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ABSTRACT 
 
 

ECOLOGICAL DYNAMICS OF VECTOR-BORNE DISEASES IN CHANGING 
ENVIRONMENTS 

   
by 

 
Luis Fernando Chaves 

 
 
 
Co-Chairs: Mark L. Wilson and Mercedes Pascual 
 
 

One of the major threats for the current functioning of the world we know 

is the uncertainty about the effects of global climate change. This dissertation 

aims to understand the effects of a changing environment on the ecological 

dynamics of vector-borne diseases, one of the major burdens for human 

populations worldwide. Vector-borne diseases are expected to be highly 

sensitive to the effects of climatic change, because of the natural history of both 

the vectors and parasites, which are highly sensitive to small changes in 

precipitation and temperature.  

This dissertation investigates several aspects of the effects of changing 

environments in vector-borne diseases: (i) The plausibility of early warning 

systems to predict the future dynamics of a disease based on its association to 

climatic forces, using a time series for cutaneous leishmaniasis cases from Costa 

Rica,1991-2001 (ii) The mechanisms regulating co-infections of malaria parasites 
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in the island of Santo, Vanuatu, 1983-1997, and (iii)  Abrupt dynamical changes 

in diseases along smoothly changing environments, temporally for malaria in the 

archipelago of Vanuatu,1983-1999, and spatio-temporally for cutaneous 

leishmaniasis in Costa Rica, 1996-2000. Methods involved a suite of qualitative 

and quantitative techniques in order to robustly assess the reliability of results. 

Frequency, time and time-frequency domain statistical techniques for time series 

analysis were used to study the association between disease dynamics and 

climate, time models predictive ability for early warning systems was tested with 

“out-of-fit” data. Signed digraph loop analyses and quantitative discrete time 

models were used to discern working hypothesis about parasite species co-

infection regulation. Statistical techniques for breakpoints were used to study 

abrupt dynamical changes. In addition, spatial clustering techniques were used 

as guidance to establish transmission risk factors. 

 Results show that early warning systems are feasible goals, that malaria 

parasites and their interactions seem to be regulated in a bottom-up fashion, and 

that abrupt changes on the sensitivity to the effects of climate change are 

dependent on the context of transmission. Finally, all the results confirm the 

importance of considering the whole environmental context in which vector-borne 

diseases are transmitted and the need for abstraction to understand and manage 

the underlying complexity. 
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CHAPTER I 
 

INTRODUCTION 
 
 
“Malaria, like every other epidemic, obeys the universal law of rhythm, that is to 
say, it manifests itself in periodical cycles, in the course of centuries, of years and 
months ”    
    
         Celli (1933) 
 

Ecological Nature of Human Diseases 

Understanding the universal laws of rhythm that drive population numbers 

in time and space is one of the main themes of Ecology as a scientific discipline. 

As one of the main themes that define the research agenda of a group of people 

with different backgrounds and perspectives about nature, explanations for the 

observed patterns of population abundance across diverse landscapes have had 

very different “plausible” explanations through time, sometimes in opposition. In 

ecology, the classical example for this opposition was the discussion held in 

1957 at the Cold Spring Harbor Symposium on quantitative Biology, where 

Nicholson [1], who worked with lab populations of moths, criticized the lack of 

density-dependent mechanisms for changes in populations whose growth was 

forced by environmental factors [2,3]. These irreconcilable ideas, through the 

synthesis of evidence, eventually led to the proposal that all populations need to 
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have regulatory mechanisms for negative feedback, which are sensitive to the 

forcing by changing environments [4,5]. 

Vector transmitted diseases (VTDs), those diseases for which the 

transmission of a pathogen between two individuals of the same species (in 

some cases different species) is mediated by an individual of a second species 

(generally an insect), are one of the main problems currently faced by 

humankind. The main three vector transmitted diseases affecting humans, 

Malaria, Schistosomiasis and the Leishmaniases, are in part responsible for a 

diminished quality of life (shorter life span, poverty, etc) in at least one tenth of 

the world population[6]. VTDs are also phenomena that involve both organisms 

and their environment. This fundamental property makes them suitable to ask 

similar questions to those that have been the object of study by ecologists for a 

long time. For example, what determines their distribution and prevalence? 

In general, the main approach to answer this question is one that tends to 

separate factors, assessing their relative importance. This approach is probably a 

by-product of assigning a meaning to the output of classical quantitative 

techniques like linear statistical models [7]. 

However, for any complex system, like a vector transmitted disease as 

malaria, the relevant question is not what factor(s) is (are) the most important in 

explaining any given pattern [8]. Such a perspective, the search for the main or 

most important factor (variable), basically biases any understanding of the 

complexity of the underlying processes. This is especially true for complex 

systems where relationships between variables can be described by non-linear 
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functions, and slight changes can lead to very different patterns, independently of 

whether systems are seen from a dynamic or static perspective [8,9]. On one 

scale, the differences in the life history of the species involved in the life cycle of 

the pathogen, and the pathogen itself, can have different sensitivities to both 

exogenous and endogenous factors. On a different scale, life history differences 

among individuals of the same species become relevant. In addition to these 

aspects of heterogeneity, organisms by themselves can actively modify the 

environment where they live, making it necessary to understand populations and 

their environment as a unity where both components dynamically interact with 

each other [8,10,11]. This view poses a challenge to our understanding of the 

complex ways in which both exogenous and endogenous factors interact to 

generate disease. This challenge is not only restricted to diseases, but applies to 

the interplay of the multiple components of an ecosystem [12]. Moreover, only a 

few elements of a system can be studied at the same time, either for logistic 

reasons (such as the impossibility of gathering and analyzing data  for sufficiently 

powerful statistical tests), or by simple ignorance [13,14,15]. Thus, the 

challenges for understanding the dynamics of an ecological system such as a 

vector borne disease are enhanced by the limitations imposed by the methods of 

study.    

There are two known strategies to approach the dynamics of an ecological 

system. Both strategies are similar because they rely on the isolation of specific 

components. The first strategy, which is mainstream in most contemporary 

scientific practice, is the reduction of the nature of a complex problem to one of 
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its specific parts, without recognizing the intrinsic abstraction that such a 

simplification implies. This strategy in general resorts to panglossian 

explanations [16], e.g., the search for meanings in definitions necessary to apply 

statistical or mathematical methods, sometimes creating the illusion of an 

ultimate explanation for patterns in nature, and potentially contributing to the de-

legitimatization of science as an evidence-based approach to understand the 

world. This strategy to define problems is very common in the field of disease 

ecology and ecology in general [e.g., 17]. This strategy is also a known pathway 

to failures. For example, the view of malaria as driven primarily by mosquitoes’ 

abundance led to the spraying of insecticides. The latter led to resistant 

mosquitoes that are no longer susceptible to an otherwise successful control 

measure. The reduction of malaria by control measures targeting the pathogen 

led to the abuse of antimalarial-drugs, which eventually drove the drug resistance 

of parasites, with infections no longer controllable by drugs. Countless examples 

of these outcomes can be seen everywhere.  The second strategy, less common, 

begins with the realization of the limitations of isolating a specific phenomenon 

from the wholeness of nature, and the need for abstraction in order to make the 

object of study apprehensible. Although the best tools are always limited to 

explain even a small part of nature, the use of several tools to study the same 

problem as seen from various perspectives can lead to the discovery of 

processes and mechanisms that can explain regular patterns in a robust way, 

i.e., independently of the method or its assumptions [13, 18].   
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With this framework in mind, a description of the biology relevant to the 

hypotheses in this dissertation regarding the two vector transmitted diseases, 

American Cutaneous Leishmaniasis and Malaria, is presented next. 

 

Malaria and American Cutaneous Leishmaniasis  

 

 Although both diseases are caused by parasites transmitted by insects 

that fly, and both infect humans, they are quite different in several aspects. 

Malaria is caused by 4 species of parasites belonging to the genus Plasmodium 

(Haemosporida: Plasmodiidae); P. falciparum, P. vivax, P. malariae and P. ovale. 

It is transmitted by mosquitoes (Diptera: Culicidae) in the genus Anopheles and, 

sometimes, can be lethal. By contrast, American Cutaneous Leishmaniasis is 

caused by at least 14 species belonging to genus Leishmania (Kinetoplastida: 

Trypanosomatidae) and grouped in the subgenera Leishmania and Viannia. The 

parasites are transmitted by sand flies (Diptera: Psychodidae) in the genus 

Lutzomyia. Infection generally leads to defigurating cutaneous/muco-cutaneous 

lesions. ACL is a zoonotic vector transmitted disease, with several vertebrate 

host species besides humans [19] and evidence suggests that humans are sink 

hosts, i.e., they do not transmit the disease back to sand flies [20, 21]. Malaria is 

a vector transmitted anthroponosis [19], where humans are the only hosts that 

can infect vectors. 

As a product of history a gap in the knowledge between the two diseases 

exist. American Cutaneous Leishmaniasis, as its name indicates, is a disease 
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restricted to the New World. Even though there are pottery samples from pre-

columbian times where people are represented with cutaneous lesions similar to 

those caused by leishmania parasites and some Native American languages 

have names for it, no written records from those times are known [22]. Some 

records from early colonial times describe a common disease where people have 

lost their noses [23]. This might indicate that from very ancient times this infection 

was common.  As of today, the Leishmaniases (including all the clinical forms 

present in the New World and Old World) represent the fourth most important 

neglected disease, with a burden of at least 2.1 million of infected people per 

year [6]. ACL occurs mostly in the tropical and sub-tropical regions of the new 

world [24]. 

By contrast, malaria which is currently considered an almost exclusively 

tropical disease, used to have a wider distribution. It is well documented that 

Romans knew the relationship between marshes and “malaria like” fevers, and 

used it in the selection of places for new settlements and military camps. Early 

human history is full of battles that were won with the aid of malaria as an 

additional platoon attacking enemies [25-31]. Even during the coldest years of 

the little ice age (1560s to 1730s) reports of malaria outbreaks in England and 

Scotland were common. In the former, these were associated with years of high 

famine [32], and the latter having its maxima during the warmest and wettest 

summers of this period [33]. After World War II malaria endemic transmission 

was erased from the USA, and since 1973 Europe has been freed of the disease 

[28,29,34]. More recently, in 1981, Australia, a large subtropical area, also has 
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been freed of endemic malaria transmission [35]. However, as of today, every 40 

seconds a child dies of malaria, and between one to three million people die 

each year around the world, most of the cases reported for sub-saharan Africa 

[36].  

Based on this background information, I describe next the specific goals 

and strategic approaches for this dissertation. 

 

Research Agenda 

A) The need to define the problem from a wider perspective 

 To introduce the research agenda for this dissertation, a brief description 

of the work by Clifford Allchin Gill [37-38] will be discussed. His vision of the 

malaria problem at a relatively early time, was to some extent above the level of 

the ecological debate later developed by Andrewartha/Birch and Nicholson, as 

he was aware of the need for a synthetic approach in order to establish effective 

warning systems for disease epidemics. 

Gill [37] realized that the dynamics of a vector transmitted can be 

assessed from 4 different perspectives. Each perspective emphasizes a factor, 

namely: the human host, the parasite, host immunity, and transmission.  

Under the human factor, this author included several human activities that 

can drive the dynamics of the disease and that are modulated primarily by socio-

economic reasons. For example, he noticed the importance of human movement 

for the synchronicity of malaria epidemics in his region of study, the Punjab [37]. 
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He also reported previous findings that demonstrated the exacerbation of 

epidemics at times of extreme and generalized famine.  

For the parasite factor, he basically stated that the patterns seen in 

epidemics depend on the specific parasite species causing the infections. The 

example he used was that of significant variation in seasonal patterns for P. vivax 

vs. P. falciparum, since the former species can have a delayed onset of clinical 

manifestations and relapses, i.e., clinical manifestations after a period without 

symptoms [38].  

The consideration of the immunity factor was very innovative and insightful 

for the little immunological knowledge at that time, 1928. Gill’s inspection of data 

on spleen enlargement in children allowed him to realize that another important 

factor was the degree of protection against infection by a parasite that the human 

population has as a whole. His main hypothesis was that when these rates were 

relatively small the likelihood of a large epidemic increased, because of the lack 

of protection against the disease.   

 The transmission factor included the effect of mosquitoes on the 

seasonality and synchronicity of malaria epidemics in the British Punjab [37], and 

their relationship to both climate variables and landscape structure.  

In his two books, Gill [37,38] emphasized that malaria epidemics result 

from the interplay of all four factors and this led him to propose a qualitative 

forecasting system based on proxy-measurements of these four factors. This 

system was successful in predicting the relative magnitude of epidemic 

outbreaks for malaria in the Punjab. Finally, the work by Gill [37,38] shows that 
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there is an established need to pose the problem from a large enough 

perspective to get a clear picture of the ecology of vector transmitted diseases in 

changing environments.  

B) Research goals 

In general, the main goal of this dissertation will be to study the ecological 

dynamics of vector-borne diseases in changing environments. In the context of 

this dissertation ecological dynamics will be defined as changes in population 

size in both space and time.  

The dissertation is composed of six additional chapters to this introduction 

that illustrate more specific goals. Chapters II & III illustrate the importance of 

climatic variability at the local and global scale as a driver of the dynamics of 

vector-borne diseases. Chapter II addresses the importance of climate by 

analyzing a time series for infections of American Cutaneous Leishmaniasis in 

Costa Rica from 1991 to 2001. It addresses how the cycles in this series reflect 

changes in environmental variables associated with the natural history of the 

disease and examines the accuracy of predictions of linear models including and 

excluding climatic co-variates [39]. Chapter III extends the analysis to non-linear 

models for forecasting and presents epistemological reflections on how to use 

the information on the relationship between disease and climatic forces, as well 

as guidelines for testing thor robustness [40]. 

 In Chapter IV the analysis goes one step further by fitting simple models 

to understand the regulatory mechanisms for the transmission of vector borne 

diseases, examining the importance of several aspects known to affect their 
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transmission and the co-occurrence of related parasites in a host population. 

More specifically, this chapter aims to abstract the forces regulating the dynamics 

of malaria caused by two co-occurring parasites, Plasmodium falciparum and P. 

vivax, on the island of Espirito Santo, Vanuatu, to understand how is the 

feedback between hosts and population level immunity which would mediate the 

interactions between the two parasites, as well as the role of climate on the 

infections by each parasite [41].  

Chapters V and VI have the common theme of describing abrupt 

qualitative changes in populations coping with gradually changing environments. 

Chapter V describes techniques to find abrupt changes (breakpoints) in time 

series, and shows how the importance of climatic drivers for malaria dynamics in 

the archipelago of Vanuatu changed qualitatively after the introduction of 

bednets, both in mean value and variability [42]. Chapter VI extends these ideas, 

but emphasizes the need to understand the context of changing environments in 

human diseases [43, 44] . It also extends the level of analysis to include the 

spatial component. This chapter presents techniques to identify breakpoints in 

the relationship between the rate of a disease and predictors when the 

relationship is non monotonic. These approaches are applied to identify the 

factors that determine the distribution of the disease at country scale, and how 

deforestation interacts with climatic forces at the smaller spatial scales where the 

disease is clustered [45]. Finally, Chapter VII presents the conclusions of this 

work, its implications for the control of infectious diseases and pathways for 

future research.    



 11

References 

1. Nicholson AJ (1957) The self adjustment of populations to change. Cold 
Spring Harbor Symp. Quant. Biol. 22:153-173. 
 

2. Birch LC (1957) The role of weather in determining the distribution and 
abundance of animals. Cold Spring Harbor Symp. Quant Biol. 22:203-218. 

 
3. Andrewartha HG (1957) The use of conceptual models in Ecology. Cold 

Spring Harbor Symp. Quant. Biol. 22:219-236. 
 
4. Royama T (1992) Analytical Population Dynamics. Chapman and Hall: 

London. 
 
5. Turchin P (2003) Complex population dynamics. Princeton: Princeton 

University Press. 
 
6. Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Sachs SE, Sachs JD (2006) 

Incorporating a rapid impact package for neglected tropical diseases with 
programs for HIV/AIDS, tuberculosis and malaria. PLoS Med. 3: e102.   

 
7. Faraway JJ (2005) Linear models with R. Boca Raton: Chapman and 

Hall/CRC 
 
8. Levins R (1995) Toward an Integrated Epidemiology. Trends Ecol. Evol. 10: 

304 
 
9. May RM, Oster GF (1976) Bifurcations and Dynamic complexity in simple 

ecological models. Am. Nat. 110: 573-599. 
 
10. Levins R (1979) Coexistence in a variable environment. Am. Nat. 144: 765-

783. 
 
11. Lewontin RC (2000) The Triple Helix: Gene, Organism and Environment. 

Cambridge: Harvard University Press 
 
12. Levin SA (1992) The problem of pattern and scale in ecology. Ecology. 63: 

1943-1967.  
 
13. Levins R (1966) The strategy of model building in population biology. Am. Sci. 

52: 421-431. 
 
14. Levins R (1993) A response to Orzack and Sober: Formal analysis and the 

fluidity of science. Quart. Rev. Biol. 68: 547-555. 
 



 12

15. Levins R, Lewontin RC (1985) The dialectical Biologist. Cambridge: Harvard 
University Press.  

 
16. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the 

Panglossian Paradigm: a critique of the adaptationist program. Proc. Roy. 
Soc. London B. 205: 581-598. 

 
17. Orzack SH, Sober E (1993) A critical assestement of Levins’s The strategy of 

model building on population biology (1966). Quart. Rev. Biol. 68: 533-546. 
 
18. Levins R (2006) Strategies of Abstraction. Biol & Philos 21:741-755. 
 
19. Committee on Climate, Ecosystems, Infectious Disease, and Human Health 

(2001) Under the weather: climate, ecosystems, and infectious disease. 
Washington DC: National Academy Press. 

 
20. Ashford RW (1997) The Leishmaniasis as model zoonoses. Ann Trop Med 

Parasitol. 91: 693-710.  
 
21. Chaves LF, Hernandez M-J, Dobson AP, Pascual M (2007) Sources and 

sinks: revisiting the criteria for identifying reservoirs for American cutaneous 
leishmaniasis. Trends. Parasitol. 23, 311-316. 

 
22. Martens R (1999) Una Aproximación Antropológica a la Enfermedad de la 

Leishmaniasis en la Cordillera Andina de Mérida Talleres 6, 45-73. 
 
23. Pardo IJ (1955) En esta tierra de Gracia: Imagen de Venezuela en el siglo 

XVI. Caracas: Litografia Elite. 
 
24. Silveira FT, Lainson R, Corbett CEP (2004) Clinical and immunopathological 

spectrum of American Cutaneous Leishmaniasis with special reference to the 
disease in the Amazonian Brazil – A review. Mem. Inst. Oswaldo Cruz. 99: 
231-251. 

 
25. Jones WHS (1907) Malaria a neglected factor in the history of Greece and 

Rome. Cambridge: MacMillan & Bowes (Introduction by R. Ross and 
Conclusion by G.G. Ellet) 

 
26. Celli A (1933) The history of malaria in the roman campagna from ancient 

times. London: John Bale, Sons & Danielsson, Ltd. 
 
27. De Zulueta J (1973) Malaria and Mediterranean History. Parassitologia. 15: 1-

15  
 
28. De Zulueta J (1987) Changes in the geographical distribution of malaria 

throughout history. Parassitologia 29:193-205. 



 13

 
29. De Zulueta J (1994) Malaria and ecosystems: from prehistory to 

posteradication. Parassitologia. 36: 7-15.  
 
30. Najera JA (1994) The control of tropical diseases and socioeconomic 

development (with special reference to malaria and its control). Parassitologia 
36: 17-33.  

 
31. Sallares R (2002) Malaria and Rome. A history of malaria in ancient Italy. 

Oxford: Oxford University Press. 
 
32. Reiter P (2000) From Shakespeare to Defoe: Malaria in England during the 

Little Ice Age. Emerg. Inf. Dis. 6: 1-11. 
 
33. Duncan K (1993) The possible influence of Climate on historical outbreaks of 

malaria in Scotland. Proc. R. Coll. Physicians. Edinb. 23: 55-62.  
 
34. Snowden FM (1999) ‘Fields of Death’: malaria in Italy, 1861-1962. Modern 

Italy. 4:25-57. 
 
35. Bryan JH, Foley DH, Sutherst RW (1996) Malaria transmission in Autralia. 

Med. J Australia 164: 345-347. 
 
36. Sachs J, Malaney P. 2002. The economic and social burden of malaria. 

Nature. 415: 680-685. 
 
37. Gill CA (1928) The genesis of epidemics and the natural history of disease. 

An introduction to the science of epidemiology based upon the study of 
epidemics of Malaria, Influenza and Plague. London: Bailliere, Tindall and 
Cox. 

 
38. Gill CA (1938) The seasonal periodicity of malaria and the mechanism of the 

epidemic wave. London: J. & A. Churchill Ltd.  
 
39. Chaves LF, Pascual M (2006) Climate Cycles and Forecasts of Cutaneous 

Leishmaniasis, a Nonstationary Vector-Borne Disease PLoS Medicine. 3: 
e295 

 
40. Chaves LF, Pascual M (2007) Comparing Models for Early Warning Systems 

of Neglected Tropical Diseases. PLoS NTDs 1, e33  
 
41. Chaves LF, Kaneko A, Björkman A, Pascual M (submitteda) Random, top-

down or bottom-up co-existence of parasites: explaining the dynamics of 
malaria in multi-parasitic settings  

 



 14

42. Chaves LF, Kaneko A, Taleo G, Pascual M, Wilson ML (submittedb) Malaria 
transmission pattern resilience to climatic variability is mediated by insecticide 
treated nets.  

