxygen 

concentration as shown in Figure 8.23. This can be explained by the turbulent jet theory 

which states that the centerline concentration is proportional to initial inlet concentration 
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and jet diameter. Thus, the higher oxygen concentration in the oxidizer jet centerline 

results from high initial oxygen concentration in oxidizer jet because the oxidizer jet 

diameter is kept same for all case.  
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Figure 8.22: The decay patterns of normalized (a) methane concentration in the fuel jet centerline 
and (b) oxygen concentration in the oxidizer jet centerline obtained from experiments and numerical 
calculations for different inlet oxygen concentrations XO2;ox=0.21, 0.30 and 0.40 with Φoverall =1.0 and 

dox=15.9 mm. 
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Figure 8.23: The decay patterns of oxygen concentration in the oxidizer jet centerline Cc obtained 
from experiments and numerical calculations for different inlet oxygen concentrations XO2;ox=0.21, 

0.30 and 0.40 with Φoverall =1.0 and dox=15.9 mm. 
 

Based on the UV emission and visual image in experiments, the case of XO2;ox=0.21 and 

0.30 are in the homogeneous combustion mode, whereas the highest inlet oxygen 

concentration XO2;ox=0.40 is in the non-homogeneous combustion mode. It might be 

thought that the dilution of the oxidizer jet is not sufficient to obtain the homogeneous 

combustion for XO2;ox=0.40 because of high value of oxygen concentration. This higher 

oxygen concentration induces the non-homogenous combustion. For achieving the 

homogeneous combustion condition with high inlet oxygen concentration, the oxidizer jet 

should be sufficiently diluted by product gases. Thus, it is strongly recommended that the 

size of the oxidizer jet should be smaller for the case of high inlet oxygen concentration. 

Figure 8.24 shows the scaled centerline methane concentration in the fuel jet and oxygen 

concentration in the oxidizer jet for different inlet oxygen concentrations XO2;ox=0.21, 

0.30 and 0.40 with dox=15.9 mm and Φoverall=1.0.  

It is observed that the scaled centerline methane concentration in the fuel jet falls steeply 

at Z/H=0.45 for XO2;ox=0.21 and Z/H=0.6 for XO2;ox=0.30 and 0.40 , whereas the scaled 

centerline oxygen concentration in the oxidizer jet increases after showing flat shape 

along with the axial distance. This can be thought that each jet acts like a free single jet 

before the onset of the recirculation the jet flow, thus the jets continue to be diluted. This 
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can be shown as flat shape in Figure 8.24. However, the centerline oxygen concentration 

in the oxidizer jet drops slowly or remains nearly constant after occurring of recirculation 

flow due to confinement effect, whereas the scaled centerline methane concentration in 

the fuel jet decreases sharply by mixing with recirculation flow and combustion. In other 

words, the (Cc/Co)CH4 falls sharply because of combustion, and the (Cc/Co)O2 increases 

due to the recirculation of the oxidizer jet flow.  
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Figure 8.24: The scaled centerline (a) methane concentration in the fuel jet and (b) oxygen 
concentration in the oxidizer jet obtained from experiments and numerical calculations for different 

inlet oxygen concentrations XO2;ox=0.21, 0.30 and 0.40 with Φoverall =1.0 and dox=15.9 mm. 
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The scaled value of the centerline methane concentration in the fuel jet fall faster for the 

case of XO2;ox=0.21 while other cases show nearly identical values, whereas the scaled 

centerline oxygen concentration in the oxidizer jet is slightly higher with low inlet 

oxygen concentration in experiments. However, the distinction between cases is quite 

clearly shown in numerical calculations. The values of scaled centerline methane 

concentration are lower and decrease faster with low inlet oxygen concentration. On the 

other hand, the values of scaled oxygen concentration are initially quite same for all cases 

and then become higher with low inlet oxygen concentration. It might be attributed the 

fact that the oxidizer jet momentum increases with low inlet oxygen concentration, and 

the recirculation flow occurs earlier. As a result, large scale of the mixing between the 

fuel and oxidizer jet occurs earlier and thus the centerline methane concentration 

decreases faster. The case of XO2;ox=0.40 shows large decay rate of the scaled oxygen 

concentration between Z/H=0.3 and 0.7, which is related to combustion in the region of 

oxidizer jet. 

 
8.2.3.2. Jet entrainment 

The sufficient dilution of the jets by product gases is an essential condition for achieving 

the homogeneous combustion mode. Thus, it is very useful to investigate the amount of 

carbon dioxide in each jet centerline for evaluating the effects of inlet oxygen 

concentration. Figure 8.25 shows the mole fraction of carbon dioxide in the fuel and 

oxidizer jet centerline obtained from experiments and numerical calculations for various 

inlet oxygen concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with dox=15.9 

mm and Φoverall =1.0. 

Considering different initial inlet oxygen concentrations, the centerline concentrations of 

carbon dioxide are divided by inlet oxygen concentrations as shown in Figure 8.25 

because the amount of carbon dioxide is approximately proportional to inlet oxygen 

concentration. It is observed that less carbon dioxide is found in the fuel jet centerline 

with higher inlet oxygen concentration, which indicates the lower level of recirculation of 

product gases. On the other hand, nearly same amount of carbon dioxide is shown in the 

oxidizer jet centerline for the case of XO2;ox=0.21 and 0.30 while the case of XO2;ox=0.40 

shows higher amount of carbon dioxide in the latter half region of the furnace. However, 
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high mole fraction of carbon dioxide for the case of XO2;ox=0.40 is directly from the 

reaction, not from the entrainment of product gases because the reaction occurs mainly 

around the oxidizer jet as shown in contour profiles of temperature, Figure 8.20. For 

achieving the homogeneous combustion condition with high inlet oxygen concentration 

in the oxidizer jet, more strong level of recirculation of product gases in each jet should 

be implemented. However, the case of XO2;ox=0.40 shows insufficient recirculation of 

product gases in each jet. 
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Figure 8.25: The normalized centerline carbon dioxide concentration in the (a) fuel jet and (b) 
oxidizer jet obtained from experiments and numerical calculations for different inlet oxygen 

concentrations XO2;ox=0.21, 0.30 and 0.40 with Φoverall =1.0 and dox=15.9 mm. 
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8.2.3.3. Radial gas composition profiles 

The contour profiles of the methane concentration obtained from numerical calculations 

for different inlet oxygen concentrations XO2;ox=0.21, 0.30 and 0.40 with dox=15.9 mm 

and Φoverall =1.0 are shown in Figure 8.26. It is clearly seen that the region of the fuel jet 

expands more widely with increase of the inlet oxygen concentration. This can be 

attributed the fact that the momentum of the oxidizer jets becomes lower with oxygen 

enrichment, and hence the fuel jet can penetrate easily into the flow region of the oxidizer 

jets.  

Figure 8.27 shows radial profiles of methane concentration at different axial positions 

obtained from experiments and numerical calculations for various inlet oxygen 

concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with fixed separation 

distance and Φoverall =1.0. 
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Figure 8.26: The contour profiles of methane concentration obtained from numerical calculations for 
various inlet oxygen concentrations in the oxidizer jet (a) XO2,ox=0.21, (b) XO2,ox=0.30 and (c) 

XO2;ox=0.40 with Φoverall=1.0 and dox=15.9 mm. 
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Figure 8.27: The radial profiles of methane concentration at different axial positions obtained from 
experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 
for various inlet oxygen concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with Φoverall =1.0 

and dox=15.9 mm. 
 

In overall, the methane concentration decays faster with lower inlet oxygen concentration. 

