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CHAPTER I

Introduction

The focus of this thesis is electromagnetic and thermomechanical loading processes

in solids, inspired by the primary example process of electromagnetic forming (EMF).

EMF is a cost-effective and flexible manufacturing technique for sheet metalforming.

It consists of connecting an actuator (typically a copper wire solenoid) to a high energy

capacitor equipped with fast action switches. When the capacitor is discharged, the large

transient current that goes through the actuator generatesby induction strong eddy cur-

rents in the nearby metallic workpiece. The presence of these induced currents, inside the

magnetic field generated by the currents of the actuator, results in Lorentz body forces in

the workpiece that are responsible for its plastic deformation.

The EMF technique was first used in this country in the 1950’s and 60’s, due to its

advantages in enabling the fabrication of many complex geometry parts and enhancing

the formability of low ductility materials. Numerous applications of EMF have been im-

plemented in industrial production; among the more spectacular applications are engine

nacelles made in a single piece, electromagnetic riveting guns and hammers (developed

by NASA in the mid 1980s) used in the assembly of aircraft skins, and dent pullers1.

Recent advances in electronics and energy storage make EMF technology ripe for mass

1Electroimpact Inc.http://www.electroimpact.com/

1



2

Figure 1.1: A 316L stainless steel sample formed electromagnetically using a uniform
pressure actuator (courtesy of Dr. J. R. Bradley, General Motors Research
and Development).

production, and plans are well under way for the large scale manufacturing of fuel cell

plates and tubular frames for the automotive industry. One of the most promising recent

applications is the manufacturing of fuel cell plates (Figures 1.1 and 1.2), where conven-

tional stamping methods have failed and only the EMF technique can deliver the final

shape without wrinkling or tearing deeper channels. American Trim Corporation2 has

recently been awarded $1M for researching methods to produce fuel cells more economi-

cally. A major automotive supplier, Dana Corporation3, is already using EMF technology

for producing tubular structures for space frame car designs.

The EMF techniques are popular in the aerospace and automotive industries because

of several advantages they hold over conventional forming techniques. These advantages

are process repeatability and flexibility (due to its electric nature, energy input can be

easily and accurately adjusted), low cost single side tooling (thus reducing need for lu-

brication and tool marks), and high speed (typical process duration is on the order of 50

µsec). The most important advantage – and the main reason for the recent interest in

EMF – is the resulting significant increase in ductility observed in certain metals, with

2American Trim, LLChttp://www.amtrim.com/fuel.php

3Dana Limitedhttp://www.dana.com/technology/tailormetal.shtm
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Figure 1.2: Schematic of a uniform pressure actuator. The primary coil has many turns
going into the plane of the figure (courtesy of Dr. J. R. Bradley, General
Motors Research and Development).

aluminum featuring preeminently among them.

Two issues are of particular importance when analyzing EMF.First is the increase

in ductility and its causes, and second is the coupled modeling of the electromagnet-

ic-mechanical interactions. Thus given subsequently, following a review of the early

experimental and modeling work with EMF, are detailed discussions of the recent in-

vestigations relevant to the prediction of EMF ductility (Section 1.2) and to predictive

modeling of EMF processes (Section 1.3). These sections explain the state of the art and

the need for the present work, and an outline of this thesis isgiven at the end of this

chapter.

1.1 Review of Early Work

Although research activity in EMF during the 1950’s and 60’swas important, as evi-

denced by the (mainly experimental) number of publicationsreported in the engineering

literature, the research activity in the next twenty years (from the early 70’s to early 90’s)

diminished to a trickle (see the survey article by Daehn et al. (1999)). Even in the hey-
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day of EMF research, the scarcity of modeling work for these processes is strikingly

noticeable. The main reason can be attributed to timing: computational methods and the

hardware required for the numerical execution of the related algorithms were not yet in

place. Although the physics of these complex thermomechanical plus electromagnetic

phenomena were in principle understood, the pertaining coupled nonlinear systems of

partial differential equations could not be solved with the technology available at that

time.

Of the initial modeling efforts in EMF, one should mention the work of Furth and

Waniek (1956) and Furth et al. (1957), who describe the basicequations of the problem,

as do the analytical studies of Birdsall et al. (1961) and Meagher (1964). The modeling of

Baines et al. (1965) involves many simplifying assumptions, with the goal of providing

analytical results. Subsequent work by Al-Hassani et al. (1967, 1974) relaxed some of the

previous assumptions and calculated numerically the Lorentz forces at the workpiece. As

computing power became cheaper and more readily accessible, a new set of EMF model-

ing studies has emerged since the 1980’s. Of particular interest here is the experimental

and theoretical paper by Gourdin (1989), who studied the electromagnetic expansion of

copper, tin, and lead rings. Gourdin (1989) formulated his coupled problem and consider-

ably reduced the number of simplifying assumptions by taking into account the geometry

changes of the ring to find the correct induced currents (shown to be in close agreement

with his experimental results). His modeling of the ring’s mechanical properties assumed

a uniaxial deformation and several stress-strain laws but did not model necking or frac-

ture. It is worth mentioning here that a number of studies have addressed the mechanical

aspects of ring expansion and fragmentation (Becker, 2002;Grady and Benson, 1983;

Pandolfi et al., 1999; Sørensen and Freund, 2000) using 3-D modeling of the ring and

sophisticated constitutive equations and failure criteria. However, these mechanics-based
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studies ignored the coupled nature of the problem and imposed the velocity boundary

conditions on the specimen.

At about the same time as Gourdin (1989), Takatsu et al. (1988) published their ex-

perimental and theoretical study of the deformation of a clamped circular plate electro-

magnetically loaded by a flat spiral coil. They took into account the rate sensitivity of

the plate and the effect of geometry change in the specimen on the induced currents but

ignored temperature and bending effects (membrane solution used for the plate). Their

interest was in predicting the plate’s deformed shape, so their modeling never addressed

the issue of localization and fracture.

Unlike the case of standard metal forming processes, to the best of the author’s knowl-

edge there is unfortunately no English language book dedicated to the EMF processes,

save for the recent translation of the work by Belyy et al. (1977). The closest engineer-

ing book on the subject is perhaps the book by Moon (1984) on “Magneto-solid Me-

chanics”, which discusses the calculation of Lorentz forces in metals from the angle of

magnetoelastic buckling, applications that do not involvelarge strain deformations of the

electromagnetically loaded solids.

1.2 EMF Ductility

There is extensive recent work that investigates forming limits under EMF processes.

Experimental results by Balanethiram and Daehn (1992, 1994) with die impact EMF

show dramatic increases (compared to conventional forming) in the ductility of AA6061-

T4. Their work demonstrates that electromagnetically formed aluminum alloys are poten-

tially and significantly more ductile than conventionally formed steel alloys (DFQ steel,

which is about twice as ductile as conventionally formed AA6061-T4). A key ingre-

dient in this ductility increase is the strain-rate sensitivity of the material’s constitutive
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response, as explained by Hutchinson and Neale (1977). A detailed theoretical explana-

tion of this observed increase in formability, based on fully coupled electromagnetic and

thermomechanical modeling of the free expansion of an electromagnetically loaded ring,

was recently provided by Triantafyllidis and Waldenmyer (2004).

There is further recent work (Fressengeas and Molinari, 1989; Hu and Daehn, 1996;

Imbert et al., 2005a,b; Knoche and Needleman, 1993; Mercierand Molinari, 2004; Oli-

veira and Worswick, 2003; Oliveira et al., 2005; Regazzoni et al., 1986; Seth and Daehn,

2005; Seth et al., 2005; Zhang and Ravi-Chandar, 2006) examining high strain rate (EMF

and non-EMF) free forming limits. Oliveira and Worswick (2003) and Oliveira et al.

(2005) show little increase in ductility due to high EMF strain rates, Zhang and Ravi-

Chandar (2006) show no increase in uniform strain under EMF ring expansion, and Oost-

erkamp et al. (2000) show little strain-rate sensitivity inaluminum. The work by Oost-

erkamp et al. (2000) uses a split Hopkinson pressure bar to examine strain rates up to 2

103 s�1, with a moderate number of data points, and reports that apparent strain-rate sen-

sitivity is an artefact and not inherent in the material. However, other work, such as that

by Hu and Daehn (1996), indicates high strain rate free formability increases, and Vural

et al. (2004) and Yadav et al. (1995) show significant strain-rate sensitivity in aluminum.

In particular, Vural et al. (2004) use the shear compressionspecimen technique (e.g. see

Rittel et al. (2002)) to give extensive data for AA6061-T6 upto strain rates on the order

of 104 s�1. This data shows distinct strain-rate sensitivity above 103 s�1. Also, several

of the above mentioned recent investigations (Fressengeasand Molinari, 1989; Hu and

Daehn, 1996; Knoche and Needleman, 1993; Mercier and Molinari, 2004; Regazzoni

et al., 1986) show theoretically that inertial effects can delay instability. These investi-

gations also point to the fact that the physical dimensions of the sample affect strains to

instability and rupture.
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Figure 1.3: Onset of necking in a freely, electromagnetically expanded tube (courtesy of
Professor Glenn Daehn, The Ohio State University).

In order to quantify the ductility of sheet metal, a key concept is that of a form-

ing limit diagram (FLD), according to which a thin sheet (stress-free in the thickness

direction) is subjected to proportional in-plane straining until the onset of localization.

Typical examples of an EMF process with these (approximate)forming conditions are

circular plate expansion (loaded by a flat coil parallel to the plate) and axisymmetric tube

bulging (loaded by a cylindrical coil coaxial with the tube). Figure 1.3 shows a freely,

electromagnetically expanded tube at the end of deformation with necking zones. There

is a voluminous mechanics literature going back to the early1970’s addressing the choice

of localization criterion as well as the influence of the constitutive properties on the onset

of localization prediction. However, all of these investigations address a mechanical de-

formation phenomenon but none – to the best of the author’s knowledge – addresses the

coupled electromagnetic-thermomechanical localizationproblem that occurs with elec-

tromagnetic forming of sheet metal, thus motivating the present work.
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1.3 Modeling of EMF Processes

Predictive modeling of EMF and other coupled electromagnetic-mechanical processes

has also been a topic of extensive research in recent years. Semi-analytical techniques

have been applied to these coupled problems for rings and plates with some success,

notably in the previously mentioned works of Gourdin (1989)and Triantafyllidis and

Waldenmyer (2004), for ring expansion, and of Takatsu et al.(1988), for plate bulging.

These investigations employ fully coupled techniques thatrely on known integration

forms and inductance formulas that take advantage of the special geometry of rings and

plates. However, they do not generalize to arbitrary geometries.

Recently, numerical solutions of coupled electromagnetic-mechanical problems with

more complex geometries have been discussed in the literature. A good survey may be

found in El-Azab et al. (2003), and since that work much progress has been made. The

coupled solutions in the literature use either loose coupling of separate electromagnetic

and mechanical solvers or a staggered approach where a unified code solves separately

the electromagnetic and mechanical (and thermal) problemsat each solution step. Often

commercial finite element method (FEM) codes form the basis of the solution, as in

Oliveira et al. (2005), Karch and Roll (2005), and L’Eplattenier et al. (2006). Also, good

reviews of different coupled techniques for EMF solutions are given in Kleiner et al.

(2004) and Svendsen and Chanda (2005). Furthermore Svendsen and Chanda (2005)

along with Stiemer et al. (2006) introduce a new finite element technology specifically

to solve electromagnetic-mechanical problems (see also Reese et al. (2005) and Unger

et al. (2006)). Another program, which uses the Arbitrary Lagrangian-Eulerian (ALE)

framework, was employed by Fenton and Daehn (1998) to simulate EMF plate bulging,

and a related staggered scheme in the ALE framework is given by Rieben et al. (2006).
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Despite their sophistication, all these techniques lack both a consistent, fully coupled

variational formulation and a consistent, efficient numerical solution algorithm.

1.4 Outline of Present Work

The goals of this investigation are twofold: first to addressEMF ductility from a

constitutive point of view by examining the onset of strain localization in thin sheets sub-

jected to EMF loading conditions and second to present the consistent formulation and

implementation of the coupled electromagnetic-mechanical problem in finitely strained

solids. More specifically, addressing the first objective involves: i) the theoretical formu-

lation for the onset of necking in an electromagnetically loaded thin sheet, i.e. subjected

simultaneously to in-plane stresses and electric currents, ii) the investigation of the influ-

ence of the process characteristics and constitutive law onthe resulting necking predic-

tions, i.e. how the various aspects of the EMF process and thermoviscoplastic constitutive

law influence the FLD, and iii) the comparison of the general theory with forming lim-

its from relevant experiments. The analysis here is generalfor EMF process ductility

calculations, but for reasonable data the simulation is based on aluminum alloys and ax-

isymmetric processes. Since the constitutive choice is of paramount importance for the

FLD predictions, the bulk of the results pertain to investigating how different parameters

of the adopted law (hardening, rate, and thermal sensitivity as well as yield surface shape)

affect onset of necking predictions.

To address the second objective the work covers: i) the derivation of the general gov-

erning electromagnetic and mechanical equations, including direct and variational meth-

ods, ii) the application of the eddy current approximation to the variational technique to

provide a consistent variational formulation for EMF processes that is appropriate for

numerical implementation, iii) the consistent implementation of this variational formula-
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tion, which provides a theoretical justification for a staggered solution scheme, and iv)

the numerical validation of the formulation and implementation and simulation of rel-

evant EMF processes, including the novel problem of an electromagnetically expanded

tube with a non-conducting outer coating.



CHAPTER II

Ductility of Electromagnetically Loaded Thin Sheets

The ductility of thin sheets under EMF conditions is strongly influenced by the sheet’s

constitutive response. To investigate formability mechanisms for EMF processes, one

therefore must consider the details of the constitutive response’s effect on forming limits.

The consistent approach to this issue must involve the fullycoupled electromagnetic and

mechanical modeling of the actuator and the workpiece. Thisis a computationally in-

tensive process that requires the development of sophisticated algorithms for the solution

of a dynamic finite strain thermoplasticity boundary value problem coupled (in view of

the driving Lorentz body forces) to an electromagnetic problem with moving boundaries.

Although this direct approach is the correct way for accurate calculations of specific EMF

processes (with known part and actuator geometries), and isdiscussed in Chapter III, the

designer can be helped by some simpler, and considerably more rapid, calculations that

give a reasonable estimate of the ductility of a given alloy under EMF conditions. With

this requirement in mind, a general theory to calculate EMF-based FLD’s is proposed,

in which the calculation of strains at the onset of necking ina sheet accounts for the

presence of electric currents and the resulting ohmic heating effect.

The presentation is organized as follows. Section 2.1 introduces the theoretical for-

mulation of the onset of necking problem in a finitely strained thin sheet under combined

11
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in-plane stresses and electric currents. The analysis is based on a Marciniak-Kuczynski

“weak band” model using a full Lagrangian formulation. The same section deals with

the most general form of the thermoviscoplastic constitutive law and explains the choice

for the strain and current density profiles. In Section 2.2, following a brief explanation

of the numerical algorithm adopted for solving the problem’s ordinary differential equa-

tions (ODE’s), the results of the investigation are presented and discussed. The general

theory is then applied to comparisons with experiments in Section 2.3. Section 2.4 is a

concluding discussion of the work. The important issue of choice for the onset of neck-

ing criterion is presented in detail and justified in the Chapter II Appendix, Section 2.A,

where the weak band imperfection criterion is compared to a linearized stability criterion

that is independent of imperfection size.

2.1 Problem Formulation

As discussed previously, a weak band analysis for the localization of deformation is

used to analyze the onset of necking in an unconstrained, electromagnetically expanded

axisymmetric tube or plate, modeled as a biaxially stretched sheet subjected to electric

currents. The governing equations for the mechanical and electrical field quantities in the

localized deformation zone are followed by the presentation of the rate and temperature-

dependent constitutive models for the sheet. The adopted strain and electric current pro-

files for modeling the EMF process complete the simulation description.

2.1.1 Localization Zone Analysis

Figure 2.1 shows a thin sheet under plane stress conditions,an idealization of a small

portion of a tube or plate sheet, thus ignoring curvature effects. Inertia effects are also

ignored in the present analysis, and the tube or plate hoop direction and the 1-direction in

Figure 2.1 are taken coincident. Localized deformation is assumed to occur in a narrow
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Figure 2.1: Reference configuration geometry of the weak band.

band (B) with normal directionN � i cosΦ� j sinΦ and tangentS � �i sinΦ� j cosΦ.

These are the reference configuration directions, while thecorresponding current config-

uration quantities are denoted byn, s, andφ. An initial imperfection differentiates the

band and sheet and is implemented as either a material parameter or geometric (thickness)

discontinuity in the reference configuration properties. With this model in place, one en-

deavors to calculate the deformation gradientFB, stressσB, current jB, temperatureθB

and internal variable (plastic strain)ǫ p
B inside the band from their counterpart quantities

outside the band (FA, σA, jA, θA andǫ p
A).

The large deformations inherent in this problem lead naturally to a full Lagrangian

(reference configuration) formulation. A current configuration formulation could have

been chosen, but the Lagrangian formulation consistently accounts for the complex large

deformation kinematics, reducing the likelihood of error in their representation. Mechan-

ical considerations require that displacement and traction be preserved across the band.

More specifically displacement continuity across the band dictates1�
FB
αβ � FA

αβ

�
S β � 0, (2.1.1)

1Here and subsequently Greek indexes range from 1 to 2 while Latin indexes range from 1 to 3. Ein-
stein’s summation convention over repeated indexes is implied, unless specified otherwise.