 
43. Lewontin R, Levins R (2007) Biology under the influence. New York: Monthly 

Review Press.  
 
44. Wilson ML (1994) Developing paradigms to anticipate emerging diseases. 

Ann. N.Y. Acad. Sci. 740: 418-422. 
 
45. Chaves LF, Cohen JM, Pascual M, Wilson ML (2008) Social Exclusion 

modifies climate and deforestation impacts on a Vector-borne disease PLoS 
NTDs 2, e176 

 



 15

 
 
 
 
 
 

CHAPTER II 
 

CLIMATE CHANGE AND THE ABILITY TO FORECAST DISEASES: I. NON-
STATIONARY PATTERNS FOR AMERICAN CUTANEOUS LEISHMANIASIS 

IN COSTA RICA 
 
 

Introduction 

 

The leishmaniases are among the most important emerging and resurging 

vector-borne protozoal diseases, second only to malaria in terms of the number 

of affected people. Like malaria, the leishmaniases can be caused by infection 

with any of several species of parasites belonging to the genus Leishmania 

(Kinetoplastida: Trypanosomatidae) and transmitted by sand flies (Diptera: 

Psychodidae) [1–3]. The disease has two main clinical manifestations: visceral 

and cutaneous/mucocutaneous. The latter is caused by at least 14 different 

species of parasites belonging to the subgenera Viannia and Leishmania [4]. 

However, it has been suggested that the cutaneous manifestation can be due to 

heterogeneities in the hosts [5]. An interesting aspect of the dynamics of this 

disease is that it is strongly associated with the presence of reservoirs, animals 

that act as sources and sinks of infection to sand flies, while humans are 

considered to be only incidental hosts, i.e., sinks for infections [3,6]. 

As with other vector-borne diseases, seasonal patterns in cases and vector 

abundance suggest that cutaneous leishmaniasis (CL) transmission is sensitive 
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to climatic exogenous factors. More specifically, vector density is correlated to 

climate variables—producing seasonal patterns that have been widely described 

[7–10]—vector density is correlated with number of cases [9,11], transmission is 

restricted to wet and forested areas [12], and vector density diminishes with 

altitude [13]. Also, interannual climatic events related to the El Niño Southern 

Oscillation (ENSO) have been shown to be associated with outbreaks of visceral 

leishmaniasis at the annual level [14]. However, the interannual cycles of CL 

have not been examined, and disease data have not been considered at the 

higher temporal resolution of months, more relevant to the seasonal dynamics of 

transmission. While many studies of climate–disease couplings have 

emphasized the potential application of associations between climate and 

disease to early warning systems, the forecasting ability of the resulting models 

has not been systematically evaluated. This critical step should be carried out 

with “out of fit” data if such models are to become useful tools to guide public 

health policy [3]. In addition, analyses of climate–disease relationships must take 

into account a common property of disease data that can mask the patterns: time 

series of cases are typically nonstationary, with changes in the mean and/or the 

variance over time.  

In the present paper, CL cycles and their relationship to climate variables are 

described, and linear statistical models that use climate variables as predictors 

are used to assess the accuracy of forecasts based on climatic variables.  
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Methods 

Data 

Monthly records of CL cases, from January 1991 to December 2001, were 

obtained from the epidemic surveillance service, Vigilancia de la Salud, of Costa 

Rica. Data were normalized using a square root transformation. Sea Surface 

Temperature 4 (SST 4) (also known as the Niño 4 index; 

http://www.cpc.ncep.noaa.gov/data/indices) and the average temperature of the 

0.5° × 0.5° grids corresponding to the Costa Rica land surface 

(http://www.cru.uea.ac.uk; [15]) were used as climatic variables to study the 

patterns of association between climate and CL. Temperature, SST 4, and the 

Multivariate ENSO Index (MEI) 

(http://www.cdc.noaa.gov/people/klaus.wolter/MEI; [16]) were used as predictors 

for forecasting CL cases. All the time series are presented in Figure 2.1.  

Statistical Analysis 

Seasonality. 

The seasonality of CL cases was assessed by using a box diagram (see Figure 

2.1E) [17].  

Interannual cycles of CL. A time series is stationary if it has a constant mean and 

variance [17–19]. Therefore, a nonstationary time series is one whose mean 

and/or variance is nonconstant. As Figure 2.1A shows, CL is nonstationary as it 

has a changing mean, an observation that can be confirmed by inspecting its 

autocorrelation function (see Figure 2.S1). Because the disease is nonstationary, 

we used several methods of analysis to obtain robust results about the 



 18

characteristic temporal scales of the cycles. The cycling patterns of a time series, 

yt, can be studied in the frequency domain and the time-frequency domain [18]. 

In the frequency domain, we used two main general approaches to determine the 

dominant frequencies in the data. The first one consisted of computing the 

periodogram, which gives the distribution of power (or, equivalently, variance) 

among different frequencies (see [19] and Appendix S1 for details). Thus, a peak 

in the periodogram indicates a dominant frequency. However, the periodogram 

assumes that the time series is stationary (i.e., with a constant mean and 

variance). Because our data are clearly nonstationary, we detrended the time 

series using the method known as discrete wavelet shrinkage (described in detail 

in Appendix S1).  

The second method consisted of the maximun entropy spectral density Y(vk) and 

was computed using the parameters ( )jw φσ ,2  of a pth order autoregressive process 

fitted to the data (see [20] and Appendix S1 for details). 

The above characterizations of the cycles consider the whole temporal extent of 

the data and therefore provide, as such, only an average picture of dominant 

frequencies in the data. More recently, the importance of localizing these 

frequencies in time has been emphasized, particularly for nonstationary data. 

The wavelet power spectrum (WPSy) allows us to do so by calculating a 

measure of power as a function of both frequency and time. In other words, we 

can determine when in the temporal record a particular frequency is dominant 

and significant ([21,22]; see Appendix S1 for technical details).  

Patterns of association between climate variables and CL. 
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Besides allowing us to determine how the variability of the data is allocated to 

different frequencies at different times, the wavelet transform can be used to 

study the patterns of association between two nonstationary time series [21]. 

Specifically, with the wavelet coherency analysis, we can determine whether the 

presence of a particular frequency at a given time in the disease corresponds to 

the presence of that same frequency at the same time in a climate covariate, and 

with the cross-wavelet phase analysis we can determine the time lag separating 

these two series as well.  

 Linear models and forecasts. 

Seasonal autoregressive models were fitted to the data using the Kalman 

recursions for their state space representation ([23]; see Appendix S1 for 

technical details). To select the lags for the climate variables the following 

procedure was used [19,23,24]: (i) a null model was fitted to the square-root-

transformed cases, (ii) MEI, SST 4, and temperature were filtered with the 

coefficients of the null model, and (iii) cross-correlation functions were computed 

using the residuals of the null model and those of the filtered climatic variables. 

On the basis of the cross-correlation functions, a full model was fitted that 

included as predictors all the statistically significant lagged climate variables [19]. 

This model was then simplified based on the following criteria: (i) the 

minimization of the Akaike information criterion and (ii) the absence of a 

significant difference (p < 0.05) when comparing the full model with the simpler 

version through a chi-squared likelihood ratio test [18,19,23].  
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Forecasts were obtained for time intervals 1, 3, 6, and 12 mo ahead using a total 

of 24 mo for each time interval. The model was refitted before computing the next 

prediction in two different ways, by including (i) all the previous months in the 

series or (ii) only the months from the previous 9 y. 

The accuracy of the forecast was measured using the predictive R2, which has 

an interpretation similar to the R2 of a linear regression as defined in [25] and is 

given by (1 – mean squared error/variance of the series). Forecast accuracy was 

tested for the model selected as best, as well as for the simpler versions of this 

model, including a null model without climate covariates.  

Results  

CL shows, on average, a seasonal peak during May, though epidemic outbreaks 

happen around the year, as demonstrated by the existence of outliers in 

February, July, September, October, November, and December (Figure 2.1E). 

Interannual cycles with a period of approximately 3.2 y were identified by all the 

methods, with the exception of maximum entropy spectral density (with 

smoothing splines), which found cycles of 2.7 y (Figure 2.2). In addition, cycles of 

8 y were found with the maximum entropy spectral density regardless of the 

method used to de-noise the data. However, evidence for the 8-y cycles is weak 

as they are longer than half the longitude of the series, a period above which the 

methods become unreliable [20]. The interannual cycles of 3.2 y coincide with 

those present in temperature and SST 4 for the same time period, suggesting a 

possible association between climate and transmission. In fact, cross- wavelet 

coherency analysis reveals that the square-root-transformed cases are 
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significantly (p < 0.05) coherent with temperature and SST 4 at periods around 3 

y, with SST 4 and temperature leading the disease data, as shown by the cross-

wavelet phases (Figure 2.3). The difference in phase is longer for SST 4 than for 

temperature. A similar pattern of coherence and phase is also seen for MEI, with 

MEI and cases coherent at periods of 3 y, and MEI leading the dynamics of the 

disease with a longer phase than that of temperature (Figure 2.S2). For both 

series, the cases are also significantly coherent at the seasonal scale, with only 

temperature leading cases, while SST 4 follows, possibly an artifact due to the 

seasonality of both series [21]. The results of cross-wavelet coherence and 

phase are consistent with those of the cross-correlation functions: the dynamics 

of the square-root-transformed CL cases are led by temperature with a 4-mo lag 

and by MEI with a 13-mo lag (Figure 2.4).  

The forecasting accuracy is higher for the model selected by the likelihood ratio 

tests and Akaike information criterion values (Table 2.1). The best model 

describes the following process: 

ttattttt MEITyyyy εγαμφφμφμφμ +++−−−+−+= −−−−− 134113121121211 )()()(  (1) 

where μ is the intercept, jφ  are the autoregressive terms, α1 is a regression 

parameter for temperature (T), γa is a regression parameter for MEI, and the 

residuals εt are 
2(0, )wN σ  distributed. This model has a predictive accuracy of 

over 72%. The model with MEI as a predictor outperforms the model with just 

temperature and the null model with no climate covariates (Figure 2.4). In fact, 

the MEI model accounts for more than 65% of the variance in the data for 

prediction times up to 1 y (Figure 2.4). By contrast, the predictive R2 for the 
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temperature model is negative for predictions 12 mo ahead, and the mean 

squared error is two orders of magnitude higher than the original variance of the 

series (Figure 2.S3). As expected, for all the evaluated models, forecasting 

accuracy diminishes with time and is slightly improved when all the previous 

months are employed for fitting the model (Figure 2.4). 

Discussion 

The description of cycles in any natural phenomenon is relevant to predict its 

dynamic behavior. The finding of a period close to 3 y for the interannual cycles 

of CL is robust, as the four applied methods indicate consistently the presence of 

cycles between 2.7 and 3.2 y in this series. The robustness of this result 

indicates that its statistical significance is not an artifact of any particular 

methodology. However, the description of cycles by itself is not sufficient to 

assess the effects of exogenous drivers or gain insights into the processes 

driving such oscillations.  

A deeper understanding of the relationship between climate and disease 

dynamics is key for anticipating the potential effects that trends in a changing 

climate would have on the incidence and distribution of the disease [26]. The 

results of this study show that the dynamics of CL are strongly associated to 

those of climate variables, including temperature and ENSO indices, with 

coherent cycles of around 3 y. Similarly, associations with climate have been 

found for other vector-transmitted diseases, including dengue [27] and malaria 

[28–31]. 



 23

A strong association between climate and CL incidence is further supported here 

by the finding that linear models can forecast satisfactorily the incidence of this 

disease, with an accuracy between 72% and 77%. In particular, MEI and 

temperature are identified as useful variables sustaining predictability for a 

window of 1 y. Interestingly, MEI is defined as the first principal component of 

several climate variables that predict ENSO [16]. This type of variable has been 

known to work well in linear regression because it reduces the number of 

predictors, avoiding problems of collinearity in the predictor matrix [32,33]. 

Longer-term data are needed to evaluate forecasting accuracy further in time. In 

the predictive model the nonstationarity of the CL time series is captured by the 

climatic covariates and the seasonal autoregressive part of the model.  

The finding that the model with MEI as the only predictor outperforms the model 

with just temperature supports the recent proposal that large-scale climate 

indices may be more useful for forecasting than local climate variables [32]. 

Climate can affect through several linear and nonlinear pathways the dynamics 

of infection in a host population. It can affect several biological traits of the 

organisms involved in the life cycle of the parasites, from individual life histories 

to population dynamics [34], and modify several factors that determine the 

context of disease transmission, including food production and the general 

standard of living of the population under the changing environment [35], both of 

which are known as important risk factors for other vector-borne diseases [36]. 

While local climate is more likely to affect only the biological components of 
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disease transmission, large-scale climate patterns could also influence 

contextual components of disease dynamics, such as population susceptibility.  

For CL there are several plausible ways in which climate could affect 

transmission dynamics. As already pointed out, vector density is sensitive to 

climate variability, with vector densities varying seasonally [7–10]. Parasite 

developmental time in vectors is also sensitive to environmental conditions, 

decreasing with high temperatures [37]. The density of reservoirs might also be 

sensitive to climate. For example, hantavirus outbreaks have been associated 

with changes in rodent reservoir densities, and high densities of rodents correlate 

with the altered production of seeds as the result of climatic conditions [38,39]. 

We can also expect there to be contextual effects of climate on transmission, 

such as those mediated by natural disasters, which could increase the risk of 

acquiring an infectious disease [35]. 

 Future work should compare the forecasting ability of nonlinear models and 

more mechanistic formulations. While mechanistic models are necessary to 

propose and evaluate methods of control [3], there may be trade-offs between 

the complexity of these models and their ability to predict [3,40]. The results 

obtained here provide a basis for modeling other aspects of CL [3] and for 

producing forecasts for windows of time as long as 1 y ahead. The approach 

described in this paper could be applied to evaluating predictability in other 

vector-transmitted diseases. 
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Table 2.1. Model Selection and Parameter Values 

μ̂  
1̂φ  12φ̂  1α̂  2α̂  3α̂  aγ̂  bγ̂  εσ̂  2χ

p  d.f
. 

 Akaike 
Information 
Criterion 

13.32 ± 17.76 0.48 ± 0.08 0.50 ± 0.08 −0.55 ± 0.28 0.27 ± 0.27 0.37 ± 0.26 0.39 ± 0.22 −0.26 ± 0.36 1.89 — — 480.17 

−2.21 ± 16.07 0.47 ± 0.08 0.47 ± 0.08 — 0.36 ± 0.27 0.54 ± 0.25 0.30 ± 0.21 −0.42 ± 0.35 1.95 0.04 1 482.13 

24.09 ± 14.37 0.50 ± 0.08 0.50 ± 0.08 −0.60 ± 0.27 — 0.32 ± 0.26 0.48 ± 0.21 −0.32 ± 0.37 1.90 0.31 1 479.19 

29.59 ± 13.54 0.49 ± 0.08 0.51 ± 0.08 −0.67 ± 0.26 0.20 ± 0.27 — 0.42 ± 0.22 −0.34 ± 0.36 1.91 0.16 1 480.09 

12.65± 19.09 0.50 ± 0.08 0.49 ± 0.08 −0.45 ± 0.28 0.42 ± 0.27 0.39 ± 0.27 — −0.47 ± 0.37 1.94 0.07 1 481.37 

5.56 ± 13.99 0.47 ± 0.08 0.49 ± 0.08 −0.59 ± 0.27 0.30 ± 0.27 0.40 ± 0.26 0.44 ± 0.21 — 1.90 0.46 1 478.70 

−17.80 ± 9.59  0.45 ± 0.08 0.46 ± 0.08 — 0.43 ± 0.27 0.61 ± 0.24 0.35 ± 0.21 — 1.98 0.02 2 481.65 

15.81 ± 10.59 0.48 ± 0.08 0.50 ± 0.08 −0.66 ± 0.26 — 0.34 ± 0.26 0.54 ± 0.19 — 1.93 0.18 2 477.96 

21.01 ± 9.62 0.47 ± 0.08 0.50 ± 0.08 −0.75 ± 0.25 0.23 ± 0.26 — 0.48 ± 0.21 — 1.93 0.09 2 478.99 

−3.59 ± 13.84 0.48 ± 0.09 0.48 ± 0.08 −0.50 ± 0.27 0.52 ± 0.26 0.46 ± 0.26 — — 1.97 0.03 2 481.08 

−5.96 ± 6.14 0.48 ± 0.08 0.47 ± 0.08 — — 0.56 ± 0.25 0.49 ± 0.20 — 2.01 <0.01 3 482.15 

27.28 ± 6.23 0.48 ± 0.08 0.50 ± 0.08 −0.78 ± 0.25 — — 0.55 ± 0.20 — 1.93 0.06 3 477.71 

13.95 ± 10.83 0.54 ± 0.08 0.48 ± 0.08 −0.60 ± 0.27 — 0.37 ± 0.26 — — 2.02 <0.01 3 482.95 

26.08 ± 6.44 0.54 ± 0.08 0.49 ± 0.08 −0.72 ± 0.26 — — — — 2.05 <0.01 4 483.89 

7.93 ± 0.43 0.48 ± 0.08 0.47 ± 0.08 — — — 0.49 ± 0.20 — 2.09 <0.01 4 485.21 

8.13 ± 0.46 0.52 ± 0.08 0.46 ± 0.08 — — — — — 2.18 <0.01 5 488.85 

The process for the full model is defined as: ttattttt MEITyyyy εγαμφφμφμφμ +++−−−+−+= −−−−− 134113121121211 )()()(  

and the process for the null model as: ttttt yyyy εμφφμφμφμ +−−−+−+= −−− )()()( 13121121211
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In both cases it is assumed that the error is independent and normally distributed: 

),0(~ 2
εσε Nt . The parameters for the full model are in the first data row, and for the null model 

are in the last data row. Parameters are described in the text and are given as value ± standard 

error. 2χ
p  is the significance of the chi-squared likelihood ratio test between each model and the 

full model, and d.f. its degrees of freedom.  
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Figure 2.1. Time Series (A) CL cases in Costa Rica. (B) Mean temperature in Costa Rica. (C) SST 4. (D) 
MEI. (E) Box plot with monthly square-root-transformed CL cases.  (F) The fits of (1) the Daubechies 
discrete wavelet (green lines), used to detrend the series so that the resulting data can then be analyzed for 
their dominant frequencies with a periodogram (a filter number 5 and eight levels of decomposition were 
used for this wavelet; the dashed line corresponds to periodic edges, and the dotted line to symmetric ones); 
(2) smoothing splines (blue solid line) and the first four reconstructed components of singular spectrum 
analysis (black dashed line; 60 orders). These methods were used to de-noise the signals so that dominant 
frequencies could be identified (with the maximum entropy spectral density method).  
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Figure 2.2. Dominant Frequencies in the Data(A and B) Smoothed periodograms for (A) the 
detrended series (using Daubechies discrete wavelet with filter number 5 and periodic edges) and 
(B) the detrended series (using Daubechies discrete wavelet with filter number 5 and symmetric 
edges). In the periodograms, the blue lines are the 95% point confidence intervals [19]. (C and D) 
Maximum entropy spectral density for (C) the de-noised series (with smoothing splines) and (D) 
the de-noised series (with singular spectrum analysis). For the periodograms and the maximum 
entropy spectral density, frequencies are in cycles per year. (E) Wavelet power spectrum. The 
solid line is the cone of influence indicating the region of time and frequency where the results are 
not influenced by the edges of the data and are therefore reliable. The dashed line corresponds 
to the 95% confidence interval for white noise based on the variance of the square-root-
transformed incidence series. The intervals were obtained using a chi-squared distributed statistic 
with one degree of freedom (see [22] for details). The Morlet wavelet was used [18,21,22]. In all 
analyses, the cases are square-root-transformed. Maximum entropy spectral densities were 
computed using the software described in [20]. For the maximum entropy spectral density an 
autoregressive process of order p = 40 was used, i.e., AR(40). 
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Figure 2.3. Cross-Wavelet Coherency and Phase The coherency scale is from zero (blue) to one 
(red). Thus, red regions indicate frequencies and times for which the two series share variability. 
The cone of influence (within which results are not influenced by the edges of the data) and the 
significant (p < 0.05) coherent time-frequency regions are indicated by solid lines. The colors in 
the phase plots correspond to different lags between the variability in the two series for a given 
time and frequency, measured in angles from −PI to PI. A value of PI corresponds to a lag of 16 
mo. Cases are square-root-transformed. The procedures and software are those described in 
[21]. A smoothing window of 15 mo (2 wk + 1 d = 31 d) was used to compute the cross-wavelet 
coherence. 
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Figure 2.4. Cross-Correlation Functions of Square-Root-Transformed Cases with SST 4, 
Temperature, and MEI (A–C) Cross-correlation functions (CCF) with (A) SST 4, (B) temperature, 
and (C) MEI. The blue dashed lines are the 95% point confidence intervals for the cross-
correlation between two series that are white noise [23]. (D) Predictive R2 measuring the 
accuracy of the predictions. Blue is for predictions with only 9 y of training data (used to fit the 
model) and black for predictions generated with all months preceding the prediction. (The value 
for 12-mo predictions with temperature is not shown, because it was negative.) 
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Figure 2.S1. The Autocorrelation Function of the Square-Root-Transformed CL Incidence Time 
Series. This series is nonstationary, because the autocorrelation function is statistically significant 
for lags different from zero and decays over time, a pattern that is superimposed on that resulting 
from seasonality, which produces a significant autocorrelation at a lag of 1 y. 
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Figure 2.S2. Wavelet Coherence and Phase for the Square-Root-Transformed Incidence of CL 
and MEI For technical details see caption of Figure 3. 
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Figure 2.S3. Mean Squared Error of the Forecasts. Blue is for predictions with only 9 y of training 
data, and black, for all previous months preceding the prediction interval. 
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CHAPTER III 
 

  
CLIMATE CHANGE AND THE ABILITY TO FORECAST DISEASES:II. 

