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Chapter I

Introduction and Overview

Plasma diagnostics are one of the key supporting technologies in every area of

plasma physics. In plasma confinement research, immersed probe diagnostics and

non-intrusive optical diagnostics make experimental measurements of the basic prop-

erties of the plasma. In plasma accelerator and electric propulsion research, the diag-

nostics measure plasma properties in order to infer performance and operating char-

acteristics. In materials processing applications, diagnostics ensure that the desired

plasma conditions are sustained in order to produce the desired surface treatment.

For each of these examples, plasma diagnostics provide feedback and measurements

that help guide the research or operation to achieve a desired goal.

In general, it is assumed that some quantity measured by the plasma diagnostic

can be related back to a desired property in the plasma. For example, the slope of

collected current with respect to bias voltage in the I-V characteristic of a Langmuir

probe can be related to the electron temperature. Many diagnostic instruments

have been developed to extract information about the flow. The drift current can

be measured with Faraday probes, the ion velocity can be visualized with laser-

induced fluorescence, the electron number density can be found with microwave

interferometry, the plasma potential and electric fields can be measured with emissive

1
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probes, the ion energy spectrum can be calculated with retarding potential analyzers,

and ion charge states can be identified with E×B probes. Of course, many of these

instruments can be used to measure more than one plasma property, and for many

properties there is more than one measurement technique.

The diagnostics are interpreted by relating a directly measured property, such

as collected current, to the desired plasma property. The relation is often devel-

oped from elementary principles by making certain assumptions about the plasma.

Returning to the Langmuir probe example, the electrons are assumed to have a

Maxwellian velocity distribution so that the logarithmic slope of the I-V character-

istic is inversely proportional to the electron temperature [1]. These assumptions

commonly include a Maxwellian distribution of electron velocities, the Boltzmann

relation between electron density and plasma potential, and a lower temperature

for ions than for electrons. The measurements are assumed to accurately obtain

the plasma properties, provided the plasma conditions meet the assumptions of the

diagnostic theory.

In diagnostic theory it is assumed that the instrument does not significantly af-

fect the properties of the plasma at the point where measurements are taken. This

assumption is not valid for probe diagnostics in particular, and it is acknowledged

that some disturbance is unavoidable. Theory for the plasma sheath on an immersed

surface helps to identify and quantify some of the disturbances caused by the probe.

The diagnostic techniques for some instruments take the plasma sheath into account

in order to relate the measured properties to “undisturbed” plasma properties. How-

ever, sheath theory is limited to the effects in the electrostatic or electromagnetic

sheath within a few Debye lengths of the probe surface. Diagnostic theory does not

account for the effects at longer range, since those effects are not well understood.
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Figure 1.1: Schematic of plasma properties in the collisionless sheath [1].

1.1 Sheaths and other probe disturbances

An immersed diagnostic instrument perturbs the plasma properties in its vicinity.

Electric and magnetic fields can penetrate the plasma up to a few Debye lengths from

the probe, influencing the charged particle trajectories in the sheath. Farther from

the probe, the collective shielding effect isolates the bulk plasma from the fields.

The transition from bulk plasma through the sheath to a probe surface is shown

schematically in Fig. 1.1. For a positive ion plasma, the electrons are the sole negative

charge carriers and are more mobile than the ions. This leads to unequal fluxes to a

surface at the same potential as the plasma, with more electrons than ions reaching

the surface. If the surface is floating, it will accumulate a net negative charge that

repels electrons and attracts ions until the net current is zero.

Sheaths comprise some of the most enduring and widely encountered problems
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in plasma physics. Langmuir and Tonks investigated sheaths in plasma arc and glow

discharges in the late 1920’s [2], identifying the major features of the collisionless

electrostatic sheath and obtaining analytical solutions for simple geometries.

Bohm investigated the current collection of Langmuir probes in the late 1940’s,

and established the broadly applicable Bohm criterion for the formation of a steady

sheath [3]. The criterion has since been generalized for finite temperature ion distri-

butions and arbitrary ion distributions.

Developments in the 1980’s and 1990’s produced a kinetic description of the

sheath and presheath for application to the strongly flowing plasmas encountered

in space environments and fusion plasmas [4, 5, 6]. More recently, much attention

has been focused on developing a consistent method to span the interfaces between

plasma, presheath, and sheath [7, 8, 9, 10]. This work is motivated in part by the

unphysical result in the Bohm sheath solution that the sheath is infinitely long, and

that the electric fields at the sheath edge are asymptotically large.

An immersed probe can also affect the flow over longer length scales, since the flow

either collides with the probe body or is diverted around the physical obstruction.

This can potentially introduce flow features including compression regions upstream

of the probe and rarefaction regions in the wake of the probe. Since experimental

diagnostic probes are not perfectly absorbing, ions that collide with a probe surface

can be neutralized and reflected back into the flow. The neutral gas diffuses away

from the probe, extending the region that is perturbed by the probe. Charge ex-

change or momentum exchange collisions with the neutral gas also have an effect on

the overall flow.

The photograph of a Faraday probe in the plume of a Hall thruster in Fig. 1.2

is evocative of the large scale disturbances that can be caused by the probe. The
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Figure 1.2: Photograph of a Hall thruster plume interacting with a Faraday probe
[11].

visible light is associated with recombination and relaxation of excited electronic

states in the plasma. A very bright region is apparent at the front surface of the

probe, suggesting that there is a region of increased density that promotes collisional

relaxation and recombination events.

A quantitative demonstration of the long range effect of the probe can be seen

in experimental contours of plasma potential around a Faraday probe in Fig. 1.3,

as reported by Walker et al. in Ref. [12]. The probe is cylindrical, with the axis of

the probe aligned with the Y axis in the figure. In that work the Debye length is

estimated as λD = 0.3 mm. The observed plasma potential variations extend 2 cm or

more from the probe, which is on the order of tens of Debye lengths. The weak fields

that extend far from the probe contribute to sheath expansion, where the effective

collecting area of the probe is increased due to electrostatic focusing of the ions.

The difference in plasma potential between the left and right sides of the probe is

described as a shadowing effect. The bulk velocity of the ions is not aligned with the

probe axis, and the electric fields are too weak to turn high speed ions into the region

“behind” the probe. This is a second long range effect, and is due to the physical
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Figure 1.3: Experimental contours of plasma potential around a Faraday probe, cour-
tesy Allen Victor [12].

obstruction of the flow.

The electrostatic sheath on the front surface of the probe should not alter the

total current collected at the surface, except near the outer radial edge of the probe

where the sheath curves to join the sheath along the side of the probe body. The

standard design practice for experimental Faraday probes takes this into account

and includes an annular guard ring to eliminate edge effects on the collecting surface.

Sheath expansion is not as well-understood, so there are no standard design guidelines

or operational methods to ensure that sheath expansion has minimal effect on the

measured properties.

Shadowing is unlikely to affect properties on the front surface of the probe, but

it would have a significant impact on the properties on the back face of the probe.

The effects become especially important in experimental configurations with reversed

Faraday probes, which measure the collected current on the wake side of the probe.

Shadowing and other long range disturbances are not well-understood either, and
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there are no design or operational guidelines to account for the effects.

1.2 Objectives of this work

The purpose of this dissertation is to investigate how an immersed Faraday probe

affects a plasma flow, and to quantify how the properties measured at the probe sur-

face are related to the “undisturbed” plasma properties that would exist if the probe

were not present. Additionally, the results of the investigations are interpreted to

give recommendations for the design and use of Faraday probes. This work is con-

ducted using computational techniques in order to achieve a very controlled setting

where the undisturbed plasma conditions are known at the outset.

Since plasma properties such as ion density and electron temperature can vary by

orders of magnitude in different applications, this dissertation is limited to the con-

ditions relevant to electric propulsion (EP) plasmas. Faraday probes are widely used

in experimental investigation of EP devices, and a wealth of information is available

in the literature. This facilitates the selection of consistent plasma conditions, and

limits the scope of this dissertation to a manageable set of plasma models.

1.2.1 Develop computational models of the plasma flow

The first overarching objective of this dissertation is to accurately describe the

plasma flow field around a Faraday probe. Although fully analytical solutions or

direct simulations are not practical for the full flow problem, many of the same

concepts and techniques can be used to develop and apply simpler models. Several

milestone objectives build up to the computational simulations of the flow field that

are the first goal in this work:

1. Develop and use simple one dimensional models that include the relevant phys-
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ical mechanisms for plasma-probe interactions.

2. Identify significant flow features in the one dimensional model results and es-

tablish a baseline for comparison with more sophisticated models.

3. Develop more accurate models that better represent the actual flow geome-

try and conditions. This includes moving to higher dimensional models and

eliminating the assumptions made in the one dimensional models.

4. Compare results from the improved model with previous models to assess the

usefulness and accuracy of the simpler models.

Two important supporting tasks in this process are developing flexible model

implementations, and ensuring the reliability of the models. Eventually a range

of different plasma conditions and probe geometries are simulated, so the models

should be implemented in a flexible and general manner. The models must also be

computationally stable and produce physically meaningful results.

1.2.2 Quantify the plasma-probe interactions

The second overarching objective of this dissertation is to evaluate how the plasma

flow features and the probe measurements are affected by changing the inflowing

plasma properties and the probe operational methods. In this stage the simple

plasma conditions typically assumed in standard diagnostic theory are modified. The

goal is to evaluate how the properties measured at the probe change in response to

the modified plasma conditions. Similarly, the operational parameters of the Faraday

probe are modified for a fixed plasma distribution. The purpose is again to evaluate
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how measured properties at the probe are affected as a result of changing the probe

conditions.

The ion inflow distribution is modified incrementally until ultimately it is rep-

resentative of the complex exhaust plasma generated by an EP thruster. The final

distribution includes high energy beam ions, low energy charge exchange ions, and

multiple charge species. Incremental modification of plasma conditions serves to

isolate the effects of each of these components. Results from these simulations are

compared against the simpler one dimensional models to assess the impact and rel-

ative importance of changing the inflow plasma properties.

The investigations of alternative Faraday probe operating conditions are con-

ducted with a fixed set of realistic plasma conditions. The first investigation of the

probe operation condition varies the probe bias potential. This allows the effect of

sheath expansion to be observed and assessed in terms of the collected current at

the probe surface. The second investigation of probe operation conditions varies the

guard ring bias relative to the collecting surface bias. The intent in this study is to

identify whether the total collected current varies significantly if there is a mismatch

in the bias potential on the guard ring and on the collecting surface.

Additionally, the reversed Faraday probe is simulated to obtain an understanding

of the flow field in the wake of the probe. These simulations require a much larger

computational domain and would take a prohibitively long time to complete using

the original models. As a supporting task, a multigrid method is developed and

implemented to enable the reversed Faraday probe simulations to be carried out in

an acceptable time.
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1.2.3 Make recommendations for Faraday probe design and use

The final major objective of this dissertation is to make recommendations for

the design and use of Faraday probes based on the results of the computational

simulations. No conflicts are found with the current standard practices for Faraday

probe usage. The flow field in the wake of the reversed Faraday probe is more

complicated than might be expected, and a few precautionary recommendations are

justified.

1.3 Organization

This dissertation is arranged as a linear sequence that starts with a review of

experimental and numerical research related to electric propulsion (EP). Chapter II

introduces some of the history and elementary concepts of EP, and describes the

benefits that make EP such an attractive technology. A selection of the numerous

experimental and numerical research activities related to EP are also described, which

will inform many decisions about the plasma conditions and numerical models con-

sidered in this work. This also provides a perspective on the need for computational

study of the interaction between plasmas and diagnostic probes.

In Chapter III, kinetic theory and the magnetohydrodynamic fluid equations are

introduced as very general descriptions of a plasma. These descriptions are simplified

to obtain analytic solutions for the sheath. The kinetic model leads to a geometric

shadowing sheath, where the physical obstruction of the probe is the mechanism that

creates sheath features. The MHD fluid equations lead to the planar Bohm sheath,

where the electrostatic field drives the properties in the sheath.

Both kinetic and fluid descriptions of a plasma are used to develop an axisym-

metric hybrid fluid particle computational code in Chapter IV. The Particle In
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Cell (PIC) and Direct Simulation Monte Carlo (DSMC) kinetic models are used

for the heavy ion and neutral particles. Three electron fluid models are developed:

the Boltzmann model, the non-neutral detailed model, and the Poisson-consistent

detailed model. The Boltzmann model is the simplest of the three, and uses the

Boltzmann relation to greatly simplify the fluid equations. The non-neutral detailed

model uses the full set of fluid equations, and is modified from a previous neutral

treatment. The Poisson-consistent detailed model is also derived from the full set of

fluid equations, but is manipulated from the outset as a non-neutral model.

The hybrid fluid PIC computational code is used extensively in Chapter V to

perform simulations of the plasma flow field around an axisymmetric geometry that

represents a Faraday probe. The Boltzmann fluid model is used in a series of stud-

ies to investigate how varying the plasma properties affects flow structures in the

sheath and the simulated collected current at the probe surface. These studies make

incremental changes to the inflow ion distribution function from a cold ion beam

to a complex composite distribution constructed from multiple drifting Maxwellian

components. The Boltzmann model is also used to study how the operation of the

Faraday probe affects the simulated collected current at the probe surface. These

studies involve changing the bias of the guard ring relative to the collecting surface

or sweeping the probe bias over a range of ion collecting conditions. In all of these

studies, the planar Bohm sheath is found to be a reliable predictor for the properties

in the sheath.

The non-neutral detailed model and the Poisson consistent models are also used

in Chapter V. The non-neutral detailed model is shown to have a serious procedural

flaw and is not developed further. The Poisson-consistent model is used successfully

to repeat the studies pertaining to ion inflow distribution. The results from these
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simulations are generally in very good agreement with the Boltzmann model result

and the planar Bohm sheath. The only notable exception is when the ion inflow

distribution has a significant backflow component. The present implementation of

the hybrid fluid PIC model only introduces particles at the upstream and outer edges

of the domain, so any backflow component is not well represented.

The hybrid fluid PIC model requires considerable time to run, making it im-

practical for simulations on larger domains. The computational code is profiled in

Chapter VI, revealing that the particle models account for a disproportionately large

fraction of the total time. A multigrid method is implemented to solve the PIC model

on a coarse grid and solve the electron fluid model on a fine grid. This reduces the

computational time spent in the particle models and maintains the grid resolution

required for accurate fluid model solutions.

The multigrid version of the code is used to perform simulations of a reversed

Faraday probe in Chapter VII. The computed flow field on the wake side of the

probe is significantly more complicated than on the ram side of the probe. The

simplistic structure predicted from the geometric sheath model does not accurately

reflect the actual structures. The numerical simulations also provide an estimate of

the exchange frequency, which is an unknown parameter in the geometric shadowing

model. Profiles of the exchange frequency show features that are not compatible

with the assumptions made in the geometric shadowing model. In these studies, the

geometric shadowing model is shown to be a poor predictor of sheath properties.

The dissertation is concluded in Chapter VIII with a review and summary of

the results and new contributions of this work. This includes assessment of the

analytic sheath models and the numerical models, an evaluation of the multigrid

scheme, and discussion of the probe simulations. In fulfillment of the objectives
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of this dissertation, suggestions are made regarding the design and use of Faraday

probes. Finally, a few recommendations for future work in this area are outlined.



Chapter II

Background and Motivation

The work described in this dissertation is performed in the context of electric

propulsion research. This setting guides many decisions about the relevant physical

processes and representative conditions of interest. It is therefore useful to introduce

electric propulsion and some of the active research in that area. This chapter is

additionally intended to identify some of the challenges and outstanding questions

that this research is intended to address.

2.1 Electric propulsion

Electric propulsion, or EP as it is often abbreviated, refers to spacecraft propul-

sion systems that utilize electrical processes rather than chemical reactions to accel-

erate a propellant. EP systems have been in development since the 1960s, although

the underlying concepts were described and investigated as early as 1906 [13, 14].

The first test of an EP device on a spacecraft was an ion thruster on the NASA Space

Electric Rocket Test 1 (SERT-1) in 1964. EP systems entered limited use beginning

in 1972, in the form of Hall thrusters on Soviet Union “Meteor” satellites [15, 16].

Over the following twenty years, various forms of EP were used for satellite station-

keeping by the United States and the Soviet Union. Since the late 1990s, EP devices

14
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have also been used as the primary propulsion systems on several deep space mis-

sions, including the NASA Deep Space 1 technology demonstration mission [17], the

Japanese Aerospace Exploration Agency (JAXA) Hayabusa asteroid sample return

mission [18], and the European Space Agency (ESA) SMART-1 lunar mission [19].

2.1.1 Types of electric propulsion

Electric propulsion includes a wide variety of techniques for producing spacecraft

thrust. The only common characteristic of EP systems is that the primary energy

source is electrical power. That power source might include solar cells, radioisotope

thermoelectric generators, nuclear reactors, or some combination of these. The defin-

ing characteristic of an EP system is not the particular power source, but rather the

mechanism which converts the electrical energy into propulsive thrust. Generally an

EP device can be grouped into one of three broad categories [20]: electrothermal,

electrostatic, or electromagnetic.

The first category, electrothermal EP, uses electrical heaters or an electrical dis-

charge to heat a working gas. That gas is then expanded through a nozzle as in

a conventional rocket. The most common electrothermal devices include resistojets

and arcjets. A schematic arcjet is shown in Fig. 2.1.

The second category, electrostatic EP, first ionizes the propellant and then ac-

celerates the charged particles via electric fields between one or more extraction and

acceleration grids. A schematic gridded ion thruster is shown in Fig. 2.2. Other elec-

trostatic devices include Hall thrusters, field emission thrusters, and colloid thrusters.

Devices in this category typically accelerate positive charge particles or ions, so there

is a need for an electron-emitting neutralizer to prevent a net charge buildup on the

spacecraft.
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Figure 2.1: Schematic of an arcjet [21], demonstrating an electrothermal propellant
acceleration mechanism.

The third category, electromagnetic EP, uses both electrical and magnetic fields

to accelerate charged particles. Magnetoplasmadynamic (MPD) thrusters and pulsed

plasma thrusters (PPTs) are the most common examples of this category. In PPT

concepts, a strong current is driven through surface material to form an ablation

plasma that carries the current from anode to cathode. Other concepts may use

alternative ionization schemes, and require applied electric fields to drive the plasma.

The plasma is accelerated to generate thrust via the Lorentz force of the magnetic

fields acting on the plasma current. Figure 2.3 shows a schematic PPT.

2.1.2 Advantages and limitations

Electric propulsion offers several benefits over conventional chemical rockets, but

also suffers from a few drawbacks. However, the gains in using an EP system can

outweigh the losses for long-term or high-energy missions.

One of the biggest advantages of EP devices is the high exhaust velocity and
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Figure 2.2: Schematic of an ion engine [22], demonstrating an electrostatic propellant
acceleration mechanism.

corresponding high specific impulse. Specific impulse, or Isp, is the ratio of thrust

T , to propellant weight flow rate as in Eq. 2.1. The weight flow rate is simply the

product of the mass flow rate ṁ and standard gravity at the surface of the earth g.

Isp =
T

ṁg
(2.1)

Various types of EP devices span a range of Isp, from 500-2,000 s for arcjets, to

1,200-6,000 s for Hall thrusters, to 3,000-10,000 s for ion thrusters. For comparison,

chemical rockets only range from 250-450 s Isp [24].

The benefit of higher Isp can be demonstrated from the ideal rocket equation,

Eq. 2.2, which is derived from conservation of momentum for a system that is emitting

mass [25]. For a system with initial total mass m0 that undergoes a maneuver with

a total change in velocity △v, the final mass m after the maneuver is a function only
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Figure 2.3: Schematic of a pulsed plasma thruster [23], demonstrating an electro-
magnetic propellant acceleration mechanism.

of the specific impulse Isp and the gravitational constant g.

m = m0 exp

(

−△v

gIsp

)

(2.2)

A spacecraft mission has a known, required △v from orbital mechanics and a

limited m0 based on the launch vehicle, so a higher specific impulse translates into

more final payload mass after maneuvering. This can be put to use in several ways.

One option is to increase the payload mass, since an EP system requires less

propellant mass than a chemical system for a given mission. Alternatively, the mis-

sion or operational lifetime could be extended, since the EP system can achieve a

larger △v for a fixed propellant mass. Another route altogether is to eliminate the

propellant mass saved by using the EP system and reduce the total mass, possibly



19

allowing a less expensive launch vehicle to be used. These options can be combined

to achieve a best compromise for a particular situation.

Another benefit of EP is the flexible control of the devices. Many EP systems are

capable of semi-independent control of propellant flow and electrical systems, which

allows for throttling of the flow rate, operating voltage, and current to optimize

performance at a desired thrust level. This is an improvement over solid rockets,

which have no throttle control, and over liquid or hybrid rockets, which can only

throttle the flow rate. A mission using EP systems has less restrictive launch windows

than a mission using conventional rockets.

Still another potential benefit of EP devices is the robustness of the underly-

ing propulsive concept. Since the acceleration mechanism is not dependent on the

particular propellant, an EP device could theoretically operate on a variety of dif-

ferent propellants. This could open the possibility of in situ propellant resupply for

long-duration missions to comets or asteroids with volatile compounds. However,

multiple-propellant thruster designs are beyond the current state of the art.

The two main drawbacks to using an EP device stem from the practical limit on

the maximum current density that can be sustained in an electrical arc or plasma

current. In electrothermal applications this acts to limit the rate of energy deposition,

while in electrostatic and electromagnetic applications this acts to limit the flow rate

of accelerated exhaust. In both cases the consequence is that EP systems produce

much smaller thrust than chemical systems. For example, thrust levels from EP

devices range typically range from a few µN for ion thrusters to less than 10 N for

arcjets. In contrast, chemical rockets can achieve 1 kN-1 MN of thrust [24].

As a further negative consequence of low thrust production, EP systems require

much longer firing time than chemical systems. While a chemical rocket typically



20

operates for only a few minutes, an EP device must operate for months or years

to achieve the full △v indicated from the ideal rocket equation. This introduces

long-term performance issues as well as failure and lifetime concerns for EP systems.

Low levels of thrust are not necessarily prohibitive, and certain applications only

require low thrust levels. Stationkeeping and orbit transfers are well within the

range of thrust provided by EP devices, although orbit transfers will take signifi-

cantly longer than with a chemical system. Microsatellite formation flight and high-

precision stationkeeping maneuvers both benefit from engines that can produce small

but highly repeatable thrust bits. One notable example is the planned NASA Laser

Interferometer Space Antenna (LISA) mission [26], which requires µN-levels of thrust

to maintain proper positioning of the component spacecraft.

2.2 Experimental investigation of electric propulsion

Research on EP devices is ongoing and includes activities at every stage of de-

velopment: theory and design of novel concepts, testing and validation of designs,

long-duration life tests of mature designs, and studies of spacecraft integration issues.

2.2.1 Ongoing Research

Mature technologies such as Hall thrusters and ion thrusters are well character-

ized in terms of performance. Research related to these systems is directed toward

extending operational lifetime, characterizing the spacecraft integration issues, and

developing high power configurations.

Since an EP device must operate for months or years, long-duration life tests

are carried out in ground-based vacuum chambers. These tests often consider the

issue from multiple viewpoints. From an application viewpoint, it is necessary to un-

derstand how the actual performance deviates from the ideal performance by mea-
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suring changes in thrust, beam divergence, and efficiency over the lifetime of the

device [27, 28]. From a design viewpoint, characterization of the wear and damage

sustained during prolonged operation is useful for identifying and addressing failure

modes, as well as estimating the time to failure.

The exhaust plume from EP devices may include plasma, unaccelerated propel-

lant, and materials eroded from the device. Different lines of research help character-

ize the resulting conditions near the spacecraft and consider how its performance is

affected. Research into sputtering and deposition looks at the physical processes that

erode material inside the thruster [29], and the transport and deposition of sputtered

material and exhaust particles onto other spacecraft surfaces [30, 31]. Electromag-

netic interference [31] is another concern, since charged particles in the exhaust plume

can interfere with signal transmission to and from the spacecraft.

There is strong interest in developing high power EP systems that can produce

higher thrust levels while maintaining favorable Isp and efficiency. Research in this

area is typically directed toward developing larger models of a device (the monolithic

approach) [32] or toward developing clusters of existing smaller models of a device [33,

34, 35]. Challenges in a monolithic approach are related to fabrication and inadequate

facilities for full-scale testing, while challenges for a clustering approach arise from

operational difficulties due to the interaction between individual devices in a cluster.

There is also an active interest in developing novel EP concepts. New designs may

incorporate the better elements of two systems, as in hybrid Hall/ion thrusters [36], or

extend EP concepts to entirely new designs as in microthruster and MEMS “thruster

on a chip” concepts [37, 38]. Hybrid designs are often able to move quickly to

a prototype, since much of the fabrication and operation is well understood from

existing designs. The more radical MEMS concepts are currently at proof of concept
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and early prototype stages. If the fabrication issues can be resolved, such concepts

would offer even more flexible scalability and control than existing EP systems.

2.2.2 Vacuum facilities

Experimental testing is conducted in ground-based vacuum facilities. The largest

academic facility in the United States is the Large Vacuum Test Facility (LVTF)

at the Plasmadynamics and Electric Propulsion Lab (PEPL) at the University of

Michigan [39]. The main chamber of the LVTF is a cylindrical vessel 9 m long, and

6 m in diameter. A diagram of the facility and several diagnostic instruments in

Fig. 2.4 shows the complexity and scale involved. Smaller facilities are significantly

less expensive to build, maintain, and operate, so chambers this large are rare.

Figure 2.4: Large Vacuum Test Facility at the University of Michigan [39].

Although the LVTF has a very high pumping rate of 240,000 liters per second

on xenon, the facility still develops a measurable back pressure during operation of

EP thrusters [12]. This residual background pressure is due to the finite pumping

capacity and inevitable leaks and outgassing present in any vacuum facility.
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The interpretation of experimental measurements is complicated by secondary

effects of the background gas. At the thruster itself, background gas can be re-

ingested and accelerated, artificially increasing the thrust and propellant efficiency.

Collisions between accelerated particles and background particles in the exhaust

plume can increase beam divergence, broaden the energy distribution, and produce

low energy charge exchange ions. This affects measurements of current density and

velocity distribution throughout the plume.

