
ARC VALUATIONS ON SMOOTH VARIETIES

by

Yogesh K. More

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in The University of Michigan
2008

Doctoral Committee:

Professor Karen E. Smith, Chair

Professor Robert Lazarsfeld

Associate Professor Mattias Jonsson

Associate Professor Mircea Mustaţǎ

Associate Professor James Tappenden



c© Yogesh K. More 2008
All Rights Reserved



To my parents

ii



ACKNOWLEDGEMENTS

It is a pleasure to thank, first and foremost, my thesis advisor Karen E. Smith,

for all the support and encouragement she has given me over the past few years. She

was extremely welcoming and generous in introducing me to algebraic geometry. It

took a lot of trial and error for us to find a way of learning math that works for me,

and she has maintained great patience and understanding through it all. Her energy

and enthusiasm for mathematics, and especially this thesis project, inspired me after

each meeting with her, and motivated me throughout each week. Many of the ideas

in this thesis, including the thesis question itself, were suggested by her. In working

with her, I have come to enjoy the research life. I could not have asked for more

from a thesis advisor.

I am grateful to several other algebraic geometers at the University of Michigan.

In particular, I thank Howard Thompson, who as a busy post-doc supervised me in a

reading course on remedial algebraic geometry. Thanks go to Robert Lazarsfeld for

arranging said course. I thank Mircea Mustaţǎ for discussions regarding arc spaces,
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CHAPTER I

Introduction

Let X be an algebraic variety over a field k. An arc on X is a morphism γ :

Speck[[t]] → X of k-schemes. The arc space of X, denoted by X∞, is the set of all

arcs onX, and it has a structure of a scheme. In this thesis, I study valuations ordγ on

a local ring OX,p of X given by the order of vanishing along an arc γ : Speck[[t]]→ X

on X. Such valuations are the Z≥0 ∪ {∞}-valued valuations with transcendence

degree zero. I associate to such a valuation ordγ several different natural subsets

of the arc space X∞, and show they are equal. Furthermore, I show this subset is

irreducible, and the valuation given by the order of vanishing along a general arc of

this subset is equal to the original valuation ordγ.

The motivation for this project was the discovery by Ein, Lazarsfeld, and Mustaţǎ

[7, Thm. C] that divisorial valuations (equivalently, valuations with transcendence

degree dimX − 1) correspond to a special class of subsets of the arc space called

cylinders. One can interpret our results as being complementary to those of Ein

et. al. as follows. Both say that valuations are encoded in a natural way as closed

subsets of the arc space. We address the case when the transcendence degree is zero,

whereas Ein et. al. study the case of valuations with transcendence degree dimX−1.

I begin with some background on arc spaces and their usefulness in studying
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singularities. Recall from a first course in calculus that the tangents to X at a

fixed point give a linear approximation to the shape of X near that point. By

replacing linear approximations by quadratic, cubic or higher degree polynomial

approximations, one can get a more accurate understanding of the local shape of

X. An approximation by a power series is an arc on X, and can be considered as a

limit of successive approximations by polynomials of increasing degree. The set of

all arcs on X forms a rich geometric object X∞ (in particular, a scheme) called the

arc space of X. Information about the singularities of X (or a pair (X,D) where

D is a divisor on X) can be recovered from the geometric structure of X∞. In this

thesis I investigate a small part of the wealth of information and structure contained

in X∞.

We give a basic and important example. Let X = Cn = Spec C[x1, . . . , xn] be

affine n-space. An arc on X is a morphism γ : Spec C[[t]] → Spec C[x1, . . . , xn]

of C-schemes. Equivalently, an arc on X is given by a C-algebra morphism γ∗ :

C[x1, . . . , xn] → C[[t]], and hence is determined by a collection of power series de-

scribing the image of each coordinate function:

γ∗(x1) = c1,0 + c1,1t+ c1,2t
2 + . . .

. . .

γ∗(xn) = cn,0 + cn,1t+ cn,2t
2 + . . .

(1.1)

for some numbers ci,j ∈ C. The arc space (Cn)∞ is then an infinite dimensional affine

space with coordinates xi,j for 1 ≤ i ≤ n and 0 ≤ j, i.e. (Cn)∞ = Speck[{xi,j}1≤i≤n, 0≤j].

In algebraic geometry, the study of singularities is often approached via valu-

ations. There is a body of research relating divisorial valuations on the function

field C(X) of X to subsets of X∞. Some of this work has been motivated by the

Nash problem of understanding the relationship between irreducible components of
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X∞ that lie over the singularities of a variety X, and divisors appearing in every

resolution of singularities of X (see [15, Problem 4.13] for the precise statement).

Interest in the relationship between divisorial valuations and arc spaces also comes

from higher dimensional birational geometry. For example, invariants coming from

birational geometry (e.g. minimal log discrepancies) can be expressed in terms of

the codimension of various subsets of the arc space (see [9, Thm 7.9] for a precise

statement).

Ein, Lazarsfeld, and Mustaţǎ show in [7, Thm. C] that divisorial valuations over

a nonsingular variety X arise from a special class of subsets of X∞ called cylinders.

More specifically, for a divisorial valuation valE given by the order of vanishing

along a divisor E over X, there is an irreducible cylinder Cdiv(E) ⊆ X∞ such that

for a general arc γ ∈ Cdiv(E), we have that the order of vanishing of any rational

function f ∈ C(X) along γ equals its order of vanishing along E. In symbols,

ordt γ
∗(f) = valE(f) for all f ∈ C(X). Conversely, it is shown in [7, Thm. C] that

every valuation given by the order of vanishing along a general arc of a cylinder is a

divisorial valuation.

The goal of this thesis is to investigate whether other types of valuations, besides

divisorial ones, have a similar interpretation via the arc space. We find there is a nice

answer for valuations given by the order of vanishing along an arc on a nonsingular

variety X. If X is a surface, all valuations with value group Zr (lexicographically

ordered) for some r are equivalent to a valuation of this type.

To explain, we need to introduce some notation. Let X be a variety over a

field k and let γ : Speck[[t]] → X be an arc on X. The arc γ gives a k-algebra

homomorphism γ∗ : OX,γ(o) → k[[t]], where o denotes the closed point of Speck[[t]].

We will see that γ∗ extends uniquely to a k-algebra homomorphism γ∗ : ÔX,γ(o) →
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k[[t]] (Proposition IV.2). We define a valuation ordγ : ÔX,γ(o) → Z≥0 ∪ {∞} by

ordγ(f) = ordt γ
∗(f) for f ∈ ÔX,γ(o). If γ∗(f) = 0, we will adopt the convention that

ordγ(f) =∞.

Given an ideal sheaf a ⊆ OX on X we set ordγ(a) = min
f∈aγ(o)

ordγ(f). For a nonneg-

ative integer q, we define the q-th order contact locus of a by

(1.2) Cont≥q(a) = {γ : Speck[[t]]→ X | ordγ(a) ≥ q}.

For f, g ∈ OX,γ(o), notice that

ordγ(fg) = ordγ(f) + ordγ(g)

ordγ(f + g) ≥ min{ordγ(f), ordγ(g)}

These conditions are included in the definition of a discrete valuation (Definition

III.1). However, the map ordγ : OX,γ(o) → Z≥0 ∪ {∞} generally cannot be extended

to a valuation on the function field k(X) of X, but it comes close. The snag is

the possible presence of f ∈ OX,γ(o) with ordγ(f) = ∞. There are two possible

approaches to circumvent this difficulty, and we will use both. One is to quotient out

by the prime ideal p = {f ∈ OX,γ(o) | ordγ(f) = ∞}. Then ordγ induces a discrete

valuation on Frac(OX,γ(o)/p) \ {0}. To describe this construction in more geometric

terms, set Y = γ(η) ⊆ X, where η is the generic point of Speck[[t]]. Then ordγ

induces a discrete valuation k(Y )→ Z on the function field of Y .

The second approach is to enlarge our notion of valuation by permitting the value

∞ for nonzero elements and allowing the domain of definition to be a ring. To be

precise, our definition of valuation is the following:

Definition I.1. Let R be a k-algebra that is a domain. A valuation on R is a map

v : R→ Z≥0 ∪ {∞} such that
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1. v(c) = 0 for c ∈ k∗

2. v(0) =∞

3. v(xy) = v(x) + v(y) for x, y ∈ R

4. v(x+ y) ≥ min{v(x), v(y)} for x, y ∈ R

5. v is not identically 0 on R∗.

If R = OX,p is a local ring at a point p of a variety X, we will say that v is a

valuation on X centered at the point p.

Working in the context of valuations taking value ∞ on nonzero elements is not

without precedent (e.g. [11]). In Chapter IV we will say more about the relation

between several different definitions of valuations found in the literature. Specifi-

cally, we will compare these definitions with regard to arc spaces. We will see that

Definition I.1 seems to be the most useful one in the context of valuations arising

from subsets of arc spaces. In fact, we will see (Proposition IV.12) that every such

valuation is induced by a (not necessarily k-valued) arc. Futhermore, we will see in

Proposition IV.13 that such valuations are precisely the discrete valuations on the

subvariety of X given by the ideal of elements with value infinity.

1.1 Valuations and subsets of the arc space

In this section, I begin by explaining the relationship between valuations on a

variety X/k and subsets of the arc space X∞ of X. I then construct several natural

subsets of the arc space that one might associate to a valuation. One of the main

results of this thesis is that for a large class of valuations, these different constructions

agree, i.e. they define the same subset of the arc space.
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The following definition appears in [7, p.3], and provided, at least for us, the

initial link between valuations and arc spaces:

Definition I.2. Let C ⊆ X∞ be an irreducible subset. Assume C is a cylinder

(Definition II.2). Define a valuation valC : k(X) → Z on the function field k(X) of

X as follows. For f ∈ k(X), set

valC(f) = ordγ(f)

for general γ ∈ C. Equivalently, if α ∈ C is the generic point of C, then valC(f) =

ordα(f). (Caveat: α need not be a k-valued point of X∞. See Remark II.5.)

It turns out that the condition that C is a cylinder implies that valC(f) is always

finite. If we drop the assumption that C is a cylinder, then the map ordα (where α

is the generic point of C) is a Z≥0 ∪ {∞}-valued valuation on OX,α(o). In this thesis,

we will allow such valuations.

We now describe a way to go from valuations centered on X to subsets of the

arc space. Following Ishii [14, Definition 2.8], we associate to a valuation v a subset

C(v) ⊆ X∞ in the following way.

Definition I.3. Let p ∈ X be a (not necessarily closed) point. Let v : ÔX,p →

Z≥0 ∪ {∞} be a valuation. Define the maximal arc set C(v) by

C(v) = {γ ∈ X∞ | ordγ = v, γ(o) = p} ⊆ X∞,

where the bar denotes closure in X∞. We will see in Proposition IV.12 that C(v) is

non-empty. Let p ∈ X be a (not necessarily closed) point. Let v : ÔX,p → Z≥0∪{∞}

be a valuation. Define the maximal arc set C(v) by

C(v) = {γ ∈ X∞ | ordγ = v, γ(o) = p} ⊆ X∞,
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where the bar denotes closure in X∞. We will see in Proposition IV.12 that C(v) is

non-empty.

If we start with an irreducible subset C, we get a valuation valC by Definition I.2.

We can then form the subset C(valC) as in Definition I.3. We have C ⊆ C(valC)

because C(valC) contains the generic point of C. In general, we do not have equality.

We can associate another subset ofX∞ to a valuation v on a nonsingular varietyX

as follows. Let {Eq}q≥1 be the sequence of divisors formed by blowing up successive

centers of v (see Definition III.3). Following [7, Example 2.5], to each divisor Eq we

associate a cylinder Cq = Cdiv(Eq) ⊆ X∞. Using notation we will explain in Chapter

V, we will define Cq = µq∞(Cont≥1(Eq)). In words, Cq is simply the set of arcs on

X whose lift to Xq−1 (a model of X formed by blowing up q− 1 successive centers of

v) has the same center on Xq−1 as v. This collection of cylinders forms a decreasing

nested sequence. We take their interesection,
⋂

q≥1Cq, to get another subset of X∞

that is reasonable to associate with v.

On the other hand, another way the valuation v can be studied is through its

valuation ideals aq = {f ∈ ÔX,p | v(f) ≥ q}, where q ranges over the positive

integers. The set
⋂

q≥1 Cont≥q(aq) is yet another reasonable set to associate with v.

Given an arc α : Speck[[t]] → X, we have an induced map α∗ : ÔX,α(o) → k[[t]].

We associate to ordα the set

(1.3) I = {γ ∈ X∞ | γ(o) = α(o), ker(α∗) ⊆ ker(γ∗) ⊆ ÔX,α(o)}

In words, I is the set of arcs γ with ordγ(f) =∞ for all f ∈ ÔX,α(o) with ordα(f) =

∞.

Finally, let R = {α ◦ h ∈ X∞ | h : Speck[[t]] → Speck[[t]]}. In words, R is the

set of k-arcs that are reparametrizations of α.
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The main result of this thesis is that for k-arc valuations v = ordα, all five of

these closed subsets (C(v),
⋂

q≥1Cq,
⋂

q≥1 Cont≥q(aq), I, R) are equal. Furthermore,

this subset is irreducible, and the valuation given by the order of vanishing along a

general arc of this subset is equal to v.

For convenience, we will assume the arc α we begin with is normalized, that is,

the set {v(f) | f ∈ ÔX,p, 0 < v(f) < ∞} (where v = ordα) is non-empty and the

greatest common factor of its elements is 1. Every arc valuation taking some value

strictly between 0 and ∞ is a scalar multiple of a normalized valuation.

Also, we restrict ourselves to considering the k-arcs in the sets described above.

We denote by (X∞)0 the subset of points of X∞ with residue field equal to k. If

D ⊆ X∞, then we set D0 = D ∩ (X∞)0.

Theorem I.4. Let α : Speck[[t]]→ X be a normalized arc on a nonsingular variety

X (dimX ≥ 2) over an algebraically closed field k of characteristic zero. Set v =

ordα. Then the following closed subsets of X∞ are equal:

(C(v))0 = (
⋂

q≥1

Cq)0 = (
⋂

q≥1

Cont≥q(aq))0 = I0 = R.

Furthermore, the valuation given by the order of vanishing along a general arc of

this subset is equal to v.

When X is a surface, we recover the construction for divisorial valuations given

in [7, Example 2.5]:

Remark I.5. If X is a surface and if v is a divisorial valuation, then
⋂

q>0Cq equals

the cylinder Cr associated to v in [7, Example 2.5], where r is such that pr is a
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divisor.

1.2 Outline of thesis

In Chapter II, we define jet schemes and arc spaces. We also recall standard con-

structions and theorems related to arc spaces. In Sections 2.2 and 2.3 we study how

contact loci transform after blowing up. We also recall results of Ishii on divisorial

valuations and arcs. In a later chapter we will see that some of the constructions

Ishii makes for divisorial valuations extend to arbitrary arc valuations.

In Chapter III we present the background material from valuation theory that we

will need. We present the classically known description of all the valuations on a

smooth surface. On surfaces, there are four general classes of valuations: divisorial

valuations, curve valuations, irrational valuations, and infinitely singular valuations.

Of these, the first two are arc valuations. On the other hand, irrational valuations

have value groups (isomorphic to) Z + Zτ ⊂ R where τ ∈ R \ Q, while infinitely

singular valuations have value groups (isomorphic to) subgroups of R that are not

finitely generated. There are many different approaches to studying all four types of

valuations. For example, this classification can be studied by sequences of centers

of the valuation, or by sequences of key polynomials, or by Hamburger-Noether

expansions. The article of Spivakovsky [21] is gives a detailed exposition of the

classification, building on work of Zariski [23] and Abhyankar [1]. In Chapter III,

we describe the classification of surface valuations via sequences of key polynomials

(SKP). Our source for this material is a book by Favre and Jonsson [11, Chapter

2], which we follow closely. However, the original source cited in [11, Chapter 2] is

MacLane’s paper [16].

Chapter IV explores arc valuations. We begin by defining arc valuations and es-
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tablishing some of their basic properties. We point out that divisorial valuations are

arc valuations. We also define the notion of the transcendence degree of a valua-

tion, and study the transcendence degree of an arc valuation. We also show that a

normalized k-arc valuation on a nonsingular variety X over k can be desingularized.

More precisely, a normalized k-valued arc γ can be lifted after finitely many blowups

(of its centers) to an arc γr that is nonsingular.

Chapter V, in which we prove the main results of our thesis, studies k-arc valua-

tions on a nonsingular variety X over an algebraically closed field k of characteristic

zero. In Section 5.3, we prove our main result in the special case that our valuation

is nonsingular. We do this by reducing to the case X = An, and then explicitly

calculating the ideals of the various sets we associate to a valuation. In Section 5.4,

we prove our main result, Theorem V.17, using the special case considered in Section

4.3.

In Chapter VI, we turn our attention to K-arc valuations, where k ⊆ K is an

extension of fields. By a K-arc valuation we mean the order of vanishing along a

K-arc SpecK[[t]] → X. By changing the base field to K, we are able to use our

analysis from Chapter V. We establish inclusions between various subsets of the arc

space associated with a K-arc valuation.