NON-LINEAR TOOLS APPLIED TO AMERICAN CUTANEOUS 
LEISHMANIASIS FORECASTS IN COSTA RICA 

 
 

Introduction 

 

One of the best documented patterns in the dynamics of vector 

transmitted diseases is their periodicity at seasonal and interannual temporal 

scales [1-7]. These periodicities are the basis for the proposal that Early Warning 

Systems (EWS) are feasible and useful tools for planning and decision making 

[2]. EWS are alert systems whose objective is to predict either epidemic 

outbreaks in regions where disease transmission is unstable or large outbreaks 

where the disease is endemic. From the early 1910s, when Captain S.R. 

Christophers of the British army developed a system to predict malaria in India 

using climatic and socioeconomic data [8,9], to present times when systems are 

based on indoor resting densities of vectors [10], climate, land use, and satellite 

imagery [11], EWS have been regarded as useful tools to help the development 

of poor and disease stricken nations [2,11]. The early experience by Christophers 

was highly successful, and his system was in use until the 1940’s, when the 

importance of malaria as a public health issue in the Indian subcontinent 
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diminished [9,11]. However, recent results have demonstrated that the blind use 

of EWS can lead to unreliable forecasts especially when models are used in 

regions where the connection between climate and disease is not well 

understood [12].  

Despite the possible caveats of climate-based EWS, especially because 

of the complexity of human diseases for which social components can be as 

important as natural forces [13-15], there are successful examples of prediction 

of “out of fit” data based on the known association between climate and disease 

[6]. Although most of the effort in developing EWS has been focused on malaria 

[1,2,16], similar efforts would be valuable for neglected diseases that represent a 

large burden for developing countries and whose transmission is sensitive to 

climate variability [6,17]. The leishmaniases in particular represent the fourth 

most important neglected disease, with a burden of at least 2.1 million of infected 

people per year, second to malaria in terms of the number of people affected by 

a protozoan vector transmitted disease [17,18]. Like many other diseases the 

infections are caused by protozoa, belonging to any of several different species 

of Leishmania spp (Kinetoplastida: Trypanosomatidae), transmitted by sand flies 

(Diptera: Psychodidae). The clinical manifestation encompasses visceral and 

cutaneous/mucocutaneous cases, and is associated with a certain parasite 

species [6]. Our previous results indicate that American cutaneous leishmaniasis 

(ACL) is a good candidate for the use of climate-based EWS, because 

predictions with seasonal autoregressive (SAR) models can have an accuracy of 

over 75 % [6]. In the present paper, our objective is to illustrate a protocol for the 
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development of EWS, including the evaluation of different linear and non-linear 

techniques for time series modeling and prediction, as well as the assessment of 

the robustness of the relationship between the disease and climate that is the 

basis for building EWS. 

Methods 

Data  

Leishmaniasis Monthly records of ACL cases from January 1991 to December 

2001, were obtained from the epidemic surveillance service Vigilancia de la 

Salud, of Costa Rica.  The data were normalized using a square root 

transformation.  

Climatic Covariates  The temperature (T) data are those used in [6] consisting 

of the average temperature in the 0.5° × 0.5° grids composing the Costa Rica 

land surface [http://www.cru.uea.ac.uk,19]. The monthly average of these 

temperature records, T, and the multivariate ENSO index, MEI, 

[http://www.cdc.noaa.gov/people/klaus.wolter/MEI, 20] were used as predictors 

for modeling the transformed ACL cases. For all the models below, except for the 

non-linear forecasting (NLF) and the basic structural model (BSM), the lags for 

the introduction of climate covariates T and MEI were chosen based on our 

previous results using cross-correlation functions [6], with a fixed delay (i.e., 

months preceding the cases series) of 13 months for MEI and 4, 8, and 20 

months for T. All time series are shown in Figure 1. Other climatic covariates, 

precipitation and relative humidity, were ignored since they did not show a strong 

http://www.cru.uea.ac.uk/�
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association with the case data using non-stationary tools like wavelet cross-

coherence [6]. 

Statistical Analyses 

Forecasting models: Several linear and non-linear models were fitted to the 

square root transformed case data. Brief descriptions follow of: (1) the approach 

to handle seasonality, (2) the types of models used, and (3) their classification as 

linear or non-linear. 

Seasonality To introduce seasonality, the strategy for all models was to include 

lags 12 and 13 of the transformed case data. This approach was chosen 

because the autoregressive treatment of seasonality is known to be the best 

approximation to the asymptotic cyclical structure of a time series [21]. This 

approach specifically allows a better minimization of the error variance when 

compared to a fixed seasonality implemented with a standard cyclical function 

(such as sines or cosines) that leads to a symmetrical cyclical structure [21]. 

Linear: In this class of models, parameters have a linear relationship with the 

response variable [22], in this case the transformed number of cases. This 

definition should not be confused with that of a linear dynamical system where 

the relationship of the dependent variables or covariates is linear with that of the 

independent variable [23]. In fact linear models can be used to fit the parameters 

of non-linear dynamical systems provided that the relationship between a 

response (which can be a transformation of the independent variable in the non-

linear dynamical system) and the covariates (which also can be transformed) is 
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linked by a parameter linearly. Linear models used in this paper include: SAR 

and BSM. 

Non-Linear: In these models the relationship between the response and the 

parameters for the predictors is not constrained to be linear. Models include: 

NLF, generalized additive models (GAM) and feed-forward neural networks 

(FNN). A description of the methods (linear and non-linear) and of the fitted 

models can be found in the Appendix S2. 

Forecasts For all models, forecasts were obtained for prediction time intervals of 

1, 3, 6, and 12 months ahead for a total of 24 months each. Each model was 

refitted recurrently before computing the next prediction by including all the 

previous months in the series [6]. The accuracy of the forecast was measured 

using the predictive R2, which has an interpretation similar to the R2 of a linear 

regression by definition [23] and it is obtained as: R2 = 1 – (mean square 

error/variance of the series).  Thus, the errors are normalized by the variance of 

the time series; an R2 of 1 indicates perfect forecasts while a value close to 0 or 

negative indicates poor predictability. Forecasting accuracy was tested for all the 

fitted models. To establish a baseline for comparison, the predictive R2 was also 

computed when the prediction is the monthly mean value of the transformed time 

series.  

Robustness of the exogenous forcing by climate 

Once the best modeling approach was selected, the robustness of the 

association between the cases and the exogenous forces T and MEI was 

assessed with a non-parametric bootstrap approach based on 10000 



 43

ramdomisations. The idea of the non-parametric bootstrap is to reconstruct an 

experimental dataset based on the fitted values of a model plus the residuals 

sampled with replacement from such a model [24]. To generate the bootstrap 

samples, the model with the highest predictive R2 was used. The bootstrap was 

initially used to see the frequency (%) of times the model from which we 

generated the bootstrap samples was actually selected as the best model, using 

the Akaike Information criterion [25,26]. Then, using the sub-sample of models 

selected as best that also have the highest probabilities in the above bootstrap 

test, we constructed confidence intervals for the parameters.  We further refitted 

the model without the last 24 points to make forecasts and get their confidence 

intervals. 

Results  

 Figure 2 shows the square root transformed cases plotted against their 

lagged values (1, 12 and 13 months) and the lagged covariates T (4 months) and 

MEI (13 months). In all cases, no obvious non-linearity is apparent in the 

relationship among the three variables. As expected, all models but FNN were 

most successful for predictions of 1 month ahead.  However, for prediction steps 

larger than one month only NLF, SAR and GAM models with environmental 

covariates, MEI and T (4 months lag), did better than predictions based on the 

average of the time series (Table 1). The models with the worst performance 

were FNNs, followed by BSM and the null SAR (i.e., without covariates). For 

NLF, the best results were found with E=2 and E=3, with the latter embedding 

dimension providing slightly better results for a 12 months ahead prediction.  
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The predictive R2 was highest for the SAR model with T (4 months lag) 

and MEI (13 months lag) as covariates. Thus, the fitted values and residuals 

used for the bootstrap were those of the model in the first equation of (1) in the 

Appendix S2.  The bootstrap results show that the best model is the one used to 

generate the data (for 67.40% of the simulated time series, the model was 

selected as best). The confidence intervals for this model show that the 

parameters for T and MEI are statistically significant, a result that holds even if 

the intervals are constructed using the values for this parameter when the model 

was not selected as best (Figure 3A). The autoregressive terms, however, are 

not significant as the confidence intervals include 0. The variance of the residuals 

obtained from the real data is significantly shorter than the one from the 

simulations, probably because of the destruction of the autoregressive structure 

by the re-sampling of residuals [25]. Finally, the results also show (Figure 3B) 

that the maximum forecasting ability for these models is 80%, and can be as low 

as 50% probably because of the sensitivity of the models to a lack of a well 

defined SAR structure.  

 

Discussion  

The need for forecasts by policy makers goes well beyond the 

development of EWS for diseases. In a world where large scale changes are 

happening at a rapid pace, from increased average temperatures to extensive 

land use changes, major alterations in biogeochemical cycles, water availability, 

food production, biodiversity and diseases are already occurring and likely to be 
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exacerbated in the future [27,28]. Although the imperative need for predictions 

that can inform  policy has been repeatedly emphasized [11,28], the common 

practice regarding diseases is to evaluate models by their ability to fit the data 

[29-35] and only in very few instances, tests have been conducted based on data 

that have not been used to fit the models [6]. Consideration of “out-of-fit” data is 

critical if we are to evaluate the ability of the models to predict the future.   

In this paper, we have presented several methods to study seasonal time 

series, and used a simple measure, the predictive R2, to compare models based 

on their ability to predict future dynamics and not their goodness of fit of the past. 

By comparison with modeling results for other infectious diseases on the 

predictability of NLF methods [36], our results demonstrate a very high 

predictability for ACL.  An important element that might explain this difference is 

the association of this disease to climate, since models that incorporated climatic 

covariates performed generally better than those that only considered previous 

disease levels.  Another explanation might be the robustness of the association 

between the disease and climatic covariates as demonstrated by the bootstrap 

results. While the parameters for the covariates are statistically significant, the 

autoregressive parameters are not consistently so, and the variance of the 

residuals significantly increases.   

One of the main lessons from the study of populations is that non-linear 

dynamics are common in nature but often satisfactorily captured by linear 

approximations [37,38]. This has been demonstrated by the analysis of time 

series from a wide variety of animals and diseases.  While chaos is present in a 
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small sample of the populations considered periodicities are common, particularly 

in infectious diseases, that can be explained by either the effect of exogenous 

forces, like climate, or endogenous ones, like recruitment of new individuals and 

the concurrent changes in densities [39-42]. Our results indicate that ACL is 

another example of a population phenomenon whose dynamics can be 

satisfactorily described by linear statistical models, provided that appropriate 

covariates and transformations of the data are used. Thus, though linear models 

do best, functional forms underlying the influence of covariates are likely to be 

non-linear as indicated by the transformations used. This result is further 

supported by the observation  that the predictive R2 for NLF with E=3 does not 

vary with the prediction time step, while this value for the SAR model without 

covariates decreases abruptly, as expected in systems where the dynamics are 

non-linear [36-43]. Linear models were also used successfully for other vector-

borne diseases, Malaria [43] and Ross river virus [4,35], and for cutaneous 

leishmaniasis in other regions of the new world [45]. For ACL, the usefulness of 

linear models (after appropriate transformation) might also follow from the fact 

that humans are only sinks for the pathogen and therefore, provide no feedback 

to transmission [46,47].  This conjecture would not necessarily apply to other 

vector-transmitted diseases where infected humans provide sources of new 

infections within the population. 

This result also highlights two open questions that need to be addressed 

when modeling infectious diseases transmitted by vectors:  first, the appropriate 

functional form to introduce climate variables into the dynamics [46, 48]; second, 
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the best approach for modeling seasonality [8, 49] . Mathematically the 

relationship between climatic co-variates and the numbers of the disease can be 

non-linear, described by simple non-linear functions, like those of the functional 

responses in consumer-resource interactions [50] or modeled by linear models 

with self-excited thresholds [51]. This is especially relevant, since a saturating 

non-linear functional form can lead to very different scenarios in the dynamics of 

the disease under altered environmental conditions. In the case of ACL, 

however, no apparent need for non-linear functions describing the relationship to 

climate was evident. In general seasonality has been modeled using fixed 

structures, i.e., values are assumed to be constant [e.g., 9,49] or approximated 

by the sum of sine and cosine functions [e.g., 41,52]. The introduction of SAR 

seasonality in mechanistic models should be further investigated.  

A factor that deserves further consideration in developing EWS, is the 

understanding of the role of space. Predictability at more local scales was not 

addressed here because half of the series was only available at levels below that 

of the whole country, and because Costa Rica encompasses a small area for 

which temperature variability is quite homogenous, as seen in the very small 

variability between temperature grids. However, for larger spatial scales 

heterogeneities in the landscape for disease transmission would need to be 

considered [53]. 

EWS are a feasible ecological application for neglected diseases, as 

illustrated for ACL. Available models have good levels of predictability up to one 

year ahead for the number of cases. Predictability strongly depends on the use of 
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an appropriate structure for the different components of the model, including 

seasonality and exogenous drivers such as climatic variables.  Depending on the 

model, predictability can range from poor, with approximately 50% accuracy, to 

high, with 80% accuracy, significantly better than that of seasonal averages 

(about 65%). Forecasts can be useful in planning services for the populations 

affected, allowing estimates of approximate number of hospital beds, vaccine 

shots, drug doses and vector control measures. If EWS need to incorporate the 

spatial spread of the disease, they should do so dynamically and in relation to 

different landscapes, such as the geopolitical unit of this study or regions with 

similar climatic patterns [53], otherwise predictions are likely to fail as illustrated 

by [12]. While there is no unique early warning system for a given disease, there 

should be a general approach for the development of EWS. Our work illustrates 

three key components of such an approach for vector-borne diseases: (i) the 

evaluation of predictability with “out-of-fit” data and not simply goodness of fit 

[6,40,41]; (ii) the comparison of a suite of possible models in terms of 

predictability [55,56] and (iii) the robustness of the relationship with covariates in 

the selected model. Here, robustness is used following [55], to identify covariates 

that are useful to predict disease numbers even when the skeleton of the model 

changes. Finally, none of these efforts are possible without the invaluable role of 

sustained surveillance and monitoring efforts. A historical retrospective reinforces 

this point: the success of Christophers was possible because of data availability 

and a deep knowledge of malaria biology; from parasites to mosquitoes and 

humans, realizing the influence of factors as diverse as weather and wheat 



 49

prices in rendering the epidemics of malaria predictable [8]. Time series 

sufficiently long for developing and evaluating forecasting models around the 

world are countable; their number pales by comparison to the data available for 

weather forecasting.  It is imperative that on-going efforts are sustained and new 

ones are initiated whose long-term planning includes EWS as a specific goal.  
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Table 3.1 Models and predictive R2.  
 

Model 1 
month 3 months 6 months 12 months 

NLF (E=2) 0.69 0.62 0.61 0.66 
NLF (E=3) 0.67 0.60 0.59 0.67 
NLF (E=4) 0.66 0.59 0.58 0.66 

FNN (2 Layers) 0.55 0.53 0.44 0.44 
FNN (3 Layers) 0.62 0.58 0.61 0.60 

SAR (null) 0.71 0.64 0.62 0.57 
SAR (MEI) 0.73 0.67 0.67 0.66 

SAR (MEI + T) 0.77 0.73 0.73 0.72 
BSM 0.69 0.59 0.52 0.65 

GAM (MEI) 0.66 0.59 0.56 0.57 
GAM (MEI + T) 0.73 0.68 0.67 0.68 

MEAN 0.64 0.64 0.64 0.64 
For model identification see common abbreviations. Months indicate the number 
of months predicted ahead. Mean indicates the results that could be obtained by 
just using the monthly average number of cases. 
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Figure 3.1. Time Series: A Square root Transformed ACL Cases in Costa Rica B Mean 
Temperature in Costa Rica C MEI 
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Figure 3.2. Multidimensional plots for the square root transformed ACL cases (yt) as function of: 
A Autoregressive (yt-1) and Seasonal (yt-12) components B Seasonal (yt-12) and Autoregressive 
Seasonal (yt-13) components C Autoregressive component (yt-1) and Temperature (lag 4, Tt-4) D 
Autoregressive component (yt-1) and MEI (lag 13, MEIt-13). 
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Figure 3.3. Bootstrap Experiment: A  95% Confidence intervals for the parameters of the best 

model. AR stands for the autoregressive component of the model (
1
φ ); ARseas for the seasonal 

autoregressive component of the model (
12
φ ); VAR for the variance of the residuals (

2

ε
σ ); MEI 

and T4 for the parameter for MEI at lag 13 (α ) and Temperature at lag 4 (γ ) respectively. 
Black signs are 95% CI’s using values from the sub-sample when the model is selected as best, 
and blue including all the bootstrap samples. The structure of the best model can be seen in the 
Appendix S2 B Predictive R2 and the 95% confidence intervals, indicated by stars, for the 
bootstrapped best model and prediction interval. 
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CHAPTER IV 
 

MODELLING DISEASES FROM FIRST PRINCIPLES:  SELF REGULATORY 
FEEDBACKS, BIOLOGICAL INTERACTIONS AND CLIMATIC FORCING, THE 

ECOLOGICAL DYNAMICS OF VIVAX AND FALCIPARUM MALARIA 
 
 

 
Introduction 
 
  

Malaria, one of the most devastating infectious diseases in humans is 

widely distributed across the tropics. It is caused by four different species: 

Plasmodium vivax, P. ovale, P.malariae and P. falciparum. In most places 2 or 

more parasite species co-occur [e.g.,1], as well as several strains of any given 

species [e.g., 2]. This diversity poses a challenge to our understanding of the 

population dynamics of the disease, and several scenarios have been proposed 

to understand how the infection by one parasite species or strain determines the 

fate of an infection by another.   

Classical views on the problem considered patterns of infection random, 

and ultimately determined by the action of climatic forces [3,4]. The development 

of ecological theory for competition [e.g., 5,6], in addition to a growing body of 

knowledge on the human immune system, led to the proposal of parasite cross-

immunity (a.k.a., heterologous immunity) as a force regulating the infection by 

closely related parasites [1]. A major emphasis was placed on the specific 

immune response [7], which recognizes and neutralizes specific pathogens 
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through the response to parasite specific signals or antigens and the selection of 

T and B cells. This  whitin-host mechanism implies a top-down regulation in co-

infections becauses it leads to competition for susceptibles in the process of 

transmission between hosts. The sign of the interaction between parasites (co-

infection) is negative, since the feedbacks between hosts and their immune 

system is negative both ways (see Figure 4.1).  By using a phylogenetic 

argument, Cohen [1] proposed that species with common descent are likely to 

share the antigens that trigger an immune response. Therefore infection by one 

species would generate the “memory” to fight new infections by a closely related 

species. This idea was widely appealing because it led to a statistically testable 

hypothesis. The existence of cross-immunity predicts a number of cross-

infections smaller than expected by random. Following Cohen [1], several 

authors supported the existence of cross-specific immunity by analyzing cross-

sectional studies and finding the number of cross-infections to be below the one 

expected by random [8-12]. This idea also underlies more dynamical approaches 

to the subject of malaria immunity and the role of multiple strains of a given 

parasite species [13,14].  

 However, as pointed out by Molineaux et al [15], Cohen’s [1] method, 

requires high quality data and assumes that all individuals in a population are 

homogeneous in the way they manage infections. Molineaux et al [15] found the 

number of cross-infections to be higher than expected by random, a pattern that 

does not rule out cross-immunity, but can arise when all individuals in a 

population do not raise a proper immune response against the parasites. 
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Although largely ignored, the pattern described by Molineaux et al [15] 

was shown to be more common than originally suspected with the advent of 

molecular techniques, both at the intra-specific [2,16-18] and inter-specific level 

[19-21]. These findings suggest the limited use of parasite prevalence, or more 

generally data from any static diagnosis as a reliable measure of co-infection by 

closely related parasite species, as further supported by simulations on individual 

course of infections [22] 

Advances in immunology also showed that immune responses can act 

through non-specific or innate mechanisms that do not lead to the generation of 

memory cells necessary for the development of heterologous immunity[7]. Before 

the discovery of many non-specific mechanisms of action for the immune system, 

dynamic transmission models for malaria, developed in the context of the Garki 

project included hosts whose qualitative behavior after infection differed [23]. In 

this model, some hosts develop temporary immunity, while others can be readily 

infected after clearing their parasites. Further analysis of the course of individual 

infections [24] strongly supported individual heterogeneity in immune responses, 

with no evidence for cross-specific or heterologous immunity at the population 

level. There was evidence, however, for a reduced amount of cross-strain or 

homologous immunity (at the cost of an increased tolerance to circulating 

parasites). Non-specific immunity implies a bottom-up regulation mechanism for 

co-infections (see Figure 4.1), in the sense that hosts can be seen as a self-

regulating resource for the parasites (who act as consumers) through the action 

of the immune system, or alternatively we can consider hosts feeding their 
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immune system when infected, which implies a cost for immunity, that results in a 

positive interaction among parasites. 