However, the difference between cases is very small and the profiles are almost similar 

for all cases in experiments while there is a clear distinction between cases in numerical 

calculations. It might be thought that the recirculation flow toward the fuel jet is formed 

earlier and the intensity of re-circulating flow becomes stronger with decrease of inlet 

oxygen concentration because of higher momentum of the oxidizer jet as shown in Figure 
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8.18. Therefore, the fuel jet begins to be affected by this recirculation flow at shorter 

axial distance and the methane concentration decays faster with lower inlet oxygen 

concentration in the oxidizer jet. 

The contour profiles of oxygen concentration obtained from numerical calculations for 

various inlet oxygen concentrations XO2;ox=0.21, 0.30 and 0.40 with dox=15.9 mm and 

Φoverall =1.0 are shown in Figure 8.28. It is clearly seen that the distribution of oxygen 

concentration becomes wider with decrease of the inlet oxygen concentration, which is 

connected to the same reason for expansion of the fuel jet. In addition, the height that the 

flow of oxidizer jet can reach increases with less inlet oxygen concentration due to higher 

momentum. As a result, the reaction front is located at shorter distance and methane 

concentration decays faster with low inlet oxygen concentration in the oxidizer jet. 
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Figure 8.28: The contour profiles of oxygen concentration obtained from numerical calculations for 
various inlet oxygen concentrations in the oxidizer jet (a) XO2,ox=0.21, (b) XO2,ox=0.30 and (c) 

XO2;ox=0.40 with Φoverall =1.0 and dox=15.9 mm. 
 

Figure 8.29 shows radial oxygen concentration profiles at different axial positions 

obtained from experiments and numerical calculations for various inlet oxygen 
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concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with dox=15.9 mm and 

Φoverall =1.0. 
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Figure 8.29: The radial oxygen concentration profiles at different axial positions obtained from 

experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 
for various inlet oxygen concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with Φoverall =1.0 

and dox=15.9 mm. 
 

The peaks of oxygen concentration in the oxidizer jet are well predicted in numerical 

calculations except for the case of XO2;ox=0.40 as shown in Figure 8.29. It is observed that 

oxygen concentration at interface region between jets is higher for the case of XO2;ox=0.21 

than other cases. This can be attributed the fact that the lower inlet oxygen concentration 

case has higher momentum of the oxidizer jet, and non-reacting flow of the oxidizer jet 
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containing high oxygen concentration re-circulates to the region of middle of the furnace 

as shown in Figure 8.28.  

The contour profiles of carbon dioxide concentration obtained from numerical 

calculations for various inlet oxygen concentrations XO2;ox=0.21, 0.30 and 0.40 with 

dox=15.9 mm and Φoverall =1.0 are shown in Figure 8.30. The distribution of carbon 

dioxide concentration is quite uniform for the case of XO2;ox=0.21, and becomes less 

uniform with increase of inlet oxygen concentration. 
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Figure 8.30: The contour profiles of carbon dioxide concentration obtained from numerical 
calculations for various inlet oxygen concentrations in the oxidizer jet (a) XO2,ox=0.21, (b) XO2,ox=0.30 

and (c) XO2;ox=0.40 with Φoverall =1.0 and dox=15.9 mm. 
 

Figure 8.31 shows radial carbon dioxide concentration profiles at different axial positions 

obtained from experiments and numerical calculations for various inlet oxygen 

concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with dox=15.9 mm and 

Φoverall =1.0. It is observed from Figure 8.31 that the numerical predictions show quite 

good agreement with the experimental data for the case of XO2;ox=0.21 and 0.30. However, 

the discrepancy between experiments and numerical predictions is large for the case of 

XO2;ox =0.40. The mole fraction of carbon dioxide obtained from experiments is quite less 
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than that of numerical calculations. It is believed that lower inlet oxygen concentration 

than target value flows into the furnace in experiments, which might result from 

inaccuracy of mixing air and oxygen for supplying target inlet oxygen concentration. The 

profiles of carbon dioxide becomes really flat from the middle of domain for the case of 

XO2;ox =0.21 and 0.30, which indicates the uniform reaction and strong recirculation of the 

product gases in the furnace. However, the profiles of carbon dioxide are found to be 

relatively less flat and consequently less uniformity in reaction for the case of XO2;ox 

=0.40. 
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Figure 8.31: The radial carbon dioxide concentration profiles at different axial positions obtained 
from experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) 

Z/H=0.58 for various inlet oxygen concentrations in the oxidizer jet XO2;ox=0.21, 0.30 and 0.40 with 
Φoverall =1.0 and dox=15.9 mm. 
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In summary, the numerical calculations are in good agreement with experimental data for 

the case of XO2;ox=0.21 and 0.30, whereas large discrepancy is shown for the case of 

XO2;ox=0.40. The inlet oxygen concentration is adjusted by mixing ambient air and 

oxygen in experiments, and the flow rates of the jets are calibrated by pressure correction. 

However, large fluctuation of supplying pressure has been experienced in mixing process, 

especially for the case of high inlet oxygen concentration because there is no device for 

accumulating the mixture of air and oxygen. Thus, the operating error in adjusting inlet 

oxygen concentration may exist in experimental data and this error becomes large for the 

case of high oxygen inlet concentration. It might be thought that lower inlet oxygen 

concentration than target value flows into the furnace in experiments comparing to 

numerical calculations.  

 

 

8.3. Effects of the oxidizer jet diameter on reacting flows 

8.3.1 Velocity field 

Figure 8.32 shows the radial velocity profiles at different axial positions for various 

oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0.  

The initial velocities in the oxidizer jet show a big gap between cases because of different 

size of the oxidizer jet diameter. It is observed that the region of the recirculation at 

interface region between jets becomes smaller and weaker, whereas recirculation at the 

center jet region becomes more noticeable along with axial distance for the case of 

dox=7.94 and 15.9 mm. On the other hand, for the case of the largest diameter dox= 31.8 

mm, the recirculation at interface region is dominant over the whole furnace domain. 

This indicates that the recirculation of the fuel jet is quite strong rather than that of the 

oxidizer jet, consequently, the reaction front shifts toward the oxidizer jet and small scale 

of mixing is formed in the furnace. The scaled centerline stream-wise velocities of the 

fuel jet are shown in Figure 8.33. It is clearly observed that the region of negative 

velocity and its amplitude increases with smaller oxidizer jet diameter. The case of dox= 

31.8 mm shows a quite small area of negative stream-wise velocity, which means low 

level of the recirculation at the center region.  
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Figure 8.32: The radial stream-wise velocity profiles at different axial positions obtained from 

numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44, (d) Z/H=0.58, (e) Z/H=0.72 and (f) 
Z/H=0.86 for various oxidizer jet diameters and dox=7.94, 15.9 and 31.8 mm with XO2;ox=0.30 and 

Φoverall =1.0. 
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Figure 8.33: The scaled centerline stream-wise velocity of the fuel jet obtained from numerical 

calculations for various oxidizer jet diameters and dox=7.94, 15.9 and 31.8 mm with XO2;ox=0.30 and 
Φoverall =1.0. 
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Figure 8.34: The velocity vector profiles of numerical calculations for various inlet oxygen 
concentrations in the oxidizer jet (a) dox=7.94, (b) dox=15.9 and (c) dox=31.8 mm with XO2;ox =0.30 and 

Φoverall =1.0. 
 

 

Figure 8.34 shows the velocity vector profiles obtained from numerical calculations for 

various oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall 

=1.0.  

