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ABSTRACT

This report discusses the application of impedance-network theory
to the analysis of mechanical vibrating systems. A description of the
relevant mechanical impedance parameters of a machine-mount-foundation
system, a translation from mechanical to electrical network concepts,
and a review of pertinent four-terminal-network theory led to a method
of computing the one-dimensional vibration-response characteristics of
distributed as well as lumped parameter systems. The usefulness of the
network approach is demonstrated by the analysis of mechanical filters,
and by the computation of the response of a sample machine-mount-foun-
dation system. The capabilities and limitations of the method are dis-
cussed.

vi



SECTION I. NETWORK THEORY

INTRODUCTION

In the continuing search for better engineering methods directed toward
achieving a higher degree of vibration isolation in mechanical systems, the
"mechanical filter" concept has been proposedl as a possibly fruitful source of
further investigation. This paper is the result of carrying out the suggested
investigation. In the course of the research, it became apparent that the re-
sults obtained with respect to the filter evaluation were equivalent to conclu-
sions reached by authors of several earlier articles.6:7 However, by arriving
at these conclusions independently and in a somewhat more comprehensive context,
a method of solution was evolved which is likely to be of general interest in-
asmuch as: (1) the procedure involves a conceptually simple method of analyzing,
in one dimension, the behavior of complex vibrating systems, and (2) the criteria
for evaluating the degree of isolation achieved in the system emphasize those
design parameters which are of current interest.

Thus it is primarily the purpose of this paper to report this method in a
sufficiently elementary and complete form to permit its use without previous
familiarity on the part of the user, and secondarily to summarize the body of
well-known results which constitute a reply to the memorandum of Ref. 1.

OBJECTIVES OF THE "NETWORK" APPROACH

The problem with which we shall concern ourselves arises from the basic
question: how can the isolation of a vibration source from its surrounding en-
vironment be best achieved? This question leads naturally to the need for pa-
rameters which best describe the degree of isolation. The selection of these
parameters, in turn, stimulates the search into the mechanics of the system to
determine design criteria which permit optimization of the isolation parameters.

A present, the art of vibration isolation of heavy machinery supported by
complex structures has not been developed sufficiently to provide a satisfactory
solution to the fundamental problem. Many questions remain unsettled with re-
gard to which parameters best measure the degree of isolation of the system, and
consequently which physical variables ought to be controlled to optimize the de-
gree of isolation.

In the past, a clarification of these difficulties was attempted by resort-
ing to the theoretical analysis of one- or two-degree-of-freedom, lumped param-
eter idealizations of the real physical system. This "harmonic oscillator"
idealization provided a fairly suitable means of mount analysis for low-frequency
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vibration sources, i.e., frequencies corresponding to wavelengths which are
large compared to the dimensions of the mount. HoWever, it has not provided
any insight into the higher frequency phenomena termed wave effects nor has it
proved adequate in the analysis of typical systems in which the machine and
foundation do not behave as a simple combination of masses, springs, and dash-
pots. Thus it represents an oversimplification of the problem since in many
cases information of primary interest is suppressed.

An extension of this method is suggested by the fact that sound possesses,
in addition to an oscillatory property, a wave property or propagation charac-
teristic, as it is called. Thus one may be led to an attempt to formulate the
problem in terms of the wave equation subJject to appropriate boundary condi-
tions. This also has been successfully attempted with regard to the analysis
of mount behavior, but it has not been applied, insofar as the author is aware,
to the analysis of an entire vibrating complex.. This may be due in part to the
algebraic difficulty encountered in determining and applying the correct bound-
ary conditions to the solution of the wave equation for this type of problem.

To avoid this difficulty, a modified approach is suggested when one recalls
the electrical engineer's preference for sdlwing steady-state circuit problems.
Rather than solve simultaneous differential equations subject to boundary con-
ditions, he prefers to introduce the concept of impedance and reduce the differ-
ential equations to algebraic equations. This "network" approach has its ana-
log in treating mechanical systems also, and 1s particularly promising in its
application to vibration-isolation problems in view of the current work being
done to Improve techniques for measuring mechanical impedance.

Hence the method is intended to perform the following functions:

1. To provide a better approximation than lumped parameter theory allows
in the theoretical prediction of an entire vibrating system's behavior.

2. To emphasize the specific types of impedance measurements needed to
compute, on the basis of this theory, the system response to oscillatory forces.

3. To provide a clearer understanding of the relation of isolation param-
eters currently used in evaluating the performance of system components to im-
pedance quantities. '

b, To demonstrate a conceptually simple approach to the analysis of entire
systems.

Since this method is similar to the procedures employed in the analysis of
certain types of electrical circuits, and relies heavily on the concepts and
terminology of electrical engineering, it seems appropriate to begin with a re-
view of those electrical concepts which will be used most frequently. Specif-
ically, the electrical results needed will be those of four-terminal-network
theory and the related transmission-line theory. It might be well at the out-



set to keep in mind that the force-voltage, current-velocity analog will be em-
ployed later in the development.

FOUR-TERMINAL NETWORKS
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GENERAL FOUR-TERMINAL NETWORK

FIGURE |

Figure 1 represents the general four-terminal network. The network within
the "blackbox" is arbitrary, subject to the restrictions that the elements be
linear and bilateral and that no sources are contained therein. Reference con-
ditions for voltage and current are indicated on the diagram. General loop-
analysis methods yield the equations (see, e.g., Ref. 3)

Ey Z111; - 231212

Eo 23111 - Z22Iz .
Interpreting these equations, we see that if the output end is open, Io = O,
and

Ei = 21113, Bz = 22113

Consequently z;; may be interpreted as the input impedance of end 1 with end 2
open-circuited. Similarly, zs; represents the transfer impedance under the
same conditions. If the input end is open, I, = O, and

Bz = -2p2Is, Ey = =-12z312I2 .

Thus zpo and z,s are, respectively, the input and transfer impedances of end 2
with end 1 open. The relation between input voltage and current and output volt-
age and current may be put in a convenient form by defining the following param-
eters:



Zo1 Z11 Zi2
where ]z]

1t

C = — Zp1 Zo2

Z21

2311202 = Zg1Z32

In terms of these parameters, the following identities are readily verified:

Ey = AEs + Blo 3

Il = CEs + DIs .
Solving for Ep and Ip gives

E2 = DE]_ - BI]_ H

"Ig = CEl - AIl

(3)
(%)

The characteristic impedance, Zn, of the network is defined to be that ter-
minating impedance which causes the input impedance of the network to have the
value of the terminating impedance. Zp may be found from the expression for in-
put impedance in the following way. By definition, the input impedance looking

into the left of the network is

7, = Ei _ AEp +BIp

I4 / CEz + DIs
Since the receiving (output) end impedance is

Ea
r I,

then

A Zr + B
CZ, +D

Zl =

For a symmetrical network, z;; = Zgz, and consequently A = D. Then, by defini-
tion of characteristic impedance, Z) = Zy, = Zg, and it is found immediately

that



B
The propagation constant, y, may be defined by

E I
_L=_1=A+.\/§A2_]_=e7, (6)

where the ratios are taken for a network terminated in its characteristic im-
pedance. It is then easily shown (see Ref. 3) that the following relations
hold for a symmetrical network:

A = D = coshy 3 (72)

B = Zysinhy ; (7p)

R (7e)
0

The equations describing the properties of four-terminal networks are
closely related to those describing the properties of "transmission lines."
For if the section of transmission line depicted inFigure 2 were treated as a
four-terminal network, precisely the same conclusions would be reached as above
except that each y that appears would be replaced by yL. Thus the four-terminal
network treated above represents a unit length of transmission line. Therefore
all the relations, especially Egs. (1) through (7), may be applied directly to
a transmission line simply by substituting yL for y.

I| —_— Iz —
F:l E2

3

st L

TRANSMISSION  LINE

FIGURE 2



This brief review of the electrical theory will be sufficient for the
present, pending a somewhat detailed account of the analysis of the components
of a typical mechanical system. This will consist essentially of two parts.

In the first, the machine and foundation will be treated immediately in terms
of their electrical analogs. In the second part, a conventional mechanical an-
alysis of the mount will be presented to compare results with the summary of
the four-terminal-network theory given above.