14

and traction continuity requires

Nα

�
ΠB
αβ � ΠA

αβ

� � 0, (2.1.2)

where the first Piola-Kirchhoff (P-K) stressΠ is expressed in terms of the Cauchy stress

as

Πi j � detpFqrF�1
ik σk js. (2.1.3)

Electrical considerations require that the electric current and tangential component of

the electromotive force must be preserved across the band. From current continuity one

has

Nα

�
JB
α � JA

α

� � 0, (2.1.4)

where the electric current density vector in the reference configurationJ is related toj,

its counterpart in the current configuration, by

Ji � detpFqrF�1
ik jks. (2.1.5)

Faraday’s induction law requires that the tangential component of the electromotive

force in the reference configurationE be preserved, which dictates

S α

�
EB
α � EA

α

� � 0, (2.1.6)

where the reference configuration electromotive forceE is related to its current configu-

ration counterparte by

Ei � ekFki. (2.1.7)

Finally, assuming adiabatic heating both outside (A) and inside (B) the weak band

(thus the various field quantities need not be indexed), energy conservation (per unit

current volume) dictates

µcp
9θ � χσe 9ǫ p � ei ji, (2.1.8)
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whereµ is the mass density,cp is the specific heat,9θ is the rate of change of the tempera-

ture,χ p0  χ   1q is the plastic work conversion factor andσe 9ǫ p is the plastic dissipation

(σe is the equivalent Cauchy stress andǫ p is the plastic strain).

2.1.2 Constitutive Response

Due to the electromagnetic nature of the forming process, the simulation requires two

sets of constitutive equations: one for the mechanical response and one for the electrical

response.

2.1.2.1 Mechanical Constitutive Law

An EMF process imposes high strain rates and high temperatures on the workpiece,

thus requiring a temperature-dependent viscoplastic constitutive law, which can be de-

scribed by

σ̊i j � L
e

i jklD
e
kl, (2.1.9)

whereσ̊i j denotes the convected rate of Cauchy stress,L e
i jkl are the solid’s elastic moduli,

andDe
i j are the elastic components of the strain-rate tensor. The frame-invariant stress rate

σ̊i j is given in terms of the stress rate9σi j by

σ̊i j � 9σi j � Lkiσk j � σikLk j, (2.1.10)

whereLi j is the solid’s velocity gradient. Note that the choice of theconvected rate of

stress is arbitrary.

The strain rate may be additively decomposed into an elasticDe, a plasticDp and a

thermalDθ part, as follows

Di j � De
i j � Dp

i j � Dθ
i j. (2.1.11)

The plastic part of the strain rate for a viscoplastic solid which is described in terms of
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only one internal variableǫ p – the accumulated plastic strain – is

Dp
i j � 9ǫ p BσeBσi j

, (2.1.12)

while the thermal part of the strain rate is

Dθ
i j � η 9θδi j, (2.1.13)

whereη is the thermal expansion coefficient. The internal variableǫ p determines the size

of the material’s current yield surface, which is characterized by the equivalent stressσe,

and the relation betweenǫ p and the solid’s quasistatic uniaxial responseσ � g pǫ p, θq is9ǫ p � 9ǫ p
0

��
σepσi jq
g pǫ p, θq
1{mpθq � 1

�
, (2.1.14)

wherempθq is the solid’s rate-sensitivity exponent that is (in general) a function of tem-

perature and9ǫ p
0 is a material constant. Expressions that are based on experiments will be

given subsequently forσe pσi jq andg pǫ p, θq.
Attention is now turned to the required kinematical relations. The components of the

strain rateDi j and velocity gradientLi j are given in terms of the deformation gradient and

its rate by

Di j � 1
2
pLi j � L jiq , Li j � 9FikF�1

k j . (2.1.15)

In the preceding equations the constitutive relations are presented in a general three

dimensional form. For the EMF tube or circular disk bulging simulation, a state of plane

stress is assumed. Consequently, only in-plane deformations are considered, and in view

of transverse isotropy of the sheet one has

Fα3 � F3α � 0, (2.1.16)

while the state of plane stress dictates

σi3 � 0. (2.1.17)
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The plane stress version of the constitutive equation (2.1.9) is thus expressed as

σ̊αβ � L̂
e
αβγδD

e
γδ, (2.1.18)

where the plane stress elastic moduliL̂ e
αβγδ

and the full three-dimensional moduli are

related by

L̂
e
αβγδ � L

e
αβγδ �L

e
αβ33pL e

3333q�1
L

e
33γδ. (2.1.19)

To complete this temperature-dependent, viscoplastic model two experimentally based

elements are necessary: the rate-independent uniaxial responseσ � g pǫ p, θq and the

yield surfaceσe pσi jq.
The experimentally motivated (see Yadav et al. (2001)) rate-independent uniaxial re-

sponse employed here is given by

g pǫ p, θq � σy

�
1� ǫ p

ǫy

�n �
1� � θ � θ0

θm � θ0


α�
, (2.1.20)

whereσy is the yield stress,ǫy � σy{E is the yield strain,n is the hardening exponent,θm

is the melting temperature,θ0 is the reference temperature, andα is the thermal sensitivity

exponent.

The mechanical constitutive equations are completed with the yield surface descrip-

tion. Three different yield surfaces are considered in this work. The first isthe familiar

von Mises (isotropic, quadratic) yield surface, included for comparison purposes. The

second is an isotropic, non-quadratic yield surface. Thesetwo models are appropriate for

isotropic materials that do not exhibit the Bauschinger effect, i.e. materials that exhibit no

difference between their tensile and compressive responses, and both are described by

σe � ��|σ1 � σ2|β � |σ2 � σ3|β � |σ3 � σ1|β� {2�1{β
, (2.1.21)

whereβ is a coefficient determined by the yield surface and material type andσi are the

principal values of the Cauchy stress tensor. The von Mises yield surface requiresβ � 2,
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and for the non-quadratic surface, experimental evidence suggestsβ � 8 for aluminum

(see Barlat et al. (1997b) and references cited therein).

The third yield surface considered is an anisotropic non-quadratic yield surface Yld94,

proposed for aluminum alloys by Barlat et al. (1997a). It is described by

σe � ��αx|s2 � s3|β � αy|s3 � s1|β � αz|s1 � s2|β� {2�1{β
, (2.1.22)

where againβ � 8 for aluminum. Moreover, the auxiliary isotropic stresss (with princi-

pal valuess1, s2, s3) is related to the actual Cauchy stressσ by

si j � L i jklσkl, L �
������������������

1
3 pc2 � c3q �1

3 pc3q �1
3 pc2q 0 0 0�1

3 pc3q 1
3 pc3 � c1q �1

3 pc1q 0 0 0�1
3 pc2q �1

3 pc1q 1
3 pc2 � c1q 0 0 0

0 0 0 c4 0 0

0 0 0 0 c5 0

0 0 0 0 0 c6

������������������ . (2.1.23)

The experimentally determined parametersαx, αy, αz, c1, c2, c3, c4, c5, c6 which deter-

mine the sheet’s anisotropy are taken here as constants. It should be mentioned in Yld94

the parametersαx, αy, αz are more generally functions of the stress state. The axes of

material anisotropy are taken to coincide with the axes in Figure 2.1 (i.e. the rolling di-

rection is aligned with the 1-direction), so the stress dependence ofαx, αy, αz is actuated

only for strain paths with one positive and one negative principal strain (Barlat et al.,

1997b). However, for these paths the influence of the yield surface anisotropy on the lo-

calization strain is not found to be significant (see also Butuc et al. (2003)), thus justifying

our choice of using constantαx, αy, αz.
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2.1.2.2 Electrical Constitutive Law

In addition to the mechanical an electrical constitutive response of the material is

required. Here for simplicity an isotropic Ohm’s law is assumed,

eα � rpθq jα, (2.1.24)

whererpθq is the resistivity of the isotropic sheet that is in general afunction of tempera-

ture. This relation in addition to equation (2.1.7) allows equation (2.1.6) to be utilized (in

addition to equation (2.1.4)) to find the currentsjB in the weak band.

One now has in equations (2.1.9)–(2.1.24) a complete description of the solid’s consti-

tutive response, where the necessary material constants are determined from experiments.

An account of the material constant selection is given below.

2.1.3 Material Parameter Selection

Finding an alloy where all the relevant material parametersfor the viscoplastic model

in Sections 2.1.1 and 2.1.2 have been determined experimentally is a rather formidable

task. A combination of AA6061-T6 and AA6016-T4 parameters seems the best available

option for conducting a meaningful simulation. Constitutive parameters for AA6061-T6

are given by Yadav et al. (2001), based on experimental results by Yadav et al. (1995),

and are presented in Table 2.1.

σy � 276 MPa E � 69 GPa ǫy � σy{E
n � 0.0741 m � 0.0870 α � 0.59ǫ p

0 � 1000 s�1 θ0 � 298 K θm � 853 K

Table 2.1: AA6061-T6 uniaxial response parameter values (Yadav et al., 2001)

Additional material parameters are required to implement equations (2.1.8) and (2.1.12).

These parameters can be found from standard tables for aluminum (see also Triantafyl-

lidis and Waldenmyer (2004)) and are presented in Table 2.2.
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µ � 2700 kg/m3 cp � 896 J/kg-K
χ � 0.9 r0 � 2.65 10�8 Ωm η � 2.3 10�5 1/K

Table 2.2: AA6061-T6 material parameter values (Triantafyllidis and Waldenmyer, 2004)

Values for the parameters describing the alloy’s yield surface are also needed. Unfor-

tunately, there is no information in the open literature regarding values for these param-

eters for AA6061-T6. This forces a compromise to be made, andthese parameters are

obtained from the closest available material data. Butuc etal. (2003) provides these data,

which pertain to AA6016-T4, and the values for the corresponding parameters are given

in Table 2.3.

αx � 2.0 αy � 3.5 αz � 1.0
c1 � 1.0474 c2 � 0.7752 c3 � 1.0724 c6 � 0.9288

Table 2.3: AA6016-T4 yield surface parameter values (Butucet al., 2003)

Triggering localized deformation requires an initial imperfection in the weak band,

according to Marciniak and Kuczynski (1967) who first introduced this concept in pre-

dicting forming limit diagrams in the tensile region. Initially a thickness imperfection

distinguished the weak band (e.g. Marciniak and Kuczynski (1967)), but imperfections

in other material parameters were subsequently shown to be useful in predicting forming

limits (e.g. Needleman and Triantafyllidis (1978)). Results of this method are sensitive to

the magnitude of the imperfection. Alternative methods that do not utilize an imperfec-

tion have been proposed for rate-independent solids by Stören and Rice (1975) and for

rate-dependent solids by Triantafyllidis et al. (1997). Unfortunately, the deformation the-

ory approach proposed by Stören and Rice (1975) cannot be generalized for viscoplastic

solids, while the perturbation method introduced by Triantafyllidis et al. (1997) produces

unreasonable results for tensile loading (see Chapter II Appendix, Section 2.A).
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For reasons discussed in detail in the Chapter II Appendix, the weak band method of

Marciniak and Kuczynski (1967) has been adopted. A weaknessin the yield stressσy is

implemented using the imperfection parameterξ such thatσB
y � p1� ξqσA

y . In choosing

a value forξ simulated quasistatic (rate-independent, isothermal) forming limit curves

using proportional straining paths and varyingξ values are considered. The sensitivity

of these curves toξ is most pronounced for biaxial stretching strain paths (ǫ1 ¡ 0, ǫ2 ¡
0), while strain paths with one positive and one non-positive principal strain (ǫ1 ¡ 0,

ǫ2 ¤ 0) show relatively little dependence on the value of the imperfection parameter. The

resulting onset of necking curves are compared with the experimental quasistatic forming

limit diagram for AA6061-T6, presented by LeRoy and Embury (1978). Requiring a

value forξ that gives the best overall agreement between simulated andmeasured forming

limit curves resulted in the present choice ofξ � 0.001.

The issue of a temperature-dependent strain-rate sensitivity m needs also to be ad-

dressed. The constant value form given in Table 2.1 does give a reasonable correlation

with experimental constitutive data (Yadav et al., 2001), and this value will be used in

the “base case” set of parameters. However, there is compelling evidence (see Krajewski

(2005); Ogawa (2001)) that the strain-rate sensitivity is an increasing function of temper-

ature,mpθq.
To obtain a reasonable estimate formpθq, the work of Tirupataiah and Sundararajan

(1994) and Ogawa (2001) is used. Tirupataiah and Sundararajan (1994) show a material-

dependent transition strain rate between low strain-rate sensitivity and high strain-rate

sensitivity. For aluminum with properties similar to AA6061-T6, the transition occurs at

or below 100 s�1; typical EMF strain rates are well above this. Thus, only data for strain

rates above 100 s�1 are appropriate to fit a temperature-dependent strain-ratesensitivity

for EMF processes. Ogawa (2001) provides stress versus strain rate data on AA6061-



22

T6 at 5% strain (or 6%, noted appropriately in the paper) for temperatures ranging from

77 K to 473 K and strain rates up to 1.5 105 s�1. Equations (2.1.14) and (2.1.20) are

used to findm at the different temperatures (m is assumed independent of strain rate); the

quasistatic flow stress is adjusted to that indicated by Ogawa (2001) at each temperature

(for the quasistatic caseσ � gpǫ p, θq from equation (2.1.20)). Moreover, it is required that

mpθq matchm constant at room temperature; a constant must be added to thefunctional

dependence ofm on θ implied by the data in Ogawa (2001). The following empirical

relation is thus proposed (whereθ is in degrees K)

m pθq � p1.40 10�6qθ2 � p8.44 10�4qθ � 0.214, (2.1.25)

as the best fit for the above described experimental data (andtherefore most appropriate

in the temperature range 77 K¤ θ ¤ 473 K).

2.1.4 Strain, Strain Rate, and Current Density Profiles

A proportional straining path is the standard assumption for the calculation of FLD’s,

i.e. ǫ2 � ρǫ1 with ρ a constant such that�1{2 ¤ ρ ¤ 1. A uniaxial stress state oc-

curs forρ � �1{2 while ρ � 1 represents an equibiaxial plane stress state. However,

in contrast to the quasistatic forming case of rate-independent solids where the FLD is

independent of the strain historyǫ1ptq, the present calculations on an electromagnetically

formed viscoplastic solid need a time-dependent strain profile ǫ1ptq, in addition to a time-

dependent current density profilej1ptq. The strain, strain rate, and current density profiles

are motivated by the ring calculations of Triantafyllidis and Waldenmyer (2004).

Therefore, since the principal hoop strain rate is shaped asa smooth pulse, a sinu-

soidal strain rate pulse is assumed for simplicity. Hence for a pulse of duration 4τ0 the

principal strains are taken to be

ǫ1ptq � ǫmax

2

�
1� cos

�
πt
4τ0


�
, ǫ2ptq � ρǫ1ptq, (2.1.26)
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which gives for the corresponding strain rate9ǫ1ptq � πǫmax

8τ0
sin

�
πt
4τ0



. (2.1.27)

The maximum principal strain,ǫmax, and the characteristic time,τ0, are variables of the

simulation to be subsequently specified.

The effect of implementing the simplified strain profile above is investigated by com-

parison with a linear time-dependent strain profile. Again for a pulse duration of 4τ0, the

linear strain profile is taken as

ǫ1ptq � ǫmax

4τ0
t, ǫ2ptq � ρǫ1ptq, (2.1.28)

which gives a constant corresponding strain rate9ǫ1ptq � ǫmax

4τ0
. (2.1.29)

Here for comparison purposesǫmax andτ0 are equal to those in the sinusoidal strain pro-

file.

Due to the electromagnetic nature of the process, knowledgeof the principal current

flowing through the sheet is also necessary. Keeping in mind the ring simulations (Tri-

antafyllidis and Waldenmyer, 2004) and the fact that in tubebulging only a current in the

hoop direction occurs, with a pulse duration typically halfof the strain pulse duration, the

following sinusoidal form of the principal current densityis adopted for simplicity

j1ptq � Jmaxsin

�
πt
2τ0



, j2ptq � 0, ji � 0 for t ¡ 2τ0, (2.1.30)

whereJmax is the maximum principal current density. It is also assumedthat no backward

current is allowed to flow, so that fort ¡ 2τ0, j1 � j2 � 0. Although the exact nature of

the strain and current density time profiles depends on the solution of the coupled electro-

magnetic and thermomechanical boundary value problem for the relevant experiment, the
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profiles chosen above are good approximations of the calculated profiles of the EMF ring

work (Triantafyllidis and Waldenmyer, 2004) thus justifying the simplifying assumptions

of equations (2.1.26), (2.1.27) and (2.1.30).

To complete these profiles, some physically motivated values for τ0, ǫmax and Jmax

must be selected. As defined in equations (2.1.26)–(2.1.30)τ0 is one quarter of the total

forming time, which equals the time to the electric current’s first maximum. This defini-

tion is motivated by the work of Triantafyllidis and Waldenmyer (2004), whereτ0 is the

time to the first maximum of the electric current in the forming circuit in isolation (with-

out a workpiece). The fully coupled results show a similar time to the electric current’s

first maximum, and the total forming time is approximately 4τ0. In the present work

this characteristic time in combination withǫmax determines the forming rate (see equa-

tion (2.1.27)). Without a fully coupled EMF boundary value problem simulation,ǫmax

must be specified a priori. The value ofǫmax needs to be greater than the EMF necking

strain for all materials and processes of interest, but it should be reasonable as well. If

ǫmax is chosen high,τ0 must be large to keep the applied strain rate similar to EMF rates.

The method in the present work takesǫmax as a constant (regardless of the strain pathρ),

with valueǫmax � 0.8 which is greater than all of the necking results found here.