It is observed that the intensity of velocity vectors between jets is high for the case of 

dox=31.8 mm, however, this increase results from the recirculation of the fuel jet. With 

large separation distance between jets, it is preferable that the recirculation is formed at 
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the center region from the oxidizer jet toward the fuel jet for obtaining large scale of 

mixing in the furnace. However, large scale of recirculation from the oxidizer jet side is 

not formed sufficiently at the center region for the case of dox=31.8 mm because the 

momentum of the oxidizer jet is too weak and only small recirculation of the fuel jet is 

overwhelm over the furnace domain. This might be attributed the fact that less 

momentum of the oxidizer jet with larger diameter adversely affects mixing intensity and 

entrainment of product gases, thus unfavorable for achieving the homogeneous 

combustion condition. 

 

8.3.2. Temperature 

8.3.2.1. Jet Centerline Temperature  

Figure 8.35 shows the centerline temperature of the fuel and oxidizer jets obtained from 

experiments and numerical calculations for various oxidizer jet diameters dox=7.94, 15.9 

and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0. In this figure, the designation of d1, d2 

and d3 mean oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm, respectively in order of 

the diameter size. 
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Figure 8.35: The centerline temperature of the (a) fuel jet and (b) oxidizer jet obtained from 
experiments and numerical calculations for various oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm 

with XO2;ox =0.30 and Φoverall =1.0. 
 

The rising slope of the fuel jet centerline temperature is almost identical for the cases of 

dox=15.9 and 31.8 mm, whereas higher temperature is shown for the case of dox=7.94 mm. 

On the other hand, the slope of the oxidizer jet becomes steeper with decrease of the 

oxidizer jet diameter except for the case of dox=31.8 mm, which indicates that the 

reaction rate is enhanced at upstream region of the furnace. It might be thought that the 

recirculation is formed earlier and stronger with decrease of the oxidizer jet diameter 

because momentum of the oxidizer jet increases as shown in Figure 8.32 and 34. As a 

result, the oxygen concentration in re-circulated flue gas also increases and reaction rate 

is enhanced near the jet exit region. 

 

8.3.2.2. Radial Temperature Profiles along with axial distance 

The temperature contour profiles for Y-Z plane and radial temperature profiles at different 

axial positions for various oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox 

=0.30 and Φoverall =1.0 are shown in Figure 8.36 and 37, respectively.  

It is noted that the centerline of the oxidizer jet leans toward the furnace wall for the case 

of dox=31.8 mm in numerical calculation because momentum of the oxidizer jet is too 
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weak, thus the fuel jet flow can push the oxidizer flow laterally. However, this trend is 

not observed in experiments. As shown in Figure 8.36, the reaction occurs around the 

oxidizer jet with lager oxidizer jet diameter and the height of high temperature region 

decreases.  

The case of dox=7.94 mm shows the lower temperature than other cases, and quite flat 

radial profiles quickly after Z/H=0.44 as shown in Figure 8.37. This might be attributed 

the fact that the recirculation flow occurs strongly with small oxidizer jet diameter 

because of increasing oxidizer jet momentum, hence enhanced dilution of the jets. As a 

result, the reaction is delayed and temperature decreases due to enhanced dilution of the 

jets and mixing is promoted by large scale of recirculation in the furnace. 

However, it is hard to judge which case is in the homogeneous combustion condition or 

not by considering only temperature profiles because the overall trend is quite similar for 

all cases.  
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Figure 8.36: The contour profiles of temperature obtained from numerical calculations for various 
inlet oxygen concentrations in the oxidizer jet (a) dox=7.94, (b) dox=15.9 and (c) dox=31.8 mm with 

XO2;ox =0.30 and Φoverall =1.0. 
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Figure 8.37: The radial profiles of temperature at different axial positions obtained from experiments 
and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 for various 

oxidizer jet diameters and dox=7.94, 15.9 and 31.8 mm with XO2;ox=0.30 and Φoverall =1.0. 
 

8.3.3. Gas compositions 

8.3.3.1. Jet Centerline gas composition  

The decay patterns of methane and oxygen concentration in the fuel and oxidizer jet 

centerline obtained from experiments and numerical calculations for various oxidizer jet 

diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0 are shown in 

Figure 8.38.  
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Figure 8.38: The decay patterns of normalized (a) methane concentration in the fuel jet centerline 
and (b) oxygen concentration in the oxidizer jet centerline obtained from experiments and numerical 

calculations for various oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and 
Φoverall =1.0. 

 

The decay rate of the centerline methane and oxygen concentrations becomes larger with 

smaller oxidizer jet diameter in both experiments and numerical calculations except for 

the case of dox=31.8 mm. This can be attributed the same reason explained in previous 
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section, which is related to the fuel jet expansion and momentum of the oxidizer jet. It is 

obvious that dilution of the jets is promoted due to larger momentum of the oxidizer jet 

with smaller diameter, and the recirculation pattern is also formed earlier and its intensity 

increases as shown in Figure 8.32 to 34.  
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Figure 8.39: The scaled centerline (a) methane concentration in the fuel jet and (b) oxygen 

concentration in the oxidizer jet obtained from experiments and numerical calculations for various 
oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0. 
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The decay patterns of the centerline gas concentration can be expressed in other way as 

shown in Figure 8.39 showing the scaled centerline methane concentration in the fuel jet 

and oxygen concentration in the oxidizer jet. The scaled value of the centerline methane 

concentration in the fuel jet falls faster with small oxidizer jet diameter due to strong 

recirculation flow, and scaled value of the centerline oxygen concentration in the oxidizer 

jet is lower as the oxidizer jet diameter decreases except for the case of dox=31.8 mm. As 

mentioned before, the centerline of the oxidizer jet leans toward furnace wall for the case 

of dox=31.8 mm, thus reaction zone shifts to the oxidizer jet in numerical calculations. 

Consequently, the temperature and oxygen consumption becomes higher than measured 

data in experiments at the location of the oxidizer jet centerline.  

Based on the UV emission and visual image in experiments, the case of dox=7.94 and 

15.9 mm are in the homogeneous combustion mode, whereas the highest inlet oxygen 

concentration dox=31.8 mm is in the non-homogeneous combustion mode. It might be 

thought that the reaction occurs mainly around the oxidizer jet, and dilution of the 

oxidizer jet is achieved by combustion instead of entrainment of product gases. The jets 

should be sufficiently diluted by product gases before reaction occurs, however, for the 

case of dox=31.8 mm, the reaction precedes sufficient dilution of the oxidizer jet.  

 

8.3.3.2. Jet entrainment 

Figure 8.40 shows the mole fraction of carbon dioxide in the fuel and oxidizer jet 

centerline obtained from experiments and numerical calculations for various oxidizer jet 

diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0.  