PROPERTIES OF THE MECHANICAL ELEMENTS

To fix our ideas in the following considerations, we shall address our at-
tention to the problem of analyzing, as completely as possible in one dimension,
the characteristics of a vibrating mechanical complex composed essentially of
three basic elements:

1. sources of vibratory energy;

2. elastic elements which serve to transmit the vibratory energy
throughout the system (transmission paths); and

3. terminations of the transmission paths.

Since such a model represents a highly idealized mechanical system which might
apply equally well to an endless variety of physical realizations, we may choose
without loss of generality the labels machine, mount, and foundation, to refer
respectively to the elements of this system with the understanding that these
terms are used in a symbolic rather than real sense.

The Machine.—A machine may be defined, in the sense mentioned above, as
any active component of a vibrating system. The term "active" has a meaning
analogous to the electrical concept, implying here that a machine contains
sources in its make-up as contrasted with the entirely passive nature of all
other elements in the system. The idealizations of a machine may assume two
forms: (a) a simple vibratory source, e.g., a constant amplitude force or ve-
locity generatori or (b) a mechanical network of simple sources connected to-
gether by mechanical elements displaying some combination of the properties of

inertia, compliance, and dissipation.

The first of these machine models may be symbolized simply by a vector la-
beled to indicate the amplitude and frequency of the causal mechanism creating
the vibrations,as in Figure 3a. The model representing the second possibility,
Figure 3b, may be deduced from the use of the mechanical equivalent of Thevenin's
theorem. To apply this theorem, we must first digress briefly to consider the
concept of mechanical impedance.

Mechanical impedance is the complex quotient of the alternating force ap-
plied to the system by the resulting linear velocity in the direction of the
force at its point of application. With symbols, one writes

Z, = F/v (mechanical ohms) , (8)
6



Zeq.
Fo sin wt
MECHANICAL MECHANICAL
SYSTEM SYSTEM
a. b.

SIMPLE MACHINE IDEALIZATION

FIGURE 3

where Z, is the mechanical impedance, F is the root-mean-square value of the
applied sinusoidal force, and v is the root-mean-square value of the velocity.
Because Zy is complex the phase angle between F and v must be known. The sim-
ilarity between mechanical impedance and the corresponding electrical quantity
is immediately apparent by comparing Eq. (8) with the electrical definition

Since the statement of the definition will be sufficient for the present, fur-
ther comment on this concept will be reserved until it is again needed in con-
nection with mount analysis.

The form of Thevenin's theorem applicable to the mechanical network ideal-
ization of a machine states that any linear mechanical network containing any
number of force and velocity sources of the same frequency can be viewed as an
equivalent constant force source, F,, acting through an equivalent (series)
impedance, Zeq: as depicted inFigure %bo The impedance of the machine must in
general be experimentally measured and expressed in the complex form

Zm = Ry +1X, ,

where Ry is the mechanical resistance and X, is the mechanical reactance.



It may be noted that the measurement of this particular type of impedance
entails certain nontrivial difficulties which arise from the physical dissimilar-
ity between mechanical and electrical networks. To satisfy the requirements of
Thevenin's theorem, one can, in some types of electrical networks, replace each
voltage generator by its internal impedance and then measure the total impedance
as seen looking into the two output terminals of the network.

The interpretation of this procedure in mechanical terms becomes immediately
complicated since the force generators in a machine cannot be easily isolated to
measure their respective internal impedances. Indeed, even if this could be done,
there yet would remain the serious difficulty of physically replacing these sour-
ces by their impedances to make the total impedance measurement of the machine.

Thus it appears that any direct measurement of machine internal impedance
analogous to the type made in some electrical circuits is at best an unlikely
possibility. Certainly a procedure involving measuring the velocity occurring
at the feet of a machine in response to a force applied to the feet does not
provide the impedance value to be used in connection with an applicatioﬁ of Thev-
inints theorem.

One possible method of circumventing these difficulties is suggested by
the electrical technique employed when the previously mentioned method is not
applicable. This is done by terminating the electrical network with a variable
known impedance and determining the load impedance for which maximum power trans-
fer is obtained. Because the condition of maximum power transfer requires that
the load impedance be the complex conjugate of the source impedance, obtaining
the condition of maximum power transfer establishes the source impedance in terms
of a readily measured load impedance. The problem of the feasibility of this
procedure for mechanical systems or of the determination of other possible pro-
cedures will be left to the enterprise of the experimentalists for solution. The
purpose of the discussion at this point is simply to emphasize that a very spe-
cific type of machine internal impedance measurement is needed in connection
with the general method of system analysis to be presented.

‘With this brief look at the properties of a machine, we next consider the
foundation, leaving the more extended analysis of the mount to the last.

The Foundation.—It might be well to stress at the outset that the elements
of the system which are termed "foundations" may appear physically in a form
quite different from that intuitively suggested by the term. For example, sup-
pose the problem consisted of isolating a vibration-sensitive, floor-mounted
piece of equipment from a strongly vibrating machine attached to the same floor.
In this case, the floor, whose transmission characteristics are to be modified,
plays the role of a transmission path or "mount." Hence the vibration-sensitive
item must be considered the termination to the transmission path, and therefore
is termed the "foundation." Analyzing such a system further, it might develop
that mounting the vibrating source machine on an isolation device is the only
change permissible in the system. The problem then reassumes the conventional




configuration of a machine-mount-foundation by treating the floor as the foun-
dation. This apparent difficulty in deciding what is to be called the termina-
tion of a transmission path may be resolved in a given situation by applying
the following two rules:

1. Starting from the machine, one selects the number of connected
transmission paths whose characteristics are expected to be mod-
ified or controlled according to certain specifications. What-
ever then exists in physical connection with the terminal end of
the last connected transmission path will be termed the foundation.

2. The impedance of all the (passive) elements thus composing the
foundation may be expressed in terms of an equivalent foundation

impedance

Zf = Rf + j.Xf
by means of Thevenin's theorem for passive, linear elements.

In general it will be necessary to measure experimentally the mechanical impe-
dance of a foundation in the force direction at the mount's point of connection.
Utilization of this concept permits the possibility of considering to some de-
gree the interacting effects of a complex foundation on a machine-mount combi-
nation.

The Mount.—Since the problem is being considered in one dimension only,
the mount may be treated as a series of connected, individually homogeneous,
elastic cylinders of constant cross section, i.e., we consider only the propa-
gation of plane waves in the mount. The model chosen to represent a homogene-
ous section of the mount may be described, due to its homogeneity, by the fol-
lowing quantities.

o = density

¢ = velocity of sound in the mount material
E; = Young's modulus of elasticity

S = cross-sectional area

L = length of the resilient element

m = pSL = mass of the element

Consider the element shown in Figure 4. Iet o(x) be the positive (tensile)
stress acting on a cross-sectional element of thickness dx, and £(x) denote the
displacement of this cross-sectional element from its equilibrium position in
the positive x direction. Hence, t(x) will symbolize particle velocity at a
point, x, along the rod. At the end x = O, the element is being acted upon by
a sinusoidal force creating a stress and velocity, denoted by oy and él, respec-
tively. This activity sets up a stress and velocity distribution along the rod.
The respective quantities thus transmitted to the end x = L are labeled o and
éz-- These longitudinal vibrations are described by a second-order partial dif-
ferential equation which may easily be derived. by considering the forces acting



£,(L)

_’a' (L)

XsL

0 (0)

-dx

IDEALIZATION OF THE MOUNT

FIGURE 4

upon a cross-sectional element of thickness dx. ©Since the forces are due to
the elasticity and viscosity of the material, we consider them individually.
Let p be the ,coefficient of viscosity, defined so that it represents the fac-
tor of proportionality between the viscous force and the product of area times
the time rate of change of strain in the element. Thus the component of the
force due to viscosity is defined by

2 (3 -
Fy = B85 \x%) ° 53 ox

A similar role is assumed by Young's modulus of elasticity which relates the
elastic force and the product of area times strain in the element. Hence, the
force component due to elasticity is defined by

0
T

The total force acting on the element dx is depicted in Figure 5. Writing New-
ton's second law for the element shown, we have

O F O F oS dx - ——325
e Vv 2
ax + dx = ot
aX Bx m o a

Then by performing the indicated differentiation on FV and Fe, the equation of
motion beconmes

> d (dF d%
nGon@) - o F ©)