2.2.3 Probe diagnostics

Experimental measurements of many plasma properties can be made using rela-

tively simple plasma probe diagnostics [40]. Three mainstay probe instruments are

discussed below: the Faraday probe, the Langmuir probe, and the retarding potential

analyzer (RPA). These probes offer good spatial resolution and have well-established

techniques for interpreting the measurements. Non-intrusive optical diagnostics are

available, but are not as widely used due to the greater cost and complexity.

The nude Faraday probe is the simplest of probe devices, consisting of a current

collecting surface that is large compared to the Debye length. One mode of operation

is to apply a bias voltage to repel electrons, so that the probe measures only the ion

current at a point in the plasma flow. Alternatively, the probe bias can be allowed

to float to the plasma potential, so that the net current to the probe is zero. More

complicated variations of the Faraday probe incorporate physical or electromagnetic

filtering [41, 42] to screen out the electron current or undesired, random ion currents.

The Langmuir probe consists of one or more current collecting wires that are

immersed in the plasma. Several configurations are commonly used, including single,

double, and triple probes [43, 44, 45]. These variations allow for simplifications in the
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control system or in the analysis of measurements. Measurements from the current

versus voltage characteristic of a Langmuir probe can be used to determine the

plasma potential, the floating potential, the electron temperature, and the plasma

number density.

The RPA is somewhat more complicated than the previous probes, since it uses

a series of biased screens to repel particles below a threshold energy while allow-

ing higher energy particles to reach a collecting surface [40, 46]. By analyzing the

derivative of collected current over a range of bias voltage, it is possible to extract

the energy distribution function of the ions.

Each of these probe diagnostics is immersed in the plasma flow and causes some

disturbance relative to the unimpeded flow if the probe were not present. Recent

experimental measurements of the plasma properties around an immersed Faraday

probe show that the disturbed flow field around the probe can be observed [12]. In

the diagnostic techniques, these disturbances are assumed to be relatively small and

confined to a sheath and presheath region around the probe.

2.3 Computational modeling of electric propulsion

Computational research parallels many of the experimental investigations de-

scribed previously. Experimental and computational investigations are often com-

plementary, although some discrepancies persist between experimental measurements

and computational results.

2.3.1 Computational techniques

Several types of EP devices including Hall thrusters, ion thrusters, PPTs, and

MPDs generate strongly flowing, low density plasma exhaust plumes. Models of

plasma behavior must describe particle motion, along with the self-consistent electric
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and magnetic fields that govern the motion. Computational models must therefore be

capable of solving the equations of motion for particles and the differential equations

for electromagnetic fields.

One of the earliest and most widely used computational techniques for simulating

plasmas is the Particle In Cell or PIC method [47]. In this type of model the plasma is

represented by a reduced number of macroparticles that obey the standard equations

of motion and interact with discrete electric fields calculated on a computational grid.

In brief, this method separates the particle motion from the calculation of fields and

iterates to achieve a consistent solution.

A related technique is Direct Simulation Monte Carlo or DSMC, which also uses

macroparticles to simulate gases and incorporates probabilistic models to describe

particle collisions [48]. This allows additional physical processes to be considered,

including chemistry, ionization and recombination, and surface interactions. DSMC

models can be combined with PIC models to add collisions and wall interactions to a

plasma simulation. In Chapter V both PIC and DSMC techniques will be described

in greater detail for the particular implementation used in this research.

Under conditions where magnetic fields dominate particle motion, an alternative

set of models is available. Magnetohydrodynamic (MHD) equations describe a mag-

netized plasma in the continuum limit, similar to the Navier-Stokes equations as

solved in computational fluid dynamics (CFD) models. In non-equilibrium limits, a

gyro-kinetic model is necessary to describe particle motion. This model is roughly

analogous to the PIC model, but requires an average over the fast gyromotion of

magnetically confined particles. Magnetic fields are not significant in the far field of

a Hall thruster or ion thruster, so MHD and gyrokinetic models will not be discussed

in this dissertation.
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2.3.2 Ongoing research

Computational research in EP overlaps experimental investigations in almost

every area. Lifetime issues are addressed by investigating sputtering and erosion

processes in the thruster [49, 50]. Integration issues are considered through studies of

deposition and implantation [51], plume backflow [52], and through plasma control to

mitigate signal interference [53]. High-power cluster configurations are simulated to

evaluate the performance, with near- and far- field studies to characterize the exhaust

plume [54]. Preliminary modeling is already underway to characterize prototype

MEMS devices [55].

A broader goal is to develop and refine computational models until they become

sufficiently accurate to perform reliable assessment and characterization of EP de-

vices. Meeting that goal would help streamline the design process for new devices and

also enable more effective interpretation of experimental results. For example, a suf-

ficiently robust computational model could be used to predict on-orbit performance

of a high-power configuration from measurements made in small vacuum chambers

where the pumping rate is too low.

At this point there are few or no efforts to comprehensively improve model fi-

delity. However, narrowly focused efforts to improve specific aspects of a model are

often incidental to a computational study. Variations of existing models are imple-

mented to more accurately capture the physics involved in some aspect of a broader

study. For a few examples: a wall sputtering model might be added to a thruster

simulation in order to compare the calculated performance degradation with exper-

imental results from a long-duration life test [56], or higher fidelity magnetic fields

might be incorporated in a Hall thruster acceleration model to assess the impact on

the near-field plume [57]. Additionally, many lines of research are directed toward
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speeding up existing models, either by using alternative techniques to perform simi-

lar calculations or by optimization and parallelization of an existing computational

code.

2.4 Need for simulation of plasma probes

Experimental and computational researchers continually share results in EP, so it

is desirable to have a clear understanding of how experimental measurements relate

to undisturbed plasma conditions.

Electric propulsion devices produce highly non-equilibrium plasma flows. The

most commonly used electromagnetic and electrostatic devices produce an exhaust

plume consisting of high temperature electrons, high energy ions of various charge

states formed in the thruster, high energy neutrals and low energy ions formed via

charge exchange collisions, and low energy neutrals that diffuse out of the thruster

without being ionized or accelerated. The plasma is low density, strongly flowing,

and nearly collisionless as a whole.

This is markedly more complicated than the simple conditions of isothermal elec-

trons and cold drifting ions assumed in the theoretical analysis of some plasma probe

measurement techniques. One important open question is how well the theoretical

probe techniques perform for a more complex, realistic EP plasma flow. A compu-

tational setting is especially well suited to evaluating this question, since the plasma

conditions can be specified explicitly and probe measurements can be simulated and

analyzed according to standard diagnostic techniques. By moving incrementally from

the ideal plasma of the diagnostic theory to a realistic plasma, it is also possible to

isolate the effects of each deviation from the ideal assumptions.

A second open question is how the insertion of a diagnostic probe disturbs the
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plasma flow, and whether that disturbance introduces a systematic error in the mea-

surements the probe makes. Put another way, it is not clear whether the disturbed

conditions measured by the probe can be related back to the undisturbed plasma

conditions. Again, a computational setting is ideal for investigating these effects

since the undisturbed conditions are known explicitly as inputs.

The remainder of this dissertation describes the development and use of compu-

tational models to help address these open questions.



Chapter III

Governing Equations and Analytical Sheath Models

The flow field around a Faraday probe is characterized by plasma interactions with

physical surfaces and electrostatic sheaths. Since this involves numerous physical

mechanisms and spans a broad range of scales, it is useful to first consider simplified

conditions that can be solved analytically. This chapter introduces the classical

descriptions of a plasma and the derivation and use of two analytical models. Later

chapters will refer to these analytical models as reference cases.

The first model is described as a shadowing model, alluding to physical obstruc-

tion of the flow by the probe body. The flow structures described in this model are on

a scale comparable to the probe dimensions. Although the model is developed from

a very general kinetic description of the plasma, the analytical solution is limited

by the assumption of negligible electric and magnetic fields. Due to that limitation,

the shadowing model is only a gasdynamic model and will not capture the more

complicated plasmadynamic effects.

The second model is a collisionless planar sheath model. In this model the flow

structures are on a scale comparable to the Debye length, which is generally much

smaller than the probe dimensions. This model is developed from a fluid description

of the ion plasma, and accounts for coupling between the electric fields and the plasma

29
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by solving the electrostatic Poisson equation. This model is a plasmadynamic model,

and includes most of the relevant physical processes that occur in a sheath.

3.1 Plasma concepts and theories

Plasmas behave like gases in many regards, but the addition of free charged par-

ticles makes a plasma electrically conductive. At microscopic scales approaching and

smaller than the Debye length, electrostatic forces between particles are significant.

However, these inter-particle forces act to redistribute the charge in such a way that

local charge is shielded and the plasma appears uniform over larger scales [58]. At

the macroscopic scale, the bulk plasma exhibits collective behavior that is consistent

with zero internal electric or magnetic fields.

The charge shielding effect is not uniform near the edges of a plasma, for instance

at a free surface interface with vacuum or at a conducting wall. External electric and

magnetic fields influence charged particles near the edge of the plasma and generate

a sheath [1, 2], which in turn acts to isolate the bulk plasma from the external fields.

The sheath thickness is determined by the distance that external fields can penetrate

into the plasma, and depends on the density and mobility of the charged particles.

Like the charge shielding effect, sheath thickness scales with Debye length.

3.1.1 Kinetic description

A plasma is an ionized gas, so a theory that describes gas behavior is a reasonable

starting point for describing a plasma. The kinetic theory of gases is a very successful

theory based on a statistical description of a gas at the molecular level. Appropriate

averages of microscopic properties such as velocity and collision rate can be related

to the macroscopic temperature and pressure.

Kinetic theory posits that a gas is composed of a very large number of particles
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that interact only through collisions [59, 60, 61]. In the simplest form, the particles

are assumed to be identical and devoid of internal structure so that a particle can be

described completely by its position and velocity. A particle’s position and velocity

at any later time can be found by integrating the equations of motion. The bulk

gas can then be described by a time-varying distribution function f(x,v, t) of all

the constituent particles over a phase space with three dimensions in both space

and velocity. Since the initial positions and velocities of the particles are essentially

random, the distribution function is evaluated statistically.

Behavior of the gas then corresponds to evolution of the distribution function.

The Boltzmann transport equation, Eq. 3.1, describes how the distribution function

changes in space and time. Particles are advected in space due to their velocity

(

v ∂f
∂x

)

, and accelerated in velocity space by any external forces
(

a∂f
∂v

)

. The collision

operator C (v1,v2) is a function that relates the initial and final velocities for colliding

particles. In a dilute gas the particle size is much smaller than the average spacing

between particles, and binary collisions dominate the collision operator.

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= C (v1,v2) (3.1)

Macroscopic properties of the gas are then obtained by taking moments of the dis-

tribution function as in Eq. 3.2. The zeroth and first moments respectively produce

the density and mean velocity, and the second central moment yields temperature.

n (x) =

∫ ∞

−∞
n∞f(x,v)dv

〈v (x)〉 =
1

n (x)

∫ ∞

−∞
n∞vf(x,v)dv (3.2)

T (x) =
1

n (x)

∫ ∞

−∞
n∞(v − 〈v (x)〉)2f(x,v)dv
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A solution to Eq. 3.1 can be found for an unbounded gas at equilibrium, with no

external forces. It can be shown that the collision term must be zero at equilibrium,

corresponding to a detailed balance for the distribution. The energy partition func-

tion for the particles in the gas can be analyzed with statistical mechanics, leading to

the functional form of the distribution. The remaining parameters of the distribution

function can then be determined by comparing the kinetic moments of Eq. 3.2 with

classical thermodynamic forms for entropy [61]. The resulting Maxwell-Boltzmann

or “Maxwellian” distribution given in Eq. 3.3 describes a gas that is spatially uniform

and does not vary in time. The more complicated space and time varying distribu-

tions required to describe practical flows are often intractable by analytic methods,

and solutions must be obtained numerically.

f (v) dv =

(

m

2πkBT

)
3

2

exp

[

− m

2kBT

(

v2
x + v2

y + v2
z

)

]

dv (3.3)

The kinetic description for a plasma is more complicated than for a gas. Most

plasmas are partially ionized, meaning that the bulk plasma consists of neutral gas

particles, ions, and electrons. Separate but coupled distribution functions are re-

quired for each species in order to completely describe the plasma.

The Lorentz force, as given in Eq. 3.4, describes the electric and magnetic forces

that act on the charged particles.

aEM =
e

m
(E + v ×B) (3.4)

At the microscopic level, strong electromagnetic fields can drive collective drifts or

confine particle motion to orbits about magnetic field lines. At the macroscopic

level, several kinds of plasma waves arise due to the coupling between electric and

magnetic fields as described in Maxwell’s laws [62].
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In a plasma, collisions can also alter the species of the particles: charged particles

can be formed in ionization collisions, lost in recombination collisions, or transferred

in charge exchange collisions. A separate collision operator can be defined for each

of these processes, including a collision operator between particles of a single species

C (v1,v2), a momentum exchange operator between different species CM (f1, f2), a

charge exchange operator between different species CC (f1, f2) that can act as source

or sink, an ionization source SI (f1, f2), and a recombination sink SR (f1, f2). For

brevity, Eq. 3.5 defines a total collision operator CTot that includes each of these

components.

CTot = C (v1,v2) + CM (f1, f2) + CC (f1, f2) + SI (f1, f2) − SR (f1, f2) (3.5)

The modified Boltzmann transport equation for the distribution function fj of one

plasma species seen in Eq. 3.6 appears very similar to the earlier form for a gas [58].

All of the complications associated with a plasma have been grouped into more

complicated acceleration and collision terms. A full solution for the plasma would

require simultaneous solution of an equivalent expression for each ion, electron, and

neutral species, which is considerably more difficult than for a single neutral gas

species.

∂fj

∂t
+ v · ∂fj

∂x
+ (a + aEM) · ∂fj

∂v
= CTot (3.6)

More advanced versions of kinetic theory can be devised to incorporate elastic col-

lisions, chemical reactions, and vibrational and rotational modes for molecules [61].

However, analytical solutions are only possible for very simple conditions, and nu-

merical approaches must generally be used instead.
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3.1.2 Fluid description

A macroscopic treatment of the flow through a control volume leads to conser-

vation laws for mass, momentum, and energy. Together with a state equation, the

conservation equations accurately describe the continuum behavior of a gas. This

is not surprising since the conservation laws can be obtained from kinetic theory in

the limits of continuum or equilibrium flow [59]. The degree of non-equilibrium in

a flow is characterized by the Knudsen number in Eq. 3.7 as the ratio of mean free

path between collisions λMFP to the relevant reference length of interest L. The fluid

equations are appropriate when the Knudsen number is small, typically Kn < 0.01,

and the flow is near equilibrium.

Kn =
λMFP

L
(3.7)

Starting from the kinetic model of a gas with an assumed Maxwellian distribution

(Eq. 3.3), the zeroth, first, and second moments of the Boltzmann transport equation

(Eq. 3.1) correspond to conservation of mass, momentum, and energy. A practical

difficulty in this approach is that any moment of the transport equation involves

contributions from the next higher moment. This closure problem is resolved by

enacting a moment closure, where higher order moments are expressed in terms of

lower order moments. In practice, a Chapman-Enskog expansion of the equilibrium

function is taken to third order terms, and the fourth moment of the expanded

distribution then depends only on the lower moments.

Taking the moments of the Maxwellian distribution produces the Euler equations

for inviscid fluid flow (Eq. 3.8). One significant limiting factor in the use of the Euler

equations is that no gradient transport is possible. Physical phenomena such as heat
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transfer and momentum transfer at a wall cannot be described.

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ (ρv)

∂t
+ ∇ · (ρvv) + ρa = −∇P (3.8)

∂ (ρe)

∂t
+ ∇ · (ρev) + ρa · v = −P∇ · v

The well known Navier-Stokes equations in Eq. 3.9 can be obtained in a sim-

ilar fashion by starting with a first order Chapman-Enskog perturbation of the

Maxwellian distribution [59]. Again, moments of the Boltzmann transport equa-

tion produce the conservation laws for mass, momentum, and energy.

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ (ρv)

∂t
+ ∇ · (ρvv) + ρa = −∇P + ∇ · τ (3.9)

∂ (ρe)

∂t
+ ∇ · (ρev) + ρa · v = −P∇ · v + τ : ǫ −∇ · q

The Navier-Stokes equations include gradient transport. Momentum transport

occurs via shear stress and energy transport occurs via heat flux. However, the devi-

atoric shear stress tensor τ and heat flux vector q introduce a closure problem since

neither is explicitly a function of the independent thermodynamic variables. Typi-

cally the equation set is closed by assuming constitutive relations, such as Newtonian

fluid viscosity to replace the stress tensor and Fourier heat conduction to replace the

heat flux vector. The constitutive relations may introduce additional transport co-

efficients such as viscosity and thermal conductivity that must be determined as

well.

Higher order perturbations of the Maxwellian distribution have been consid-

ered [59], leading to the Burnett equations. Such models suffer from the same sort

of closure problems as the Navier-Stokes equations, and produce significantly more
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complicated forms of the stress tensor and heat flux. Higher-order models are cor-

respondingly more difficult to solve, and the Burnett equations in particular are

unstable without higher-order corrections.

Equivalent conservation laws can be developed for a plasma by including electro-

magnetic force contributions to momentum and energy [58]. Additionally, Maxwell’s

laws are used to determine consistent electromagnetic fields. Typically the effects

of viscous forces are negligible compared to electromagnetic forces, so contributions

from the shear stress tensor are omitted here. Collisional resistance to electrical cur-

rent affects momentum transport in the flow, giving rise to the resistive term ∼ j

σ

and the electrical conductivity σ. The equation set in Eq. 3.10 is the basis of the

magnetohydrodynamic (MHD) equations for a plasma.

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ (ρv)

∂t
+ ∇ · (ρvv) + ρa + ρ

e

m
(E + v ×B) = −∇P + ρ

e

m

j

σ

∂ (ρe)

∂t
+ ∇ · (ρev) + ρa · v + ρ

e

m
E · v = −P∇ · v −∇ · q

∇ · B = 0 (3.10)

∇ · E =
e

ε0
(ni − ne)

∇× E = −∂B

∂t

∇× B = µ0j + ε0µ0
∂E

∂t

A number of analytic solutions to the MHD equations can be found after tak-

ing appropriate limits and substantially rearranging these equations. Such solutions

describe many plasma waves, including magnetosonic waves and Alfven waves [63].

However, many practical situations are too complex for analytic solutions, and nu-

merical solutions must be found instead.
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3.2 Geometric Shadowing Model

The central premise of the shadowing model is that certain particle trajectories

are blocked or shadowed in the vicinity of a physical obstruction. This shadowing

causes the distribution function to differ from the distribution at points far from the

obstruction. Since the macroscopic plasma properties are calculated as moments of

the distribution, plasma at a shadowed point has different properties than unaffected

plasma far from the surface.

The model described here was originally developed in the context of strongly

flowing, magnetically confined, tokamak fusion plasmas [5, 64, 65]. The derivation

given here closely follows the approach described by Valsaque et al. [66]. One minor

variation from that approach is to normalize the equations with length and velocity

scales that are consistent with other models considered in this dissertation.

3.2.1 The Vlasov equation and shadowing solution

In the shadowing model, the inflowing plasma is fully ionized, neutral, and con-

sists of electrons and an arbitrary distribution of ions. The ions are analyzed with a

kinetic model derived from the Boltzmann transport equation. A steady, collision-

less, planar sheath is assumed by taking the steady state
(

∂f
∂t

= 0
)

and collisionless

(C = 0) limits in Eq. 3.1 and reducing the flow to one dimension. The resulting form

in Eq. 3.11 is often referred to as the Vlasov equation. Note that the distribution

function reduces to f (x, vx) under these simplifications.

vx
∂f

∂x
+ ax

∂f

∂vx
= 0 (3.11)

The acceleration in this case simplifies to the contributions from the electric

field along the direction of flow, as in Eq. 3.12. Since the flow is one dimensional,



38

there is no possible magnetic field orientation that would generate a magnetic force

contribution along the direction of flow. The electric field is also rewritten in terms

of the electric potential for convenience.

ax =
e

mi
Ex = − e

mi

dφ

dx
(3.12)

The diffusive source term in Eq. 3.13 is added to represent a random transfer of

particles between the shadowed region in the sheath and the ambient plasma [66].

The ambient plasma has a freestream distribution function f∞ (vx), which should

be recovered from f (x, vx) in the limit as x → −∞. A simple exchange frequency

parameter w is defined that assumes a uniform diffusion rate of particles into and

out of the sheath, regardless of location or particle velocity.

SDiffusion = w (f∞ (vx) − f (x, vx)) (3.13)

The schematic diagram in Fig. 3.1 shows the coordinates of the shadowing sheath

model and representative forms of the distribution function at a few points in the

sheath. The surface of the probe is located at x = 0, and the plasma is confined

to negative values of x upstream of the probe. The velocity is defined such that

positive vx corresponds to forward flow, toward the probe surface, and negative vx

corresponds to backward flow, away from the probe surface. The ambient plasma

distribution is f∞ (vx) and remains unchanged at all points in the sheath. The local

distribution function in the sheath is f (x, vx), and far from the probe the local

distribution approaches the ambient distribution, f (x −→ −∞, vx) = f∞ (vx). At

the surface of the probe, the distribution function for backward flowing velocities

is identically zero, f (0, vx) = 0 for vx < 0. The exchange frequency w is constant

throughout the sheath, and determines the rate that particles diffuse between the

ambient and local distributions.
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Figure 3.1: Schematic of the geometric shadowing model, showing the regions of the
flow and the distribution function.

Combining Eqs. 3.11-3.13 gives a differential equation for the distribution function

throughout the sheath as in Eq. 3.14. That expression is only a model of the ion

plasma. To model the neutral plasma, a similar expression for the electron plasma

would be required and the electrostatic Poisson equation would close the set.

vx
∂f

∂x
− e

mi

dφ

dx

∂f

∂vx

= w (f∞ (vx) − f (x, vx)) (3.14)

Using the standard plasma parameters of Debye length, λD, and plasma fre-

quency, ωP , as given in Eq. 3.15, this equation can be recast in the normalized

variables of Eq. 3.16. The normalized velocity is represented as a Mach number M

with respect to Bohm velocity, vB, and the normalized temperature τ is the ratio

of ion to electron temperature. This choice of normalizations is consistent with the

planar Bohm sheath model that will follow in Sec. 3.3.

λD =

√

ε0kBTe

e2ne

, ωP =

√

e2ne

ε0me

, vB = λDωP =

√

kBTe

me

(3.15)
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z =
x

λD
, W =

w

ωP
, Φ =

eφ

kBTe
, n

′

i =
ni (z)

ni,∞
, M =

vx

vB
, τ =

Ti

Te
(3.16)

After normalizing and rearranging, the differential equation for f (z, M) is:

M
∂f

∂z
− dΦ

dz

∂f

∂M
= W (f∞ − f) (3.17)

In order to obtain an analytic solution it is necessary to assume negligible electric

fields
(

dΦ
dz

= 0
)

, which produces the form in Eq. 3.18. The boundary conditions in

Eq. 3.19 require the distribution function to approach the ambient distribution far

from the probe surface, to have no backward flow at the probe surface.

M
∂f

∂z
= W (f∞ − f) (3.18)

f (z → ∞, M) = f∞ (M) , f (0, M) =























0, M ≤ 0

f∞ (M) , M > 0

(3.19)

This can then be solved as a non-homogeneous partial differential equation, and

the solution takes the form shown in Eq. 3.20. Moments of the modified velocity

distribution function can then be taken as defined in Eq. 3.2 to obtain the local

density, mean velocity, and temperature.

f (z, M) = f∞ (M)

[

1 − H (−M) exp

(

−W

M
z

)]

(3.20)

The Heaviside function H (−M) activates an exponential fall off in density for

backward flowing particles (M < 0) as the flow approaches the surface. This aspect

describes a shadowing effect where the backward flowing particles are not present

at the surface, but diffuse into the sheath upstream of the surface. Forward flowing

particles (M > 0) maintain the ambient density at all points in the sheath.

This solution can also be easily modified to consider the sheath on a backward

facing surface by changing the boundary conditions. In particular, the inequality in
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the second condition in Eq. 3.19 must be reversed. The solution retains the same

form except that the sign of the Mach number argument is switched in the Heaviside

function.

A few immediate observations can be made about this model. First, since the

analytic solution neglects any electric and magnetic fields, this is only a gasdynamic

model and cannot capture all of the behavior expected for charged particles in an

electrostatic sheath. Second, the functional form of the ambient distribution function

is not important in this solution, so it is applicable to any inflow condition. However,

the nature of the ambient distribution is carried throughout the sheath. Third, this

model cannot be translated to physical dimensions unless the normalized exchange

frequency W is found.

3.2.2 Results and Discussion

The geometric shadowing model solves for the local ion distribution function

in the sheath based on an arbitrary freestream distribution function. In order to

facilitate comparison with the planar Bohm sheath model, the inflow distribution is

assumed to be a Maxwellian. It is trivial to normalize one velocity component of

the Maxwellian distribution function from Eq. 3.3 to the form seen in Eq. 3.21, with

the two parameters of drift Mach number MD = vD

vB
and freestream ion to electron

temperature ratio τ∞ = Ti∞

Te
.

f∞ (M) dM =
1√

2πτ∞
exp

(

−(M − MD)2

2τ∞

)

dM (3.21)

The direct result of the analytic solution is a modified distribution function cal-

culated from Eq. 3.20. Examples of the distribution function at several positions

in the sheath are shown in Fig. 3.2. The freestream plasma conditions and param-

eter values for this example are: equal ion and electron temperatures, τ = 1; ion
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Figure 3.2: Profiles of the local distribution function in the shadowing sheath solu-
tion.

drift velocity equal to the Bohm velocity, MD = 1; and exchange frequency equal to

the plasma frequency, W = 1. Changing the parameters of the ambient distribution

function has the usual effect, with larger MD shifting the entire distribution to higher

velocities and larger τ∞ acting to broaden the distribution.

The effect of changing the exchange parameter W is to scale the rate of expo-

nential falloff for the shadowed velocity range. A more meaningful alternative in-

terpretation is that changing W scales the physical length of the shadowing sheath.