Chapter VII considers valuations that are not arc valuations. We restrict our at-

tention to surfaces, and use the classification of surface valuations presented in Chap-

ter III. A natural question is, what do the sets
⋂

q Cont≥q(aq) and
⋂

q µq,∞(Cont≥1(Eq)),

which were the focus of Chapter V, look like for valuations that are not arc valua-

tions? We begin by computing the sets

⋂

q≥1

Cont≥q(aq) and
⋂

q≥1

µq,∞(Cont≥1(Eq))

for irrational valuations on X = A2 = Speck[x, y]. We have seen that these sets
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are equal for nonsingular arc valuations (Proposition V.2). However, for irrational

valuations, these sets are not equal. In fact, we will see that for an irrational valuation

on A2, the set
⋂

q µq,∞(Cont≥1(Eq)) contains only the trivial arc. On the other

hand, we will see that
⋂

q Cont≥q(aq) is an irreducible cylinder. However, one cannot

recover the original irrational valuation from
⋂

q Cont≥q(aq). More precisely, there

are infinitely many irrational valuations whose corresponding sets
⋂

q Cont≥q(aq) are

equal.

When working with subsets of arc spaces, it is often useful to measure, in some

way, the size of any subset. In Chapter VIII, we calculate the motivic measure of the

maximal arc sets that we associate (in Chapter V) to an arc valuation. The motivic

measure of a subset of the arc space is an element in the completion of a localization

of the Grothendieck group of varieties. We find that the motivic measure cannot

distinguish between the sets we associate to divisorial and irrational valuations.

Finally, in Chapter IX, we present open questions and futher directions of research.

One direction of further research is the extension of the results of this thesis to

singular varieties. Another direction is the study of generalized arcs, which we will

define. The goal is to use these generalized arcs to extend the work of this thesis to

more general (e.g. non-discrete) valuations.



CHAPTER II

Background on Arc spaces

In this chapter, we establish the facts about arc spaces that we will use. We begin

by defining arc spaces. We then define an important class of subsets of the arc space

called contact loci. When then show a technical result (Lemma II.9) we will later

need about how these contact loci transform with respect to blowups.

2.1 Construction of the Arc Space

2.1.1 Jet spaces

We will construct arc spaces as a limit of jet spaces. We begin by describing

jet spaces. Let X be a scheme of finite type over a base field k. All morphisms

between schemes over Speck will assumed to be morphisms of k-schemes. For any

nonnegative integer n and k-algebra A, an A-valued n-jet on X is a morphism of

k-schemes SpecA[t]/(tn+1) → X. The set of all n-jets on X can be parametrized

by a k-scheme Xn, called the jet space of X. More precisely, Xn is a scheme that

represents the contravariant functor

Hom(−× Speck[t]/(tn+1), X) : (k− schemes)→ (Sets)

12
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sending a k-scheme Y to the set HomSpeck(Y × Speck[t]/(tn+1), X). In particular,

Xn is uniquely determined up to isomorphism, and satisfies a functorial bijection

(2.1) Hom(SpecA,Xn) = Hom(SpecA[t]/(tn+1), X)

for every k-algebra A. Note that the k-valued points of Xn are given by the set of n-

jets, Hom(Speck[t]/(tn+1), X). For nonnegative integers m < n, we have a canonical

projection map πn,m : Xn → Xm induced by the truncation map A[t]/(tn+1) →

A[t]/(tm+1) sending a0 + a1t + . . . ant
n to a0 + a1t + . . . amt

m. Note that we may

identify X0 with X.

We outline the construction of Xn, and refer the reader to [9, Section 2] for more

details. The first step is to assume Xn exists, and notice that if U is an open subset

of X, then π−1
n,0(U) satisfies

Hom(SpecA, π−1
n,0(U)) = Hom(SpecA[t]/(tn+1), U).

Hence Un = π−1
n,0(U). This implies Xn can be constructed by gluing together

n-jets schemes of each set in an open cover of X. Hence we have reduced the

problem to proving Xn exists when X is affine. Suppose X is affine, say X =

Speck[x1, . . . , xm]/I. Define the polynomial ring R = k[xij|1≤i≤m,0≤j≤n], where the

xij are indeterminates. For f = f(x1, . . . , xm) ∈ I, let Φf be the set of n+1 elements

of R that are the coefficients of 1, t, . . . , tn in f(

j=n∑

j=0

x1jt
j, . . . ,

j=n∑

j=0

xmjt
j) ∈ R[t]. Set

Φ = ∪f∈IΦf . Let J ⊆ R be the ideal of R generated by the elements of Φ. I claim

Xn = SpecR/J .

In other words, for any k-algebra A, I claim there is a functorial bijection

(2.2) Hom(SpecA, SpecR/J) = Hom(SpecA[t]/(tn+1), X).

For θ ∈ Hom(R/J,A), define θ′ ∈ Hom(k[x1, . . . , xm], A[t]/(tn+1)), by θ′(xi) =
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j=n∑

j=0

θ(xij)t
j. I claim that θ′ induces a k-algebra homomorphism

θ′ ∈ Hom(k[x1, . . . , xm]/I, A[t]/(tn+1)).

Suppose f ∈ I. We have

θ′(f) = f(θ′(x1), . . . , θ
′(xm))

= f(

j=n∑

j=0

θ(x1j)t
j, . . . ,

j=n∑

j=0

θ(xmj)t
j)

= θ(f(

j=n∑

j=0

x1jt
j, . . . ,

j=n∑

j=0

xmjt
j))

= 0

The last line follows from the fact that the coefficients of 1, t, . . . , tn in

f(

j=n∑

j=0

x1jt
j, . . . ,

j=n∑

j=0

xmjt
j)

are the elements of Φf , and therefore θ vanishes on them since θ vanishes on J

by assumption. We leave to the reader to check that the map θ → θ′ gives an

isomorphism Hom(R/J,A) ≃ Hom(k[x1, . . . , xm]/I, A[t]/(tn+1)).

Hence we have isomorphisms

Hom(SpecA, SpecR/J) = Hom(R/J,A)

≃ Hom(k[x1, . . . , xm]/I, A[t]/(tn+1))

= Hom(SpecA[t]/(tn+1), X).

We leave it to the reader to check the functoriality of this isomorphism. Granting

this, we conclude Xn exists. Notice that our proof shows that if X is affine, then Xn

is affine.
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2.1.2 Arc spaces

We now define arc spaces. First note that the map πn,n−1 : Xn → Xn−1 is

affine. Indeed, we saw in the proof of the existence of Xn that if U is an affine open

subscheme of X, then Un−1 = π−1
n−1,0(U) is an affine open subscheme of Xn−1, and

so π−1
n,n−1(Un−1) = π−1

n−1,0(U) = Un is an affine open subscheme of Xn. Since the map

πn,n−1 : Xn → Xn−1 is affine, the inverse limit of the inverse system {πn,n−1 : Xn →

Xn−1} of jet spaces exists in the category of k-schemes, and is called the arc space

X∞ of X:

X∞ := lim
←
Xn.

Let k ⊆ K be a field extension. The arc space X∞ is a scheme over k whose

K-valued points are morphisms SpecK[[t]]→ X of k-schemes, since we have

(2.3) Hom(SpecK,X∞) = Hom(SpecK[[t]], X).

In particular, when X is affine, giving a K-valued point of X∞ is the same thing as

giving a homomorphism of k-algebras Γ(X,OX)→ K[[t]].

Definition II.1. Let k ⊆ K be a field extension. A K-arc is a morphism of k-

schemes SpecK[[t]]→ X.

If µ : X ′ → X is a morphism of k-schemes, then we have an induced morphism

µ∞ : X ′∞ → X∞ sending γ to µ ◦ γ. Let πn : X∞ → Xn be the canonical morphism

arising from the definition of inverse limit.

Definition II.2. A cylinder is a subset of X∞ of the form (πn)−1(A) where A is a

constructible subset of Xn. (Recall that a constructible subset of a variety is one

that can be written as a finite disjoint union of locally closed subsets [12, Exercise

II.3.18].)
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The following notation will be used often.

Notation II.3. Let K be a field. We denote the closed point of SpecK[[t]] by o.

An arc γ : SpecK[[t]] → X gives homomorphism of k-algebras γ∗ : OX,γ(o) →

K[[t]]. Define ordγ : OX,γ(o) → Z≥0 ∪ {∞} by ordγ(f) = ordt γ
∗(f) for f ∈ OX,γ(o).

If γ∗(f) = 0, we adopt the convention that ordγ(f) =∞.

Proposition II.4. Let X be a variety over a field k. Let γ : Speck[[t]] → X be a

k-arc. Then γ(o) ∈ X is a closed point of X with residue field k.

Proof. Set p = γ(o), and let κ(p) denote the residue field of p ∈ X. We have a local

k-algebra homomorphism γ∗ : OX,p → k[[t]]. Taking the quotient by the maximal

ideals, we get a k-algebra homomorphism κ(p) →֒ k that is an isomorphism on

k ⊆ κ(p). Hence κ(p) = k. Since tr. deg
k
κ(p) = 0, it follows that p is a closed

point.

2.1.3 Points of the arc space

We next make a couple of remarks about the notion of a point of the arc space.

Remark II.5. Let X be a scheme of finite type over a field k. Let α ∈ X∞ be a (not

necessarily closed) point of the scheme X∞. That is, in some open affine patch of

X∞, α corresponds to a prime ideal. Let κ(α) denote the residue field at the point

α of the scheme X∞. There is a canonical morphism Θα : Specκ(α)→ X∞ induced

by the canonical k-algebra homomorphism OX∞,α → κ(α). By Equation 2.3, the

morphism Θα corresponds to a κ(α)-arc θα : Specκ(α)[[t]] → X. We will abuse

notation and refer to this arc θα : Specκ(α)[[t]] → X by α : Specκ(α)[[t]] → X.

That is, given a point α ∈ X∞, we have a canonical κ(α)-arc α : Specκ(α)[[t]]→ X.

Remark II.6. We now examine the reverse of the construction given in Remark II.5.

Let k ⊆ K be some extension of fields. Given a K-arc θ : SpecK[[t]] → X, by
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Equation 2.3, we get a morphism Θ : SpecK → X∞. The image Θ(pt) of the

only point pt of SpecK is a point of X∞, call it α. By Remark II.5, we associate

to α a κ(α)-arc Θα : Specκ(α)[[t]] → X. Note that Θ : SpecK → X∞ factors

through Θα : Specκ(α) → X∞, since on the level of rings, the k-algebra map Θ∗ :

OX∞,α → K induces a map κ(α) → K. Hence θ : SpecK[[t]] → X factors through

θα : Specκ(α)[[t]]→ X. To summarize, K-arcs on X correspond to K-valued points

of X∞. To each K-valued point of X∞, we can assign a point of X∞. If we let

K range over all field extensions on k, this assignment is surjective onto the set of

points of X∞, but it is not injective. To a point α of X∞, we assign (as described in

Remark II.5) a canonical κ(α)-valued point of X∞. The point of X∞ that we assign

to this κ(α)-valued point is α.

2.2 Contact loci

Let γ : SpecK[[t]]→ X be an arc on X, and let x = γ(o). Given an ideal sheaf a

on X we define ordγ(a) = min
f∈ax

ordγ(f). For a nonnegative integer p, define the p-th

order contact locus of a by

(2.4) Cont≥p(a) = {γ : SpecK[[t]]→ X | ordγ(a) ≥ p}.

If Z is a closed subscheme of X defined by the ideal sheaf I, we write Cont≥p(Z)

to mean Cont≥p(I). If a closed subscheme structure on a closed subset of X has not

been specified, we implicitly give it the reduced subscheme structure.

Given an arc γ : SpecK[[t]] → X, the local k-algebra homomorphism γ∗ :

OX,γ(o) → K[[t]] extends uniquely to a k-algebra homomorphism γ∗ : ÔX,γ(o) →

K[[t]], where ÔX,γ(o) is the completion of OX,γ(o) at its maximal ideal. For f ∈ ÔX,γ(o)

we define ordγ(f) = ordt γ
∗(f). For an ideal a of ÔX,γ(o), we define ordγ(a) =
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min
f∈a

ordγ(f). For x ∈ X and an ideal a of ÔX,x we define

(2.5) Cont≥p(a) = {γ : SpecK[[t]]→ X | γ(o) = x, ordγ(a) ≥ p}.

Lemma II.7. Let p be a closed point of an n-dimensional nonsingular variety X

over a field k, and fix generators x1, . . . , xn of the maximal ideal of OX,p. Let k ⊆ K

be an extension of fields. To give an arc γ : SpecK[[t]]→ X such that γ ∈ Cont≥1(p)

it is equivalent to give a homomorphism of k-algebras ÔX,p ≃ k[[x1, . . . , xn]]→ K[[t]]

sending each xi into (t)K[[t]].

Proof. Let γ : SpecK[[t]] → X satisfy γ ∈ Cont≥1(p). I claim γ(o) = p. Let

p ⊂ OX be the ideal sheaf of the closed point p. Note that γ gives a local k-algebra

homomorphism γ∗ : OX,γ(o) → K[[t]], where o denotes the closed point of SpecK[[t]].

By Equation 2.4, the assumption γ ∈ Cont≥1(p) implies γ∗(pγ(o)) ⊆ (t). Hence pγ(o)

is contained in the maximal ideal of OX,γ(o), and therefore (OX/p)γ(o) 6= 0. That is,

γ(o) is contained in the support of OX/p. Since OX/p is supported only at the point

p, we have γ(o) = p.

Fix generators x1, . . . xn for the maximal ideal of OX,p. Since γ∗ is a local ho-

momorphism, we see that γ∗ sends each xi into the maximal ideal of K[[t]]. The

map γ∗ : OX,p → K[[t]] extends to a homomorphism of k-algebras γ∗ : ÔX,p ≃

k[[x1, . . . , xn]]→ K[[t]].

Conversely, suppose we have a homomorphism of k-algebras ÔX,p ≃ k[[x1, . . . , xn]]→

K[[t]] defined by sending xi → fi ∈ (t)K[[t]]. By restricting this homomorphism to

OX,p, we get a local homomorphism OX,p → K[[t]], which yields an arc γ on X

by the composition SpecK[[t]] → SpecOX,p → X (where the last morphism is the

canonical one). We have ordγ(p) = min
1≤i≤n

{ordt fi} ≥ 1, that is, γ ∈ Cont≥1(p).
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2.3 Contact loci and blowups

In this section we show that contact loci (defined in Equation 2.4) behave nicely

under blowups.

Definition II.8. We say an arc γ : SpecK[[t]] → X is a trivial arc if the maximal

ideal of ÔX,γ(o) equals the kernel of the map γ∗ : ÔX,γ(o) → K[[t]].

Lemma II.9. Let X be a nonsingular variety of dimension n (n ≥ 2). Let µ : X ′ →

X be the blowup of a closed point p ∈ X. Let E be the exceptional divisor. Let

x1, . . . , xn be local algebraic coordinates centered at p.

1. Let γ : SpecK[[t]] → X be an arc such that γ ∈ Cont≥1(p), and suppose γ is

not the trivial arc. Then there exists a unique arc γ′ : SpecK[[t]] → X ′ lifting

γ, i.e. γ = µ ◦ γ′. Furthermore, γ′ ∈ Cont≥1(E).

2. If γ is as in part 1 and additionally K = k, then the residue field at γ′(o) ∈ X ′

equals k. Furthermore, if ordγ(x1) ≤ ordγ(xi) for all 2 ≤ i ≤ n, then there exist

ci ∈ k (for 2 ≤ i ≤ n) such that x1 and xi

x1
− ci for 2 ≤ i ≤ n are local algebraic

coordinates at γ′(o).

3. µ∞(Cont≥1(E)) = Cont≥1(p).

Proof. (1) Let fi(t) ∈ K[[t]] be defined by γ∗(xi) = fi(t) for 1 ≤ i ≤ n. By Lemma

II.7 we have fi(t) ∈ (t)K[[t]]. Assume without loss of generality that ordt f1 ≤ ordt fi

for all 2 ≤ i ≤ n. Consider the patch U of X ′ with coordinates x1,
x2

x1
, . . . , xn

x1
. The

arc γ′ on U given by x1 → f1 and xi

x1
→ fi

f1
is a lift of γ. Since E is given in the patch

U by x1 = 0, we have γ′ ∈ Cont≥1(E). For the uniqueness, note that the center of a

lift of γ must lie in the patch with coordinates x1,
x2

x1
, . . . , xn

x1
, since ordt f1 ≤ ordt fi

for 2 ≤ i ≤ n. The lift must send x1 → f1, and this forces xi

x1
→ fi

f1
.
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(2) If γ : Speck[[t]]→ X, let ci ∈ k be the constant coefficient of fi

f1
for 2 ≤ i ≤ n.

Then since ordt f1 ≥ 1 and ordt(
fi

f1
− ci) ≥ 1 for 2 ≤ i ≤ n, we have that γ′(o) is the

closed point with coordinates x1 = 0 and xi

x1
= ci for 2 ≤ i ≤ n.

(3) Suppose that γ : SpecK[[t]] → X is such that γ ∈ Cont≥1(p). By part

(1), there exists γ′ : SpecK[[t]] → X ′ such that γ = µ ◦ γ′. We have γ∗(p) =

γ′∗(µ∗γ′(o)(p)) = γ′∗(OX′(−E)γ′(o)). Since γ∗(p) ⊆ (t)K[[t]], we have γ′ ∈ Cont≥1(OX′(−E)).

So γ = µ∞(γ′) ∈ µ∞(Cont≥1(E)).

Conversely, let γ′ : SpecK[[t]] → X ′, and suppose γ′ ∈ Cont≥1(E). Set γ =

µ∞(γ′). Then γ∗(p) = γ′∗(µ∗γ′(o)(p)) = γ′∗(OX′(−E)γ′(o)), and the condition that

γ′ ∈ Cont≥1(E) means γ′∗(OX′(−E)γ′(o)) ⊆ (t)K[[t]]. Hence ordγ(p) ≥ 1, i.e. γ ∈

Cont≥1(p).