The model by Dietz et al [23] captured this diversity of mechanisms by 

subdividing the population according to the handling of infection and the 

development of immunity. It has been the most successful approximation to 

explain the dynamics of the populations in the Garki project [25-27]. However, 

the data on which the model was based is unique, since most epidemiological 

data are not as detailed as the sources for Garki. Also the model does not 

consider the possible effects of environmental forcing on the dynamics of the 

disease [28]. In the present paper we propose a time series modeling approach 

based on conceptual ideas from population dynamics [29-31]. This approach 

allows to combine the statistical framework of seasonal autoregressive models 

with mechanistic elements of a simple transmission model, where climatic forcing 

and the fraction of parasite free individuals in the population as limiting resource, 

can be considered explicitly. This model is used test three main mechanisms 

(randomness, top-down or bottom-up regulation) for parasite co-existence in a 

population of hosts.  

Methods 

Loop analysis for qualitative understanding of species interactions 

 Expectations for biological interactions among species can be studied 

through the analysis of a community matrix that describes the interactions of all 

its members around an equilibrium [32]. The negative inverse of this matrix 

shows the direction of change in abundance of the community members 
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following a small perturbation, where indirect effects product of the web of 

interconnections can be visualized [33,34]  

 

Model and Theoretical considerations 

Consider a general equation for the dynamics of infected hosts I:  

)δ(b−= I
dt
dI            (1) 

where b accounts for the recruitment of new infected individuals and δ for the 

recovery of those already infected [35]. I is the state that is detected and 

recorded as disease incidence.   

We can equate b-δ to the instantaneous per capita growth rate of infections, r(t), 

and use the approximate integration method presented by Turchin [30; pages 53-

54]. By assuming that  r(t)=ln(It/It-1) remains constant for a discrete time step 

equation (1) can be written in discrete time as follows: 

( )t
tt II r

1e−=           (2) 

 Exogenous forcing, exoF(t),  can be added whitin r (t) [36,37]. To define 

r(t), we consider a general mass action transmission [38] and let b= βS/N, (where 

β is the transmission rate, N the total population size, S the susceptible 

population size). With S=N-I equation (1) becomes:  

⎟
⎠
⎞

⎜
⎝
⎛ −=

N
II

dt
dI ββ'          (3) 

where β’= β-δ.  

The above model can be generalized to let I represent new cases, with the 

number of parasitemic hosts represented at any given time step with a new class 
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(I’), which is a function of infected individuals, I’=f(I)  to handle the difference 

between the time for parasite clearance to the length of the modeled time step. 

The class for parasitemic hosts is also necessary to account for the regulation in 

the recruitment of new infected individuals by controlling the number of 

susceptible hosts in the following manner:  S = N-I’.  Therefore r (t) can be 

defined as follows: 

 tt
t

t wexoF
N
It ++= −τα'β'-β)(r         (4) 

 

where wt is an i.i.d. normal random variable accounting for unexplained variation. 

The basic model in discrete time becomes: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= − tt

t

t
tt wexoF

N
III α'β'-βexpθ

1        (5) 

where 0 < θ < 1 is included to consider deviations from mass-action in 

transmission [39]. It also can be seen as a density dependence factor in the 

generation of new infections [40,41], or to account for the spatial clustering 

among hosts during the process of infection [42].  

Notice that under the abstraction behind this model the growth of infections, or 

new cases, is tracked. The growth is limited by the number of hosts that can be 

infected. Therefore, this formulation also can be seen as one where parasites 

colonize hosts in a metapopulation fashion, and the interpretation of It-1 on the 

right side should not be restricted to the one of models based on the concept of 

force of infection, where cases at It-1 are the only individuals contributing to 

transmission [42].  
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Seasonality: Classical work on the dynamics of infectious diseases has 

recognized the meaning of seasonality as deviations from a mean annual value, 

that occur every year approximately after a fixed period, σ, that corresponds to 

the number of annual subdivisions (months, weeks) used to accumulate cases 

[3].  r(t) can be defined as a seasonal function: 

tt
t

t wexoF
N
Ikt +++= α'β'-β)(r)(r seas         (6)  

where rseas(k) accounts for the seasonal contribution during the kth period of any 

given season.  

Most models incorporate seasonal variation in transmission using fixed 

seasonalities, either resorting to mean values for the temporal subdivisions of 

data collection (weeks, months, etc) [e.g., 42] or symmetrical functions, like sines 

and cosines [e.g., 43-44]. This approach can lead to a symmetrical cyclical 

behaviour that lacks the inherent seasonal variability of a time series, limiting the 

ability of models to reduce the variability due to unknown factors [45]. Seasonal 

autoregressive forms [46,47] overcome this limitation by letting the value of a 

variable x at time t is a function of its previous seasonal value (t-σ). Therefore 

rseas(k) can be defined as a function of  r(t-σ). When this function can be 

linearized (using a parameter φ), rseas(k) becomes: 

( )σϕ −= kIk log)(rseas          (7) 

Then the seasonal version of the model in equation (5) can be written as: 
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Parasite Clearance and Immunity: we consider the variation among individuals in 

the duration of  parasite clearance (with or without the generation of long lasting 

immunity) by introducing a random variable d whose distribution describes the 

length of individual parasitemia. Then: 

∑
∞

= −−=
0

*))(1('
i itIicmftI         (9) 

where cmf is the cumulative mass function of the random variable d at time i, and 

It-i, the number of new cases at time t. At equilibrium in (3): 1/δ= E[d].   

Randomness, Top-Down, Bottom-Up mechanisms: the model presented in (8) 

can be extended to account for possible inter-specific interactions between 2 

parasites, by computing a coefficient (β2) for the second species as follows: 
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The following possibilities correspond to the different mechanisms we wish to test 

for. If 0ββ 2 == , then random interactions are supported. If 0β0;β 2 << (both 

coefficients with negative signs) the most likely mechanism is one where cross-

specific (heterologous) immunity is present, since the interaction of the parasites 

have the signs expected under feedback loops of top-down regulation, i.e., the 

effect of the second species on the first is negative (see Figure 4.1). If   

0β0;β 2 >< (the focal species with a negative coefficient, the second species with 

a positive one) the most likely mechanism is one where non-specific immunity is 

at play, since the interaction of the parasites have the signs expected under 
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feedback loops of bottom-up regulation, i.e., the effect of the second species on 

the first is positive (see Figure 4.1). 

 

Data 

Monthly records of malaria in Espirito Santo, Vanuatu were obtained from people 

attending government health centers (free of charge) who presented with fever or 

a recent history of fever, and whose standard blood slide analysis indicated 

infection with either Plasmodium vivax or P. falciparum, from January 1983 to 

December 1997. Additional data on distributed insecticide treated nets, ITNs, 

with permethrin and population growth were available for the same period and 

obtained from the Malaria and other Vector Borne Diseases Control Unit, Ministry 

of Health, Port Vila, Vanuatu (Figure 4.2,4.3). The seasonal patterns for the 

malaria cases are presented in Figure 4.2. 

 

Model Fitting 

Estimation of d and I’: to estimate d we used the data from P. falciparum 

malariotherapy for neurosyphilis patients published by Collins and Jeffery [48], 

and analyzed by Sama et al [49]. We considered the datasets from Georgia and 

South Carolina (Figure 4.3), as examples of a population with minimum use of 

drugs and some use of drugs respectively. Unlike Sama et al [49], who used 

continuous distributions, we fitted a discrete distribution to the data, given the 

discrete nature of the data and the way  we computed I’. Negative Binomial 

distributions minimized the likelihood when compared with other discrete 
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distributions (e.g., poisson). I’ was obtained with equation (8)  and the series of I 

for each species, with month length was based on each calendar year, the cmf 

was truncated at the end of a calendar year (365 days). Since no similar data is 

available for P. vivax we assumed the clearance time distributions to be the 

same as for P. falciparum. 

Inapparent infections: We considered the effect of inapparent infections on the 

series by  multiplying the I’ series by the ratios published by Maitland et al (1996) 

of 1:1 in the wet season (November-May) and 1:4 in the dry season (June-

October) for P. falciparum, and 1:1 in the wet season and 1:2 in the dry one for 

P. vivax. 

Effect of bednets: To account for the effects of bednets we considered two 

possibilities; bednets either diminish the size of N, the total host population, or 

they increase the feedback, i.e.,  the number of available hosts for the generation 

of new infections via I’. In both cases the effects were assumed to be additive, 

i.e., Nb=N-No. bednets, Ib’=I’- No. bednets. We assume the effect of bednets was 

cumulative or transient (just for the month when they were delivered). We also 

computed the % population covered with Insecticide treated bednets for each 

delivery (Figure 4.3) and assumed the effects of the bednets lasted from 1 to 6 

months, the lifespan of Permethrin [50]. 

Exogenous Forcing: to find appropriate lags for the introduction of climatic 

variables we used the pre-whitening method described in [51]. We found that 

temperature (T) with 5 months of lag was statistical significant for both species. 

We used records from the airport of Pekoa, a close-by island, available at 
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http://weather.noaa.gov/. Missing data were imputed from a time series for the 

political area of Vanuatu [52]. For the analysis, the temperature series was 

demeaned. 

Parameter estimation: For parameter estimation, we linearized the model in (10) 

as follows: 

( ) ( ) ( ) tt
t

t

t

t
ttt wT

N
I

N
IIII ++±++= −−− 5

2
2121 α'β'β'-βloglogθlog ϕ    (11) 

and used a fitting procedure for negative binomial generalized linear models (NB-

GLM) for the time series of each species. To avoid confusion in the parameters, 

the finding of parameters with incorrect signs or magnitude, a problem to be 

expected because of the linear algebra behind linear models [53,54], the 

estimation of parameter β was restricted between ]1,( −−∞ , using the Nelder-

Mead algorithm [55]. The parameter β needs to be larger than the recovery rate, 

given the endemicity of the disease and recovery rates constrained to be smaller 

than 1, since average duration of infections is longer (>3 months) than the 

modeled time step (1 month).  Since likelihood ratio tests for NB-GLMs are only 

reliable for a fixed over-dispersion parameter (k), we compared the most complex 

model with simplified ones fixing the overdispersion parameter of the most 

complex. To ensure robustness, we also make comparisons the other way 

around. The models were fitted only to the data from January 1985 to December 

1997, given the need for burning values in I’. 

 

 

 

http://weather.noaa.gov/�
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Results    

Figure 4.3 shows the distribution of clearance times in neurosyphilis 

patients treated with malariotherapy. For Georgia, long-time clearance patients, 

the mean of the negative binomial distribution was 169.15 days, which is close 6 

months, with an over-dispersion parameter of 2.10. For South Carolina, short-

time clearance patients, the mean of the negative binomial distribution was 78.40 

days (~3 months) with an over-dispersion parameter of 3.51. Figure 4.3 also 

shows the proportion of people locally covered with bednets, which was on 

average about 5% of the island population. 

Table 4.1 shows the search for the best model under the scenarios 

considered and gives an idea of the robustness of the findings. For both species, 

consideration of inapparent infections increases the likelihood (minimizes the 

AIC) of the models. A similar result was found for the long-time clearance, which 

is partially shown for the best models in Table 4.2. For P.  falciparum, all models 

without P. vivax outperformed the corresponding models with it. For P. vivax the 

opposite result was found, with models that consider the parasitemic individuals 

for P. falciparum have the highest likelihood. For both species, the likelihood was 

also maximized when the effect of bednets was considered transient and short, 

only one month (Table 4.1). 

Temperature was an important driver for the dynamics of both species 

with a lag of 5 months. For both species the magnitude of this forcing is very 

small, about 10%, when compared with the parameter β’, the difference between 

transmission and recovery (Table 4.2). In absolute terms the effect of 
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temperature is slightly larger, about 25%, for P. falciparum ( )11.0ˆ ≅α , than for P. 

vivax ( )08.0ˆ ≅α . 

Finally, Figure 4.4 shows the success of the best models in fitting the data. 

The correlation between observed and fitted values is 0.77 for the best P. 

falciparum model, and 0.74 for the best model for P. vivax.   

 

Discussion 

 Malaria models have been evolving [56-58] since the first proposals of 

Ross [59]. As knowledge on intra-host dynamics has accumulated, and 

regulatory mechanisms for parasitic infections are being elucidated, it is 

becoming clear that innate (non-specific) immunity plays a key role, since its 

direct action or mediation in regulating adaptive (specific) responses are 

fundamental for the proper development of immunity [60-64]. Although several 

models have considered these new findings explicitly [9,11,58,65-67], as well as 

the effect that drugs may have on the dynamics of the disease [68-69], the 

question of parasitic infections regulation has been not addressed at the 

population level. Results of our time series model support the regulation of 

malaria infections by the parasites present in the population. The process of 

model selection showed that the likelihood of models is minimized when a short-

time of clearance (3 months) is used instead of a longer time (6 months). This 

suggests that long lasting population immunity is not a major force regulating the 

population dynamics of infection. However, this result also indicates that either 

some kind of immunity to clear parasites is developed or population level use of 
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antimalarials have an effect in shortening clearance times, since the longer 

estimate corresponds to immunologically naïve populations [49]. In fact, if we 

consider the difference between the fixed values of β to β’, i.e.,  the recovery 

rates, and compute the inverse, we get values of 5-6 months for the amount of 

time individuals are removed from susceptibility, a time longer than the average 

clearance of 3 months. However, this point can be elucidated by resorting to 

other tools for modeling where a more clear distinction between immunity and 

parasite clearance can be separated, and by having estimates of population level 

use of antimalarial drugs.The regulation of transmission by parasite abundance 

was originally proposed by Ross [59] and it was the basis for future 

developments of control based on reducing mosquito population. Strategies for 

mosquito control, primarily through mosquito larval habitat reduction [70-71] and 

bednets [50,72-75], have been very successful, by contrast to vaccine trials [76-

77].   

The transient effect of bednets at the population level can be explained by 

the low local coverage associated with deliveries, which was about 5% of the 

population, when compared to the average of 80% seen at other localities 

[50,72,73], indicating that the threshold for population effectiveness of bednets 

was never reached in this island. Although the effect of bednets seems to be 

primarily one of reducing the total population at risk of infection, more 

sophisticated models are needed to understand their regulatory function. 

 The effect of climatic forcing in regulating transmission (or growth of 

infections) was very small when compared to the endogenous factors regulating 
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the population, in accordance with similar findings in other populations 

[29,78,79], and slightly larger for P. falciparum, in accordance with the effects 

seen for the whole archipelago of Vanuatu [74]. 

Differences in seasonal patterns and age specific prevalence have been 

used as evidence for a heterologous (cross-specific) immunity for these two 

malaria parasites in the setting we studied [80,81].  However, the seasonal 

patterns are very similar for the two species over a longer time horizon (Figure 

4.2), the infection with one species does not seem to reduce the infection with 

the other, and in the biogeographical region where Vanuatu is located, multi-

species infections are very common, although only easily detected by very 

sensitive molecular based techniques [20,21,82]. More generally, as mentioned 

in the introduction, prevalence is a static measure that can blurr parasites’ 

interactions in the dynamics, and even co-infection, since the sampling of 

parasites on blood slides is sensitive to their intra-host density, as demonstrated 

by sampling longitudinal data on the same individuals with co-infections at 

random times during fever episodes [22]. By contrast our results are consistent 

with observations from the malariotherapy patients [83,84], where following a co-

infection, P. falciparum reached higher densities first, in some cases suppressing 

the growth of P. vivax, and with evidence on the absence of heterologous 

immunity at the population level [24,85]. The lack of heterologous immunity may 

be explained by differences in resource exploitation by the two parasites inside 

the hosts, since P. falciparum is able to parasitize all erythrocytes while P. vivax 

only parasitizes young ones, leading to an enhanced parasitemia for the latter 
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[86]. This difference can also explain the dynamic sufficiency of P. falciparum 

dynamics, since it can reach peak densities in the presence of P. vivax, whereas 

the latter reaches its maximum only after the former parasite is cleared [84].   

For the interaction between the parasites to be positive at the population 

level, a mechanism of self-regulation that is density dependent is likely to be at 

play as proposed by Bruce and Day [82]. This is supported both by observations 

and theoretical results. The results by Bruce et al [20] suggest that parasites are 

likely to be regulated only when they reach large densities, since fluctuating 

densities of parasites through time were reported together with the development 

of tolerance to malaria parasites in the malariotherapy patients [24]. Our results 

with loop analysis show that when the two parasites co-occur the positive effect 

of one species on the other is plausible because of the self-regulation of the 

former as expected under a bottom-up regulation mechanism (Figure 4.1). 

Another explanation for the observed dynamics is the switch of immune 

strategy of individuals with age, since there is evidence for changes from non-

specific to specific immune responses in hyper-endemic settings elsewhere 

[60,87]. The demographic profile of Vanuatu, Espirito Santo included, shows that 

at least 30% of the total population is under 15, and most of the cases are 

concentrated in this age-group [50,73]. Although adults may be an important 

source of infections [88] children are the main source of gametocytes (infecting 

stage to mosquitoes) in hyperendemic settings, where prevalence is above 20%, 

like Espirito Santo [89]. This would explain why long-lasting immune responses 



 75

that can lead to heterologous immunity do not play a major role in regulating the 

dynamics of transmission.  

Finally, our study emphasizes the need to understand the factors 

regulating the dynamics of infection before formulating strategies of control at the 

population level. The failure of strategies that target infection management 

through immunity may ultimately be determined by their irrelevance to the 

regulation of disease dynamics at the population level. 
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Table 4.1 Model Search. Species 1 indicates the species studied, Species 2 
indicates whether a second species was considered, Inapparent Infections 
whether the ratios for inapparent infections were considered, Bednets indicates 
how the bednet effect was considered and AIC, the Akaike Information Criterion 
value for the models(highlighted values indicate the minimum for each species). 
Models are not directly comparable because they have different overdispersion 
parameters. NC indicates models whose parameters did not converge in the 
iterative process for fitting the NB-GLMs. When considering the second species, 
its I’ was the best estimate for the species alone. 
 

Species 1 Species 2 Inapparent
Infections Bednets AIC 

P
la

sm
od

iu
m

 fa
lc

ip
ar

um
 

P
. v

iv
ax

 No 
Nb (Constant 1 month) 1916.3 
Nb (Cumulative) NC 
Ib (Constant 1 month) 1770.1 
Ib (Cumulative) 1838.9 
No effect 1772.9 

Yes 
Nb (Constant 1 month) 1769.9 
Nb (Cumulative) 1763.4 
Ib (Constant 1 month) 1768.7 
Ib (Cumulative) 1813.0 
No effect 1771.7 

N
on

e 

No 
Nb (Constant 1 month) 1908.1 
Nb (Cumulative) NC 
Ib (Constant 1 month) 1772.0 
Ib (Cumulative) 1814.6 
No effect 1766.4 

Yes 
 

Nb (Constant 1 month) 1764.9 
Nb (Cumulative) 1765.4 
Ib (Constant 1 month) 1770.7 
Ib (Cumulative) 1813.0 
No effect 1765.2 

P
la

sm
od

iu
m

 v
iv

ax
 

P
. f

al
ci

pa
ru

m
 

No 
 

Nb (Constant 1 month) 1633.2 
Nb (Cumulative) 1707.0 
Ib (Constant 1 month) 1567.9 
Ib (Cumulative) 1627.4 
No effect 1562.1 

Yes 
 

Nb (Constant 1 month) 1561.1 
Nb (Cumulative) 1565.4 
Ib (Constant 1 month) 1568.2 
Ib (Cumulative) 1627.2 
No effect 1573.9 

N
on

e 

No 
Nb (Constant 1 month) 1623.4 
Nb (Cumulative) 1717.0 
Ib (Constant 1 month) 1563.4 
Ib (Cumulative) 1620.5 
No effect 1574.3 

Yes 
 

Nb (Constant 1 month) 1565.7 
Nb (Cumulative) 1562.2 
Ib (Constant 1 month) 1564.2 
Ib (Cumulative) 1620.3 
No effect 1562.2 
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Table 4.2 Parameter estimates for the best models (see methods section for 
definitions). Parameter values are assuming short-times for parasite clearance 
(South Carolina patients). AIC values inside parenthesis are for the same model 
assuming long-times for parasite clearance (Georgia patients for malariotherapy).  
 