As a practical note, the plasma frequency is the fastest time scale for the electrons.

The rate of ion transfer presumably occurs on a slower time scale, so the normalized

exchange frequency is expected to be small (W ≪ 1) for a physically realistic plasma.

Far from the probe surface (z → −∞) the distribution approaches the Maxwellian

of Eq. 3.21. For intermediate values of z, the distribution has an exponentially

scaled probability for velocities less than zero, and retains the ambient distribution
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for velocities greater than zero. At the surface (z = 0) the modified distribution is

a truncated Maxwellian, with identically zero probability for all backward flowing

velocities. The local distribution function is continuous at all z < 0, but has a

discontinuity at z = 0.

The thermodynamic properties of the local plasma are computed by taking the

moments of the modified distribution at each position in the sheath. Since the mod-

ified distribution function is not an elementary function, the moments are obtained

through numerical integration. The first moment of the distribution yields the local

ion density profile in Fig. 3.3 and the second moment yields the mean velocity profile

in Fig. 3.4. Each point on these profiles corresponds to an integral over the modified

distribution function at that position in the sheath.

Number density drops as the flow approaches the surface, since the backward

flowing part of the distribution is shadowed out. Since only particles with negative
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velocities are shadowed out, the mean velocity increases near the probe surface.

This reflects the decrease in number of particles with negative velocity, but does not

indicate any acceleration of the flow. Ion flux is not conserved through the sheath,

since the diffusion process represented by the exchange frequency acts to transfer

flux between the sheath and the ambient plasma.

The local ion temperature profile can be computed from the second central mo-

ment of the local distribution, as in Fig. 3.5. The temperature shows a gradual

decrease as the flow approaches the surface, since the distribution tends toward a

smaller spread about a higher mean velocity. The low velocity tail becomes less sig-

nificant in the temperature calculation as the probability of the shadowed velocities

decreases near the probe surface.

The electron properties and plasma potential are not solved in this model. In

fact, the potential must be constant in order to comply with the assumption of
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zero electric fields. However, it is illustrative to relax that assumption and derive a

plasma potential from the ion density profile. This can be accomplished by assuming

plasma neutrality, so that the local electron density is equal to the ion density, and

then further assuming the Boltzmann relation for the electrons, so that the electron

density is a function of the plasma potential.

The resulting expression for the potential is a function of the ion density as in

Eq. 3.22, and the resulting potential profile is shown in Fig. 3.6. In this form it

is assumed that the potential far from the surface is zero, and the potential at the

surface cannot be assigned.

Φ (z) = ln
(

n
′

i

)

(3.22)

Valsaque et al. have compared this derived potential profile with the potential

profile obtained from numerical kinetic simulations that include electric fields [66].

The analytical shadowing profile shows surprisingly good agreement with the kinetic
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Figure 3.6: Profile of plasma potential in the shadowing sheath solution.

model results in that paper, prompting the conclusion that electric field effects are

not predominant and that geometric shadowing is the primary mechanism that drives

ion properties in the sheath. The primary effect of the electric field seems to be a

smoothing of the distribution function that avoids the abrupt change in derivative

at M = 0 that appears in the analytical distribution function.

While there is some support for the accuracy of the derived potential, the geo-

metric shadowing model remains fundamentally a gasdynamic model. The trends

observed in the local ion density, velocity, and temperature profiles are all consistent

with a neutral, expanding flow. Essentially, the backward flowing particles behave

as a counterflowing wake region superimposed on the uniform forward flow. A more

meaningful alternative interpretation is that backward flowing particles expand into

the sheath from the ambient plasma in order to replace the particles that are shad-

owed out by the surface.



47

3.3 Collisionless Planar Bohm Sheath

One of the earliest solutions to the plasma sheath is the collisionless planar Bohm

sheath model. In this solution, a neutral plasma is modeled with a collisionless fluid

description of the ions and the Boltzmann relation for the electrons. Self-consistent

electrostatic fields are determined through the electrostatic Poisson equation. The

concept of a presheath and an important stability criterion are introduced in the

analysis of this sheath model.

The derivation presented here is unique in that it considers multiple ion species

with arbitrary charge states. This form is useful for application to the complicated

ion distributions expected in an EP exhaust plume. The original single species form

can be easily recovered at any point, and is better suited to demonstrate the Bohm

criterion.

3.3.1 Fluid equations and a solution

The inflowing plasma in this model is fully ionized, neutral, and consists of

isothermal electrons and one or more cold ion species (i.e., Ti = 0) flowing toward

a perfectly absorbing surface [1, 3]. In the sheath, electrons and ions only interact

with the self-consistent potential field. For simplicity, the potential is assumed to be

zero and have zero gradient at the sheath edge, φ (x = 0) = 0 and ∇φ|0 = 0. At the

surface, the potential is a fixed negative value φ (x = L) = −φw. This geometry is

shown schematically in Fig. 3.7. The thickness of the sheath L is not known initially.

Under the assumptions that the sheath is steady, collisionless, and planar, conser-

vation of mass for each ion species reduces to conservation of mass flux as in Eq. 3.23,

which can be further simplified to conservation of number flux by dividing through

by the ion mass. The subscript j refers to the jth ion species, and the subscript s
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Figure 3.7: Schematic of the planar Bohm sheath geometry.

denotes properties at the edge of the sheath.

mjnjsvjs = mjnjvj (3.23)

Conservation of energy in a steady, collisionless, planar sheath reduces to the

Lagrangian form in Eq. 3.24, consisting of a kinetic energy term
(

1
2
mv2

)

and an

electrostatic potential energy term (eφ). The ion charge state is an integer multiple

Zj of the electron charge, which factors into the potential energy term.

1

2
mjv

2
js =

1

2
mjv

2
j (x) + Zjeφ (x) (3.24)

The velocity at any point in the sheath can then be related to initial velocity

and local plasma potential by rearranging the conservation of energy to the form in

Eq. 3.25. This intermediate result can be combined with the conservation of number

flux to yield Eq. 3.26, which expresses the local ion density only in terms of the
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sheath edge properties and the local plasma potential.

vj (x) = vjs

(

1 − 2
Zjeφ (x)

mjv
2
js

)1/2

(3.25)

nj (x) = njs
vjs

vj (x)
= njs

(

1 − 2
Zjeφ (x)

mjv
2
js

)−1/2

(3.26)

The isothermal electron fluid is assumed to follow the Boltzmann relation through-

out the sheath. Since the inflowing plasma is neutral, the electron density at the

sheath edge must be equal to the total positive charge density due to the ions. That

density is found by taking a sum over all ion densities, weighted by the charge state

of each species. The resulting nes in Eq. 3.27 gives the electron density at the sheath

edge.

nes =
∑

Zjnjs (3.27)

The sheath edge becomes the preferred reference point for the Boltzmann relation,

Eq. 3.28, since both the potential and electron density are known there.

ne (x) = nes exp

(

eφ (x)

kBTe

)

(3.28)

In Eq. 3.29 the electrostatic Poisson equation relates the potential to the local

charge densities. A weighted sum over the various ion species is necessary to obtain

the positive charge density.

d2φ

dx2
= − e

ε0

(

∑

Zjnj (x) − ne (x)
)

(3.29)

Inserting Eqs. 3.26 and 3.28 into this form produces the non-linear differential

equation for potential shown in Eq. 3.30. To simplify the notation, φ (x) is written

as φ from this point on.

d2φ

dx2
=

e

ε0



nes exp

(

eφ

kBTe

)

−
∑

j

Zjnjs

(

1 − 2
Zjeφ

mjv
2
js

)−1/2


 (3.30)
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This equation can be recast using the normalized variables of Eq. 3.31. The

Debye length λD and Bohm velocity vB are appropriate length and velocity scales,

and the Mach number with respect to Bohm velocity appears. A new parameter rjs

is the freestream charge fraction for the jth ion species.

z =
x

λD
, Mj =

vj

vB
, Φ =

eφ

kBTe
, rjs =

njs

nes
(3.31)

The differential equation takes the form in Eq. 3.32 after normalizing and rear-

ranging.

d2Φ

dz2
= exp (Φ) −

∑

j

Zjrjs

(

1 − 2
ZjΦ

M2
j

)−1/2

(3.32)

This form can be integrated once analytically by multiplying the entire expression

by dΦ
dz

dz as shown in Eq. 3.33. The limits of integration are from the sheath edge at

z = 0 to any arbitrary position in the sheath, 0 < z < L. The boundary conditions

on potential at the sheath edge are Φ (0) = 0 and dΦ
dz
|0 = 0. Note that each term in

the summation can be integrated separately.

∫ z

0

d2Φ

dz2

dΦ

dz
dz =

∫ z

0

exp (Φ)
dΦ

dz
dz −

∫ z

0

∑

j

Zjrjs

(

1 − 2
ZjΦ

M2
j

)−1/2
dΦ

dz
dz (3.33)

The slightly more complicated form in Eq. 3.34 is found after integration. At

this point a numerical method is required to integrate a second time to obtain the

potential. The modified form in Eq. 3.35 is better suited to numerical integration,

although some care must be taken to choose the proper root of the radical.

1

2

(

dΦ

dz

)2

= exp (Φ) − 1 +
∑

j

rjsM
2
j

[

(

1 − 2
ZjΦ

M2
j

)1/2

− 1

]

(3.34)

dΦ

dz
=

√

√

√

√

√2







exp (Φ) − 1 +
∑

j

rjsM2
j

[

(

1 − 2
ZjΦ

M2
j

)1/2

− 1

]







(3.35)

Since the length of the sheath is not known, it is useful to perform a coordinate

transform such that the probe surface is at z = 0 and then integrate this equation
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Figure 3.8: Profile of plasma potential in the Bohm sheath solution.

by marching from the surface out to the sheath edge at z = −L. Since the potential

at the surface is known, dΦ
dz

can be calculated and Eq. 3.35 can then be solved

as an initial value problem. This approach reveals that the solution for potential

approaches Φ = 0 asymptotically, leading to an infinitely long sheath. In practice,

the solution can be terminated at an arbitrary distance or potential.

An example solution is obtained for the case M = 1. The profile of plasma

potential is shown in Fig. 3.8. Once the potential has been obtained, the local plasma

properties can be calculated from previous expressions. The ion velocity and density

can be calculated from Eqs. 3.25-3.26, and the electron density can be calculated

from Eq. 3.28. The profiles of ion and electron density are shown in Fig. 3.9.

3.3.2 The Bohm criterion

Since the conditions for a steady solution are not readily apparent from Eq. 3.35,

consider the simplification to a plasma with one species of single charge ions. The
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Figure 3.9: Profiles of ion and electron number density in the Bohm sheath solution.

summation over species simplifies to a single term, the freestream charge fraction

becomes rjs = 1, and the charge state becomes Zj = 1 as in Eq. 3.36. The boundary

conditions on potential at the sheath edge remain Φ (0) = 0 and dΦ
dz
|0 = 0.

dΦ

dz
=

√

√

√

√2

{

exp (Φ) − 1 + M2

[

(

1 − 2
Φ

M2

)1/2

− 1

]}

(3.36)

The quantity in the radical must be positive for a non-oscillatory sheath solution,

and this imposes a constraint on the Mach number when the potential Φ is small. In

order to evaluate that constraint, both terms containing the potential are expressed

as Taylor expansions about Φ = 0 in Eqs. 3.37 and 3.38, following the analysis by

Bohm [3]. The expansions are carried out to second order, since the lower order

terms will cancel out.

exp (Φ) = 1 + Φ +
Φ2

2
+ . . . (3.37)

(

1 − 2

M2
Φ

)1/2

= 1 − 1

2

(

2

M2
Φ

)

− 1

8

(

2

M2
Φ

)2

+ . . . (3.38)
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The expansions are then inserted into the argument of the radical in Eq. 3.39 and

simplified to the result in Eq. 3.40. The inequality indicates the condition to ensure

a stable sheath solution.

1 + Φ +
Φ2

2
− 1 + M2

[

1 − 1

2

(

2

M2
Φ

)

− 1

8

(

2

M2
Φ

)2

− 1

]

≥ 0 (3.39)

Φ2

2

(

1 − 1

M2

)

≥ 0 (3.40)

Drawing a conclusion from the inequality, a steady solution for the sheath only

exists if M > 1. This is the Bohm criterion, which has the physical interpretation

that the ion speed must be greater than the Bohm velocity at the edge of the sheath.

However, in many applications a stationary bulk plasma is in contact with a surface.

In such cases a presheath region is required, where small electric fields act to accel-

erate ions up to the Bohm velocity at the edge of the sheath. A presheath requires

the original assumption of zero electric field at the sheath edge to be relaxed.

3.3.3 Results and Discussion

Exact similarity with the geometric shadowing sheath model conditions cannot

be achieved. However, the potential at the surface and the inflow Mach number can

be matched in order to facilitate a comparison between the results from both models.

The shadowing model example was solved for a single ion population with a Mach

number MD = 1, and the calculated potential at the probe surface in Fig. 3.6 is

Φw = −0.1728 at z = 0. These conditions satisfy the Bohm criterion, so the same

wall potential and Mach number are assumed in this example solution of the Bohm

sheath model.

The differential equation in Eq. 3.36 is solved for the potential profile in the

sheath as shown in Fig. 3.10. Since the Bohm criterion is satisfied, the solution has
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Figure 3.10: Profile of potential from the Bohm sheath.

no oscillatory aspect and decreases monotonically from the freestream to the surface

at z = 0. The potential asymptotically approaches zero far from the surface as

mentioned previously.

The ion and electron densities can then be calculated from this potential using

normalized forms of the Boltzmann relation from Eq. 3.28, and local ion density

from Eq. 3.26. The Bohm sheath solution indicates a non-neutral region near the

probe, as evidenced by separation of the density profiles in Fig. 3.11. The non-

neutral region is a physically meaningful feature, since the large disparity between

ion and electron mass makes the electrons more mobile than the ions. Electrons

respond to the negative probe potential more strongly than ions, leading to a region

of non-neutral plasma near the surface.

Although both ion and electron density decrease as the flow approaches the sur-

face, two different processes are responsible. The negative potential acts to accelerate
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Figure 3.11: Profiles of ion and electron density from the Bohm sheath.

the ions toward the probe, as seen from the profile of ion velocity in the sheath in

Fig. 3.12. The flux is the product of local density and local velocity, and it is clear

from Eqs. 3.25-3.26 that the flux must be constant for the ions. Since the ion flow

maintains a constant flux, the ion density decreases as the ion velocity increases.

In contrast, the negative potential acts to repel the electrons, so only those elec-

trons with sufficient initial kinetic energy are able to reach the local potential. In this

model the electrons follow the Boltzmann relation, so the electron density shows an

exponential fall off as the potential decreases. Since the wall potential is relatively

small compared to the electron temperature in this example, there is not a significant

decrease in electron density.

One of the attractive features of the Bohm sheath model is that the solution can be

readily returned to dimensional variables if the electron temperature and freestream

density are known. This process is equally straightforward for the situation with
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multiple ion components. This makes the Bohm sheath a useful tool for practical

design purposes in both experimental and computational settings.

3.4 Comparison of model results

The geometric shadowing sheath model and the planar Bohm sheath model can-

not reproduce exactly the same inflow conditions. This limitation stems from the

different assumptions about the inflowing ions made in the models. The Bohm

sheath model assumes one or more cold ion species, with zero ion temperature, while

the shadowing sheath model assumes a Maxwellian ion distribution with a non-zero

temperature.

The shadowing sheath model could achieve a cold ion condition by taking the

limit of τ∞ = 0, corresponding to an ion temperature that is negligible compared to

the electron temperature. However, that causes the normalized Maxwellian distri-

bution (Eq. 3.21) to approach a delta function at the drift Mach number. All of the
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interesting behavior in the shadowing model derives from partial shadowing of the

distribution function, so that limit would produce constant properties throughout

the sheath.

Instead, it is more useful to achieve partial similarity by matching the inflowing

ion Mach number and some property at the surface. The obvious choice is to set the

potential at the surface, since that is usually controlled in experimental applications.

In the shadowing sheath model however, the surface potential is not coupled into the

solution and is only found afterward. As such, the shadowing sheath model must

be solved first, and the calculated surface potential can then be used in the Bohm

sheath model.

This process was carried out in Secs. 3.2.2 and 3.3.3. The ion density profiles

offer the most meaningful comparison, since both sheath models actually calculate

ion density. Then a visual inspection of Fig. 3.3 for the shadowing sheath and the ion

density profile of Fig. 3.11 for the Bohm sheath gives some insight into how well the

models agree. At first glance, there seems to be no agreement at all. The profile in

the shadowing model shows a thin sheath, with all of the density variation occurring

within 5 Debye lengths of the surface. The profile from the Bohm sheath model

shows a much thicker sheath, with nearly 7% deviation from the freestream density

at more than 15 Debye lengths from the surface.

However, the shadowing sheath model has one undetermined parameter, the ex-

change frequency W . The exchange frequency is equal to the plasma frequency in

the previous solution, which implies that ion particle exchange occurs on an electron

timescale. In fact the ion exchange frequency should occur on an ion timescale, which

would correspond to a much smaller value of W . The exchange frequency modifies

the length scale of the shadowing sheath, and a smaller value produces a thicker
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sheath.

An estimate of the exchange frequency that brings the shadowing sheath model

into better agreement with Bohm sheath model is obtained by a least-square error

technique. An ion number density profile is computed from the shadowing sheath

model for varying W . Since the distribution at the surface is not affected, the

potential at the surface is unchanged and the previous Bohm sheath solution can be

used as a fixed reference. A value of W is found that minimizes the sum of square

error between the ion density profiles from both models, computed at 1500 fixed

points along the profiles.

For the inflow conditions of MD = 1 and τ∞ = 1, the least-square fit for the

exchange frequency is found to be W = 0.088. The resulting profiles of ion density

are shown in Fig. 3.13, and profiles of potential are shown in Fig. 3.14. For the ion

density the agreement between the shadowing sheath model and the Bohm sheath

model is generally very good. The potential shows larger discrepancies, but recall

that in the shadowing sheath model the potential is assumed to be related to the ion

density via neutrality and the Boltzmann relation.

It should be noted that the value of the exchange frequency reported above is

only effective at the given flow conditions. There is no single value that can achieve

consistent agreement between the two sheath models over a broad range of plasma

conditions. It may be possible to develop a functional form of the exchange frequency

as W (MD, τ∞), but that lies beyond the scope of this work.

From a philosophical viewpoint, the two models are intended to describe different

aspects of the sheath. The Bohm sheath model isolates the effects of self-consistent

electrostatic fields, while the shadowing model isolates the effects of non-equilibrium

in the local distribution function. Together these models provide some understand-
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ing of the physical processes at work, and form the foundation for more advanced

modeling techniques. In the next chapter, a computational code is discussed that

incorporates elements from the kinetic description and the fluid description in order

to achieve a high-fidelity simulation of a plasma.



Chapter IV

Hybrid Fluid PIC-DSMC Numerical Model

A recurring theme is that the governing equations for a plasma cannot be solved

analytically for most practical applications. As a result, a variety of techniques have

been developed to obtain numerical solutions to the kinetic models, Euler equations,

Navier-Stokes equations, and MHD equations. This chapter describes a hybrid model

that incorporates both a particle method and a fluid method to describe a plasma.

When choosing a numerical model it is important to identify the degree of non-

equilibrium in the flow. For strongly collisional flows that remain near equilibrium,

a fluid method is much less computationally intensive than a particle method and

should produce equally accurate results. At the other extreme, nearly collisionless

flows or flows that incorporate a strongly non-equilibrium process may require a

particle method to obtain accurate results at all. In some cases one region of a

flow might be adequately treated with a fluid method, while another region of the

flow requires the increased fidelity of a particle method. Flows with localized non-

equilibrium can benefit from hybrid techniques described by Schwartzentruber et

al. [67] that use either fluid or particle methods for distinct regions of a flow.

Plasmas are composed of both ions and electrons, and the large mass ratio be-

tween those particles introduces additional forms of non-equilibrium. Ionization en-

61
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ergy from generating the plasma is carried primarily by the electrons, resulting in a

higher temperature for electrons than for ions. The combination of higher tempera-

ture and lower mass leads to a higher collision rate for electrons, so that the electron

relaxation time is much shorter than the ion relaxation time. Although collisions be-

tween ions and electrons generally act to bring the entire plasma toward equilibrium,

the mass ratio makes these collisions much less effective than collisions between two

electrons or collisions between two ions.

Since there is a significant difference between the electron and ion time scales,

it is useful to consider an intermediate time scale where the ion motions are accu-

rately resolved and the electron motions can be averaged. This leads to a hybrid

approach that uses a particle method to model the ions and a fluid method to model

the electrons. Hybrid techniques of this sort have been used successfully for EP

modeling [68, 69, 70], and are also well-suited to plasma diagnostic modeling.

4.1 Ion and neutral particle models

It is not feasible to solve the full kinetic description of an ion plasma, but prob-

abilistic particle simulations incorporate much of the same underlying physical rea-

soning. Two complementary methods are used to model the ion and neutral particles

in this work. The Particle In Cell (PIC) method is used to move the ion and neutral

particles and to calculate self-consistent electric fields that act on charged parti-

cles. The Direct Simulation Monte Carlo (DSMC) method is used to model particle

collisions.

4.1.1 Particle In Cell

The motion of a charged particle is determined by the collective electric and mag-

netic fields generated by all other charged particles in the plasma. In order to obtain
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a physically meaningful solution, the differential equations for electric and magnetic

fields in Maxwell’s laws must be solved in tandem with the particle equations of

motion.

The PIC method [47] accomplishes this by tracking macroparticle motion and

electric field calculations on a computational grid. Each macroparticle represents

many ions or neutrals, and is assigned average properties from the prescribed distri-

bution function. Particle movement can be decoupled from the field calculations by

choosing a time step such that the displacement is small and the local fields do not

vary significantly. This method consists of the following four main steps.

First, the charge density is weighted from particle position to the nodes of the

computational grid. In this work, the weighting scheme is a simple bilinear inter-

polation for an axisymmetric, structured, rectangular grid. Alternative weighting

schemes can be devised for this and other computational grid geometries.

Second, electric fields are calculated by solving the appropriate electrostatic or

electrodynamic equation over all the nodes of the computational grid. Often the

electric potential is solved instead by using the electrostatic Poisson equation, and

electric fields are then calculated from the gradient of the potential. Maxwell’s

equations must be solved if magnetic fields are significant or if accurate time evolution

is required.

Third, the particle acceleration is calculated by weighting the electric fields from

the nodes to the particles. The particle velocity can then be updated as well. Again,

a simple bilinear interpolation is used in this work.

Fourth, particles are moved for a time step with the new velocity. Any boundary

interactions are handled at this point, including particle injection at the inlet and

particle removal at edges. The velocity of new particles is assigned probabilistically
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from the assigned distribution function at the inlet.

These four steps are then repeated over a desired number of iterations. Depending

on how the particles are initialized in the computational domain, some initial tran-

sients may occur. Sampling of the instantaneous density and electric fields allows

the statistical scatter to be reduced over a number of iterations.

The PIC method is essentially a collisionless formulation of kinetic theory for a

plasma. However, collisions provide the mechanism for ionization and recombination

and contribute to the electrical resistance in a plasma. Since these processes may

affect the current, it is important for a plasma diagnostic simulation to have the

capability to model collisions.

4.1.2 Direct Simulation Monte Carlo

Collisions are incorporated through the DSMC method, which was developed

extensively by Bird [48]. Since the actual number of particles and collisions is far too

large for direct simulation, DSMC tracks macroparticle motion on a computational

grid. At each collision time step, particles are paired up by computational cell and

collisions are evaluated statistically. This method can be readily integrated with

the PIC method to include both collisions and charged particle motion with self-

consistent electric fields.

In a PIC-DSMC formulation, the main role of the DSMC method is to handle

collisions. This involves a series of calculations to determine the number of collisions

in each cell, the collision probability for each pair of particles, and the new particle

properties after a collision occurs.

The number of simulated collisions in a cell can be calculated by taking the

product of collision frequency and the collision time step, with an additional factor
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accounting for the macroparticle weights in the cell. The result from kinetic theory

in Eq. 4.1 gives the collision frequency νab of species a with species b as a function of

the density of the target species nb, the mean relative speed vab, and a collision cross

section σab [59]. In this work only xenon-xenon collisions are modeled. A variable

hard sphere (VHS) model with ω = 0.12 is used to calculate the atom-atom collision

cross section as in 4.2. The cross section for atom-ion charge exchange collisions is

given by the empirical fit in Eq. 4.3 [71]. In these expressions the relative speed is

in units of m
s
. No ion-ion collisions are modeled.

νab = nbvabσab (4.1)

σXe−Xe =
2.12 × 10−18 m2

v2ω
ab

(4.2)

σXe−Xe+ = 2 [142.21 − 23.30 log |vab|]
(

12.13

13.6

)− 3

2

× 10−20 m2 (4.3)

A random pair of particles is selected from the cell for each simulated collision.

Whether or not the collision occurs is determined statistically by an acceptance-

rejection method, where a random number is compared to the collision probability.

If the random number is larger than the probability, the collision occurs and the

particles velocities are processed.

The post-collision particle velocities are calculated as a result of random scat-

tering, subject to conservation of momentum and energy for the particles. A new

relative velocity is calculated, and a new angle is selected. The new velocities for

both particles are then calculated from the new relative velocities and the center of

mass velocity.

These steps are repeated at every collision time step. As was assumed in the PIC

method, the collision time step is small enough that particle displacement is small

and the particle movement can be decoupled from the collision calculations. Again,
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sampling can be used to reduce the statistical scatter introduced by this treatment

of the collisions.

4.2 Electron fluid models

The electron fluid models used in this work are derived from the MHD equations

presented in Chapter III. Three distinct models are used: the Boltzmann model,

the non-neutral detailed model, and the Poisson-consistent detailed model. These

models progressively increase the fidelity of the electron fluid from a simple Boltz-

mann relation to a coupled electrostatic fluid model. Each of the models has unique

requirements and limitations as described in the following sections.