2.4 Fat arcs

We describe the notion of fat arcs, introduced by Ishii [13, Definition 2.4], and

some related facts.

Definition II.10. ([13, Definition 2.4]). Let η denote the generic point of SpecK[[t]].

An arc γ : SpecK[[t]]→ X is called fat if γ(η) is the generic point of X.

Let γ : SpecK[[t]] → X be an arc. Then γ is a fat arc if and only if the ring

homomorphism γ∗ : OX,γ(o) → K[[t]] is injective [13, Prop. 2.5i]. When γ∗ is

injective, it extends to a homomorphism γ∗ : k(X) → K((t)) on the function field

k(X) of X. Furthermore, ordγ : k(X)∗ → Z is a valuation.

Example II.11. ([13, Example 2.12]). Let X = A2 = Speck[x, y]. The arc γ :

Speck[[t]] → X given by the k-algebra homomorphism k[x, y] → k[[t]] sending

x→ t and y → et−1 =
∑

i≥1

ti

i!
is a fat arc. The valuation ordγ on k(X) = k(x, y) has
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transcendence degree 0 (see Definition IV.15), and is not a divisorial valuation, since

divisorial valuations have transcendence degree dimX − 1 [13, Proposition 2.10].

If γ is a fat arc and φ : Y → X is a proper birational morphism, then γ can be

lifted to a fat arc on Y , and such a lift is unique and a fat arc [13, Prop. 2.5ii].

Indeed, since φ is a birational map, the generic point ηY of Y is the unique point of

Y mapped by φ to the generic point ηX of X. The generic point η of SpecK[[t]] is

mapped by γ to ηX , and so by the valuative criteria for properness there is a unique

lift γ′ of γ to Y such that γ′(η) = ηY .

2.4.1 Divisorial valuations and fat arcs

Definition II.12. Let X be a variety. We say D is a prime divisor over X if there

is a proper birational morphism φ : Y → X such that D ⊂ Y is a prime divisor on

Y .

Definition II.13. A valuation v on the function field k(X) of a variety X over a

field k is called a divisorial valuation if there is a normal variety Y , a prime divisor

D on Y , a proper birational morphism φ : Y → X, and a positive integer q such

that v = q · valD on k(Y ) = k(X), where valD is the valuation given by the order of

vanishing along D.

Proposition II.14. ([13, Proposition 2.11]). Let D be a prime divisor over a variety

X, and let K be the residue field of the local ring at the generic point of D. Then

there is a fat arc γ : SpecK[[t]]→ X such that ordγ = valD on k(X). Also, we have

tr. deg
k
K = dimX − 1.

Proof. (Due to Ishii [13, Proposition 2.11]). Let φ : Y → X and D ⊂ Y be as in

Definition II.13. Since Y is normal, OY,D is a rank one discrete valuation ring, and

hence its completion ÔY,D is isomorphic to K[[t]] where K = κ(D) is the residue field
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at the generic point of D ([18, p.206 Corollary 2]). Hence tr. deg
k
K = dimX − 1.

Also, the injective maps

OX → OY →֒ OY,D →֒ ÔY,D ≃ K[[t]]

give rise to a fat arc γ : SpecK[[t]]→ X such that ordγ = valD.

Ishii introduced the following definition:

Definition II.15. ([14, Definition 2.8]). Let v : k(X)→ Z be a divisorial valuation

on X. Define the maximal divisorial set associated to v by

C(v) = {α ∈ X∞ | ordα = v} ⊆ X∞,

where the bar denotes closure in X∞.

We will later consider the set C(v) when v has a transcendence degree 0. For

divisorial valuations v, Ishii proves the following results about C(v).

Theorem II.16. ([14, Prop. 3.4, Prop. 4.1]). Let v = q · valD be a divisorial

valuation on X, where φ : Y → X is a proper birational morphism, Y is nonsingular,

and D ⊂ Y is a divisor on Y . Then:

1. C(v) = φ∞(Contq(D))

2. C(v) is an irreducible subset of X∞

3. If X = SpecA, then C(v) =
⋂

f∈A−{0}

Contv(f)(f)

4. If X = SpecA then C(v) is an irreducible component of
⋂

f∈A−{0}

Cont≥v(f)(f).



CHAPTER III

Background on Valuations

3.1 Definition of valuations

In this chapter, we establish the terminology and state the background results we

use about valuations. We begin with the definition of a discrete valuation.

Definition III.1. Let K be a field and set K∗ = K \ {0}. A discrete valuation on

K is a map v : K∗ → Z such that

1. v(xy) = v(x) + v(y) for all x, y ∈ K∗

2. v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K∗

In this thesis, it will be useful to consider more general valuations. For example,

if γ : SpecK[[t]] → X is an arc, then the map ordγ : OX,γ(o) → Z≥0 ∪ {∞} satisfies

conditions 1 and 2. However, because of the possible presence of nonzero f ∈ OX,γ(o)

with ordγ(f) = ∞, the map ordγ cannot be extended to the function field k(X)

of X. Since we are primarily interested in functions of the form ordγ, we need to

use a more general notion of valuation. We next give a very general definition of a

valuation. However, in the construction that follows, the reader should keep in mind

the case Γ = Z≥0, which is the primary situation we will be interested in.

Let (Γ,+, <) be a totally ordered abelian monoid. Give Γ∪{∞} the structure of

an ordered monoid as follows. Extend the order < on Γ to an order < on Γ∪{∞} by

23
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setting x <∞ for x ∈ Γ. Extend the binary operation + on Γ to a binary operation

+ on Γ ∪ {∞} by setting x+∞ =∞ for every x ∈ Γ ∪ {∞}.

We will always work over a base field k.

Definition III.2. Let R be a k-algebra and Γ a totally ordered abelian monoid. A

valuation on R is a map v : R→ Γ ∪ {∞} such that

1. v(c) = 0 for c ∈ k∗ and v(0) =∞, i.e. v extends the trivial valuation on k

2. v(xy) = v(x) + v(y) for x, y ∈ R

3. v(x+ y) ≥ min{v(x), v(y)} for x, y ∈ R

4. v is not identically 0 on R∗.

We now describe a geometric construction, called the sequence of centers of a

valuation, that is useful in studying valuations, especially those on smooth surfaces.

We give the definition only for valuations given by the order of vanishing along an

arc γ : Speck[[t]] → X, as this is the case we will be interested in. For a general

valuation, the definition is similar to the one given in [12, Exer. II.4.12].

Definition III.3 (Sequences of centers of an arc valuation). Let X be a nonsingular

variety over a field k. Let γ : Speck[[t]]→ X be an arc on X. Assume γ is not the

trivial arc (Definition II.8). Set p0 = γ(o) (where o is the closed point of Speck[[t]])

and v = ordγ. By Proposition II.4, the point p0 is a closed point (with residue

field k) of X. The point p0 is called the center of v on X. Blowup p0 to get a

model X1 with exceptional divisor E1. By Lemma II.9 the arc γ has a unique lift

to an arc γ1 : Speck[[t]] → X1. Let p1 be the closed point γ1(o). Inductively define

a sequence of closed points pi and exceptional divisors Ei on models Xi and lifts

γi : Speck[[t]] → Xi of γ as follows. Blowup pi−1 ∈ Xi−1, to get a model Xi. Let
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Ei be the exceptional divisor of this blowup. Let γi : Speck[[t]] → Xi be the lift of

γi−1 : Speck[[t]] → Xi−1. Let pi be the closed point γi(o). Let µi : Xi → X be the

composition of the first i blowups. We call {pi}i≥0 the sequence of centers of v. This

sequence is classically called the sequence of infinitely near points of v.

3.2 Classification of valuations on a smooth surface

There is a complete classification of valuations on a smooth surface. There are

many different approaches to this classification, such as sequences of centers, se-

quences of key polynomials, and Hamburger-Noether expansions.

We describe the classification of surface valuations via sequences of key polyno-

mials (SKP). Our source for this material is [11, Chapter 2], which we follow closely.

However, the original source that Favre and Jonsson cite is MacLane’s paper [16].

The simple idea behind SKPs is nicely explained in [8, Example 3.15]. Briefly, the

idea is that we want to find a minimal subset of polynomials such that v is determined

by its value on these polynomials.

Definition III.4. [11, Definition 2.1] A sequence of polynomials (Uj)
k
j=0, 1 ≤ k ≤ ∞,

in k[x, y] is called a sequence of key polynomials (SKP) if it satisfies:

(P0) U0 = x and U1 = y

(P1) for each Uj there is a number β̃j ∈ [0,∞] (not all ∞) such that

(3.1) β̃j+1 > njβ̃j =

l=j−1∑

l=0

mj,lβ̃l for 1 ≤ j < k

where nj ∈ N∗ = {n ∈ Z | n > 0} and mj,l ∈ N satisfy, for j < l and 1 ≤ l < j,

(3.2) nj = min{l ∈ N∗ | lβ̃j ∈ Zβ̃0 + · · ·Zβ̃j−1} and 0 ≤ mj,l < nl
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(P2) for 1 ≤ j < k there exists θj ∈ k∗ such that

(3.3) Uj+1 = Uj
nj − θj · U0

mj,0 · · ·Uj−1
mj,j−1

Given a finite SKP (Uj)
k
j=0, we associate a valuation νk to it via the following

theorem.

Theorem III.5. [11, Theorem 2.8] Let {(Uj)
k
0, (β̃j)

k
0} be a SKP with k <∞. Then

there exists a unique valuation νk : k[[x, y]] → [0,∞] centered on the maximal ideal

m = (x, y) satisfying

(Q1) νk(Uj) = β̃j for 0 ≤ j ≤ k

(Q2) νk ≤ ν for any valuation ν : k[[x, y]]→ [0,∞] centered on m and satisfying Q1.

Further, if l < k, then νl ≤ νk.

Given an infinite SKP (Uj)
∞
j=0, we associate a valuation ν∞ to it by the following

theorem.

Theorem III.6. [11, Theorem 2.22] Let {(Uj)
∞
0 , (β̃j)

∞
0 } be an infinite SKP and let

νk be the valuation associated to {(Uj)
k
0, (β̃j)

k
0} for k ≥ 1 by Theorem III.5.

(i) If nj ≥ 2 for infinitely many j, then for any φ ∈ k[[x, y]] there exists k0 = k0(φ)

such that νk(φ) = νk0(φ) for all k ≥ k0. In particular, νk converges to a valuation

ν∞.

(ii) If nj = 1 for j >> 1, then Uk converges in k[[x, y]] to an irreducible formal

power series U∞ and νk converges to a valuation ν∞. For φ ∈ k[[x, y]] prime to

U∞ we have νk(φ) = νk0(φ) <∞ for k ≥ k0 = k0(φ), and if U∞ divides φ, then

νk(φ)→∞.
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Given an SKP {(Uj)
k
0, (β̃j)

k
0}, where 1 ≤ k ≤ ∞, we denote the associated valua-

tion νk defined in the previous theorems by val({(Uj)
k
0, (β̃j)

k
0}).

Theorem III.7. [11, Theorem 2.29] For any valuation ν : k[[x, y]]→ [0,∞] centered

on m, there exists a unique SKP {(Uj)
k
0, (β̃j)

k
0}, where 1 ≤ k ≤ ∞, such that ν =

val({(Uj)
k
0, (β̃j)

k
0}). We have ν(Uj) = β̃j for all j.

We now describe the classification of valuations of k[[x, y]] based on SKPs given

in [11, Definition 2.23].

Definition III.8. [11, Definition 2.23] Let ν = val({(Uj)
k
0, (β̃j)

k
0}) (where 1 ≤ k ≤ ∞

is fixed) be a valuation (with values in [0,∞]) on k[[x, y]] given by an SKP. Assume

that ν is normalized in the sense that ν(m) = 1, where ν(m) := min
z∈m

ν(z). We then

say that ν is

(i) monomial (in coordinates (x, y)) if k = 1, β̃0 <∞, and β̃1 <∞

(ii) quasimonomial if k <∞, β̃0 <∞, and β̃k <∞

(iii) divisorial if ν is quasimonomial and β̃k ∈ Q

(iv) irrational if ν is quasimonomial but not divisorial

(v) infinitely singular if k =∞ and dj →∞ where dj = degy(Uj)

(vi) curve valuation if k =∞ and dj 9∞, or k <∞ and max{β̃0, β̃k} =∞.

Next we state some properties of the various types of valuations defined above.

My source for this material is [11, Chapters 1, 2], to which we refer the reader for

proofs. Before stating these properties, we need to introduce some useful invariants

associated to a valuation v : k[x, y]∗ → G, where G is an ordered abelian group and

v(x), v(y) > 0. (More precisely, such a valuation is called a centered Krull valuation,
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and how it relates to valuations as defined in Definition III.2 is explained in Remark

IV.17.)

The rational rank of v, denoted by rat. rk(v) is the Q-vector space dimension of

G ⊗Z Q. The rank of v, denoted by rk(v) is the Krull dimension of the valuation

ring Rv := {r ∈ FracR∗ | v(r) ≥ 0} ∪ {0}. Let mv be the maximal ideal of Rv. The

transcendence degree of v, denoted by tr. deg(v) is equal to tr. deg
k
Rv/mv.

3.2.1 Quasimonomial valuations

A quasimonomial valuation v has the property that there is some finite number r

and local coordinates x′, y′ at the center pr of v on Xr such that v is a monomial val-

uation in x′, y′. Quasimonomial valuations can be divided into two types: divisorial

valuations and irrational valuations.

Divisorial valuations

Divisorial valuations are also given by the order of vanishing along a divisor

on some normal variety over X. For a divisorial valuation v we have rk(v) = 1,

tr. deg(v) = 1, and rat. rk(v) = 1.

Irrational valuations

For an irrational valuation v, we have rk(v) = 1, tr. deg(v) = 0, and rat. rk(v) = 2.

For example, the monomial valuation on k[x, y] with v(x) = 1 and v(y) = π is an

irrational valuation.

3.2.2 Infinitely singular valuations

Let v be an infinitely singular valuation. We have rk(v) = 1, tr. deg(v) = 0,

and rat. rk(v) = 1. These three conditions characterize infinitely singular valuations.

Another characterization is given in terms of (generalized) Puiseux series. Namely,
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there exist local coordinates x, y at the center of v on X and a generalized power

series φ =
i=∞∑

i=1

ait
β̃i where the ai ∈ k∗ and (β̃i)

∞
1 is a sequence of strictly increasing

positive rational numbers with unbounded denominators when expressed as the ratio

of two relatively prime positive integers. Then for ψ(x, y) ∈ k[[x, y]], we have v(ψ) =

ordt(ψ(t, φ)). For several other equivalent characterizations, see [11, Appendix A].

3.2.3 Curve valuations

We give an equivalent but more geometric definition of a curve valuation than the

one given by SKPs. Let φ ∈ m ⊂ k[[x, y]] be an irreducible element. We call such

an element a curve. Let m(φ) be the highest power of m that contains φ. Define a

valuation v = vφ : k[[x, y]]→ [0,∞] by

v(ψ) =
1

m(φ)
dimk(k[[x, y]]/(φ, ψ)).

In other words, v is the normalized intersection number of ψ with a fixed curve φ.

(The normalization is done so that v(m) = 1, but this is not essential.) Note that

v(ψ) = ∞ if and only if φ divides ψ. We can associate a Krull valuation to v as

follows. Write ψ = φkψ̃ where k ∈ N and φ is prime to ψ̃. Define the associated Krull

valuation v′ : k[[x, y]]→ Z×Q (lexicographically ordered) by v′(ψ) = (k, v(ψ̃)). We

have rk(v′) = 2, tr. deg(v′) = 0, and rat. rk(v′) = 2.

Example III.9. Let v be the curve valuation defined by φ = y. Then for ψ(x, y) ∈

k[[x, y]], v(ψ) = ordx(ψ(x, 0)). The associated Krull valuation v′ satisfies v′(x) =

(0, 1) and v′(y) = (1, 0). Note that v′ sends the monomial xayb to (b, a) and hence

sends distinct monomials to distinct values.

3.2.4 Exceptional curve valuations

Let µ : X ′ → X be a proper birational morphism between nonsingular surfaces,

and suppose there is a closed point p ∈ X such that µ is an isomorphism over X\{p}.
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Let E be an irreducible component of the exceptional divisor µ−1(p) and q a point

on E. Let vE denote the Krull valuation on OX′,q associated to the curve valuation

defined by E. Then the Krull valuation µ∗vE = vE ◦ µ is called an exceptional curve

valuation. Exceptional curve valuations are the only valuations on k[[x, y]] that are

not equivalent to a valuation with value monoid contained in [0,∞] [11, Lemma

1.5]. For an exceptional curve valuation v, we have rk(v) = 2, tr. deg(v) = 0, and

rat. rk(v) = 2.



CHAPTER IV

Arc valuations

In this chapter, we begin the study of arc valuations, which are the central object

of this thesis. We begin with some background that will motivate the definition.

In algebraic geometry, a fundamental type of valuation is a rank one discrete valu-

ation on the function field k(X) of a variety X. For example, the valuation given

by the order of vanishing along a prime divisor of normal variety is of this form.

Consequently, one can define the Weil divisor associated to a function, and from

this definition the notions of linear equivalence of Weil divisors and the ideal class

group of a variety follow. In addition, the valuation ring associated to a rank one

discrete valuation can be interpreted geometrically as the local ring of a point on

some nonsingular curve [12, Cor. I.6.6].