Species θ̂  ϕ̂  'β̂  2β̂  α̂  k̂  AIC 

P. 
falciparum 

0.757 ± 
0.059 

0.114 ± 
0.054 

0.785 ± 
0.381 

1.33 ± 
3.00 -0.108 ± 0.028 6.42 ± 

0.75 
1769.6 

(1772.9) 
P. 

falciparum 
0.737 ± 
0.050 

0.121 ± 
0.050 

0.842 ± 
0.343 - -0.106 ± 0.028 6.53 ± 

0.76 
1764.9 
(1766) 

P. vivax 0.648 ± 
0.058 

0.155 ± 
0.048 

0.820 ± 
0.240 

3.66 ± 
1.55 

-0.0796 ± 
0.0270 

7.58 ± 
0.96 

1561.1 
(1566.6) 
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Figure 4.1. Feedback loops for top-down and bottom-up regulation of multi-species 
malaria infections. Negative effects are indicated by open circles, positive by arrows, unknown 
effects are indicated by dotted lines. H is hosts, I is immune system, Pf stands for Plasmodium 
falciparum, and Pv for P. vivax. Under top-down regulation (A) the interaction of hosts and their 
immune systems is negative both ways, the interaction of hosts with the parasites control their 
immunity and the immunity regulate the hosts available for the parasites at the population level. 
Therefore each parasitic infection has a negative effect on the other (B).  Under a bottom-up 
regulation (C), the hosts feed their immune system when parasitized, with a cost indicated by the 
negative effect of I on H, resulting in a positive interaction among parasites (D) and self regulation 
for each species.  (C) and (D) were obtained through a loop analysis (Puccia and Levins, 1985). 
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Figure 4.2. Time series: Plasmodium falciparum malaria: monthly incidence (A) and its 
seasonality (B). P. vivax malaria monthly incidence (C) and its seasonality (D). Population size 
(E) and temperature from Pekoa Airport (F).  
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Figure 4.3. Bednets and Parasite Clearance. Monthly number of bednets distributed (A), 
percent of people locally covered with each bednet distribution (B), long-time parasite clearance 
for Georgia patients (C), Short-time parasite clearance for South Carolina patients (D). 
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Figure 4. Fitted vs Observed values for the best models. Plasmodium falciparum malaria, 
Pearson’s r=0.77, CI=[0.70,0.83] (A); P.vivax malaria, Pearson’s r=0.74, CI=[0.67,0,81] (B) 
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CHAPTER V 
 

RESILIENCE TO THE EFFECTS OF ENVIRONMENTAL VARIABILITY: 
BEDNETS AND MALARIA IN VANUATU 

 
 

Introduction 
 
Qualitative changes in the dynamics of populations, or regime shifts, are 

common phenomena across all living organisms [1,2]. Originally defined in 

fisheries science [3], the concept that at some time (termed a "breakpoint") there 

are disturbances that push a biological system beyond its normal dynamical 

pattern and can qualitatively change its behavior.  Recently, this has become a 

major concern for vector-borne diseases in the context of global climatic change 

[4,5,6].  Such "breakpoints" derive from ecological analysis that has come to be 

known as Schmalhausen’s law [2] which states that systems at the border of their 

limits of tolerance to one factor become more sensitive to small changes along 

any other dimension of its existence [2].  Schmalhausen’s law implies that if a 

system is pushed away from a state of exacerbation, its mean value and 

variability should decrease. This principle is strongly connected with the idea of 

resilience [7], the robustness of an ecological system before changing to a 

qualitatively different state, which in principle should be more susceptible to the 

effects of climatic variability as populations become less vulnerable to infection 

[8]. Malaria in the archipelago of Vanuatu historically has been a major public 
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health problem as shown by the early entomological surveys of Buxton and 

Hopkins [9], followed by the extensive work of Bastien [10], where an increase in 

the burden of the disease in the early 1980s was reported [11], as well as its 

possible association to the evolution of quinine resistant parasites [12,13], 

numerous studies have shown this disease to be a major burden for Vanuatu 

inhabitants. Although occasionally hyperendemic in some areas of sub-Saharan 

Africa, malaria patterns are very different from this region in several aspects.  

There, the frequency of fatal cases is greatly diminished [14,15], the number of 

inapparent infections changes seasonally, disease depends on Plasmodium 

species [16], the diversity of parasites is also reduced [17], and the genetic 

make-up of the native populations presents signatures of evolutionary changes 

driven by malaria. The latter is expressed in an increased frequency of α-

thalassemia associated with mild cases of malaria [18], and an increased 

frequency of G6PDH enzyme deficiency [19] which is different from sickle cell 

anemia, the most common one seen in Africa [18,19].  

 

Malaria control efforts also are important to analysis of this time pattern.  In 1988, 

a major control intervention was launched, with a massive distribution of 

Insecticide Treated Nets (ITNs), following the abandonment of indoor residual 

spraying for controlling malaria [20]. Although focused studies have 

demonstrated the use of ITNs to be very effective on small islands of this 

archipelago, as demonstrated by the elimination of the disease in Aneytium [21], 

another study analyzing the effects of this policy at the level of the whole country 
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has not been undertaken. In the present study, we evaluated the dynamics of 

malaria before and after the introduction of ITNs into the archipelago in an 

attempt to determine whether there were breakpoints where dynamics shifted 

transmission patterns, and quantified the effects of climate on these patterns 

before and after this intervention took effect. 

Methods 

Malaria data and Monitored Population at risk 

Monthly records of malaria were obtained from health centers of people who 

presented with fever or a recent history of fever, and whose standard blood slide 

analysis indicated infection with either Plasmodium vivax or P. falciparum, from 

January 1983 to December 1999. Malaria cases detected by this passive 

surveillance were the basis of our analysis. During this period total population 

increased (Figure 5.1).  Data on distributed ITNs with permethrin and re-

impregnations were available for the same period(Figure 5.3 A).  All data were 

obtained from the Malaria and other Vector Borne Diseases Control Unit, 

Ministry of Health, Port Vila, Vanuatu.  

This passive case detection system changed in January 1991, as slide 

examination in small rural health posts was discouraged by the central 

government of Vanuatu [19]. This policy change reduced the number of people 

being monitored, however, it remained representative of the whole population 

[19]. To account for the possible effects of this policy change, we measured 

changes in the rate of slide examination before and after the breakpoint obtained 
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for the rate of slide examination, and assumed it to be linearly correlated to 

changes in the population monitored (see Figure 5.1F). That is, we multiplied the 

population at risk (corresponding to the population in districts were malaria was 

present) by the fraction obtained by dividing the average rate of examination 

before and after the breakpoint to evaluate this possible source of error. We 

found a 50% reduction in average rate of slide examination during 1990-1991 

(Figure 5.1 F), like in [19].  

 

Environmental Data 

Weather data included Sea Surface Temperature (SST) indexes: 1+2, 3, 

3.4 and 4 (also known as the Niño 1+2, 3, 3.4 and 4; 

http://www.cpc.ncep.noaa.gov/data/indices, Figure 5.1S), and precipitation and 

temperature data from the climate database for political areas [22, 

http://www.tyndall.ac.uk].  These data were used as predictors in models to 

assess changes in the magnitude of forcing by climatic variables in the 

dynamics of malaria incidence. 

Statistical Analysis 

Breakpoints & Regime Shifts. Tests of structural changes in time series can be 

undertaken using at least three different strategies: F tests that compare the null 

hypothesis of no regime shift to the presence of a regime shift, generalized 

fluctuation tests that do not assume any particular pattern of deviation from the 

absence of regime shifts [23,24] and adaptive filtering of signals [25]. We used 

http://www.cpc.ncep.noaa.gov/data/indices�
http://www.tyndall.ac.uk/�
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these three approaches in the present study to assess the robustness of the 

findings. The F statistic is obtained by comparing the residuals )(ˆ iε  of a 

segmented regression at time i with the residuals ε̂  from an unsegmented 

regression using the following expression: 

)2/()(ˆ)(ˆ
)(ˆ)(ˆˆˆ
knii
iiF T

TT

i −
−

=
εε

εεεε          (1) 

Where n is the time series length and k the number of parameters. The null 

hypothesis is rejected when the supremum of the statistic is larger than the value 

of a distribution SupF derived by Hansen [26,27]. This approach has been 

generalized for l breaks, with arbitrary but fixed l [28,29]; where the number of 

breaks can be selected using conventional tools for model selection like the 

Akaike Information Criterion (AIC) [30]. 

The other two approaches, the generalized fluctuation test and the 

adaptive filtering, include formal significance tests, yet reveal regime shifts 

graphically instead of assuming specific types of departure in advance. For the 

generalized fluctuation test a parametric model is fitted to the data and an 

empirical process (EFP) is derived that captures the fluctuation either in residuals 

or parameter estimates [23, 24]. Under the null hypothesis the fluctuations are 

governed by central limit theorems while under the alternative (regime shifts) the 

fluctuation is increased [24]. In the present analysis we used the ordinary least 

squares (OLS) based CUSUM tests introduced in [31]. This test is based in 

cumulative sums of residuals from a linear regression: 
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where a regime shift is evidenced by a single peak around the breakpoint, 

provided that the limiting process for )(0 tWn  is the standard Brownian bridge 

)1()()(0 tWtWtW −= , where W(.) denotes Brownian motion. Significance for the 

CUSUM was tested using the derivations presented in [23, 24]. For equation (1) 

and (2) the residuals ε̂  came from a linear seasonal autoregressive [30] model 

fitted by OLS: 

tttt yyy εφφμ +++= −− 121211         (3) 

The third approach is totally non-parametric, and is based on recovering a 

signal and its breaks. The Kolmogorov-Zurbenko adaptive filter (KZAF) [25] is 

based on filtering the time series y using: 
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And q is half-length of a k iterative moving average (xt) applied to the original 

time series yt. The term f(D(t)) is defined by: 

)](max[
)(1))((
tD

tDtDf −=          (6) 

And D(t) is the absolute difference defined by: 

||)( qtqt xxtD −+ −=          (7) 

And D’(t) as: 

)()1()(' tDtDtD −+=          (8) 
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Once zt is obtained quantitative estimates of discontinuity can be based on an 

analysis of the sample variances of zt, defined by: 
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ˆ 2σ           (9) 

When there are no breaks, maxima in the estimated variance of (10) are 

approximately independent and exponentially distributed with a expected number 

of peaks of about n/(2qk0.5), allowing to consider a breakpoint when the 2ˆ tσ  value 

exceeds the 95% upper tail of the exponential distribution with such parameter.  

Regime shift analyses were carried out on: (i) the monthly rate of slide 

examination (No. Slides examined*1000/Total population at risk); (ii) the monthly 

rate of the two malaria parasites (No. slides examined*1000/Monitored 

population at risk) and (iii) weather variables (rainfall and temperature).    

Threshold for ITN coverage: Time series for total number of bednets distributed 

per month were accumulated and divided by the total population at risk estimated 

from the annual population data. We assumed that the annual data corresponded 

to December, and interpolated the rest of the months using a smoothing splines 

regression as explained in [32]. We also studied the probability density [30] of the 

percentage of people locally covered with the distributed ITNs. 

Seasonality: the seasonality of vivax and falciparum malaria rates 

(cases/population size) were assessed by using box diagrams before and after 

the regime shift [30]. 
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Non-stationary patterns of association: The wavelet transform can be used to 

study the patterns of association between two nonstationary time series [33,34]. 

Specifically, the wavelet coherency analysis can determine whether the presence 

of a particular frequency at a given time in the disease corresponds to the 

presence of that same frequency at the same time in a covariate (e.g., Rainfall 

and Temperature ). The cross-wavelet phase analysis can determine the time lag 

separating these two series as well. 

 

Changes in the effects of climate on the dynamics: Once breakpoints for the 

regime shift were identified in the falciparum and vivax malaria rate series, the 

splitted series around the breakpoints were studied using seasonal 

autoregressive (SAR) models [30]. The procedure for model building was similar 

to the one described in [34]: (i) a null model was fitted to the rate of the 

falciparum and vivax malaria (ii) temperature and rainfall were filtered with the 

coefficients of the null model, and (iii) cross-correlation functions were computed 

using the residuals of the null model and those of the filtered climatic variables.  

The full model for P. falciparum considered precipitation (P) with lags of 2 

and 29 months, and temperature (T) with lags of 3 and 12 months, as follows: 

tttttttt TTPPyyy εααββμφμφμ +++++−+−+= −−−−−− 1223129221121211 )()(   (10) 

For P. vivax the full model considered precipitation (P) a lag 9 months, and 

temperature (T) with a lag 10 months, as follows: 

tttttt TPyyy εαβμφμφμ +++−+−+= −−−− 10191121211 )()(     (11) 
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In both cases the error was assumed as independent and normally distributed: 

),0(~ 2
εσε Nt . After the initial fitting models were simplified using a process of 

backward elimination[34]: (i) taking out one predictor at a time, (ii) finding the 

minimum AIC for models with similar complexity, i.e., number of parameters, (iii) 

comparing the likelihood of the best model (minimum AIC) for each level of 

complexity with the full model, and simplifying while differences were not 

statistically significant. For the analyses the climatic covariates were demeaned 

in order to not affect the intercept value [30]. 

 

Results 

Temporal patterns of Malaria in Vanuatu present a clear shift in the 

incidence rate by the end of 1993 and beginning of 1994, for both parasite 

species (Figure 5.2 A,D). 

Breakpoints were confirmed by all three different methods (Figure 5.2S). 

For the incidence rate in both malaria species, breakpoints were statistically 

significant according to the F statistic and the variance of the KZAF.  Even 

though the EFP estimates were not significant, peaks were detectable in both 

cases in January 1992 (Figure 5.3S). During that same time period no significant 

changes were found for climatic time series (Figure 5.4S). By the time changes 

were detected, Bednet Coverage (Figure 5.3 B) was as low as 6% (EFP 

estimate) or slightly above 20% of the population at risk (KZFA). At a more local 

scale, villages where bednets were distributed mostly had ~80% of the 

population covered (Figure 5.3 C).  
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Plasmodium falciparum seasonality was qualitatively very similar before and after 

the breakpoint (Figure 5.2 B,C), showing maximum incidence during the first 

quarter of the year (January-March), and minimum incidence during the third 

quarter of the year (July-September). For P. vivax (Figure 5.2 E,F) a similar 

change was observed, although the patterns were not so clear as for P. 

falciparum, due to greater seasonal variability. With the exception of a brief 

period during 1992-1996 where cases due to both parasites were synchronous 

(i.e., with peaks at the same time), the dynamics of the infections were mainly 

asynchronous and not coherent (i.e., not associated in the frequency domain) at 

the seasonal scale.  

However, both diseases were significantly cross-coherent at an interannual 

scale, with the dynamics of P. falciparum cases being mostly synchronous with 

that of P. vivax (Figure 5.5S).    

 

Regarding the effects of climate during the studied period, the cross-coherence 

wavelet analysis showed malaria to be correlated with temperature at the 

seasonal scale; both P. falciparum and P. vivax incidence rates were led by 

temperature (Figure 5.4). A similar pattern was seen between the two parasites 

and rainfall at the seasonal scale, despite the presence of some gaps. A 

significant coherence with rainfall at interannual scales was also found. For P. 

vivax, coherence was statistically significant for periods between 2 and 4 years, 
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during 1992-1996. No evidence that El Niño indices were leading the dynamics 

of the disease was identified. 

 

Finally, Table 5.1 presents the parameter estimates for rate models of P. 

falciparum and P. vivax, including exogenous forcing by temperature, before and 

after the breakpoint. Model selection by backward elimination showed that rainfall 

was not a significant covariate (detailed values in Appendix S3).  Following the 

qualitative change in the dynamics, P. falciparum had a proportional (~66%) and 

absolute (7.7 cases/1000 population) decline in incidence that was greater than 

that for P. vivax  (~52% and 2.6 cases/1000 population, respectively). The 

importance of temperature in driving the dynamics also declined after the 

breakpoint for both species, between 31% and 49% for P. falciparum and 80% 

for P. vivax (the coefficient after the breakpoint became statistically  

non-significant). This suggests that the average effect of 1oC increase in 

temperature will increase incidence in a reduced amount when compared with its 

effect before the breakpoint. For example, preceding the shift each degree 

Celsius above the 3-month lagged mean temperature value used to increase the 

rate by 1.43 cases/1000 people at risk. In contrast, after the breakpoint this 

change only increased the rate by half of its previous magnitude, i.e., 0.72/1000 

people at risk (Table 5.1). A similar phenomenon was also seen for the variability 

that was not explained by the models, which also was reduced by 33% and 54% 

in P. vivax and P. falciparum, respectively, as shown by the decrease in the error 

variance of the models after the breakpoint (Table 5.1).  
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Discussion 

Following a disturbance, biological systems can either return to their 

normal state of variability or can move far away from such a state [1, 2, 35, 36]. 

Transients, i.e., the anomalous behavior between regimes or basins [37, 38], can 

obscure the qualitative changes of a system, because jumps from one state to 

another are not always instantaneous, complicating our ability to identify regime 

shifts [37,39]. This is likely one of the main differences between the dynamics of 

P. falciparum and P. vivax, since a consistent estimate for the breakpoint was 

easy to find for the former, while the estimates for the latter differed significantly. 

This was especially true for KZAF, which identified a later breakpoint. 

Assumptions underlying the employed techniques [23-31] might favor the 

estimate from KZAF, since the F statistic is quite sensitive to the stationarity (i.e., 

constant mean) of the time series, while the CUSUM EFP may be too sensitive 

given the quality of the data examined, identifying the change of policy in slide 

examination. By contrast, the KZAF is an adaptive technique that allows control 

of the time scale at which changes may be occurring [25].  This a very useful 

characteristic for addressing one of the major recurrent problems in the study of 

ecological systems, i.e. finding the appropriate temporal scale of a natural 

phenomenon [40]. In this study, the adaptive ability of KZAF allowed for breaks to 

be distinguished from natural cycles associated with exogenous factors (i.e., 

climate). The fact that the basin (or regime) shift in the time series can be 

attributed to the effects of bednet use appears robust. During the study period no 

other major changes in control strategies, landscape cover, medication or drug 
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resistance were reported [10, 11, 19] after controlling for the policy change in 

data collection [19].  

Our analysis identified a major difference between P. falciparum and P. 

vivax, namely the earlier breakpoint for P. falciparum. This pattern would not be 

expected under conditions of cross or heterologous immunity [41], and its 

evaluation with cross-infection studies is limited because quality data that are 

necessary to make such inferences [42] are lacking [19,21]. However, this 

pattern should be studied further, because it might reflect the dynamics of 

immunity in the population, where a generalized density-dependent immunity 

may be triggered by the within-host density of each parasite species [43].  

Alternatively, if P. falciparum was the first species to be cleared, as shown in the 

classical co-infection neuro-syphilis malariotherapy experiments of Boyd and 

Kitchen [44], temporal patterns can only be appreciated when studying the 

dynamics of the within-host parasitic infection [45]. In addition, the pattern simply 

could arise by the ability of P. vivax to relapse [19, 21], possibly in conjunction 

with the immunity dynamics described above. 

Although regime shifts tend to be thought of in terms of increased 

variability as the best diagnostic condition [46], they can occur in the opposite 

direction, with systems becoming more stable. For both P. falciparum and P. 

vivax not only did the mean value of incidence decrease, but also the variance of 

the models decreased, which is a more robust measure of stability [36] than just 

looking at mean values [1] in dynamical systems. The patterns seen for the two 

species differed:  falciparum malaria declined more abruptly, in total and relative 
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terms, than in vivax malaria. Perhaps there are differences in the life history 

strategies of the parasites under different scenarios for transmission, with the 

most virulent parasite (P. falciparum) being more successful in environments with 

high transmission rates and the least virulent (P. vivax) being less sensitive to the 

intensity of transmission.   

A surprising result was that the breakpoint occurred after just 20% of the 

population was covered with bednets, which is half that predicted for Anopheles 

gambiae transmission by Killeen et al [47].  Perhaps An. farauti, the main vector 

in Vanuatu [9,48] is less efficient.  Regardless, the fact that such ITN coverage 

could explain the decrease has a robust theoretical explanation as presented in 

the groundbreaking work of Becker and Dietz [49], later confirmed using field 

data as the 80/20 rule for several infectious diseases [50,51] where the control, 

which targets 20% of the population, could benefit the other 80% of people.  

Interestingly, this rule has been derived by looking at local populations, but 

the pattern seen in Vanuatu is more likely to arise from the subdivided nature of 

the population in villages, or patches if seen from the perspective of 

metapopulations [52]. The coverage per patch was high enough (80% with a very 

low dispersion around this value) to guarantee the local interruption of 

transmission according to mechanistic models of bednet action in settings with a 

higher entomological inoculation rate [47,53] than that observed in Vanuatu [16, 

48].  

As a control strategy, ITNs outperform similar strategies aimed at reducing 

vectorial capacity, such as the indoor residual spraying, mainly because of its 
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cost-effectiveness, as well as for its ease of implementation and distribution [54, 

55]. Several studies have shown that bednets reduce total infant mortality in 

endemic areas [56, 57], are a sustainable option for control in terms of the 

reduction of relative risk of malaria death in the medium- to long-term time scales 

[58], and are successful across several cultural settings [55,59-62].  The 

advantages of bednets also go beyond the immediate effects, since so far there 

is no evidence for selection of insecticide-resistant mosquitoes [63], and they are 

protective even in areas where mosquito resistance to the insecticides used for 

bednet impregnation has been reported [64]. This result also has been 

theoretically reinforced by models that consider the use of bednets in conjunction 

with other control strategies, such as zooprophylaxis [65], provided that both 

measures in conjunction are likely to counteract any selective pressure for the 

development of insecticide resistance, since mosquito fitness would not be under 

a selective pressure, and may even be under selection for feeding preferences in 

non-human hosts [66,67]. However, urban settings pose a major challenge since 

effective zooprophylaxis might be diminished because of higher human densities. 

Behavioral changes in mosquitoes and decreased bednet effectiveness have 

been documented in urban areas [68]. From a wider perspective, bednets are 

also a more ecologically-sound strategy since they reduce impacts on natural 

enemies of vectors via positive feedbacks loops that can be generated by large 

scale insecticide spraying [66,69,70]. A large body of literature supports that idea 

that in relatively undisturbed environments mosquito abundance is regulated by 

interactions with other animals, e.g., tadpoles, fish and other insects [e.g., 69-74], 
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however such natural control is diminished anthropogenic disturbances of food 

webs.  