With ǫmax specified, the strain and strain rate profiles need onlyτ0 to be complete. An

appropriate value is found by appealing to a property of the viscoplastic material model,

namely its overstressζ. Due to the dynamic nature of an EMF process, the workpiece

experiences higher flow stresses than it would in a quasistatic process at identical strains

and temperatures. The amount by which the flow stress exceedsthe quasistatic flow stress

is the overstress, defined as

ζ � σepσi jq
gpǫ p, θq � 1. (2.1.31)

Assuming the material constitutive response is fully defined, ζ can be related to the strain
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rate through equation (2.1.14). Specifically, assuming a uniaxial process for simplicity

and that 9ǫ p � 9ǫ � 9ǫ1 (a reasonable assumption at the large strains inherent in EMF

processes), one has 9ǫ19ǫ p
0

� pp1� ζq1{mpθq � 1q. (2.1.32)

The maximum strain rate implies

τ0 � πǫmax

89ǫ p
0

pp1� ζmaxq1{mpθq � 1q�1. (2.1.33)

Thus given an appropriate value of maximum overstressζmax, τ0 is specified; since both

m and 9ǫ p
0 influence the time scale of a process,ζmax is chosen to give a physically mean-

ingful forming speed. The valueζmax � 0.15 is therefore the base case in all subsequent

calculations.

Finally, the value forJmax is chosen by considering the temperature increase needed

to cause melting. From equation (2.1.8), the temperature increase of the material is due

to two sources: plastic work and ohmic heating. As shown in the ring simulations (Tri-

antafyllidis and Waldenmyer, 2004), by the end of the forming process the dissipation of

the plastic work and specimen ohmic heating are comparable.This allows the following

approximation to equation (2.1.8)

µcp
9θ � 2rpθq p jα jαq . (2.1.34)

From equation (2.1.30) the time-dependent form of the electric current is known, and

equation (2.1.34) may be integrated with respect to time ifrpθq is taken as constant, an

assumption that will subsequently be used throughout the simulations. Integrating equa-

tion (2.1.34) fromt � 0 to t � 4τ0 gives

Jmax � �
µcppθ � θ0q

2rτ0


1{2
. (2.1.35)
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If one takesθ � θm, Jmax from equation (2.1.35) is such that melting occurs at the endof

the simulation, i.e.

Jmelt � �µcppθm � θ0q
2rτ0


1{2
. (2.1.36)

To avoid meltingJmax must be lower thanJmelt, and a reasonable value for EMF processes

is Jmax � 0.15Jmelt. This value, along withǫmax � 0.8 andτ0 from equation (2.1.33),

completes the base case forming conditions for the present simulations, and the result of

the above analysis isτ0 � 78.8 µsec,Jmax � 2.69 109 A/m2 and a maximum forming

speed of 3989 s�1.

2.2 Forming Limit Results

The goal of the present section is to present an application of the general theory pro-

posed in the previous section. Following the description ofthe numerical solution al-

gorithm, the section proceeds with the calculation of the FLD for the “base case” alloy

and the investigation of its dependence on the various material properties and loading

parameters.

2.2.1 Assumptions and Numerical Implementation

In the interest of simplicity it is assumed that the materialis incompressible. For the

large strains encountered during the EMF process, this assumption is quite reasonable

since compressibility effects in metals – due to elastic distortion and thermal strainof

their crystals – are an insignificant part of the overall plasticity dominated deformation.

Consequently, the total strain rate is decomposed into traceless elasticDe
i j (De

ii � 0)

and plasticDp
i j (Dp

ii � 0) parts, the first property requiring a poisson ratioν � 0.5 and

the second property guaranteed for yield functions which are independent of the first

invariant of the stressσii.
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With these simplifying assumptions in place, the governingequations are cast as a

system of first order ODE’s. These ODE’s are solved using a fourth order Runge-Kutta

algorithm. For the solution outside the band only the adiabatic heating equation (2.1.8)

and the constitutive equations are required, i.e. one has9xA � fApxA, tq, xA � rσA
1 , σ

A
2 , ǫ

p
A, θ

As (2.2.1)

whereσA
1 andσA

2 are Cauchy principal stresses. Inside the localized band, the four con-

tinuity equations (2.1.1), (2.1.2), (2.1.4) and (2.1.6) give six scalar equations, which in

addition to energy balance equation (2.1.8) and the four constitutive equations detailed

in Section 2.1.2 (three for the in-plane stressesσαβ and one for the internal variableǫ p)

can completely determine the eleven variable electromechanical state inside the band

(Fαβ (4), σαβ (3), jα (2), ǫ p (1), θ (1)) in terms of the known counterpart field quantities

outside the band. Note, thejB
i are obtained directly (without recourse to ODE’s) from

equations (2.1.4)–(2.1.7), while due to the incremental nature of plasticity calculations,

the rate forms of equations (2.1.1) and (2.1.2) are required. Once again, the resulting

equations are cast as a system of first order ODE’s9xB � fBpxB, tq, xB � rσB
11, σ

B
12, σ

B
22, F

B
11, F

B
21, F

B
12, F

B
22, ǫ

p
B, θ

Bs, (2.2.2)

where the t-dependent terms infBpxB, tq are functions ofxA.

The numerical localization calculations require establishing a necking criterion. Lo-

calization occurs whenǫ p
B becomes unbounded for a finite value ofǫ

p
A, which is numer-

ically implemented as when9ǫ p
B{ 9ǫ p

A ¡ 10. The value 10 is chosen arbitrarily but is ad-

equately large to have a negligible effect on the calculated necking strain. The necking

of the imperfect sheet depends on the angleΦ of the imperfection in the reference con-

figuration (see Figure 2.1), which can take any value 0¤ Φ   π{2. The value that

minimizes the necking strain outside the band gives the sought forming limit strains. One
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must therefore test through the entirer0, π{2q range of band angles (satisfactory accuracy

is obtained using increments ofπ{180) for each load pathρ, and this results inΦ � 0 for

0¤ ρ ¤ 1 butΦ � 0 for�1{2¤ ρ   0.

Finally, numerical precision of the localization strain calculations must be checked.

First, the quasistatic case has an analytical solution forρ � 0 andβ � 2 (isotropic J2 flow

theory of plasticity) ofǫneck obtained at the maximum of the nominal stress. Usingξ �
0.001 and an adequately small time step (see below) the analytical solution is recovered.

Second, for both the quasistatic and rate-dependent cases the time step,∆t, is chosen by

requiring less than 0.001 change in necking strain for any∆t decrease. This results in the

nondimensional time steps∆t{τ0 � 3 10�7 for the quasistatic process and∆t{τ0 � 2 10�5

for the EMF processes.

2.2.2 Forming Limit Diagrams

The numerically calculated FLD’s are presented in Figures 2.2 through 2.11. More

specifically, the influence of material properties is presented in Figures 2.2–2.7, while the

influence of various loading parameters is given in Figures 2.8–2.11.

The effect of EMF on the FLD is presented in Figure 2.2, with six forming limit

curves, three each for EMF and quasistatic forming conditions (quasistatic results are

obtained from the dynamic simulation by imposing a low forming speed, minimal strain-

rate sensitivity, and an isothermal process). For each one of the three yield surfaces

presented in Section 2.1.2.1 there are two FLD curves, one for an EMF process and one

for its quasistatic counterpart. Use of an EMF process results in a significant increase

in forming limit strains as compared to a quasistatic one of the sameρ, and the increase

is dependent on the yield surface. This dependence is important in theρ ¡ 0 region,

while ρ ¤ 0 shows negligible influence of the yield surface choice. Notice that the
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Figure 2.2: Comparison of EMF versus quasistatic forming limit curves for an alloy with
a given uniaxial response for three different yield surfaces.

necking strains for the isotropicβ � 2 surface (von Mises) are unrealistic even for the

quasistatic loading. The reason is the low curvature of the yield surface, in particular

nearρ � 1, a known deficiency of flow theory models (see discussion in Stören and Rice

(1975)). Of the three yield surface models considered here,the anisotropic nonquadratic

surface, Yld94, is the best choice based on comparison with the experimental quasistatic

FLD presented in LeRoy and Embury (1978). Hence in all subsequent calculations the

Yld94 model is used. From the curves generated with this yield surface, the EMF process

provides between a 25% (ρ � 1) and 225% (ρ � �1{2) increase in forming limits over a

quasistatic process.

The necking angleφneck of the weak band (whereφ is the angle of the band in the

current configuration related to its reference configuration counterpartΦ by tanpφq �
tanpΦqexppǫ2 � ǫ1q) is plotted for the base case EMF process against the strain ratio

ρ � ǫ2{ǫ1 in Figure 2.3a. Forρ ¥ 0, φneck � 0, while for ρ   0, φneck � 0; φneck
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approaches 40 degrees asρÑ �1{2. These values ofφ for bothρ   0 andρ ¥ 0 mirror

known quasistatic results (see Hill (1952); Stören and Rice (1975)), indicating thatφneck

is insensitive to EMF processes.

In order to give an idea of a typical temperature increase dueto the application of an

EMF process the temperatures at the onset of necking for the base case EMF process,

both outside (θA) and inside (θB) the weak band, are shown in Figure 2.3b plotted against

the strain ratioρ � ǫ2{ǫ1. A temperature rise between 30 K and 80 K in the sheet (A) is

predicted, with the minimum atρ � 0 and the maximum atρ � 1. Moreover, there is a

significant temperature difference between the sheet (A) and weak band (B) due to higher

plastic strain rate and higher current density. The ramifications of this additional rise in

temperature inside the band will be discussed subsequently.

Figure 2.4 shows the influence on necking of the speed of the EMF process, with the

quasistatic (QS) forming limits shown for comparison. Changing the loading speed is

equivalent to changing the nondimensional time scale9ǫ p
0τ0, which for consistency (since

m also controls viscosity) is driven by the maximum overstress ζmax as discussed in Sec-

tion 2.1.4. Increasingζmax corresponds to increasing the forming speed, which resultsin

higher necking strains as expected from the material’s viscosity. The increase in ductility

due to EMF effect is greatest forρ   0, where the forming limit curve shifts up, and

decreases with increasingρ.

The influence of the hardening exponentn is shown in Figure 2.5. An increase inn

is known to increase the forming limits for a quasistatic process (e.g. Stören and Rice

(1975)), and the same influence is seen here for an EMF process. The increase in necking

strains is found for bothρ   0 andρ ¥ 0, with the minimum increase occurring atρ � 1.

Moreover with the values ofn considered here 0¤ n ¤ 0.25, there is a parallel shift in

the forming limit curves forρ   0. Forρ ¡ 0 with small values ofn the necking strains
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Figure 2.3: a) Angle of the weak band in the current configuration at the onset of neck-
ing φneck versus principal strain ratioρ for the base case EMF process. b)
Temperature at the onset of neckingθneck as a function of the principal strain
ratioρ both outside (A) and inside (B) the weak band for the base caseEMF
process.
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Figure 2.4: Influence of the process’s characteristic timeτ0 (based on the resulting maxi-
mum overstressζmax) on the forming limit curve.

increase with increasingρ while for large values ofn this trend is reversed, withǫneck

decreasing for increasingρ.

Figure 2.6 shows the influence on ductility of the strain-rate sensitivity exponentm.

As expected from the thermally insensitive case (see Hutchinson and Neale (1977)), the

forming limits increase with increasingm, with the minimum ductility increase occurring

atρ � 1. Here the influence ofm is calculated for a fixed maximum strain rate (i.e.9ǫ p
0τ0

fixed), which implies that the pulse time for all experimentsremains fixed.

The effect of the temperature sensitivity exponentα is presented in Figure 2.7. Recall

that for temperature sensitive solids an increase in temperature reduces the flow stress,

i.e. weakens the material. From equations (2.1.14) and (2.1.20) it also follows that a

lower α indicates stronger temperature sensitivity. Since the weak band receives more

heating than the sheet (see Figure 2.3b) through additionalplastic work and higher current

densities, consequently an increased temperature sensitivity weakens the band more in
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Figure 2.5: Influence of the hardening exponentn on the forming limit curve.
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relation to the sheet, which encourages necking. This mechanism explains why a decrease

in α (i.e an increase in temperature sensitivity) causes a decrease in the forming limits for

all values ofρ.

In Figure 2.8 is shown the influence of the initial temperature θi on the FLD. The

sheet and weak band in all cases have the same initial temperature; the base case initial

temperature is the reference temperatureθ0 � 298 K. The form of the uniaxial response,

equations (2.1.14) and (2.1.20), indicates that an increase in temperature makes the flow

stress, for subsequent temperature changes, less temperature sensitive forα   1, equally

temperature sensitive forα � 1 and more temperature sensitive forα ¡ 1. Also, Fig-

ure 2.7 indicates that the forming limits increase with decreasing temperature sensitivity.

These observations explain the influence ofθi on the forming limits. In particular,α � 1

shows negligible dependence onθi, while calculations with thermal sensitivity values

α � 0.5 andα � 2 indicate that for increasingθi forming limits forα   1 increase and

forming limits forα ¡ 1 decrease.
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Figure 2.8: Influence of initial temperatureθi on the forming limit curve for three different
thermal sensitivity exponents.

Figure 2.9a presents the influence of the electric current density on the FLD. Plastic

dissipation produces two orders of magnitude more temperature difference between weak

band and sheet than ohmic dissipation in the base case EMF process. This indicates the

electric current primarily heats the workpiece uniformly (i.e. the same amount inside

and outside the band), and by the results in Figure 2.8 one expects increased forming

limits with increased electric current. However, asJmax approachesJmelt the temperature

difference (between weak band and sheet) due to ohmic dissipation approaches that of

plastic dissipation. For largeJmax ohmic dissipation has a strong negative influence on the

forming limits since an increased temperature difference encourages necking. The result

is the upper bound on the forming limits for increasingJmax observed in Figure 2.9a.

In Figure 2.9b the temperature difference between weak band and sheetθB � θA, for

the casesJmax � 0.15Jmelt, Jmax � 0.50Jmelt andJmax � 0.70Jmelt, is plotted with respect

to nondimensional timet{τ0 for the strain pathρ � 0. To illustrate the mechanism behind
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the upper bound on the forming limits for increasingJmax, the temperature difference is

divided into a part due to plastic dissipation and a part due to ohmic dissipation. As

Jmax increases the plastic dissipation difference between zones A and B is reduced while

the corresponding difference in ohmic dissipation dramatically increases due to thinning

of the weak band and the subsequent electric current densityincrease. BetweenJmax �
0.50Jmelt and Jmax � 0.70Jmelt these two influences add to produce minimal change in

θB � θA; this correlates with negligible change in the forming limits (see Figure 2.9a).

The increasedθB � θA due to unequal ohmic heating encourages necking and counteracts

the uniform temperature increase that delays necking (see Figure 2.8).

Figure 2.10 shows the results of implementing a temperature-dependent strain-rate

sensitivitympθq as described by equation (2.1.25). Since the strain-rate sensitivity in-

creases with temperature, its effect overrides the influence of the ohmic dissipation. The

forming limits thus behave monotonically with respect to the electric current. This in-

dicates the temperature dependence of the strain-rate sensitivity strongly influences the

FLD for EMF processes.

The influence of the strain profile on necking is presented in Figure 2.11. The si-

nusoidal base case profile (equations (2.1.26) and (2.1.27)) is compared with the simple

linear profile (equations (2.1.28) and (2.1.29)), whereǫmax andτ0 are kept at the base case

values for both profiles. Figure 2.11 shows the profile has little influence on the forming

limits, and this further supports the use of equations (2.1.26) and (2.1.27) as a reasonable

approximation to the actual strain profile encountered during an EMF process.

Figures 2.2–2.11 illustrate how the electromagnetic forming process enhances sheet

ductility. The effects of material properties and EMF process characteristics have been

examined in detail.
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2.3 Experimental Comparisons

The work of this section pertains to the comparison of simulations based on the for-

mulation discussed previously in Section 2.1 to experimental data obtained from a series

of experiments on electromagnetically expanded aluminum alloy tubes. Section 2.3.1

gives a discussion of the experimental procedure, the selection of material properties for

the AA6063-T6 tube alloy and a description of the strain and current density profiles. In

Section 2.3.2 four different experiments are presented and compared to the corresponding

theoretical simulations.

2.3.1 Experimental Problem Formulation

The general theory of the EMF-based FLD has been discussed previously and is here

specialized to electromagnetic tube expansion experiments. The experimental procedure

is first discussed, followed by the presentation of temperature-dependent viscoplastic con-

stitutive models for the tube sheet. The formulation is completed by introducing the strain

and current profiles adopted for modeling the EMF process.

2.3.1.1 Experimental Procedure

Figure 2.12 shows a schematic of the set-up for the electromagnetic tube expansion

experiments. It consists of a capacitor bank connected to a solenoid actuator placed inside

an aluminum alloy tube. The experiments are conducted usinga commercial Maxwell

Magneform capacitor bank with a maximum stored energy of 16 kJ. The energy is stored

in 8 capacitors, each with a capacitance of 53.25µF. The system has a maximum working

voltage of 8.66 kV. Both the number of capacitors and charging voltage can be adjusted

to control the discharged energy. One Rogowski probe, R1 in Figure 2.12, is used to

measure the primary current. A second such probe, R2 in Figure 2.12, measures the
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Figure 2.12: Schematic representation of the experimentalset-up for electromagnetic ex-
pansion of tubes.

aggregate coil current, which is the product of the number ofcoil turns and the primary

current, combined with the induced current in the tube.