It is clearly observed that the amount of carbon dioxide in the oxidizer jet increases with 

smaller oxidizer jet diameter in experiments, which is in accordance with jet theory 

stating that more dilution can be achieved with higher momentum. This dilution of the 

jets is quite essential to obtain the homogeneous combustion condition. On the other hand, 

numerical calculations shows a good agreement with experimental data for the cases of 

dox=7.94 and 15.9mm, whereas a poor result is shown for the case of dox=31.8 mm. The 

carbon dioxide concentration is larger than the case of dox=15.9 mm. However, the 

reaction zone shifts around the oxidizer jet as shown Figure 8.36, thus the amount of 

carbon dioxide increases entrained into the oxidizer jet and oxygen consumption 
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increases in numerical calculation. It is also observed that carbon dioxide concentration 

in the oxidizer jet drops sharply after Z/H=0.65 for the case of dox =31.8 mm in numerical 

calculation. This can be thought that infiltration from outside having higher oxygen 

concentration occurs through the exhaust vent, consequently carbon dioxide 

concentration falls quickly after Z/H=0.65. 
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Figure 8.40: The normalized centerline carbon dioxide concentration in the (a) fuel jet and (b) 

oxidizer jet obtained from experiments and numerical calculations for various oxidizer jet diameters 
dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0. 
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8.3.3.3. Radial gas composition profiles 

The contour profiles of the methane concentration obtained from numerical calculations 

for various oxidizer jet diameters dox =7.94, 15.9 and 31.8 mm with XO2;ox=0.30 and 

Φoverall=1.0 are shown in Figure 8.41. It is clearly seen that the region of the fuel jet 

expands more laterally with increase of the oxidizer jet diameter because of weak 

momentum of the oxidizer jet. In addition, higher fuel concentration can be found near 

the oxidizer jet exit, which means that the recirculation of the fuel jet is enhanced with 

larger oxidizer jet diameter. 
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Figure 8.41: The contour profiles of methane concentration obtained from numerical calculations for 
various inlet oxygen concentrations in the oxidizer jet (a) dox=7.94, (b) dox=15.9 and (c) dox=31.8 mm 

with XO2;ox =0.30 and Φoverall =1.0. 
 

Figure 8.42 shows radial profiles of methane concentration at different axial positions 

obtained from experiments and numerical calculations for various oxidizer jet diameters 

dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0. Even though there is a 

discrepancy between experiments and numerical calculations, the overall trend of radial 

temperature profiles are well captured in numerical calculations. The methane 

concentration decays faster with smaller oxidizer jet diameter in both experiments and 
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numerical calculations. It might be thought that the fuel jet begins to be affected by 

recirculation flow at shorter axial distance and the methane concentration decays faster 

with smaller oxidizer jet diameter. 
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Figure 8.42: The radial profiles of methane concentration at different axial positions obtained from 
experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 
for various oxidizer jet diameters and dox=7.94, 15.9 and 31.8 mm with XO2;ox=0.30 and Φoverall =1.0. 

 

The contour profiles of oxygen concentration obtained from numerical calculations for 

various oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall 
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=1.0 are shown in Figure 8.43. The consumption of oxygen is greater for the case of 

dox=31.8 mm, and oxygen disappears at about Z/H=0.6 because the reaction occurs 

mainly around the oxidizer jet. It is noted that air infiltration exists trough the exhaust 

vent corresponding Z/H=0.65~0.78, thus a little higher oxygen concentration can be 

found at the location of the exhaust vent. 
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Figure 8.43: The contour profiles of oxygen concentration obtained from numerical calculations for 
various inlet oxygen concentrations in the oxidizer jet (a) dox=7.94, (b) dox=15.9 and (c) dox=31.8 mm 

with XO2;ox =0.30 and Φoverall =1.0. 
 

Figure 8.44 shows radial oxygen concentration profiles at different axial positions 

obtained from experiments and numerical calculations for various oxidizer jet diameters 

dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0. 

It is observed that the lower oxygen concentration can be found in the oxidizer jet 

centerline with smaller oxidizer jet diameter, whereas higher concentration at interface 

region between jets. In addition, the oxygen concentration spreads more laterally with 

smaller oxidizer jet diameter. It can be attributed the fact that the oxidizer jet momentum 

increases with smaller oxidizer jet diameter, and hence entrainment of product gases is 

enhanced in the oxidizer jet. The recirculation flow also occurs intensively with smaller 
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oxidizer jet diameter. Therefore, the oxygen concentration decays faster in the oxidizer 

jet centerline and spreads more widely with smaller oxidizer jet diameter.  
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Figure 8.44: The radial oxygen concentration profiles at different axial positions obtained from 
experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) Z/H=0.58 
for various oxidizer jet diameters and dox=7.94, 15.9 and 31.8 mm with XO2;ox=0.30 and Φoverall =1.0. 

 

The contour profiles of carbon dioxide concentration obtained from numerical 

calculations for various oxidizer jet diameters dox=7.94, 15.9 and 31.8 mm with XO2;ox 

=0.30 and Φoverall =1.0 are shown in Figure 8.45.  
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The higher concentration of carbon dioxide is found at upstream region with larger 

oxidizer jet diameter, which indicates that the reaction rate increases at the region. It 

might be though that the recirculation of the fuel jet is quite remarkable for larger 

oxidizer jet diameter, thus the fuel concentration in re-circulated flow increases.  

Figure 8.46 shows radial carbon dioxide concentration profiles at different axial positions 

obtained from experiments and numerical calculations for various oxidizer jet diameters 

dox=7.94, 15.9 and 31.8 mm with XO2;ox =0.30 and Φoverall =1.0. It is seen from Figure 

8.46 that the radial carbon dioxide profile becomes flat quickly across the radial direction 

with smaller oxidizer jet diameter, which indicates strong recirculation of product gases 

and uniform reaction in the furnace. The carbon dioxide concentration is lower with the 

smallest oxidizer jet diameter than those of other cases at interface region between jets. 

This results from the higher oxygen concentration due to strong recirculation of the jet 

flow with high momentum at this region.  

 

Radial Distance, Y/R

A
xi

al
D

is
ta

nc
e,

Z/
H

0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0

  Radial Distance, Y/R

A
xi

al
D

is
ta

nc
e,

Z/
H

0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0

   Radial Distance, Y/R

A
xi

al
D

is
ta

nc
e,

Z/
H

0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0

0.12

0.11

0.09

0.08

0.06

0.05

0.03

0.02

0.00

 
 

(a)   (b)   (c) 
 

Figure 8.45: The contour profiles of carbon dioxide concentration obtained from numerical 
calculations for various inlet oxygen concentrations in the oxidizer jet (a) dox =7.94, (b) dox =15.9 and 

(c) dox=31.8 mm with XO2;ox =0.30 and Φoverall =1.0. 
 



 

199 

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Radial Distance, Y/R

M
ol

e 
Fr

ac
tio

n,
 C

O
2 , 

Z
/H

=0
.1

5

d1-EXP
d2-EXP
d3-EXP
d1-FDS
d2-FDS
d3-FDS

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Radial Distance, Y/R

M
ol

e 
Fr

ac
tio

n,
 C

O
2 , 

Z
/H

=0
.2

9

d1-EXP
d2-EXP
d3-EXP
d1-FDS
d2-FDS
d3-FDS

 
 

(a)     (b) 
 
 

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Radial Distance, Y/R

M
ol

e 
Fr

ac
tio

n,
 C

O
2 , 

Z
/H

=0
.4

4

d1-EXP
d2-EXP
d3-EXP
d1-FDS
d2-FDS
d3-FDS

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
Radial Distance, Y/R

M
ol

e 
Fr

ac
tio

n,
 C

O
2 , 

Z
/H

=0
.5

8
d1-EXP
d2-EXP
d3-EXP
d1-FDS
d2-FDS
d3-FDS

 
 

(c)     (d) 
 

Figure 8.46: The radial carbon dioxide concentration profiles at different axial positions obtained 
from experiments and numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44 and (d) 

Z/H=0.58 for various oxidizer jet diameters and dox=7.94, 15.9 and 31.8 mm with XO2;ox=0.30 and 
Φoverall =1.0. 

 

In summary, the numerical calculations are in good agreement with experimental data for 

the case of dox=7.94 and 15.9 mm. However, whereas poor prediction is shown for the 

case of dox=31.8 mm. The discrepancy originates from the location of reaction zone. The 

reaction still occurs mainly at interface region between jets even very low momentum of 

the oxidizer jet in experiments, whereas it shifts toward the oxidizer jet in numerical 
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calculations. As a result, the centerline temperature of the oxidizer jet is higher and 

oxygen concentration in the oxidizer jet centerline is lower than those of experiments.  