10



F, < > Fv+ﬁ¥-dx

v ax

F, & ' 8Fe
———— F, + —p2dx

e e ax

FORCES ACTING ON A CROSS-SECTIONAL
ELEMENT OF THE MOUNT

FIGURE §

This may be put into the form of the familiar wave equation by assuming the
steady-state solution to Eq. (9) is of the form

E = E(x) e , ®=2xf , f = excitation frequency , (10)
and defining a complex modulus E so that
E = Ey +1Es, (11)

where Ex = uw. Then differentiating O?t/3x® with respect to time, Eq. (9) be-
comes

, d% 2
(By + ipw) §;§ = p g{é P

-EZ=2 =0, 05xSL, t>0. (12)

Equation (12) completely describes the propagation of plane longitudinal waves
in a linear homogeneous, elastic, viscous element of constant cross section.
The solution to this equation, which may be verified by substitution, is a lin-
ear combination of expressions describing waves traveling in negative and posi-
tive x directions, respectively:

E(x,t) =  (Cpe?m* 4 Cpe ™) 10t (13)

11



where Y’ the mechanical propagation function is defined by

Yy = O + iBp (1ka)
o, = attenuation constant (14p)
By = Dbhase constant . (1he)

(Note: The subscript m is maintained to differentiate between the mechanical
and electrical propagation functions only until equivalence is established.
It will then be dropped in the interest of notational simplicity.)

We now proceed to formulate the steady-state solution to Eq. (12). Spe-
cifically, we seek an expression relating the stress and velocity at any point
x along the mount section to the generating stress and velocity, o; and éo The
total stress at a point x is defined in terms of the complex modulus E as fol-

lows:

o(x) = E §§é§l

The expression for velocity at any point x may be computed from Eq. (13) by per-
forming the differentiation with respect to time:

°

E(x) = iw (Cy e’m% L 0y e7VmE) eﬂbt . (15)

It now remains only to evaluate C; and Co in terms of gy and £, (the boundary
values at x = 0).

ot

X -YmX it
5 = m (Ca T o, o Ty o ) (16)
Thus
ot VX —ypX . At
o(x) = E5; = E-yp(Cie™ -Cae™)e (17)

Applying the boundary conditions at x = O,
o(0) =01, E(0) = &

to Eqs. (15) and (17) yields

12



and

o(0) = 01 = E oy, (Ci -C2)e
Hence,
2 -iwt
€1 - ¢
Cl+02 = i
and
¢; - C -k
1 - b2 - E,},m

Adding these expression, we obtain.
Ci = é (%— + _2;_> e"l('UJG

Similarly, subtraction yields

0y = = i__g_;_ e—l(Dt
2 \iw E 7,

’—l

it

Substituting these values of C; and Cp into Eq. (17), we have

/o VX .
_ £ 01 \& _(fL
o(x) = Eom l:<iw T E 7m> 2 (icn

Then using the definitions

cosh y,x

and

e/m* _ o7Vm¥

sinh y,x =

we may combine terms and write:

o(x) Em

iw

An in the same manner, Eq. (15) becomes

13

g1

Eym

m

)

£, sinh V< + o1 cosh y.x .

(18)



E(x) = Ep cosh y x + o1 sinh ypx . (19)

Tm

The relation between oz, £, and oy, Ei,may be obtained from Eqgs. (18) and (19)
immediately by substituting the second set of boundary conditions: for x = L,
o(L) = oo, and E(L) = E5. Thus

S oz = 8 0y coshy L+ & Zy sinh e (20)
o 801 . 0
tx = sinh ypL + €3 cosh y L , (21)
0

where Zqy = EyS/iw. It will be demonstrated later that Zgy represents the "char-
acteristic impedance" of the resilient element. Inspection of Egqs. (20) and
(21) shows that the transmission characteristics of the mount are determined by
the parameters Zgy and y. These equations may now be compared directly with
those listed in the summary of four-terminal-network theory. From this compar-
ison, a table can then be drawn up to facilitate the translation from mechanical
to electrical terms which will be needed in sections on application of the meth-
od.

TRANSLATION FROM MECHANICAL TO ELECTRICAL QUANTITIES

The essential point to note at the outset is that the homogeneous mount
section may be regarded as a mechanical transmission line which has as its elec-
tric analog the electrical transmission line. To support this assertion, the
equations of motion of the parent mechanical transmission line will be shown to
have the same form as the analogous electrical transmission line under certain
specified conditions.

It may be shown by elemental analysis similar to the above mechanical an-
alysis that the equations describing the voltage and current distributions along
the electrical transmission line are given by

E

- 1o B (22a)
i

o1 _ 21 | (22p)
BXZ e

where y, = Og + iBe is the electrical propagation function. We now determine
the conditions under which Eq. (12) describing velocity distribution along a me-
chanical transmission line has the same form as Eg. (22b). Substituting Eq.
(10) into Eq. (12), and performing the differentiation with respect to time, we
may write Eg. (12) in the form

1L



2 2,

This form then becomes identical with Eq. (22b) by equating

2
'9(;— = 7,0 (2k)

Assuming the validity of Eq. (24) for the moment, we may use this relation as a
method of evaluating the attenuation and phase functions in terms of mechanical
parameters as follows.

Recalling that E = E; + ipw, the left side of Eq. (24) may be rationalized
and rearranged to read:

-pw2 + iupws
2 2 .
-pw _ mpw® (BEy - dww) _ _Ey E,%
Ey + ipw E.2 4+ 12 0 o \®
1+ El

For most cases of interest un/E; << 1. Using this approximation, Eq. (24) re-
duces to

2 2 ,
o o . oW s _ s o .
-t = + i = = - + 1i(2
E E, El2 ’m (% Bm ) ( Othm)

Equating the corresponding real and imaginary parts ylelds the simultaneous
equations

Lpw”
2 0Py = =%

1

From the first of these two equations, Qﬁ? may be neglected for small damping
‘ 2

coefficients in comparison with B,~; thus
2
ZN&DE_(DZ 03_2._21(. (2)
ESm—El‘Elp“ce'x _5

where A\ = wavelength, and where c, the velocity of sound, is conventionally

computed from the relation
C = \/ggl . (26)

Substitution of By into the second equation results in

15



2
a = B2 . (27)
m 2¢c El

It is sufficient to note that these values of ¢ and Sm are also obtainable in
a similar fashion by substitution of Eq. (13) into Eq. (12). This fact justi-
fies the assumption of the equality expressed in Eq. (2k).

Since the electrical transmission line is the analog of the mechanical
mount, one would expect to find some relation between the mount characteris-
tics and a four-terminal network also. Indeed, this is shown to be the case
upon comparison of the sets of Egs. (20) and (3), and (21) and (L):

~S02 = -850y - coshyl - 22 &) sinh oL (20)
1w
. im . °
-t = --=— .08 01 sinh yL - g3 cosh yL (21)
EyS
- I = c - El - AI]_ ()'l')

As mentioned earlier, we shall use the force-voltage analog, which provides
then the following correspondence:

F ¢« B, E e I

Due to the commonly accepted convention which regards tensile stresses as pos-
itive, the relation between a positive force and a positive stress is given by

Therefore, in terms of stress, we may identify the following two analogous quan-
tities

- S0 € E

Now comparing coefficients of corresponding quantities in the above two sets
of equations, we find that the mechanical coefficients corresponding to the

ABCD parameters are

A, = Dy = coshyL , (7'a)
EyS _.

B, = —izw—s:mh yL (7'0)

¢ = 2% sinh oL . e

m EyS 7 (7T'e)

16



Comparing these with the ABCD parameters derived from considering an electrical
transmission line as a four-terminal network, as obtained from (7a), (7b), and
(7c) by replacing y with yL, namely,

A, = Dy = coshyL , (7"a)

By = Zg sinh 9L , (7"b)

¢, = X sinhsL (7")
Z(

we note the following two facts.

1. The characteristic mechanical Impedance of a homogeneous elastic ele-
ment treated either as a mechanical four-terminal network or as a mechanical
transmission line is defined by

as indicated earlier.