Figure 2.13a shows one of the bare coils fabricated by commercial spring winding

from 6.35 mm diameter ASTM B16 brass wire. Two coils are used in these experiments,

one with four turns (as shown in Figure 2.13a) and an otherwise identical coil with ten

turns. Both coils have an outer diameter of 54 mm and pitch of 9.4 mm. The wire is

covered with heat shrink-wrap tubing to provide insulationand then potted in urethane.

Figure 2.13b shows the actual experimental configuration with an aluminum alloy tube

sample fitted over the epoxy-coated coil. The tube samples are AA6063-T6 aluminum

alloy with an inner diameter of 57 mm and a wall thickness of 1.75 mm. The outer surface

of each tube is electrolytically etched with a pattern of 2.5mm diameter circles in order

to measure the strain in the expanded samples.

For each combination of coil and sample size, multiple samples are expanded with

incrementally increasing discharge energies until an energy level sufficient to initiate

necking and/or fracture of the tube is reached. Major and minor limit strains are then

measured from the deformed circles in areas where necking occurs, labeled “Unsafe”,

and in areas where no necking or failure is evident, labeled “Safe.” Figure 2.14 shows a

sample deformed tube for each of the four possible combinations of tube length and coil
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Figure 2.13: a) The bare 4-turn coil. b) Sample-actuator configuration. The 31.7 mm tall
aluminum tube sample is shown fitted around the urethane-coated 4-turn
coil.

length. The short coil is approximately the same length, 31.7 mm, as the short tubes; the

long coil is about the same length, 85.1 mm, as the long tubes.In Figure 2.14, tubes (a)

and (b) are short while tubes (c) and (d) are long, and tubes (a) and (c) are deformed using

a 4-turn coil while tubes (b) and (d) are deformed using a 10-turn coil. The data gathered

will subsequently be compared with the onset of necking calculations described above.

Full details of these experiments are published in Seth (2006).

In addition, data on the tube material’s uniaxial quasistatic stress-strain response are

gathered using an MTS machine. Samples are cut from the AA6063-T6 tubes according

to the ASTM tensile sample standard (0.630 cm wide, 2.54 cm long) by water jet. Tests

are conducted at a strain rate of 3.3 10�3 s�1, and the uniaxial quasistatic stress-strain

response in equation (2.1.20) (with constant temperatureθ � θ0) is fit with data corre-

sponding to a sample cut longitudinally from the tube (transverse samples are omitted

since the curvature of the tube requires substantial straightening for them, altering the

material’s behavior in the test). Figure 2.15 gives a comparison of the experimental data

and analytical fit. The resulting material parameters are detailed below.



42

Figure 2.14: Final configuration showing localized neckingof tubes deformed using the
experimental EMF setup. a) 31.7 mm tube deformed with 4-turncoil. b)
31.7 mm tube deformed with 10-turn coil. c) 85.1 mm tube deformed with
4-turn coil. d) 85.1 mm tube deformed with 10-turn coil.
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2.3.1.2 Selection of Material Constants

The electromagnetically expanded tubes are made of AA6063-T6, a tube alloy. How-

ever, material constants required for the determination ofthe quasistatic FLD are obtained

from experiments using flat sheet blanks. In addition, an independent measurement of

rate and thermal sensitivity parameters, at the strain rates and temperatures of interest,

requires highly specialized equipment that is not available to us. The strategy adopted

to address these issues is to use uniaxial quasistatic test measurements from AA6063-T6

to obtain the values of Young’s modulusE, yield stressσy, and hardening exponentn

and to rely on existing independent experiments on a closelyrelated alloy, AA6061-T6,

for which the remaining required material parameters have been published in the open

literature. From uniaxial tests on thin strips cut longitudinally from AA6063-T6 tubes,

the best fit (see Figure 2.15) is achieved using the values in Table 2.4.

E � 69 GPa σy � 190 MPa ǫy � σy{E n � 0.0769

Table 2.4: Material parameters from AA6063-T6

The remaining parameters are obtained from different sources. The rate and thermal

sensitivity related parameters are based on experiments byYadav et al. (1995, 2001) and

are given in Table 2.1.

The mass density, thermal and electrical properties are obtained from standard refer-

ences on aluminum (they are not alloy sensitive) and are given in Table 2.2. The value

of the plastic work conversion factorχ is the same as in Triantafyllidis and Waldenmyer

(2004).

The remaining parameters to be determined pertain to the characterization of the yield

surface and the size of the imperfection amplitudeξ. To this end the band is modeled by

a discontinuity in the yield stress, usingσB
y � p1� ξqσA

y . The yield surface is modeled
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as isotropic, non-quadratic (see definition in equation (2.1.21)), and the exponentβ is

taken as in Barlat et al. (1997b) for aluminum. The value ofξ is then chosen as before

to give the most reasonable agreement with the available quasistatic FLD experiments

on AA6061-T6 by LeRoy and Embury (1978), as shown in Table 2.5. The parameters

β � 8 ξ � 10�3

Table 2.5: Material parameters for FLD of AA6061-T6

given in Tables 2.1, 2.2, 2.4 and 2.5 completely characterize the mechanical, thermal

and electric properties of the model used to run the simulations of the free expansion

experiments of the tubes.

2.3.1.3 Strain, Strain Rate and Current Density Profiles

As previously, the present calculations of FLD’s are based on the simplifying as-

sumption of proportional strain paths. It is assumed thatǫ2{ǫ1 � 9ǫ2{ 9ǫ1 � ρ, where�1{2 ¤ ρ ¤ 1 with the lower limit corresponding to uniaxial stress and the upper to

equibiaxial plane stress. Moreover, as before for the time-dependent viscoplastic re-

sponse of the material in EMF processes, strain history influences the solid’s response

and hence a strain profileǫ1ptq is also required. Determining the exact strain profileǫ1ptq
requires solution of a coupled electromagnetic and thermomechanical problem of the tube

plus its actuator coil, a feasible but complicated and time consuming task that is discussed

in Chapter III. Such a modeling approach would be the 2-D version of the 1-D ring calcu-

lations done by Triantafyllidis and Waldenmyer (2004). In the interest of simplicity, and

since a pulse-like strain rate history is expected for the hoop strains at any height of the

expanding tube, the sinusoidal-shape strain and strain rate profiles of equations (2.1.26)

and (2.1.27) are assumed.
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The electromagnetic nature of the problem also requires knowledge of the time-

dependent current density. As for the strain profile, the sinusoidal pulse current density of

equation (2.1.30) is assumed. Experimental observations,as well as fully coupled elec-

tromechanical calculations in the ring problem (Triantafyllidis and Waldenmyer, 2004)

show that the time duration of the first (and much larger) current pulse is approximately

half the duration of the strain rate pulse, thus explaining the reason for the choice in

equation (2.1.30).

The characteristic timeτ0, which is half of the measured duration of the main current

pulse, and the maximum densityJmax are available experimentally, according to Table 2.6.

These parameter values are obtained from electric current versus time traces taken from

tube expansion experiments. An example of one of these traces, here from case (a), is

shown in Figure 2.16a. The comparison between experimentaland simulation current

traces is shown in Figure 2.16b, along with the dimensionless strain versus time trace.

The energy used to expand the tube in each configuration is given in Table 2.6, and the

pulse timeτ0 and maximum current densityJmax used in the corresponding simulation

are also listed accordingly.

Label Tube (mm) Coil Energy (kJ) Jmax (A/m2) τ0 (µsec)
a 31.7 4-turn 6.72 5.10 109 23
b 31.7 10-turn 8.00 4.82 109 36
c 85.1 4-turn 7.52 2.50 109 16
d 85.1 10-turn 13.92 4.85 109 33.5

Table 2.6: Experimentally Determined Parameters

Also note that from several experiments performed, only four (labeled a, b, c, d in

Table 2.6) are to be simulated here.

The final issue to be resolved is the choice of the maximum hoopstrainǫmax in equa-

tion (2.1.26) for simulating the selected four experiments. The choice adopted stems from
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Figure 2.16: a) Example of an experimentally measured current versus time trace for tube
and coil. b) Comparison of the experimentally determined current density
profile with the simulated current density profile. Simulated dimensionless
strain profile also shown in b). These plots correspond to a 31.7 mm tube
deformed with a 4-turn coil at 6.72 kJ of energy (case (a)).
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the experimental technique of gradually increasing the capacitor energy until tube neck-

ing and/or failure is detected. Consequently for eachρ a simulation is run with a certain

value ofǫmax for which no necking is detected. A simple forward marching technique

gradually tests larger values ofǫmax until necking is achieved at 0.99ǫmax. As an example

of the forming speeds that result from this technique, for case (a) in Table 2.6 the maxi-

mum simulation strain rate ranges from 4932 s�1 (plane strain) to 8793 s�1 (uniaxial).

2.3.2 Comparison of Results

At the completion of Section 2.3.1 the formulation of the EMFlocalization problem is

fully defined. The numerical algorithm used to solve the governing equations is identical

to that discussed in Section 2.2.1. Comparison of simulation and experiment follows.

2.3.2.1 Comparison of Experimental and Theoretical Results

The presentation of experimental results and the corresponding theoretical simula-

tions is given in Figures 2.17 to 2.22. More specifically the experimentally obtained

FLD’s for cases (a) through (d) (see Table 2.6) plus the corresponding theoretical sim-

ulation results are presented in Figure 2.17, Figure 2.20, Figure 2.21 and Figure 2.22

respectively. For comparison purposes the conventional quasistatic FLD’s for the same

cases (calculated in the absence of currents and using much larger pulse duration times

τ0) are also plotted in these figures to show the ductility increase due to the EMF process.

Additional information for the first experiment (case (a)) is provided in Figure 2.18 (cur-

rent configuration localization angleφ versus strain ratioρ) and Figure 2.19 (temperatures

insideθB and outsideθA the band versus strain ratioρ).

The FLD results for the short tube/short coil combination (case (a)) are presented in

Figure 2.17. Notice that the experimental data are all forρ   0 and clustered about the

uniaxial stress path (ρ � �1{2), as expected from Figure 2.14a, which shows localization
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Figure 2.17: Comparison of simulated and experimental forming limits for an AA6063-
T6 31.7 mm tube deformed using a 4-turn coil and 6.72 kJ of energy (case
(a)).

at the top and bottom ends of the short tube. Both the measuredand computed results

show a significant increase in ductility in the electromagnetically expanded AA6063-T6

tube compared to the quasistatic curve, although the simulation overestimates the forming

limits. Moreover, using Figure 2.15 one can observe that uniaxial quasistatic AA6063-T6

necking and failure occurs approximately atǫneck � 0.11. This corresponds with theρ ��1{2 quasistatic forming limit in Figure 2.17 due to the use of rectangular high aspect

ratio (width to thickness) samples in the uniaxial quasistatic tests (see Section 2.3.1.1).

This observation is an experimental confirmation of the ductility increase in free forming

using EMF, which is captured reasonably well by the present simulation.

The theoretically calculated current configuration critical angleφ versus the strain

ratio ρ for the short tube/short coil experiment modeled in Figure 2.17 is plotted in Fig-

ure 2.18. Notice that similar to the quasistatic case,φ is a decreasing function ofρ for�1{2 ¤ ρ   0 while φ � 0 for ρ ¥ 0. Although localization angles are difficult to
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Figure 2.18: The localization angleφ in the current configuration as a function of strain
ratio ρ, for the simulation of the 31.7 mm tube deformed with a 4-turncoil
at 6.72 kJ (case (a)).

measure, where the necking band is visible along the full length of the tube (case (d),

corresponding toρ � �1{2) φ � 40�.
The theoretically calculated insideθB and outsideθA the band respectively tempera-

tures at localization, as a function of strain ratioρ for the experiment modeled in Fig-

ure 2.17, are plotted in Figure 2.19. Notice that the neckingtemperature is minimum for

ρ � 0, as expected from the fact that the critical strain,ǫ1, is a minimum here. Since

τ0 is kept constant for each case, the minimum critical strain gives the minimum strain

rates and lowest flow stresses and thus the lowest amount of plastic dissipationσe 9ǫ p.

This dissipation contributes somewhat more thermal energythan the ohmic effect to the

temperature change (Triantafyllidis and Waldenmyer, 2004).

Figures 2.20 through 2.22 show the results from the remaining three experiments (see

Table 2.6 and also Figure 2.14). More specifically Figure 2.20 shows the results for the
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shorter tube with the longer coil (case (b)) which shows the largest discrepancy between

theory and experiments. This deviation can be explained from the fact that the failed tube

in Figure 2.14b is a highly distorted toroidal segment, while the assumptions adopted for

the computation of the FLD are based on uniformly expanding tubes.

The FLD in Figure 2.21 corresponds to the only experiment with data in theρ ¡ 0

region, as expected for case (c), in Figure 2.14c, where failure starts at the middle of the

tube. Experimental points onρ � 0 show agreement with theoretical predictions while

experimental points forρ ¡ 0 show large deviations from theoretical results. This dis-

crepancy is expected from the fact that yield surface parameters and anisotropy of sheet

play a crucial role for the determination ofρ ¡ 0 part of the FLD, and our simulation’s

simplified isotropic yield surface can be improved with a more sophisticated anisotropic

alloy description. Moreover, as with case (a), despite overestimation of the forming lim-



51

 0

 0.2

 0.4

 0.6

 0.8

-0.4 -0.2  0  0.2  0.4  0.6  0.8

ε 1

ε2

σ2
A
 = 0 ε2

A
 = 0 ε2

A
 = ε1

A

Unsafe

Safe

EMF Sim.

QS Sim.

Figure 2.20: Comparison of simulated and experimental forming limits for an AA6063-
T6 31.7 mm tube deformed using a 10-turn coil and 8 kJ of energy(case
(b)).

its, a free formability increase is clearly shown experimentally.

Finally, Figure 2.22 corresponds to the long tube/long coil combination and the corre-

sponding experimental data are again clustered around the uniaxial stress pathρ � �1{2,

as expected from Figure 2.14d, which shows failure near the end sections of the tube.

This comparison shows the closest agreement between experiment and simulation, with

the forming limits minimally overestimated.

It should be noted that the theoretical predictions for all four experiments are pre-

dictably close to each other given the proximity of the values of the strain rates, current

densities and characteristic times between the four different experiments. A critical dis-

cussion of the experimental and theoretical results is given subsequently.
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2.4 Discussion of Results

The present analysis shows a significant increase in ductility from quasistatic to EMF

conditions; the greatest difference occurs for strain paths with load path strain ratioρ ¤ 0.

In the caseρ   0, the angle of the weak band at necking in the reference configuration

Φneck � 0. And, when compared to results forρ ¡ 0, the predicted forming limits for

ρ ¤ 0 are insensitive to imperfection amplitudeξ and the yield surface choice. The rea-

son for this ductility increase is the high strain rates, compared to conventional forming,

inherent in an EMF process, given that the strain-rate sensitivity of the material delays

the onset of necking (see Hutchinson and Neale (1977)). The present work shows that

the details of the strain time profile do not significantly affect the forming limits, though

the strain rate of the loading does. Increasing the electriccurrent density can also in-

crease ductility, though above a certain current density noadditional ductility increase is

found. However, the influence of the initial temperatureθi depends on the temperature

sensitivity exponentα, which indicates that the influence of electric current density will

also vary with the material properties. Moreover, if a temperature-dependent strain-rate

sensitivitympθq is implemented, such thatm increases with temperature in accordance to

existing experimental data, the limit on the ductility increase for increasing current den-

sity disappears and strains at the onset of necking for a fixedρ increase monotonically

with increasing current density.

The material constitutive response is of paramount importance in determining form-

ing limits for EMF processes. The anisotropy and yield surface details strongly influence

the forming limits in theρ ¡ 0 region, whileρ ¤ 0 is largely unaffected by these aspects.

However, the EMF formability is affected for all values ofρ by the hardening exponent

n; ductility increases asn increases. Similarly, increasing the strain-rate sensitivity expo-
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nentm for a fixed forming speed increases the onset of necking strains. The temperature

sensitivity exponentα also has the same correlation with ductility. Increasingα increases

forming limits.

For the free expansion experiments, the main reason for the increased ductility of alu-

minum alloys has been shown (Triantafyllidis and Waldenmyer, 2004) to be their strain-

rate sensitivity at the high rates associated with the EMF processes. To this end, it is

important to obtain an accurate constitutive description of the alloy that has strain rate as

well as temperature sensitivity in its mechanical response, given the important heating ef-

fects due to the plastic dissipation and the induced currents. Although it was not possible

to measure all the required constitutive properties of the experimentally used (AA6063-

T6) tube alloy, a careful literature search has given the remaining properties from reliable,

independently obtained data of a closely related (AA6061-T6) sheet alloy. Implement-

ing these properties shows an increase in formability due torate sensitivity in the FLD

simulations, which is confirmed experimentally. However, comparing experiment to sim-

ulation shows overestimation to varying degrees in each forming limit diagram. A more

accurate experimentally based constitutive characterization of the material is necessary

for further investigations.

In addition to the influences on formability investigated inthe present work, there are

a number of other possible factors to be addressed. It is important to recall that all the

results here depend on the imperfection parameterξ, most significantly for strain paths

with ρ ¡ 0, a rather undesirable – but inevitable under adopted simplifying assumptions

– feature of the FLD analysis.

There is also some controversy about the magnitude and/or existence of a free forming

EMF ductility increase over conventional techniques. The present work considers only

tube free expansion, while others (Imbert et al., 2005b; Oliveira and Worswick, 2003; Oli-
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veira et al., 2005; Zhang and Ravi-Chandar, 2006) have considered different geometries.