Now consider the slightly general notion of a valuation v : OX → Z≥0∪{∞} with

value semigroup Z≥0 ∪ {∞} on a variety X. Then v induces a rank one discrete

valuation on the subscheme of X given by the ideal sheaf I = {f ∈ OX | v(f) =∞}.

This motivates the study of valuations v : OX → Z≥0 ∪ {∞}. We will see in

Proposition IV.12 that such a valuation v is also given by ordγ for some arc γ. This

motivates the definition of arc valuations, which we now present.

31
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4.1 Arc valuations: definitions and basic properties

Definition IV.1 (Arc valuations). Let X be a variety over a field k, and let p ∈ X

be a (not necessarily closed) point. An arc valuation v on X centered at p is a map

v : OX,p → Z≥0 ∪ {∞} such that there exists an arc γ : SpecK[[t]] → X (where

k ⊆ K is an extension of fields) sending the closed point o of SpecK[[t]] to p and

v(f) = ordγ(f) for f ∈ OX,p. In this case, we say v is a K-arc valuation. Since

ordγ extends uniquely to ÔX,p (the completion of OX,p at its maximal ideal), we can

extend v to ÔX,p as well. We show below in Proposition IV.2 that this extension

does not depend on the choice of arcs γ satisfying v = ordγ on OX,p. Therefore we

will also regard arc valuations as maps v : ÔX,p → Z≥0 ∪ {∞} without additional

comment.

Proposition IV.2. Let γ1 : SpecK1[[t]]→ X and γ2 : SpecK2[[t]]→ X be arcs both

sending the closed points to the same point p ∈ X, such that ordγ1 = ordγ2 on OX,p,

where p = γ1(o) and k ⊆ K1, K2. Then ordγ1 = ordγ2 on ÔX,p.

Proof. Let a1, . . . , ar be generators of the maximal ideal of OX,p. Let f ∈ ÔX,p. Let

m = min
i=1,2

ordγi
(f). If m =∞, then ordγ1(f) = ordγ2(f) =∞. So we may assume m

is finite, and ordγ1(f) ≤ ordγ2(f). Since

(4.1) ÔX,p ≃ OX,p[[X1, . . . , Xr]]/(X1 − a1, . . . , Xr − ar)

[17, Theorem 8.12], there is a power series P (X1, . . . , Xr) ∈ OX,p[[X1, . . . , Xr]] whose

image P ∈ OX,p[[X1, . . . , Xr]]/(X1 − a1, . . . , Xr − ar) corresponds to f under the

isomorphism 4.1. Let Pm ∈ OX,p[X1, . . . , Xr] be a polynomial such that P − Pm ∈

(X1, . . . , Xr)
m+1OX,p[[X1, . . . , Xr]], i.e. Pm is the part of P of degree less than or

equal to m. For i = 1, 2, the map γ∗i : ÔX,p → Ki[[t]] corresponds under the

isomorphism 4.1 to the homomorphism γ∗i : OX,p[[X1, . . . , Xr]]/(X1 − a1, . . . , Xr −
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ar) → Ki[[t]] which sends Xj → γ∗i (aj) for j = 1, . . . , r and extends γ∗i : OX,p →

Ki[[t]]. In particular, γ∗i (P − Pm) ∈ (t)m+1. We have

(4.2) γ∗i (f) = γ∗i (P ) = γ∗i (P − Pm) + γ∗i (Pm).

We have ordγ1(f) = ordt γ
∗
1(f) = m, and hence ordt γ

∗
1(Pm) = m. Since Pm is a

polynomial, we have ordt Pm(γ∗1(a1), . . . , γ
∗
1(ar)) = m. Also since Pm is a polyno-

mial, we have Pm(a1, . . . , ar) ∈ OX,p. Hence by assumption, γ∗1(Pm(a1, . . . , ar)) =

γ∗2(Pm(a1, . . . , ar)). Since Pm is a polynomial, we have

γ∗i (Pm(a1, . . . , ar)) = Pm(γ∗i (a1), . . . , γ
∗
i (ar))

for i = 1, 2. Hence ordt Pm(γ∗2(a1), . . . , γ
∗
2(ar)) = m, i.e. ordt γ

∗
2(Pm) = m. So by

Equation 4.2, we have ordγ2(f) = m. Hence ordγ1(f) = ordγ2(f).

Example IV.3. Proposition II.14 shows that every divisorial valuation is an arc

valuation.

Definition IV.4 (Normalized arc valuations). We call an arc valuation v centered at

a point p ∈ X normalized if the set {v(f) | f ∈ ÔX,p, 0 < v(f) <∞} is non-empty

and the greatest common factor of its elements is 1. Every arc valuation taking some

value strictly between 0 and ∞ is a scalar multiple of a normalized valuation. We

say an arc γ : SpecK[[t]] → X is normalized if ordγ : ÔX,γ(o) → Z≥0 ∪ {∞} is a

normalized arc valuation.

Notation IV.5. Let X be a nonsingular variety over an algebraically closed field

k of characteristic zero. Let γ : Speck[[t]] → X be an arc centered at p ∈ X and

let γ∗ : ÔX,p → k[[t]] be the corresponding k-algebra morphism. Assume γ is not a

trivial arc (Definition II.8). Define a k-algebra Aγ by Aγ = ÔX,p/ ker(γ∗). Let Ãγ be

the normalization of Aγ. Then γ∗ induces an injective k-algebra map γ∗ : Aγ →֒ k[[t]]



34

which extends to an injective k-algebra homomorphism γ∗ : Ãγ →֒ k[[t]]. We denote

by ordγ the composition ordt ◦γ
∗ : Ãγ → Z≥0. Note that for f ∈ ÔX,p \ ker(γ∗),

ordγ(f) = ordγ(f). We will show in Lemma IV.7 that there exists φ ∈ k[[t]] such

that the image of γ∗ : Ãγ →֒ k[[t]] equals k[[φ]] ⊆ k[[t]].

Lemma IV.6. Let X be a nonsingular variety over an algebraically closed field k of

characteristic zero. Let γ : Speck[[t]]→ X be an arc centered at p ∈ X. Assume γ is

not the trivial arc. Use notation IV.5. Then the ring homomorphism γ∗ : Aγ →֒ k[[t]]

makes k[[t]] module finite over Aγ. In particular, Aγ has Krull dimension one.

Proof. Choose local coordinates x1, . . . , xn at p such that γ∗(x1) 6= 0. We have

γ∗(x1) = tru for some positive integer r and unit u ∈ k[[t]]. Since k is algebraically

closed and has characteristic zero, there exists a unit v ∈ k[[t]] such that vr = u.

Indeed, we may use the binomial series and take v = u1/r. To be precise, write

u = u0(1 + u1(t)), with u1(t) ∈ (t)k[[t]] and u0 6= 0. Then u1/r = u
1/r
0 (1 + u1(t))

1/r =

u
1/r
0 (1 +

∑
i≥1

(
1/r
i

)
ui

1), where u
1/r
0 denotes any root of Xr − u0 = 0.

Let τ : k[[t]] → k[[t]] be the k-algebra automorphism of k[[t]] defined by τ(t) =

tv−1. Then τ(γ∗(x1)) = τ(tru) = trv−ru = tr. Therefore, we may assume without

loss of generality that γ∗(x1) = tr.

I claim 1, t, . . . , tr−1 generate k[[t]] as a module over Aγ. Let f(t) =
∑

i≥0 fit
i ∈

k[[t]] with fi ∈ k for all i ≥ 0. For 0 ≤ j ≤ r, define a power series pj(X) ∈ k[[X]]

by pj(X) =
∑

i≥0 fj+irX
i.
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Then

j=r−1∑

j=0

γ∗(pj(x1))t
j =

j=r−1∑

j=0

pj(γ
∗(x1))t

j

=

j=r−1∑

j=0

pj(t
r)tj

=

j=r−1∑

j=0

∑

i≥0

fj+irt
j+ir =

∑

i≥0

fit
i = f(t).

Hence 1, t, . . . , tr−1 generate k[[t]] considered as a module over Aγ via the ring

homomorphism γ∗ : Aγ →֒ k[[t]]. Since k[[t]] has dimension one and module finite

ring homomorphisms preserve dimension, we conclude Aγ has dimension one.

Lemma IV.7. We continue using the setup and hypotheses of Lemma IV.6. There

exists φ ∈ k[[t]] such that the image of γ∗ : Ãγ →֒ k[[t]] equals k[[φ]] ⊆ k[[t]].

Proof. Since an integral extension of rings preserves dimension ([10, Proposition 9.2]),

we have that Ãγ has dimension one. Since k[[t]] is normal (in fact it is a DVR), the

local k-algebra map γ∗ : Aγ →֒ k[[t]] extends to a k-algebra map γ∗ : Ãγ →֒ k[[t]].

I claim the ring Ãγ is a complete local domain. The local ring Aγ is complete

since it is the image of a complete local ring. The normalization of an excellent ring

A (in our case, the complete local domain Aγ) is module finite over A [18, p.259]. A

module finite domain over a complete local domain is local and complete (apply [10,

Corollary 7.6] and use the domain hypothesis to conclude there is only one maximal

ideal). Hence Ãγ is a complete local domain.

Since Ãγ is a complete normal 1-dimensional local domain containing the field

k, it is isomorphic to a power series over k in one variable [18, Cor. 2, p.206].

That is, there exists φ ∈ k[[t]] such that the image of γ∗ : Ãγ →֒ k[[t]] equals

k[[φ]] ⊆ k[[t]].
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The following result was pointed out to me by Mel Hochster.

Proposition IV.8. Assume the setup of Notation IV.5. Let d be the greatest com-

mon divisor of the elements of the non-empty set {ordγ(f) | f ∈ ÔX,p, 0 < ordγ(f) <

∞}. Then d = ordt(φ). In particular, ordγ is a normalized arc valuation if and only

if ordt(φ) = 1.

Proof. For f, g ∈ Aγ such that f
g
∈ Ãγ ⊆ Frac(Aγ), we have ordγ(

f
g
) = ordγ(f) −

ordγ(g), and hence d divides ordγ(
f
g
). In particular d divides ordt(φ). We have

γ∗(Aγ) ⊆ γ∗(Ãγ) = k[[φ]] ⊆ k[[t]] and hence ordt(φ) divides ordγ(f) for all f ∈ Aγ.

So ordt(φ) divides d. Hence d = ordt(φ).

Definition IV.9 (Nonsingular arc valuations). Let v be an arc valuation centered

at p, and let mp denote the maximal ideal of OX,p. We call v nonsingular if

(4.3) min
f∈mp

v(f) = 1.

If γ ∈ X∞, then we say γ is nonsingular if ordγ is a nonsingular valuation.

Let C be an irreducible subset of X∞, and let α be the generic point of C. By

Remark II.5, we get an arc α : Specκ(α)[[t]] → X. Following Ein, Lazarsfeld,

and Mustaţǎ [7, p.3], we define a map valC : OX,α(o) → Z≥0 ∪ {∞} by setting for

f ∈ OX,α(o)

(4.4) valC(f) = min{ordγ(f) | γ ∈ C such that f ∈ OX,γ(o)}

Proposition IV.10. Let C ⊆ X∞ be an irreducible subset and let α be its generic

point. Let α : Specκ(α)[[t]] → X be the arc corresponding to α, as explained in

Remark II.5. Then valC = ordα on OX,α(o). In particular, valC is an arc valuation.

Proof. Fix f ∈ OX,α(o), and let U ⊆ X be the maximal open set on which f is

regular. We have ordα(f) ≥ valC(f) by Equation (4.4). Let α′ ∈ C be such that
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valC(f) = ordα′(f). Let π : X∞ → X be the canonical morphism sending γ → γ(o).

If ordα(f) > valC(f), then C ∩ Cont≥ordα(f)(f) is a closed subset of the irreducible

set C ∩ π−1(U), containing α but not α′ ∈ C, contradicting {α} = C. Hence

ordα(f) = valC(f) for all f ∈ OX,α(o).

Next, we show arc valuations are the same as Z≥0∪{∞}-valued valuations, which

are defined as follows:

Definition IV.11. Let R be a k-algebra. A Z≥0 ∪ {∞}-valued valuation on R is a

map v : R→ Z≥0 ∪ {∞} such that

1. v(c) = 0 for c ∈ k∗ and v(0) =∞, i.e. v extends the trivial valuation on k

2. v(xy) = v(x) + v(y) for x, y ∈ R

3. v(x+ y) ≥ min{v(x), v(y)} for x, y ∈ R

4. v is not identically 0 on R∗.

Note that arc valuations given by nontrivial arcs are Z≥0 ∪ {∞}-valuations. We

will see in Proposition IV.12 that the converse is true.

Let p ∈ X be a (not necessarily closed) point of X, and let v : OX,p → Z≥0∪{∞}

be a Z≥0 ∪ {∞}-valued valuation. Set p = {f ∈ OX,p | v(f) = ∞}. We have

an induced valuation ṽ : OX,p/p \ {0} → Z that extends to a discrete valuation

ṽ : Frac(OX,p/p)∗ → Z. Let Rṽ = {f ∈ Frac(OX,p/p)∗ | ṽ(f) ≥ 0} ∪ {0} be the

valuation ring of ṽ. Rṽ is a discrete valuation ring. Let mṽ be the maximal ideal of

Rṽ, and let κ(v) = Rṽ/mṽ.

Proposition IV.12. Let p ∈ X be a (not necessarily closed) point of X. If v :

OX,p → Z≥0 ∪ {∞} is a valuation as in Definition IV.11, then v is an arc valuation
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on X. In fact, there exists an arc γ : Specκ(v)[[t]] → X such that γ(o) = p and

ordγ = v on OX,p.

Proof. The completion R̂ṽ of Rṽ with respect mṽ is again a discrete valuation ring

([17, Exercise 11.3]). The complete regular local k-algebra R̂ṽ is isomorphic to

the power series ring κ(v)[[t]] ([18, p.206 Corollary 2]). The composition of the

canonical homomorphisms OX,p → OX,p/p → Rṽ → R̂ṽ = κ(v)[[t]] gives an arc

γ : Specκ(v)[[t]] → X. Tracing through the constructions, we see that ordγ = v on

OX,p.

Proposition IV.13. Let p ∈ X be a (not necessarily closed) point of X. If v :

OX,p → Z≥0 ∪ {∞} is a valuation as in Definition IV.11, then there is a subvariety

Y of X such that v restricts to a discrete valuation v : k(Y ) → Z on the function

field of Y .

Proof. By Proposition IV.12, there exists an arc γ : Specκ(v)[[t]] → X such that

γ(o) = p and ordγ = v on OX,p. Let U ⊆ X be an open set containing γ(o). Set

Y = γ(η), where η is the generic point of Specκ(v)[[t]]. We have o ∈ η, hence

γ(o) ∈ γ(η) ⊆ γ(η) = Y . Hence U ∩ Y is nonempty and therefore as an open subset

of Y contains the generic point γ(η) of Y . The k-algebra map γ∗ : OX(U)→ κ(v)[[t]]

induces a map γ∗ : OY (U ∩Y ) →֒ κ(v)[[t]] after taking the quotient of OX(U) by the

kernel of γ∗. Localizing at γ(η) gives a map γ∗ : k(Y )→ κ(v)((t)). Composing this

map with ordt : κ(v)((t))→ Z gives the required valuation v : k(Y )→ Z.

Remark IV.14. If C ⊆ X∞ is an irreducible cylinder, then valC : K(X)∗ → Z is a

valuation. Ein, Lazarsfeld, and Mustaţǎ [7, Thm. 2.7] show that ifX is a nonsingular

variety C ⊆ X∞ is an irreducible cylinder then valC is a divisorial valuation, i.e.

there is a divisor D on a normal variety Y and a proper birational map µ : Y → X
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such that on K(Y ) = K(X), valC equals valD, the valuation given by the order of

vanishing along D. Ishii [13, Example 3.9] has given another proof of this result. On

the other hand, Ein et. al. ([7, Example 2.5]) show that C1 := µ∞(Cont≥1(D)) is an

irreducible cylinder of X∞ with valC1 = valD.

Definition IV.15 (transcendence degree). Given an arc valuation v : OX,p → Z≥0∪

{∞}, the transcendence degree of v over k, denoted tr. deg v, is the transcendence

degree of κ(v) over k. By Proposition IV.12, there exists an arc γ : Specκ(v)[[t]]→ X

such that γ(o) = p and ordγ = v on OX,p. In particular, if tr. deg v = 0, then there

is an arc γ : Speck[[t]]→ X such that v = ordγ on OX,p.

Lemma IV.16. Let γ : SpecK[[t]] → X be an arc on X. Then tr. deg ordγ ≤

tr. degK/k. In particular, if K = k, then ordγ has transcendence degree 0.

Proof. We have a local k-algebra homomorphism γ∗ : OX,γ(o) → K[[t]]. Tak-

ing quotients by the maximal ideals gives a map of fields κ(ordγ) →֒ K. Hence

tr. deg κ(ordγ) ≤ tr. degK/k.

Remark IV.17. Following [11], a Krull valuation V is a map V : k(X)∗ → Γ, where

k(X) is the function field of X and Γ is a totally ordered abelian group, satisfying

equations (1), (3), (4), (5) of Definition IV.11. For a discussion of the differences

between Krull valuations and valuations (as defined in Definition IV.11) in the case

of surfaces, see [11, Section 1.6]. For example, Favre and Jonsson associate to any

Krull valuation V : C[[x, y]]→ Γ other than an exceptional curve valuation, a unique

(up to scalar multiple) valuation v : C[[x, y]]→ R ∪ {∞} [11, Prop. 1.6].