4.2.1 Derivation from electrostatic MHD equations

Each of the three electron fluid models can be derived from the electrostatic MHD

equations. The electrostatic MHD equations are obtained by taking the limit of zero

magnetic fields (B = 0) in the fluid conservation laws and Maxwell’s laws. The re-

sulting equation set includes conservation of mass or continuity, Eq. 4.4, conservation

of momentum, Eq. 4.5, conservation of energy, Eq. 4.6, and the electrostatic Poisson

equation, Eq. 4.7. These equations are written specifically for an electron fluid, and

the negative electron charge has been taken into account by adjusting the signs of

the relevant terms.

∂ρe

∂t
+ ∇ · (ρeve) = 0 (4.4)

∂ (ρeve)

∂t
+ ∇ · (ρeveve) = −∇Pe − ρe

e

me
E + ρe

e

me

je

σ
(4.5)

∂ (ρee)

∂t
+ ∇ · (ρeeve) = −Pe∇ · ve − ρe

e

me

E · ve −∇ · q (4.6)

∇ · E =
e

ε0
(ni − ne) (4.7)
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A number of assumptions and simplifications are common to all three electron

fluid models. The first simplification is to take the steady state limit, so that ∂
∂t

= 0

in each of the conservation laws.

The density ρe in the conservation laws is rewritten in terms of number density

ne according to Eq. 4.8. This provides a single consistent variable for the conser-

vation laws and the electrostatic Poisson equation, and also avoids any numerical

complications from working with the small value of the electron mass.

ρe = mene (4.8)

The ideal gas law is assumed as the equation of state for the electron fluid.

The pressure and internal energy can then be replaced by the forms in Eq. 4.9 and

Eq. 4.10, which use the density and temperature.

Pe = nekBTe (4.9)

e =
3

2

kBTe

me
(4.10)

The electric field is expressed in terms of the plasma potential φ as given in

Eq. 4.11. With this substitution, the electrostatic Poisson equation becomes a math-

ematical Poisson equation for the potential.

E = −∇φ (4.11)

The heat flux vector is assumed to follow the Fourier heat conduction law given

in Eq. 4.12, with the electron thermal conductivity κ as a parameter.

q = −κ∇Te (4.12)

The electron transport coefficients are evaluated using the basic definitions from

molecular transport [60]. The electrical conductivity σ in Eq. 4.13, and the thermal
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conductivity κ in Eq. 4.14, both depend on the total electron collision frequency νe.

σ =
nee

2

meνe

(4.13)

κ =
2.4nek

2
BTe

meνe

(

1

1 + νei

νe

√
2

)

(4.14)

The total electron collision frequency is the sum of the electron-ion collision fre-

quency νei and the electron-neutral collision frequency νen as defined in Eq. 4.15.

The electron-ion collision frequency in Eq. 4.16 is calculated from classical elastic

scattering [60], while the electron neutral collision frequency in Eq. 4.17 is calculated

using an empirical fit [72] of the electron-neutral cross section Qen (Te) in the general

form of Eq. 4.1.

νe = νei + νen (4.15)

νei = ni
4
√

2π

3

(

me

kBTe

)
3

2
(

e2

4πε0me

)2

ln

∣

∣

∣

∣

∣

12π

(

ε0kB

e2

)
3

2
(

T 3
e

ne

)
1

2

∣

∣

∣

∣

∣

(4.16)

νen = nn
4

3

(

8kBTe

πµen

)
1

2

Qen (Te) (4.17)

After making these assumptions and substitutions, the equation set can be written

as in Eqs. 4.18-4.21. The remaining terms on the left hand side of the momentum and

energy equations have been expanded and simplified using the continuity equation.

In this form it appears that there are four coupled equations for five independent

variables: ne, ve, Te, φ, and je. However, the current can be expressed in terms of

the density and velocity as je = eneve. For now the current is left in place as a

reference marker for further manipulation.

∇ · (neve) = 0 (4.18)

meneve∇ · ve = −∇ (nekBTe) + nee∇φ + nee
je

σ
(4.19)

neve · ∇
(

3

2
kBTe

)

= −nekBTe∇ · ve + nee∇φ · ve + ∇ · (κ∇Te) (4.20)
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∇2φ = − e

ε0

(ni − ne) (4.21)

Following the example of Boyd and Yim [73], there are a few additional manip-

ulations that will simplify the numerical solution.

By introducing a stream function Ψ as defined in Eq. 4.22, the continuity equa-

tion becomes a Laplace equation as given in Eq. 4.23. With this modification, all

of the differential equations from the conservation laws and the electrostatic Pois-

son equation are ultimately expressed in terms of the Laplacian operator. A single

solution technique can then be used to solve each of the differential equations.

∇Ψ = nev (4.22)

∇2Ψ = 0 (4.23)

The momentum equation can be simplified by neglecting the inertial term (∼ menev),

since it is much smaller than the other terms. The remaining terms can then be re-

arranged as Eq. 4.24 to isolate the electron current.

je = σ

[

kB

e

(

∇Te + Te
∇ne

ne

)

−∇φ

]

(4.24)

The energy equation can be rearranged as shown in Eq. 4.25, which facilitates a

solution for the temperature.

∇2Te +

(∇κ

κ
− 3

2

kB

κ
nev

)

· ∇Te −
(

kB

κ
ne∇ · v

)

Te −
e

κ
ne∇φ · v = 0 (4.25)

All three electron fluid models work with this modified set of equations: the

electrostatic Poisson equation, Eq. 4.21, the continuity equation, Eq. 4.23, the current

equation, 4.24, and the temperature equation, Eq. 4.25. Further development of the

three models diverges at this point, so each model is described separately in the

following sections.
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4.2.2 Boltzmann model

The Boltzmann model is obtained by making the assumptions that lead to the

Boltzmann relation. Briefly, the electron fluid must be unmagnetized, collisionless,

isothermal, and currentless. The first assumption, that the fluid is unmagnetized,

has already been made early in the preceding development as B = 0.

The collisionless assumption is equivalent to the limit νe → 0. Referring to the

transport coefficients in Eqs. 4.13 and 4.14, this limit corresponds to infinite electrical

and thermal conductivities. This is actually consistent with the other assumptions

of isothermal and currentless fluid. A gradient in temperature drives heat flux,

which acts to reduce the gradient. In the limit of infinite thermal conductivity, the

heat flux redistributes the thermal energy instantaneously and produces a uniform

temperature. A uniform charge distribution results from the limit of infinite electrical

conductivity, so no gradient in charge exists to a drive current.

The isothermal assumption makes Te constant throughout the flow, which replaces

the temperature equation of Eq. 4.25 entirely. It also eliminates a term from the

current equation, since ∇Te = 0.

The currentless assumption is applied by setting je = 0 in the current equation.

Factoring out the conductivity leaves only two terms from the right hand side of

Eq. 4.24, which must sum to zero as in Eq. 4.26.

0 =
kBTe

e

∇ne

ne
−∇φ (4.26)

This can be rearranged and solved by separation of variables, using the reference

condition ne = ne0 where φ = φ0.

∇ne

ne
=

e

kBTe
∇φ
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ln

∣

∣

∣

∣

ne

ne0

∣

∣

∣

∣

=
e

kBTe

(φ − φ0)

Finally, the solution can be rearranged to the Boltzmann relation form in Eq. 4.27,

which gives the electron density in terms of the plasma potential.

ne = ne0 exp

[

e

kBTe
(φ − φ0)

]

(4.27)

This fluid model is exactly consistent with the Boltzmann relation assumed in

the analytic sheath models. The hybrid fluid PIC results from this model correspond

closely to the analysis in the planar Bohm sheath model, so results from this model

are expected to be in excellent agreement with the planar Bohm sheath. Compar-

ison of results with the analytic sheath solution can be used to validate the overall

operation of the hybrid model.

The Boltzmann model is also useful for identifying and quantifying any two di-

mensional effects, since the only substantive difference from the planar Bohm sheath

is the axisymmetric geometry. This is a useful baseline comparison to have before

considering the more complicated detailed fluid models.

4.2.3 Non-neutral detailed model

The non-neutral detailed model is obtained by applying the charge continuity

condition of Eq. 4.28.

∇ · je = 0 (4.28)

Inserting the expression for current from Eq. 4.24 into this form produces Eq. 4.29,

which is a significantly more complicated expression of the charge continuity condi-

tion.

∇ ·
{

σ

[

kB

e

(

∇Te + Te
∇ne

ne

)

−∇φ

]}

= 0 (4.29)
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Since the energy equation is solved for temperature, this equation can either be

solved for plasma potential or for electron number density. In the work by Boyd and

Yim, this was solved for the plasma potential [73], and the assumption of plasma

neutrality was used in place of the electrostatic Poisson equation.

Expanding Eq. 4.29 and rearranging to the form in Eq. 4.30 shows the character

of the differential equation when solved for plasma potential. The coefficients on the

potential terms are simple, but there is a complicated source term.

∇2φ +

(∇σ

σ

)

· ∇φ − kB

e
∇ ·
[

σ

(

∇Te + Te
∇ne

ne

)]

= 0 (4.30)

The assumption of neutrality is not valid in a plasma sheath, so the electrostatic

Poisson equation is solved for electron density in Eq. 4.31 to complete the non-neutral

detailed model. This calculation is not computationally reliable: the coefficient ε0

e
is

very large, ∼ 5.5 × 107, but the calculated value of the Laplacian of the potential is

very small. Put another way, there is very poor resolution of electron density from

this calculation.

ne = ni −
ε0

e
∇2φ (4.31)

This formulation is sensitive to statistical scatter in the ion density reported from

the PIC model. Averaging techniques can be used to reduce the scatter, but it is more

effective to maintain a large number of computational particles per cell. Additionally,

any averaging introduces some lag into the coupling between electron density and

potential. This raises the possibility of artificial oscillation in the plasma potential

and electron density that could overwhelm the expected physical behavior.

Since the Laplacian of electron density appears in Eq. 4.30 and the density itself

is calculated from the Laplacian of plasma potential, the differential equation for

potential begins to resemble a biharmonic equation. That is, taking the gradient or
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Laplacian of number density introduces higher order derivatives into the differential

equation for potential. The boundary conditions on potential must then be handled

carefully to avoid introducing singularities in higher order derivatives. One approach

is to calculate fourth order accurate boundary values, but this is difficult to enforce

at points near the corners of the probe. An alternative approach is to use a stencil

to calculate average values of ∇2φ along boundaries.

The original neutral detailed model has been used successfully, and there is rea-

son to believe that relaxing the assumption of neutrality would result in a functional

non-neutral model. However, as will be seen in the next chapter, the specific imple-

mentation of the non-neutral model in this work does not function as intended. The

initialized conditions and order of calculations during iteration can only lead to a

neutral solution with ∇2φ = 0 throughout the flow field.

4.2.4 Poisson-consistent detailed model

The Poisson-consistent detailed model is also obtained by applying the charge

continuity condition, and derives from the same intermediate result in Eq. 4.29.

However, that equation is solved for electron number density in this model, rather

than for plasma potential.

The alternative arrangement in Eq. 4.32 shows the character of the differential

equation when solved for number density. The identity ne∇ 1
ne

= −∇ne

ne
has been

used to obtain a similar form in the ∇ne coefficient.

∇2ne +

(∇ (σTe)

σTe
− ∇ne

ne

)

· ∇ne +
1

σTe
∇ ·
[

σ

(

∇Te −
e

kB
∇φ

)]

ne = 0 (4.32)

This form is more complicated than the differential equation for potential. One

particular issue is that the ∇ne coefficient is non-linear. There are no source terms

in this arrangement, but that is not a significant advantage.
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The perceived benefit of the Poisson-consistent model is that the electrostatic

Poisson equation can be solved for plasma potential. This avoids the poor resolution

issue in the non-neutral model, since the ion and electron densities are of the same

order and contribute to a source term in the differential equation for plasma potential.

This formulation also precludes the problems with statistical scatter and bound-

ary conditions that hampered the non-neutral model. Differential equations are much

more forgiving of localized statistical scatter than algebraic equations, since the in-

tegration procedure that leads to the solution acts to dissipate random variations.

The PIC model ion density can be used directly in the electrostatic Poisson equation

without any averaging, even with a relatively small number of particles per cell.

Unlike the non-neutral model, the differential equation for number density does

not indirectly include higher order derivatives. The electrostatic Poisson equation

relates the Laplacian of plasma potential to the electron number density, so at worst

the differential equation for number density has additional non-linearity in its coef-

ficients. Standard second order accurate boundary conditions are sufficient for this

model.

The Poisson-consistent model is used for the first time in this work. Although the

non-linearity in this model initially presented a significant obstacle, the problem was

overcome by assuming constant coefficients during each solution of the differential

equation. In the next chapter it will be shown that the Poisson-consistent detailed

model accurately captures the features of the electrostatic sheath.

4.2.5 Summary of the electron fluid model equations

It is convenient to have the various equations for each fluid model organized in

the side-by-side comparison of Table 4.1. The iteration procedure is also more readily
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apparent in this form.

Table 4.1: Summary of electron fluid model equations

Boltzmann Non-neutral Poisson-consistent

Continuity Eq. 4.23−→ Ψ, ve Eq. 4.23−→ Ψ, ve Eq. 4.23−→ Ψ, ve

Current Eq. 4.27−→ ne Eq. 4.30−→ φ Eq. 4.32−→ ne

Poisson Eq. 4.21−→ φ Eq. 4.31−→ ne Eq. 4.21−→ φ

Temperature Isothermal Eq. 4.25−→ Te Eq. 4.25−→ Te

4.3 Hybrid fluid PIC model iteration cycle

Since the PIC, DSMC, and fluid models have been decoupled over different time

scales, the models can be solved iteratively. The cycle for an iteration weights particle

density to the grid first, so that the electron fluid equations can be solved for the

present ion particle distribution. All of the electron fluid equations are solved next,

which involves a subcycle iteration for the coupled momentum and energy equations.

The new potential field is used to update the electric fields. The ions are then

accelerated according to the new electric fields, moved, collided, and sampled. The

whole cycle is given here:

1. Weight particle density to the nodes of the grid

2. Solve electron continuity equation on grid nodes

3. Solve electron momentum equation on grid nodes

4. Solve electron energy equation on grid nodes

5. Repeat steps 3-4 to converge coupled equations

6. Weight electric fields from grid nodes to particles
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7. Move particles in the grid cells

8. Collide PIC particles in grid cells

9. Sample particle properties on the grid

These steps do not necessarily have to be performed every time step, since the

models are decoupled over different time scales. The cell spacing and the time step are

determined in the next chapter based on the stability requirements for the electron

fluid model. The ion particles do not move very far during a single time step, and

require several iterations to cross a computational cell. In order to accelerate the

overall convergence, the ions are moved several times between each solution of the

electron fluid model equations.

4.4 Discretization and ADI solver

The fluid equations in the preceding sections are developed as continuous func-

tions. In order to solve these equations on the nodes of a computational grid, the

equations must be expressed using discrete operators. A finite difference form of-

fers computational advantages and simplifications for the axisymmetric, structured,

rectangular grid used in this work.

4.4.1 Finite difference operators

Consider the typical node in an axisymmetric computational grid. The central

node has indices (i, j), and the adjacent nodes have indices of (i ± 1, j) and (i, j ± 1)

as in Fig. 4.1. Values of the variables, including any spatial derivatives, are computed

and stored at the nodes.
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Figure 4.1: A typical computational node and its surroundings.

In order to discretize the fluid equations, the gradient operator ∇ and the Lapla-

cian operator ∇2 are needed. The gradient operator can be obtained in a second order

accurate form by taking the Taylor expansion of an arbitrary quantity Q about the

central node at (i, j). This results in the finite difference form in Eq. 4.33. Note

that under the axisymmetric assumption there is no azimuthal variation, so the θ̂

contributions to the operator are identically zero. The constant subscript has been

omitted for clarity, so Qi+1, j is denoted as Qi+1.

∇Q =
Qi+1 − Qi−1

xi+1 − xi−1
ẑ +

Qj+1 − Qj−1

rj+1 − rj−1
r̂ (4.33)

As given in Eq. 4.34, the Laplacian operator can be related to the gradient op-

erator by Green’s first identity. This identity states that the integral of ∇2Q over a

volume V is equal to the surface integral of ∇Q normal to the surface S that encloses

the volume.
∫∫∫

V

∇2QdV =

∮

S

∇Q · n̂dS (4.34)
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For the axisymmetric geometry, the volume associated with a node is an annular

cylinder. The bounding surface consists of four surfaces: two annular surfaces in the

r̂− θ̂ plane to the left and right of the node, and two cylindrical surfaces at constant

radius above and below the node. As depicted in Fig. 4.1, these surfaces lie halfway

between adjacent nodes.

The desired finite difference form of ∇2Q is a constant value stored at the node,

so the volume integral reduces to the product on the left hand side of Eq. 4.35.

Assuming that the finite difference form of ∇Q is also constant over each bounding

surface, the surface integral can likewise be reduced to a summation over the four

bounding surfaces.

V ∇2Q =
∑

A

∇Q · A (4.35)

The right hand side can be expanded and simplified for the simple bounding

surfaces, resulting in the compact form of Eq. 4.36. The areas and the partial finite

difference differentials are defined in Table 4.2. Note that the surface coordinates

require slight modification for nodes along boundaries. The relevant coordinate of

the center node should be used when an adjacent node does not exist (along edges

of the domain) or lies on a solid surface (along edges of the probe).

∇2Q =
dQ

dx i+ 1

2

AR

V
− dQ

dx i− 1

2

AL

V
+

dQ

dr j+ 1

2

Ao

V
− dQ

dr j− 1

2

Ai

V
(4.36)



79

Table 4.2: Areas and differentials in the finite difference Laplacian operator

Left annulus AL = π
(

r2
j+ 1

2

− r2
j− 1

2

)

dQ
dx i− 1

2

= Qi−Qi−1

xi−xi−1

Right annulus AR = π
(

r2
j+ 1

2

− r2
j− 1

2

)

dQ
dx i+ 1

2

= Qi+1−Qi

xi+1−xi

Inner cylinder AI = 2πrj− 1

2

(

xi+ 1

2

− xi− 1

2

)

dQ
dr j− 1

2

=
Qj−Qj−1

rj−rj−1

Outer cylinder AO = 2πrj+ 1

2

(

xi+ 1

2

− xi− 1

2

)

dQ
dr j+ 1

2

=
Qj+1−Qj

rj+1−rj

Volume V = π
(

r2
j+ 1

2

− r2
j− 1

2

)(

xi+ 1

2

− xi− 1

2

)

Coordinates xi− 1

2

= 1
2
(xi−1 + xi) xi+ 1

2

= 1
2
(xi + xi+1)

rj− 1

2

= 1
2
(rj−1 + rj) rj+ 1

2

= 1
2
(rj + rj+1)

After inserting the forms from Table 4.2 into Eq. 4.36 and simplifying, the finite

difference form of the Laplacian operator can be written in the unwieldy form of

Eq. 4.37.

∇2Q =
Qi+1 − Qi

(xi+1 − xi)
(

xi+ 1

2

− xi− 1

2

) − Qi − Qi−1

(xi − xi−1)
(

xi+ 1

2

− xi− 1

2

) (4.37)

+
2rj+ 1

2

(Qj+1 − Qj)

(rj+1 − rj)
(

r2
j+ 1

2

− r2
j− 1

2

) −
2rj− 1

2

(Qj − Qj−1)

(rj − rj−1)
(

r2
j+ 1

2

− r2
j− 1

2

)

This can be written in the compact form of Eq. 4.38 by using the coefficients

defined in Table 4.3.

∇2Q = CRQi+1 + CLQi−1 + COQj+1 + CIQj−1 + CCQ (4.38)

Table 4.3: Finite difference Laplacian coefficients

Left node CL = 1

(xi−xi−1)

(

x
i+ 1

2

−x
i− 1

2

)

Right node CR = 1

(xi+1−xi)

(

x
i+1

2

−x
i−1

2

)

Inner radial node CI =
2r

j− 1
2

(rj−rj−1)

(

r2

j+ 1
2

−r2

j− 1
2

)

Outer radial node CO =
2r

j+ 1
2

(rj+1−rj)

(

r2

j+ 1
2

−r2

j− 1
2

)

Center node Cc = − (CR + CL + CI + CO)
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The finite difference operators for the gradient, Eq. 4.33, and the Laplacian,

Eq. 4.38, can be used to formulate the discrete electron fluid equations on the axisym-

metric computational grid. The next task is to obtain a solution to the differential

equations.

4.4.2 Solution technique for differential equations

Each of the differential equations that appear in the electron fluid models can be

rearranged to the form F (Q) = 0, where Q is the independent variable that is being

solved, and F (Q) is the rearranged finite difference form of the differential equation.

By analogy, the solution is the flow field value of Q that corresponds to a “root” of

F (Q).

This type of differential equation can be solved using a Newton-Raphson iteration

scheme. The Newton-Raphson method treats the problem essentially as a root find-

ing exercise in an arbitrary number of dimensions. The iterative equation in Eq. 4.39

resembles a Taylor expansion for the current value of the flow field variable Qt near

the desired solution. The desired outcome from this calculation is an updated value

of the flow field variable Qt+1 that satisfies F (Qt+1) = 0.

Qt+1 = Qt − F (Qt)

(

dF

dQ t

)−1

(4.39)

Rearranging this to be more compatible with the linear form Ax = b yields

the iteration rule in Eq. 4.40. The solution of this equation gives the quantity

δQ = (Qt+1 − Qt), which is a correction to the current flow field Qt. Many numerical

techniques are available to solve linear equations in this form.

dF

dQ t

(δQ) = −F (Qt) (4.40)

The greatest challenge in using Newton-Raphson iteration stems from determin-

ing the iterative differential dF
dQt

. Provided that the operators in the differential
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equation are linear, the differential and operator order can be interchanged and the

iterative differential can be found easily.

As a simple example, consider Eq. 4.23, the continuity equation that is solved in

all three fluid models. The stream function is the independent variable, so Q = Ψ

and F (Ψ) is simply the continuity equation, as in Eq. 4.41. Since the Laplacian

operator is a linear operator, the order of the operations can be interchanged as in

the intermediate relations of Eq. 4.42. This result can be then inserted into Eq. 4.40

as an operator on δΨ to obtain the iteration rule for the continuity equation in

Eq. 4.43. Note that the subscript t is omitted except where required for clarity.

F (Ψ) = ∇2Ψ = 0 (4.41)

dF

dΨ
=

d

dΨ

(

∇2Ψ
)

= ∇2

(

d

dΨ
Ψ

)

= ∇2 (4.42)

∇2 (δΨ) = −∇2Ψt (4.43)

The temperature equation of Eq. 4.25 provides a second example. The number

density, potential, and velocity are held constant during the iteration for temperature,

so the source term and coefficients can be replaced by constants as in Eq. 4.44.

Interchanging the order of operations leads to Eq. 4.45 for the iterative differential

for temperature. The source term had no temperature dependence, and does not

appear in the iterative differential.

F (Te) = ∇2Te + c1 · ∇Te − c2Te − c3 = 0 (4.44)

dF

dTe
= ∇2 + c1 · ∇ − c2 (4.45)

The differential equation for plasma potential in the non-neutral detailed model,

Eq. 4.30, can be handled in the same fashion. Number density, velocity, and temper-

ature are constant during iteration for potential, leading to the constant coefficient
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form in Eq. 4.46. That form readily produces the iterative differential in Eq. 4.47.

F (φ) = ∇2φ + c1 · ∇φ − c2 = 0 (4.46)

dF

dφ
= ∇2 + c1 · ∇ (4.47)

If the form of the differential equation is non-linear, it is more difficult to find the

iterative differential. Consider the electrostatic Poisson equation for the Boltzmann

model in Eq. 4.48, where the electron density has been expressed according to the

Boltzmann relation with φ0 = 0 for simplicity. The first two terms can be handled

as in the previous examples.

The derivative must be taken of the exponential of the potential in the third

term. This produces a differential iterator that has some dependence on the current

value of φt. The differential iterator and the corresponding iteration rule are shown

respectively in Eqs. 4.49 and 4.50.

F (φ) = ∇2φ +
e

ε0
ni −

e

ε0
ne0 exp

(

eφ

kBTe

)

= 0 (4.48)

dF

dφ
= ∇2 − e2ne0

ε0kBTe
exp

(

eφ

kBTe

)

(4.49)

∇2δφ − δφ

λ2
D

exp

(

eφt

kBTe

)

= ∇2φt +
e

ε0

[

ni − ne0 exp

(

eφt

kBTe

)]

(4.50)

The final equation is also the most difficult to evaluate. The differential equation

for electron number density in the electrostatic Poisson equation has a non-linear

coefficient on the ∇ne term. The other coefficients can be replaced with constants as

in Eq. 4.51, since the velocity, temperature, and potential are held constant during

the solution for number density.

F (ne) = ∇2ne +

(

c1 −
∇ne

ne

)

· ∇ne + c2ne = 0 (4.51)



83

The iterative differential is straightforward except for the non-linear term:

d

dne

(

−∇ne

ne
· ∇ne

)

This expression can be evaluated in a number of different ways, but not every

evaluation leads to a stable iteration rule. In fact the best computational performance

is obtained by calculating the coefficient once, and then leaving it as a constant for the

rest of the iteration. Under that assumption, the function and iterative differential

are simple linear operators as seen in Eqs. 4.52 and 4.53.

F (ne) = ∇2ne + c1 · ∇ne + c2ne = 0 (4.52)

dF

dne
= ∇2 + c1 · ∇ + c2 (4.53)

It should be noted that all of the results in this section are valid for both con-

tinuous and discrete operators. The finite difference operators from Sec. 4.4.1 can

substituted into these expressions without any modification.

4.4.3 ADI solver

The iteration rules from the preceding discussion (such as Eq. 4.43 or Eq. 4.50)

take the form of banded diagonal matrices when expressed using the finite difference

operators of Sec. 4.4.1. Numerical techniques including the Alternating Direction

Implicit (ADI) method [50, 74] have been developed to solve these types of linear

equations.

Banded diagonal matrices are significantly more difficult to solve than tridiagonal

matrices. However, an approximate solution can be obtained by neglecting the terms

in the bands and solving just the tridiagonal system. For the differential equations in

the fluid models, this process is equivalent to solving the differential equations along
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just one direction. A consistent solution can be obtained by solving the equations

alternately for rows and columns.

This work uses a standard implementation of the ADI method to solve the dif-

ferential equations that appear in the electron fluid models. The solution technique

is well known, and details can be found in most numerical and programming hand-

books [75].