Oliveira and Worswick (2003) and Oliveira et al. (2005) consider forming aluminum

sheet into a rectangular die opening. No formability improvement in their electromag-

netically free formed parts is reported. Those authors showEMF strains higher than the

quasistatic forming limits but attribute them to strain path changes after workpiece failure.

However, Imbert et al. (2005b) do show EMF free forming strains above the traditional

quasistatic limits of their aluminum alloy on safe (no necking or failure) parts. Those

experiments use aluminum sheet free formed into a circular die opening and indicate that

EMF may enhance free formability. It should be noted that theelectromagnetic process

free forming strain rates of Oliveira and Worswick (2003) and Oliveira et al. (2005) are

approximately half of the rates encountered in the present experiments, and the aluminum

alloy is AA5754, a considerably different alloy than the tube alloy AA6063-T6. Work by

Vural et al. (2004) and Yadav et al. (1995) shows a distinct alloy-dependent threshold

above which strain-rate sensitivity becomes important, indicating these differences may

significantly influence the experiments. This issue should be investigated in the light

of complete experimental evidence, especially since the material constitutive response

is alloy-dependent (e.g. the transition strain rate varieswidely between aluminum alloys

(Tirupataiah and Sundararajan, 1994)).

Inertia is ignored in these necking simulations. In previous unpublished work on ring

expansion (Triantafyllidis, 2004), an increase in ductility occurred with an increase in

ring density (with all other ring properties remaining the same). More sophisticated dy-

namic stability analyses have been carried out for bars (Fressengeas and Molinari, 1989)

and rings (Mercier and Molinari, 2004) that show how inertiaselects the critical wave

number, influencing (delaying) necking. Other work (Hu and Daehn, 1996; Knoche and

Needleman, 1993; Regazzoni et al., 1986; Zhang and Ravi-Chandar, 2006) has shown
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similar results, indicating that inertia should be accounted for in dynamic necking calcu-

lations. Similarly, contact effects are known to strongly influence high velocity forming

(e.g. Balanethiram and Daehn (1994); Imbert et al. (2005b)).

Finally, the present work makes the implicit assumption that the thermal response of

the material is the same under quasistatic and EMF forming speeds. At the time scale of

EMF forming (i.e. on the order of 50µsec) the material thermal constitutive response may

vary greatly from that observed at conventional speeds. Further experimental evidence

is needed to characterize the material’s response to temperature changes over these time

scales. However, in spite of the adopted simplifying assumptions and given the indepen-

dence of results of strain profile, the current investigation can provide a useful and fairly

accurate predictive tool for making ductility calculations for EMF processes.

2.A Appendix: Justification of Necking Criterion

The necking criterion used in the electromagnetic FLD calculations is a weak band

initial imperfection criterion, similar in spirit to the thickness inhomogeneity criterion

first introduced by Marciniak and Kuczynski (1967) to account for necking in the biax-

ial stretching region of an elastoplastic solid within the framework of classical plastic-

ity theory (smooth yield surface and normality). The dependence of the necking strain

predictions on the size of the initial imperfection is a rather undesirable feature of this

approach, which has lead to the proposition of alternative necking criteria. For the case

of rate-independent solids, Stören and Rice (1975) proposed a necking criterion based on

the loss of ellipticity in the equations governing the incremental plane stress deformation

of the sheet, which are based on a deformation type theory of plasticity, thus predicting

necking independently of imperfections. Unfortunately, this approach cannot be gener-

alized for viscoplastic solids, whose incremental response is governed by their elastic
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moduli.

To avoid the assumption of an initial imperfection, Triantafyllidis et al. (1997) pro-

posed a linearized perturbation criterion for the stability of elastoviscoplastic solids,

which was based on the growth/decay of the perturbation acceleration in response to a

velocity perturbation of unit norm. This criterion was expanded upon by Massin et al.

(1999) and generalized for continua by Nestorović et al. (2000). Unlike the compres-

sive load cases for which it was conceived, the application of this linearized perturbation

criterion to the analysis of necking under tension gives unrealistic results (critical strain

decreases for increasing load rates) and hence had to be abandoned as a candidate necking

criterion. However, the comparison of the necking predictions for the linearized pertur-

bation and initial imperfection criteria for the case of an elastoviscoplastic bar subjected

to uniaxial tension is both novel (to the best of the author’sknowledge) and useful and

merits a brief presentation.

2.A.1 Kinematic and Constitutive Relations

For simplicity, no thermal effects are considered and the material in the uniaxially

loaded bar is treated as incompressible. The latter assumption yields

al � AL, (2.A.1)

wherea (A) is the current (reference) cross section area andl (L) is the current (reference)

length. In this finite strain problem the strain,ǫ, is defined as

ǫ � lnpl{Lq, (2.A.2)

and the first Piola-Kirchhoff stress,Π (force/reference area), can be expressed with the

help of equations (2.A.1) and (2.A.2) in terms of the Cauchy stress,σ, and strain,ǫ, by

Π � σexpp�ǫq . (2.A.3)
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The uniaxial strain is decomposed into elastic,ǫe, and plastic,ǫ p, parts, and the con-

stitutive response reads

σ � Eǫe, ǫe � ǫ � ǫ p. (2.A.4)

For a viscoplastic material the relation between9ǫ p and the solid’s quasistatic uniaxial

responsegpǫ pq is governed by the functionF,9ǫ p � Fpσ, gpǫ pqq. (2.A.5)

Here two versions of the functionF, namelyFp and Fl, will be used. Fp is the same

power law constitutive model that was used for the FLD calculations, i.e.

Fp � 9ǫ p
0

��
σ

g pǫ pq
1{m � 1

�
, (2.A.6)

wherem is the strain-rate sensitivity exponent and9ǫ p
0 is the viscoplastic time scale.Fl

represents an alternative linear overstress model

Fl � 9ǫ p
0

σy
rσ� g pǫ pqs , (2.A.7)

whereσy is the material’s uniaxial yield stress. It is important to note that 9ǫ p
0 is not

equivalent between the two constitutive laws. The uniaxialquasistatic response for both

versions ofF is

g pǫ pq � σy

�
1� ǫ p

ǫy

�n

, (2.A.8)

whereǫy � σy{E andn is the hardening exponent. Base case values of material parame-

ters from the FLD simulations (see Tables 2.1 and 2.2) are also used here.

2.A.2 Linearized Perturbation Analysis

For the one dimensional bar model, the linearized perturbation stability criterion, in-

troduced in Triantafyllidis et al. (1997), works as follows: consider that at timet0 a pertur-

bation in the field quantities of zone B of the bar (see insert in Figure 2.A.1) is introduced
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and let∆ f � fB � fA denote the difference in the field quantityf between the perturbed

(B) and unperturbed (A) parts of the bar. Furthermore assumethat the perturbation re-

sults in a given∆ 9ǫ ¡ 0. In this linearized stability analysis a perturbation is defined to

be stable when the resulting∆:ǫ   0, i.e. when the rate of∆ 9ǫ decreases near timet0. One

can thus defineΛ � ∆:ǫ{∆ 9ǫ; an unstable bar results inΛ ¡ 0. Hence,Λ � 0 signals the

onset of a necking instability, and the corresponding critical condition is independent of

the size of the perturbation.

Equilibrium of the bar implies

∆Π � 0. (2.A.9)

Linearizing about the principal solution (zone A) the response of the bar to a perturbation

in 9ǫ, one obtains from the first and second rate of equation (2.A.9)

∆ 9Π � S11∆ 9ǫ �S10∆ǫ � 0 (2.A.10)
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and

∆:Π � pS22Λ�S21q∆ 9ǫ �S20∆ǫ � 0, (2.A.11)

where the coefficientsS10, S11, S20, S21 andS22 are given by

S10 � � �pE � σq 9ǫ � 9σ� E2BFBσ� ,
S11 � E � σ,

S20 � E2BFBσ �E
B 9FB 9σ � B 9FB 9g B 9gB 9ǫ p

� 29ǫ� (2.A.12)� E2B 9FBσ � E
� 9ǫ2 � :ǫ�� �:σ� 2 9σ 9ǫ � σ 9ǫ2 � σ:ǫ� ,

S21 � ��2 pE � σq 9ǫ � 2 9σ� E2B 9FB 9σ� ,
S22 � E � σ.

Writing equations (2.A.10) and (2.A.11) in matrix form gives��� S11 S10

S22Λ�S21 S20

������ ∆ 9ǫ
∆ǫ

�Æ
� 0. (2.A.13)

Nonzero solutions to the above matrix equation exist only ifthe determinate of the coef-

ficient matrix is zero, which implies

Λ � S11S20�S10S21

S10S22
. (2.A.14)

Notice thatΛ is a function of the time-dependent solution of the viscoplastic bar prob-

lem, and for a well posed problem at the onset of the bar’s loadingΛ   0. An instability

occurs whenΛ � 0, which from equation (2.A.14) gives the following condition at the

onset of instability

S11S20�S10S21 � 0. (2.A.15)
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To implement this criterion the principal solution of the elastoviscoplastic bar is for-

mulated as a set of two first order ODE’s from the rate of equation (2.A.4)1 and equa-

tion (2.A.5), namely 9x � f px, tq, x � rσ, ǫ ps. (2.A.16)

These are solved with a fourth order Runge-Kutta algorithm,and numerical precision is

ensured by keeping the same time step as used in the FLD calculations. The necking

criterion,Λ � 0, is detected via a simple bisection method.

2.A.3 Initial Imperfection Analysis

The analysis here is the one-dimensional (uniaxial stress)version of the two-dimen-

sional theory presented in Section 2.1. As a strain profile isapplied to the bar, the strains

outside,ǫA, and inside,ǫB, the weak band are compared (see the inset diagram in Fig-

ure 2.A.1). Necking occurs when the ratio of the plastic strain rate inside the band to

that outside the band becomes unbounded, i.e. when9ǫ p
B{ 9ǫ p

A Ñ 8. The imperfection is

implemented asσB
y � p1� ξqσA

y , with the reference imperfection parameterξ � 0.001

carried over from the FLD calculations.

From the rate of force continuity across the band, i.e. continuity of the first Piola-

Kirchhoff stress rate9Π, one obtains with the help of equation (2.A.3) the followingrela-

tion between the stress and strain rates inside and outside the weak band

exp
��ǫA

� � 9σA � 9ǫAσA
� � exp

��ǫB
� � 9σB � 9ǫBσB

�
. (2.A.17)

This equation along with the equations (2.A.4)1 and (2.A.5) determine the solution in

the weak band. As in the linearized perturbation analysis, the principal solution (outside

the band) is formulated from the rate of equation (2.A.4)1 and equation (2.A.5) as two

ODE’s. Then, these two equations (the rate of equation (2.A.4)1 and equation (2.A.5))
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applied inside the band and equation (2.A.17) give three ODE’s for the three unknowns

σB, ǫB andǫ p
B, i.e. 9xB � f pxB, tq, xB � rσB, ǫB, ǫ

p
Bs, (2.A.18)

where thet-dependent terms are functions of the principal solutionxAptq. These ODE’s

are solved with a fourth order Runge-Kutta algorithm using the same time steps as the

FLD calculations. The necking criterion is numerically implemented as when9ǫ p
B{ 9ǫ p

A ¡
10. This value, 10, is chosen in accordance with the previousFLD calculations and has

negligible effect on the computed critical strains.

2.A.4 Strain Profile Selection

The applied strain profile must be specified for the completion of the simulation. Two

different profiles are considered, a sinusoidal profile and a linear profile that match theǫ1

profiles taken in the FLD calculations, which are given by

ǫptq � ǫmax

2

�
1� cos

�
πt
4τ0


�
, ǫptq � ǫmax

t
4τ0

. (2.A.19)

Due to the same considerations as in the FLD work,ǫmax � 1 is used in the present work,

andτ0 is varied through the term9ǫ p
0τ0, with further discussion following in Section 2.A.5.

2.A.5 Results and Discussion

The section compares the onset of necking predictions from the above introduced two

criteria and for the four combinations of two constitutive laws, power lawFp and linear

overstressFl, and two load profiles, sinusoidal and linear.

Figure 2.A.1 presents the dimensionless first Piola-Kirchhoff stress,Π, versus log-

arithmic strain,ǫ, in the bar with power law viscosity subjected to a sinusoidal strain

profile. The initial imperfection model is examined, andΠ{σy versusǫ is given for both
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outside (A) and inside (B) the band. The rate of deformation is set by the dimension-

less measure of characteristic speedp 9ǫ p
0τ0q�1, with p 9ǫ p

0τ0q�1 � 26.9. Results for three

different values of the imperfection parameterξ are calculated.

In a quasistatic process necking is predicted at the maximumforce (equivalently max-

imum Π). For a viscoplastic bar the maximum force during a process depends on the

loading rate due to its strain-rate sensitivity. From equilibrium the force in the bar out-

side and inside the weak band must be equal, but due to the relative weakness of the band9ǫ p
B ¡ 9ǫ p

A. This unequal strain rate allows the weak band to reach higher stresses than

the outside zone thus permitting considerable elongation past the point where the max-

imum force occurs; the strain-rate sensitivity stabilizesthe weak band by strengthening

the material as the strain rate increases. Necking occurs when for some forceΠ{σy the

strain rate inside the band tends to infinity. The imperfection parameter strongly affects

the force level at which this necking phenomenon happens.

The dimensionless first Piola-Kirchhoff stress versus strain response of the power law

elastoviscoplastic bar subjected to a sinusoidal strain profile and for characteristic speedsp 9ǫ p
0τ0q�1 from 0.159 to 100 is presented in Figure 2.A.2. Necking calculations for the

initial imperfection analysis with three different imperfections (ξ � 10�3, 10�4, 10�5)

and the linearized perturbation method are shown. The initial imperfection calculations,

for each fixedξ value, show higher necking strains for higher speeds. The linearized

perturbation criterion shows the opposite trend, agreeingwith the initial imperfection

model’s necking strain prediction at quasistatic speeds (maximum force) and predicting

decreasing necking strains from there as the speed increases. Also, asξ decreases the

initial imperfection criterion necking strain predictionincreases as noted previously, and

for all ξ values an upper limit on the necking strain exists such that above a certain speed

further loading rate increases have little influence.
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Figure 2.A.2: The nondimensional first Piola-Kirchhoff stress versus logarithmic strain
for varying loading rates (the stress increases with increasing loading rate),
based on the power law constitutive model and the sinusoidalstrain profile.
The onset of necking strain prediction from the linearized perturbation cri-
terion is recorded, as is the necking prediction from the initial imperfection
analysis for three values of imperfection parameterξ.
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Figure 2.A.3: Onset of necking strain versus nondimensional strain rate based on the
power law constitutive model for the sinusoidal and linear strain profiles
using initial imperfection and linearized perturbation criteria.

In Figure 2.A.3 the necking strains predicted by each criterion, and calculated for

the power law constitutive model, are plotted against the nondimensional characteristic

speed. Onset of necking results for both the sinusoidal and linear strain profiles are pre-

sented, using three values of the imperfection parameterξ and the linearized perturbation

criterion. The initial imperfection based necking curves show increasing necking strains

with increasing speed. The plateau in the onset of necking with respect to deformation

rate is also clear, and the influence of the linear strain profile is not pronounced accord-

ing to these results. Perturbation based results show the opposite trend, i.e. a decrease

of necking strain for an increase of loading rate. Note also for the linearized perturba-

tion results that the linear loading profile shows higher necking strains than its sinusoidal

counterpart, in contrast to the initial imperfection criterion.

The counterpart to the results in Figure 2.A.3 calculated this time for the linear over-
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Figure 2.A.4: Onset of necking strain versus nondimensional strain rate using the lin-
earized perturbation criterion and based on the linear overstress constitutive
model for the sinusoidal and linear strain profiles.

stress constitutive model are presented in Figures 2.A.4 and 2.A.5. The difference in the

magnitude ofǫneck for the linearized perturbation and initial imperfection criteria neces-

sitates separate plots. A comparable stress-strain response betweenFp andFl requires

different 9ǫ p
0 values, giving unequal speedsp 9ǫ p

0τ0q�1 for processes with the same forming

timeτ0.

The strain at necking for the linearized perturbation criterion versus nondimensional

loading speed is shown in Figure 2.A.4. Results for both the sinusoidal and linear strain

profiles are shown. At quasistatic speeds the onset of necking strain approaches the qua-

sistatic necking value (maximum force) for both strain profiles. Similarly to the results

for the power law constitutive model, asp 9ǫ p
0τ0q�1 increases the linearized perturbation

necking strain prediction decreases, but in contrast to thepower law material (see Fig-

ure 2.A.3) the sinusoidal strain profile shows higher necking strains than the linear profile.
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Figure 2.A.5: Onset of necking strain versus nondimensional strain rate using the initial
imperfection criterion and based on the linear overstress constitutive model
for the sinusoidal and linear strain profiles.

Also noteworthy, the strain at necking for the linear strainprofile is no longer constant

with respect to forming speed.

Finally, the onset of necking strain for the initial imperfection criterion versus nondi-

mensional characteristic speed for the sinusoidal and linear strain profiles is given in

Figure 2.A.5. As expected for all three values ofξ, the imperfection necking strain pre-

diction approaches the quasistatic value asp 9ǫ p
0τ0q�1 Ñ 0, but it increases considerably

at high deformation rates. For loading ratesp 9ǫ p
0τ0q�1 ¡ 1 the necking stains for the

linear overstress model (Figure 2.A.5) are rather (¡ 4) unrealistic (and much higher

than those for the power law model (Figure 2.A.3)). Also, unlike the power law model,

the predicted necking strains with the linear overstress model for the linear strain profile

are higher than those for the sinusoidal profile. However, aswith the power law model,

the predicted necking strains increase asξ decreases, and there is an upper limit on the
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necking strains for increasing loading speed.