To any Krull valuation V : k(X)∗ → Zr (where Zr is lexicographically ordered

with (0, . . . , 0, 1) as the smallest positive element) with center p (that is, the valuation

ring RV := {f ∈ k(X)∗ | V (f) ≥ 0} ∪ {0} dominates OX,p), we associate an arc
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valuation v : OX,p → Z≥0 ∪ {∞} as follows. Set v(0) = ∞. For f ∈ OX,p, suppose

V (f) = (a1, . . . , ar). If a1 = a2 = . . . = ar−1 = 0, set v(f) = ar. Otherwise, set

v(f) =∞.

When dimX = 2, the above association V → v gives a bijection between Krull

valuations V : k(X)∗ → Z2 centered at p and arc valuations centered at p [11, Prop.

1.6].

The following example shows this association V → v is not injective in general.

Example IV.18. Let X = Speck[x, y, z] and let V1 : k(X)∗ → Z2 and V2 : k(X)∗ →

Z3 be Krull valuations defined by V1(
∑
cijkx

iyjzk = min{(j + 2k, i) | cijk 6= 0} and

V2(
∑
cijkx

iyjzk = min{(0, j + k, i) | cijk 6= 0}. Then V1, V2 both have transcendence

degree 0 over k, and have the same sequence of centers. The arc valuations associated

(in the manner described above) to V1 and V2 both equal the arc valuation ordγ where

γ : Speck[[t]]→ X is the arc given by x→ t, y → 0, and z → 0.

4.2 The arcs corresponding to an arc valuation

In this section, given an arc valuation v we study the set of irreducible subsets

C ⊆ X∞ such that valC = v. By Proposition IV.10, it is equivalent to consider the

set of arcs α ∈ X∞ such that ordα = v.

We begin by examining the situation for the divisorial valuation v on A2 given

by the order of vanishing at the origin. We see that there are many irreducible sets

C such that valC = v on OX,p = k[x, y](x,y), and not all of these sets are cylinders.

There is however a maximal irreducible set C(v) with valC(v) = v – that is, C(v)

contains all irreducible sets C such that valC = v.

Example IV.19. Let v : k(x, y)∗ → Z be the valuation given by the order of

vanishing at the origin p in k2 = Speck[x, y]. Let x0, x1, . . . , y0, y1, . . . be indeter-



41

minate variables over k. Identify (k2)∞ with Speck[x0, x1, . . . , y0, y1, . . .] as follows.

Let k ⊆ K be an extension of fields. Given an arc γ : SpecK[[t]] → Speck[x, y],

let the corresponding k-algebra homomorphism γ∗ : k[x, y] → K[[t]] be given by

γ∗(x) =
∑

i≥0 ait
i and γ∗(y) =

∑
i≥0 bit

i, where ai, bi ∈ K, for all i ≥ 0. Then

γ corresponds to the K-valued point of Speck[x0, x1, . . . , y0, y1, . . .] given by the k-

algebra homomorphism k[x0, x1, . . . , y0, y1, . . .]→ K sending xi → ai and yi → bi for

all i ≥ 0.

For q ≥ 0, the ideal of Cont≥q(p) in k[x0, x1, . . . , y0, y1, . . .] is the prime ideal

(x0, . . . , xq−1, y0, . . . , yq−1), and hence Cont≥q(p) is an irreducible cylinder. The

generic point of Cont≥q(p) is the arc γ : Speck(xq, xq+1, . . . , yq, yq+1, . . .)[[t]] →

Speck[x, y] given by γ∗(x) = xqt
q + xq+1t

q+1 + · · · and γ∗(y) = yqt
q + yq+1t

q+1 + · · · .

The valuation valCont≥q(p) is given by ordγ (Proposition IV.10). Also, ordγ = qv. Let

α be the arc given by x→ xqt
q and y → yqt

q. Then ordα = qv. Note that {α} is a set

of infinite codimension, and its ideal is (x0, x1, . . . , xq−1, xq+1, . . . , y0, y1, . . . yq−1, yq+1 . . .)

(notice that xq, yq are left out). Note that α is not a cylinder, but qv is a divisorial

valuation. Also, α does not contain Cont≥r(p) for any r.

There are many arcs β such that ordβ = v. For example, let β : Speck(x1, x2, . . . , y1)[[t]]→

Speck[x, y] be the arc given by β∗(x) = x1t+ x2t
2 + . . . and β∗(y) = y1t+ f2(X)t2 +

f3(X)t3 + . . . where fi(X) is any polynomial in the xi. Then v = ordβ. The maximal

irreducible set C ⊆ X∞ with valC = v is given by Cont≥1(p). Indeed, if γ is an

arc such that ordγ = v, then γ ∈ Cont1(p). Hence {γ} ⊆ Cont≥1(p). By Proposi-

tion IV.10, Cont≥1(p) contains every irreducible cylinder D ⊆ X∞ with valD = v.

On the other hand, the calculation in the previous paragraph (with q = 1) shows

valCont≥1(p) = v.

Definition IV.20. Let X be a scheme of finite type over a field k, and let C be
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an irreducible subset of X∞. We define the dimension of C to equal tr. deg
k
K ∈

Z≥0 ∪ {∞}, where K is the residue field at the generic point of C.

Example IV.21. Note that a k-valued point of X∞ has dimension 0.

Proposition IV.22. Let X be a variety over a field k and p ∈ X be a (not necessarily

closed) point. Let v : OX,p → Z≥0∪{∞} be a valuation. Let C ⊆ X∞ be an irreducible

set with generic point γ : SpecK[[t]]→ X such that γ(o) = p and valC = v on OX,p.

Then dimC ≥ tr. deg v.

Proof. We have dimC = tr. deg
k
K by definition and tr. deg

k
K ≥ tr. deg ordγ by

Lemma IV.16. We have ordγ = v by Proposition IV.10. Hence dimC ≥ tr. deg v.

4.3 Desingularization of normalized k-arc valuations

In this section, we prove that a normalized k-arc valuation on a nonsingular

variety X over a field k can be desingularized. Specifically, the goal of this section is

to prove Proposition IV.27, which says that a normalized k-valued arc can be lifted

after finitely many blowups to an arc that is nonsingular. Our proof is based on

Hamburger-Noether expansions.

Let X be a nonsingular variety of dimension n (n ≥ 2) over a field k and let

p0 ∈ X be a closed point. Let γ : Speck[[t]] → X be an arc such that γ(o) = p0

and v := ordγ is a normalized arc valuation (Definition IV.4). Let pi ∈ Xi (i ≥ 0)

be the sequence of centers of v, as described in Definition III.3. If γr denotes the

unique lift of γ to Xr (by Lemma II.9), then note that v extends to the valuation

ÔXr,pr
→ Z≥0 ∪ {∞} associated to γr. Hence for f ∈ ÔXr,pr

, we will write v(f) to

mean ordγr
(f).
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4.3.1 Hamburger-Noether expansions

We will use a list of equations known as Hamburger-Noether expansions (HNEs)

to keep track of local coordinates of the sequences of centers of v. We explain HNEs

in this section. Our source for this material is [5, Section 1], where the presentation

is given for arbitrary valuations on a nonsingular surface.

HNEs are constructed by repeated application of Lemma II.9 part 2, which we

recall:

Lemma IV.23. Let X be a nonsingular variety of dimension n (n ≥ 2) over a field k

and let p0 ∈ X be a closed point. Let γ : Speck[[t]]→ X be an arc such that γ(o) = p0

and v := ordγ is a normalized arc valuation (Definition IV.4). Let x1, x2, . . . , xn be

local algebraic coordinates at p0 such that 1 ≤ v(x1) ≤ v(xi) for 2 ≤ i ≤ n. Then

for 2 ≤ i ≤ n, there exists ai,1 ∈ k such that if we let yi = xi

x1
− ai,1 ∈ k(X), then

x1, y2, . . . , yn generate the maximal ideal of OX1,p1 ⊆ k(X) = k(X1).

We now describe how to write down the HNEs, following [5, Section 1]. Let

xi, ai,1, yi be as in Lemma IV.23. We have xi = ai,1x1 + x1yi. If v(x1) ≤ v(yi) for

every 2 ≤ i ≤ n, then with the local algebraic coordinates x1, y2, . . . , yn at p1 we are

in a similar situation as before, and we repeat the process of applying Lemma IV.23

to get local algebraic coordinates at p2. Suppose that after h steps we have local

algebraic coordinates x1, y
′
2, . . . y

′
n at ph such that v(x1) > v(y′j) for some 2 ≤ j ≤ n.

We may choose j such that v(y′j) ≤ v(y′i) for 2 ≤ i ≤ n. There are ai,k ∈ k such that

(4.5) xi = ai,1x1 + ai,2x
2
1 + . . .+ ai,hx

h
1 + xh

1y
′
i

for 2 ≤ i ≤ n, 1 ≤ k ≤ h. The assumption that ph is a closed point implies v(y′i) > 0

for 2 ≤ i ≤ n. Let z1 = y′j, and we repeat the procedure of applying Lemma IV.23

with the local coordinates z1, x1, y
′
2, . . . , y

′
j−1, y

′
j+1, . . . , y

′
n (note that we brought z1
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to the front of the list because it is the coordinate with smallest value). We will refer

to such a change in the first coordinate (in this case, from x1 to z1) of our list as an

iteration.

If we do not arrive at a situation where v(x1) > v(y′j) for some 2 ≤ j ≤ n, then

there exist ai,k ∈ k (for 2 ≤ i ≤ n, and all k ≥ 1) such that

v

(
xi −

∑N
k=1 ai,kx

k
1

xN
1

)
≥ v(x1),

and hence (since v(x1) ≥ 1)

(4.6) v

(
xi −

N∑

k=1

ai,kx
k
1

)
> N

for all N > 0.

Let z0 = x1, and for l > 0 let zl be the first listed local coordinate at the l-th

iteration. We have v(zl) < v(zl−1) since an iteration occurs when the smallest value

of the local coordinates at the center decreases in value after a blowup. So {v(zl)}l≥0

is a strictly decreasing sequence of positive integers, and hence must be finite, say

v(z0), v(z1), . . . , v(zL).

For notational convenience, redefine x1, . . . , xn to be the local algebraic coor-

dinates after the final iteration, with x1 = zL. So x1, . . . , xn are local algebraic

coordinates centered at pr on Xr for some r, and Equation 4.6 becomes

(4.7) v(xi −

N∑

k=1

ci,kx
k
1) > N

for 2 ≤ i ≤ n, ci,k ∈ k, and all N > 0.

Definition IV.24. Let P1(t) = t, and for 2 ≤ i ≤ n define Pi(t) ∈ k[[t]] by Pi(t) =

∑∞
k=1 ci,kt

k.
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Remark IV.25. Equation 4.7 implies v(xi − Pi(x1)) =∞ for 2 ≤ i ≤ n.

Lemma IV.26. For every ψ = ψ(x1, . . . , xn) ∈ ÔXr,pr
≃ k[[x1, . . . , xn]], we have

v(ψ) = ordt ψ(t, P2(t), . . . , Pn(t)).

Proof. Since k[[x1, . . . , xn]]/(x2 − P2(x1), . . . , xn − Pn(x1)) ≃ k[[x1]], we may write

ψ(x1, . . . , xn) = q(x1) +
∑n

i=2(xi − Pi(x1))hi for hi ∈ k[[x1, . . . , xn]] and q(x1) ∈

k[[x1]]. Note that q(x1) = ψ(x1, P2(x1), . . . , Pn(x1)). We have v(ψ) ≥ min{v(q), v((x2−

P2(x1))h2), . . . , v((xn − Pn(x1))hn)}. Since v((xi − Pi(x1))hi) =∞, we have v(ψ) =

v(q), since in general, if v(a) 6= v(b), then v(a+ b) = min{v(a), v(b)}.

Let n = ordx1 q(x1). We claim v(q) = nv(x1). If n = ∞, then q = 0 and both

sides of v(q) = nv(x1) are ∞. If n < ∞, then q = xn
1u for a unit u in k[[x1]]. We

have v(u) = 0, since 0 = v(1) = v(uu−1) = v(u) + v(u−1) and v(u), v(u−1) ≥ 0.

Hence v(q) = nv(x1).

So we have v(ψ) = v(q) = (ordx1 q(x1))v(x1) = ordx1 ψ(x1, P2(x1) . . . , Pn(x1)) ·

v(x1). Since ψ was arbitrary, we have that the image of v : k[[x1, . . . , xn]] → Z≥0 ∪

{∞} equals Z≥0 · v(x1) ∪ {∞}. Since v was normalized so that the image of v had

1 as the greatest common factor of its elements, we have v(x1) = 1 and v(ψ) =

ordt ψ(t, P2(t), . . . , Pn(t)).

Summarizing the discussion so far, we have:

Proposition IV.27. Let v be a normalized k-arc valuation on a nonsingular variety

X over a field k. Then there exists a nonnegative integer r and local algebraic

coordinates x1, . . . , xn at the center pr of v on Xr and

Pi(t) ∈ (t)k[[t]]

for 2 ≤ i ≤ n such that for every ψ = ψ(x1, . . . , xn) ∈ ÔXr,pr
≃ k[[x1, . . . , xn]], we
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have

v(ψ) = ordt ψ(t, P2(t), . . . , Pn(t)).

Roughly speaking, this result says that a normalized k-arc valuation can be desin-

gularized. More precisely, a normalized k-valued arc γ can be lifted after finitely

many blowups (of its centers) to an arc γr that is nonsingular (see Definition IV.9 for

the definition of nonsingular arc). Using the notation of Proposition IV.27, the arc

γr : Speck[[t]]→ Xr is given by the k-algebra map ÔXr,pr
→ k[[t]] with ordγr

(x1) = 1

and xi → Pi(γ
∗
r (x1)) for 2 ≤ i ≤ n. Since ordγr

(x1) = 1, we have γr is a nonsingular

arc.

If the arc γ is nonsingular, we can take r = 0 in Proposition IV.27, and we have

the following result.

Proposition IV.28. Let γ : Speck[[t]]→ X be a nonsingular k-arc on a nonsingular

variety X over a field k. Let x1, . . . , xn be local algebraic coordinates at p = γ(o) on

X with ordγ(x1) = 1 (Definition IV.9). Then there exists

Pi(t) ∈ (t)k[[t]]

for 2 ≤ i ≤ n such that γ∗(xi) = Pi(γ
∗(x1)) for 2 ≤ i ≤ n. Furthermore, for every

ψ = ψ(x1, . . . , xn) ∈ ÔX,p ≃ k[[x1, . . . , xn]], we have

ordγ(ψ) = ordt ψ(t, P2(t), . . . , Pn(t)).

Proof. Since ordγ(x1) = 1, there can be no iterations in the Hamburger-Noether

algorithm for v = ordγ. Hence Equation 4.7 holds, and in particular, Remark IV.25

applies. That is, if the Pi(t) for 2 ≤ i ≤ n are as in Definition IV.24, we have

ordγ(xi − Pi(x1)) = ∞ for 2 ≤ i ≤ n. So γ∗(xi − Pi(x1)) = 0, and therefore

γ∗(xi) = γ∗(Pi(x1)) = Pi(γ
∗(x1)) for 2 ≤ i ≤ n. According to Lemma IV.26, for
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every ψ = ψ(x1, . . . , xn) ∈ ÔX,p ≃ k[[x1, . . . , xn]], we have

ordγ(ψ) = ordt ψ(t, P2(t), . . . , Pn(t)).

We will see in the next chapter that for a nonsingular k-valued arc γ, one can

explicitly compute the ideals of
⋂

q≥1 µq∞(Cont≥1(Eq)) and
⋂

q≥1 Cont≥q(aq), where

aq = {f ∈ ÔX,γ(o) | ordγ(f) ≥ q}. We will see that these ideals are the same, and

thus these two sets are equal.



CHAPTER V

Main results: k-arc valuations on a nonsingular k-variety

5.1 Introduction

In this chapter, we present the main results of the thesis. Let X be a nonsingular

variety of dimension n (n ≥ 2) over a field k. Let α : Speck[[t]]→ X be an normal-

ized arc. Set v = ordα and p = α(o), where o denotes the closed point of Speck[[t]].

We associate to v several different subsets of the arc space X∞. In notation we

will explain later in the chapter, these subsets are C(v),
⋂

q≥1 µq∞(Cont≥1(Eq)),

⋂
q≥1 Cont≥q(aq), {γ ∈ X∞ | γ(o) = α(o), ker(α∗) ⊆ ker(γ∗) ⊆ ÔX,α(o)}, and

R = {α ◦ h ∈ X∞ | h : Speck[[t]] → Speck[[t]]}. Our main result is that these

five subsets are all equal. We first analyze the case when v is a nonsingular arc

valuation (Definition IV.9). We then consider the general case where we drop the

hypothesis of nonsingularity.

5.2 Setup

Throughout this chapter, we fix the following notation. Let X be a nonsingular

variety of dimension n (n ≥ 2) over a field k. Let α : Speck[[t]]→ X be a normalized

arc valuation on X (see Definition IV.4). Set v = ordα.

In Definition III.3, we defined the sequence of centers of a k-arc valuation. To set

notation for the rest of this chapter, we recall this definition.