2, Since Ay =Dy and Ay = Dy, the homogeneous resilient element and its
electrical analog display the property of symmetry, i.e., Z;; = Zso in both
cases. With the correspondence between an electrical four-terminal network
thus specified, the minimum information sufficient to characterize the mechan-
ical element may be deduced. Six parameters associated with the element are
involved, namely A,B,C,D,Zp, and y. However, since A = D, this list is imme-
diately reduced to five. There are three conditions imposed on the remaining
variables as stated by Egs. (5), (6), and the following identity:

A-D-B.C =1 ,

which is readily verifiable by substitution. We are thus left with the choice
of any two of the five as independent variables. Usually the most convenient
pair will be Zg and y. Relations (5) through (7) provide a method of computing
these functions once the necessary input and transfer impedances of the mount
are measured. Since these quantities are generally complicated functions of
frequency, it will be necessary to perform a point-wise analysis of the system.

Once again it must be emphasized that very specific conditions must be met
in the measurement of these impedance values. With reference to the voltage-
current relationships in a four-terminal network, the input and transfer impe-
dances on each side of the network must be obtained with the opposite side open-
circuited. Since the current on this side will then be zero, we may interpret
the "open circuit" conditlon mechanically by saying that the input and transfer
impedances on each side of the mount must be obtained with the opposite side
rigidly constrained so that the velocity on this side will be zero.

17



It might also be well to clarify at this point the units of mechanical im-
pedance used in this report inasmuch as some variation is found among different
authors regarding this matter. To begin with, we note from the expression for
Z

O-

ZO = ELS- = (—E;—_—f-—j__ﬁﬂ)—) '}/S = 78 <H - i o E_:L)

iw w
that if damping is neglected, then as u goes to zero, y goes to iB. Hence Zg
reduces to

Z, = 1BS (- i@i> - 2B L s
@ C

which is the well-known acoustic resistance for a plane wave of wave front area
S. The medium in which the wave is being propagated may be solid or fluid. Now
it is conceivable that the entire transmission path to be considered in the prob-
lem may have sections which are solid and others which are fluid, and thus it
will be necessary to consider the impedances of each case, which are customar-
ily separated into two categories termed mechanical and acoustic impedance, re-
Spectively. It is imperative that, if one is to be able to work with these
quantities mathematically, they must have the same physical dimensions. Now it
is generally agreed that the fundamental definition is

in accordance with its electrical analog. The divergence of views arises when
the impedance is defined in terms of other quanﬁities, such as stress. This
seems to be caused by the two facts: (1) the convention regarding positive
(tensile) stress is violated on occasion, and (2) the requirement that mechani-
cal impedance have the dimensions

D [E] — ND-_'T i = M
v LT—l T

is not met but is compensated for in a variety of ways. A consistent approach
with regard to these two considerations dictates that the definition of impe-
dance in terms of stress be written

y . .80 (1b (force) - sec
v in.

in English units.

So far we have discussed the similarity between electrical and mechanical
systems only on the basis of the comparable network equations. However, in re=-
gard to the method of constructing the electrical circult corresponding to a

18



mechanical system, some difficulty may seem to be pending due to our departure
from the customary analogy which usually treats the equivalent of mechanical
elements as two-terminal networks. However, an excellent system of circuit
construction which is highly suited to the consideration of mechanical elements
as four-terminal networks has been developed by B. B. Bauer and will be adopted
throughout the remaining analysis (see Ref. 4). Table 1 shows the equivalent
four-terminal -network form of the various mechanical components. The method of
constructing the general circuit corresponding to a mechanical complex consists,
briefly, of (1) placing the appropriate four-terminal networks (as obtained from
Table 1) in the same relative geometrical position as displayed by their corre-
sponding mechanical elements; (2) providing the coupling between elements by
means of ideal transformers of 1:1 turns ratio. The transformers can often be
removed afterward by considering the voltage-current relations in such a circuit
and placing Jumpers across their terminals when possible to do so without up-
setting these relationships° Examples of the use of this method will be inclu-
ded later. For further information on the method of this analog and the current-

force analog, see Ref. k,

This essentially completes the groundwork necessary for understanding the
application of network methods to specific vibration-isolation problems. We
shall at this point include, however, a summary of electrical equations which
appear to be applicable to the analysis of a mechanical system.

EXPRESSIONS FOR THE ISOLATION PARAMETERS

General information which shall be of interest later may be derived by con-
sidering the circuit in Figure 6. This circuit may be interpreted mechanically
as a vibrating machine directly attached to a resilient foundation. The genera-
tor and the source impedance, ZS = Zyp,, represent the resolution of a general
mechanical or electrical network into an equivalent constant voltage generator
and series impedance by means of Thevenin's theorem. The impedance of the foun-
dation, measured at the point of connection with the machine, is represented by
the complex quantity Z, = Zr. Now, suppose the general four-terminal network
were inserted in this electrical circuit as shown in Figure 7. Inspection of the
circuit indicates the following relations hold:

El = Eg - IlZS and E2 = Ing °

Using these results and Egs. (7") in Egs. (1) and (2) yields the important ratio

(B 4 Tg) (Zp + B)e” - (Bg - Zg) (Zy - Zole T | o)

2Zo Zy

By
Ez

This may be rearranged to the form
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._g. ) . e'}’L o i ..E.|_ _O o i ._.I...+ __9 o (l _l—' r e_27L)
Es Zop 2\\ 2o Y Zg eVzg \Zp s'r ’
(29)

where the reflection coefficients for the sending and receiving end (or input
and output end) are given by

e = 2
s 0
= — Oa,
l--'S Zs + ZO > (5 )
2. -7
[, = Zz % | (30b)
- ZI""ZO '

Equation (29) places in evidence the various correction factors created by
insertion of the four-terminal network. The first term, E'JZS/ZT, on the right
accounts for the modification of the voltage (or force) ratio due to the differ-
ence between the source and terminal impedance. The factor e7L is seen to rep-
resent, by definition, the voltage ratio that would prevail if Zgy = Zg = Zy.
Since each of the three remaining factors reduces to unity when Zg = Zg = Zy,
they represent corrections due to impedance mismatch between the four-terminal
network and the terminations. The third and fourth factors partially compensate
for mismatch at the input and output ends, respectively, while the last term in-
cludes the remainder of mismatch effects. Since the fifth term involves the ef-
fects at one end due to mismatch at the other, it is called the interaction term.
This term is near unity for small mismatch and high attenuation, but becomes
large for the opposite conditions of large mismatch and small attenuation. Now
by writing the term 2~Zg/Z, in the form

Equation (29) becomes

[Z 7 7 7 )
Rl (e I

- - (31)

B ;( Zs Zr>
2\ Zr g

Then noting from Figure 6 that




the insertion properties of the network can be described by

Z 1z Z Z
1 -
eyo_(,J_iJr __90£<_1:+1’_0 (1 -, T e
Bo! 2 \\ 2o Zg 2 \\ 2q Z, _ pein
E
i i fis  [2
2\\ Z, Zg

This equation gives the ratio of what the load (or foundation) potential would
be, if the source and load were directly connected, to what it is when the net-
work is inserted. The magnitude of the ratio, N, is termed the insertion ratio,
and n is called the insertion angle., For computational purposes, the following
form 1s often more desirable:

(32a)

L -yL
Eo'  _ (Zg + Zg) (Zy + Zg) e’ - (Zg - Zo) (Zy - Zg) e !
Eg 2 ZO (ZS + Zr)

(32b)

Either Eq. (28) or (32) constitutes a criterion for the evaluation of a
given mechanical system. Equation (28) will lead to the conventional notion of
force transmissibility, while Eq. (32) is the analog of a recently introduced
mechanical concept termed "mount effectiveness." The former provides the over-
all attenuation achieved in a given mechanical configuration, while the latter
determines precisely what is gained (or lost) in the way of isolation by in-
serting a mount between the machine and its foundation. An extensive treatment
of the insertion properties of a mount at low frequencies may be found in Ref. 5.

The formulas collected in this section are sufficient to permit a relatively
complete analysis of a mechanical vibration problem in one dimension. The me-
chanical ingredients needed to feed into this machinery are the particular foun-
dation and machine impedances, discussed earlier, and the two independent param-
eters (ZO, y) necessary to characterize the mount. With these remarks, the de-
velopment of the fundamentals will be concluded.