The success of the Vanuatu malaria control program also stems from the 

strategy of bednet distribution, where large fractions of the population were 

locally covered at the village level, ensuring the reduction in transmission, even 

leading to local elimination in some islands [21]. As stressed by Killeen et al [47] 

and Ilboudo-Sanogo et al [63], an efficient bednet program needs to cover a 

large proportion of the population in order to ensure that both sources [e.g., 

asymptomatic people] and sinks [e.g., pregnant women and young children] of 

infection are effectively covered. The erroneous targeting of transmission groups 

for control can exacerbate the conditions for transmission [75]. Additionally, as 

suggested by Mathanga et al [76], for ethical and humanitarian reasons the goal 

should be to cover as much of the population present in the endemic setting as 

possible, retaining  traditional practices (e.g., voluntary work) for the exchange of 

goods when mainstream means of commercialization are not enough to achieve 

such a goal. In Vanuatu, special care was taken to address these factors by 

implementing a strategy where children under 5 years old, their mothers and 

pregnant women received free nets.  Cost was half price for school children and 

other adults were charged the full price, ensuring an equitable coverage of the 

population [21] and an equitable distribution of this valued resource. 

A factor that deserves further study is the role that concomitant knowledge 

transfer associated to the distribution of bednets have on the awareness of the 

population about the risk leading to malaria transmission. Unlike insecticide 
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residual spraying whose effectiveness depends mostly on being applied 

correctly, the effective use of bednets requires knowledge for its proper use. In 

Vanuatu, parents’ awareness was likely to play a role in diminishing incidence 

among young children (<5 years), because of the free distribution to this age 

group and training to parents about the benefits of using the nets [21]. But, the 

positive effects of knowledge transfer are likely to be more comprehensive. For 

example, Mathanga et al [76] showed that even though children didn’t regularly 

use bednets, those in communities where malaria transmission plummeted after 

the introduction of widespread bednet use were aware of the benefits. Similar 

knowledge transfers are known to be present among some Native American 

tribes whose mythology has associated malaria risk with the blossoming of 

water-retaining flowers where vector larvae develop [77]. Changes in collective 

behavior in villages that were stricken by malaria have been seen before 

community-based educational campaigns were implemented [78-80] and more 

generally, traditional knowledge has been shown to be a robust strategy to 

handle issues of pest management by native populations in Meso-America [81].  

The association between climatic forces and malaria dynamics in Vanuatu 

presents features that make it unusual when compared to other settings where 

the climate and ecological dynamics have been studied [e.g., 34, reviewed in 82]. 

None of the ENSO indices led the dynamics of malaria, yet clear signals of 

association at interannual time scales were found with local climatic variables.  

This may be a result of the relationship of ENSO with the local climate in the area 

[83], and less likely because of a demographic effect of small insular population 
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size as suggested in [84].  Mechanisms for the action of rainfall across a wide 

range of landscapes have been very well described, it increases the rate of a 

disease when new mosquito habitats are created by increased precipitation [85], 

and the additional weakening of inter-specific interactions regulating mosquito 

populations [86]. We may similarly understand why hotter temperatures can 

increase the transmission of vector-borne diseases, because of known effects of 

temperature on the rate of insect and parasite development [83,87]. However, 

increased resilience to the effects of climate in an infectious disease as a result 

of control measures, in our knowledge, has not been reported before. The fact 

that such a measure also decreases the incidence of malaria under changing 

climatic conditions is a remarkable fact strengthening the usefulness of this 

strategy.   

Finally, a precautionary note on bednets should be posed. Even though 

they are a very robust strategy to control malaria from evolutionary, ecological, 

conservation and cost-effectiveness perspectives [54,55,63,76], the use of 

bednets should not be viewed as a exhaustive solution if the long-term goal of 

population health is to be pursued. As shown in [88] a fraction of the death toll 

that was avoided by controlling malaria through the use of insecticide treated 

curtains in areas of Burkina Faso was shifted to meningococcal meningitis. 

Evidence also suggests that in urban settings, for a series of factors that go from 

the absence of alternative hosts to behavioral shifts in humans, insecticide 

treated nets are not going to be a sufficient strategy to keep malaria under 

control [68]. To achieve this goal, a wide research agenda, fully integrated with 
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policies beyond disease control is a path that needs to be taken [32,89-92], 

where ultimate goals are aimed at pushing out the stressful contextual conditions 

that make human populations vulnerable to infectious diseases [2], especially 

malaria. 
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Table 5.1 Parameter values and % reduction for Plasmodium falciparum and 
Plasmodium vivax rate before and after the breakpoint obtained by using the 
variance of the Kolmogorov Zurbenko adaptive filter. 
 

Species Parameter Before After % Reduction P 
P.

fa
lc

ip
ar

um
 

μ̂  11.56 ± 1.02 3.90 ± 1.15 66.26 B/A 

1α̂  1.43 ± 0.42 0.72 ± 0.35 48.59 B/A 

2α̂  1.36 ± 0.44 0.94 ± 0.33 30.88 B/A 

2ˆ εσ  5.76 3.84 33.31 - 

P.
vi

va
x 

μ̂  4.83 ± 0.62 2.33 ± 0.43 51.76 B/A 

1α̂  0.55 ± 0.18 0.11 ± 0.16 80.00 B 

2ˆ εσ  1.17 0.53 54.31 - 

. % Reduction is defined as 1- (parameter value before breakpoint/ parameter 
value after breakpoint). For P. falciparum the final model was: 

tttttt TTyyy εααμφμφμ +++−+−+= −−−− 12231121211 )()(  and for P.vivax: 

ttttt Tyyy εαμφμφμ ++−+−+= −−− 101121211 )()(  Model selection process and all 
parameter values can be seen in Table S1. Column P (<0.05) indicates the 
significance of any parameter B (before breakpoint) / A(after breakpoint) 
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Figure 5.1. Time Series: A Plasmodium falciparum malaria cases, B P. vivax malaria cases, 
C Temperature (°C), D Precipitation (mm), E Population at risk (solid), F Monthly slide 
examination rate (slides*1000/population at risk), the dashed line corresponds to the 
breakpoint, August 1990, estimated using the F statistic, and the solid lines at the bottom of 
the graph to the confidence intervals (February 1990, May 1992) the thick-black solid line is 
the Kolmogorov-Zurbenko adaptive filter implemented with a half window size, q, of 36 
months, the breakpoint is December 1991, the blue line corresponds to the breakpoint 
obtained using the CUSUM  (march 1990). The mean rate  ( ± S.D.) of slide examination 
before the breakpoint (August 1990) was ( 51.22 ± 11.40) being reduced to  ( 25.92 ± 11.56) 
after it. Statistical tests of significance can be seen in Figure 5.2S  
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Figure 5.2. Regime Shift for falciparum and vivax malaria: A falciparum malaria rate, the 
dashed line corresponds to the breakpoint, January 1992, estimated using the F statistic, and 
the solid lines at the bottom of the graph to the confidence intervals (June 1989, June 1994), 
the thick-black solid line is the Kolmogorov-Zurbenko adaptive filter implemented with a half 
window size, q, of 36 months, the breakpoint corresponds to August 1993, the blue line 
corresponds to the breakpoint obtained using the CUSUM (January 1992). B & C seasonal 
falciparum malaria rate before and after breakpoint (January 1992) D vivax malaria rate, the 
dashed line corresponds to the breakpoint, May 1991, estimated using the F statistic, and the 
solid lines at the bottom of the graph to the confidence intervals (June 1989, November 
1992), the black solid line is the Kolmogorov-Zurbenko adaptive filter implemented with a half 
window size, q, of 36 months, the breakpoint corresponds to February 1994, the blue line 
corresponds to the breakpoint obtained using the CUSUM (January 1992) E & F seasonal 
vivax malaria rate before and after breakpoint. For the F statistics the 30% percent of the 
data belonging to the extremes (15% each) was left out. For the Kolmogorov-Zurbenko 
adaptive filter q was set to 36, in order to avoid the misidentification of cycles shorter than 6 
years. 
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Figure 5.3 Bednets A Monthly number of distributed bednets(black line) and number Re-
impregnated bednets (green line) B Probability density of the percentage of people locally 
covered with bednets between 1988 and 1997, bandwidth of 0.027 C Percent (%) of 
population covered by bednets for the lower and upper time limit for the breakpoints, the 
green-blue line corresponds to January 1992 (Plasmodium falciparum and P. vivax), the 
green line to September 1992 (P. falciparum) and the blue line to December 1992 (P. vivax) 
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Figure 5.4 Cross-Wavelet Coherency and Phase of Plasmodium falciparum malaria rate with 
A temperature and B rainfall and of P. vivax malaria rate with C temperature and D rainfall. 
The coherency scale is from zero (blue) to one (red). Red regions in the upper part of the 
plots indicate frequencies and times for which the two series share variability. The cone of 
influence (within which results are not influenced by the edges of the data) and the significant 
(p < 0.05) coherent time-frequency regions are indicated by solid lines. The colors in the 
phase plots correspond to different lags between the variability in the two series for a given 
time and frequency, measured in angles from −PI to PI. A value of PI corresponds to a lag of 
17 mo. The procedures and software are those described in [31,32]. A smoothing window of 
15 mo (2w + 1 = 31) was used to compute the cross-wavelet coherence. 

 



 114

Figure 5.S1. Time Series for The El Niño Southern Oscillation: A SST 1+2, B SST 3, C SST 
3.4, D SST 4  
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Figure 5.S2 Breakpoints for the rate of slide examination A F statistic for the falciparum 
malaria rate, the solid line is the 95% upper tail of the distribution for the F Statistic [24,25]  B 
Empirical fluctuation period of the CUSUM test, the maximum value is in may 1992, the 
redline is the threshold value for breakpoint significance [23, 24] C Variance of the 
Kolmogorov-Zurbenko adaptive filter, the dashed line is the 95% upper tail of the exponential 
distribution for this statistic, the maximum value corresponds to may 1992. 
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Figure 5.S3 Breakpoints for the Plasmodium falciparum and P. vivax rates A F statistic for 
the falciparum malaria rate, the solid line is the 95% upper tail of the distribution for the F 
Statistic [24,25]  B Empirical fluctuation period of the CUSUM test, the maximum value is in 
may 1992 C Variance of the Kolmogorov-Zurbenko adaptive filter, the dashed line is the 95% 
upper tail of the exponential distribution for this statistic, the maximum value corresponds to 
may 1992 D F statistic for the vivax malaria rate, the solid line is the 95% upper tail of the 
distribution for the F Statistic [24,25]  E Empirical fluctuation period of the CUSUM test for, 
the maximum value is in January 1992 F Variance of the Kolmogorov-Zurbenko adaptive 
filter. In A, B and D, E the redline is the threshold value for breakpoint significance [23, 24]. In 
C and F the blue dashed line is the 95% upper tail of the exponential distribution for this 
statistic, the maximum value corresponds to December 1992.   
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Figure 5.S4. Breakpoints for A,B Temperature and C,D Rainfall in Vanuatu using the F 
statistics(A,C) and the empirical fluctuation period of the CUSUM (B,D). For the F statistics 
the 30% percent of the data belonging to the extremes was left out. 
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Figure 5.S5 Cross-Wavelet Coherency and Phase of Plasmodium vivax malaria rate with P. 
falciparum malaria rate. For technical details see legend of Figure  5.4. 
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CHAPTER VI 
 

THE ECOLOGICAL DYNAMICS OF VECTOR-BORNE DISEASES UNDER 
THE EFFECTS OF A MULTIDIMENSIONAL CHANGING ENVIRONMENT:  
SPATIAL PATTERNS OF CUTANEOUS LEISHMANIASIS; THE ROLE OF 

SOCIAL MARGINALITY AND DEFORESTATION IN COSTA RICA 
 
 

Introduction 

American cutaneous leishmaniasis (ACL), a neglected infectious disease [1-4], is 

one of the main emerging and re-emerging vector-borne diseases in the 

Americas. It is a zoonotic vector-borne disease, caused by several species of 

Leishmania (Kinetoplastida: Trypanosomatidae) parasites and transmitted by 

sand flies (Diptera: Psychodidae). The (re)emergence of ACL has been 

associated with deforestation in the neotropics. For example, infection is highest 

among people living close to forest edges [5,6], and also elevated among 

workers that extract natural resources in forested areas [7,8]. This association 

with forest proximity/deforestation has led to the view that large-scale landscape 

transformation may reduce ACL emergence [6,8,9]. However, studies of ACL and 

forest cover thus far have ignored the multidimensionality of factors that shape 

patterns of infectious diseases [10]. Such multidimensionality is underscored by 

Schmalhausen’s law, which states that biological systems at the boundary of 

their tolerance along any dimension of existence become more vulnerable to 

small changes along other such dimensions [11]. We suggest that this general 

principle is relevant to understanding environmental change and infectious 
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diseases, and more generally ecosystem functioning and diversity conservation, 

given the interactions of these phenomena with social and economic realms. 

Here we examined county-level ACL case data from 1996 through 2000 for 

Costa Rica, a country that proportionally has had the largest rate of landscape 

transformation in the New World [12-14], and report results contrary to the 

perspective that forest cover is the major risk factor for this disease. We began 

by qualitatively assessing the patterns of clustering of the disease incidence and 

risk factors, and the landscape level associations between ecosystems and the 

vectors. These analyses indicated that landscape alone does not explain the 

spatial distribution of ACL. Based on this information we proceeded with more 

quantitative analyses relating risk factors to the disease. Our more 

comprehensive analysis demonstrated that living close to the forest was 

negatively associated with infection incidence once social marginality was 

evaluated as a key variable in explaining disease pattern. The effects of these 

drivers are not monotonic, but rather display "breakpoints" or threshold values at 

which the shape and magnitude of the relationship change [15-17]. Forest cover 

certainly plays an important role in modulating the response of pathogen 

transmission to other environmental changes [18], specifically climate variability 

by the El Niño Southern Oscillation (ENSO). However, we have identified 

possible ecological mechanisms related to infection risk that may explain these 

macroscopic patterns, and suggest alternatives in planning development policies 

if the long term goals of biodiversity conservation, control of infectious diseases, 

and sustainable human well-being are to be pursued in concert.  
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Methods 

Data 

The monthly number of cases of American Cutaneous Leishmaniasis 

(ACL) from January 1996 through December 2000 was obtained from the 

epidemic surveillance service of Costa Rica “Vigilancia de la Salud ” for the 81 

counties that comprise the country. The total number of cases for this period was 

3379. County-level data on the percent of people living <5 km from the forest 

(%close) and percent forest cover, as of 2000, were obtained from [19]. Social 

marginality is in general referred as the lack or limited access to resources that 

ensure a satisfactory quality of life [20]. Social Marginalization index values (MI), 

based on the 2000 Costa Rican national census, were obtained from [20]. This 

marginalization index is a robust measure of social outcast status since it is 

constructed using several variables associated with social exclusion, including 

income, literacy, level of education, average distance to health centers, health 

insurance coverage, etc. Monthly rainfall data were obtained from 14 weather 

stations across the country available at the Earth Observing Laboratory, National 

Center for Atmospheric Research [http://data.eol.ucar.edu/], and the yearly 

average was calculated for each station. Ordinary kriging was employed to 

interpolate average rainfall values across the country using the Geostatistical 

Analyst extension in ArcGIS 9.1, and averages of mean, minimum (MinRflll) and 

maximum yearly rainfall for each county were calculated. An elevation data layer 

in raster format with 30 arc-second (~1 km2) resolution was obtained from the 

United States Geologic Survey (USGS) 
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[http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html], and minimum 

(ME), maximum, average and standard deviation of elevation for each county 

were calculated using Hawth’s Analysis Tools for ArcGIS [21].  

Data on species and locations of sand fly captures were obtained from 

systematic reviews on human biting species from Costa Rica [22,23]. 

Coordinates of sand fly captures were compared against the Central American 

Ecosystems Map [http://mitchnts1.cr.usgs.gov/data/otheragency.html] created by 

Costa Rica's Centro Agronómico Tropical de Investigactión y Enseñanza 

(CATIE) and described by [24]. The ecosystem map, derived from Landsat 

satellite imagery, was created with ArcGIS at a resolution of 1 km2 grid cells and 

then used to define the ecological type in which each of the sand fly species was 

located. 

 

Statistical Methods 

Kuldorff’s Scan Statistic. This method finds spatio-temporal clusters by 

detecting the excess of cases in a given region under the assumption that cases 

are generated by an inhomogeneous Poisson point process with an intensity, μ, 

proportional to the population at risk. The method is implemented by moving a 

circular window systematically through the study area, starting at the centroid of 

each location in the dataset [25]. The window expands to include the nearest 

region centroids, and its maximum size does not exceed 50% of the total 

population at risk size for the study period. The null hypothesis of a Poisson 

process is tested through a maximum likelihood ratio test that compares it to an 
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alternative mod ,mel stating that this assumption is false, with the significance 

tested through multinomial Monte Carlo. The analysis was implemented with the 

Clusterseer software and significance of clusters was tested with 999 Monte 

Carlo randomizations. We assumed that the population at risk was that of the 

whole county, and used data from the 1983 and 2000 Costa Rican censuses 

[http://ccp.ucr.ac.cr/] with linear interpolation from January 1996 through 

December 2000. 

 

Local Indicators of Spatial Autocorrelation (LISA). We used this technique to 

analyze the patterns of clustering in potential risk factors for the disease. LISA, a 

local adaptation of Moran’s I, compares the value of the variable of interest in a 

given county with those in neighboring counties. The degree of similarity between 

neighboring counties was compared to that expected by chance to determine 

where clusters of high or low values occur [26]. To ensure the robustness of 

results, both queen contiguity and four-nearest neighbors were used as weights 

and the output compared for each variable using the GeoData Analysis software 

package.  

 

Negative Binomial Generalized Linear Models (NB-GLM) with breakpoints. 

We introduced breakpoints in predictors by transforming the predictor using a 

breakpoint basis function of the form: 
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where c is the breakpoint where the functions BL(x) and BR(x) join each other, 

and are used to separate the relationship between the response and the 

predictors to the left and the right of the break point respectively. This technique 

is known as hockey stick regression [27]. Four models were fitted using 

maximum likelihood for NB-GLM with logarithmic link and fixed over-dispersion 

parameter [28]. Nonlinear forms observed in the Generalized Additive Models 

(GAM) presented in Protocol S1 were approximated by using the following 

models: 
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Models have the same predictors described for the GAM presented in Protocol 

S1. For the purpose of comparison a simpler null model without breakpoints was 

also fitted: 
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as well as a model assuming smooth non-linear relationships with MI and 

%close: 
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To make comparisons reliable, the variance over-dispersion parameter of the 

negative binomial response was fixed to 1, and not estimated independently for 

each model [26]. Models were fitted by off-setting the logarithm of population size 

on the right hand side of the equations as recommended for rate models [29]. 

Values for the break points “c” were estimated a priori by minimizing the value for 

Akaike Information Criterion (AIC) of a function fitting the model while considering 
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breakpoint values for predictors: MI, %close and MinRfll using an algorithm 

based on the Newton method [30]. The model selected as "best" was further 

subjected to a process of model selection by backward elimination as described 

in [1,27]. Goodness of fit for the final model was assessed using a Chi2 test with 

degrees of freedom (df) defined as n-p-1, where n is the number of observations, 

p the number of parameters estimated in the model, and the additional df 

accounts for the dispersion parameter of the negative binomial. Diagnostics for 

spatial autocorrelation were carried out by regressing residuals on the centroids 

of each county. The error (ε) was assumed to be identically and independently 

normally distributed for the linear predictor of the NB-GLM [28,29]. 

 

Linear Models and Analysis of Covariance (ANCOVA). Parameters have a 

linear relationship with the response variable and were computed using ordinary 

least squares [27]. Models incorporated ENSO, county and their interaction as 

predictors. The definition for covariates and the response are similar to those 

used for the Linear Mixed Effects Models (LMEM), as are the assumptions about 

the error (ε, see Protocol S1). The linear model used for the ANCOVA is given 

by:  

 

)(County*ENSO(t)CountyENSO(t))1Cases(t)log( i3i21i tεβββμ ++++=+    (5) 

 

In the process of model building, autoregressive components were tested but 

they were not significant. However, for the sake of comparison, the fitting of 
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model (5) only included the data from 1997 through 2000. Diagnostics for spatial 

autocorrelation were carried out by regressing residuals on the centroids of each 

county. 

 

Results 

We began by exploring whether the spatial distribution of disease 

incidence was heterogeneous across the country, a pattern that might be 

expected from the considerable heterogeneity of ecosystems in Costa Rica. 

Figure 6.1 shows that disease incidence and social marginalization (described in 

Materials and Methods) achieved their highest values in the same counties, a 

pattern not found for other ecological variables such as minimum rainfall, 

minimum elevation, landscape composition index, proportion of forest cover, or 

proportion of people living within 5 Km of the forest edge. This pattern was 

confirmed by spatial statistical analyses that detected overlapping geographical 

clusters for both disease and social marginalization, a pattern that was again 

absent for other variables and robust to the methodology applied to find clusters 

(Figure 6.1, Figure 6.S1 and Figure 6.S3). To further investigate counties where 

ACL was clustered, we analyzed the percentage of various landscape 

compositions using principal component analysis (PCA) for the most common 

landscape units known to harbor human biting sand fly species (Tables 6.S1, 

6.S2, 6.S3). No clear effect of landscape composition was found, as counties 

where the disease was clustered were within the ranges of variability of all 

counties in the country. We further tested the robustness of this result using 
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multidimensional scaling, a method lacking the linearity constraints of PCA, with 

strikingly similar results (Tables 6.S1, 6.S2, 6.S3 and Figure 6.S2).  