It is clear from the results presented above that realistic necking predictions are gained

only with the initial imperfection criterion. In all the cases considered, the linearized

perturbation criterion gives onset of necking strains thatdecrease from the quasistatic

value (maximum force) monotonically with increasing loading rate. This result is in

contradiction with experimental evidence from high strainrate free forming results that

show formability equal to or greater than that under quasistatic conditions (see Hu and

Daehn (1996); Hutchinson and Neale (1977); Oliveira and Worswick (2003)). The initial

imperfection criterion is at this point the reasonable choice for ductility calculations of

interest in this work.



CHAPTER III

Formulation and Numerical Implementation of EMF Processesin
Finitely Strained Solids

The present chapter pertains to the consistent, fully coupled modeling of electro-

magnetic-mechanical processes, specifically in the context of EMF. The governing equa-

tions are Maxwell’s equations in deformable solids and the mechanical equation of mo-

tion (along with the equations describing thermal effects and internal variable evolution,

as necessary). A consistent variational formulation of theelectromagnetic problem in

deformable solids was introduced by Lax and Nelson (1976), who derived Maxwell’s

equations, the electromagnetic fields, and the electromagnetic Lagrangian in the ref-

erence configuration (i.e. the Lagrangian or material description). This Lagrangian is

the reference configuration counterpart of the classical electromagnetic Lagrangian in

the current configuration (i.e. the Eulerian or spatial description). Trimarco and Mau-

gin (2001) and Trimarco (2007) combine the electromagneticLagrangian terms with the

necessary mechanical terms to give an electromagnetic-mechanical reference configu-

ration Lagrangian, from which the Euler-Lagrange equations give Maxwell’s equations

and the mechanical equation of motion. Their variational technique provides Maxwell’s

equations in the reference configuation, but for EMF, the eddy current approximation to

Maxwell’s equations is all that is necessary. The present work proposes a variational

technique that consistently provides the governing equations under the eddy current ap-

69
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proximation. Following this, through application of a variational integration technique,

the resulting numerical scheme is shown to provide a consistent staggered solution algo-

rithm.

The discussion begins in Section 3.1 with a derivation of thecoupled electromagnet-

ic-mechanical equations. Section 3.1.1 presents the derivation in the current configura-

tion, following the technique of Kovetz (2000). Having derived the governing equations,

Section 3.1.2 turns to the reference configuration form of these equations and the elec-

tromagnetic fields, derived using a method similar to that ofLax and Nelson (1976).

The resulting relations between current and reference configuration fields allow the in-

troduction of the electromagnetic-mechanical Lagrangian, and the subsequent variational

technique based on the least action principle is discussed in Section 3.1.3, completing

the general formulation. Section 3.2 proposes the variational principle under the eddy

current approximation and discusses the restriction of thenumerical implementation to

axisymmetric forming cases, adopted to simplify this first application of the general the-

ory. The resulting formulation is numerically implementedwith a variational integration

technique, as outlined in Section 3.3. Results of relevant ring and tube expansion sim-

ulations are presented in Section 3.4. In addition, the novel problem of a tube with a

nonconducting outer coating is solved and the effect of the coating quantified. Finally,

Section 3.5 is a concluding discussion of the formulation and results.

3.1 Formulation of Fully Coupled Electromagnetic-Thermal-Mechan-
ical Problem

Two methods for deriving the fully coupled governing equations and interface condi-

tions of an electromagnetic-thermal-mechanical process are presented. First is the direct

method, which uses conservation principles in the current configuration to derive the
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governing equations and boundary conditions. This approach essentially follows Kovetz

(2000), where the interested reader is addressed for additional details. Subsequently,

kinematic relations from continuum mechanics are applied to transform the governing

equations from the current to the reference configuration.

Using the relations between current and reference configuration fields, the second,

variational method is presented, namely the classical least-action principle (see Lax and

Nelson (1976) for the purely electromagnetic case) in the reference configuration. This

method gives the reference configuration governing equations and interface conditions,

and it is shown that the two methods agree.

3.1.1 Conservation Law Approach (Current Configuration)

Gauss’ law states the electric charge conservation in an arbitrary control volumevptq
that is allowed to move and deform following the material. Electric charge conservation

dictates »Bvptq d 
 n ds � »
vptq q dv, (3.1.1)

whereBvptq is the surface boundary of the control volumevptq, n is the outward normal

to the surfaceBvptq, d is the electric displacement, andq is the volumetric charge1. The

pointwise form of Gauss’ equation and the associated interface condition follow from the

arbitrariness of the control volume and standard argumentsinvolving Gauss’ divergence

theorem, namely

∇ 
 d � q, n 
 ~d� � 0, (3.1.2)

where~ � denotes the jump in a quantity across a surface. For simplicity, and without

loss of generality, it is assumed from here on that all electric charges and currents within

1Here and subsequently Chapter III defines symbols independently of Chapter II, with standard notation
used whenever possible.
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the problem domain are volumetric.

Faraday’s induction law states that the circulation of the electromotive intensityE

about a closed circuitBsptq opposes the change of the flux of the magnetic fieldb through

the surfacesptq, i.e. ¾Bsptq E 
 s dl � � d
dt

»
sptq b 
 n ds, (3.1.3)

whereBsptq is the line boundary of the control surfacesptq, s is the tangent vector toBsptq, and n is the normal to the surface directed positively using the right hand rule

applied tos on Bsptq. Again, since the control surface is arbitrary, the pointwise form

of Faraday’s equation and the associated interface condition follow by using standard

arguments involving Stokes’ theorem

∇� E � ��
b, n� ~E� � 0, (3.1.4)

where
�p q denotes the flux derivative. Note that since the control volume or surface may

move and deform the conservation laws must be written in terms of Galilean invariants.

The electric displacementd and magnetic fieldb are themselves Galilean invariant, as

is the electromotive intensityE, which is defined in terms of the non-Galilean invariant

electric fielde, magnetic fieldb, and displacementu by

E � e� 

u � b, (3.1.5)

where

p q � dp q{dt denotes the material time derivative. The relation betweencurrent

positionx, reference positionX, and displacementu of a material point is

x � X � u. (3.1.6)

Recall that the flux derivative for any vector fieldf is defined by�
f � B fBt

� 

up∇ 
 f q �∇� p 
u � fq � 


f � p 
u∇q 
 f � f p∇ 
 

uq (3.1.7)
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and satisfies

d
dt

»
sptq f 
 n ds � »

sptq �
f 
 n ds, (3.1.8)

thus justifying the pointwise form of Faraday’s law in equation (3.1.4)1.

The nonexistence of magnetic charge in integral form is expressed by»Bvptq b 
 n ds � 0. (3.1.9)

The pointwise equation and interface condition follow as inthe case of Gauss’ law in

equation (3.1.2),

∇ 
 b � 0, n 
 ~b� � 0. (3.1.10)

The fourth and final electromagnetic conservation law is Ampere’s equation, which

states that the circulation of the magnetomotive intensityH about a closed circuitBsptq
is equal to the total current flux through the surfacesptq which is bounded byBsptq,¾Bsptq H 
 s dl � d

dt

»
sptq d 
 n ds� »

sptq J 
 n ds. (3.1.11)

The first term on the right hand side of equation (3.1.11) is the displacement current

flux through sptq while the second term accounts for the induction current. Note that

the magnetomotive intensityH and the conduction current densityJ are both Galilean

invariant. Similar arguments to those used for the Faraday law in equation 3.1.4 lead to

the pointwise form of Ampere’s equation and the associated interface condition, namely

∇�H � �
d �J , n� ~H� � 0. (3.1.12)

Note that according to the simplifying assumption discussed at the beginning of this sub-

section there is no surface electric current taken into account. The magnetomotive inten-

sityH and conduction current densityJ are defined as

H � h � 

u� d, J � j � q



u, (3.1.13)
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whereh is the H field andj is the electric current density.2

In addition to the four electromagnetic conservation laws,five additional principles

are needed, three from mechanics and two from thermodynamics. First is conservation

of mass, which in integral form states

d
dt

»
vptq ρ dv � 0, (3.1.14)

whereρ is the mass density. The arbitrariness of the control volume, which always fol-

lows the same set of material points, yields the pointwise equation

ρ� ρp∇ 
 
uq � 0. (3.1.15)

For simplicity, it is assumed here and subsequently that alldiscontinuities propagate at the

speed of the material. Consequently no jump condition is needed for mass conservation.

The next mechanics principle is that of conservation of linear momentum, generalized

for the electromagnetic-mechanical system. In integral form this is given by

d
dt

»
vptq ρg dv � »

vptq ρ f dv � »Bvptq t ds, (3.1.16)

whereg is the generalized electromagnetic-mechanical momentum (to be specified sub-

sequently),f is the mechanical body force, andt is the generalized electromagnetic-me-

chanical traction on the surface of the control volume (alsoto be specified subsequently).

It is further assumed that Cauchy’s formula relates the electromagnetic-mechanical sur-

face tractiont toσ, the generalized electromagnetic-mechanical (Maxwell) stress,

t � n 
 σ. (3.1.17)

2The fieldsb and h are denoted here as the magnetic field and H field, respectively. In the literature
they are also referred to as the magnetic flux and magnetic field, respectively, andh is often denoted as the
current potential (Kovetz, 2000).
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The pointwise form of the conservation of linear momentum and the associated interface

condition follow from the arbitrariness of the control volume, by using standard argu-

ments which involve Gauss’ divergence theorem,

ρ

g � ∇ 
 σ� ρ f , n 
 ~σ� � t, (3.1.18)

wheret in the jump condition is the applied mechanical surface traction.

The third mechanics principle is the conservation of angular momentum, generalized

for the electromagnetic-mechanical system, which states3

d
dt

»
vptq x ^ ρg dv � »

vptq x ^ ρ f dv� »Bvptq x ^ t ds. (3.1.19)

The pointwise form follows from the arbitrariness of the control volume and the use of

mass and linear momentum conservation in equations (3.1.15) and (3.1.18)

ρ

u^ g � σT � σ. (3.1.20)

Note that no associated interface condition is needed sinceall interfaces propagate at the

speed of the material.

The first thermodynamic principle pertains to the balance ofpower, which states that

the rate of change of the control volume’s internal energy isequal to the power supplied

externally, i.e.

d
dt

»
vptq ρǫ dv � »

vptq ρ f 
 

u dv� »Bvptq t 
 


u ds� »
vptq ρh dv� »Bvptq p�qq 
 n ds (3.1.21)� »Bvptq p�E �Hq 
 n ds,

3Recall that the wedge product is defined asa^ b � ab� ba.
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whereǫ is the specific internal energy. The first line in the right hand side of equa-

tion (3.1.21) is the supplied mechanical power, where the first term is the body force

contribution and the second term is the surface traction contribution. The second line

in the right hand side of equation (3.1.21) is the supplied thermal power, where the first

term accounts for internal heating and the second term accounts for surface heating. The

specific rate of heating, i.e. the rate of heating per mass, isdenoted byh and the heat

flux through the surface is denoted byq and is oriented such that a positive value indi-

cates heat flux out of the control volume.4 Finally, the third line in the right hand side of

equation (3.1.21) is the supplied electromagnetic power through the surface. The elec-

tromagnetic energy flux is given by the Poynting vectorE�H , again oriented such that

a positive value indicates energy flux out of the control volume. The pointwise form of

the energy balance and the associated interface condition follow once again from the ar-

bitrariness of the control volume using standard argumentsinvolving Gauss’ divergence

theorem, namely

ρ


ǫ � ρp f 
 
u� hq �∇ 
 pσ 
 
u� q � E �Hq ,

n 
 ~�σ 
 
u � q � E�H� � 0. (3.1.22)

The second thermodynamic principle is the entropy production inequality, which

states that the rate of change of the control volume’s entropy must be greater than or

equal to the entropy supplied to it, i.e.

d
dt

»
vptq ρs dv ¥ »

vptq ρ h
T

dv � »Bvptq ��q
T

	 
 n ds, (3.1.23)

wheres is the specific entropy5 andT is the absolute temperature. The first term in the

4The reader must not confuse the scalar specific rate of heating h with the vector H fieldh nor the vector
heat fluxq with the scalar volumetric chargeq.

5The reader must not confuse the scalar specific entropys with the line tangent vectors.
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right hand side of equation (3.1.23) accounts for the entropy supplied by the internal

heating, and the second term accounts for the entropy supplied by the heat flux through

the surface of the control volume. The integral form provides, through the same argu-

ments used for the energy balance in equation (3.1.22), the pointwise entropy production

inequality and associated jump condition,

ρ


s ¥ ρh

T
�∇ 
 ��q

T

	
, n 
 � q

T

� ¥ 0. (3.1.24)

With the necessary balance laws in place, the method of Coleman and Noll (Cole-

man and Noll, 1963) is used to find the material’s constitutive laws. In order to do so,

one needs first the electromagnetic constitutive laws in thecurrent configuration. For

simplicity, and motivated by the EMF applications of interest, it is assumed that the mag-

netization and polarization of the material are negligibleand hence

d � ǫ0e, h � 1
µ0

b, (3.1.25)

whereǫ0 is the permittivity of free space andµ0 is the permeability of free space. The

next piece of information required pertains to the specific free energyψ, which is defined

by (see Kovetz (2000))

ρψ � ρǫ � Tρs � ρpg 
 
uq � ρ

2
p 
u 
 
uq� ǫ0

2
pe 
 eq � 1

2µ0
pb 
 bq � pd � bq 
 
u. (3.1.26)

This states thatψ equals the total specific internal energy less the energy dueto thermal,

kinetic, and electromagnetic sources (the expression in equation (3.1.26) also assumes

that there is no polarization or magnetization in the material).

For the case of non-dissipative, non-magnetizable, and non-polarizable materials, it



78

is assumed that the specific free energy6

ψ � ψpF, T q, (3.1.27)

whereF is the deformation gradient,F � Bx{BX. From the pointwise energy balance in

equation (3.1.22) the expression forρh is substituted into the entropy production inequal-

ity. Rearranging the result using equations (3.1.15), (3.1.25), and (3.1.26), the pointwise

entropy production inequality (3.1.24) can be rewritten as�
σT � ρ

� BψBF


 
 FT � ǫ0

�
1
2
pe 
 eqI � ee


� 1
µ0

�
1
2
pb 
 bqI � bb


 � pd � bq 
u�

p 
u∇q� ρ

�BψBT
� s

� 

T � rρg� ρ


u � d � bs 
 

u (3.1.28)�J 
 E � ��q
T

	 
∇T ¥ 0.

This inequality must hold for any admissible thermodynamicprocess, i.e. for arbitrary


u∇,


T , and


u, which implies that the terms grouped in brackets must be zero. The vanishing

of the term multiplying

u∇ provides the electromagnetic-mechanical stress expression

sought

σ � ρF 
 � BψBF


T � ǫ0

�
ee� 1

2
pe 
 eqI
� 1

µ0

�
bb � 1

2
pb 
 bqI
� 


upd � bq. (3.1.29)

The electromagnetic-mechanical stress can be divided intomechanical,σm, and electro-

6In generalψ is taken as a function ofF, T ,

u, E, B, and∇T . For details, see Kovetz (2000).
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magnetic,σem, parts

σ � σm � σem

σm � ρF 
 � BψBF


T

(3.1.30)

σem � ǫ0

�
ee� 1

2
pe 
 eqI
� 1

µ0

�
bb � 1

2
pb 
 bqI
 � 


upd � bq.
Although for simplicity (and without loss of generality) itis assumed that the material is

hyperelastic, in general the mechanical stress may be givenin rate form, as a function of

F andT and some internal variables. Evolution laws for the internal variables would be

necessary to complete the mechanical constitutive description.

The vanishing of the term multiplying


T in equation (3.1.28) provides the entropy

relation

s � �BψBT
, (3.1.31)

while the vanishing of the term multiplying



u in equation (3.1.28) provides the electro-

magnetic-mechanical momentum relation

g � 
u� 1
ρ
pd � bq. (3.1.32)

One can now verify using equations (3.1.29) and (3.1.32) that the angular momentum

balance in equation (3.1.20) is satisfied.

Upon taking into account equations (3.1.29), (3.1.31), and(3.1.32), the final form of

the entropy inequality equation (3.1.28) is

J 
 E � ��q
T

	 
∇T ¥ 0. (3.1.33)

Substituting forg from equation (3.1.32) into the pointwise linear momentum equa-

tion (3.1.18) one obtains

∇ 
 σ� ρ f � ρ
d
dt

�
1
ρ
pd � bq
 � ρ




u. (3.1.34)



80

Using the definition ofσ from equation (3.1.29), and Maxwell’s equations (3.1.2), (3.1.4),

(3.1.10), and (3.1.12), the above equation of motion may be further simplified to the more

physically transparent form

∇ 
 σm � j� b � qe � ρ f � ρ



u, (3.1.35)

which shows that the divergence of the mechanical stressσm plus the Lorentz force terms,

j� b�qe, plus the mechanical body forceρ f equal the inertia termρ


u. It is worth noting

that the Lorentz force terms have appeared as a result of the generalized electromagnet-

ic-mechanical stress, without assuming their existence a priori.

3.1.2 Transformation of Field Quantities from Current to Reference Configuration

Kinematic relations from continuum mechanics are now used to obtain the relations

between current and reference configuration fields and to transform the previous con-

servation laws to their reference configuration counterpart. To this end, one needs the

three equations relating volume elements, oriented line elements, and oriented surface

elements in the reference and current configurations (the last of which is Nanson’s for-

mula), namely7

dv � J dV, s dl � pF 
 Sq dL, n ds � JpN 
 F�1q dS ; J � detpFq (3.1.36)

whereS is the tangent to the line element dL in the reference configuration andN is the

normal to the surface element dS in the reference configuration.