SECTION II. APPLICATIONS TO SIMPLE ISOLATION PROBLEMS

RIGID-MACHINE, SIMPLE-ELASTIC-MOUNT, RIGID-FOUNDATION MODEL

The simplest example which exhibits the characteristic features of the the-
ory is that of a rigid vibrating mass separated from an infinite foundation by
a conservative, homogeneous, resilient element of small, constant cross section.
The model is shown in Figure 8. Using a general four-terminal network to repre-
sent the resilient element, the corresponding electrical circuits is constructed
as follows: the machine is reduced by Thevenin's theorem to a constant force

2k
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MACHINE MOUNTED ON A RIGID FOUNDATION

FIGURE 8

generator, -ch, acting Fhrough an impedance presented by the rigid mass. The
elements of the system are arranged geometrically in seriesj therefore we so
arrange the corresponding elements chosen from Table 1. The coupling is pro-
vided by ideal transformers of 1l:1 turns ratio, indicated by vertical straight
lines in Figure 9. Inspection of the circuilt shows that attaching four jumpers
at ab, cd, ef, and gh will not disturb the voltage-current relationships. Hence
the transformers are easily removed in this case. The final circult is given in
Figure 10,

C
Zg - ©
-0 o
P | | ABCD | | Z, =00
o) o-
4
a b e f
XFMR XFMR

ILLUSTRATION OF CIRCUIT CONSTRUCTION CORRESPONDING TO A
GIVEN MECHANICAL SYSTEM

FIGURE 9
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ELECTRICAL CIRCUIT AFTER REMOVAL OF TRANFORMERS

FIGURE 10

This circuit is identical to that of Figure 7. Therefore Eq. (28) may be
taken over directly. To obtain the transmissibility, the values of Zg, Zg, Z.,,
and y are needed to substitute into Eq. (28). Since the foundation has been as-
sumed to be infinite, Eq. (28) may be written in the form ‘

E 7 L /z 7L
_g=<_§+99 _<_s_>s . (33)
E2 ZO 2 ZO 2

Also since the line has no damping, p = O, and Z, reduces to peS. The impedance
of the machine is obtained simply from its equation of motion. Thus

S (01 - 0g) = ME = iw ME
M = -5 (%200 _ g (34)

E

Substituting these values into the above form of Eq. (28), we obtain after some
rewriting

E o] F 1M
g _ 8 _ & _ . doM
Bx = oa - T2 ° cosh yL + cS sinh yL . (35)

Since uy = 0, y = @ + ip reduces to y = iB. Using the relations between the hy=-
perbolic functions and the circular trigonometric quantities given by

cosh iBL
ginh iBL

cos BL ,

and
isin BL ,

It
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the conventional form of force transmissibility in decibels then becomes

1

T = 20 lo M deci .
810 |05 BL - —os5 Sin BL ecibels (36)

This may be put in computational form by introducing the dimensionless ratios

- L m
BL = ‘DO Mo’ (37a)
oM oM
pcS - Wq n ’ (570)

where

e
O
i)
=]
=~
1}
Flj
[l
(@]
w
1l
olE
(@]
1}

The transmissibility then takes the form

1

f o [m w . w fm
cos |— ,f=] - — pf— sin [— =
wo Y M Wo ym o M

T = 20 logio (38)

We shall defer computation of other isolation parameters until we consider
the effects of resilient foundations. We note in particular that the computa-
tion of mount "effectiveness" provides no new information for this case since
it has been assumed that the foundation impedance, Z,, is infinite. From Figure
6, it is seen that this assumption equates Ep with Eg. Therefore

and the "effectiveness" thus becomes the reciprocal of transmissibility.

The analysis of Eq. (36) has been performed by various authors (see, e.g.,
Ref. 2). It will be included here for the sake of completeness. The salient
features of the system will be shown to be:

1. That at low'frequencies, the system response is identical to that
predicted by lumped parameter theory. ‘

2. That the transmission characteristics exhibit attenuation bands al-
ternating with pass bands which occur at frequencies for which the
length of the mount is an integral number of half wavelengths (wave

effects).

27



3. That a low value of ¢ and a high mass ratio tends to produce attenu-
ation beginning at low frequencies.

To demonstrate the relation between the transmissibility as deduced from
this theory and that of lumped parameter theory, it is sufficient to note, from
Eq. (36), that since

B = @ = 2¢
c A
where \ = wavelength, then
21
BL = — - L
And for N\ > L,
sin BL » BL

cos BL »~ 1 .

Hence the transmissibility at low frequencies becomes, using Egs. (36), (37a),

and (37b),
— %
-
{

This is the familiar result obtained from analysis of the lumped parameter model
of Figure 11.

°

T = 20 logip

Fo coswt

/

LUMPED PARAMETER MODEL OF MACHINE
MOUNTED AGAINST A RIGID FOUNDATION

FIGURE I
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The isolation properties of the model as described by Eq. (36) are placed
in evidence by solving for those values of w for which T =0, T =0, and T =
minimum. The points at which T = 0 indicate the limits of attenuation and pass
‘bands. Thus

T = 0 7T L oM L = =1
= or cos BL - °cS sin L = +£

This equation is satisfied under any of the following three conditions:

BL = nm (n = 0,1,2,...) , (40a.)
cos BL - @fls-sin BL = +1 for BL # nx ~ (40b)
pe |
cos BL - -‘P—%sin BL = -1 for BL # nx . (40c)

pc '

Equations (4Ob) and (L4Oc) above may be simplified as follows. From Eq. (4Ob),

oM cosBL -1 for BL £ nx .
pcS sin BL

Recalling that m = pSL is the mass of the resilient element, we may rewrite the
above equation with the help of the standard trigonometric identities as

oM (M)ﬁL = -tan B BL £ nx . (40'D)
peS nm 2

Similarly Eq. (L4Oc) becomes
L1 (M>BL = +cot BE, BL £ nx . (40'c)
pcS m 2

Maximum transmission occurs for T = », i.e., when

wM

cos BL = — sin BL = O , (41)
pcS
or
(M) BL = cot BL , BL # %? (resonance points) .
m

In addition, minimum T is observed when
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) oM _. _
Su)— {cos{iL--gggs:LnBL} = 0 .

Hence, substituting B = w/c, and differentiating after w, we have

L wL M . oL w ML wL  _
- =gin — « — gin — - cos =— = 0 ,
c c pcS ¢ pc3 c

which, after combining terms, becomes .

p Sle + Me X w ML
Ye————] sin BL = =~ cos BL .
( pcaS ) P pc2S P

Finally, this can be rearranged to read

oML ) M \prL = - tan BL (minimum transmissibility) . (42)
Me + mc M+m

The values of BL (and thus w) which denote band limits, resonances, and
minimum transmissibility are most readily obtained by graphical solution as in
Figure 12. In addition to providing the over-all picture of the system's trans-
mission characteristics, consideration of the graphical method of solution is
also instructive in regard to the relative influence of the various material
parameters M, m, p, ¢, S, and L. From the upper graph, it is apparent that all
attenuation bands terminate, and pass bands begin, at the points BL = nx (n =
0,1,2,...). Thus the intersection of the lines

R
m

with the cot BL/2 and tan BL/2 curves corresponding to Egs. (40'b) and (40'c)
determines the inception frequencies of the attenuation bands only.

It is interesting to examine methods of reducing the frequencies at which
the attenuation bands begin. From Figure 12 we see that by increasing the slope
of the straight lines the intersection points are moved toward the left, the y
axis. This corresponds to the lowering of frequency for which attenuation is
obtained. Since the slope of the line is proportional to the ratio of machine
mass to mount mass, increasing this mass ratio will achieve the desired effect.
In addition, it must be recognized that the scale of the abscissa, along which
frequency is measured, can be varied. Examining this change of scale more
closely, the form.mL/c,,where wL/c = BL, shows that fundamentally the abscissa-
scale unit is controlled by the length of the mount, L, and the velocity of
sound in the mount material, c¢. Hence, a given point on the abscissa may be
made to correspond to a lower frequency by expanding the scale of the abscissa.
For example, suppose w; - L/c = constant. Then for an increase in the L/c ratio,
which essentially expands the scale, the value of w; corresponding to the point
decreases in inverse proportion.
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GRAPHICAL SOLUTION FOR BAND PASS LIMITS
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Thus we have determined that the inception points of the attenuation bands
may be lowered by increasing the mass ratio or the mount length along with se-
lecting a mount material that propagates sound at a lower velocity. In a par-
ticular application, however, it may be more important to control the transmis-
sion characteristics in a more elaborate fashion, e.g., to avoid the occurrence
of standing waves at certain specified frequencies, than to achieve attenuation
at a very low frequency. Therefore one cannot specify on the basis of a general
analysis what constitutes the "best" mass ratio, mount length, etc. The theory
may be used to indicate the general features of a vibration-isolation problem,
from which design information is available to obtain optimum performance.