4.5 ADI accuracy and stability for the detailed models

The complicated differential equations that appear in the detailed models are

not well understood, and have not been evaluated in terms of well-posedness or

uniqueness. At the outset it is not certain that the ADI solver will be able to solve

the equations and obtain a stable, physically meaningful solution.

Inspection of the equations, particularly the forms in Eq. 4.46 and Eq. 4.52,

reveals a strong similarity to one dimensional differential equations with analytic so-

lutions. Therefore the difficult equations from the non-neutral and Poisson-consistent

detailed models are solved analytically in one dimensional limits with constant coef-

ficients.

As a test of the ADI solver, the differential equations are also solved on a domain

consisting of a single row. The ADI solver performance will be evaluated by compar-

ing the accuracy of those solutions against the exact analytic solutions. Challenging

conditions are tested to verify that the ADI solver can handle difficult solutions that

include oscillations or unbounded behavior.

4.5.1 One dimensional non-neutral detailed model

The differential equation for potential from the non-neutral model, Eq. 4.46, can

be rewritten in the form of Eq. 4.54. In this form the source term is represented by a
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forcing function f , and the coefficient is denoted as α to distinguish it from constants

of integration later. The analytic solution is more readily apparent if the equation is

cast in terms of the electric field as in Eq. 4.55, using the usual electrostatic relation.

∇2φ + α · ∇φ = f (4.54)

∇E + α · E = −f (4.55)

In the limit of one dimensional flow, this simplifies to the non-homogeneous con-

stant coefficient differential equation of Eq. 4.56. Note that this equation is essentially

an initial value problem with the x coordinate acting as the time variable.

dEx

dx
+ αEx = −f (4.56)

The solution has the general form of Eq. 4.57, where the non-homogeneous so-

lution is a constant value c2. Assuming an “initial” condition Ex(0) = Ew and a

“steady state” condition Ex(x −→ ∞) = E∞ allows the constants of integration to

be determined.

Ex = c1 exp (−αx) + c2 (4.57)

c1 = (Ew − E∞) , c2 = E∞

The potential can then be found by integrating the electric field as in Eq. 4.58,

since Ex = −dφ
dx

in one dimension.

φ (x) = −
∫

Exdx = −
∫

(Ew − E∞) exp (−αx) + E∞dx (4.58)

The integration is straightforward and produces the form in Eq. 4.59. An initial

condition on the potential is φ (0) = φw,which allows the last constant of integration

to be determined.

φ (x) =
1

α
(Ew − E∞) exp (−αx) − E∞x + c3 (4.59)
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Figure 4.2: ADI solutions of the 1D non-neutral model potential equation

c3 = φw − 1

α
(Ew − E∞)

Inserting the constant and rearranging produces the final form of the solution in

Eq. 4.60.

φ (x) =
1

α
(Ew − E∞) [exp (−αx) − 1] − E∞x + φw (4.60)

The magnitude of the coefficient α determines the overall nature of the solution.

The two limiting cases are a predominantly linear solution when α ≫ (Ew − E∞), or

a predominantly exponential solution when α ≪ 1. For intermediate values of α, the

solution will appear exponential at small values of x but level off and appear linear

at large values of x.

The ADI results are compared with exact solutions in Fig. 4.2 for the conditions

Ew = −2, E∞ = −0.02, and φw = 0 over a range of α values. The effect of the

α coefficient on the solution is clearly visible. The ADI solver reproduces the exact

solutions to within machine precision in every case.
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4.5.2 One dimensional Poisson-consistent model

The differential equation for number density from the Poisson-consistent model,

Eq. 4.32, can be rewritten with constant coefficients α and β as Eq. 4.61.

∇2ne + α · ∇ne + βne = 0 (4.61)

In the limit of one dimensional flow, this simplifies to the homogeneous constant

coefficient differential equation of Eq. 4.62. Note that this equation has exactly the

same form as a damped harmonic oscillator problem with the x coordinate acting as

the time variable.

d2ne

dx2
+ α

dne

dx
+ βne = 0 (4.62)

This has an analytic solution [76] that can be underdamped (ζ < 1), critically

damped (ζ = 1), or overdamped (ζ > 1), depending on the relative magnitudes

of the coefficients α and β.

ne (x) = exp (−ζωx)
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











√

n2
e0 + θ2

ud sin
(

ω
√

1 − ζ2x + arctan
(

ne0

θud

))

0 < ζ < 1

ne0 + (dne0 + ωne0)x ζ = 1

1
2
(ne0 − θod) exp

(

−ω
√

ζ2 − 1x
)

+1
2
(ne0 + θod) exp

(

ω
√

ζ2 − 1x
)

ζ > 1

(4.63)

ω =
√

β, ζ =
α

2ω
, θud =

dne0 + ζωne0

ω
√

1 − ζ2
, θod =

dne0 + ζωne0

ω
√

ζ2 − 1

The ADI results are compared with exact solutions in Fig. 4.3 for the conditions

ne0 = 5, dne0 = 3, and ω = 1 over a range of ζ values. The ADI solver performs

excellently, and reproduces the exact solutions to within machine precision.
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Figure 4.3: ADI solutions of the 1D Poisson-consistent model number density equa-
tion

In the Poisson-consistent model, the coefficient α is non-linear. This is beyond

the capabilities of the simple analytic solution that is available, so the ADI solver

is not tested against that case. The cases shown are certainly not exhaustive. It is

possible that the ADI solver may become unstable or inaccurate for other untested

conditions. However, the preceding results are very promising and indicate that the

ADI solver is capable of solving the complicated differential equations of the detailed

models.



Chapter V

Faraday Probe Simulations

The hybrid fluid PIC model is used to simulate the flow around an axisymmetric

Faraday probe geometry for a variety of inflow plasma conditions and probe oper-

ating conditions. An initial study validates the operation of the hybrid fluid PIC

model by comparing its results against the planar Bohm sheath solution. Further

studies change the inflowing ion distribution, add neutral gas particles, or vary the

operational settings of the Faraday probe.

The Boltzmann model is used extensively to develop an understanding of the flow

over a broad range of conditions. The effects of inflow plasma properties are explored

by making incremental changes to the inflow ion distribution. Over several steps the

distribution is modified from a cold ion beam to a complicated multiple Maxwellian

ion and neutral distribution that approximates an EP exhaust plume.

Probe performance is also investigated, using the Boltzmann model in two studies

that vary the operating conditions of the probe. Performance is evaluated by com-

paring the simulated collected current to the freestream current, and by observing

streamlines of current upstream of the collecting surface.

The non-neutral detailed model is only used in a validation test, where the im-

plementation is shown to be flawed. This model is not used for any additional

89
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simulations in this dissertation and is not developed any further, since an alternative

detailed model is available.

The Poisson-consistent detailed model is used to repeat the studies of the inflow

ion distribution. Since this model uses a detailed electron momentum equation and

includes an electron energy equation, these studies can also be used to assess the

validity of the Boltzmann relation for the electrons. Results from these studies are

shown to be in excellent agreement with the Boltzmann fluid model results, provided

the inflow distribution has a sufficiently small fraction of backward flowing particles.

A review of the results from all the studies leads to a few comments and recom-

mendations for probe design and operation. The Faraday probe is predicted to be

reliable and accurate over all the conditions considered. Standard practices for the

design and use of Faraday probes are deemed to be effective at obtaining an accurate

measurement of the ion current.

5.1 Basis for simulation

These simulations are intended to be representative of a Faraday probe at a point

far off-axis in the plume of a Hall thruster. Plasma conditions are determined from

complementary numerical simulations and experimental measurements of a thruster

plume, made available by other researchers. The Faraday probe is described in detail

in an experimental reference, and that geometry is adapted for use here.

5.1.1 Hall thruster plume properties

Busek Co. manufactures the BHT-200, a small, low power Hall thruster. The

plume of this device has been investigated via experiments and numerical simulations,

providing several sources [33, 35, 73, 77] to help determine the plasma conditions.

The two primary sources are the numerical simulations by Boyd and Yim [73], and
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the experimental measurements by Ma [77].

The flow conditions at a point 50 cm downstream and 75° off-axis are determined

from a previous numerical simulation by Boyd and Yim [73], and are summarized in

Table 5.1. The plasma is neutral at that point, so it is assumed that ni = ne and

vi = ve for simplicity. The exact values are not critical, and it will be convenient to

modify these conditions in order to maintain a constant ion current density.

Table 5.1: Plasma properties 50 cm downstream and 75° off-axis in the BHT-200
plume.[73]

ni 1.1 × 1014 m−3

vi 2, 381 m
s

Te 1 eV

φ ∼ 1 V

For the reported conditions, the Debye length is λD = 0.0709 cm and the Bohm

velocity is vB = 855 m
s
, giving a Mach number with respect to Bohm velocity of

M = 2.78. This corresponds to a stable Bohm sheath solution. Additionally, all

of the freestream ion current should reach the front surface of the probe, since the

probe will be biased to negative potential for all the simulations in this dissertation.

5.1.2 Faraday probe

The Faraday probe in Ref. [77] is a nude planar probe depicted in Fig. 5.1. The

circular collecting surface has a radius of 0.952cm, and the annular guard ring has an

outer radius of 1.272cm. There is a 0.066cm radial gap between the collecting surface

and the guard ring. The gap is smaller than the Debye length for these conditions,

so the sheath should remain essentially uniform over the entire collecting surface.
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Figure 5.1: Faraday probe used in experimental BHT-200 measurements [77].

The collecting surface and guard ring are held at a fixed bias potential of −5 V

to repel electrons. Again, the exact value of the bias potential is not important and

it can be changed for convenience. Since the length of the sheath increases with

the wall potential, most of the simulations use a small bias potential to reduce the

domain length and computational time.

5.2 Simulation geometry and numerical parameters

The cylindrical geometry of the Faraday probe lends itself to an axisymmetric

computational domain. Using the planar Bohm sheath solution as a guide, the

domain can be sized and boundary conditions for the fluid and PIC models can be

formulated. Computational mesh dimensions must be small enough to resolve the

Debye length, and the time step must be selected such that particles do not cross

multiple cells per iteration.

5.2.1 Computational domain

For the conditions in Table 5.1 and a maximum wall potential of −15 V, the

Bohm sheath solution suggests 15λD(1.06 cm) as an estimate of the required domain
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length. The appropriate radial extension beyond the side of the probe body is not

easily determined, and is set at one quarter-radius beyond the outer probe edge.

Since the flow is supersonic and nearly collisionless, the placement of the outer edge

of the domain should not greatly affect the properties on the upstream face of the

probe.

Experience with the detailed models suggests that the maximum cell spacing

should be at least a factor of 12 smaller than the Debye length. Rounding in favor of

conservative values, the rectangular cells are uniformly sized at 4×10−5 m on a side.

The final geometry extends 390 cells (1.560 cm) along the probe axis and 390 cells

(1.560 cm) radially, with 238 elements (0.952 cm) along the collecting surface and 80

elements (0.320 cm) along the guard ring surface. This geometry is shown in Fig. 5.2

for reference. Altogether there are 112,350 cells outside of the probe body. At steady

state, there are approximately 1.5-2 million particles in the domain, depending on

the inflow ion distribution.
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Figure 5.2: Computational domain for Faraday probe simulations.
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5.2.2 Time step and global iteration

The simulation time step is selected so that the fastest ions travel less than one

cell length per iteration. Ions that enter at twice the thermal speed beyond the drift

velocity arrive at the probe with a velocity of 6, 945 m
s
. Dividing the cell length by

this speed and rounding down sets the time step at 5 × 10−9 s.

The simulation is allowed to iterate for 10,000 time steps to reach a converged

state, followed by 20,000 sampled time steps. The total simulation time is 30-

35 hours, depending on the specific ion inflow distribution.

5.2.3 Boundary conditions

The PIC model and the electron fluid models require boundary conditions along

all the edges of the domain and at the surfaces of the probe. Referring to the labels

in Fig. 5.2, there are six regions of boundary conditions.

Region 1 is the axisymmetric centerline. Particles are automatically rotated at

the centerline as part of the axisymmetric move routine. A zero gradient condition

is enforced on the radial component of all variables in the fluid models, including the

stream function Ψ, plasma potential, electron number density, and electron temper-

ature.

Region 2 is the upstream inlet for the flow. Particles are introduced at this

boundary with a random position and statistically sampled velocity in each cell.

The number of particles introduced per time step is determined from the assigned

inlet density and mean velocity, adjusted by the particle weight in the cell. Particles

that cross this boundary are removed from the simulation.

The electron temperature and gradient of stream function (equivalent to the

electron number density flux) are assigned along the inlet. The plasma potential and
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electron number density are set using Robin or third kind boundary conditions. As

an example, Eq. 5.1 sets the plasma potential φ1 at the boundary node based on

the potential at the second node φ2 that simultaneously satisfies both the assigned

potential φ0 and assigned axial gradient dφ
dz

∣

∣

0
at an imaginary node one cell length

△z outside of the domain.

φ1 =
3

4
φ0 +

1

4
φ2 +

1

2

dφ

dz

∣

∣

∣

∣

0

△z (5.1)

Region 3 is the outer radial inlet. Particles are injected along this edge using the

same procedure as in Region 2, and particles that cross this boundary are removed

from the simulation. A constant gradient condition is enforced on the radial compo-

nent of the stream function, and zero gradient conditions are enforced on the radial

component of plasma potential, electron number density, and electron temperature.

Region 4 is the downstream flow exit. Particles are only removed along this edge.

A constant gradient condition is enforced on the stream function, and zero gradient

conditions are enforced on the axial component of plasma potential, electron number

density, and electron temperature.

Region 5 is the body of the probe. Particles undergo diffuse reflection from this

surface with full thermal accommodation, and ion particles are neutralized. The

gradient of stream function is assigned, which is equivalent to setting the electron

current flux to the surface. The plasma potential, electron number density, and

electron temperature are assigned at the surface.

Region 6 is the collecting surface of the probe. The same boundary conditions as

in Region 5 are enforced on particles and electron fluid variables. When ion particles

are neutralized at this surface, the collected current is incremented by the charge of

the ion particle. This gives the simulated collected current, which is averaged over
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the sampling time steps.

The boundary conditions on electron number density are only required for the

Poisson-consistent detailed model. Since it is not practical to solve the differential

equation for ne at the surface, a kinetic approximation to the number density is used

instead. Electrons are assumed to follow a Maxwellian distribution at the inlet of the

domain. Using a Lagrangian formulation for conservation of energy, the distribution

function at the wall fw (v) can be related to the inlet distribution function f (v) by

the velocity shift in Eq. 5.2. Since the wall potential φw is negative, a given velocity

at the wall corresponds to a larger velocity at the inlet.

fw (v) dv = f

(
√

v2 − 2
e

m
φw

)

dv (5.2)

It is assumed that all electron particles that reach the wall are absorbed, so the

distribution function is zero for v < 0. Integrating over the distribution function as

in Eq. 5.3 gives the boundary value of electron number density at the probe surface.

ne,w =

∫ ∞

0

fw (v) dv (5.3)

This is not an exact solution to the differential equation for electron number

density, but it serves as an acceptable approximation for the boundary condition.

5.3 Hybrid PIC Boltzmann model studies

The Boltzmann model is used to obtain the results in five main studies here.

Three studies are designed to explore the flow field by varying the geometry and

inflow ion conditions. Two additional studies investigate the performance of the

Faraday probe for various operating conditions.

The first study is a quasi one dimensional simulation that is used to validate the

operation of the hybrid fluid PIC computational code. The second study simulates
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the same conditions on the two dimensional axisymmetric probe geometry to identify

any higher dimensional effects. The third study is an investigation of inflow ion

distribution effects, conducted by incrementally adding component distributions to

the inflow plasma.

In the fourth study, the guard ring bias potential is varied relative to the collecting

surface bias to determine the effective collecting area of the probe. The fifth study

is a sweep over a broad range of bias voltage, to characterize the probe performance

over a range of bias potentials.

5.3.1 Quasi one dimensional study

The first aspect of the quasi one dimensional study is to perform a validation

of the hybrid PIC fluid code by reproducing the conditions of the planar Bohm

sheath model. To that end, the computational domain is limited to a cylinder that

lies immediately upstream of the collecting surface, with a new outer radial edge at

r = 0.0952 cm.

The boundary conditions on the outer radial edge are modified to simulate a

symmetry plane as follows. No particles are injected, and particles that cross the

boundary are specularly reflected back into the domain. Zero gradient conditions

are enforced on the stream function, plasma potential, electron number density, and

electron temperature.

Since the planar Bohm sheath model assumes a cold ion beam, the ion tempera-

ture at the inlet is set to 300 K. This is much lower than the electron temperature,

but still high enough to avoid the computational difficulties associated with zero tem-

perature. All other plasma properties remain as given in Table 5.1. This condition

is referred to as the cold ion case.
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A radial average is taken of the hybrid fluid PIC model results in order to make

useful comparisons with the Bohm sheath solution. This is accomplished by averaging

the first 100 cells (0.004 m) from the centerline at a fixed axial position. The resulting

profile is representative of the plasma properties near the centerline of the simulated

probe.

The Boltzmann model hybrid fluid PIC results are excellent for the cold ion case.

Contours and profiles of plasma potential, Figs. 5.3-5.4, electron number density,

Figs. 5.5-5.6, and ion number density, Figs. 5.7-5.8, show excellent agreement with

the Bohm sheath solution. The contours of each variable are normal to the axis,

indicating that quasi one dimensional flow has been achieved. The profiles of sim-

ulated properties are indistinguishable from the Bohm sheath solution profiles for

every property.

This level of agreement indicates that the Boltzmann model can very accurately

simulate the physics underlying the formation of an electrostatic sheath. It should

be noted that the electron number density is a function of the plasma potential by

the Boltzmann relation. As such, the simulated electron number density is not truly

an independent variable, and will show the same trends as the plasma potential.
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Figure 5.3: Contours of plasma potential for the one dimensional cold ion case.
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Figure 5.4: Profiles of plasma potential for the one dimensional cold ion case.
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Figure 5.5: Contours of electron number density for the one dimensional cold ion
case.
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Figure 5.6: Profiles of electron number density for the one dimensional cold ion case.
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Figure 5.7: Contours of ion number density for the one dimensional cold ion case.
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Figure 5.8: Profiles of ion number density for the one dimensional cold ion case.

The second aspect of the quasi one dimensional study is to isolate the effect of

ion temperature on the properties in the sheath. The hot ion case uses an inlet ion
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temperature of 1 eV, along with the other conditions in Table 5.1. In this case the

ion temperature is large enough that there is a significant spread in velocities about

the mean velocity.

The simulations of the hot ion case maintain quasi one dimensional flow in this

geometry, so the contours are omitted. The profiles of plasma potential, Fig. 5.9, and

electron number density, Fig. 5.10, still show very good agreement with the Bohm

sheath solution profiles. However, the ion number density, Fig. 5.11, is about 5%

lower than expected through most of the sheath.
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Figure 5.9: Profiles of plasma potential for the one dimensional hot ion case.
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Figure 5.10: Profiles of electron number density for the one dimensional hot ion case.
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Figure 5.11: Profiles of ion number density for the one dimensional hot ion case.

This difference can be explained by the presence of low speed ions in the distribu-

tion for the hot ion case. A given difference in electrostatic potential leads to a larger
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increase of velocity for slow particles than for fast particles. Since the ion number

density flux is constant, the density decreases as the mean velocity increases. The

mean velocity will increase faster for a distribution with low speed ions than for a

distribution of uniform speed ions, which results in a lower density at a corresponding

plasma potential.

5.3.2 Two dimensional study

The next study using the Boltzmann model is conducted on the axisymmetric

probe geometry. For the sake of easy comparison with the quasi one dimensional

results, the guard ring is eliminated so that the outer diameter of the probe is at the

radius of the collecting surface. The conditions of the cold ion case are simulated to

reproduce the planar Bohm sheath conditions.

Contours and profiles of plasma potential, Figs. 5.12-5.13, electron number den-

sity, Figs. 5.14-5.15, and ion number density, Figs. 5.16-5.17, show excellent agree-

ment with the Bohm sheath solution near the centerline. Edge effects are visible as

strong curvature in the contours near the front corner of the probe. However, the

effects are only significant for ∼ 0.0015 m or 2 λD from the outer edge of the probe.
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Figure 5.12: Contours of plasma potential for the cold ion case.
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Figure 5.13: Profiles of plasma potential near the centerline for the cold ion case.



106

Figure 5.14: Contours of electron number density for the two dimensional cold ion
case.
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Figure 5.15: Profiles of electron number density near the centerline for the cold ion
case.
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Figure 5.16: Contours of ion number density for the two dimensional cold ion case.
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Figure 5.17: Profiles of ion number density near the centerline for the cold ion case.

The hot ion case shows very similar features on the axisymmetric probe geometry.

The contours are visually indistinguishable from those of the cold ion case, so they
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are not shown here. The profiles of plasma potential, Fig. 5.18, electron number

density, Fig. 5.19, and ion number density, Fig. 5.20, are marginally closer to the

Bohm sheath solution than the hot ion case in the quasi one dimensional model.

The slight improvement is likely due to the weak focusing effect of the curved

potential field. The low speed ions are still accelerated, but part of the acceleration

is radial and does not affect the flux. As a consequence the ion number density stays

slightly higher and attains better agreement with the Bohm sheath profile.
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Figure 5.18: Profiles of plasma potential near the centerline for the hot ion case.
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Figure 5.19: Profiles of electron number density near the centerline for the hot ion
case.
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Figure 5.20: Profiles of ion number density near the centerline for the hot ion case.
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5.3.3 Multiple component studies

The third study using the Boltzmann model builds a complicated inflow ion

distribution by adding together several Maxwellian components. The interaction

of the different component populations is evaluated by comparing the ion number

density profile for one component simulated separately against the profile for the

same component simulated with one or more additional components.

This is accomplished in two stages, first a combination of high speed, high tem-

perature beam ions and low speed, low temperature charge exchange (CEX) ions is

simulated. Second, a combination of beam, CEX, and double charge ions is simu-

lated. The plasma conditions are reported in Table 5.2 for the beam-CEX case, and

Table 5.3 for the beam-CEX-double composite case. In both of these cases the total

freestream current density is held constant by adjusting the density of the component

populations.

The number density, drift velocity, and temperature for the component distri-

butions are selected in keeping with the assumption that the probe is placed far

off-axis in a Hall thruster plume. For the sake of comparison with other results,

the ion current density is held constant at the same value as in the single compo-

nent cases. Experiments that compare collimated and uncollimated Faraday probe

measurements suggest that CEX ions account for the majority of the current at high

angles from the centerline [41]. Using a similar ratio, the CEX component is assumed

to carry 75% of the ion current density, and the beam component carries the remain-

der. The beam velocity is kept at the same value as in the previous single component

cases. The CEX velocity is determined by assuming a slightly supersonic condition,

MCEX = 1.20. The number density of the components can then be calculated from

the component current density and velocity.
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Table 5.2: Plasma properties for the beam-CEX component case.

ni, 1014 m−3 vi,
m
s

Ti, K

Beam 0.480 2,381 11,600

CEX 1.439 1,026 300

Electrons 1.919 1,365 11,600

For the beam-CEX-double composite case, the double charge ions are assumed

to carry 10% of the total current. Experimental measurements report a comparable

fraction in the far field, for low power thrusters [78] and high power thrusters [79,

80]. In this case the double charge component is assumed to have a drift velocity

equal to the average speed of the beam and CEX populations. Assuming the same

total ion current density as before, these assumptions can be used to determine a

unique velocity and number density for the double charge ions. The double charge

temperature is not well defined, since the particles are assumed to be drawn from

both the beam and CEX populations. The double charge temperature is therefore

set at 11,600 K to represent the broad range in velocity.

Table 5.3: Plasma properties for the beam-CEX-double composite case.

ni, 1014 m−3 vi,
m
s

Ti, K

Beam 0.432 2,381 11,600

CEX 1.295 1,026 300

Double 0.096 1,365 11,600

Electrons 1.919 1,365 11,600

Note that the assumptions for the CEX and double components are not entirely

representative of an EP plume. Since charge exchange ions are formed throughout

the plume, there is likely to be a broad velocity distribution that would be better

represented by a high temperature. Double charge ions are formed in the thruster
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or by collisions in the near field, and acceleration by the electrostatic fields would

produce a final drift velocity that is higher than the single charge ions achieve. A

variation of the composite distribution that takes these effects into consideration is

described and used in Sec. 5.5.2. However, these details are not crucial for evaluating

the interaction between two or more components.

For these simulations, the most useful comparisons can be made from the profiles

of ion number density. The plasma potential and electron number density maintain

the same level of agreement with the Bohm sheath solution that has been demon-

strated previously.

For the beam-CEX case, Figs. 5.21 and 5.22 are respectively the profiles of beam

and CEX ion number density when simulated as separate plasmas. Notice that the

separate components demonstrate the behavior discussed previously: the cold CEX

ions are in very good agreement with the Bohm sheath solution, and the hot beam

ions are at about 5% lower density throughout the sheath.
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Figure 5.21: Profiles of ion number density near the centerline for the beam compo-
nent case.
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Figure 5.22: Profiles of ion number density near the centerline for the CEX compo-
nent case.

Figure 5.23 shows the profiles of beam and CEX ion number densities when sim-
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ulated as two components of the same plasma. A third profile labeled “All ions” gives

the profile of charge density in the sheath, and is compared against the Bohm sheath

solution calculated from the electron properties. Both of the component species

maintain essentially independent sheaths, while the total charge density appears to

follow the Bohm sheath solution calculated from the total charge density.
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Figure 5.23: Profiles of total and component ion number density near the centerline
for the beam-CEX case.

Contours of percent difference in density between the separate simulations and

the combined beam-CEX simulation in Figs. 5.24-5.25 show that the individual com-

ponent densities only interact in a region just upstream of the probe surface. This is

consistent with the collective behavior of the plasma. Since the flow is collisionless,

individual particles only interact with the collective electrostatic field. The presence

of a second component population increases the charge density of the plasma and

decreases the Debye length, which shields the bulk plasma more effectively.
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Figure 5.24: Contours of percent difference in beam ion number density for the beam-
CEX case.

Figure 5.25: Contours of percent difference in CEX ion number density for the beam-
CEX case.