The profiles of temperature and gas compositions becomes flat faster with decrease of 

oxidizer jet diameter, which means that well mixing and intense recirculation of product 

gases occurs in the furnace. Therefore, it can be concluded that smaller diameter of the 

jets (increase of momentum) is preferable to achieve the homogeneous combustion mode 

because of enhanced mixing, entrainment of product gases and strong recirculation of 

flow. It is recommended that small diameter of the jets should be selected among 

available sizes of the jet diameters in the case of using enriched oxygen combustion 

configuration.  

 

8.4. Heat transfer in the furnace 

The heat generated in the furnace is transferred to solid surface including the furnace 

walls and heat sink, and out of the furnace through the openings. Figure 8.47 shows the 

heat transfer ratio obtained from numerical calculations for various test conditions. In this 

figure, the ratio is defined as heat release rate to heat input.  
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Figure 8.47: Heat transfer rate in the furnace obtained from numerical simulations for various test 

conditions. 
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The numerical simulations predict that approximately 50% of heat input is transferred to 

heat sink, 30% is going out of the furnace by conduction and radiation through walls and 

openings and 20% is going out of the furnace in the forms of convection by flue gases 

and radiation through openings.  
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Figure 8.48: Heat transfer rate in the furnace obtained from experiments for various test conditions. 
 

Comparing to numerical predictions, the results of experiment show quite large amount 

of flue losses because of adding the heat loss due to air infiltration. Figure 8.48 shows the 

heat transfer ratio obtained from experiments. In this figure, the heat losses due to air 

infiltration and radiation through openings are included. In experiments, around 47% of 

heat input is transferred to the heat sink and 17% goes to wall and opening losses while 

flue gases is carrying the remaining 36%. However, there is still discrepancy between 

experimental data and numerical predictions. The current furnace configuration in this 

study does not provide a proper arrangement for measuring the exhaust gas compositions.  

Thus, the exhaust gas compositions are estimated by substituting the mean gas 

concentrations of 4 probing points at Z/H=0.72 which are nearest to the exhaust vent of 

the chamber. It is thought that the discrepancy between experimental data and numerical 

predictions might result from this substitution for the exhaust exit which does not 

properly represent the actual exhaust gas conditions. 
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8.5. The effects of combustion on the velocity field 

Figure 8.49 shows the radial velocity profiles of non-reacting and reacting flows obtained 

from numerical calculations for dox=15.9 mm, XO2;ox =0.30 and overall equivalence ratio 

Φoverall =1.0. 
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Figure 8.49: The radial stream-wise velocity profiles at different axial positions obtained from 

numerical calculations (a) Z/H=0.15, (b) Z/H=0.29, (c) Z/H=0.44, (d) Z/H=0.58, (e) Z/H=0.72 for non-
reacting and reacting flows with overall equivalence ratios Φoverall= 1.0, XO2;ox =0.30 and dox =15.9 mm. 
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Figure 8.50: The scaled centerline stream-wise velocity of the fuel jet obtained from numerical 
calculations for non-reacting and reacting flows with overall equivalence ratios Φoverall= 1.0, XO2;ox 

=0.30 and dox =15.9 mm. 
 

  

 

 



 

204 

It is clearly observed that the spreading rate of the jet is lower in reacting flow. An 

explanation can be that the cold gases are injected into hot combustion products having 

low density due to combustion, thus the effect of thermal expansion becomes remarkable 

in reacting flow case. This thermal expansion lowers the velocity gradient between the jet 

and recirculation zone and hence jet spreading.  

 

8.6. Buoyancy effects 

The effect of buoyancy on reacting flow can be estimated by Richardson number, iR , 

defined as the ratio of buoyant force FB to inertial force FI , 

 

2

( / )B
i

I o

F gdR
F U

ρ ρΔ
= =        (8-1) 

 

Where, ρ is the density of the jet flow, ρΔ density difference of the jet flow and the 

environment gases, d jet diameter, and oU  jet exit velocity. In general, the criteria value 

of Richardson number to consider the buoyancy effect is about 0.05. If Ri is less than 

0.05, the buoyancy may be assumed to be negligible. The estimated values of iR in this 

study are in the ranges of 47 10−× and 48 10−× , thus the effect of buoyancy is quite small 

comparing to jet momentum. Therefore, the current configuration can be considered as 

momentum driven flow. 

 

8.7. The effects of preheating the oxidizer jet  

Figure 8.51 shows the centerline temperature of the fuel and oxidizer jet for different 

oxidizer preheating temperature Tpreheat=30, 100 and 500℃ with dox=15.9 mm, XO2;ox 

=0.30 and Φoverall =1.0. It is noted that only oxidizer jet is preheated, thus the fuel jet flow 

is supplied at ambient temperature. 

The centerline temperature of the oxidizer jet increases with higher preheating 

temperature as expected, while the peak of the fuel jet temperature shifts farther 

downstream region. This trend is quite similar to the effects of momentum change of the 

oxidizer jet by varying the size of the oxidizer jet or inlet oxygen fraction. 
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With higher preheating temperature of the oxidizer jet, the fuel jet expansion increases 

while the oxidizer dissipates quickly because the reaction zone shifts toward the oxidizer 

jet due to less momentum as shown in Figure 8.52. It is clearly observed from Figure 

8.53 that the location where the fuel disappears increases with higher preheating 

temperature, whereas the scaled value of oxygen concentration becomes lower. This can 

be thought that the fuel jet can expand more laterally for less momentum of the oxidizer 

jet due to high temperature and low density. As a result, the reaction zone moves toward 

the oxidizer jet, and the temperature of the oxidizer jet and consumption of oxygen 

increase. Consequently, the oxygen concentration decays so fast due to combustion. 

It is recommended that preheating of oxidizer jet would be applicable for quite high 

momentum of the jet to avoid early reaction; otherwise the oxidizer jet momentum 

decreases and reaction will occur strongly near the oxidizer exit. This can induce the peak 

of temperature near the oxidizer jet and non-uniformity in reaction, consequently non-

homogeneous combustion condition. 
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Figure 8.51: The centerline temperature of the (a) fuel jet and (b) oxidizer jet obtained from 
numerical calculations for various oxidizer jet preheating temperatures Tpreheat= 30, 100 and 500℃ 

with overall equivalence ratios Φoverall= 1.0, XO2;ox =0.30 and dox =15.9 mm. 
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Figure 8.52: The decay profiles of the centerline concentration of the (a) CH4 in the fuel jet and (b) O2 
in the oxidizer jet obtained from numerical calculations for various oxidizer jet preheating 

temperatures Tpreheat= 30, 100 and 500℃ with overall equivalence ratios Φoverall = 1.0, XO2;ox =0.30 and 
dox=15.9 mm. 
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Figure 8.53: The scaled centerline concentration of the (a) CH4 in the fuel jet and (b) O2 in the 
oxidizer jet obtained from numerical calculations for various oxidizer jet preheating temperatures 

Tpreheat= 30, 100 and 500℃ with overall equivalence ratios Φoverall = 1.0, XO2;ox =0.30 and dox=15.9 mm. 
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CHAPTER 9 

 
Summary, Conclusions and Future work 

 

 

Non-reacting flow 

Experimental [1] and numerical investigations were performed on the mixing 

characteristics and the resulting concentration fields in unconfined and non-reacting 

multiple turbulent jets.  The control variables tested were separation distance and 

momentum ratio between jets. In addition, an extensive numerical study in a 

configuration representative of the furnace was conducted. This configuration consisted 

of confined but non-reacting five turbulent jets with a center fuel jet surrounded by four 

oxidizer jets. In this work, water jet experiments (done by Lee, [1]) were used to validate 

the FDS model for furnace design. The following conclusions were obtained. 