It 1s apparent that for this simple case the most important contribution
mechanical transmission line theory has offered is its prediction of the pass
bands which occur at higher frequencies. The loss of attenuation due to this
phenomena, termed "wave effects," had been first observed in practical vibration-
isolation devices. Efforts to explain this marked deviation from the predictions
of lumped parameter theory encouraged the use of a distributed parameter treat-
ment of the resilient element which had been applied to similar mechanical sys-
tems as early as 19%0 by R. B. Lindsay,7 The consideration of distributed par-
améters associated with a resilient element permits the examination of a reso-
nant condition which does not occur in lumped systems, i.e., the standing waves
which are found at frequencies for which the resilient element's length is an
integral number of half wavelengths. The elementary treatment of our first ex-
ample indicated this occurrence of standing wave resonances at regular frequency
intervals to indefinitely high frequencies. A plot of the transmissibility,
curve (a) in Figure 13, in db attenuation thus reveals, in addition to the "nor-
mal mode" peak at low frequencies, the fundamental and higher harmonics of the
"wave effect" peaks.

THE MECHANICAL FILTER

In the general formulation of the problem, the possibility is provided for
examining connected transmission paths which are individually homogeneous but
different from each other in composition. Our next case will involve the sim-
plest example of such a "compound" line. For the time being, the machine and
foundation will be relegated, as in the first example, to rather unimportant
roles in the system. We may anticipate the results somewhat by considering the
fact that constructing a compound line is analogous to the connection of elec-
trical transmission lines having different characteristic impedances. ZElectri-
cally, this "impedsnce mismatch" causes a loss in the power transmitted. We
therefore expect that some increase in attenuation is to be achieved.

The various sections of a compound line are usually treated as elastic
elements. However, one may ignore the elasticity of certain sections as a first
approximation, and consider simply the Impedance presented by the mass of these
sections. We shdll now consider an example of this type. In keeping with the
desire to maintain conceptual and algebraic simplicity, the machine and founda-

%2
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tion will again be considered rigid and the effects of viscosity neglected.

The model to be considered is similar to that used in the first example and is
given in Figure 14. The machine mass is M; and the mass of the interposed mourt
section is labeled M. We shall refer to M> as the loading mass. The over-all
length of the resilient transmission line will be considered the same as in the
first example with the loading mass attached at x = L/2. The electrical circuit,
shown in Figure 15, is obtained in the same manner as before, using the corre-
sponding elements from Table 1. In this case, the four-terminal networks rep-
resenting the two halves of the transmission line will naturally have ABCD par-

- ameters involving L/2 instead of L as before.

The analysis of this circuit can be conveniently carried out using matrix
algebra., Recalling the usual rules of matrix addition and multiplication, con-

sider the E,TI relations across the last four-terminal network on the right in
Figure 15. We have by Egs. (1) and (2)

Emz = AE2+B12‘ P
Ino = CEs+D I &
In matrix form these equations may be written

Fnso A B Eo

Tno C D I
-So'q
) o &,
L2 ' .
Y mi emo
M o
! Tmzs Eme
L2 ' .
— 0, ¢,

/

MACHINE — COMPOUND MOUNT— FOUNDATION MODEL

FIGURE 1|4
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Proceeding to the left in Figure 15, similar relations are written for each suc-
cessive four-terminal network. Hence, for the impedance Zo,

Emo + ZoIme ,

Ema
Imp = Inz
which, written in matrix form, becomes

Ena 1 Zs Emo

Im 1 O l Imz

By 1 Zo A B Eo

Imy 0O 1 cC D Io
Again
E,y A B Emy A B 1 Zs A B Es
= . ° = ° ° ° K}
I, C D Im1 C D o 1 cC D I-
and finally, since
Eg 1 2z, E,
= ] )
Ig o 1 Iy
then
Eg 1 Z, A B 1 Zy| ||A .B Eo
Ig o 1 C D O 1 C D Is -
(43)
Carrying out the indicated matrix multiplication yields
By [A+Z1C] [A+2Z2C) + C [B+Z3D] [A+Z:C] [B+Z2D] + D [B+2Z:D]|| || E2
I | C [A +2ZsC] + CD - C [B + ZzD] + D? Is

g
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Since Iy = O, for this case, the above expression reduces to:

E [AZ 4+ AC (Z31 + Zz) + Z3Z2C% + CB + Z1CD] Eg|

[AC + Z5C2 + DC] Eo
The voltage and current may immediately be read off as follows:

B, = [A% + AC (Zy + Zgz) + Z1Z2C% + CB + Z,CD] Es

Tg= [(CA + ZC2 + DC) Ez]
From the voltage equation:
Eg/Ez = A% + AC (Zy + Z2) + Z322C% + BC + ZyCD .

Utilizing the assumptions that the masses M; and Mp are rigid, the impedances
Z, and Zg are

Zl = iﬂ) Ml s

75 iv Mz .

The ABCD parameters are given by Egs. (7"a), (7"b), and (7"c), noting that L/2
must be substituted as the length of each resilient element.

D = A = cosh2l = cosBL (since u = 0)
2 2
. L BL
B = Z S h "?',— - ] 3 ——
o. in > ZO i sin 3
C = ——Z—Z—Sinh L/2 = —l— sin -ﬁ——L—
Zo Zg 2

Substitution into the voltage ratio results in

g - cos2 BL + 1(Z1422) sin PL cog BL . Z1Z2 yp2BL _5n2PL 21 55y BL cog BL

I

cos BL + 1 Lk sin BL + =22 gin BL - 2422 sin® BE
7o 2 7, Zo )

- Finally
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-2 = cos BL - =2 L -—=|s I - —= gin® £2| Ly
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The transmissibility in decibels attenuation becomes:

1
Eo
T = 2 l — = .
0 logig Fg 20 10810 |opg 8L - oMz o BL - wMy Ein L - M2 gyp2 BL
pesS pcS pcS 2 ]
(45)
The dimensionless form of Eq. (45), using the following relations
(Dol = —Ii (1)02 = —IS:- m = pLS
Ml | Mz
L = & [m K = &8
Wo1 Ml L
wM; o My WMz W Mz
S 7 woy ¥m ’ pcS woz ¥ m

becomes

= 20 10g1p| eos ___«}: /Mz ’______ { [S ____9_ i 1/_]
Woy VM (Doz U)01 ®ox wo:L Ml Woz m 20)01

Although the algebraic complexity has already become impressive for this relative-
ly simple problem, the essential characteristics of the system are easily obtained
from Egs. (44) to (46). For instance, it is encouraging to note that Egs. (45)
and (46) reduce to Egs. (36) and (38), respectively, if Mo (the loading mass) is
chosen negligibly small. The effects of adding Mo is most easily seen from Eq.
(45) by noting that the first of the band-limit equations of the previous exam-
ple, Eq. (40a), is now changed to

T = 0 for BL = 2nx (n=0,1,2,...) . (47)

The gignificance of the factor 2 appearing here is that pass bands occur only
half as many times as in the previous system.

Physically, this means that the standing waves which previously entertained
an antinode at the point of attachment of the loading mass (odd harmonics) have
now been suppressed by this mass. Hence, only those standing waves which have
the point x = L/2 as a node are possible with the mass attached. Thus it is ap-
parent that a single loading mass attached at the center of the rod tends to
suppress every other wave resonance, providing in this way relatively wide at-
tenustion bands between the "wave-effect" pass bands as ghown by curve (b) in
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Figure 13. In fact, attaching the mass at the center may be shown to provide
the widest attenustion bands possible for a simple mass-loaded line, Shifting
the loading mass off center causes each of the remaining wave-effect peaks to -
split into two peaks, their separation being controlled by the distance of the
mass from the center. As the loading mass moves away from the center, the pairs
of transmissibility peaks increase their separation until they finally arrive

at the positions of the simple line peaks as the mass is removed from the line.
For certain points of attachment, for example, as with the loading mass at L/B
from the bottom as shown by curve (c), Figure 13, a peak moving up in the fre-
quency scale becomes superimposed on the adjacent descending peak, resulting

in a transmission characteristic similar to that of center loading. The dif-
ference is that the fundamental frequency has been reduced due to lower frequency
standing waves occurring in the longer portion of the resilient element. Since
the higher peaks occur at regular harmonic intervals, the attenuation bandwidths
are reduced for off-center loading.