Individual particles do not feel the electrostatic forces until closer to the probe.
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However, since the boundary conditions enforce a fixed potential on the probe walls,

the particles must fall through the same total potential drop. As a result, the particles

achieve the same velocity at the surface of the probe as if there were no other ion

components shielding them from the potential. Therefore the component ion number

densities approach the expected values from their respective Bohm sheath solutions

at the surface of the probe.

The same trends are observed when adding a double component. The separate

simulation of the double component produces the profile in Fig. 5.26, and the compos-

ite simulation produces the profiles in Fig. 5.27. The simulated total charge density

very accurately reproduces the Bohm sheath solution calculated from the electron

properties.
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Figure 5.26: Profiles of ion number density near the centerline for the double com-
ponent case.
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Figure 5.27: Profiles of total and component ion number density near the centerline
for the beam-CEX-double composite case.

As could be expected from the beam-CEX results, adding a double charge compo-

nent does not significantly affect the properties of the other component distributions

at the surface of the probe.

5.3.4 Guard ring bias study

In most experimental setups, the guard ring is biased to the same potential as

the collecting surface. This is intended to produce a uniform sheath over the probe

surface, so that there is little or no focusing of current density onto the collecting

surface. Then the area of the collecting surface is equal to the area of the current

flux tube in the plasma, and the current density can be calculated by dividing the

collected current by the collecting area.

This study uses the Boltzmann model to investigate how the collected current and

streamlines of current are affected if the guard ring were intentionally or accidentally
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biased to a different potential than the collecting surface. The collecting surface is

biased to −5 V in this study, and two cases are presented: a first case where the

guard ring bias is set to −10 V, and a second case where the guard ring bias is set

set to 0 V. Additional cases are not presented here, since they do not demonstrate

any new features.

The beam-CEX distribution is used in this study so that any effects could be

analyzed for relative trends on components with different average speeds and tem-

peratures. For example, the CEX ions generally have a lower axial speed than the

beam ions, and might be deflected near the edge of the collecting area while the beam

ions are unaffected. However, no significant differences between the two populations

were identified.

Contours of plasma potential and charge density are shown in Figs. 5.28 and 5.29

for the −10 V guard ring bias, and in Figs. 5.30 and 5.31 for the 0 V ring bias. In

this case it is more useful to observe the streamlines of current in the flow.

Figure 5.28: Contours of plasma potential for the guard ring bias of -10 V.
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Figure 5.29: Contours of charge density for the guard ring bias of -10 V.

Figure 5.30: Contours of plasma potential for the guard ring bias of 0 V.
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Figure 5.31: Contours of charge density for the guard ring bias of 0 V.

Streamlines are shown for the −10 V guard ring bias case in Fig. 5.32, for the

uniform −5V bias case in Fig. 5.33, and for the 0V guard ring bias case in Fig. 5.34. In

each figure there is a streamline originating at a radius of 0.00952m that corresponds

to the radius of the collecting surface. Ideally, that streamline should connect to the

notch in the probe that separates the collecting surface from the guard ring. The

best alignment occurs for the uniform −5 V bias case. However, the effect of a ±5 V

difference between the guard ring and the collecting area does not drastically alter

the streamlines.
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Figure 5.32: Streamlines of current for the guard ring bias of -10 V.
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Figure 5.33: Streamlines of current for the uniform bias of -5 V.



122

z, m

r,
m

0 0.01

0

0.01

Figure 5.34: Streamlines of current for the guard ring bias of 0 V.

The simulated collected ion current for each of these guard ring cases is shown in

Fig. 5.35 and reported in Table 5.4. The simulated collected ion current is compared

with the theoretical ion current based on the current density in the freestream.

Although there is a small error in the uniform bias case, it is not large enough

to justify changing the guard ring bias.
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Figure 5.35: Simulated collected current as a function of guard ring bias.

Table 5.4: Simulated collected current for the guard ring relative bias.

φw, V Ji,Sim, µA Ji,Theory, µA Error, µA Error, %

0 13.383 11.948 1.435 12.01

-3 12.421 11.948 0.473 3.96

-5 12.004 11.948 0.056 0.47

-7 11.638 11.948 -0.310 -2.60

-10 11.121 11.948 -0.827 -6.92

5.3.5 Bias voltage sweep study

The final study with the Boltzmann fluid model is a sweep of the probe bias

voltage from 0 V to −10 V, with the entire probe biased to a uniform potential.

This study is intended to assess the accuracy of the Faraday probe over the range of

current collecting conditions. At a large negative potential, the probe only collects

an ion current since nearly all electrons are repelled. At zero potential, the probe

collects approximately equal ion and electron currents.
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The beam-CEX distribution is used in this study for consistency with the guard

ring bias study. Since the entire probe body is biased uniformly, the different com-

ponents are not expected to show different behaviors.

Properties in the flow fields are not important in this study, except to note the

consistent level of agreement with the applicable Bohm sheath solution. The simu-

lated collected currents are shown graphically in Fig. 5.36, and reported in Table 5.5.

The theoretical total collected current is calculated at each probe bias setting from

the freestream ion current and the fraction of electron current with sufficient velocity

to reach the probe.
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Figure 5.36: Simulated collected current over a range of probe bias.
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Table 5.5: Simulated collected current for the probe bias sweep.

φw, V JTot,Sim, µA JTot,Theory, µA Error, µA Error, %

0 -0.007 0.020 -0.027 135.

-1 8.961 8.957 0.003 0.04

-2 10.940 10.930 0.011 0.10

-3 11.614 11.590 0.024 0.21

-4 11.857 11.820 0.037 0.32

-5 11.958 11.902 0.056 0.47

-6 12.011 11.931 0.080 0.67

-7 12.043 11.942 0.101 0.85

-8 12.072 11.946 0.126 1.05

-9 12.102 11.947 0.155 1.30

-10 12.128 11.948 0.180 1.51

From these results it is expected that the Faraday probe accurately measures the

undisturbed freestream current. The apparently large error at 0 V is due to taking

the difference between two small values of total current. At all other bias potentials

the error in collected current is less than 2%.

There is a correlation between probe bias voltage and error in the collected cur-

rent, which corresponds to sheath expansion. Recall that the plasma potential con-

tours are curved near the outer edge of the probe, indicating a radial component of

the electric field that tends to focus ions toward the centerline of the probe. The

sheath extends farther from the probe for a larger potential drop, so the electric field

focuses a larger volume toward the centerline. In this case the ions have a large axial

velocity, so the focusing effect is small.
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5.3.6 Comparison with experiment

The experiment in Ref. [77] provides one experimental datum for comparison. In

that experiment the Faraday probe was biased uniformly to -5 V. The experimentally

measured current at the point 50 cm downstream and 75° off-axis in the BHT-200

Hall thruster plume is reported as 12.3µA. The simulated measurement for the -5 V

case in Table 5.5 is slightly lower, at 11.958µA. This is deemed very good agreement,

with less than 3% difference between the values.

The numerical parameters of the simulations in the preceding sections were con-

structed to simulate the plasma flow at the same point in the plume for the same

probe operating condition as in the experiment. However, recall from Sec. 5.1.1 that

the initial estimate of the plasma conditions was taken from a previous numerical

simulation of the BHT-200 plume. The good agreement between the simulated col-

lected current and the experimental collected current is a further confirmation that

the particular details of the ion distribution do not have a significant effect on the

probe measurement.

5.4 Hybrid PIC Non-neutral detailed model study

The non-neutral detailed model is only used to simulate the cold ion case, which is

intended to serve as a validation case by approximating the conditions of the planar

Bohm sheath model. This case reveals a serious problem with the implementation,

so no additional studies are conducted using this model.

Recall that the flow conditions for the cold ion case are intended to reproduce the

assumptions of the planar Bohm sheath model. The ion temperature is Ti = 300 K,

with the number density, velocity, and electron properties described in Sec. 5.1.1 and

summarized in Table 5.1.
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The contours and profile of plasma potential in Figs. 5.37 and 5.38 reveal a

significant problem with the non-neutral model: the new results are not remotely

similar to the Bohm sheath solution. The plasma potential profile in the sheath

appears parabolic, with a large gradient at the inlet edge of the domain.

Figure 5.37: Contours of plasma potential for the cold ion case.
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Figure 5.38: Profiles of plasma potential near the centerline for the cold ion case.

Contours of electron number density in Fig. 5.39 and ion number density in

Fig. 5.40 appear almost identical. The electron number density contours show sta-

tistical scatter that is an artifact of the calculation that uses the instantaneous ion

number density from the PIC module. However, no sampling is performed on the

electron number density.
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Figure 5.39: Contours of electron number density for the cold ion case.

Figure 5.40: Contours of ion number density for the cold ion case.

Except for the statistical scatter, the profiles of electron number density in

Fig. 5.41 and ion number density in Fig. 5.42 also appear identical. This indicates



130

a neutral plasma up to the probe surface, which is not consistent with the expected

physical processes in the sheath.
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Figure 5.41: Profiles of electron number density near the centerline for the cold ion
case.
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Figure 5.42: Profiles of ion number density near the centerline for the cold ion case.

Neither the plasma potential nor the number density results from the simulation

are consistent with the expected features of an electrostatic sheath. The electric

field is expected to vanish in the bulk plasma. That would correspond to approxi-

mately zero gradient in plasma potential at the inlet, rather than the large value seen

in the results. The plasma is expected to become non-neutral where the negative

probe potential repels electrons and accelerates ions, rather than remaining neutral

throughout the sheath as in the results.

The neutral plasma result leads to an understanding of how this model fails. The

simulation is initialized with uniform ion and electron number densities and uniform

plasma potential equal to the inlet values. The initial value of ∇2φ is therefore

zero throughout the domain. Electric fields are calculated and the ion particles

are accelerated and moved, giving new values of ion number density. The electron

number density is then calculated from the existing plasma potential and new ion
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number density according to the Poisson equation form in Eq. 4.31 of Chapter IV.

Since the value of ∇2φ is zero, this calculation is equivalent to assuming neutrality.

The differential equation for plasma potential is solved next, but the source term is

zero since the ion and electron densities are equal. Over many iterations the plasma

potential evolves to accommodate the boundary conditions, but the plasma remains

neutral throughout the domain. This set of initial conditions together with this

iteration procedure can only lead to a neutral plasma result.

Although it may be possible to rearrange the iteration steps to obtain a non-

neutral result, this model is not developed any further in this dissertation. The

Poisson-consistent model is available as an alternative, and successful, detailed model.

Additionally, the non-neutral detailed model is significantly more time intensive than

the Poisson-consistent model due to the larger number of ion particles required to

limit statistical scatter and maintain stable electron number density calculations.

5.5 Hybrid PIC Poisson-consistent detailed model studies

The Poisson-consistent detailed model is used in two main studies that parallel

the Boltzmann model studies of the plasma flow field. The first study uses the

Poisson-consistent model to simulate the cold ion case for comparison with the Bohm

sheath solution. The second study uses the Poisson-consistent model to simulate the

composite multiple ion component case, and identifies a possible limitation of the

model.

5.5.1 Bohm sheath validation case

Once again, the flow conditions for the cold ion case approximate the assumptions

made in the planar Bohm sheath model. The ion temperature is Ti = 300 K. The

electron properties and the ion number density and velocity are described in Sec. 5.1.1
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and summarized in Table 5.1.

The contours of plasma potential in Fig. 5.43 show a nearly uniform sheath over

the entire collecting surface, with edge effects limited to the outermost 0.002m (3 λD)

of the probe surface. The profile of plasma potential in Fig. 5.44 is in excellent

agreement with the Bohm sheath solution.

Figure 5.43: Contours of plasma potential for the cold ion case.
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Figure 5.44: Profiles of plasma potential near the centerline for the cold ion case.

The contours of electron number density in Fig. 5.45 are solved from the differ-

ential equation in Eq. 4.32 of Chapter IV. Some statistical scatter is evident in the

contours, and is expected since the electron number density is coupled to the ion

number density by way of the electrostatic Poisson equation.

Although the differential equation is significantly more complicated than the

Boltzmann relation, the electron number density profile in Fig. 5.46 still shows excel-

lent agreement with the Bohm sheath solution. This indicates that the Boltzmann

relation is an appropriate assumption for these conditions.
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Figure 5.45: Contours of electron number density for the cold ion case.
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Figure 5.46: Profiles of electron number density near the centerline for the cold ion
case.

The contours and profile of ion number density in Figs. 5.47 and 5.48 are likewise
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in excellent agreement with the Bohm sheath solution.

Figure 5.47: Contours of ion number density for the cold ion case.
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Figure 5.48: Profiles of ion number density near the centerline for the cold ion case.

The Poisson-consistent model very accurately reproduces the Bohm sheath solu-
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tion for the cold ion case, which verifies the basic formulation and implementation

of the model. The boundary conditions for electron number density also appear to

work well. The ADI solver shows no difficulties with the differential equation for

electron number density, despite concerns about its complexity and non-linearity.

5.5.2 Multiple component plasma studies

Intermediate studies of the hot ion case and the beam-CEX case are omitted for

brevity, since the Poisson-consistent model yields consistently good agreement with

the Bohm sheath solutions for those cases. A modified composite beam-CEX-double

distribution case is more interesting, since it can be used to show a limitation in the

predictive capabilities of the Bohm sheath model.

The inflow ion distribution here is a variation of the original composite case de-

scribed in Sec. 5.3.3, referred to as the hot composite case. The beam component

is unchanged. The density and drift velocity of the CEX component remains un-

changed, but the temperature is raised to 11,600 K. Charge exchange ions are born

in collisions with cold neutral gas that diffused out of the thruster. The charge ex-

change collisions can take place anywhere from the exit plane of the thruster to the

surface of the probe, so a broad distribution in particle velocity develops depending

on the relative potential drop from the point of formation to the probe. The high

CEX temperature is intended to better represent the spread in velocities.

The properties of the double charge component are calculated by assuming that

10% of the freestream current density is carried by the double charge particles. The

particles are assumed to be formed in the same locations and the same ratio as

the beam and CEX components, and the electrostatic acceleration produces velocity

that is larger by a factor of
√

2 due to the double charge. The velocity for the
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double charge component is then
√

2 times the mean velocity of the beam and CEX

components. The double component number density is then calculated from the

known current density and velocity.

The conditions for the hot composite case are summarized in Table 5.3. Since

the hot composite case demonstrates unexpected behavior, a cold composite case

will also be simulated for comparison. The only difference between the cases is that

the CEX component temperature is 300 K for the cold composite case. All other

properties for the inflow distributions remain unchanged from the values in the table.

Table 5.6: Plasma properties for the hot composite case.

ni, 1014 m−3 vi,
m
s

Ti, K

Beam 0.432 2,381 11,600

CEX 1.295 1,026 11,600

Double 0.068 1,930 11,600

Electrons 1.863 1,406 11,600

Simulations using the Poisson-consistent model produce contours of the hot com-

posite and cold composite cases that appear very similar to one another and to

previous results. It is therefore most effective to compare the profiles of plasma

properties in the sheath.

The profile of plasma potential for the hot composite case in Fig. 5.49 is seen

to be consistently about 0.1 V lower than the Bohm sheath solution through much

of the sheath. This is a much larger departure than expected from the Poisson-

consistent model. In contrast, the plasma potential profile for the cold composite

case in Fig. 5.50 is in excellent agreement with the Bohm sheath profile.
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Figure 5.49: Profiles of plasma potential near the centerline for the hot composite
case.
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Figure 5.50: Profiles of plasma potential near the centerline for the cold composite
case.

The electron number density profile for the hot composite case also shows a
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significant difference from the Bohm sheath solution in Fig. 5.51. However, the

same profile for the cold composite case is in good agreement with the Bohm sheath

solution in Fig. 5.52.
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Figure 5.51: Profiles of electron number density near the centerline for the hot com-
posite case.
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Figure 5.52: Profiles of electron number density near the centerline for the cold com-
posite case.

Comparing the profiles of ion number density from the hot composite case,

Fig. 5.53, with the cold composite case, Fig. 5.54, begins to explain the difference

between the two cases. The CEX component of the hot composite shows a significant

deviation from the Bohm sheath solution at the inlet and throughout the sheath. In

contrast, the cold composite CEX component is in very good agreement with the

Bohm sheath solution at all points. The beam and double components appear es-

sentially the same for both cases, indicating that the difficulty in the hot composite

case lies with the CEX component.
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Figure 5.53: Profiles of total and component ion number density near the centerline
for the hot composite case.
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Figure 5.54: Profiles of total and component ion number density near the centerline
for the cold composite case.
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The normalized distribution functions for the hot composite and cold composite

cases are shown in Fig. 5.55. A feature that stands out is that nearly 11.5% of the

hot composite CEX distribution is backflow, i.e., vi < 0. For comparison, just 0.27%

of the beam component distribution is backflow, and 1.2% of the double compo-

nent distribution is backflow. The cold CEX component distribution has negligible

backflow.
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Figure 5.55: Normalized distribution functions for the hot composite and cold com-
posite cases.

The Bohm sheath solution assumes cold ions with a uniform positive velocity.

However, a significant portion of the hot composite CEX distribution is backflow,

which explains why the simulated density does not match the predicted number

density far from the probe. An estimate of the density for just the forward flowing

ions in the hot composite CEX component is 88.5% of the freestream density, or

1.15 × 1014, m−3. This is much closer to the simulated value of hot composite CEX

density far from the probe in Fig. 5.53. The Bohm sheath solution calculated from
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freestream conditions is not a reliable predictor for the sheath structure or collected

current when a significant backflow component is included. This limitation is loosely

related to the Bohm criterion.

The PIC model used in the Poisson-consistent simulations injects particles into

the domain with velocities chosen statistically from the freestream distribution.

Therefore some of the CEX component particles introduced along the outer radial

edge of the domain are likely to be backflowing particles. There are not enough

of those particles to completely replenish the backflowing distribution everywhere

upstream of the probe, so the simulation partly resembles a geometric shadowing

sheath that reaches upstream from the probe. At present the PIC model only in-

jects particles into the domain with positive velocity from the two inlet edges at the

upstream and outer radial edges of the domain. This could be improved by also

injecting backflow particles from the downstream edge of the computational domain,

along region 4 in Fig. 5.2.

The Poisson-consistent model simulations are in very good agreement with the

Bohm sheath solution, provided there is not a significant fraction of backflow. By

including backflowing particles, the Poisson-consistent model offers the possibility

to simulate plasma sheaths for conditions where the Bohm sheath cannot obtain a

stable solution, such as in low Mach number flows or in stationary plasmas.

5.6 Conclusions and implications for probe design

The results in this chapter lead to several conclusions about plasma behavior in

a probe sheath, and a few design and operational guidelines for Faraday probes.

The planar Bohm sheath solution is found to be an excellent predictor for plasma

properties near the centerline in the sheath. A high temperature Maxwellian ion
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distribution alters the ion number density in the sheath, lowering it by a few percent

from the Bohm sheath profile. A plasma composed of one or more Maxwellian ion

components forms a sheath that is more compact than any individual component,

since each component contributes to shielding the plasma from the probe potential.

The Bohm sheath solution calculated from total charge density and mean velocity

at the inlet is an excellent predictor for plasma potential and total charge density in

the sheath of a composite distribution. Additionally, the Bohm sheath solutions for

number density calculated using the overall plasma potential remain good predictors

for each component in the sheath of a composite distribution.

If the plasma conditions include a significant reverse flow component, the Bohm

sheath solution is not a reliable predictor. This limitation is essentially a restatement

of the Bohm criterion. A significant reverse flow component sets up a geometric

shadowing situation, which cannot be handled with the planar Bohm sheath model.

The hybrid fluid PIC models may still be capable of accurate prediction of the sheath,

provided that ion particles are injected with forward and backward velocities from

appropriate inlets.

The two dimensional edge effects of the probe are limited to an annular region

near the outer edge of the probe. In the studies reported here, the effects were

limited to about 3 λD from the edge of the probe. A Faraday probe should therefore

be designed with a guard ring that is at least 3λD wide, as calculated for the largest

anticipated Debye length. The separation between the collecting area and the guard

ring should be minimized to maintain a uniform sheath over the entire probe surface.

The guard ring should be biased to the same potential as the collecting surface.

This configuration can reliably measure the freestream current with less than 2% er-

ror from 0V to −10V bias potential for the plasma conditions considered. However,
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sheath growth occurs as the potential bias is made more negative, and two dimen-

sional focusing effects increase the collected ion current. The error in the current

density measurement due to sheath growth is about 0.25% per Volt for the probe

and plasma conditions described.



Chapter VI

Multigrid Methods

Simulations using the hybrid fluid PIC model take considerable time to complete,

from 25 hours for the quasi one dimensional cases to 35 hours for the multiple com-

ponent cases described in Chapter V. The computational domain needed to resolve

an electrostatic sheath is two to three times larger for a wake surface than for a ram

surface. The associated computational time requirement scales accordingly, mak-

ing it impractical to attempt simulations of a reversed Faraday probe without first

improving the speed of the computational code.

The computational time of the hybrid fluid PIC code is evaluated in this chapter.

As part of that evaluation, routines that operate on the particles are identified as

major contributors to the overall time. A multigrid method is introduced that allows

a coarser grid to be used for the PIC model in order to reduce the total particle count

and speed up the code. The multigrid version of the hybrid fluid PIC code is found to

be substantially faster than the single grid version while obtaining the same precision

and accuracy.

147



148

6.1 Time profiling

A time profile of the hybrid fluid PIC computational code is performed using

built-in compiler options and running the code for 15,000 iterations. The results

are reported in Table 6.1. Routines accelerate, move, collide, weight_to_grid, and

sample carry out the steps of the PIC model for the simulated particles. Routines

e_continuity, e_momentum, e_energy, and e_poisson set up the coefficient matrices

and conduct the ADI iteration of the discrete differential equations in the electron

fluid model. Routine thomas_adi is the solver that is called from each of the fluid

model routines to actually solve the differential equations for each line or column.

There are also other routines that are called infrequently, including initialization and

data output routines, that contribute a small amount to the overall simulation time.

Table 6.1: Time profile results of the hybrid fluid PIC computational code.

Routine Time, s Time, % Type

accelerate 10,645.00 18.96 particle

weight_to_grid 8,590.00 15.30 particle

sample 8,475.00 15.09 particle

move 6,570.46 11.70 particle

e_energy 6,302.90 11.22 fluid

thomas_adi 4,855.80 8.65 fluid

e_poisson 4,362.23 7.77 fluid

e_momentum 3,866.20 6.89 fluid

e_continuity 1,395.50 2.49 fluid

collide 687.87 1.23 particle

others 399.90 0.70 -

Total 56,151.06 100.00

The final column of the table indicates whether the time spent in each routine

scales with the number of particles or the number of nodes in the fluid grid. The
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four most time intensive routines all operate on particles, and together those routines

account for 61% of the total simulation time. The next five routines all operate on

the fluid grid, and account for 37% of the total simulation time. A reduction in either

particle count or grid node count could lead to a significant speedup.

6.2 Multigrid technique

In Chapter V the grid spacing is driven by the requirements of the fluid model,

and cannot be increased significantly without affecting the accuracy of the simulation

results. However, the spacing is much smaller than required to obtain accurate results

from the PIC or DSMC particle models. Since the particle count per cell is held near

20 to maintain good statistical properties, the total number of simulated particles is

very high in the hybrid fluid PIC simulations.

The disparity in grid spacing requirements suggests that an approach related to

the multigrid methods developed in computational fluid dynamics might be useful

here. In a CFD application, a multigrid method is used to accelerate the solution

of a system of differential equations. The equations are first solved on a coarse grid

to obtain an approximate solution. That solution is “prolonged” or interpolated to

provide the initial estimate of the solution on a fine grid. The equations are solved

on the fine grid, and the fine solution can then be restricted back to the original

coarse grid, or prolonged to a finer grid and solved again [81, 82].

In the hybrid fluid PIC setting, a multigrid method can solve different models on

separate grids. The particle model is used on the coarse “PIC grid” to obtain the ion

and neutral number densities. Those densities are prolonged to a fine “fluid grid.”

The electron fluid model equations are then solved on the fluid grid. By introducing a

multigrid system, the number of PIC cells and particles can be reduced on the coarse
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grid, while still maintaining the fine spacing required for the fluid model solutions

on the fluid grid.

The modifications and additions to the computational code are not extensive.

Support for separate PIC and fluid grids must be added. A new interpolation step

must be added to prolong the particle densities to the fluid grid, and the electric field

acceleration calculation must be modified to weight electric fields from the nodes of

the fluid grid to the particles. The multigrid iteration cycle is essentially the same

as the original iteration cycle in Sec. 4.4, except that the interpolation step is added:

1. Weight particle density to the nodes of the PIC grid

2. New: Interpolate particle density to nodes of the fluid grid

3. Solve electron continuity equation on fluid grid

4. Solve electron momentum equation on fluid grid

5. Solve electron energy equation on fluid grid

6. Repeat steps 4-5 to converge coupled equations

7. Modified: Weight electric fields from fluid grid nodes to particles

8. Move particles on the PIC grid

9. Collide PIC particles in PIC grid cells

10. Sample particle properties on PIC grid

For simplicity, the PIC grid and the fluid grid are constructed with coincident

nodes. The PIC grid has twice the cell spacing of the fluid grid, so that each rectan-

gular PIC cell contains exactly four rectangular fluid cells. The interpolation routine
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transfers values from the PIC grid to the fluid grid at shared nodes, and uses linear

interpolation to calculate values at the additional fluid grid nodes.

6.3 Validation and speedup assessment of multigrid version

The new multigrid version of the hybrid fluid PIC computational code is validated

by repeating several of the cases from Chapter V. The composite case using the

Poisson-consistent detailed model is considered the most difficult simulation, and

those results are compared here. Contours of the potential, Fig. 6.1, electron density,

Fig. 6.2, and charge density, Fig. 6.3, are very consistent between the original and

multigrid simulations.
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Figure 6.1: Contours of potential for the original and multigrid composite simula-
tions.
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Figure 6.2: Contours of electron number density for the original and multigrid com-
posite simulations.
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Figure 6.3: Contours of charge density for the original and multigrid composite sim-
ulations.