48
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Definition V.1 (Sequences of centers of a k-arc valuation). Let X be a nonsingular

variety over a field k. Let α : Speck[[t]]→ X be an arc on X. Assume α is not the

trivial arc (Definition II.8). Set p0 = α(o) (where o is the closed point of Speck[[t]])

and v = ordα. By Proposition II.4, the point p0 is a closed point (with residue field

k) of X. The point p0 is called the center of v on X0 := X. Blowup p0 to get a

model X1 with exceptional divisor E1. By Lemma II.9 the arc α has a unique lift

to an arc α1 : Speck[[t]]→ X1. Let p1 be the closed point α1(o). Inductively define

a sequence of closed points pi and exceptional divisors Ei on models Xi and lifts

αi : Speck[[t]] → Xi of α as follows. Blowup pi−1 ∈ Xi−1, to get a model Xi. Let

Ei be the exceptional divisor of this blowup. Let αi : Speck[[t]] → Xi be the lift of

αi−1 : Speck[[t]] → Xi−1. Let pi be the closed point αi(o). Let µi : Xi → X be the

composition of the first i blowups. We call {pi}i≥0 the sequence of centers of v.

5.3 Simplified situation

We first consider the special case when the arc α : Speck[[t]]→ X is nonsingular

(Definition IV.9).

Proposition V.2. Let X be a nonsingular variety of dimension n (n ≥ 2) over a

field k. Let α : Speck[[t]] → X a nonsingular arc (Definition IV.9). Set v = ordα

and p0 = α(o). Let C =
⋂

q≥1 µq∞(Cont≥1(Eq)). Then

1. C is an irreducible subset of X∞.

2. Let aq = {f ∈ ÔX,p0 | v(f) ≥ q}. Then C =
⋂

q≥1 Cont≥q(aq).

3. valC = v on ÔX,p0.

Notation V.3. Let m be the maximal ideal of OX,p0 . Since α is nonsingular, there

exists x1 ∈ m such that ordα(x1) = 1. Since ordα(x1) = 1, we have x1 ∈ m \ m2.
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Choose x2, . . . , xn in m so that x1, . . . , xn are local algebraic coordinates at p0 (i.e.

generators of m). For 2 ≤ i ≤ n, let Pi(t) ∈ (t)k[[t]] be as in Proposition IV.28.

Write Pi(t) =
∑

j≥1

ci,jt
j ∈ (t)k[[t]] for 2 ≤ i ≤ n and ci,j ∈ k. By Proposition IV.28,

for every ψ(x1, . . . , xn) ∈ ÔX,p0 ≃ k[[x1, . . . , xn]], we have

(5.1) v(ψ) = ordt ψ(t, P2(t), . . . , Pn(t)).

For 2 ≤ i ≤ n, we also have

α∗(xi) = Pi(α
∗(x1))

=
∑

j≥1

ci,j(α
∗(x1))

j(5.2)

We break up the proof of Proposition V.2 into several steps. For the remainder

of this section, v, x1, . . . , xn, P2(t), . . . , Pn(t) and ci,j are as in Proposition V.2 and

Notation V.3.

Lemma V.4. With the notation in Definition V.1, Proposition V.2, and Notation

V.3, the functions x1 and
xi−ci,1x1−ci,2x2

1···−ci,q−1xq−1
1

xq−1
1

∈ k(X) for 2 ≤ i ≤ n form local

algebraic coordinates on Xq−1 centered at pq−1.

Proof. These n functions are elements of positive value under ordαq
(by Equation 5.2),

and hence lie in the maximal ideal of the n-dimensional regular local ring OXq−1,pq−1 .

The ideal n ⊆ OXq−1,pq−1 they generate satisfies OXq−1,pq−1/n ≃ k, and hence n is a

maximal ideal.

5.3.1 Reduction to X = An

We denote the affine line A1
k

= Speck[T ] simply by A1. We show that we may

reduce many computations about the arc space of the nonsingular n-dimensional

variety X to the case X = An.
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Proposition V.5. Let X be a nonsingular variety and p ∈ X. Let π : X∞ → X be

the canonical morphism sending an arc γ to its center γ(o). Then π−1(p) ≃ (An
κ(p))∞,

where κ(p) is the residue field at p ∈ X. In particular, if κ(p) = k then π−1(p) ≃

(An)∞.

Proof. Since X is nonsingular, there exists an open affine neighborhood U of p and

an étale morphism φ : U → Speck[X1, . . . , Xn] = An ([19, Prop. 3.24b]). We will use

the following fact ([9, p.7]): if f : X → Y is an étale morphism, then X∞ = X×Y Y∞.

Applied to the open inclusion U → X, we have U∞ = U ×X X∞. Applied to the

étale map U → An we have U∞ = U ×An An
∞. Hence we have

π−1(U) = U ×X X∞ = U∞ = U ×An An
∞.

Hence

π−1(p) = Specκ(p)×U π
−1(U) = Specκ(p)×An (An)∞ = (An

κ(p))∞.

We resume considering Proposition V.2, where now it is sufficient to assume X =

An = Speck[x1, . . . , xn], and the k-valued point p0 corresponds to the maximal ideal

(x1, . . . , xn). We write (An)∞ = (Speck[x1, . . . , xn])∞ = Speck[{xi,j}1≤i≤n, j≥0],

where the last equality comes from parametrizing arcs on Speck[x1, . . . , xn] by xi →

∑
j≥0 xi,jt

j for 1 ≤ i ≤ n. Note that π : X∞ → X (defined in Proposition V.5) maps

C to p0. Hence

C ⊆ π−1(p0) = (An)∞ = SpecS,

where

(5.3) S = k[{xi,j}1≤i≤n, j≥1]
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Definition V.6. For 2 ≤ i ≤ n and q ≥ 1, let fi,q(X1, . . . , Xq) be the polynomial

that is the coefficient of tq in

q∑

j=1

ci,j(X1t+X2t
2 + · · · )j.

(Recall that the ci,j were defined in Notation V.3).

Definition V.7. For each positive integer q, let Iq be the ideal of S generated by

1. xi,j − fi,j(x1,1, . . . , x1,j) for 2 ≤ i ≤ n and 1 ≤ j ≤ q − 1.

Note that Iq is a prime ideal of S, since S/Iq = k[{x1,j}j≥1, {xi,j}2≤i≤n,q≤j].

Notation V.8. If J is an ideal of S, we denote by V (J) the closed subscheme of

SpecS defined by the ideal J .

Definition V.9. Let I be the ideal of S defined by I =
⋃

q≥1 Iq. Since I is the

ideal of S generated by xi,j − fi,j(x1,1, . . . , x1,j) for 2 ≤ i ≤ n and 1 ≤ j, we have

S/I = k[{x1,j}1≤j]. In particular, I is a prime ideal of S.

Lemma V.10. For each positive integer q, the ideal of µq∞(Cont≥1(Eq)) in S is Iq.

(Note: Iq is defined in Definition V.7.)

Proof. Note that µq∞(Cont≥1(Eq)) is irreducible (e.g. [7, p.9]). Since Iq is a prime

ideal, we need to show

µq∞(Cont≥1(Eq)) = V (Iq).

First we show µq∞(Cont≥1(Eq)) ⊆ V (Iq) by showing that the generic point of

µq∞(Cont≥1(Eq)) lies in V (Iq). Suppose β′ : SpecK[[t]] → Xq is the generic point

of Cont≥1(Eq). To be precise, β′ is the canonical arc (described in Remark II.5)

associated to the generic point of Cont≥1(Eq). Also, K is the residue field at the

generic point of Cont≥1(Eq). By Lemma II.9 part 3, the pushdown of β′ to Xq−1
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is an arc β : SpecK[[t]] → Xq−1 that is the generic point of Cont≥1(pq−1). By the

description of local coordinates at pq−1 given in Lemma V.4, the arc β corresponds

(by Lemma II.9) to a map x1 → x1,1t + x1,2t
2 + · · · and

xi−ci,1x1−ci,2x2
1···−ci,q−1xq−1

1

xq−1
1

→

ai,1t+ ai,2t
2 + · · · for 2 ≤ i ≤ n and some ai,j ∈ K. The pushdown of β to X is the

arc given by x1 → x1,1t+x1,2t
2 + · · · and xi →

∑j=q−1
j=1 ci,j(x1,1t+x1,2t

2 + · · · )j + r(t)

where r(t) ∈ (tq) ⊆ K[[t]]. In particular, the pushdown of β′ to X corresponds to a

prime ideal in S containing the ideal Iq of S generated by xi,j − fi,j(x1,1, . . . , x1,j) for

1 ≤ j ≤ q − 1 and 2 ≤ i ≤ n. That is, the generic point of µq∞(Cont≥1(Eq)) lies in

V (Iq). Hence µq∞(Cont≥1(Eq)) ⊆ V (Iq).

Conversely, we show that µq∞(Cont≥1(Eq)) ⊇ V (Iq). The generators of Iq listed in

Definition V.7 show that the coordinate ring of V (Iq) is S/Iq = k[{x1,j}j≥1, {xi,j}2≤i≤n,q≤j].

Let β : SpecK[[t]] → X be the arc corresponding (see Remark II.5) to the generic

point of V (Iq), where K = k({x1,j}j≥1, {xi,j}2≤i≤n,q≤j). We have β∗(x1) = x1,1t +

x1,2t
2+ . . . . Since Iq contains xi,j−fi,j(x1,1, . . . , x1,j) for 1 ≤ j ≤ q−1 and 2 ≤ i ≤ n,

we have that β∗(xi) =

q−1∑

j≥1

fi,j(x1,1, . . . , x1,j)t
j + tqri(t) for some ri(t) ∈ K[[t]] and for

each 2 ≤ i ≤ n. Hence β∗(xi) =
∑q−1

j≥1 ci,j(β
∗(x1))

j + tqsi(t) for some si(t) ∈ K[[t]],

by Definition V.6.

Therefore

ordβ(xi − ci,1x1 − ci,2x
2
1 · · · − ci,q−1x

q−1
1 ) ≥ q = ordβ(xq−1

1 ) + 1,

where the last equality follows from the fact ordβ(x1) = 1 as x1,1 6= 0 ∈ K.

In particular, the unique lift of β to an arc on Xq−1 has center pq−1, by Lemma

V.4. Hence β ∈ µq−1∞(Cont≥1(pq−1)) = µq∞(Cont≥1(Eq)). Hence V (Iq) = {β} ⊆

µq∞(Cont≥1(Eq)).

Lemma V.11. The ideal of C in S is I. (Note: C is defined in Proposition V.2, S
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is defined in Equation 5.3, and I is defined in Definition V.9.)

Proof. Since I is a prime ideal, we need to show C = V (I). We have

⋂

q≥1

V (Iq) = V (
⋃

q≥1

Iq) = V (I)

and

C =
⋂

q≥1

µq∞(Cont≥1(Eq)) ⊆
⋂

q≥1

V (Iq)

by Lemma V.10. It remains to show
⋂

q≥1 µq∞(Cont≥1(Eq)) ⊇
⋂

q≥1 V (Iq).

Let β : SpecK[[t]] → X be an arc corresponding to a point in
⋂

q≥1 V (Iq). We

may assume β is not the trivial arc, since the trivial arc lies in
⋂

q≥1 µq∞(Cont≥1(Eq)).

Say β∗(x1) =
∑

j≥1 a1,jt
j, where a1,j ∈ K. Since Iq contains xi,j − fi,j(x1,1, . . . , x1,j)

for 1 ≤ j ≤ q − 1 and 2 ≤ i ≤ n, we have that β∗(xi) =
∞∑

j≥1

fi,j(a1,1, . . . , a1,j)t
j for

each 2 ≤ i ≤ n. Hence β∗(xi) =
∑∞

j≥1 ci,j(β
∗(x1))

j, by Definition V.6. Hence

ordβ(xi − ci,1x1 − ci,2x
2
1 · · · − ci,q−1x

q−1
1 ) = ordβ(

∑

j≥q

ci,jx
j
1) = ordβ x

q
1 ≥ ordβ(xq−1

1 )+1.

In particular, the unique lift of β to an arc on Xq−1 has center pq−1, by Lemma

V.4. Hence β ∈ µq−1∞(Cont≥1(pq−1)) = µq∞(Cont≥1(Eq)). Hence
⋂

q≥1 V (Iq) ⊆

⋂
q≥1 µq∞(Cont≥1(Eq)).

Lemma V.12. For a positive integer q, let aq = {f ∈ ÔX,p0 | v(f) ≥ q}. Set

zi = xi −
∑q−1

j=1 ci,jx
j
1 for 2 ≤ i ≤ n. Then aq is generated (as an ideal in ÔX,p0) by

xq
1, z2, . . . , zn.

Proof. By Equation 5.1, we have v(xq
1), v(zi) ≥ q for 2 ≤ i ≤ n. Suppose f ∈ aq.

Since k[[x1, . . . , xn]]/(z2, . . . , zn) ≃ k[[x1]], we can write f =
∑i=n

i≥2 hizi+g(x1), where

hi ∈ k[[x1, . . . , xn]] and g(x1) ∈ k[[x1]]. Then since v(f) ≥ q, and v(zi) ≥ q, we must

have v(g) ≥ q. By Equation 5.1, we conclude xq
1 divides g(x1) in k[[x1]]. Hence f is

in the ideal generated by xq
1, z2, . . . , zn.
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Lemma V.13. For every positive integer q, the ideal of Cont≥q(aq) in S is Iq.

Proof. First we show Cont≥q(aq) ⊆ V (Iq). Suppose β : SpecK[[t]] → X is an arc

corresponding (via Remark II.5) to a generic point of Cont≥q(aq). Write β∗(xi) =

xi,1t+ xi,2t
2 + · · · for 1 ≤ i ≤ n, where xi,j ∈ K denotes the image in K of xi,j ∈ S.

Since aq is generated by xq
1, z2, . . . , zn (Lemma V.12) (recall that zi = xi−

∑q−1
j=1 ci,jx

j
1

for 2 ≤ i ≤ n), we have

(5.4) xi,1t+ xi,2t
2 + · · · −

j=q−1∑

j=1

ci,j(x1,1t+ x1,2t
2 + · · · )j ∈ (tq).

The coefficient of tj in Equation 5.4 is xi,j − fi,j(x1,1, . . . , x1,j). Hence β corresponds

to a prime ideal of S containing the ideal Iq of S generated by xi,j−fi,j(x1,1, . . . , x1,j)

for 2 ≤ i ≤ n and 1 ≤ j ≤ q − 1. Thus Cont≥q(aq) ⊆ V (Iq).

Conversely, suppose β : SpecK[[t]] → X corresponds (via Remark II.5) to the

generic point of V (I). The coordinate ring of V (Iq) is S/Iq = k[{x1,j}j≥1, {xi,j}2≤i≤n,q≤j]

(Definition V.7). Hence K, the residue field at the generic point of V (Iq), equals

K = k({x1,j}j≥1, {xi,j}2≤i≤n,q≤j). We have β∗(x1) = x1,1t + x1,2t
2 + · · · ∈ K[[t]].

Since Iq contains xi,j − fi,j(x1,1, . . . , x1,j) for 1 ≤ j ≤ q − 1 and 2 ≤ i ≤ n, we

have that β∗(xi) =

q−1∑

j≥1

fi,j(x1,1, . . . , x1,j)t
j + tqri(t) for some ri(t) ∈ K[[t]] and for

each 2 ≤ i ≤ n. Since
∑

j≥1 ci,j(x1,1t + x1,2t
2 + · · · )j =

∑
j≥1 fi,j(x1,1, . . . , x1,j)t

j for

2 ≤ i ≤ n (Notation V.3), we have that β∗ maps xi − ci,1x1 − ci,2x
2
1 · · · − ci,q−1x

q−1
1

into the ideal (tq) ⊆ K[[t]]. Hence by Lemma V.12, we have β ∈ Cont≥q(aq). So

V (Iq) = {β} ⊆ Cont≥q(aq).

Lemma V.14. The ideal of
⋂

q≥1 Cont≥q(aq) in S is I. (Note: S is defined in

Equation 5.3, and I is defined in Definition V.9, and aq is defined in Proposition

V.2 (2).)
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Proof. Since I is a prime ideal, it is enough to show
⋂

q≥1 Cont≥q(aq) = V (I). By

Lemma V.13, we have

⋂

q≥1

Cont≥q(aq) =
⋂

q≥1

V (Iq) = V (
⋃

q≥1

Iq) = V (I).

We now finish the proof of Proposition V.2.

Proof of Proposition V.2. Since S/I ≃ k[{x1,j}j≥1] is a domain, the ideal I is a

prime ideal. By Lemma V.11, the ideal of C is I. Hence C is irreducible. We have

C =
⋂

q Cont≥q(aq) because by Lemmas V.11 and V.14, their ideals are the same.

It remains to show valC = v. Let γ : Speck[[t]] → X be the arc centered at p0

with γ∗(x1) = t and γ∗(xi) = Pi(t) for 2 ≤ i ≤ n. Then γ ∈ C since the ideal in

S corresponding to γ, namely the ideal generated by x1,0, x1,1 − 1, x1,m, xi,0, and

xi,j − ci,j for m ≥ 2, 2 ≤ i ≤ n, and j ≥ 1 contains I. Hence for any f ∈ OX,p0 , we

have valC(f) ≤ ordγ(f) = v(f).

For the reverse inequality, first suppose f ∈ OX,p0 is such that s := v(f) < ∞.

Let γ ∈ C be such that valC(f) = ordγ(f). Since f ∈ as and γ ∈ Cont≥s(as), we

have ordγ(f) ≥ s, i.e. valC(f) ≥ v(f).