In addition we note that by introducing impedance mismatch at the center of
the transmission line, the amount of attenuation obtained in the attenuation
bands has been approximately doubled over that observed in the first example as
anticipated. Evidence of this fact is provided in Eq. (45) wherein the coef-
ficient of the predominant term at high frequency, sin® BL/E, 1s proportional
to the square of the frequency rather than simply proportional as in the first
case.

Although more detailed analysis of these equations is necessary when the
elasticity of the interposed section is considered, the essential behavior has
been sufficiently indicated in the discussion thus far. For further analysis
of the suppression of odd harmonic "wave effects" in compound lines and the sup-
porting experimental evidence, see Refs. 6 and 7.

Comparing the foregoing examples a bit further, the occurrence of wave ef-
fects as a natural consequence of the elastic element's continuity is again em-
phasized. It is possible to show, from Eq. (45), that the transmissibility as
obtained from this theory reduces at low frequency to that obtained by conven~
tional lumped parameter methods. The equation obtained from Eq. (45) by assum-
ing the length of the resilient element to be small compared to the wavelength
is quadratic in w, ylelding the two normal modes of vibration of this system.
The two peaks attributable to these modes are clearly evident in curves (b) and
(e) in Figure 13.

The entire resilient section, pictured in Figure 1k, consisting of a length
of elastic element with a loading mass rigidly attached to the center has long
been known in acoustics as a '"section" of a mechanical filter. It is possible
to construct a mechanical filter consisting of an arbitrary number of such sec-
tions. The general behavior of such an n-section filter is very much like that
of the analogous electrical filter. As additional sections are added to the
filter, some attenuation is lost at low frequencies due to the additional normal
mode resonances created by the additional "degrees of freedom." However, this
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is compensated for by the increased attenuation received above the highest nor-
mal mode resonance, the attenuation predicted being approximately n times the
amount provided by a single filter section. Again when sufficiently high fre-
quencies are reached so that the mass spacing becomes of the order of a half
wavelength, a loss of attenuation is observed due to standing waves in the re-
silient element. Although the pass bands caused by standing waves become in=
creasingly narrow and less detrimental at higher frequencies, thelr effect is
primarily to slow the rate of increase of attenuation with increasing frequency.

This type of mechanical filter corresponds roughly to the electrical low-
pass filters., Attempts have been made to try to design a mechanical high-pass
filter with very limited success (see Ref. 6). The difficulty encountered in
attempting to obtain attenuation starting at zero frequency is essentially that
the presence of an infinite mass is needed at some point in the system. Thus
the mechanical analog of the electrical high-pass filter is most unlikely to
provide any fruitful source of investigation for those interested in obtaining
practical results in noise isolation. It appears that the best one can do is
to design his isolation system to obtain attenuation of a few frequency bands
which are most troublesome. In general, the lower the frequency to be attenu-
ated, the larger the masses involved will have to be.

This, of course, is not a novel result, but is essentially a restatement of
the well-known results of lumped parameter theory that the larger the mass and
the softer the spring, the lower the resonant frequency will be, and hence the
lower the frequency at which attenuation is obtained. Thus it is clear that the
"mechanical filter'" provides no new mechanism of isolating vibration sources.

SECTION ITI. NUMERICAL ANALYSIS OF A TYPICAL SYSTEM

Thus far, the examples considered have been elementary to display conven-
iently the salient features of the theory without unnecessary complications.
However, the methods discussed are Jjust as easily applied to entire systems
consisting of several vibration sources, transmission paths which have damping,
and terminations possessing arbitrary impedances. The difficulties encountered
are largely computational rather than conceptual.

As an extension of the theoretical work contained in the previous two sec-
tions, this laboratory has attempted an application of network theory to the
analysis of a typical heavy-machine noise-isolation problem. The intention was
to use representative values of machine, mount, and foundation impedance as the
basis for a numerical example illustrating: (1) the applicability of network
analysis to a typical system; and (2) the magnitude of the computational problem
involved in the analysis of a complex system. However, upon embarking on this
investigation it became apparent that the scarcity of experimental impedance
data applicable to this method of analysis precluded the possibility of analyzing
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an actual system. Thus it became necessary to construct an artificial system
employing the type of data that are available, to furnish in an indirect manner
the basis for the computation. Before reporting the details of this computation,
we shall discuss briefly some of the considerations in selecting the character-
istics of the artificial system.

BACKGROUND AND DEFINITION OF THE PROBLEM

The best data that were found to be available for computational purposes
were the following: (1) impedance curves which were considered to be typical
of the internal mechanical impedance characteristics of a heavy machine as meas-
ured at four points of support; (2) transmissibility data on several commercial
mounts under rated loading; and (3) force-to-velocity ratios which were charac-
teristic of four points on a machine foundation structure.

It originally had been hoped that the system analysis could be carried out
for the case of a machine having several points of support. However, because
values for the transfer impedances appearing between the normal machine-support
points were not available, the analysis had to be restricted to a single-pedestal
machine mounted through an isolator to a single point on a resilient foundation
as shown in Figure 16.

Had the transfer-impedance data been available, the analysis would have
been carried out using a circuit configuration similar to that of Figure 17
which shows schematically a general form of the mechanical network for a machine
having two points of support. The effects of the multiple mounting and of the
transfer impedances can be considered through the use of one circuit of the type
shown in Figure 16 for each point of support, with the points of support on both
the machine and the foundation side, respectively, intercomnected through net-
works having suitable transfer-impedance characteristics. One could then apply
excitation to each of the circuits in succession and compute the response at each
foundation terminal. Then by assuming a linear response, the individual respon-
ses could be superimposed to obtain a first approximation of the total foundation
response due to the vibratory effects of the machine.

ANALYSIS OF THE SYSTEM
Employing the theory developed in the first two sections, we may draw the
cirecuit analog for a pedestal-mounted machine as in Figure 16. The force-velocity

relationships at each end of the mount may immediately be written in matrix form
as follows:

=\ . . (48)
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where

Performing the matrix multiplication indicated yields

E AE, + BI,. + Zg (CEp + DI,)
= (50)
I CEy + DIy

The ABCD parameters are given by Egs. (7a), (7b), and (7c), or, more fundamen-
tally, by their definitions in terms of the mount-impedance values, Zi,, Zi2,
Zo3, and Zoo.

Force and velocity transmissibility may be obtained from Eq. (50) by taking
20 log 15 of the voltage and current ratios. The complex power ratio is obtained
by taking the product of these ratics. The real part of this complex number rep-
resents the real power ratio, as it is conventionally used. These ratios are

given below.

Force ratio:

=

E Z Z Z
g g S 0 S .
— = —= = (1 4+ =—] coshyL + |{=— + =—] sinh yL (51)
B ( Zr) (Z ZO)

Velocity ratio:

Z
£ = 8 = cosh 9L+ Z£ sinh yL (52)
r Tr 0

uvee

Complex power ratio:

P ET VA z 7
g _ gg=;|j<l+_§_>+_r<z_s+_0):|cosh2ﬂ
Py Erly 2 Zy, Zo oo Zr,

1 |Zr ( Zs> <?s ZO)] 1 Zs ZrZs
+=l—=\1+)+\—+)lsinh 2yL + = |o— - 5= (55)

The mount "effectiveness" parameter may be obtained from (32b):

yL - _ -7L
Effectiveness = (Zg + Zg) (Zp + ZO) © (Zg - Zg) (Zy ZO) € .
2 ZO (ZS + ZI‘)
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Using the hyperbolic function identities, this reduces to

2
ZSZI' + ZO

Effectiveness =
Zg (Zs+Zr)

sinh yL + cosh yL . (54)

Still another parameter of possible value is the system transfer impedance, Zm,
i.e., the ratio of force generated by the machine to the foundation velocity:

System F Eg 7T + Zoz '
Transfer = —= = -2 = (Zy + Zg) cosh yL + |————— ) sinh yL .
€ I 20
Impedance r (55)

The preceding expressions provide the framework for numerically computing
the values of the isolation parameters as a function of frequency once the im-
pedance values which properly characterize the machine, mount and foundation are
determined as a function of frequency. We shall now consider the application of
these results to the fictitious system which is intended to characterize the de-
gree of complexity found in a typical physical system.