There are no apparent systematic differences or large local differences between

the original and multigrid simulation results. The differences can be quantified at

the coincident nodes on the PIC grid, giving a maximum error of ±2% from the



155

original solution. From these comparisons it is concluded that the multigrid version

accurately obtains the same solution as the original code.

The expected speedup factor for the multigrid version is based on the assumption

that the time spent in particle routines scales linearly with the total particle count,

while the time spent in fluid routines scales linearly with the number of fluid grid

nodes. The multigrid PIC grid has a factor of 4 fewer cells than the original grid,

so the particle count drops by the same factor and the expected speedup factor is 4

for all of the particle routines. The multigrid fluid grid is identical to the original

grid, so the fluid routines should take the same amount of time, giving an expected

speedup factor of 1 for all of the fluid routines.

The speedup of the multigrid version of the code is evaluated by performing a

time profile using the same built-in compiler options as before. The profile results

are shown in Table 6.2 for the new multigrid version time, MG Time, together with

the original single grid version time, SG Time, for comparison.

The actual speedup factor is computed as the ratio of the original time to the

new time. Each of the fluid routines show a small speedup which is probably due

to uncontrolled secondary effects, such as better use of cache memory. The particle

routines show a speedup factor that meets or exceeds the anticipated factor of 4.

The routines move, weight_to_grid, and sample achieve a speedup that is nearly a

factor of 2 higher than expected. The new interpolation routine is added into routine

weight_to_grid, making the speedup factor even more impressive.

The multigrid version achieves an overall speedup of 2.22, meaning that the same

domain and plasma conditions can be simulated in less than half the total time of the

original version. This is enough of a speedup so that the computational time for a

simulation of a reversed Faraday probe should be comparable to the time previously
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Table 6.2: Time profile results of the multigrid hybrid fluid PIC computational code.

Expected Actual

Routine SG Time, s MG Time, s MG Time, % Speedup Speedup

accelerate 10,645.00 2,634.00 10.42 4 4.04

weight_to_grid 8,590.00 1,218.20 4.82 4 7.05

sample 8,475.00 1,048.90 4.15 4 8.08

move 6,570.46 941.15 3.72 4 6.98

e_energy 6,302.90 5,729.00 22.66 1 1.10

thomas_adi 4,855.80 4,461.80 17.65 1 1.09

e_poisson 4,362.23 4,037.85 15.97 1 1.08

e_momentum 3,866.20 3,555.90 14.07 1 1.09

e_continuity 1,395.50 1,277.90 5.06 1 1.09

collide 687.87 141.40 0.56 4 4.86

others 399.90 232.04 0.92 1 1.72

Total 56,151.06 25,278.14 100.00 1.88 2.22

required for a Faraday probe simulation.



Chapter VII

Reversed Faraday Probe Simulations

The multigrid version of the hybrid fluid PIC simulation code is used to simulate

the axisymmetric flow around a reversed Faraday probe, with emphasis on resolving

flow features on the wake side of the probe. For these cases the planar Bohm sheath

solution will not be useful, since it cannot provide a stable sheath solution for ions

flowing away from the probe surface. The geometric shadowing model solution could

be useful for comparison with the simulation results, provided an estimate of the

exchange frequency can be found to determine a physical scaling.

A geometric shadowing DSMC model will be developed by modifying the hybrid

fluid PIC model to reproduce the assumptions of the geometric shadowing model.

The resulting model is then used to perform a gasdynamic simulation of the ion

particles. The shadowing DSMC model does produce a flow field that is consistent

with the expectations of the shadowing model. However, no satisfactory geometric

shadowing sheath solution can be found to fit the ion number density profile from

the simulation.

The Boltzmann fluid model is used in the hybrid fluid PIC model to perform

a plasmadynamic simulation of the same flow that includes electric fields. This

flow field solution is significantly more complex than predicted by the shadowing

157
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model. Two dimensional effects introduce important flow features on the wake side

of the probe that cannot be described by a one dimensional theory. The geometric

shadowing sheath model is of little or no use in this situation.

The Poisson-consistent detailed fluid model is also used to simulate the flow. Mi-

nor differences from the Boltzmann model are noted, but generally the models are in

good agreement. The Poisson-consistent model predicts more gradual plasma poten-

tial variation over a larger area than the Boltzmann model, and the flow structures

in the wake are affected accordingly. Again, the geometric shadowing sheath does

not provide useful predictions of the flow.

The numerical simulations are used to calculate estimates of the exchange fre-

quency by recording the rate that simulated particles cross into a region in the wake.

The shadowing DSMC model demonstrates an approximately constant exchange fre-

quency for particles moving into the wake, but a much lower, variable frequency for

particles moving out of the wake. The Boltzmann and Poisson-consistent models

produce more complicated profiles of exchange frequency, with strong variations due

to the flow features. The assumption of a constant exchange frequency at all points

in the sheath is very poor for these models.

7.1 Flow conditions

The flow conditions are selected to obtain an interesting physical situation that

remains representative of the conditions in an EP plume, while maintaining a practi-

cal simulation time. The geometric shadowing model provides some guidance about

the properties of the sheath on the wake side of the probe. In Eq. 7.1 the solution

for the distribution function in the wake region is repeated. Since the sheath length

is defined where the exponential term is arbitrarily small, the sheath will extend far
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downstream if the Mach number is large.

f (z, M) = f∞ (M)

[

1 − H (M) exp

(

−W

M
z

)]

(7.1)

In the interest of keeping a smaller computational domain and limiting the time

requirement, the flow should be kept near a Mach number of one. The electron

temperature is assumed to be 11,600 K as in the previous conditions, which gives a

Bohm velocity vB = 857.2 m
s
. This suggests a drift velocity vD = 1000 m

s
giving a

Mach number with respect to Bohm velocity of MD = 1.167.

To match the cold ion case that was used repeatedly as a validation case, the

number density is set at ni = 1.1 × 1014 m−3, although the ion number density does

not appear as a parameter in the shadowing model. The ion temperature is set at

Ti = 300 K, which determines the temperature ratio for the shadowing model as

τ∞ = 0.0259. The low ion temperature avoids a significant backflow component,

which can be demonstrated from the gaskinetic Mach number. The acoustic speed

is calculated as va =
√

γkBTi/mi, giving va = 178.0 m
s

for xenon at 300 K. This

produces a strongly supersonic Mach number MD,a = 5.619.

The flow conditions and model parameters for the ions are summarized in Ta-

ble 7.1. For the hybrid fluid PIC models, it will be necessary to have conditions

for the electrons at the inlet as well. The plasma is assumed to be co-flowing and

neutral, so that ni = ne and vi = ve in the freestream.

Table 7.1: Ion plasma properties for reversed Faraday probe simulations.

vD = 1, 000. m
s

ni = 1.1 × 1014 m−3

vB = 855.7 m
s

MD = 1.167

Ti = 300 K τ∞ = 0.0259

va = 178.0 m
s

MD,a = 5.619
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7.2 Simulation domain and numerical parameters

The computational domain for the reversed Faraday probe is similar to that used

for the probe simulations. In this case, the extent of the domain on the wake side

of the probe is estimated using a kinetic argument. The boundary conditions are

essentially unchanged. Since the reversed Faraday probe simulations are conducted

with a multigrid method, numerical parameters for the computational grid must

satisfy the more demanding requirements.

7.2.1 Computational domain

The geometric shadowing model does not provide a physically scaled solution, so

no sheath length is available to give the required domain length. Instead, a kinetic

argument is used to size the domain on the wake side of the probe.

Ion particles at a sufficiently large initial radius will flow past the side of the

probe body and diffuse into the wake region. Electrostatic fields tend to accelerate

particles toward the centerline on the wake side of the probe, so the electric field is

neglected to arrive at a conservative estimate of the domain length. Without electric

fields, radial diffusion is due to random thermal velocity of the particles.

To fully resolve the wake, the domain should be long enough for particles of every

radial speed to diffuse across the diameter of the probe. Since there are particles

with very low radial speed, this still results in a domain that is impractically long.

Instead, consider the fastest particles to be at three times the mean speed. For xenon

at 300 K, these particles have a radial speed of vr,max = 660 m
s
.

The streamline for a particle that just passes the edge of the probe with the

maximum radial speed gives the geometry in Fig. 7.1. From this geometry, it can be

determined that the domain must extend at least 1.52 probe diameters downstream
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Figure 7.1: Schematic of the wake behind a reversed Faraday probe, with the leading
expansion ray and the streamline for particles with the fastest radial
speed.

for these particles to diffuse across the diameter of the probe. No particles diffuse

from the vacuum region of the wake into the ambient plasma, so an expansion region

extends into the plasma as indicated by the dashed streamline for the imaginary

particle flowing outward at the maximum radial speed. By symmetry, this streamline

reaches a radius of 1.5 diameters at the minimum domain length, giving the radial

extent of the domain.

The simulation domain will be extended 20% farther downstream to allow some

particles with lower radial speed to diffuse completely across the probe. The final

simulation geometry is shown in Fig. 7.2, dimensioned in terms of the probe diameter

and the physical dimensions of the JPL Faraday probe. A region of flow upstream

and alongside of the probe is simulated to obtain consistent ambient conditions on

the wake side of the probe.
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Figure 7.2: Computational domain for reversed Faraday probe simulations.

7.2.2 Computational grid

Since this flow will be simulated with the multigrid version of the hybrid fluid

PIC code, two computational grids are required. The fluid grid is developed first

and the PIC grid is then constructed using every second node of the fluid grid. This

ensures that each PIC cell contains exactly four fluid cells, and that each PIC grid

node is coincident with a fluid grid node.

The rectangular cells of the fluid grid are uniformly sized at 8×10−5 m on a side.

The final geometry extends 7.168 cm (896 cells) along the probe axis and 3.840 cm

(480 cells) radially. The probe body is 1.280 cm (160 cells) long with 0.96 cm (120

elements) along the collecting surface and 0.320 cm (40 elements) along the guard

ring surface. The front surface of the probe is 1.28 cm (160 cells) from the upstream

inlet of the domain, and the back surface of the probe is 4.608 cm (576 cells) from
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the downstream exit of the domain. Altogether there are 404,480 fluid cells outside

of the probe body.

The PIC cells are then 1.6 × 10−4 m on a side, and the domain has 448 cells

along the probe axis and 240 cells radially. The probe body is 80 cells long, with

60 cells along the collecting surface of the probe and 20 elements along the guard

ring. Altogether there are 101,120 PIC cells outside of the probe body. Note that the

number of PIC cells is actually slightly smaller than in the original Faraday probe

simulations. At steady state, there are approximately 1.7 million particles in the

domain.

The simulation time step is selected so that the fastest ions travel less than one

cell length per iteration. Assuming a probe potential of −5 V, ions that enter at

twice the thermal speed beyond the drift velocity arrive at the probe with a velocity

of 3, 070 m
s
. Dividing the cell length by this speed and rounding down sets the time

step at 5 × 10−8 s.

The simulation is allowed to iterate for 10,000 time steps to reach a converged

state, followed by 20,000 sampled time steps. The total simulation time is approx-

imately 45 hours. The performance gain of using multigrid is in full evidence: this

domain has 3.6 times the number of fluid cells in the Faraday probe domain, but

requires just 30% more computational time.

7.2.3 Boundary conditions

The boundary conditions on this domain are identical to the conditions on the

Faraday probe simulations. Referring to the labels in Fig. 7.2, there are six regions

of boundary conditions that are repeated here.

Region 1 is the axisymmetric centerline. Particles are automatically rotated at
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the centerline as part of the axisymmetric move routine. A zero gradient condition

is enforced on the radial component of all variables in the fluid models, including the

stream function Ψ, plasma potential, electron number density, and electron temper-

ature.

Region 2 is the upstream inlet for the flow. Particles are introduced at this

boundary with a random position and statistically sampled velocity in each cell.

Particles that cross this boundary are removed from the simulation. The electron

temperature and gradient of stream function are assigned along this edge. The

plasma potential and electron number density are set using third kind boundary

conditions.

Region 3 is the outer radial inlet. Particles are injected along this edge using the

same procedure as in Region 2, and particles that cross this boundary are removed

from the simulation. A constant gradient condition is enforced on the radial compo-

nent of the stream function, and zero gradient conditions are enforced on the radial

component of plasma potential, electron number density, and electron temperature.

Region 4 is the downstream flow exit. Particles are only removed along this

edge, since the Maxwellian distribution for the ions has negligible backflow. The

gaskinetic Mach number is strongly supersonic, further reinforcing this point. A

constant gradient condition is enforced on the stream function, and zero gradient

conditions are enforced on the axial component of plasma potential, electron number

density, and electron temperature.

Region 5 includes the guard ring and side body of the probe. Particles undergo

diffuse reflection from this surface with full thermal accommodation, and ion particles

are neutralized. The gradient of stream function is assigned, which is equivalent to

specifying the electron current flux to the surface. The plasma potential, electron
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number density, and electron temperature are assigned at the surface. In keeping

with experimental practice, the entire side of the probe body is biased to the same

potential as the collecting surface.

Region 6 is the collecting surface of the probe. The same boundary conditions as

in Region 5 are enforced on particles and electron fluid variables. When ion particles

are neutralized at this surface, the collected current is incremented by the charge of

the ion particle. This gives the simulated collected current, which is averaged over

the sampling time steps.

7.3 Geometric shadowing DSMC model

The geometric shadowing model assumes zero electric fields and plasma neu-

trality, so several of the hybrid fluid PIC model capabilities must be deactivated

to obtain an equivalent computational model. The neutrality condition allows the

electron fluid equations for continuity, momentum, and energy to be disabled. The

assumption of zero electric fields allows the electrostatic Poisson equation to be dis-

abled, and removes the need to calculate electrostatic acceleration on the particles.

The remaining computational code is just a DSMC model for the ion particles,

since all of the fluid model equations and PIC electric field routines are disabled. This

model performs purely gaskinetic simulations. However, these simulations should

most closely reproduce the sheath solution from the geometric shadowing model.

Contours of simulated ion number density are shown in Fig. 7.3. The flow struc-

ture reflects the assumptions used to size the domain. A vacuum region is formed

immediately behind the probe. Particles at the outer edge of the probe diffuse to-

ward the centerline, and the expansion spreads into the freestream flow beyond the

probe radius. The flow rejoins smoothly at the centerline, increasing from vacuum to
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Figure 7.3: Contours of ion density for the reversed Faraday probe case.

the freestream density. No overcompression region develops, since there is no force

to accelerate particles toward the centerline.

A radial average of properties near the centerline does not provide a useful com-

parison with the geometric shadowing sheath model in the wake region of the flow,

since the shadowing sheath model cannot predict the vacuum region. Instead, the

cylindrical surface at the outer diameter of the probe is a fair representation of the

situation in one dimension. Profiles of ion density at a radius equal to the outer edge

of the probe cylinder are shown in Fig. 7.4. Since there has been no radial averaging,

the statistical scatter in the profile is readily evident.

The exchange frequency is not known a priori to calculate the shadowing sheath

in physical dimensions, so a least-squares method is used to seek an exchange fre-

quency that provides the best fit. However, there is not a satisfactory fit using a single

value of exchange frequency. This result is not unreasonable, since the Maxwellian
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Figure 7.4: Profiles of ion number density at the outer edge of the probe.

distribution of radial speeds in the simulation leads to different transport rates at dif-

ferent radial speeds. Essentially the exchange frequency has a functional dependence

on radial speed in the simulation, while the shadowing sheath assumes a constant

exchange frequency.

Streamlines of current are shown in Fig. 7.5. The vacuum region behind the probe

is clearly delineated, and extends approximately 2 cm (28 λD) along the centerline.

Tracing the streamlines that expand into the wake region backward, it is seen that

much of the wake flow originates in a thin annulus immediately surrounding the

probe cylinder.

Although the shadowing DSMC numerical model reproduces the assumptions of

the shadowing sheath model, there are significant differences in the calculated sheath

properties. The one dimensional formulation does not predict a vacuum region, so

the shadowing sheath model is not directly applicable except at the outer edge of the
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Figure 7.5: Streamlines of current for the reversed Faraday probe case.

probe. Even there, the sheath model cannot be brought into good agreement with

the simulation. In the DSMC simulation the particle velocity distribution leads to a

variable exchange frequency, which is oversimplified to a constant in the shadowing

sheath model.

The shadowing sheath model does a poor job of predicting the sheath properties

on the wake side of the probe for the shadowing DSMC simulation, so it is unlikely

to be a useful predictor for the hybrid fluid PIC simulations.

7.4 Hybrid PIC Boltzmann model

In terms of simulating a plasma, the hybrid fluid PIC models represent a large

step up from the shadowing DSMC model. The single most important difference is

the inclusion of electrostatic fields. Plasmas are distinguished from gases primarily

by the electrical charge of the particles, and the associated interactions with electric

and magnetic fields. It should come as no surprise then, that results from the hybrid
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Figure 7.6: Contours of ion density for the reversed Faraday probe case.

models show distinctly different flow features from the DSMC simulation results.

Contours of ion number density calculated with the hybrid PIC Boltzmann fluid

model are shown in Fig. 7.6. The wake structure is complicated, and differs from

the DSMC simulation results in three main features. First, the electrostatic sheath

causes a region of decreased density upstream of the probe and alongside the probe

body. Second, the flow expands to a low density in the immediate wake of the probe,

but does not develop a vacuum region. Third, a conical overcompression region forms

slightly downstream of the probe surface.

The contours of electron number density in Fig. 7.7 can be compared with the ion

number density contours to give a rough impression that the flow throughout most of

the domain is nearly neutral. The electron number density only varies significantly

from the ion number density near the probe surfaces. These contours appear noisy

since the Boltzmann relation is used to calculate the electron number density from
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Figure 7.7: Contours of electron density for the reversed Faraday probe case.

the plasma potential. The exponential relation magnifies small variations in plasma

potential to much larger variations in electron number density.

The complicated features in the ion flow field can be explained by the electrostatic

sheaths along the probe surfaces, which alter the ion trajectories significantly. The

contours of plasma potential in Fig. 7.8 and the current streamlines in Fig. 7.9 are

useful for illustrating the explanations.

The first difference is in the regions of decreased density upstream of the probe

and extending outward radially from the side of the probe. The behavior upstream

of the probe is familiar from the Faraday probe simulations in Chapter V. As the

plasma potential drops near the front face of the probe, ions are accelerated toward

the probe and the density falls. The same process acts along the side of the probe,

except that the freestream flow is initially parallel to the surface and the electrostatic

acceleration turns ions toward the probe. The flow farther from the probe surface is
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Figure 7.8: Contours of plasma potential for the reversed Faraday probe case.

z, m

r,
m

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 7.9: Streamlines of current for the reversed Faraday probe case.
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shielded from the potential drop, but expands toward the centerline in response to

the density gradient closer to the probe.

The second difference is in the wake region immediately behind the probe. As

seen in the streamlines, the flow that arrives in this region has been turned by passing

through the sheath on the side of the probe. This flow has a larger average radial

speed than in the DSMC simulation, and the electric fields in the wake-side sheath

act to turn the ions toward the rear face of the probe. Together these effects are

sufficient to turn the flow completely around the corner of the probe without forming

a vacuum region.

The third difference is the conical overcompression region downstream of the

probe. The flow that reaches the area immediately behind the probe has been turned

by passing through the sheath alongside the probe body, and then expanded toward

the centerline when the adjacent flow was turned toward the rear face of the probe.

This results in a radially converging flow that comes to a stagnation point approx-

imately 0.6 cm (8.5 λD) downstream of the probe. Moving downstream, the flow

that was expanded from alongside the probe converges toward the centerline and

compresses the flow there. Meanwhile, the flow near the centerline expands along

the axis.

The ion number density profile at the outer edge of the probe in Fig. 7.10 reflects

the complicated structure of the wake. Ion number density near the probe surface,

from 2.56 cm to 2.76 cm, is approximately constant at 2.4 × 1013 m−3. In that

region the flow is uniformly expanded and is essentially parallel to the rear face of

the probe. From 2.76 cm to about 5.4 cm, the ion number density shows a gradual

increase that corresponds to moving across the expansion to a higher density region.

The number density then increases more quickly, which corresponds to moving across
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Figure 7.10: Profiles of ion number density at the outer edge of the probe.

the compression region. The peak density of 1.0×1014 m−3 is reached at 6.2 cm, and

beyond that point the expansion along the axis causes the number density to begin

decreasing again.

It should be noted that the particulars of the ion density profile are not unique.

The radius of the probe, the bias potential on the probe, and the ratio of ion drift

velocity to thermal velocity all contribute to the shape of this profile. The down-

stream location and magnitude of the maximum ion density depend strongly on the

radius of the probe and how effectively the electrostatic sheath focuses the flow to-

ward the centerline. However, the qualitative properties of the profile are expected

to be consistent for similar flow geometries.

The ion number density profile is not consistent with the exponential form ex-

pected in the geometric shadowing sheath model, so no attempt is made to fit this

profile with a shadowing sheath solution. This upholds the expectation that the
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shadowing sheath model would not be a useful predictor for the sheath properties

on the wake side of the probe.

7.5 Hybrid PIC Poisson-consistent detailed model

The main difference between the Poisson-consistent detailed model and the Boltz-

mann model is that the Poisson-consistent model solves the all three electron fluid

conservation laws. Recall from Chapter V that the differences between the model

results are small for the Faraday probe simulations. Not surprisingly, simulation of

the reversed Faraday probe using the hybrid PIC Poisson-consistent model yields

results that are very similar to the Boltzmann model results.

The main structures of the wake are shown in the contours of ion number density

in Fig. 7.11. As seen previously, there is a region of decreased density alongside and

upstream of the probe body. Immediately behind the probe is a low density region,

and an overcompression region farther downstream. Comparing the ion number

density with the contours of electron number density in Fig. 7.12, it appears that the

flow is still nearly neutral except within a few Debye lengths of the probe surfaces.

There are two related minor differences from the contours calculated in the Boltz-

mann model simulations. The first is that the low density region along the side of the

probe body extends almost radially from the front of the probe, where it was swept

back from the front surface in the Boltzmann simulation results. The second differ-

ence is that the overcompression region in these results forms a cone with a smaller

half-angle and a lower peak number density than in the Boltzmann simulation.

The first difference can be explained by the curvature of the plasma potential

contours in Fig. 7.13, which is less pronounced than in the Boltzmann model results.

The gradients in plasma potential extend farther into the plasma in the Poisson-
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Figure 7.11: Contours of ion density for the reversed Faraday probe case.

Figure 7.12: Contours of electron density for the reversed Faraday probe case.
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consistent simulation, so weak electric fields affect more of the flow. In this case

the electrostatic acceleration produces a component of acceleration along the flow

direction as well as a component of expansion toward the centerline. This is visible

in Fig. 7.14 as a less pronounced focusing of the current streamlines near the front

surface of the probe.

The gradients in plasma potential are smaller than in the Boltzmann simulation,

so the electric fields are weaker in the Poisson-consistent simulation. Since this

generates a smaller force and the flow also develops a higher axial velocity, the flow

does not turn around the edge of the probe as quickly. This leads to a region of

lower density immediately behind the probe, and a generally lower potential in the

wake region behind the probe. When the flow converges on the centerline in the

Poisson-consistent simulation, the higher axial speed carries particles downstream

faster. This reduces the particle residence time, which decreases the peak number

density and narrows the cone of the overcompression region. This process explains

the second difference in the simulation results.

The profile of ion number density at the outer edge of the probe in Fig. 7.15

shows the same trends as described for the Boltzmann model simulation. The ion

number density is constant at approximately 2.0×1013m−3 near the face of the probe,

from 2.56 cm to 2.8 cm. The ion number density then increases gradually across the

expansion until the edge of the compression region, which has moved downstream to

6.0 cm. Across the compression region the ion number density rises to a maximum

of 8.6 × 1013 m−3 at 6.9 cm, before beginning to decrease as the flow accelerates

downstream.

This profile is also incompatible with the geometric shadowing sheath model, so

no attempt to fit a shadowing sheath is made. There is qualitative agreement between
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Figure 7.13: Contours of potential for the reversed Faraday probe case.
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Figure 7.14: Streamlines of current for the reversed Faraday probe case.
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Figure 7.15: Profiles of ion number density at the outer edge of the probe.

the results from the Boltzmann model simulation and the Poisson-consistent model,

but the values of number density or plasma potential at a point in the flow vary by

10-15% between the simulations. The minor differences between the electron fluid

models become more significant over the extended sheath on the wake side of the

probe.

7.6 Exchange frequency results

The hybrid fluid PIC models can also be used to obtain an estimate of the ex-

change frequency for use in the geometric shadowing sheath model. Since the models

simulate particles rather than the particle distribution functions, it is useful to relate

the exchange frequency to a more easily calculated property.

The source term in the shadowing sheath model resembles a rate of change of the

local distribution function, as in Eq. 7.2. There is no difficulty in integrating over

all velocities to obtain the source term for ion number density in Eq. 7.3, since the
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exchange frequency is assumed to be constant.

df

dt
= w (f∞ − f) (7.2)

∫

v

n∞
df

dt
dv =

∫

v

n∞w (f∞ − f) dv −→ dn

dt
= w (n∞ − n) (7.3)

The numerical models operate on a discrete computational grid, so it is useful

to integrate over the volume of the cell as in Eq. 7.4 to obtain the rate of change of

particle count in the cell.

∫

V

dn

dt
dV =

∫

V

w (n∞ − n) dV −→ dN

dt
= w (N∞ − N) (7.4)

The source term can be readily divided into separate terms for the addition and

removal of particles from the cell, giving the form in Eq. 7.5. The forms in Eq. 7.6

can be used to calculate the exchange frequencies win for particle addition and wout

for particle removal, based on the particle count and the transfer rate.

dN

dt

∣

∣

∣

∣

in

− dN

dt

∣

∣

∣

∣

out

= winN∞ − woutN (7.5)
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∣

∣

∣

∣

in

wout =
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N

dN

dt

∣

∣

∣

∣

out

(7.6)

In the numerical simulations, every time an ion macroparticle crosses in to or

out of the cylinder downstream of the outer edge of the probe, an event counter

is incremented. Multiplying the number of events by the macroparticle weight and

dividing by the total simulation time gives the average transfer rates dN
dt

. Profiles of

the normalized exchange frequencies are shown in Figs. 7.16-7.18 for all three of the

numerical models. Particle exchange is relatively rare in the shadowing DSMC model,

so the profiles for that model show larger statistical scatter than the Boltzmann or

Poisson-consistent model profiles.
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Figure 7.16: Profiles of simulated exchange frequency calculated using the shadowing
DSMC model.