Next suppose v(f) =∞. Set φi = xi − Pi(x1) for 2 ≤ i ≤ n. Since

k[[x1, . . . , xn]]/(φ2, . . . , φn) ≃ k[[x1]],

we can write f =
n∑

i=2

φihi + g(x1) for hi ∈ k[[x1, . . . , xn]] and g ∈ k[[x1]]. Since

v(f) =∞, we have g = 0 by Equation 5.1. Let γ ∈ C, and write γ∗(x1) =
∑

j≥1 ajt
j.

Since xi,j − fi,j(x1,1, . . . , x1,j) ∈ I for 2 ≤ i ≤ n and j ≥ 1, we have γ∗(xi) =

∑
j≥1 fi,j(a1, . . . , aj)t

j =
∑

j≥1 ci,j(a1t+a2t
2 + . . .)j = pi(γ

∗(x1)) = γ∗(pi(x1)). Hence

γ∗(φi) = 0, and so γ∗(f) = γ∗(
n∑

i=2

φihi) = 0. So ordγ(f) = ∞. Since γ ∈ C was

arbitrary, we have valC(f) =∞, as desired.
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5.4 General case

Lemma V.15. Let X be a nonsingular variety of dimension n (n ≥ 2) over an

algebraically closed field k of characteristic zero. Let α : Speck[[t]] → X be a

normalized arc (Definition IV.4). Set p0 = α(o). Let α∗ : ÔX,p0 → k[[t]] be the k-

algebra homomorphism induced by α. Suppose γ : Speck[[t]]→ X satisfies γ(o) = p0

and ker(α∗) ⊆ ker(γ∗), where γ∗ : ÔX,p0 → k[[t]] is the k-algebra homomorphism

induced by γ. Assume γ is not the trivial arc (Definition II.8). Then

1. There exists a morphism h : Speck[[t]]→ Speck[[t]] such that γ = α ◦ h, i.e. γ

is a reparametrization of α.

2. h∗ : k[[t]]→ k[[t]] is a local homomorphism.

3. Set N = ordt(h). Then ordγ = N ordα on ÔX,p0. (We use the convention that

∞ = N · ∞.)

Proof. (Due to Mel Hochster.) We use Notation IV.5. Suppose γ is not the trivial

arc. By Lemma IV.6, Aγ has dimension one, and so ker(γ∗) is a prime ideal of height

n−1. The same is true for ker(α∗), and so our assumption ker(α∗) ⊆ ker(γ∗) implies

ker(α∗) = ker(γ∗). Hence Aα = Aγ. By Lemma IV.7, the map α∗ (resp. γ∗) induces

an isomorphism α∗ : Ãα → k[[φα]] (resp. γ∗ : Ãγ → k[[φγ]]) for some φα ∈ k[[t]]

(resp. φγ ∈ k[[t]]). Since α is normalized, we have ordt(φα) = 1 by Proposition IV.8.

I claim that the inclusion k[[φα]] ⊆ k[[t]] is actually an equality. It suffices to

find aj ∈ k such that t =
∑

j≥1 aj(φα)j. Suppose φα =
∑

j≥1 bjt
j, where bj ∈ k

and b1 6= 0. We proceed to define aj by induction on j. Set a1 = b1
−1. Suppose

a1, . . . , ad−1 have been specified. The coefficient of td in
∑

j≥1 aj(φα)j is adb
d
1 +

Qd(a1, . . . , ad−1, b1, . . . , bd) for some polynomial Qd. We require this coefficient to be
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0. We can solve the equation

adb
d
1 +Qd(a1, . . . , ad−1, b1, . . . , bd) = 0

for ad since b1 6= 0. This completes the induction, and we have t =
∑

j≥1 aj(φα)j.

Let h : Speck[[t]] → Speck[[t]] be induced by the k-algebra homomorphism

h∗ : k[[t]]→ k[[t]] defined by the composition

k[[t]] = k[[φα]]
(α∗)−1

−−−−→ Ãα = Ãγ
γ∗

−→ k[[φγ]] ⊆ k[[t]].

The last inclusion is an inclusion of local k-algebras and all other maps are isomor-

phisms. Hence h∗ is a local homomorphism. For f ∈ ÔX,p0 , we have γ∗(f) = γ∗(f) =

h∗ ◦ α∗(f) = h∗ ◦ α∗(f), and hence γ = α ◦ h. If ordt(h) = N and a = ordα(f), then

the order of t in γ∗(f) = h∗ ◦ α∗(f) is Na, i.e. ordγ(f) = N ordα(f).

Notation V.16. We denote by (X∞)0 the subset of points of X∞ with residue field

equal to k. If D ⊆ X∞, then we set D0 = D ∩ (X∞)0.

Here is the main theorem of this paper.

Theorem V.17. Let X be a nonsingular variety of dimension n (n ≥ 2) over a field

k. Let α : Speck[[t]]→ X be a normalized arc (Definition IV.4). Set p0 = α(o) and

v = ordα. Let Ei and pi be the sequence of divisors and centers, respectively, of v

(described in Definition III.3). Let µq : Xq → X be the composition of the first q

blowups of centers of v. Let

(5.5) C =
⋂

q>0

µq∞(Cont≥1(Eq)) ⊆ X∞.

Let aq = {f ∈ ÔX,p0 | v(f) ≥ q}. Let

C ′′ =
⋂

q≥1

Cont≥q(aq) ⊆ X∞.
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Set C(v) = {γ ∈ X∞ | ordγ = v, γ(o) = p} ⊆ X∞.

For an arc γ : Speck[[t]] → X, let γ∗ : ÔX,γ(o) → k[[t]] be the induced k-algebra

homomorphism. Set I = {γ ∈ X∞ | γ(o) = α(o), ker(α∗) ⊆ ker(γ∗) ⊆ ÔX,α(o)}.

Let R = {α ◦ h ∈ X∞ | h : Speck[[t]] → Speck[[t]]}, where h is a morphism of

k-schemes.

Then

1. C is an irreducible subset of X∞ and valC = v.

2. Assume k is algebraically closed and has characteristic zero. The following

closed subsets of (X∞)0 are equal (we use Notation V.16):

C(v)0 = C0 = C ′′0 = (I)0 = R.

Proof of Theorem V.17. (Part 1) Let r be a nonnegative integer such that the lift of

α to Xr is a nonsingular arc. For q > r, let µq,r : Xq → Xr be the composition of

the blowups along the centers of v, starting at Xr+1 → Xr and ending at the blowup

Xq → Xq−1. Let

C ′ =
⋂

q>r

µq,r∞(Cont≥1(Eq)) ⊆ (Xr)∞.

Note that

C = µr∞(C ′) ⊆ X∞.

By Proposition V.2, C ′ is irreducible. Hence C is irreducible. Since the generic

point of C ′ maps to the generic point of C, we have that valC′ = valC , i.e. valC′(µ∗r(f)) =

valC(f) for f ∈ OX,p0 . Since v = valC′ by Proposition V.2, we conclude v = valC .
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(Part 2) We show C(v)0 ⊆ C ′′0 ⊆ C0 ⊆ C(v)0. Separately we will establish

C ′′0 = I0.

First we check C(v) ⊆ C ′′. If γ ∈ X∞ is such that γ(o) = p and ordγ = v,

then γ ∈ Cont≥q(aq) for every q ≥ 1, and so γ ⊆ C ′′. Since C ′′ is closed, we have

C(v) ⊆ C ′′.

Now we show C ′′0 ⊆ C0. Let γ ∈ C ′′0, and assume without loss of generality

that γ is not the trivial arc. We claim that ker(α∗) ⊆ ker(γ∗). Let f ∈ ker(α∗).

Then v(f) = ∞, and so f ∈ aq for every q ∈ Z≥0. Hence ordγ(f) ≥ q for all

q ∈ Z≥0. Therefore ordγ(f) = ∞, so f ∈ ker(γ∗). By Lemma V.15 there exists

h : Speck[[t]]→ k[[t]] such that γ = α◦h. It follows that γ has the same sequence of

centers as α. Indeed, if γq : Speck[[t]]→ Xq is the unique lift of γ to an arc on Xq,

then γq ◦h is the unique lift of α to an arc on Xq. Since h∗ is a local homomorphism,

we have that h maps the closed point of Speck[[t]] to the closed point of Speck[[t]].

Hence the center of γq is the same as the center of γg ◦ h. We conclude γ ∈ C. Note

that this argument also shows C ′′0 ⊆ R, and Lemma V.15 shows that C ′′0 ⊆ R.

To see that C ⊆ C(v), let β be the generic point of C. Note that ordβ = v and

π(β) = p0, and so β ∈ C(v). Hence C ⊆ C(v).

Now we show C ′′0 = (I)0. Let J be the kernel of the map α∗ : ÔX,p0 → Speck[[t]].

If f ∈ J , then ordα = ∞ and hence f ∈ aq for every q ≥ 1. Let γ ∈ C ′′0. Since

a1 is the maximal ideal of ÔX,p0 , we have γ(o) = p0, i.e. γ ∈ π−1(p0). Also, since

ordγ(f) ≥ q for every q ≥ 1, we have ordγ(f) =∞. Hence γ ∈ (I)0.

For the reverse inclusion C ′′0 ⊇ (I)0, let γ ∈ (I)0. Then J ⊆ ker(γ∗), and hence

by Lemma V.15 we have that either γ is the trivial arc or ordγ = N ordα for some

positive integer N . In both cases we have γ ∈ C ′′0.
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Remark V.18. If X is a surface and if v is a divisorial valuation, then the set

C =
⋂

q>0

µq∞(Cont≥1(Eq))

equals the cylinder associated to v in [7, Example 2.5], namely µr∞(Cont≥1(Er)),

where r is such that pr is a divisor.

Proof. If r is such that pr ∈ Xr (Definition III.3) is a divisor, then C = µr∞(Cont≥1(Er))

since µq∞(Cont≥1(Eq)) ⊇ µq+1∞(Cont≥1(Eq+1)), and for q > r we have equality since

the maps µq,r are isomorphisms. Hence C = µr∞(Cont≥1(Er)), which is the set in

[7, Example 2.5].



CHAPTER VI

K-arc valuations on a nonsingular k-variety

In this chapter, we consider arc valuations v of the form v = ordγ, where γ :

SpecK[[t]] → X is an arc and k ⊆ K is an extension of fields. Such arcs arise

naturally (via Remark II.5) as generic points of irreducible subsets of the arc space

X∞. To analyze these valuations, we perform a base change SpecK → Speck. The

arc γ gives rise to an arc γK : SpecK[[t]] → XK = X × SpecK. We then apply

our results (Theorem V.17) for K-arc valuations on a K-variety to this situation.

In particular, we give a description of the K-valued points of the maximal arc set

(defined below).

Following Ishii [14, Definition 2.8], we associate to a valuation v a subset C(v) ⊆

X∞ in the following way.

Definition VI.1. Let p ∈ X be a (not necessarily closed) point. Let v : ÔX,p →

Z≥0 ∪ {∞} be a valuation. Define the maximal arc set C(v) by

C(v) = {γ ∈ X∞ | ordγ = v, γ(o) = p} ⊆ X∞,

where the bar denotes closure in X∞.

Lemma VI.2. Let C ⊆ X∞ be an irreducible subset. We have C ⊆ C(valC). (See

Chapter IV Equation 4.4 for the definition of valC).
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Proof. Let α be the generic point of C. By Proposition IV.10, ordα = valC and hence

α ∈ C(valC). Hence C = {α} ⊆ C(valC).

Let X be a smooth variety over a field k. Let γ : SpecK[[t]]→ X be a normalized

arc on X, where k ⊆ K is an extension of fields. Let XK = X ×Speck SpecK and

f : XK → X the canonical map. Let γK : SpecK[[t]]→ XK be given by γK = γ × ι

where ι : SpecK[[t]]→ SpecK is the natural map.

With the notation introduced above, we have ordγK
is a normalized K-arc valua-

tion on the K-variety XK , and XK is a nonsingular variety.

Definition VI.3. Let pK,i for i ≥ 0 be the sequence of infinitely near points of ordγK
,

with pK,i lying on the i-th blowup XK,i of XK . Let EK,i ⊂ XK,i be the exceptional

divisor of the ith blowup µK,i,i−1 : XK,i → XK,i−1. Let µK,i : XK,i → XK be the

composition of the first i blowups.

By Theorem V.17 part 1, the set

(6.1) D :=
⋂

q>1

µK,q,∞(Cont≥1(EK,q))

is an irreducible subset ofXK∞ with valD = ordγK
onOXK ,pK,0

. Hence C ′ := f∞(D) is

an irreducible subset of X∞, where f : XK → X is the canonical map. Let α ∈ XK∞

be the generic point of D. We have ordα = valD = ordγK
. Applying f∞ we get

ordf∞(α) = valC′ = ordγ, where we have used f∞(γK) = γ. Hence f∞(α) ∈ C(valC),

hence C ′ ⊆ C(valC). Also, by f∞(γK) = γ and the fact that γK ∈ D, we have

C ⊆ C ′. To summarize, we have proven:

Proposition VI.4. Let X be a smooth variety over a field k. Let γ : SpecK[[t]]→ X

be a normalized arc on X, where k ⊆ K is an extension of fields. Let C = {γ} ⊆ X∞.
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Using the notation of Definition VI.3, let

C ′ = f∞(
⋂

q>0

µK,q∞(Cont≥1(EK,q))).

Then C ′ is an irreducible subset of X∞ with valC′ = ordγ and

C ⊆ C ′ ⊆ C(valC).



CHAPTER VII

Other valuations

In this chapter, we turn our attention to valuations that are not arc valuations.

We restrict our attention to surfaces, where there is a complete classification of val-

uations. This classification is presented in Chapter III Definition III.8. On surfaces,

there are four general classes of valuations: divisorial valuations, curve valuations,

irrational valuations, and infinitely singular valuations. Of these, the first two are arc

valuations. On the other hand, irrational valuations have value groups (isomorphic

to) Z + Zτ ⊂ R where τ ∈ R \ Q, while infinitely singular valuations have value

groups (isomorphic to) subgroups of R that are not finitely generated. A natural

question is, what do the sets
⋂

q Cont≥q(aq) and
⋂

q µq,∞(Cont≥1(Eq)), which were

the focus of Chapter V, look like for these valuations?

In this chapter, we begin by computing the sets

⋂

q

Cont≥q(aq) and
⋂

q

µq,∞(Cont≥1(Eq))

for irrational valuations on X = A2 = Speck[x, y]. We have seen that these sets

are equal for nonsingular arc valuations (Proposition V.2). However, for irrational

valuations, these sets are not equal. In fact, in Proposition VII.2, we will see that

for an irrational valuation on A2, the set
⋂

q µq,∞(Cont≥1(Eq)) contains only the

trivial arc. On the other hand, we will see that C =
⋂

q Cont≥q(aq) is an irreducible

65
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cylinder. However, one cannot recover the original irrational valuation from C. More

precisely, there are infinitely many irrational valuations whose corresponding sets

⋂
q Cont≥q(aq) are equal.

These results suggest that arc spaces are not well-suited to the study of valuations

that are not arc valuations. However, irrational valuations can be expressed as the

order of vanishing along generalized arcs. For example, the irrational valuation v on

k[x, y] given by v(x) = 1 and v(y) = π is given by the order of vanishing along a

generalized arc γ : Speck[[t, tπ]]→ Speck[x, y] given by x→ t, y → tπ. This suggests

generalizing the notion of arc spaces to spaces of generalized arcs. We sketch this

idea later in Chapter IX.

7.1 Irrational valuations

The valuation v : k(x, y)∗ → R on X = A2 = Speck[x, y] given by v(x) = 1

and v(y) = τ where τ > 1 is an irrational number is an example of an irrational

valuation. Note that v takes on distinct values on distinct monomials, and hence is

a monomial valuation. Furthermore, the center of v on Xq will be a k-valued point

with local coordinates of the form xayb, where x, y are local coordinates of the center

v on X and a, b ∈ Z. To give the exact expression, we need to discuss the continued

fraction expansions of τ . This material is rather straightforward. The author made

these calculations independently, but makes no claims of originality.

7.1.1 Continued fractions

Let τ > 1 be an irrational number.

Consider the continued fraction expansion of τ ,

(7.1) τ = a0 +
1

a1 + 1
a2+...

,
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where a0 = ⌊τ⌋ and all the ai are (uniquely determined) positive integers. Let bi be

the i-th convergent – that is, the truncation of Equation 7.1 to the partial fraction

involving only a0, a1, . . . , ai. For example b0 = a0, b1 = a0 + 1
a1

, and b2 = a0 + 1
a1+ 1

a2

.

We recall some elementary facts about these continued fractions. We have that

b2i < b2i+2 < τ < b2i+3 < b2i+1 for all i ≥ 0 ([20, Theorem 7.6]). We also have

limi→∞ b2i = limi→∞ b2i+1 = τ ([20, p.335]). Let ci, di be relatively prime positive

integers such that bi = ci/di, for i ≥ 0. Set c−2 = 0, c−1 = 1, d−2 = 1 and d−1 = 0.

Then we have the recursion relations ci = ci−2 + aici−1 and di = di−2 + aidi−1 for

i ≥ 1 ([20, p.335]). We also have cidi+1 − ci+1di = (−1)i+1.

For i ≥ −1, let

zi = x(−1)i+1ciy(−1)idi ∈ k(X).