Beginning with conservation of charge, equation (3.1.1), and using equation (3.1.36)

to transform the integration from current to reference configuration yields»BV

pJF�1 
 dq 
 N dS � »
V

Jq dV. (3.1.37)

7Here and subsequently capital letters will be used to designate field quantities in the reference config-
uration corresponding to the lowercase field in the current configuration.
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This implies the definitions

D � JF�1 
 d, Q � Jq, (3.1.38)

whereD is the reference configuration electric displacement andQ is the reference con-

figuration volume charge density. The pointwise Gauss’ equation in the reference config-

uration and the interface condition follow from the arbitrariness of the reference config-

uration control volume using standard arguments as in the current configuration case in

equation (3.1.2), namely

∇ 
 D � Q, N 
 ~D� � 0. (3.1.39)

Note that whereas∇ is the gradient operator in the current configuration,∇ is the gradient

operator in the reference configuration.

Next, the kinematic relations in equation (3.1.36) are applied to Faraday’s law in

equation (3.1.3), which yields¾BS

pE 
 Fq 
 S dL � � d
dt

»
S

pJF�1 
 bq 
 N dS . (3.1.40)

This leads to the definitions

E � E 
 F, B � JF�1 
 b, (3.1.41)

whereE is the electromotive intensity in the reference configuration andB is the mag-

netic field in the reference configuration. The pointwise Faraday’s equation and asso-

ciated interface condition in the reference configuration follow, similarly to the current

configuration case,

∇� E � � 

B, N � ~E� � 0. (3.1.42)

Note also that the reference configuration relations are simple to derive since the reference

configuration is independent of time.
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Attention is focused next to the non-existence of magnetic charge, equation (3.1.9),

which with the help of equation (3.1.36) gives in the reference configuration»BV

pJF�1 
 bq 
 N dS � 0. (3.1.43)

Using the previous definition forB in equation (3.1.41) leads to the pointwise statement

and associated interface condition in the reference configuration,

∇ 
 B � 0, N 
 ~B� � 0. (3.1.44)

The transformation of Ampere’s law in the reference configuration comes from ap-

plying equation (3.1.36) to equation (3.1.11), yielding¾BS

pH 
 Fq 
 S dL � d
dt

»
S

pJF�1 
 dq 
 N dS � »
S

pJF�1 
J q 
 N dS . (3.1.45)

This leads to the definitions

H �H 
 F, J � JF�1 
J , (3.1.46)

whereH is the magnetomotive intensity in the reference configuration andJ is the con-

duction electric current density in the reference configuration.8 With these definitions,

the pointwise Ampere’s equation and interface condition inthe reference configuration

follow in a similar fashion as for the current configuration case, equation (3.1.12),

∇� H � 

D� J, N � ~H� � 0. (3.1.47)

Having established Maxwell’s equations in the reference configuration attention is

turned next to the mechanical conservation laws. The statement of conservation of mass,

equation (3.1.14), is transformed to the reference configuration using equation (3.1.36),

d
dt

»
V

Jρ dV � 0, (3.1.48)

8The reader must not confuse the vector conduction electric current density in the reference configura-
tion J with the scalar density for volume changeJ � detpFq.
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which leads to the definition

ρ0 � Jρ, (3.1.49)

whereρ0 is the mass density in the reference configuration. The pointwise mass conserva-

tion equation in the reference configuration, counterpart of equation (3.1.15), is therefore

ρ0 � 0. (3.1.50)

To find the relations between current and reference configuration stress and traction

fields, one needs the conservation of linear momentum and Cauchy tetrahedron argu-

ment equation (3.1.17). Transforming equations (3.1.16) and (3.1.17) with the help of

equation (3.1.36) yields

d
dt

»
V

Jρg dV � »
V

Jρ f dV � »BV

t
ds
dS

dS (3.1.51)

and

T � N 
Π. (3.1.52)

This implies the definitions

T � t
ds
dS

, Π � JF�1 
 σ, (3.1.53)

whereT is the surface traction in the reference configuration andΠ is the electromag-

netic-mechanical first Piola-Kirchhoff stress.9 Cauchy’s formula (equation (3.1.17)) and

Nanson’s formula (equation (3.1.36)) lead to the second part of equation (3.1.52). With

these definitions, the pointwise equation of motion and corresponding interface condi-

tion in the reference configuration which follow from equations (3.1.51), (3.1.52), and

9The reader must not confuse the vector surface traction in the reference configurationT with the scalar
temperatureT .
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(3.1.53), in a similar fashion that equation (3.1.18) followed from equations (3.1.16) and

(3.1.17), are

ρ0

g � ∇ 
Π� ρ0 f , N 
 ~Π� � T. (3.1.54)

The above derived reference configuration expressions for the current configuration field

quantities introduced in Section 3.1.1 are the indispensable ingredients for the variational

approach that follows.

3.1.3 Variational Approach (Reference Configuration)

One of the most efficient ways to obtain Maxwell’s equations, in the current con-

figuration, through a variational approach (Hamilton’s principle, see Lazzari and Nibbi

(2000)) is based on a potential formulation such that Faraday’s equation, equation (3.1.4),

and the statement of no magnetic charges, equation (3.1.10), are satisfied identically. A

vector potential,a, and scalar potential,φ, are defined such that

b � ∇� a, e � �∇φ� BaBt
. (3.1.55)

The potentials in this formulation are not uniquely determined. A gauge condition must

be applied for unique potentials, which will be discussed subsequently.

This potential formulation reduces the number of non-automatically satisfied Maxwell’s

equations to two. A purely electromagnetic Lagrangian density exists in terms of the gen-

eralized coordinatesa andφ such that the Euler-Lagrange equations of the corresponding

(Hamilton’s) variational principle are Gauss’ and Ampere’s equations. This Lagrangian

density is

ℓ � ǫ0

2
pe 
 eq � 1

2µ0
pb 
 bq � j 
 a � qφ, (3.1.56)

wheree andb are in terms ofa andφ through equation (3.1.55).

In order to transform the current configuration electromagnetic Lagrangian density

to its reference configuration counterpart, the vector and scalar potentials must be trans-
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formed accordingly. Substituting equation (3.1.41) into equation (3.1.55) yields after

some manipulation (see Nelson (1979) for details)

B � ∇� A

E � �∇Φ� 

A, (3.1.57)

where the reference configuration vector potentialA and reference configuration scalar

potentialΦ are given in terms of their current configuration counterparts by

A � a 
 F

Φ � φ� 
u 
 a. (3.1.58)

As in the current configuration, the reference configurationpotential formulation iden-

tically satisfies Faraday’s equation, equation (3.1.42), and the statement of no magnetic

charges, equation (3.1.44). Notice that these reference configuration potentials are still

not unique, requiring a gauge condition.

With this formulation, the reference configuration Lagrangian for the full electromag-

netic-mechanical case can now be obtained by adding the mechanical energy component

to the electromagnetic part in equation (3.1.56). To achieve this one first needs to define

the auxiliary termE� as

E� � E � pF�1 
 
uq � B (3.1.59)

(whereE� is not to be confused with a flux derivative term). Then, giventhat the la-

grangian densityℓ transforms to the reference configuration asJℓ, adding the necessary

mechanical energy terms, and substituting for the current configuration fields in terms

of the reference configuration fields with equations (3.1.5), (3.1.38), (3.1.41), (3.1.46),
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(3.1.57), and (3.1.59) yields the reference configuration Lagrangian

L � »
R3

�
Jℓ � ρ0

�
1
2
p 
u 
 
uq � ψpCq � f 
 u




dV � »BΩ T 
 u dS� »

R3

�
ǫ0J
2

�
E� 
 C�1 
 E��� 1

2µ0J
pB 
 C 
 Bq (3.1.60)� J 
 A� QΦ � ρ0

�
1
2
p 
u 
 


uq � ψpCq � f 
 u




dV � »BΩ T 
 u dS ,

where the independent fields areΦ, A, andu and C � FT 
 F is the right Cauchy-

Green tensor. HereΩ is the domain occupied by the body, andBΩ is the surface of this

body. Notice that the densityρ0pXq � 0 for X P Ω andρ0pXq � 0 for X P R3 � Ω.

Integration overR3 is necessary since electric and magnetic fields exist not only in the

solid (X P Ω) but also in its surrounding space (X P R3 �Ω). Moreover, note thatΦ and

u are assumed continuous throughoutR3, but only the tangent component ofA, i.e. At, is

assumed continuous across an interface.

Hamilton’s principle states that the action integralF , defined as the integral of the

Lagrangian defined in equation (3.1.60) over the time interval [t1,t2], is stationary10

δF � 0, F � t2»
t1

L dt, (3.1.61)

whereδΦ � 0, δA � 0, andδu � 0 at t � t1 andt � t2. The resulting Euler-Lagrange

equations are the governing equations of the electromagnetic-mechanical system. More

specifically:

10Here and subsequentlyδ denotes the variation of a functional.
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Taking the variation ofF with respect toΦ yields

F,ΦrδΦs � t2»
t1

"»
R3

�
∇ 
 pǫ0JE� 
 C�1q � Q

�
δΦ dV� »BΩ ��N 
 �ǫ0JE� 
 C�1

��
δΦ
�

dS

*
dt � 0, (3.1.62)

where integration by parts and Gauss’ divergence theorem have been used. Using equa-

tions (3.1.5), (3.1.25), (3.1.38), (3.1.41), and (3.1.59)the reference configuration electro-

magnetic constitutive relation one observes that the groupof terms appearing in parenthe-

sis and brackets in equation (3.1.62) is the reference configuration electric displacement

D � ǫ0JE� 
 C�1. (3.1.63)

Consequently equation (3.1.62) implies

∇ 
 D � Q, N 
 ~D� � 0, (3.1.64)

that is Gauss’ equation and interface condition in the reference configuration, equa-

tion (3.1.39), as expected.

Taking the variation ofF with respect toA gives

F,ArδAs � t2»
t1

"»
R3

�
d
dt

�
ǫ0JE� 
 C�1

�� ∇� ��ǫ0JE� 
 C�1
�� �F�1 
 
u�� 1

µ0J
pB 
 Cq
 � J


 
 δA dV� »BΩ ��N � ��ǫ0JE� 
 C�1
�� �F�1 
 
u� (3.1.65)� 1

µ0J
pB 
 Cq

 
 δA

�

dS

*
dt � 0,

where integration by parts, identities for triple products, and Stoke’s theorem have been

used. Similarly to equation (3.1.63), using equations (3.1.13), (3.1.25), (3.1.38), (3.1.41),
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and (3.1.46) one observes that the group of terms appearing in parenthesis and brackets

in equation (3.1.65) is the reference configuration H field

H � 1
µ0J

pB 
 Cq � �F�1 
 
u�� D. (3.1.66)

Consequently equation (3.1.65) yields11

∇� H � 

D� J, N � ~H� � 0, (3.1.67)

which is Ampere’s equation and the related interface condition, equation (3.1.47), in the

reference configuration, again as expected.

Finally, the variation ofF with respect tou will yield the equation of motion and

surface traction condition in terms of the electromagnetic-mechanical momentumg and

stressσ. Applying integration by parts and Gauss’ divergence theorem gives the station-

ary condition

F,urδus � t2»
t1

"»
R3

�
∇ 
Π� d

dt

���
ǫ0JE� 
 C�1

�� B
� 
 F�1

�� ρ0


u� ρ0 f


 
 δu dV (3.1.68)� »BΩ pN 
 ~Π�� Tq 
 δu dS

*
dt � 0,

where the reference electromagnetic-mechanical first Piola-Kirchoff stressΠ is given by

Π � ρ0

� BψBF


T � ǫ0J

��
E� 
 C�1

� �
C�1 
 E�� 
 FT � 1

2

�
E� 
 C�1 
 E�� F�1


� 1
µ0J

�
BB 
 FT � 1

2
pB 
 C 
 Bq F�1


 � �F�1 
 

u
� pD� Bq 
 F�1. (3.1.69)

Consequently from equations (3.1.68) and (3.1.69) one obtains

∇ 
Π� ρ0 f � d
dt

�pD� Bq 
 F�1
�� ρ0



u � ρ0

g, N 
 ~Π� � T, (3.1.70)

11By the definitions ofN andAt one has~pN � Hq 
 δA� � pN � ~H�q 
 δAt.
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which are the reference configuration equation of motion andinterface condition of equa-

tion (3.1.54) as expected.

A final note is in order at this point. To complete the variational formulation pre-

sentation one must show that equation (3.1.70) transforms to their current configuration

counterparts. Using theσ-Π relation in equation (3.1.53) one has

∇ 
Π � Jp∇ 
 σq. (3.1.71)

Considering in addition equations (3.1.5), (3.1.25), (3.1.36), (3.1.38), (3.1.41), (3.1.50),

and (3.1.59), the reference configuration equation and interface conditions of motion

transform to equation (3.1.34) and the interface conditionin equation (3.1.18), their cur-

rent configuration counterparts derived with the direct method. It is thus shown that the

variational method agrees with the direct method for Maxwell’s equations and the equa-

tion of motion.

3.2 Eddy Current Formulation

For the EMF processes of interest the problem formulation may be simplified con-

siderably by applying the eddy current approximation. Following the description of the

eddy current approximation for the general 3-D case, the section proceeds with the ax-

isymmetric version of this approximation and ends by presenting the modeling of the coil

under a given current.

3.2.1 General Case in 3-D

The aspects typical of EMF processes that make this simplification appropriate: the

material velocities are much less than the speed of light, the effective electric current fre-

quencies are on the order of 10 kHz, the geometry is on the order of 1 cm, and the material

electrical conductivities are large. Detailed discussionof this approximate formulation
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may be found in the literature, e.g. in Hiptmair and Ostrowski (2005) and references cited

therein. From the above assumptions follows that the eddy current approximation essen-

tially consists of neglecting electric energy from the lagrangianℓ in equation (3.1.56).

Imposing the eddy current approximation implies displacement currents are neglected,

which means volumetric charges are not accounted for and charge conservation must be

imposed separately. The resulting approximate Lagrangiandoes not depend onΦ and

Gauss’ equation is no longer a result of the variational procedure.

With this approximation, the Lagrangian may be divided intokinetic energy,K , and

potential energy,P, as

L � K �P , (3.2.1)

whereK andP are given by

K � »
R3

ρ0

2
p 
u 
 


uq dV

P � »
R3

�
1

2µ0J
pB 
 C 
 Bq � J 
 A� ρ0 pΨ pCq � f 
 uq
 dV (3.2.2)� »BΩ T 
 u dS .

The action integralF is formed by integratingL over a time interval [t1,t2] and

Hamilton’s principle is applied as previously (see equation (3.1.61)). Taking the variation

of F with respect toA gives

F,ArδAs � t2»
t1

"»
R3

�
∇� � 1

µ0J
pB 
 Cq
 � J


 
 δA dV� »BΩ ��N � � 1
µ0J

pB 
 Cq

 
 δA
�

dS

*
dt � 0. (3.2.3)

The eddy current simplification implies that the terms in parentheses in equation (3.2.3)

are the reference configuration H field. From equation (3.1.66) and sinceµ0ǫ0    1 one
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can define the approximate H field by

H � 1
µ0J

pB 
 Cq . (3.2.4)

Thus the variation with respect toA results in the reference configuration approximate

Ampere’s equation and interface condition, given by

∇� H � J, N � ~H� � 0, (3.2.5)

which agrees with equation (3.1.67) once the displacement current


D is neglected.

Taking the variation ofF with respect tou, one has

F,urδus � t2»
t1

"»
R3

p∇ 
Π� ρ0



u� ρ0 fq 
 δu dV� »BΩ pN 
 ~Π�� Tq 
 δu dS

*
dt � 0, (3.2.6)

where the approximate nominal stress fieldΠ has now been defined by

Π � ρ0

�BΨBF


T � 1
µ0J

�
BB 
 FT � 1

2
pB 
 C 
 Bq F�1



. (3.2.7)

Equation (3.2.6) implies the pointwise equation of motion and interface condition in the

reference configuration,

∇ 
Π� ρ0 f � ρ0


u, N 
 ~Π� � T. (3.2.8)

which results from equation (3.1.70) when electric displacement terms are neglected.

To complete the formulation charge conservation must be imposed separately, since

it cannot follow from Hamilton’s principle with the eddy current simplification. The

reference configuration charge conservation equation and interface condition are

∇ 
 J � 0, N 
 ~J� � 0 (3.2.9)



92

and must be imposed in addition to Hamilton’s principle for the eddy current approxima-

tion.

To solve the governing equations (3.2.5), (3.2.8), and (3.2.9) the constitutive law for

J is needed. Here an isotropic Ohm’s law with constant conductivity is assumed, given

by

j � σpe� 
u � bq ñ J � σJC�1 
 E. (3.2.10)

3.2.2 Axisymmetric Processes

Implementing the aforementioned general theoretical formulation for axisymmetric

problems significantly simplifies the resulting formulation by reducing the independent

variables on the (R,Z) space to three (AΘ, uR, uZ),12 as it will be shown in the first sub-

section. However, special care must be taken with the axisymmetric formulation in the

forming coil under a given current, and this is the object of the second subsection.