 

 For unconfined non-reacting jets, the numerical results were found to agree well 

with the experimental data [1] giving confidence in modeling.  

 Numerical calculations that agree well with experimental measurement [1] show 

that the centerline concentration decays faster in multiple jet configurations than 

in a single jet because of the strong interactions between jets and enhanced 

entrainment of the surrounding fluid. In multiple turbulent jets, the greater 

dilution of the mean centerline concentration of the center (fuel) jet occurred at 

lower separation distance due to enhanced interaction and thus mixing between 

jets. For large separation distance, the entrainment of the surrounding is 

promoted and mixing between jets is delayed to further downstream.  

 Decreasing the momentum ratio, defined as the ratio of center jet momentum to 

side jet momentum, showed more dilution as a result of increased entrainment of 
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the surrounding fluid while high momentum ratio showed enhanced mixing 

between jets. However, it is possible that reaction may occur near the jet exit 

region due to strong mixing between jets for large momentum ratios and small 

separation distances.  

 The main difference between unconfined and confined jets is the availability of 

surrounding fluid. In unconfined configuration, the entrainment from 

surrounding fluid which is unlimited in amount occurs, whereas the quantity of 

surrounding fluid is limited in confined configuration. Hence, the recirculation 

flow is established as a stable part of the flow, and the pattern of mixing and 

entrainment is quite different in confined jets because of recirculation flow 

entrained by the jets. 

 The numerical results of this study showed that the centerline stream-wise 

velocity decays faster in the confined jet configuration than in the unconfined jet 

configuration because of recirculation flow due to the presence of wall limiting 

the jet expansion.  

 In confined multiple turbulent jets, jet mixing is achieved simultaneously by two 

ways; the one is interaction between jets as same in unconfined jets, the other is 

entrainment of recirculation flow. Better mixing occurred at moderate separation 

distance due to ideal combination of enhanced interaction between jets and 

recirculation flow of their mixture. Decreasing the momentum ratio showed 

better mixing as a result of widely distributed recirculation flow region and 

increased entrainment of the recirculation flow. 

 In terms of achieving homogeneous combustion, the jets should be sufficiently 

diluted by the surrounding fluid before mixing together. The mixing between jets 

should be delayed for some distance from the jet exit to enable sufficient dilution 

by the surrounding fluid. Therefore, to achieve homogeneous combustion, the 

separation distance should be kept sufficiently large and lower momentum ratio 

between jets is preferable to promote dilution by the surrounding fluid to avoid 

early reaction. In addition, the combination of high momentum ratio and small 

separation distance should be avoided because of early reaction due to strong 

interaction between jets to obtain homogeneous combustion. 
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Reacting flow 

For investigating the structure of homogeneous combustion operating in the furnace, 

experimental study was performed in a laboratory-scale furnace with downward evolving 

separate fuel and oxidizer jets. The local distributions of temperature and gas 

composition of total hydrocarbon, oxygen, nitric oxide, carbon monoxide and carbon 

dioxide were measured and analyzed for different parameters (oxidizer nozzle diameter – 

which controls the oxidizer jet momentum, oxygen enrichment and the overall 

equivalence ratio) for the same fuel flow rate and fuel nozzle diameter. The UV emission 

intensities from the flame zone were recorded for various conditions and their trend was 

compared with the visual images. The experimental results were compared with 

predictions using modified Fire Dynamics Simulator (FDS) developed by National 

Institute of Standards and Technology (NIST). Numerical calculations that agree well 

with experimental measurement show that: 

  

 The oxidizer jet momentum plays a very important role in achieving the 

homogeneous combustion condition. By increasing the oxidizer jet momentum 

(obtained by decreasing the oxidizer jet diameter or decreasing inlet oxygen 

concentration while maintaining the same equivalence ratio), homogeneous 

combustion can be easily obtained. 

 Recirculation flow at different location occurs depending on the oxidizer jet 

momentum. The large scale recirculation is well formed for higher momentum 

oxidizer jets. 

 With the aids of large scale of recirculation flows in the center region stabilized 

by buoyancy,  homogeneous combustion is easily obtained. 

 

Experimental results show that (done with Lee, [1]): 

 

 The temperature profiles are quite uniform and flat with little fluctuations for the 

homogeneous combustion condition. It is also observed that a strong and 

efficient recirculation of product gases was obtained by combining sufficiently 

large separation distance between jets (which promotes the entrainment by the jet 
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based on the results of non-reacting flow) and downward evolving jets (with the 

help of buoyancy) as explained in section 5.1. 

 In the homogeneous combustion condition, the flame is invisible without 

temporal and spatial  fluctuations, and UV emission is uniform and low. 

 NOx emission is very low because of low peak temperatures and also reduced 

prompt NOx due to reduction of OH concentration. 

 

Future works 

 

1. The separation distance between jets is another important control parameter 

affecting the mixing and reaction patterns in furnace. According to different 

separation distance, the furnace configuration may be changed to obtain the 

homogeneous combustion because the recirculation flow is formed at 

different locations. As shown in this study, the recirculation flow patterns 

play a key role in achieving the homogeneous combustion condition. Thus, it 

would be worthwhile to investigate the effects of different separation 

distance on reacting flow.  

 

2. It has been long recognized that the significant energy saving method in 

industrial furnaces can be accomplished either by recycling heat or reducing 

the flue gas volume (removing/reducing the nitrogen ballast by oxygen 

enrichment) or combining both of them. In the recycling heat method, 

combustion air is preheated by recovering heat from the exhaust gas and 

transported back to the furnace using recuperators or regenerators. In 

addition, the flame stability limits increase significantly at high air preheats 

and even with low oxygen concentration air. In this study, the proper devices 

for capturing the exhaust gas enthalpy are not installed in experiments. As a 

result, flame becomes unstable and finally is blown out for the case of XO2;o 

=0.21 with the smallest oxidizer jet diameter, dox=7.94 mm because of low 

temperature in furnace. However, it is expected that the viable operating 

range of obtaining the homogeneous combustion can be extended with high 
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air preheat using recuperators or regenerators. Therefore, it is recommended 

performing the experimental study on the effects of air preheating. 

 

3. Atreya et al. [73-76] proposed the novel solution in efficient energy saving 

method in industrial furnaces. The authors combined both concepts of 

recapturing wasted flue gas enthalpy to preheat the combustion air and 

reducing the total amount of exhaust by using oxygen-enriched air. Clearly, 

reducing or eliminating the exhaust of hot N2 by using oxygen-enriched air 

will significantly increase the energy utilization efficiency. However, it will 

also create significant temperature non-uniformities (or hot spots) and 

increase NO production if N2 is present without uniform burning in reaction 

zones and energy transfer via radiation.  

 

4. This concept is diametrically opposite to the flameless oxidation concept. In 

the flameless oxidation concept, high regenerative preheating (above the auto 

ignition temperature) of combustion air along with excessive dilution by 

exhaust gas recirculation is utilized to enable burning in a very low oxygen 

concentration atmosphere. However, both these concepts can be profitably 

combined to yield additional advantages under the conditions that uniform 

burning is accomplished via distributed reaction zones and flame 

temperatures are reduced by intense flame radiation, thus energy is 

transferred at a very high rate from these reaction zones via radiation. Since 

radiation is the primary mode of heat transfer in the furnace, intensely and 

spatially uniformly radiating flames is a desirable attribute. The principal 

object of this concept is that nearly homogeneous burning occurs in 

distributed reaction zones under slightly rich conditions that enable 

increasing the flame radiation. Experiments conducted on turbulent non-

premixed flames (Atreya et al. [73-76]) showed that the presence of even 

small amounts of soot in the high temperature reaction zone significantly 

increased the flame emissivity. Thus, oxygen enriched conditions can be 

beneficial as long as they are accompanied by high flame radiation. However, 
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there is no soot model implemented in FDS and only soot production rate 

from the fuel mass can be assigned in fire simulation based on empirical 

correlation for the mixture fraction model. The addition of a proper soot 

model in FDS will be needed to evaluate the effects of soot production. 