We have z2i = x−c2iyd2i , and so v(z2i) = −c2i + τd2i > 0 where the inequality

follows from c2i

d2i
= b2i < τ . Also, we have z2i+1 = xc2i+1y−d2i+1 . Hence v(z2i+1) =

c2i+1−τd2i+1 > 0 where the inequality follows from c2i+1

d2i+1
= b2i+1 > τ . Thus v(zi) > 0

for all i ≥ −1.Also note that the equations ci = ci−2 + aici−1 and di = di−2 + aidi−1

for i ≥ 1 imply zi = zi−2z
−ai

i−1 . Since v(zi) are positive, we have v(zi−2z
−ai

i−1 ) > 0. Also,

the equation cidi+1 − ci+1di = (−1)i+1 gives

(7.2) x = zi
di+1zi+1

di

(7.3) y = zi
ci+1zi+1

ci

Proposition VII.1. Let q−1 = 0 and let qi =

j=i∑

j=0

ai. Then (zi−1, zi) form local

coordinates at the center of v on Xqi
, for i ≥ −1.

Proof. We prove the result by induction on i. When i = −1, the statement is that

(z−2, z−1) = (y, x) form local coordinates at the center of v on X0 = X. Since
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v(x), v(y) > 0, the result is true for i = −1. Now fix i > −1 and assume the result

is true for a i − 1, i.e. we have a model Xqi−1
on which we have local coordinates

(zi−2, zi−1) centered at the center of v on Xqi−1
. Recall that zi = zi−2z

−ai

i−1 and

v(zi) > 0. Blowup the center of v on Xq−1. The center of v will be given by

(zi−1, zi−2/zi−1) as v is positive on both these generators. Performing ai − 1 more

blowups, we find that the center of v on Xqi
has zi−1, zi as local algebraic coordinates.

This completes the induction.

7.1.2 Irrational valuations and arc spaces

Proposition VII.2. Let X = Speck[x, y] and let v : k(x, y)∗ → R be the valuation

defined by v(x) = 1 and v(y) = τ where τ > 1 is irrational. Then
⋂

q Cont≥q(aq) =

Cont≥1(x)∩Cont≥⌈τ⌉(y). In particular, this intersection is an irreducible cylinder of

codimension ⌈τ⌉+1. On the other hand, the only arc in
⋂

q µq∞(Cont≥1(IEq
)) is the

trivial arc (Definition II.8).

Proof. Let γ ∈
⋂

q Cont≥q(aq). Since x ∈ a1 and γ ∈ Cont≥1(a1) it follows that

ordγ(x) ≥ 1. I claim ordγ(y) > ⌊τ⌋. For a contradiction, suppose ordγ(y) ≤ ⌊τ⌋.

Since τ − ⌊τ⌋ > 0, there exists s ∈ N such that s(τ − ⌊τ⌋) > 1. Hence there

exists q ∈ N such that s⌊τ⌋ < q < sτ . Since v(ys) = sτ > q, we have ys ∈ aq.

Since γ ∈ Cont≥q(aq), we have q ≤ ordγ(y
s) = s ordγ(y) ≤ s⌊τ⌋. This contradicts

s⌊τ⌋ < q. So ordγ(x) ≥ 1 and ordγ(y) > ⌊τ⌋ are required conditions for an arc γ to

lie in
⋂

q Cont≥q(aq).

I claim they are also sufficient. Let γ ∈ X∞ be such that ordγ(x) ≥ 1 and

ordγ(y) ≥ ⌊τ⌋ + 1. Note that aq is the ideal generated by the monomials xayb with

a + bτ ≥ q. (This last observation uses the general fact that for any valuation v, if

r1, r2 are elements of the valuation ring such that v(r1) 6= v(r2) then v(r1 + r2) =
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min{v(r1), v(r2)}.) We have ordγ(x
ayb) ≥ a + b(⌊τ⌋ + 1). Hence γ ∈ Cont≥q(aq)

for all q. It follows that the ideal of
⋂

q Cont≥q(aq) is given by (x0, y0, y1, . . . , y⌊τ⌋).

Hence
⋂

q Cont≥q(aq) = Cont≥1(x)∩Cont≥⌈τ⌉(y). This intersection is also the preim-

age in X∞ of the subset of X⌊τ⌋ = Speck[x0, x1, . . . x⌊τ⌋, y0, y1, . . . , y⌊τ⌋] given by

(x0, y0, y1, . . . , y⌊τ⌋). In particular, we see that
⋂

q Cont≥q(aq) is an irreducible cylin-

der of codimension ⌈τ⌉+ 1.

Now we show that the trivial arc is the only arc in
⋂

q µq∞(Cont≥1(IEq
)).

If γ ∈ Cont≥1(pqi
), then γ is given by a map zi−1 → b1t + b2t

2 + · · · and

zi → b′1t + b′2t
2 + . . .. By equations 7.2 and 7.3, we have that µqi

◦ γ is an arc

on X contained in Cont≥di−1+di(x) ∩ Cont≥ci−1+ci(y). Hence µqi∞(Cont≥1(pqi
)) ⊆

Cont≥di−1+di(x) ∩ Cont≥ci−1+ci(y). Since the right hand side of this inclusion is a

closed subset of X∞, we have µqi∞(Cont≥1(pqi
)) ⊆ Cont≥di−1+di(x)∩Cont≥ci−1+ci(y).

Hence
⋂

i µqi∞(Cont≥1(pqi
)) ⊆

⋂
i Cont≥di−1+di(x)∩Cont≥ci−1+ci(y). Since ci, di →∞

as i→∞, we have that the right hand side equals Cont∞(x)∩Cont∞(y), which con-

tains only the trivial arc.



CHAPTER VIII

Motivic measure

When working with subsets of arc spaces, it is often useful to measure, in some

way, the size of any subset. For example, if A ⊆ Xm is a closed subset of codimension

d (where Xm is the m-th jet scheme of X) then we define the codimension of the

cylinder C = π−1
m (A) ⊆ X∞ to equal d. Invariants coming from birational geometry

(e.g. minimal log discrepancies) can be expressed in terms of the codimension of

various subsets of the arc space (see [9, Thm 7.9] for a precise statement). The set

C in Theorem V.2 is not a cylinder, but it is the intersection of cylinders Cq =

µq∞(Cont≥1(Eq)) with codimq→∞Cq = ∞. (By Lemma V.10, the coordinate ring

of Cq is isomorphic to the polynomial ring over k in the indeterminates x1,j for

1 ≤ j and xi,j for 2 ≤ i ≤ n and q ≤ j. Hence the codimension of Cq in X∞ is

n+ (q − 1)(n− 1).) One may say that the codimension of C is infinite.

In an effort to find a more meaningful quantity to attach to C, we consider the

motivic measure of C. The motivic measure of a subset of the arc space is an

element in the completion of a localization of the Grothendieck group of varieties.

In this chapter, we compute the motivic measure of the set C from Theorem V.17

for valuations on A2.

70



71

8.1 Generalities on motivic measure

Following [22], we recall the basic definitions of motivic integration while fixing

the notation. Let K0(Vark) denote the Grothendieck group of algebraic varieties over

a field k. This group is the abelian group generated by symbols [V ], where V is an

algebraic variety over k, with the relations [V ] = [W ] if V and W are isomorphic,

and [V ] = [Z]+ [V \Z] if Z is a Zariski-closed subvariety of V . Place a ring structure

on K0(Vark) by [V ] · [W ] = [V ×W ]. Set 1 := [point], L := [A1], and

Mk := K0(Vark)L,

the ring obtained from K0(Vark) by inverting L. For m ∈ Z let Fm be the subgroup

ofMk generated by the elements [V ]
Li with dim V ≤ i−m. Define

M̂k := lim
←−
Mk/F

m.

Let X be an algebraic variety (over a field k) of pure dimension d. Let A be a

cylinder in X∞. Let ψn : X∞ → Xn be the canonical projection morphism. Define

the motivic measure of A by µ(A) := lim
n→∞

[ψn(A)]

Lnd
. It is a theorem of Denef and

Loeser [6, Theorem 5.1] that this limit exists in M̂k. We extend µ to the Boolean

algebra generated by the cylinders in X∞ by requiring µ to be a σ-additive measure.

8.2 Motivic measures of subsets associated to valuations on A2

Let X = A2 = Speck[x, y]. We compute the motivic measure of various subsets

of (A2)∞. We write (A2)∞ = (Speck[x, y])∞ = Speck[x0, x1, . . . , y0, y1, . . .], where

the last equality comes from parametrizing arcs on Speck[x, y] by x →
∑

j≥0 xjt
j

and y →
∑

j≥0 yjt
j.

For a valuation v : k[x, y] → Z≥0 ∪ {∞} and integer q, we define the valuation

ideal aq = {f ∈ k[x, y] | v(f) ≥ q}.
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Proposition VIII.1. Let v be the monomial valuation on X = Speck[x, y] given by

v(x) = 1, v(y) = Q. Then µ(Cont≥Q(aQ)) = L−Q+1.

Proof. We have aQ = (xQ, y). Therefore the generic point of Cont≥Q(aQ) corresponds

to an arc sending x→ x1t+x2t
2+ . . . and y → yQt

Q+yQ+1t
Q+1+ . . .. Hence the ideal

of Cont≥Q(aQ) is given by (x0, y0, . . . , yQ−1). Let ψn : X∞ → Xn denote the canonical

projection morphism to Xn, the n-th jet space X. For n > Q, the coordinate ring of

ψn(Cont≥Q(aQ)) ⊆ Xn is

k[x0, . . . , xn, y0, . . . , yn]/(x0, y0, . . . , yQ−1) = k[x1, . . . , xn, yQ, . . . , yn].

So ψn(Cont≥Q(aQ)) ≃ An+n−Q+1 = A2n−Q+1. Hence

µ(Cont≥Q(aQ)) = lim
n→∞

L2n−Q+1/L2n = L−Q+1.

Proposition VIII.2. Lexicographically order Z ⊕ Z with (0, 1) < (1, 0). Let v :

k[x, y]→ Z⊕Z be the monomial valuation on X = Speck[x, y] given by v(x) = (0, 1)

and v(y) = (1, 0). Let C =
⋂

q≥1 µq∞(Cont≥1(Eq)), where µq and Eq are as in

Definition V.1. Then µ(C) = 0.

Proof. The sequence of centers of v is the same as that of the k-arc valuation

ordα on Speck[x, y] defined by α∗(x) = t and α∗(y) = 0. Hence by Proposition

V.2, we have C = Cont≥1(x) ∩ Cont∞(y). The ideal of C is (x0, y0, y1, . . .) ⊂

k[x0, x1, . . . , y0, y1, . . .]. Hence the coordinate ring of ψn(C) is k[x1, . . . , xn]. Hence

µ(C) = lim
n→∞

Ln/L2n = 0.

Proposition VIII.3. Let X = Speck[x, y] and let α : Speck[[t]] → X be an arc

centered at the origin and with α∗(x) = t. Set v = ordα. Then µ(Cont≥q(aq)) =

L−q+1. Furthermore, µ(
⋂

q≥1 Cont≥q(aq)) = 0.
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Proof. Let α∗(y) =
∑

j≥1 cjt
j. Set S = k[x1, x2, . . . , y1, y2, . . .]. For q ≥ 1, let

fq(X1, . . . , Xq) be the polynomial that is the coefficient of tq in

q∑

j=1

cj(X1t+X2t
2 + · · · )j.

Let Iq be the ideal of S generated by yj−fj(x1, . . . , xj) for 1 ≤ j ≤ q−1. By Lemma

V.13, the ideal of Cont≥q(aq) in S is Iq.

Hence for n > q, the coordinate ring of ψn(Cont≥q(aq)) is isomorphic to

k[x1, . . . , xn, yq, . . . , yn].

Hence ψn(Cont≥q(aq)) ≃ A2n−q+1. Hence

µ(Cont≥q(aq)) = lim
n→∞

[ψn(Cont≥q(aq))]

L2n
= L−q+1.

So µ(
⋂

q≥1 Cont≥q(aq)) = lim
q→∞

L−q+1 = 0.

Proposition VIII.4. Let X = Speck[x, y] and let v be the monomial valuation

defined by v(x) = 1 and v(y) = τ where τ > 1 is irrational. Let A =
⋂

q Cont≥q(aq).

Then µ(A) = L−⌊τ⌋.

Proof. By Proposition VII.2, the coordinate ring of ψn(
⋂

q Cont≥q(aq)) is

k[x1, . . . , xn, y⌈τ⌉, . . . , yn].

Hence µ(A) = lim
n→∞

Ln+n−⌊τ⌋/L2n = L−⌊τ⌋.



CHAPTER IX

Further directions

In this chapter, we outline some directions of future research.

9.1 Spaces of generalized arcs

Proposition VII.2 suggests that irrational valuations v (i.e. surface valuations with

transcendence degree zero, rank one, and rational rank two) do not have a natural

interpretation within the arc space. Specifically, C(v) contains only one arc (namely,

the constant arc at the center of v) while
⋂

q≥1 Cont≥q(aq) is an unexpectedly large

set whose general arc does not recover v. The arc space is too coarse an object to

use to detect these specialized valuations, and that a refinement of the notions of

arcs and arc spaces may be more suitable. We now describe one possible refinement.

Let G be a totally ordered abelian group and let G+ = {g ∈ G | g ≥ 0}. The ring

of generalized power series, denoted by k[[tG]], is the set of formal sums
∑

i∈G+ ait
i

where ai ∈ k and the support {i | ai 6= 0} is a well ordered set. Addition and

multiplication are defined as usual for power series. Let k(tG) = Frac(k[[tG]]) be the

fraction field of k[[tG]].

For example, when G = Z, we have k[[tG]] = k[[t]], the formal power series ring.

When G is a finitely generated subgroup of Q, generalized power series are known as

Puiseux series. They appear classically in the study of singularities of plane curves
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(e.g. [2, Chapter 2]).

There is a valuation v : k(tG)∗ → G given by v(
∑

i∈G+ ait
i) = min

ai 6=0
i ([3, p.52]).

By analogy with the definition of arcs, I define a generalized arc on a variety X

to be a morphism Speck[[tG]]→ X. We recover the usual notion of an arc when we

take G = Z in this definition of generalized arc. One can consider the notion of a

generalized arc space as a space parametrizing the generalized arcs on X. It is not

clear if this space exists as a scheme.

Generalized arcs have been considered before. The following result of Kaplansky

equates transcendence degree 0 valuations with the order of vanishing along gener-

alized arcs.

Theorem IX.1. ([3, p.52]) Let X be a variety over an algebraically closed field k

of characteristic 0. Let K = k(X) be the function field of X. Let v : K → G be a

valuation of K/k with tr. deg v = 0. Then we have an embedding K ⊂ k(tG) such

that Vv ∩K = Vv, where Vv (resp., Vv) denotes the valuation ring of v (resp., v).

To the author’s knowledge, a detailed theory of generalized arcs has not been

done. The following questions are interesting to study:

• What structure can be put on the generalized arc space? For example, is it a

scheme?

• Can one do geometry on generalized arc spaces? For example, can one define

analogs of cylinders, codimension, and contact loci? What can these notions tell us

about the geometry of X?

• Can the theory of motivic integration be extended to generalized arc spaces?

• What sorts of valuations appear in generalized arc spaces?

I now outline some methods that could be used to investigate these questions.

First, one should analyze the proofs of the constructions and theorems related to
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arc spaces and motivic integration and see if they extend to generalized arcs. The

proof of the existence of generalized arc spaces given above suggests that some of the

proofs remain essentially the same. However, I expect other results to rely on some

property of Z, such as being well-ordered or topologically discrete, and thus some

results may extend only if G has similar properties.

One can also investigate valuations that arise from irreducible subsets of gener-

alized arc spaces. It would be interesting to see if Theorem V.17 extends to the

setting of generalized arc spaces. One tool that could be used is the sequence of key

polynomials (SKPs) (Definition III.4) associated to a valuation. SKPs provide an

algebraic description of a valuation. The usefulness of SKPs stems from the fact that

the algorithm to find the SKPs provides a systematic way to find the generators of

the ideals aq, where q ∈ G+. These generators provide a tractable description of the

ideals aq. In particular, we can use these generators to compute
⋂

q≥1 Cont≥q(aq).

It would be interesting to see if the classical studies of curve singularities, where

Puiseux series appear, or the works of Abhyankar and Zariski, where non-divisorial

valuations are analyzed geometrically, can be rephrased in terms of generalized arc

spaces.

9.2 Arc valuations on singular varieties

Recently, T. de Fernex, L. Ein, and S. Ishii [4] have studied divisorial valuations

via arc spaces of singular varieties. They extend many of the results of [7] from the

non-singular case to the singular case. One possible research direction is to extend

work on non-divisorial valuations to singular varieties.

There are two approaches one might try. The first is to see if one can extend the

methods of [4] to non-divisorial valuations. The key idea is to blow up the smooth
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part of the variety along the smooth part of the center. The resulting blow-up is

smooth, and its arc space is easier to manage than the arc space of the singular

variety. With this idea, it would be interesting to see if Theorem V.17 to the setting

when X is singular.

The second approach is to use the description of non-divisorial valuations via

SKPs, described in Chapter III. The authors of [4] note that some of their results

have previously been obtained by an alternate method based on SKPs, and they

suggest investigating the connection between their approach and the approach via

SKPs.

In both approaches, one might begin by looking at the case when the singular

variety can be described as the quotient of A2 by a finite subgroup G of SL2 or GL2.

Understanding the arc space of a singular variety X, in particular identifying the

irreducible components of the fiber over the singularities of X, has been of interest

due in part to a problem raised by Nash. Nash’s problem [14, problem 4.13] stud-

ies the relationship between these irreducible components and divisorial valuations.

Formulating a generalization of the Nash problem to non-divisorial valuations is an

interesting goal for future work.
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