NUMERICAL RESULTS

The magnitude of the machine and foundation impedances were taken from the
curves shown in Figures 18 and 19 which for the present purpose were considered
to be typical. Although only the impedance modulus is plotted in each case, the
real and imaginary parts of the machine impedance were obtained by estimating
the resistance at resonant points and computing the reactance from this, assum-
ing the resistance to be relatively constant in the vicinity of the peaks. In
the case of the foundation, only one resonance existed, at about 1200 cps. The
resistance was estimated at this point and the reactance computed for the 10-to-
800-cps range, using this value of resistance.

Considerably more effort was necessary to obtain comparable data for the
mount. In the past, mount measurements have consisted almost entirely of ob-
taining "transmissibility" data under specified (usually rated) loading. These
data are virtually useless for inclusion in a system analysis using a network-
impedance approach. What of course 1is needed in the way of mount data is the
input and transfer impedance of each end with the opposite end rigidly constrained.
The procedure followed in this case was essentially to select by trial and error
the physical parameters that a simple cylinder of elastic material would have to
possess to duplicate the transmissibility curve shown in Figure 20. This curve
is the result of experimental measurements made on a conventional commercial
mount. The equation for transmissibility was obtained by application of the
theory presented in this paper to the physical system on which the measurements
were made. Using this theory, one finds the equation for transmissibility to be:
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1

T = 20 lo .
€10 cosh yL + %?M sinh yL (56)

0

Thus by considering various trial values of the physical parameters of the ma-
terial (Young's modulus, velocity of sound, visco-elastic coefficient, cross-
sectional area of the cylinder, and length of the cylinder), the proper values
were selected so that the number computed from the above equation matched the
experimental curve at about twenty points between 10 and 800 cps. These values
were then used to compute Zp, @, and B from the formulas given in Section I.
The - graphs of these three variables as a function of frequency are given in
Figures 21, 22, and 23, respectively.

The data used to characterize the mount are drawn entirely from these
three figures without further consideration of their possible significance.
The graphs of the physical properties of the fictitious mount material are
included in Figures 2k, 25, and 26 for the sake of completeness. The radius
of the cylindrical mount was selected as 2.8 in. and its length as 5 in. It
might be mentioned that the length is determined by the frequencies at which the
first wave effects occur and by the velocity of sound in the material at these
frequencies.

Once these machine-mount-foundation data were compiled, a decision had to
be made as to which one of the several isolation parameters listed earlier was
to be computed since lack of time prohibited more than one'sample computation.
Somewhat arbitrarily, the system transfer impedance was selected. Equation (55)
was put in the proper form for the computation simply by expanding all complex
quantities, rationalizing individual terms, and collecting all real terms and
all imaginary terms. The modulus of this complex number was then determined by
computation involving some 34 distinct, elementary operations on a standard
desk calculator. The time required for the computation of about 25 character-
istic points by a moderately experienced laboratory technician was approximately
20 hours. TFurther practice with the computational procedures might reasonably
be expected to reduce the time for a problem of this degree of complexity to
about 12 hours. It should be pointed out, however, that the inclusion of ef-
fects due to transfer impedance would greatly increase the time of computation.
Although the operations still would remain within the scope of a desk calcula-
tor's function, the time element would probably encourage the use of automatic
computers if there were a considerable number of runs to be made on the same
general program of computation. The results of the computation are shown in
Figure 27 where the reciprocal of Zp is shown as a function of frequency. This
quantity, l/ZT, is equal to the foundation velocity response to a unit force
generated by the machine. "

It should be noted that the general behavior of this function bears little
similarity to the mount transmissibility or to the reciprocals of the machine
and foundation impedances. Rather it represents, as one would expect, a composite
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of the properties of all three elements in the system. A brief look at the be~-
havior of the transfer-impedance function shows that the foundation velocity
response in the vicinity of 10 cps is high due to the normal mode resonance of
the system. In the frequency range immediately above this, the foundation ve-
locity decreases until a minimum is reached at 40 cps. The curve then shows

an increase in foundation velocity which may be attributed largely to a strong
machine resonance just above 40 cps. After a relative maximum is reached at 70
cps, the response decreases until a broad minimum is reached in the 250-to-400-
cps range. The fact that little increase in foundation velocity appears at the
first wave resonance of the mount is apparently due to the high machine and
foundation impedances obtained at 360 cps. The irregular behavior found in the
L400-to-700-cps range seems to follow the machine impedance characteristic most
closely, while at 800 cps an extreme increase in foundation velocity is noted
due to a combination of resonance characteristicg in all three elements of the

system.

The fact that the properties of no one element of the system correspond to
the properties of the system over a wide frequency range indicates the need for
considering the system as a whole when attempting to evaluate analytically the
importance of component properties such as mount or foundation damping, wave ef-
fects, and the like.

SECTION IV. SUMMARY AND RECOMMENDATIONS

EVALUATION OF THE NETWORK APPROACH

The analysis of complex vibratory systems has no formulation that is at once
simple and complete. In the approach described by this paper, we have only a
better approximation to the explanation of vibratory phenomena than the conven-
tional and simpler lumped parameter theory provides. Many obvious limitations
remain imposed on the distributed parameter analysis, and these must be kept in
mind when evaluating the results of the theory. ©Specifically, it should be
constantly remembered that this is still a one-dimensional theory which consid-
ers only the propagation of plane longitudinal waves in structures. In general,
there is little reason to assume that this mode of vibration is the most promi-
nent causative factor of detrimental effects in the system. It is simply the
easiest mode to treat analytically.

However, the fact that this one-dimensional theory cannot provide all the
answers should not give rise to pessimism. For we have here the framework on
which to build a better understanding of difficult problems that demand solu-
tion. Extensions of the capability of the theory are always possible as, for
example, by the addition of empirical corrections which experience suggests or
by implicitly taking into account other effects known to be important through
better methods of applying the techniques which the present theory affords.
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Such better methods in turn help to shorten or improve the experimental labors
required to achieve useful practical results.

The functions that this network approach might be expected to serve are
two-fold. First of all, the fact that it employs the various impedance quan-
titles outlined in Section I serves to clarify the objectives sought in apply.-
ing the impedance concept to the analysis of vibrating mechanical systems.

For one must have some knowledge of the relation such a concept bears toward
the parameters which measure the quality of a system's design, and this is most
readily obtained via the mathematical analysis of the system. Since the rela-
tion between the isolation parameters and the various impedance quantities is
given by network theory, the way is opened to new design approaches in which
certain preferred impedance characteristics may be sought in the construction
of the system components.

Secondly, the network approach imposes specific conditions which must be -
met in the experimental measurement of the appropriate impedance quantities.
Hence it serves to define the type and form of impedance measurement that must
be obtained for fruitful analysis of a vibrating system. The theory also pro-
vides the mechanical interpretation of the particular impedances employed which
forms the basis of the experimental technique used to measure their values.
Thus 1t gives direction to the experimentalist in making impedance measurements
by making clear the sgpecific use that will be made of his data.

Before any real benefits can be derived from the prediction of system be-~
havior provided by this network approach, better impedance measurements must be
devised and be made available, especially with regard to the Thevenin equivalent
series impedance of the machine and the input and transfer impedances of each
end of the mount with the opposite end rigidly constrained. Once these measure-
ments are made available, a better evaluation of the significance of the network
approach can be made by comparing its predictions with experimental results.

In regard to the recommendations made on behalf of the "mechanical filter"
concept in BuShips Memorandum, Ser 371-M9l, it may be stated that the one-dimen-
sional theory of mechanical filters has been worked out in considerable detail
by several investigators and is duplicated in a large part in Section II of this
report. To summarize the result of this work, mechanical filters do not provide
any new mechanism for achieving vibration isolation. Nevertheless the principles
involved may find useful application in certain problems since they provide es-
sentially one technique of altering the impedance characteristics of the mount
structure. The value of this technique can be determined only after such time
as impedance considerations become a significant factor in the design of isola-
tion systems.
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