 



 

213 

 
 
 
 
 

BIBLIOGRAPHY 
 

1. H.S.Lee, Experimental Studies on Mixing of Multiple Turbulent Jets in Non-Reacting and 
Reacting Flows. Doctoral Dissertation, 2007(University of Michigan). 

2. Tanaka, R., New progress of energy saving technology towards the 21st century, Frontier of 
combustion and heat transfer technology. Proceedings of the 11th Members Conference of the 
International Flame Research Foundation, 1995. 

3. Flamme, M., Low NOx combustion technologies for high temperature applications Energy 
Conversion and Management, 2001. 42(15-17): p. 1919-1935. 

4. Milani, A., NOx emission from gas fired reheating furnaces for steelmaking plants. 19th World 
Gas Conference, 1994. 

5. Mastorako, E., A.M. Taylor, and J.H. Whitelaw, Turbulent counterflow flames with reactants 
diluted by hot products. Joint Meeting of the British and German sections, 1993. 

6. Katsuki, M. and T. Hasegawa, The science and technology of combustion in highly preheated 
air. Symposium (International) on Combustion, 1998. 27(2): p. 3135-3146. 

7. Plessing, T., N. Peters, and J.G. Wünning, Laseroptical investigation of highly preheated 
combustion with strong exhaust gas recirculation. Symposium (International) on Combustion, 
1998. 2: p. 3197-3204. 

8. Wünning, J.A. and J.G. Wünning, Flameless oxidation to reduce thermal no-formation. 
Progress in Energy and Combustion Science, 1997. 23(1): p. 81-94. 

9. Ahadi-Osuki, T., Heat Flux From Highly Preheated Air Combustion and Swirl Combustion. 
MS thesis, 2000(University of Maryland ). 

10. Tsuji, H., et al., High Temperature Air Combustion: From Energy Conservation to Pollution 
Reduction. Energy Conservation to Pollution Reduction, 2003: p. 401. 

11. Hasegawa, T., S. Mochida, and A.K. Gupta, Development of advanced industrial furnace using 
highly preheated combustion air. Journal of Propulsion and Power, 2002. 18(2): p. 233-239. 

12. Gupta, A.K., Thermal characteristics of gaseous fuel flames using high temperature air. 
Transactions of the ASME. Journal of Engineering for Gas Turbines and Power, 2004. 126(1): 
p. 9-19. 

13. Lille, S., W. Blasiak, and M. Jewartowski, Experimental study of the fuel jet combustion in 
high temperature and low oxygen content exhaust gases. Energy, 2005. 30(2-4): p. 373-84. 

14. Kishimoto, K., et al., Observational study of chemiluminescence from flames with preheated 
and low oxygen air. The First Asia-Pacific Conference on Combustion, 1997: p. 468–71. 



 

214 

15. Bolz, S. and A.K. Gupta, Effect of air preheat temperature and oxygen concentration on flame 
structure and emission. ASME, 1998. 1: p. 193–205. 

16. Fujimori, T., D. Riechelmann, and J. Sato, Effect of lift-off on NOx emission of turbulent jet 
flame in high temperature co flowing air. 27th International Symposium on Combustion, 1998. 

17. Garg, A., Specify better low-NOx burners for furnaces. Chem Eng Prog, 1994: p. 46~49. 

18. Wood, S.C., Slect the right NOx control technology. 1994. 

19. Orsino, S., R. Weber, and U. Bollettini, Numerical simulation of combustion of natural gas 
with hightemperature air. Combustion Science and Technology, 2001. 

20. Eddings, E. and A. Sarofim, Advances in the use of computer simulations for evaluating 
combustion alternatives. 3rd CREST Int. Symp, 2000. 

21. Dally, B.B., E. Riesmeier, and N. Peters, Effect of fuel mixture on moderate and intense low 
oxygen dilution combustion. Combustion and Flame, 2004. 137(4): p. 418-431. 

22. Lallemant, N., A. Sayre, and R. Weber, Evaluation of emissivity correlations for H2O-CO2-
N2/air mixtures and coupling with solution methods of the radiative transfer equation. Progress 
in Energy and Combustion Science, 1996. 22(6): p. 543-574. 

23. Awosope, I.O. and F.C. Lockwood, Prediction of Combustion and NOx Emission 
Characteristics of Flameless Oxidation Combustion. IFRF Combustion Journal, 2005. 

24. Krothapalli, A., D. Gaganoff, and K. Karamcheti, Development and structure of a rectangular 
jet in a multiple jet configuration. AIAA Journal, 1980. 18(8): p. 945-50. 

25. Raghunathan, S. and I.M. Reid, A study of multiple jets. AIAA Journal, 1981. 19(1): p. 124-7. 

26. Mostafa, A.A., M.M. Khalifa, and E.A. Shabana, Experimental and numerical investigation of 
multiple rectangular jets. Experimental Thermal and Fluid Science, 2000. 21(1): p. 171-178. 

27. Chuang, S.-H., Z.-C. Hong, and J.-H. Wang, Multiple-plane-jet turbulent mixing analysis via a 
kinetic theory approach. International Journal for Numerical Methods in Fluids, 1991. 13(1): p. 
83-107. 

28. Wang, J., G.H. Priestman, and W. Dongdi, An analytical solution for incompressible flow 
through parallel multiple jets. Transactions of the ASME. Journal of Fluids Engineering, 2001. 
123(2): p. 407-10. 

29. Becker, H.A. and B.D. Booth, Mixing in the interaction zone of two free jets. AIChE Journal, 
1975. 21(5): p. 949-58. 

30. Moustafa, G.H., Experimental investigation of high-speed twin jets. AIAA Journal, 1994. 
32(11): p. 2320-2322. 

31. Okamoto, T., et al., Interaction of twin turbulent circular jet. Bulletin of the Japan Society of 
Mechanical Engineers, 1985. 28(238): p. 617-22. 

32. Grandmaison, E.W. and N.L. Zettler, Turbulent mixing in coflowing plane jets. Canadian 
Journal of Chemical Engineering, 1989. 67(6): p. 889-97. 



 

215 

33. Wlezien, R.W., Nozzle geometry effects on supersonic jet interaction. AIAA Journal, 1989. 
27(10): p. 1361-7. 

34. Manohar, C.H.I., et al., A numerical and experimental investigation of the interactions between 
a non-uniform planar array of incompressible free jets. International Journal for Numerical 
Methods in Fluids, 2004. 44(4): p. 431-446. 

35. Yimer, I., H.A. Becker, and E.W. Grandmaison, The Strong-jet/Weak-jet Problem: New 
Experiments and CFD. Combustion and Flame, 2001. 124(3): p. 481-502. 

36. McGrattan, K.B., et al., Fire Dynamics Simulator—Technical References Guide. 20005, 
National Institute of Standards and Technology  

37. Shin, S.J., H.S. Lee, and A. Atreya, A Study of Dilution and Mixing of Unconfined Multiple 
Turbulent Jets for Industrial Furnaces. 5th U. S. Combustion Meeting, 2007. 