To examine further and more quantitatively the factors determining 

observed spatial patterns of ACL, we fitted GAMs to the five-year ACL incidence 

rate (total cases during 1996 through 2000 divided by the 2000 population) as a 

function of several variables (see statistical methods in Appendix S4 for a 

detailed description and Table 6.S4). A process of model selection by backward 

elimination (see Appendix S4) resulted in the following relevant variables: the 

marginalization index (MI), % of people living close to the forest (% close), 

log(minimum rainfall) and minimum elevation (ME). All variables except minimum 

elevation exhibited non-linear relationships with disease incidence, explaining 

78% of the variance. Because GAMs are difficult to interpret and the fitted 

smoothed functions of GAMs showed clear qualitative changes (see Table 6.S4 

and Figure 6.S3), we fitted somewhat simpler negative binomial generalized 

linear models (NB-GLM) that incorporated breakpoints (see Materials and 

Methods). The best model selected using this methodology accounted for 72% of 

variability (1- residual deviance /null deviance). Furthermore, major qualitative 

differences in the association of rates with some relevant variables were more 

easily visualized (Figure 6.2). Interestingly, a simpler model, not incorporating 

breakpoints, explained only 60 % of the variability (i.e. model deviance), and 

failed to capture the significance of the relationship between disease rates and 

proportion of people living <5 km from the forest border within each county. This 

breakpoint relationship with covariates was further supported by smaller Akaike 
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Information Criterion (AIC) for breakpoint models, as compared to a model in 

which the relationships with covariates were described by smooth functions with 

the same number of parameters (second degree polynomial; Table 6.1).  

To address effects of hierarchically nested geopolitical units (e.g., counties 

belonging to provinces) and of interannual climatic variability (El Niño Southern 

Oscillation (ENSO)), we fitted Linear Mixed Effects Models (LMEM). These 

models incorporated geopolitical subdivisions of the country as nested random 

factors, and ENSO as a continuous predictor (details in Appendix S4). Neither 

ENSO nor the geopolitical nesting of counties had significant effects based on 

bootstrap model comparisons, with the highest variability explained by unknown 

factors (Table 6.S5). These results could indicate that the effects of ENSO were 

very local (county scale), and different across counties. To test the hypothesis of 

localized ENSO effects, we fitted an Analysis of Covariance (ANCOVA) to the 

counties where disease was clustered. The results showed a statistically 

significant interaction between ENSO and the considered counties (goodness of 

fit R2=85%). The effects of ENSO are variable, with some counties showing an 

increase and others a decrease in incidence during a cycle of the oscillation 

(Figure 6.3). The only variable that showed a significant difference between 

these two groups was the percentage of forest cover, with a significantly larger 

fraction (P<0.05) in counties where incidence decreased (Figure 6.3).  
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Discussion 

The finding that ACL tended to afflict socially marginal populations more 

heavily is common to other infectious diseases, and has been historically 

documented in public health studies particularly at small spatial scales 

[10,31,32]. We have shown here that social marginalization also can explain 

patterns of ACL at larger geographical scales. When this influence is taken into 

account, risk of infection is diminished among those living close to forests, an 

unexpected pattern in light of previous studies on the role of this habitat type. 

The pathway by which social marginalization promotes transmission of 

Leishmania in this context probably is linked to a major environmental problem 

affecting the tropics: destruction of forests and associated biodiversity. Forest 

clearing worldwide [33,34], and especially in Costa Rica, is concurrent with 

development of large scale commercial agriculture [12,13,14], including 

monocultures of several commercial crops where ACL is clustered, and with 

accelerated human population growth [14]. This shift towards market-based 

agricultural production and rapidly expanding population is associated with new 

inequities in land tenure [35], increased numbers of landless peasants, and 

hence further pressure to cut down forests for local subsistence agriculture [13] 

and extraction of other natural resources [36,37].  

Risk of ACL infection in rural Costa Rica has been especially associated 

with the exposure to forests close to agricultural environments [38,39]. The latter 

could imply that populations living inside or close to fragmented forests 

intermixed with crops where the overall biodiversity of the landscape is reduced 
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could have a higher risk of infection when compared with those where the 

agricultural practices and crops allow the maintenance of biodiversity. Supporting 

this idea is the ecological knowledge about biodiversity in disturbed, fragmented, 

and isolated landscapes proceeds through a series of well-documented, 

ecological syndromes, starting with habitat destruction and associated 

biodiversity reduction [40], followed by loss of keystone species and resulting 

structural changes leading to reduced biodiversity [41]. Changes in biodiversity 

due to deforestation are probably of importance to ACL since the major 

reservoirs of Leishmania species are small mammals, including marsupials, 

rodents and sloths [5,6]. Forest fragmentation has been shown to increase 

densities of these species, because in small and isolated habitat fragments, large 

predators are lost first, leading to major changes in inter-specific interactions that 

decrease mammal biodiversity and lead to the dominance of rodents [42,43]. 

This scenario, extensively studied for Lyme disease which is another rodent-

associated, vector-borne disease, involves increased diversity of hosts providing 

a “dilution” effect on transmission [43,44]. Similar mechanisms may be at play for 

ACL as suggested by mathematical models of transmission dynamics and by 

field studies that show only a small number of mammal species are infected with 

Leishmania spp. among those that are frequently bitten by sand fly vectors 

[3,45,46].  

Changes in landscape quality are also likely to affect composition of the 

arthropod vector community [47]. Interestingly, sand fly species richness is 

greater in traditional, shaded coffee agroecosystems than in those that are 
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intensified and unshaded [48]. More generally, traditional coffee production 

supports similar biodiversity as undisturbed forests [49]. Reduced forest cover in 

our study modulated the effects of climate variability (ENSO), an interaction that 

may operate through multiple pathways. Increased temperatures in modified 

landscapes can directly affect transmission of vector-borne diseases [50]. The 

negative effects of climatic variability on crops, accompanied by associated 

increases in reliance on the exploitation of forest resources [1,51], may have 

large impacts on the ACL transmission system. In addition, disruption of trophic 

structures known to increase densities of certain small mammals, including 

possible Leishmania spp. reservoirs [52-54], can be amplified by ENSO 

anomalies that alter resources [1,52]. The influences of rainfall and elevation on 

the spatial distribution of ACL are probably mediated through the effects of 

humidity and temperature on the biology of both vectors and parasites [1].  

Future work should examine the role of local climate variability 

encompassing multiple ENSO events over a longer time span, as was previously 

done at the coarse scale of the whole country [1]. A special emphasis should be 

put on elucidation of mechanisms acting at a local scale, since operational 

control strategies require further details about local characteristics increasing the 

risk of transmission, while always contextualizing these risk factors within the 

multidimensional nature of human disease. This can be achieved by considering 

aspects as diverse as the demographic structure of cases and the relationships 

between forest fragmentation and biodiversity on the endemic areas of the 

disease. Another effort could explore the relationship between ACL and different 
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systems of agricultural production that might affect the ecology of transmission, 

as well as the perception and measures of protection that people take under 

different socio-economic conditions [10,47,48]. In a more theoretical realm, 

further attention should be given to a corollary of Schmalhausen’s law of 

fundamental relevance to the resilience of ecosystems and their response to 

environmental change, namely the increase in the variance of systems under 

stress [e.g., 55]. Finally, our work underscores the need to place the control of 

ACL, and more generally of neglected tropical diseases and malaria, within a 

framework that encompasses ecologically sound development and viable 

solutions to the trade-offs between agriculture and conservation, such as shaded 

coffee production [48,49,51]. The quality of the landscape matrix is not only 

relevant to biodiversity conservation, as already recognized in studies of 

agroecosystems [37], but also to preventing the emergence and exacerbation of 

infectious diseases. 
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Table 6.1. Breakpoint values for the natural logarithm of minimum rainfall, the 
marginalization index, and the percentage of people living close to the forest for 
the studied models.  
 

Model Log(Min 
Rainfall) 

Margin 
Index 

% 
Close 

No. 
Parameters AIC 

I 7.78 4.13 49.40 8 567.7 
II 7.78 4.13 49.98 9 569.5 
III 7.77 4.13 49.99 9 569.1 
IV 7.77 4.13 49.99 10 570.7 

Smooth 7.79 Poly 2 Poly 2 8 574.2 
Null — — — 4 595.4 

 

The number of parameters does not include the dispersion parameter for the 

negative binomial generalized linear models, which was set to 1 (see Protocol S1 

for details). 
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Table 6.S1. Ecosystems and number of locations where human biting sand fly 
species have been caught in Costa Rica (S6, S7) 
 
Locations Ecosystem 

83 Agriculture 
6 Evergreen Tropical Forest 
1 Deciduous Tropical Forest 
1 Manglar Forest 
1 Embalse 
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Table 6.S2. Principal Component Analysis (PCA) for the landscape units where 
human  
biting sand flies have been caught in Costa Rica (S6, S7). 
 

Component 1st 2nd 3rd 4th 

Proportion of 
Variance 0.64 0.26 0.09 0.01 

Cumulative 
Proportion 0.64 0.90 0.99 1.00 
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Table 6.S3. Factor Loadings for Ecosystems in components 1 & 2 
 
 

Component 1st 2nd

Agriculture 0.610 --- 
Evergreen Low-Lands -0.247 -0.880 
Evergreen Montane -0.523 0.473 

Evergreen Sub-Montane -0.541 --- 
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Table 6.S4. Parameters, smooth function degrees of freedom and significance 
for the GAM described in equation 1. 
 
Parametric Coefficients 
Parameter Estimate S.E. T P

μ0 -8.185 0.094 -86.63 <2e-16
Smooth Terms 

Variable EDF Rank F P
s(MI) 3.504 8 3.345 0.03

s(% Close) 6.698 9 2.403 0.05
s(ME) 1.332 3 3.571 0.02

s(log(MinRfll)) 5.562 9 5.943 6E-05
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Table 6.S5. Comparison of Linear Mixed Effects models 
 
 

Models Likelihood ratio test Bootstrap P
6.1 and 6.2 0.3815 0.611 
6.2 and 6.3 5.931e-08 0.437 
6.3 and 6.4 9.920e-08 0.923 
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Table 6.S6. Parameters for the model presented in Figure 6.2 
 
 
Parameter Estimate S. E. T P 

μ0 -7.61828 0.471846 -16.146 < 2e-16* 
β1 (ME) -0.00157 0.000386 -4.083 0.000112* 

β2 (BR(MI)) 0.375278 0.098044 3.828 0.000271* 
β3 (BR(% Close)) -3.93909 1.42758 -2.759 0.007318* 
β4 (BL(% Close)) 0.019768 0.009035 2.188 0.031871* 

β5 (BL(ln(MinRainfall))) 2.434161 1.26397 1.926 0.058023 
β6 (BL(ln(MinRainfall))2) -5.80016 1.202431 -4.824 7.50E-06* 
β7 (BR(ln(MinRainfall))) 5.512966 1.726986 3.192 0.002083* 

*Statistically significant (P<0.05) 
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Table 6.S7 Analysis of Covariance for the model in (5) 
 
 

ANCOVA 
Factor DF F P 

Intercept 1 
311.54

1
<0.000
1 

County 8 3.229 0.0891
ENSO 1 2.36 0.0621
County*ENSO 8 3.611 0.0113
Error 18   

 
 



 150

Table 6.S8 Parameters for the linear model in (5).  Intercept and ENSO are 
respectively the intercept and slope for Talamanca County, the reference county.  
For all other counties, intercept and slopes are found by adding the values in the 
table to the values for the reference county. 
 
Parameter Estimate Std. Error  t P 
Intercept (Talamanca) -4.5411 0.5007 -9.07 3.92E-08 
ENSO (Talamanca) -3.1518 0.4478 -7.038 1.44E-06 
Aguirre -3.6201 0.7081 -5.113 7.28E-05 
Buenos Aires -2.9878 0.7081 -4.22 0.000515 
Corredores -3.3055 0.7081 -4.668 0.000191 
Coto Brus -3.4213 0.7081 -4.832 0.000134 
Golfito -1.7606 0.7081 -2.486 0.022943 
Limon -2.6633 0.7081 -3.761 0.00143 
Osa -2.6661 0.7081 -3.765 0.001417 
Perez Zeledón -3.8459 0.7081 -5.431 3.69E-05 
ENSO*Aguirre 3.681 0.6333 5.812 1.66E-05 
ENSO*Buenos Aires 1.7485 0.6333 2.761 0.01287 
ENSO*Corredores 3.3862 0.6333 5.347 4.41E-05 
ENSO*Coto Brus 2.737 0.6333 4.322 0.000411 
ENSO*Golfito 3.0889 0.6333 4.877 0.000121 
ENSO*Limon 3.0571 0.6333 4.827 0.000135 
ENSO*Osa 3.5617 0.6333 5.624 2.46E-05 
ENSO*Perez Zeledón 3.6914 0.6333 5.829 1.60E-05 
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Figure 6.1. Patterns of clustering and Schmalhausen’s law. (A) Quinquennial (1996-2000) 
cutaneous leishmaniasis case rates (cases/population) in Costa Rica at the county level. Colors 
indicate clustering in monthly rates per 10,000 inhabitants obtained using the Scan method: blue 
corresponds to the most likely cluster, comprised of the Talamanca county, with a monthly rate 
308 per 10,000 from January 1999 to December 2000 (loglikelihood ratio = 3020.06, P<0.001); 
green depicts the second most likely cluster, comprised of the counties of Osa, Buenos Aires, 
Aguirre, Perez Zeledon, Golfito, Coto Brus, Aguirre y Corredores, with a rate of 7 per 10,000 from 
June 1996 to November 1999 (loglikelihood ratio = 515, P<0.001); and red corresponds to the 
third most likely cluster, comprised of the county of Limon with a rate of 12 per 10,000 from April 
1997 to May 2000 (loglikelihood ratio = 265, P<0.001). (B) The county marginalization index (See 
Protocol S1 for details). Red and blue indicate clusters with high and low marginality, 
respectively, found using the LISA method with weights based on the 4 nearest neighbors (overall 
I=0.7096, P<0.05). (C) County rate as a function of the marginalization index. Black dots 
represent counties with less than 2 cases in the five years. This pattern, which we call 
Schmalhausen’s pattern, shows a significant positive correlation between marginality and the rate 
of the disease (r=0.39, t = 3.8221, df = 79, P<0.0002), where a qualitative change in the 
relationship is apparent after and before a value of 4 in the marginalization index. Specifically, the 
variance increase for larger values of social marginalization, consistent with the prediction that 
new or anomalous conditions modify the system’s sensitivity to other drivers.  
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Figure 6.2. Breakpoints and discontinuous patterns of association. A schematic 
representation of the breakpoint in marginalization (MI) and people living close to the forest 

(%close), when minimum elevation (ME) is set to 500 m and rainfall (log(MinRfll)) is set at its 
breakpoint. The surface illustrates major qualitative differences in disease risk as a function of the 
covariates. Specifically, risk increases exponentially as the proportion of people living close to the 

forest decreases above the breakpoint. The change has the opposite sign and decreases in 
magnitude for smaller values below the breakpoint. Marginality exacerbates this difference above 

its own breakpoint. Parameters are those of the model selected as best. This model has 7 
parameters (AIC=5768.7) and fits the data satisfactorily (Residual deviance = 79.718, df=72, 

P>0.24), explains 71.34% of the deviance (null deviance = 278.108) and is not different from the 
more complex models presented in Table 6.1, values for the coefficients are presented in Table 

6.S6. 
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Figure 6.3. Cutaneous leishmaniasis in Costa Rica: Deforestation and El Niño Southern 
Oscillation (ENSO). (A) Local Effects of ENSO. Linear model results for a model testing for 
localized effects of ENSO in the counties where the disease was clustered. Color indicates 
clusters found with the spatio-temporal scan analysis of Figure 6.1, characters are used for the 
data in each individual county (For parameter values, see table in the appendix). For 
representation purposes, a small amount of noise was added in the x (ENSO) axis. The ANCOVA 
for this model showed the interaction of ENSO*County to be statistically significant (P<0.0113, for 
more details see Tables 6.S7, 6.S8). The model has a high goodness of fit (R2=0.85) that 
outperforms a similar model with the same number of parameters but that uses a first order 
autoregressive structure (R2=0.26) instead of ENSO. (B) Differences in forest cover for counties 
where the incidence diminishes or increases with ENSO. In the boxplot, 1 stands for the counties 
where the annual rate decreases with ENSO (Talamanca, Limón, Golfito, Buenos Aires & Coto 
Brus) and 2 for those where the incidence increases with ENSO (Aguirre, Corredores, Osa & 
Pérez-Zeledón). The difference is statistically significant as shown by a one tail Welch’s t-test (a 
test robust to differences in variance) in which the alternative hypothesis is that the difference in 
forest cover between 1 and 2 is larger than 0 (Welch’s t= 2.14, d.f.=5.9, p<0.038).  
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Figure 6.S1. Supplementary maps (A) Weather stations and interpolated values. Clusters of 
deforestation: (B) Queen contiguity. (C) 4 nearest neighbors. (D) Ecosystems of Costa Rica and 
number of sand fly species for each locality (see references [22],[23] in the main article). 
 
 
 

 
 
 

A B

C D
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Figure 6.S2. Generalized Additive Model smooth functions. (A) Marginalization index. (B) % 
of People living within 5 km to the border of the forest. (C) Minimum elevation. (D) Log(minimum 
rainfall). 
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Figure 6.S3. Landscape dimension reduction. Top panels include the first three components 
from the PCA analysis presented in Tables S2 and S3. Bottom panels include three dimensions 
using a MDS analysis with 2.87 % for stress, a goodness of fit that is good. 
 
 

 
 

Multidimensional Scaling

Principal Component Analysis
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CHAPTER VII 
 

CONCLUSIONS 
 
 
 
Summary of Major Findings 

• Early warning systems for vector-borne diseases are plausible tools. 

Vector-borne diseases dynamics were shown as predictable within short 

windows of time, i.e., one year, and predictions were improved by 

considering exogenous climatic drivers [1,2]. In general, linear models 

were the best for forecasting future dynamics. The success of forecasts 

may be linked to the fact that the relationship of Cutaneous Leishmaniasis 

with climatic drivers was robust during the studied period [2]. 

• The regulation of the interactions between two co-occurring parasites, 

Plasmodium vivax and P. falciparum, causing malaria seems to be under 

a bottom-up system of regulation. P. falciparum is dynamically sufficient 

while P. vivax is positively correlated with P. falciparum, a result expected 

only if the interaction between hosts and their immunity is one where hosts 

feed their immunity.  Additionally, the development of immunity beyond 

parasite clearance seems to be very short, which justifies the focus of 

control measures on transmission interruption instead of vaccine 

development [3]. This result is re-inforced by the success that control 
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measures targeting transmission have had when compared with the 

limited success of vaccine trials. 

• Relationships between disease dynamics and exogenous drivers can be 

transient and are sensitive to the context of transmission. Effects of 

climate change on disease dynamics will be dependent on adaptive 

measures adopted by human populations. The introduction of insecticide 

treated bednets for malaria control showed that after 20% of the 

population of Vanuatu were covered with nets, the mean rate of infection, 

the impact of exogenous and the unexplained variability was diminished 

by more than 50 % for both P. falciparum and P. vivax malaria in Vanuatu 

[4]. The spatio-temporal patterns of Cutaneous Leishmaniasis in Costa 

Rica seem to be ultimately defined by the degree of social exclusion of 

people for a given county. In the marginalized populations, where the 

burden of this disease is largest, qualitative differences in transmission are 

influenced by forest cover. In largely deforested areas incidence increases 

with El Niño Southern Oscillation events, whereas the opposite effect is 

seen in more forested counties [5].  

Suggestions for Future Research 

• The models considered here for forecasting  incorporate drivers in a linear 

fashion; however, relationships with climatic drivers can be far from linear 

and monotonic [e.g., 5]. This pattern calls for the development of statistical 

techniques for which a measurement similar to cross-correlation would be 

necessary to identify non-linear relationships with drivers that can be 
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incorporated through simple non-linear functions or step-wise linear 

functions as presented by Chaves et al [5]. Insights from past cycles of 

climate change, especially those associated with glaciations during the 

Pleistocene, can be useful to move to longer time horizons of prediction, 

since they are fundamental to understand the dynamics of regime shifts. 

This step will also require the integration of the evolutionary dynamics of 

parasites and hosts, given the time scale of such a study. 

• The robustness of the results on the population level regulation of the 

interaction between P. falciparum and P. vivax can be tested by using 

models were the abstraction is based on the process of transmission 

through the force of infection [e.g., 6]. The direction or ability of the 

interaction to be conditional (i.e., sign changing), can be studied by 

extending the models and incorporating evolutionary dynamics in the 

models. The robustness of results also can be assessed by using 

continuous time modeling tools. 

• The dynamics of variability deserve to become an object of study by itself 

in ecology. Why does variability in state variables increase or decrease 

with their average value has not been fully addressed in population 

dynamics. This is a fundamental question since the uncertainty in 

population dynamics can be much more important than its mean behavior. 

It is ultimately relevant to understand issues of sustainability, because 

variability influences the likelihood that a system goes extinct or becomes 

persistent. This question has special relevance for applied areas of 



 165

ecology such as biodiversity conservation or disease transmission 

management. 