The profiles from the shadowing DSMC model are closest to the assumptions

made in the geometric shadowing sheath model. The exchange frequency for particles

moving into the cylinder is essentially constant, averaging near win = 0.29. This

corresponds very well with the w = 0.3 value calculated in Sec. 7.3 to fit the ion

number density profile near the surface. The exchange frequency for particles moving

out of the cylinder is much lower and shows a distinct trend. This is a departure from

the geometric shadowing sheath assumption, and helps to explain why no satisfactory

fit value could be found previously.

The exchange frequency profiles for the Boltzmann model and the Poisson-consistent

model are very similar. The exchange frequency into the cylinder immediately down-

stream of the probe is very high, since the flow has turned around the edge of the

probe and is directed into the cylinder. Moving farther downstream, the exchange

frequency drops to a plateau where the flow is expanding toward the centerline. Since
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Figure 7.17: Profiles of simulated exchange frequency calculated using the Boltz-
mann model.

the radial speed is lower, the exchange frequencies into and out of the cylinder are

closer together. The onset of the overcompression region appears as a second drop

in the exchange frequency into the cylinder. Eventually the exchange frequency out

of the cylinder becomes larger than the exchange frequency in to the cylinder, indi-

cating the expansion along the axis. The exchange frequency into the cylinder levels

off to a second plateau in the expansion.

Again, the assumptions that the exchange frequency is constant and equal for

transfer in to and out of the cylinder are not appropriate for these profiles. The

exchange frequency shows so much variation that no estimate is likely to produce a

geometric shadowing sheath solution that resembles the observed ion number density

profiles.

These results can still be used to make order of magnitude estimates of the

exchange frequency for the gasdynamic and plasmadynamic cases. The gasdynamic
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Figure 7.18: Profiles of simulated exchange frequency calculated using the Poisson-
consistent model.

case in the DSMC model simulation shows a nearly constant, relatively low exchange

frequency into the cylinder, on the order of w = 0.3. The exchange frequency out of

the cylinder is zero near the surface of the probe and slowly rises as the wake is filled

in. The plasmadynamic cases in the Boltzmann and Poisson-consistent simulations

show a relationship between the flow orientation and the exchange frequency. The

exchange frequency can become very large if the direction of flow is normal to the

surface. If the flow is primarily parallel to the sheath, the exchange frequency shows

a range of w = 1.4 − 1.8 for expansion into the sheath and a range of w = 0.5 − 0.6

for expansion out of the sheath in the overcompression region.

7.7 Conclusions for model usage and probe design

Simulations of the reversed Faraday probe with the shadowing DSMC model, the

hybrid Boltzmann model, and the hybrid Poisson-consistent model are not in good
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agreement with the geometric shadowing sheath solution. The calculated exchange

frequencies show significant variation and cannot be represented well by a constant

value. Additionally, the number density in the wake is very low, so the exchange

frequency out of the probe is much smaller than the exchange frequency into the

probe. These differences cannot be addressed without redeveloping the shadowing

sheath model altogether.

The two dimensional effects are also a significant factor, introducing vacuum

regions that the one dimensional shadowing sheath model cannot predict. Electro-

static acceleration helps develop a more uniform flow immediately downstream of

the probe, since charged particles can turn around the edge of the probe to reach the

rear face of the probe without forming a vacuum region. However, this accelerates

the flow toward the axis and creates an overcompression region that is also beyond

the predictive capabilities of the geometric shadowing sheath.

Electrostatic acceleration produces an extended expansion region alongside the

probe, and leads to a compression region downstream of the probe. These effects

are not predicted in the shadowing DSMC model, which illustrates the importance

of the electric fields for accurate simulation of a plasma. The electric fields can also

significantly alter the direction of the flow, and can completely reverse the direction

of flow.

This may be an important consideration for a reversed Faraday probe use. The

current streamlines from the Boltzmann and Poisson-consistent model simulations

indicate that all of the current that reaches the rear face of the probe originates from

an annular region at slightly larger radius than the probe. Obstructions off axis and

upstream from the probe might not affect measurements on the upstream face, but

could interfere with measurements on the reversed face of the probe. Features on
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the side of the probe body such as a mounting spar will certainly affect the flow to

the rear face of the probe.



Chapter VIII

Conclusion

In this chapter the important results and conclusions described in the course of

this dissertation are reviewed. In fulfillment of one of the major objectives of this

work, a few recommendations are made regarding Faraday probe use.

8.1 Summary and Review

Standard diagnostic techniques assume that properties measured at the surface

of a probe can be related directly to undisturbed plasma properties. However, an

immersed Faraday probe affects the ambient plasma by introducing physical ob-

structions and electrostatic sheaths. Perturbations caused by the probe may lead to

systematic differences between the probe measurements and the undisturbed plasma

properties.

The work in this dissertation was intended to develop and use computational

models to identify and quantify any differences caused by the presence of an immersed

Faraday probe in a plasma. Both of these objectives have been accomplished, as is

summarized in the following sections.

185
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8.1.1 One dimensional analytic models

In order to obtain an initial understanding of the flow features in a plasma sheath,

two analytical models were developed as reference cases in Chapter III. Both models

were derived from very general kinetic or fluid descriptions of the plasma by assuming

steady, collisionless, one dimensional flow.

The geometric shadowing sheath model was derived from kinetic theory and the

Boltzmann transport equation in Sec. 3.2, with physical obstruction of particle tra-

jectories causing variation of the plasma properties in the sheath. A diffusion-like

source term was used to model the transfer of particles between the distribution func-

tion in the ambient plasma and the distribution function in the sheath. The rate

of particle transfer was scaled by introducing an exchange frequency. An analytic

solution was then obtained by neglecting the electric fields.

The shadowing sheath solution described an exponential depletion of the back-

flowing distribution as the flow approaches the probe. Moments of the local distri-

bution could be calculated to obtain profiles of the ion number density and velocity

in the sheath. However, this solution could not be scaled into physical dimensions

unless a value of the exchange frequency could be estimated by some other means.

The planar Bohm sheath model was derived from fluid theory in Sec. 3.3, using the

conservation equations for mass and energy of the ions and assuming the Boltzmann

relation for the electrons. The electrostatic Poisson equation was then written as

a differential equation for the plasma potential and integrated using a numerical

method. It was noted that a steady solution was only possible if the ion drift velocity

was greater than or equal to the Bohm velocity at the edge of the sheath. This

condition is the Bohm criterion.

The Bohm sheath solution gave profiles of the plasma potential and the ion and
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electron number densities in the sheath. Since the sheath coordinate scaled with the

Debye length, the Bohm sheath solution could be scaled into physical dimensions.

The one dimensional models were compared in Sec. 3.4 using conditions that

achieved partial similarity. A shadowing sheath solution was calculated for a given

freestream Mach number. The plasma potential in the shadowing sheath model

was calculated by assuming neutrality and then assuming the Boltzmann relation,

so that the plasma potential could be expressed as a function of the ion number

density. A planar Bohm sheath solution was then calculated for the same freestream

Mach number and plasma potential at the probe surface. A least-squares fit was

performed on the ion number density profiles to estimate the value of the exchange

frequency. The best fit was found with an exchange frequency W = 0.088, that is,

the exchange frequency was 0.088 times the plasma frequency. However, it was noted

that this value is specific to the conditions MD = 1 and τ∞ = 1.

8.1.2 Two dimensional computational models

The axisymmetric hybrid fluid PIC models were described in Chapter IV. The

large difference between the electron and ion time scales in a plasma was noted, and

a hybrid model was employed that used kinetic models for the ions and neutrals and

fluid models for the electrons.

The ions and neutrals were modeled using the well-known Particle In Cell (PIC)

and Direct Simulation Monte Carlo (DSMC) methods as described in Sec. 4.1.

Macroparticles were moved according to the electric fields calculated at nodes of

the computational grid. Collisions were evaluated statistically in cells of the compu-

tational grid.

The electrons were modeled with one of three fluid models described in Sec. 4.2.
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The first fluid model used the Boltzmann relation and solved the electrostatic Poisson

equation for plasma potential. The Boltzmann fluid model closely approximated the

assumptions of the planar Bohm sheath model.

The second fluid model was the non-neutral detailed model. This model solved

all three of the fluid conservation equations and the electrostatic Poisson equation.

The electron momentum equation was solved for plasma potential in this model,

leaving only the electrostatic Poisson equation to solve for electron number density.

The calculation for electron density was found to have poor resolution and high

sensitivity to statistical scatter in the ion number density. This model was used

previously as a neutral model, so that the Poisson equation could be replaced by

neutrality.

The third fluid model was the Poisson-consistent detailed model. This model also

solved the three fluid conservation equations and the electrostatic Poisson equation.

This model solved the electron momentum equation for electron number density, and

the Poisson equation for plasma potential. This model required additional boundary

conditions for the electron number density, but was otherwise more robust than the

non-neutral detailed model.

The electron fluid equations were discretized using the finite difference operators

described in Sec. 4.4.

The differential equations for the plasma potential in the non-neutral detailed

model and the electron number density in the Poisson-consistent model were compli-

cated and not well characterized in terms of stability. In section 4.5, one dimensional

formulations of the differential equations were solved using a one dimensional alter-

nating direction implicit (ADI) solver. The solutions obtained with the ADI solver

were in excellent agreement with the exact analytic solutions. This provided confi-
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dence that the ADI solver would also be able to obtain stable, accurate solutions on

the axisymmetric computational domain.

8.1.3 Faraday probe simulations

The hybrid fluid PIC models were used to simulate the plasma flow around an ax-

isymmetric Faraday probe geometry in Chapter V. Plasma conditions were selected

to be representative of the conditions downstream and far off-axis in the plume of

a low power Hall thruster. The computational domain was sized from the upstream

length of the Bohm sheath solution and the radial dimensions of a JPL Faraday

probe. The computational grid spacing was determined from the stability require-

ments of the fluid model differential equations, and the simulation time step was

calculated such that the fastest simulated particles do not travel more than a cell

length per iteration.

The hybrid PIC Boltzmann model was used extensively to investigate the effects

of the inflow ion distribution on the properties in the sheath and at the surface of the

probe. In Sec. 5.3.1 the model was used on a quasi one dimensional computational

grid for a direct comparison with the planar Bohm sheath solution. The hybrid fluid

PIC model very closely approximated the assumptions of the Bohm sheath solution,

and the profiles of the quasi one dimensional results were in excellent agreement with

the Bohm sheath profiles for the cold ion case. The hot ion case showed the effect of

a higher ion temperature, which leads to a small decrease in local ion number density

in the sheath. The collected current at the probe was unaffected.

The hybrid PIC Boltzmann model was next used on the probe geometry compu-

tational domain to investigate two dimensional effects. In Sec. 5.3.2 the edge effects

are shown to be limited to within 0.0015 m or 2 λD of the outer radial edge of the
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probe for both the cold ion case and the hot ion case.

Next the hybrid PIC Boltzmann model was used to simulate the plasma inflow

conditions that incrementally approached the complicated composite distribution

that consisted of beam, CEX, and double charge ions. The first combination included

just beam and CEX ions, as the beam-CEX case. As was described in detail in

Sec. 5.3.3, the presence of a second ion component acted to shield the particles from

the potential drop until closer to the probe surface. The Bohm sheath solution

calculated from the total ion density and bulk Mach number with respect to Bohm

velocity was shown to be a good predictor for the number densities and plasma

potential in the sheath. The component distributions formed essentially independent

sheath structures that were accurately predicted by using the plasma potential and

the component freestream Mach number with respect to Bohm velocity.

The beam-CEX-double composite distribution was simulated in the same way,

and the same high level of agreement with the Bohm sheath was maintained. Adding

a double charge component did not significantly affect the properties of the other

components.

The hybrid PIC Boltzmann model was also used to investigate what effects chang-

ing the Faraday probe operating conditions had on the collected current. The first

of these studies, in Sec. 5.3.4, changed the guard ring bias relative to the collecting

surface bias. This created potential gradients and electric fields that would focus ions

onto the collecting surface if the guard ring was at a smaller negative bias than the

collecting surface. The collected current varied by 12% from the expected freestream

current for a difference of 5 V between the collecting surface and the guard ring.

The second study of the effects of changing the Faraday probe operating condition

was described in Sec. 5.3.5. The probe bias was varied over a range from 0 V to
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−10 V, and the total collected current at each bias was compared to the theoretical

total current. The error in the collected current showed a positive correlation with

increasing negative bias, which was attributed to sheath expansion. However, the

axial velocity was large in this case, and the probe showed less than 2% error over

the range of bias potentials.

A comparison of simulated collected current with experimental measurement was

made in Sec. 5.3.6. The simulated measurement was in close agreement with the

experimental measurement, with less than 3% difference between the two. This level

of agreement is somewhat surprising, considering that the simulation parameters

were devised from a previous simulation of the BHT-200 plume, and that the details

of the beam-CEX ion distribution were not determined rigorously. This reinforced

the conclusion that the ion distribution does not have a significant impact on the

collected current measurement.

The hybrid PIC non-neutral detailed model was used to simulate the cold ion

case in Sec. 5.4. This simulation revealed a problem in the iteration scheme such

that the Laplacian of plasma potential remained constant and approximately zero,

and the electron density was equal to the ion density as a result. This model was

retired since an alternative detailed model was available.

The hybrid PIC Poisson-consistent model was used in Sec. 5.5 to simulate the cold

ion case, and produced results that were in excellent agreement with the Bohm sheath

solution. The intermediate combinations leading up to the composite distribution

were not shown, but two modified beam-CEX-double composite cases were. The cold

composite case had a CEX temperature of 300 K, so that there was essentially no

backflow in the plasma distribution. The hot composite case had a CEX temperature

of 11,600 K, which gave a significant backflow of about 11.5% of the total distribution.
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The Poisson-consistent model simulation of the cold composite case produced results

that showed the usual good agreement with the Bohm sheath solution. However, the

simulation of the hot composite case produced a CEX profile that was well below

the Bohm sheath profile throughout the sheath. This discrepancy was discussed and

attributed to the assumption made in the Bohm sheath solution that ions have a

uniform positive velocity.

In assessment of the model performance, the Bohm sheath solution was shown

to be a reliable predictor for plasma properties in the sheath, provided that the ion

distribution did not have a significant backflow component. This limitation is loosely

related to the Bohm criterion. It was noted that the Poisson-consistent model might

be capable of simulating the sheath for plasma conditions where the Bohm criterion

was not met and no Bohm sheath solution was available.

8.1.4 Multigrid methods

The simulation time required for the Faraday probe simulations was already 30-

35 hours, so the three to four times larger domain required for reversed Faraday probe

simulations could not be simulated in a reasonable amount of time. Chapter VI

described the analysis of the code performance and the inclusion of a multigrid

scheme to speed up the code.

A time profile of the computational code was performed in Sec. 6.1 that identified

the particle models as the largest time expense. It was noted that fluid model stability

considerations determined the computational cell size, which was much smaller than

required for the PIC or DSMC models. A fixed number of particles per cell was

enforced to maintain the statistics in the PIC model, leading to an excessive number

of particles. A multigrid method was proposed and implemented that allowed the
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PIC and DSMC models to be performed on a coarse PIC grid while the fluid models

were performed on a fine fluid grid. This was expected to decrease the overall particle

count by a factor four, which would speed up the particle routines by a similar factor.

In Sec. 6.3 a time profile of the multigrid version of the code was performed, and

the overall speed up factor was shown to be 2.22. This value was slightly better than

the expected speed up factor. The simulated properties in the flow field were shown

to be essentially unchanged from the previous single grid version of the code, with a

maximum error of ±2% relative to the single grid solution. This enabled the reversed

Faraday probe simulations to be performed, since the multigrid version obtained the

same results as the original version of the code and did so in less than half the total

time.

8.1.5 Reversed Faraday probe simulations

In Chapter VII the plasma flow around a reversed Faraday probe was simulated.

The Bohm sheath solution could not be used, since the ions did not satisfy the Bohm

criterion on the back face of the probe. However, the shadowing sheath model could

obtain a solution for the sheath on the back face of the probe. A modified version

of the hybrid fluid PIC code was developed in Sec. 7.3 to better approximate the

assumptions of the geometric shadowing sheath model and provide a direct com-

parison. The modifications included deactivating the electron fluid models and the

electrostatic acceleration of the PIC model, so the remaining code was just a DSMC

model for the ions. This model was called the geometric DSMC model.

The plasma conditions were selected to maintain a small computational domain

in order to limit the required computational time. This suggested a Mach number

with respect to Bohm velocity of slightly more than one. The ion number density
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and temperature were otherwise the same as the cold ion case. The computational

domain was sized using the kinetic reasoning that the radial diffusion of the fastest

particles would be several times faster than the mean radial speed. The domain was

made long enough so that particles could diffuse across the diameter of the probe.

The results of the reversed Faraday probe using the shadowing DSMC model

were described in Sec. 7.3. The observed flow structures generally reproduced the

assumptions used to size the domain. A vacuum region was formed immediately

behind the probe. No forces accelerated the particles toward the centerline, so the

flow rejoined smoothly at the centerline with no overcompression. The cylindrical

surface at the outer edge of the probe was the closest approximation to the one di-

mensional sheath in the geometric shadowing model. The profile of ion density along

that surface was shown to have the same qualitative trends as the geometric sheath

model profiles. However, no single value of exchange frequency gave a satisfactory

fit of the simulated ion profile. The effective exchange frequency in the shadow-

ing DSMC model appeared to have a functional dependence on the radial velocity,

which was not compatible with the assumption of a constant exchange frequency in

the geometric shadowing sheath model.

The hybrid PIC Boltzmann model was used to simulated the reversed Faraday

probe in Sec. 7.4. The simulated flow field was shown to be much more complicated

than predicted by the shadowing DSMC model. The electrostatic sheath created

expansion regions upstream and along the side of the probe body. Particles that

passed through the sheath on the side of the body were turned toward the centerline,

which allowed particles to turn around the edge of the probe without forming a

vacuum region. The acceleration toward the centerline also caused the formation of

a conical overcompression region about the centerline in the wake downstream of the
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probe.

The hybrid PIC Poisson-consistent model results in Sec. 7.5 were similar to the

Boltzmann model results, except that the contours of plasma potential showed less

pronounced curvature throughout the domain. This produced a smaller potential

gradient over a larger area that tended to accelerate the particles along the axis

of the probe as well as toward the centerline. Combined with the weaker electric

fields, the flow was not turned around the edge of the probe as quickly, resulting in

a lower density region immediately behind the probe than in the Boltzmann model

simulation. Since the axial velocity was higher where the flow converged on the

centerline, particles were carried downstream faster. This narrowed the cone and

decreased the peak density in the overcompression region.

The simulated exchange frequencies for the shadowing DSMC model and the

hybrid PIC models were discussed in Sec. 7.6. The shadowing DSMC showed an

approximately constant frequency for particles moving into the wake sheath, but a

much lower frequency for particles moving out of the wake sheath. Both of the hybrid

models showed a complicated pattern for the exchange frequency that was explained

by the orientation of the flow velocity. The geometric shadowing sheath model could

not make use of these results, since the exchange frequencies were not constant and

were not equal for transfer into and out of the sheath.

8.2 Implications for probe design and technique

The results reported in Chapter V for the standard Faraday probe and in Chap-

ter VII for the reversed Faraday probe can be interpreted to make several recommen-

dations for the design and use of Faraday probes, fulfilling the third major objective

of this dissertation.
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In Chapter V, hybrid PIC models produce simulated properties near the center-

line that are consistently in good agreement with the planar Bohm sheath solutions.

This holds true over the full range of inflow plasma conditions, from the cold ion

beam case to the beam-CEX-double composite case. Edge effects are observed, but

the effects are limited to a few Debye lengths from the outer edge of the probe sur-

face. Additionally, the total collected current at the surface of the probe is always

in very good agreement with the theoretical current in the freestream.

The results from the guard ring bias study in Sec. 5.3.4 show that the collected

current most accurately matches the theoretical current when the guard ring and

collecting surface are biased to the same potential. This is reinforced by observing

that the current streamlines to the collecting surface are normal to the surface when

the guard ring and collecting surface are biased to the same potential.

The results from the probe bias sweep study in Sec. 5.3.5 show that the collected

current matches the theoretical current within about 2% over a broad range of bias

potential. There is a gradual increase in the error as the bias voltage is made more

negative, which corresponds to sheath expansion. Provided that the plasma has a

high axial velocity, the error introduced by sheath expansion will be small.

The recommendations for operation of a Faraday probe are in agreement with

the established standard practices:

1. Use a guard ring that is a few Debye lengths wide to prevent edge effects from

reaching the collecting surface.

2. Keep the space between the collecting surface and the guard ring smaller than

a few Debye lengths to maintain a uniform sheath over the entire collecting

surface.
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3. Bias the collecting surface and the guard ring to the same potential.

4. Use the smallest bias potential that repels all of the electron current to avoid

sheath expansion.

When these recommendations are followed, the collected current at the surface

of a Faraday probe accurately reflects the ion current in the freestream.

Recommendations for the reversed Faraday probe are more difficult. Results

from the hybrid PIC models in Chapter VII show a complicated wake structure with

backflow to the probe and a stagnation point near the back surface of the probe.

For a strongly flowing plasma, the current that reaches the back surface of the probe

originates upstream of the probe and is turned around the edge of the probe by

passing through the electrostatic sheath along the side of the probe body. To avoid

interfering with the flow that arrives at the rear face of the probe, features along the

side body of the probe should be minimized.

If instead the intention is to measure a backflow current that originates down-

stream of the probe, it is recommended that the body of the probe be allowed to

float to the plasma potential. Then the forward flowing current along the side of

the probe body would not be accelerated toward the centerline, and would not turn

around the edge of the probe as easily. The bias potential on the rear collecting

surface and guard ring should also use the smallest bias potential that still repels

the electron current to avoid sheath expansion that might draw in forward flowing

current.
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8.3 Contributions

In the course of this dissertation a number of unique and original contributions

have been made.

• Sec. 3.4: A least-squares fit of exchange frequency is performed to match a

geometric shadowing sheath solution to a Bohm sheath solution. This is the

first known quantitative assessment of the exchange frequency.

• Sec. 4.5: The differential equations of electron momentum conservation for the

non-neutral detailed model and the Poisson-consistent detailed model are char-

acterized as one dimensional constant coefficient differential equations. The use

of a one dimensional ADI solver to investigate the stability and accuracy of the

model equations had not been performed previously.

• Chapter V: Hybrid fluid PIC models are used for the first time to simulate the

flow around a Faraday probe, including a simulated collected current at the

probe surface.

• Sec. 5.3.3: Combinations of ion component distributions are simulated, and

shown to form independent sheath structures that interact only with the col-

lective plasma potential. The Bohm sheath solution using the average Mach

number is shown to be a good predictor of the collective plasma potential and

the total ion number density in the sheath.

• Chapter VI: This is the first known instance of a multigrid method being

incorporated into a hybrid fluid PIC model.

• Chapter VII: Hybrid fluid PIC models are used for the first time to simulate

the flow around a reversed Faraday probe.
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• Sec. 7.6: The exchange frequencies into and out of the probe cylinder are

simulated for axisymmetric DSMC and hybrid fluid PIC models for the first

time.

8.4 Future work

There are several areas in this dissertation where interesting questions remain or

where further efforts are needed.

The reversed Faraday probe simulations require a substantial time to run, so

only a few basic cases have been simulated at this point. It would be interesting to

simulate some of the composite ion distributions to identify whether or not there is

significant separation of the different components on the wake side of the probe. It

would also be interesting to investigate alternative boundary conditions for the bias

potential on the body of the probe, which could help improve the recommendations

for use of the reversed Faraday probe.

There is a ready opportunity to use the models in this work to produce simulations

for comparison with experiments. Recent experimental investigations of the sheath

formed in a plasma with multiple atomic species show that the different species attain

significantly different velocities in the sheath [83, 84]. The models in this work are

well-suited to consider a similar situation numerically, and would benefit from the

generalization involved with simulating other atomic species. The highly successful

performance of the Bohm sheath model for composite ion distributions suggests that

it might also be useful for the sheaths in multiple ion species plasmas.

One physical effect that could affect probe performance that is not considered

in the present work is secondary electron emission (SEE) at the collecting surface

of the probe. An emitted electron current is indistinguishable from a collected ion
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current at the probe surface, and would result in an overestimate of the ion current

in the ambient plasma [1]. The computational models described in this work could

be modified to include a model for SEE as part of the boundary conditions at the

probe surfaces. It is expected that the primary effect of SEE would be to modify

the electron properties near the probe surface, but that the ion plasma would not be

affected significantly.

With a few minor modifications to the existing computational code, particles

could be injected at the downstream edge of the domain, allowing the simulation of

weakly flowing plasmas. This would enable the investigation of the reversed Faraday

probe for use in a quiescent plasma, and would allow better representation of ion

distributions like the hot composite case that have a significant backflow component.

Efforts to extend the multigrid method to an additional level of computational

grids could effect another significant speed up in the overall code performance by

reducing the particle count by another factor of four. As the multigrid scheme is

presently implemented, the fluid equations are only solved on the finest grid. Using

a more traditional multigrid approach, the fluid equations could be solved on the

coarse grid first, then prolonged and solved on the finer grid. For best results in

a multigrid setting, the fluid equation solver should operate quickly rather than

accurately. The ADI solver is therefore not well-suited for use in a multigrid scheme.

A faster iterative method would be more appropriate.

The Poisson-consistent model is not practical for simulation of an extended

plasma, since the fluid model requires fine cell spacing to maintain stability. In

a region where the plasma potential is small and gradients in plasma potential are

small, significant computational effort is expended to simulate practically neutral

flow. This suggests a different sort of hybrid scheme where the Poisson-consistent
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model is only solved in the non-neutral sheath regions while faster neutral models

are solved in the rest of the plasma.

One area for new development is the extension of the hybrid PIC Poisson-consistent

model to a three dimensional implementation. The axisymmetric implementation

used in this work cannot investigate situations where the plasma velocity is inclined

relative to the centerline of the probe.
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