38. Horiuti, K., A proper velocity scale for modeling subgrid-scale eddy viscosities in large eddy 
simulation. Physics of Fluids A (Fluid Dynamics), 1993. 5(1): p. 146-57. 

39. Deardorff, J.W., A numerical study of three-dimensional turbulent channel flow at large 
Reynolds numbers. Journal of Fluid Mechanics, 1970. 41: p. 435-52. 

40. Moin, P., et al. Large eddy simulation of turbulent shear flows. 1979. Tbilisi, USSR: Springer-
Verlag. 

41. Murakami, S., Overview of turbulence models applied in CWE-1997. Journal of Wind 
Engineering and Industrial Aerodynamics, 1998. 74-76: p. 1-24. 

42. Mizutani, K., et al., Study on influence of change of Smagorinsky constant. Proceedings of the 
Architectural Institute of Japan Annual Meeting 1991. 

43. Clark, R.A., J.H. Ferziger, and W.C. Reynolds, Evaluation of subgrid-scale models using an 
accurately simulated turbulent flow. Journal of Fluid Mechanics, 1979. 91: p. 1-16. 

44. Geurts, B.J. and J. Frohlich, A framework for predicting accuracy limitations in large-eddy 
simulation. Physics of Fluids, 2002. 14(6): p. 41-4. 

45. Hussein, H.J., S.P. Capp, and W.K. George, Velocity measurements in a high-Reynolds-
number, momentum conserving, axisymmetric, turbulent jet. . Fluid Mech, 1994. 258: p. 31-75. 

46. Webster, D.R., P.J.W. Roberts, and L. Ra'ad, Simultaneous DPTV/PLIF measurements of a 
turbulent jet. Experiments in Fluids, 2001. 30(1): p. 65-72. 

47. Fukushima, A., L. Aanen, and J. Westerweel, Simultaneous velocity and concentration 
measurements of an axisymmetric turbulent jet using a combined PIV/LIF. 5th JSME-KSME 
Fluids Engineering Conference, 2002: p. 17-21. 

48. Panchapakesan, N.R. and J.L. Lumley, Turbulent measurement in axisymmetric jets of air and 
helium. Part 1. Air jet. J. Fluid Dyn, 1993. 246: p. 197–223. 

49. Becker, H.A., H.C. Hottel, and G.C. Williams, The nozzle-fluid concentration field of the 
round, turbulent, free jet. Journal of Fluid Mechanics, 1967. 30: p. 285-304. 

50. Birch, A.D., et al., The turbulent concentration field of a methane jet. Journal of Fluid 
Mechanics, 1978. 88: p. 431-49. 



 

216 

51. Dahm, W.J.A. and P.E. Dimotakis. MEASUREMENTS OF ENTRAINMENT AND MIXING 
IN TURBULENT JETS. 1985. Reno, NV, USA: AIAA, New York, NY, USA. 

52. Dowling, D.R. and P.E. Dimotakis, Similarity of the concentration field of gas-phase turbulent 
jets. Journal of Fluid Mechanics, 1990. 218: p. 109-41. 

53. Lockwood, F.C. and H.A. Moneib, FLUCTUATING TEMPERATURE MEASUREMENTS 
IN A HEATED ROUND FREE JET. Combustion Science and Technology, 1980. 22(1-2): p. 
63-81. 

54. Wilson, R.A.M. and P.V. Danckwerts, Studies in turbulent mixing--II : A hot-air jet. Chemical 
Engineering Science, 1964. 19(11): p. 885-895. 

55. Dimotakis, P.E., The mixing transition in turbulent flows. Journal of Fluid Mechanics, 2000. 
409: p. 69-98. 

56. Lubbers, C.L., G. Brethouwer, and B.J. Boersma, Simulation of the mixing of a passive scalar 
in a round turbulent jet. Fluid Dynamics Research, 2001. 28(3): p. 189-208. 

57. LePera, S. and U. Vandsburger, Coupled multiple jet excitation. Aerospace Sciences Meeting 
& Exhibit, 35th, 1997. 

58. Gokarn, A., et al., Simulations of mixing for a confined co-flowing planar jet. Computers & 
Fluids, 2006. 35(10): p. 1228-1238. 

59. So, R.M.C., S.A. Ahmed, and M.H. Yu, The near field behavior of turbulent gas jets in a long 
confinement. Experiments in Fluids, 1987. 5: p. 2-10. 

60. Sunavala, P.D., C. Hulse, and M.W. Thring, Mixing and combustion in free and enclosed 
turbulent jet diffusion flames. Combustion and Flame, 1957. 1(2): p. 179-193. 

61. Dealy, J.M., Momentum Exchange in a Confined Circular Jet with Turbulent Source. Ph. D. 
Thesis, University of Michigan, 1964. 

62. Kandakure, M.T., V.C. Patkar, and A.W. Patwardhan, Characteristics of turbulent confined jets. 
Chemical Engineering and Processing. In Press, Corrected Proof. 

63. Heitor, M.V. and A.L.N. Moreira, Thermocouples and sample probes for combustion studies. 
Progress in Energy and Combustion Science, 1993. 19(3): p. 259-278. 

64. Beyler, C.L., Development and Burning of a Layer of Products of Incomplete Combustion 
Generated by a Buoyant Diffusion Flame. Doctor of Philosophy Thesis, 1983. 

65. Fleck, B.A., A. Sobiesiak, and H.A. Becker, Experimental and numerical investigation of the 
novel low NOx CGRI burner. Combustion Science and Technology, 2000. 161(1-6): p. 89-112. 

66. Murer, S., B. Pesenti, and P. Lybaert, Simulation of flameless combustion of natural gas in a 
laboratory scale furnace. Turkish Journal of Engineering and Environmental Sciences, 2006. 
30(3): p. 135-43. 

67. Cavaliere, A. and M. de Joannon, Mild Combustion. Progress in Energy and Combustion 
Science, 2004. 30(4): p. 329-366. 

68. Knystautas., R., The turbulent jet from a series of holes in line. The Aeronautical Quarterly, 
1964. 15. 



 

217 

69. Papanicolaou, P.N. and E.J. List, Statistical and spectral properties of tracer concentration in 
round buoyant jets. International Journal of Heat and Mass Transfer, 1987. 30(10): p. 2059-71. 

70. Yuu, S., F. Shimoda, and T. Jotaki, Hot wire measurement in the interacting two-plane parallel 
jets. AIChE Journal, 1979. 25(4): p. 676-85. 

71. Westbrook, C.K. and F.L. Dryer, Simplified Reaction Mechanisms for the Oxidation of 
Hydrocarbon Fuels in Flames. Combustion Science and Technology, 1981. 27: p. 31–43. 

72. Grosshandler, W., A Narrow Band Model for Radiation Calculations in a Combustion 
Environment. NIST Technical Note TN 1402, 1993. 

73. Atreya, A., et al. Effect of changes in the flame structure on the formation and destruction of 
soot and NOx in radiating diffusion flames. 1996. Napoli, Italy: Combustion Inst, Pittsburg, 
PA, USA. 

74. Mungekar, H.P. and A. Atreya. Control of soot luminosity and soot emission in counter-flow 
flames by partial premixing. 2001. Ananheim, CA, United States: American Society of 
Mechanical Engineers, New York, NY 10016-5990, United States. 

75. Mungekar, H.P. and A. Atreya, Flame radiation and soot emission from partially premixed 
methane counterflow flames. Journal of Heat Transfer, 2006. 128(4): p. 361-367. 

76. Mungekar, H.P. and A. Atreya, Effect of partial premixing on the sooting structure of methane 
flames. Combustion and Flame, 2006. 144(1-2): p. 336-348. 

 

 