• Effects of biodiversity changes on emerging diseases mediated through 

deforestation need further study, especially for Cutaneous Leishmaniasis. 

Although Chaves et al [5] show evidence for different effects of ENSO in 

counties with different degrees of deforestation, the linkage to changes in 

biodiversity was not addressed [see 7]. This link could be investigated 

through differences in fragmentation, a robust proxy for changes in 

biodiversity. 

• Ecology of human diseases needs to become fully aware of the socialized 

nature of its object of study.  Although, Chaves et al [5] clearly show that 

social exclusion, a problem at the root of deforestation (the conventional 

risk factor for cutaneous leishmaniasis emergence) is a main determinant 

for the spatial pattern of cutaneous leishmaniasis, this dimension is largely 

ignored in the study of infectious diseases. Future work on the ecology of 

human diseases should emphasize the social-cultural component of 

transmission, since it is at the basis of coarse grained patterns (spatial 

and temporal), and it has been shown to be fundamental to the 

understanding of traditional human practices that can guide sound 

solutions to manage risks for disease transmission (e.g., bednets). 
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APPENDICES 
 
Appendix S1:  

Most of the statistical procedures of this paper were implemented in R [s1].  For 

some specific procedures, additional software is indicated below. 

The periodogram and de-trending of the time series: 

The periodogram is defined as the squared spectral density of a time series [s2]: 
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The periodogram assumes that the series under study is stationary. One way to 

achieve stationarity is to detrend the time series.  Here, we used  the method of 

Discrete wavelet shrinkage. This method is based on the discrete wavelet 

transform (DWT) which in turn is a data transformation whose algorithm 

computes the wavelet coefficients of a series using an orthonormal and 

compactly supported function [s3].  As a result, the method can capture gross 

features of a series while focusing on finer details when necessary [s4, s5]. The 

advantage of DWT over other methods such as non-parametric splines or local 

polynomials, is this emphasis on the localized, as opposed to the global, 

behavior of the series [s4, s5]. The coefficients of the discrete wavelet transform 

are set (“shrunk”) to zero if they are smaller than a critical value, determined by 

the time series length and the variability of the wavelet coefficients for a given 

scale [s4, s5]. In this study, the Daubechies wavelet basis was used, symmetric 
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and periodic edges were tested, the series was padded with its mean to ensure a 

dyadic (power of two) length, and the wavelet filter number was chosen using the 

basis that produces the median MSE to guarantee that the data is neither 

overfitted nor underfitted. Wavelets were fitted using the package wavethresh for 

R.  

Maximum entropy spectral density and non-Parametric de-noising of non- 

stationary time series 

We obtained the dominant frequency of the cycles with a second method, 

maximum entropy spectral density, to examine the robustness of our findings.  

The maximum entropy spectral density Y(vk) is applied to identify cycles in time 

series whose non-stationarity can be approximated by an autoregressive process 

[s6].  It is computed as follows: 
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Again, peaks in this density indicate dominant frequencies.  To successfully 

apply this technique, it is necessary to first separate signal from noise in the data, 

which we achieved with the two following methods: 

1) Smoothing splines. The principle of this method is the minimization of a 

function that accounts for the trade-off between the fit, measured through the 

MSE, and λ, the degree of smoothness [s7]:  
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where ρ are weights used for robustness to outliers. The parameter λ was 

selected using generalized cross-validation [s7].  

2) Singular spectrum analysis. This non-parametric technique separates trends 

and oscillatory components from noise in a time series. The method consists in 

the computation of the eigenvalues and eigenvectors from a covariance matrix 

{M} whose element mij is the covariance between lags i and j. The projection of 

the time series on the eigenvectors (the principal components of the matrix) 

reconstructs the pattern of variability associated with  the selected eigenvalue, 

resulting in a de-noised time series [s6].   The eigenvalues themselves indicate 

how much variance is accounted for by the different components. For the SSA 

the toolkit described in [s6] was used. 

Wavelet Power Spectrum  
The wavelet power spectrum (WPSy) is obtained from the so-called 

wavelet transform (WTy(s)).  The best way to understand this transform is to 

consider that it is the product of the data and a function known as a wavelet (ψ) 

which is different from zero only for a range of values centered around the origin.  

By systematically translating the wavelet in time and computing this product, we 

obtain  the transform 
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as a function of temporal scale s  [s8, s9].  By contrast, the periodogram relies on 

the Fourier transform which uses sinusoidal functions that  repeat continuously in 
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time.  This difference underlies the localization in time of the wavelet power 

spectrum given by the squared wavelet transform  

 
2

yy WTWPS =          (a5) 

Wavelet Cross-Spectrum and patterns of association in non-stationary time 
series 
 
Wavelet coherency is computed using the wavelet power spectrum of the two 

series under study as 
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and varies between 0 and 1, with a value of 1 indicating maximum coherency.  

The time lag separating the two time series under study can also be determined 

by computing the phase of the cross wavelet spectrum, defined as the angle 

separating the real and imaginary parts of the wavelet cross spectrum [s8, s9]: 
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Linear models and forecasts 
One strategy for fitting time series models is to use their state space 

representation, that is, to find the underlying (not observed) process that 

produces the observed patterns in the time series [s2, s10].  

State Space Representations 

  Time series can be seen as realizations of an unobserved stochastic 

process. Any unobserved process {yt} that can be expressed using observation 
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and state equations has a state space representation [s2]. For the model process 

{yt} presented in (1) the state space representation can be obtained by 

introducing the following state vector: 
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The observation equation is: 
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while the state equation is given by: 
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where the error is identically and normally distributed, i.e., ),0(~ 2
wt N σε . For this 

unobserved process to have the same characteristics than those of the observed 

time series, it is necessary to address:  (i) the correlation of the data over time 

(the smoothing problem), (ii) the fitting of every observation (the filtering problem) 

and (iii) the forecasting of future events  (the prediction problem). These 

problems can be solved using Kalman Recursions  [s2, s10]. The exact likelihood 

is computed via a state-space representation of the SAR process, and the 

innovations (i.e., residuals) and their variance found by a Kalman filter [s10].   
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Appendix S2: 

Linear Models 

Seasonal Autoregressive (SAR):  these models were fitted to the data using 

Kalman recursions for their state space representation [see s1, for technical 

details]. These models incorporate seasonality by considering autoregressive 

components with the period of the time series under study. For the purpose of 

comparison, the following three models published in Chaves & Pascual [s1] were 

considered: 
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Where the error terms are assumed to be identical, independent and normally 

distributed (i.e., i.i.d. normal, ε~N(0,σ2) and μ’ = μ + the effects of covariates 

(γMEI, αT) when considered. These models were fitted using R [s2]. 

Basic Structural Model (BSM): The BSM is one of the simplest linear gaussian 

state space models. It decomposes an observed time series (yt) into a local level 

(μt), which basically is a changing mean value or the equivalent to an intercept in 

least squares regression, a trend (vt), and seasonal( )∑
=

=
−
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0
0,

k ktt γγ  

components:  
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The equations are solved and smoothed using Kalman recursions. The 

parameters are the variances of the errors in the four equations, which are 

assumed to be i.i.d. normal [for details, s3]. The model was also fitted using R 

[s2]. 

Non-Linear Models 

Generalized Additive Models (GAM): Additive models are a combination of 

parametric and non parametric models [s4,s5]. Unlike linear models, were linear 

parametric forms define the shape of the relationship between responses and 

predictors, in GAM smooth functions (f) that can be far from linear are used for 

such relationships. In this work, the smooth non-parametric functions were 

computed using a penalized smoothing spline approach in which the parameters 

for smoothing where obtained by generalized cross-validation of a function that 

weights the trade-off between the smoothing and the likelihood of the fitting [for  

technical details see s5]. An intensive process of model selection, based on 

likelihood tests and the Akaike Information Criterion [e.g., s1], led to the selection 

of the following two best models:  
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For the models in (3) the assumptions about the error in (1) hold. These 

models were fitted using the library mgcv of R [s2] 

Feed-forward Neural Networks (FNN):  Feed-forward neural networks are 

computer-based models that try to emulate the human brain in performing 

complex tasks [s4, s5].  In the application of these models to time series analysis, 

there is no mechanistic interpretation of the layers of neurons.  These simply 

provide a phenomenological and flexible treatment of functional relationships 

between predictors and responses.  In models with one hidden layer of 

“neurons”, an arbitrary functional form is decomposed into a sum of sigmoids 

[s6]:  

∑
=

∑
=

++=
k

i

d

j jxijiG
d
yyyf

1
)

1
(0),...2,1( γμββ     (4) 

 Where G is a univariate sigmoid function like the logistic expression 

eu/(1+eu). Models with the same predictors as in (1) were fitted and tested using 

up to 3 neurons. These models do not have explicit assumptions about the 

errors. Parameters (weights in the FNN’s jargon) are obtained with a search that 

minimizes residuals over 100000 experimental fittings [s5]. These models were 

fitted using the library nnet of R [s2]. The goodness of fit was highest for models 

with the same predictors as the ones described in (1). 
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Non-linear Forecasting (NLF): Though originally used to assess the degree of 

determinism in the dynamics of populations [s7], NLF is ultimately a forecasting 

tool. It is a technique based on the multidimensional embedding of a time series, 

where the E-dimensional set of points xt= (yt, yt-τ,…,yt-(E-1) τ)  is constructed  and 

called the phase space, and τ represents the time delay in the observations [e.g. 

s7, s8]. NLF is implemented by first identifying neighboring points of xt in delayed 

embedding space, and  then obtaining a prediction of  the response variable at 

time t+k as simply the average over the future state of the neighbors [s7]: 
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A key step in using NLF is to choose the appropriate dimension E. One 

approach is to use several dimensions in order to find the value of E that 

optimizes predictions [s7]. Here we used as a guide for an initial value of E, 

results from the false nearest neighbors method [s9].  This method finds the 

minimum embedding dimension (E), by computing the minimum number of 

multidimensional points that are erroneously mapped on the neighborhoods of 

other points when the value of E is diminished from an initial value. For the time 

delay τ, the most common practices are to assign time delays (τ) of 1 [s7,s10]. 

Here, a criterion based on time delayed average mutual information (AMI) was 

used [s11]. This function accounts for linear and non-linear correlations in a time 

series and is computed as follows: 
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Where pi is the probability to find a time series value in the i-th interval of some 

partition of the data, pij(τ) is the joint probability that an observation falls  into the 

i-th interval and τ times units later, in the j-th interval. The AMI and the false 

nearest neighbors method were implemented using the library tseriesChaos for R 

[s2] and the NLF’s were computed using the package predict of TISEAN s8.  

Choosing the Embedding dimensions and lags for the Non-Linear 

Forecasting 

The false nearest neighbors approach suggests embedding dimensions of two, 

three or four, since larger values do not lead to a considerable decrease in the % 

of false neighbors, indicating that state-space is successfully unfolded for lower 

values of E. The AMI method suggests that good lags for the delay τ in the NLF 

are 1, 5 and 10. Given the limitation of time series length, we chose to set τ=1 

and to consider values of two, three and four for the embedding dimension. 
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Appendix S3. Model Selection and Parameter Values for models of Plasmodium falciparum and Plasmodium vivax rates 
before and after the breakpoint found using the F statitics 

Parasite/ 
Breakpoint 1̂φ  12φ̂  1α̂  2α̂  1β̂  2β̂  μ̂  εσ̂  2χ

p  d.f. 
Akaike 

Information 
Criterion 
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0.72 ± 0.06 0.36 ± 0.10 1.38 ± 0.42 1.44 ± 0.46 0.10 ± 0.51 0.83 ± 0.57 11.51 ± 1.09 2.38 — — 603.32 

0.70 ± 0.07 0.34 ± 0.10 1.41 ± 0.42 1.35 ± 0.44 0.13 ± 0.52 — 11.56 ± 1.02 2.40 0.14 1 603.42 

0.72 ± 0.06 0.36 ± 0.10 1.39 ± 0.42  1.45 ± 0.45 — 0.84 ± 0.57 11.51 ± 1.08 2.37 0.83 1 601.37 

0.74 ± 0.06 0.48 ± 0.08 1.28 ± 0.46  — 0.39 ± 0.61 0.26 ± 0.51 11.34 ± 1.48 2.44 <0.001 1 610.09 

0.74 ± 0.06 0.43 ± 0.09 — 1.28 ± 0.49 0.28 ± 0.52 0.87 ± 0.57 11.34 ± 1.37 2.46 <0.005 1 611.18 

0.70 ± 0.07 0.33 ± 0.10 1.43 ± 0.42 1.36 ± 0.44 — — 11.56 ± 1.02 2.40 0.33 2 601.48 

0.74 ± 0.06 0.48 ± 0.08 1.30 ± 0.46 — — 0.68 ± 0.57 11.34 ± 1.47 2.45 <0.005 2 608.35 

0.74 ± 0.06 0.43± 0.09 — 1.30 ± 0.48 — 0.88 ± 0.57 11.34 ± 1.37 2.46 <0.01 2 609.48 
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0.84 ± 0.06 -0.01 ± 0.12 0.65 ± 0.33 1.11 ± 0.31 0.70 ± 0.55 0.89 ± 0.42 4.07 ± 1.26 1.89 — — 329.76 

0.82 ± 0.06  -0.01 ± 0.12 0.63 ± 0.35  0.97 ± 0.32 0.63 ± 0.57 — 3.98 ± 1.15 1.94 <0.05 1 332.00 

0.83 ± 0.06 0.04 ± 0.12 0.75 ± 0.33 1.07 ± 0.33 — 0.86 ± 0.43 3.98 ± 1.25 1.91 0.75 1 329.35 

0.82 ± 0.02 0.15 ± 0.12 0.52 ± 0.39 — 0.39 ± 0.59 0.68 ± 0.46 3.91 ± 1.39 2.02 <0.005 1 337.76 

0.84 ± 0.06 0.05 ± 0.12 — 1.05 ± 0.33 0.90 ± 0.56 0.86 ± 0.43 4.01 ± 1.37 1.93 0.06 1 331.27 

0.81 ± 0.06 0.04 ± 0.12 0.72 ± 0.35 0.94 ± 0.33 — — 3.90 ± 1.15 1.96 0.07 2 331.19 

0.82 ± 0.06 0.17± 0.11 0.57 ± 0.39 — — 0.68 ± 0.46 3.87 ± 1.41 2.02 <0.05 2 366.24 

0.83 ± 0.06 0.14 ± 0.11 — 0.96 ± 0.35 — 0.81 ± 0.45 3.87 ± 1.43 1.96 0.11 2 366.91 
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Parasite/ 
Breakpoint 1̂φ  12φ̂  1α̂  2α̂  1β̂  2β̂  μ̂  εσ̂  2χ

p  d.f. 
Akaike 

Information 
Criterion 

P
la

sm
od

iu
m

.  
vi

va
x B

ef
or

e 
B

re
ak

-
po

in
t 0.81 ± 0.05 0.26 ± 0.09 0.47 ± 0.18 — -0.38 ± 0.22 — 4.88 ± 0.61 1.07 — — 411.31 

0.80 ± 0.05  0.27 ± 0.08 0.55 ± 0.18 — — — 4.83 ± 0.62 1.08 0.09 1 412.18 

0.81 ± 0.05 0.31 ± 0.09 — — -0.51 ± 0.22 — 4.83 ± 0.66 1.09 <0.01 1 415.94 

A
fte

r 
B

re
ak

-
po

in
t 

0.71 ± 0.09 0.36 ± 0.15 0.11 ± 0.17 — -0.13 ± 0.18 — 2.33 ± 0.42 0.73 — — 166.98 

0.72 ± 0.08 0.36 ± 0.13 0.11 ± 0.16 — — — 2.33 ± 0.43 0.73 <0.02 1 166.75 

0.71 ± 0.09 0.40 ± 0.13 — — -0.14 ± 0.18 — 2.32 ± 0.45 0.73 <0.02 1 165.35 

The parameters for the full model are in the first data row, and for the null model are in the last data row. Parameters are 

described in the text and are given as value ± standard error. 2χ
p  is the significance of the chi-squared likelihood ratio test 

between each model and the full model, and d.f. its degrees of freedom.  
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Appendix S4 

Principal Component Analysis (PCA) and Multidimensional Scaling (MDS). 

These techniques were used to study the sand fly associated landscape 

composition of counties. Both PCA and MDS are dimension reduction techniques 

to identify main axes in the variability of multidimensional data sets.  PCA is 

computed by finding the eigenvalues and respective eigenvectors of the 

variance-covariance matrix of a multidimensional dataset, producing scores 

(components) for each individual object in the dataset based on linear 

combinations of the variables [s1,s2]. In contrast, MDS is a different approach 

where distances among objects are computed using any of several different 

measures, returning coordinates for the points on the number of chosen 

dimensions for the analysis [s1].  For the MDS, Euclidean distances were used.  

Goodness of fit was measured using as a loss function the least squares on 

distances, or STRESS [s3].  For both techniques data on the proportion of county 

landscape cover associated to sand fly presence were normalized.  

 

Generalized Additive Models (GAM).  Additive models are a combination of 

parametric and non-parametric models [s2,s4].  Unlike linear models, where only 

linear parametric forms define the shape of the relationship between responses 

and predictors, GAM smooth functions, s(), that may be far from linear, can be 

used for such relationships.  In this study, the smooth, non-parametric functions 

were computed using a penalized smoothing spline approach in which the 

parameters for smoothing were obtained by generalized cross-validation, using a 
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function that weights the trade-off between the smoothing and the likelihood of 

the fitting [s4].  An intensive process of model selection, based on the Akaike 

Information Criterion (AIC) and backward elimination [s5], led to the selection of 

the following best model: 

 

ε))ll(log(MinRf)(%Close)(MI)ME(μRate iiii0i +++++= ssss    (a.1) 

 

where Ratei denotes the natural log of the five-year disease incidence rate 

(ln(cases/population size)), MEi, the minimum elevation, MIi, the marginalization 

index, %closei, the percent of people living in a radius of 5 km to the forest edge, 

and MinRfalli, the natural log of average annual minimum rainfall.  The index i 

indicates the county and ε is the error which is assumed to be identical, 

independent and normal (i.e., ),0(~ 2σε N ).  To handle the problem of logarithms 

for values of 0, we added 1 to all Rate values in (a.1).  For this and subsequent 

models, unless otherwise indicated, all 81 counties were considered.  

Diagnostics for spatial autocorrelation were carried out by regressing residuals 

on the centroids of each county. 

 

Linear Mixed Effects Models (LMEM).  Mixed effects models can consider 

covariates as fixed effects or random effects.  Fixed effects are unknown 

constants, while random effects are random variables [s4].  As a result, a 

parameter for a fixed effect measures the mean effect in a response by unit or 

category change in a covariate, while for random effects they measure the 
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variability due to a given covariate.  We used these models to test for the spatial 

scale of highest variability in the political subdivisions of the country that included 

seven provinces subdivided in a total of 81 counties. For this analysis, we only 

considered the 59 counties where disease was present with >2 cases during the 

5 year study period.  Although this procedure may bias the results of the 

analysis, we considered it to be the most robust option to gain insights about the 

geopolitical scale of spatio-temporal variability in the data. This decision to only 

include a subset of the counties was taken because of the superior reliability of 

LMEM over their corresponding generalized versions, for which no maximum 

likelihood estimators have been derived [s4], and the potential artifacts in the 

scales of variability due to the abundance of 0 values under the assumptions of 

linear models.  The response in the model was the annual incidence (Cases in 

the models to follow), defined as the yearly total number of cases for a county, 

with the regression weighted by the total population in the county.  These models 

were also used to test for an effect of the El Niño Southern Oscillation (ENSO) 

for the whole country by introducing a continuous predictor varying from 0 to 2, 

indicating the different phases of ENSO: 0 for years non-El Niño years (1997, 

2000), 1 for the El Niño year (1998) and 2 for the year after this event (1999).  

Data from 1996 were excluded because they were lost as an autoregressive 

component in the response.  This strategy was implemented to economize 

degrees of freedom (1 as opposed to the 3 needed by using a categorical 

predictor).  Models were fitted by using restricted maximum likelihood estimators 
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(REML) and compared through a parametric bootstrap [4].  Four models were 

considered:  

 

(t)(t)(t)ENSO(t))11)Cases(tlog()populationlog()1Cases(t)log( kjjkjkj εδσβφμ +++++−++=+ (a.2) 

(t)(t)(t))11)Cases(tlog()populationlog()1Cases(t)log( kjjkjkj εδσφμ ++++−++=+   (a.3) 

(t)(t))11)Cases(tlog()populationlog()1Cases(t)log( kkk εδφμ +++−++=+    (a.4) 

(t))11)Cases(tlog()populationlog()1Cases(t)log( kk εφμ ++−++=+     (a.5) 

  

The comparison between models a.2 and a.3 allows a test of the null hypothesis 

that ENSO has no effect at the country scale, and the comparison between 

models a.3 and a.4 for the null hypothesis that effects due to the geopolitical 

hierarchy (counties belonging to provinces) is irrelevant. The comparison 

between models a.4 and a.5 allows a test of the existence of  a source of 

common variability across the counties or localized variability at the county level. 

Models are autoregressive (φ ), with σ and δ representing province and county 

level variability, t the time, k the county, and kj the county k belonging to province 

j.  σ, δ, ε are assumed to be i.i.d. normal.  Diagnostics for spatial autocorrelation 

were carried out by regressing residuals on the centroids of each county. 
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