3.2.2.1 Axisymmetric Formulation

The forming process of interest is assumed rotationally symmetric (in the z-direction),

implying that no field depends on theθ coordinate. The corresponding symmetry group

is C8, i.e. when the solution is invariant to coordinate transformations corresponding to

solid body rotations around the z-axis. From the assumed symmetry it is expected that

there is no hoop displacement (uθ � 0) and the only nonzero component of the current

density and electric field is the hoop component, i.e.j � jθiθ ande � eθiθ. Also from

12Here and subsequentlyr, θ, andz are the current configuration cylindrical coordinates withrespective
unit vectorsir, iθ, and iz, andR, Θ, andZ are the reference configuration cylindrical coordinates with
respective unit vectorsiR, iΘ, iZ. Subscripts ofr, θ, andz indicate fields in terms of current configuration
coordinates, and subscripts ofR,Θ, andZ indicate fields in terms of reference configuration coordinates.
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symmetry, there is no hoop component of the magnetic field (bθ � 0). To summarize,Bp qBθ � 0; ur, uz � 0, uθ � 0; er, ez � 0, eθ � 0;

br, bz � 0, bθ � 0; jr, jz � 0, jθ � 0. (3.2.11)

The above results are consistent with Ohm’s law, equation (3.2.10). Moreover from the

electric field - potential relation, equation (3.1.55), combined with equation (3.2.11), one

obtains that

ar, az � 0, aθ � 0;
BφBr

� BφBz
� BφBθ � 0, (3.2.12)

i.e. the only independent fields areaθ, ur, anduz. Using the relations between current and

reference configuration electric current and potentials, equations (3.1.46) and (3.1.58)

respectively, one has in the reference configuration

u � uRiR � uZ iZ, A � AΘiΘ, Φ � 0, J � JΘiΘ, (3.2.13)

whereΦ may be chosen as any arbitrary constant and is here set to zero.

With this formulation in place, it is straightforward to show that the Coulomb gauge

condition, charge conservation, and two associated interface conditions in the reference

configuration are identically satisfied, that is

∇ 
 A � 0

N 
 ~A� � 0

∇ 
 J � 0 (3.2.14)

N 
 ~J� � 0.

Note that whereas equations (3.2.14)3 and (3.2.14)4 must hold in 3-D processes as well,

equations (3.2.14)1 and (3.2.14)2 are here a result of axisymmetry. In general, other gauge

conditions may be chosen, and nonzero jumps in the normal of the vector potential may

occur.
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3.2.2.2 Forming Coil

Though the forming process of interest is assumed to be geometrically axisymmetric,

the forming coil in reality must be a continuous spiral. In order to model such a coil in

the axisymmetric framework, the formulation must include the driving electric field. The

approach here is similar to that in Stiemer et al. (2006). Each coil turn is approximated

as a stationary torus, unconnected geometrically from the other turns. It is required that

the electric current density remain axisymmetric, which implies in each coil turn

J � JΘpR, ZqiΘ. (3.2.15)

Using equations (3.1.57) and (3.2.10) and recalling that the coil does not deform (refer-

ence and current configuration are the same), one has

JR � 0ñ BΦBR
� AR � 0

JZ � 0ñ BΦBZ
� AZ � 0. (3.2.16)

ThusΦ is not a function ofR or Z, and from equation (3.2.15)JΘ is not a function of

Θ. SinceJΘ � �σ�� 1
R

� BΦBΘ � 

AΘ
	

, BΦBΘ must in view of equation (3.2.16) be a constant.

Given∆Uk, the change in the electric potentialΦ over coil turnk,BΦBΘ � ∆Uk

2π
ñ ∇Φ � �∆Uk

2πR



iΘ. (3.2.17)

With this formulation, the electric potential drops in all the coils,∆Uk, can be ex-

pressed in terms of the coil currentIptq and the magnetic vector potentialAΘ as fol-

lows: Recall from Ohm’s law, equation (3.2.10), that since the coil does not deform,

J � j � σe � σE. Integrating over the cross section in theR-Z plane of a coil turn gives

the total current in the coil,Iptq. Assuming the coil has a rectangular cross section in the
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R-Z plane aligned with theR-Z axes

Iptq � »
S k

J 
 nk dS� �σ »
S k

p∇Φ� 

Aq 
 iΘ dS� �σ »

S k

� 

AΘ � ∆Uk

2πR



dS (3.2.18)� �σ »

S k



AΘ dS � σh

2π
ln

�
bk

ak



∆Uk,

whereS k is the surface of the coil’s cross section,nk � iΘ is the normal to the cross-

section,h is the height of the cross section,bk is the outside radius of the cross section,

andak is the inside radius of the cross section. This equation may be solved for∆Uk

in terms of Iptq and



AΘ, and using equations (3.1.57), (3.2.10), and (3.2.17) the hoop

component electric current density in coil turnk is given by

JΘ � σ

hR

�
ln

bk

ak


�1
�� Iptq

σ
� »

S k



AΘ dS

�
� σ



AΘ. (3.2.19)

This expression for the electric current density in the coilis substituted into the varia-

tional formulation, equation (3.2.1), to yield a boundary value problem dependent only on

AΘ. However, the integral in equation (3.2.19) is over the entire cross section of the coil

turn, which introduces non-local relations into the subsequent finite element formulation.

3.3 Numerical Implementation

The numerical implementation of the general theory employsthe variational inte-

gration approach. According to this method space and time interpolation schemes are

concurrently applied to the Lagrangian, followed by the variational principle applied on

the discrete nodal variables for each time step (Marsden andWest, 2001; Sanyal et al.,

2005).
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In the axisymmetric cases discussed here, the independent variables, functions ofR

andZ, are: nonzero displacementsuR anduZ and nonzero magnetic vector potential com-

ponentAΘ. All the independent variables are continuous functions ofthe space variables,

as discussed in Section 3.2.2. Therefore, employing nodal finite elements one has the

discretization in space, given by

AepR, Z; tq � MpR, Zq 
 qeptq
uepR, Z; tq � NpR, Zq 
 peptq, (3.3.1)

where Ae is the vector potentialA inside an element,ue is the displacementu inside

an element,M is the spatial interpolation matrix of element basis functions for A, N is

the spatial interpolation matrix of element basis functions for u, qe are the nodal degrees

of freedom forA in the element, andpe are the nodal degrees of freedom foru in the

element. Four node bilinear quadrilateral elements are used to discretize the reference

configuration, with the same mesh being employed forA andu. These linear elements

are appropriate since the Lagrangian, equation (3.2.1), involves only up to first derivatives

of A andu.

Using the backward Euler approximation for time discretization, one has

AepR, Z; tiq � MpR, Zq 
 
qeptiq, 
qeptiq � qi

e � qi�1
e

∆t
uepR, Z; tiq � NpR, Zq 
 
peptiq, 
peptiq � pi
e � pi�1

e

∆t
, (3.3.2)

whereqi
e andpi

e are the degrees of freedom in an element at timeti and∆t � ti � ti�1.

With the above space and time discretization and using the trapezoidal rule for time
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integration ofF , a discrete actionF d is defined by

F � » tM

t0

L pA, u, 
u, tq dt� ∆t
2

L0 � ∆t
M�1̧

i�1

Li � ∆t
2

LM (3.3.3)� ∆t
2

L
d

0 � ∆t
M�1̧

i�1

L
d

i � ∆t
2

L
d
M � F

d,

where the Lagrangian is from equation (3.2.1) and approximated discretely by using

equations (3.3.1) and (3.3.2),

Li � L pAptiq, uptiq, 

uptiq, tiq� L

d
i pqi, pi, pi�1, tiq. (3.3.4)

The degrees of freedom at timeti throughout the domain of integration in space are given

by qi and pi. Upon application of Hamilton’s variational principle with respect to these

discrete degrees of freedom, the discrete governing equations are

F
d
,qi

�
δqi
� � 0, F

d
,pi

�
δpi
� � 0, (3.3.5)

where δq0 � δqM � 0 and δp0 � δpM � 0. These equations provide the time

stepping routine to solve for the degrees of freedom at each time step, that is givenrqi, qi�1, pi, pi�1s one calculatesrqi�1, pi�1s. The choice of the approximations to the

time derivatives and integral in equations (3.3.2) and (3.3.3), respectively, allows for the

coupled problem to be solved efficiently. One may calculatepi�1 independent ofqi�1,

since there are no



A terms inL and thus no coupling terms between



A and

u. Thenqi�1

is given in terms ofqi, pi, andpi�1, thus justifying a staggered solution algorithm for the

fully coupled problem.

To complete the implementation the initial and boundary conditions are needed. The

initial conditions are given by

q0 � 0, p0 � 0. (3.3.6)
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Note that the problem is driven by the time dependent input electric currentIptq, as dis-

cussed in Section 3.2.2.2.

The problem also requires application of the essential boundary conditions. In addi-

tion to axisymmetry, the processes discussed subsequentlywill all have mirror symmetry

aroundZ � 0. This implies the essential boundary conditions forA aretR � 0u ñ tAΘ � 0utR2 � Z2 Ñ 8u ñ tAΘ Ñ 0u. (3.3.7)

R � 0 is the axis of rotational symmetry, implyingAΘ � 0, and the electromagnetic fields

decay to zero at infinity. For simplicity, the latter boundary condition is implemented by

taking a large area of meshed air and applyingAΘ � 0 at the edges. In the following

calculations it has been confirmed that the size of the air mesh is large enough as to accu-

rately model the infinity boundary condition. Foru, one need impose only the boundary

condition tZ � 0u ñ tuZ � 0u, (3.3.8)

which is dictated by mirror symmetry.

Note that outside the workpiece the displacements are not determined by the varia-

tional procedure. The coil is stationary, and in the surrounding air the equation of motion

is satisfied identically, as expected. However, it is necessary to assume a distribution of

displacement in the air in order to ensure the mapping between reference and current con-

figurations remains invertible. Moreover, this distribution affects the numerical solution

and if not carefully chosen can cause the simulation to give poor results. In the present

work, a simple distribution of displacements in the air is implemented that adjusts with

the displacements in the workpiece as necessary.

It is also important to note the influence of the forming coil on the finite element ma-
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trices. Equation (3.2.19) implies that each degree of freedom in a coil turn cross section

is directly coupled to every other one, through the integralover the cross section. This

introduces non-local relations into the finite element method, and the resulting stiffness

matrices are no longer symmetric.

The numerical techniques detailed above are implemented using the finite element

program FEAP13. Moreover, the choice of the numerical integration techniques will be

discussed further in a subsequent publication. Details of the solution algorithm will be

given there, along with an analysis of the technique and possible alternatives.

3.4 Results

One can now turn to simulations of electromagnetic forming processes, and the nu-

merical simulation is employed to model two types of processes. First is that of ring ex-

pansion, compared with the semi-analytical solution of Triantafyllidis and Waldenmyer

(2004) that uses known integration forms and inductance formulas. The ring expansion

test problem provides a check on the accuracy of the simulation.

Second is the process of tube expansion, inspired by the experiments of Section 2.3.

Figure 2.13a shows a bare four turn coil from the experiments, and Figure 2.13b shows

that same coil, potted in epoxy, with a tube fitted around the coil before deformation. Fig-

ures 1.3 and 2.14 show examples of deformed tubes from such experiments. Accounting

for axisymmetry and mirror symmetry, along theZ � 0 plane, as discussed in Section 3.3,

an FEM mesh for tube expansion is shown in Figure 3.1, including a close-up view of

the coil and tube. The coil and tube are denoted in grey and theair is the meshed area in

white.

13Finite Element Analysis Programhttp://www.ce.berkeley.edu/�rlt/feap/



100

Coil
Tube

Tube

Coil

Figure 3.1: Example FEM mesh for axisymmetric tube expansion.

In the following simulations, a cylindrical four turn coil expands three tubes of vary-

ing height: one taller than the coil, one of approximately even height with the coil, and

one shorter than the coil. The first two are based directly on the geometry of the experi-

mental tubes (Section 2.3) while the third is chosen as a representative process with a tube

shorter than the forming coil. Finally, motivated by Zhang et al. (2008) the expansion of

the tall tube with a non-conductive coating applied to the outside is addressed, which to

the best of the author’s knowledge is the first simulation of this problem in the literature.

The basic dimensions of the axisymmetric ring and tube expansion problems are

shown in Figure 3.2, where the origin O is at the intersectionof the axisymmetry axis, i.e.

the Z-axis, and the plane of mirror symmetry, i.e. theZ � 0 plane. The midlines of the

coil turns and workpiece are denoted with solid dots, and themidplane of the workpiece

is denoted with a dashed line. The relevant dimensions are: radius of the coil midlines,

Rc; radius of workpiece midline,Rw; pitch of the coil,Pc; height of the workpiece,Zw;

coil turn cross section thickness,Tc; and workpiece cross section thickness,Tw, where

for a ringZw � Tw{2.

In the subsequent simulations, unless otherwise noted, theoverall finite element mesh

is chosen to give a result corresponding to the converged solution, based on simulation
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Figure 3.2: Dimensions of ring and tube expansion problems.

runs with varying meshes and time steps. An example of the relative mesh density is

shown in Figure 3.1, where the area in and near the workpiece and coil are meshed more

finely than the air farther away. The space between the coil and workpiece is meshed very

finely to provide adequate mesh density as the workpiece expands, and the convergence

study established the adequacy of a relatively coarse mesh of four elements in each square

coil turn, which is used throughout the following work and simplifies the implementation

(see the discussion of non-local coupling between coil elements in Section 3.3).

Furthermore, there are two regions of air mesh: one with displacements (necessary

near the workpiece, see Section 3.3) and one stationary. Theregion of air with non-zero

displacements is the air with radius greater than the outside radius of the coil, up to a

distanceRd
mesh in theR direction from the outside of the workpiece and up to a distance

Zd
mesh in theZ direction from the top of the coil or workpiece, whichever istaller. The air

mesh without displacements extends beyond this distances of RmeshandZmeshin theR and

Z directions, respectively. In all cases, the extension of the air mesh is chosen relative

to the inner radius of the workpiece, i.e.Rin
w � Rw � Tw{2. In the first test problem

of the ring expansion,Rd
mesh � Zd

mesh � 2Rin
w andRmesh � Zmesh � 10Rin

w . The second
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ring expansion test problem modifies this toRd
mesh � Zd

mesh � Rin
w and shows no loss of

accuracy. Therefore, the subsequent tube expansion simulations useRd
mesh� Zd

mesh� Rin
w

andRmesh� Zmesh� 10Rin
w .

The time step∆t is chosen for convergence, which is verified using the ring expansion

simulations, and is set to∆t � 10�8 s. In general decreasing the time step below that

required for stability showed negligible change in the solution. The choice of mesh and

time step will be explored in detail in a subsequent publication.

In addition, the input electric current is necessary. Sincein typical EMF processes

the electric current in the forming coil is very close to an exponentially decaying sinusoid

(see for example Figure 2.16a), the general form taken in thepresent work is

Iptq � Imaxsin

�
πt
2t0



exp

�
lnpkq� t

2t0


� lnpkq
2



, (3.4.1)

wheret0 is the characteristic time of the current pulse,Imax is the electric current att � t0,

andk is a decay parameter,k � Ip3t0q{Imax. This general form is fit to the individual

forming processes.

3.4.1 Material Constitutive Behavior

For this first implementation of the general theory, temperature effects are ignored, so

the thermal dependence of the constitutive behavior is unnecessary. The electromagnetic

and mechanical material response are discussed subsequently.

3.4.1.1 Electromagnetic Constitutive Response

Since the applications of interest involve metals under high current density, magneti-

zation and polarization can be safely ignored, and equation(3.1.25) gives the constitutive

relations between the electric field and electric displacement and between the magnetic

field and H field. Only Ohm’s law is required to relate electriccurrent with electric field,
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and Ohm’s law with constant conductivity is given in equation (3.2.10). See Table 3.1 for

the values of the electromagnetic constitutive parameters, which are the same throughout

the following simulations. These values are chosen becausecopper is a typical actuator

material and in the experiments of Section 2.3 the tubes weremade of AA6063-T6 alu-

minum alloy. The parametersµ0 andǫ0 are the permeability and permittivity of vacuum,

respectively, and these values along with those of the resistivity of aluminum, rAl, and

copper,rCu, are available in standard references. Also, note that the coatings applied to

the tall tube are assumed to have zero conductivity.

µ0 �1.26 10�6 N/A2 ǫ0 �8.85 10�12 F/m rAl �2.65 10�8 Ωm rCu �1.68 10�8 Ωm

Table 3.1: Electromagnetic constitutive parameter values

3.4.1.2 Mechanical Constitutive Response

As a first implementation, the mechanical constitutive response of each material can

be approximated by a hyperelastic strain energy function. Two mechanical constitutive

laws are employed. One is a formulation based on J2 deformation theory of plasticity (see

Abeyaratne and Triantafyllidis (1981) and references cited therein). For metals undergo-

ing moderate deformations with nearly proportional loading and neglecting rate effects,

J2 deformation theory of plasticity can be used for initially isotropic materials (Anand,

1979). Moreover, this formulation can be fit to any uniaxial strain hardening response.

Because of this, it is also a good constitutive law to model the first coating of interest,

polyurea, which is assumed isotropic with no rate effects. In general however, rate ef-

fects are more important in polyurea than the metals of interest, and future work should

consider the rate dependence of the polyurea constitutive response. The second mechani-

cal constitutive law is a compressible Mooney-Rivlin formulation (Hallquist, 2006) that is
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implemented to model a potential alternative coating on thetall tube. The Mooney-Rivlin

material is also used in the ring expansion simulations.

The hyperelastic strain energy density function is defined by

Wpλ1, λ2, λ3q � ρ0ψ, (3.4.2)

whereλ1, λ2, andλ3 are the principal stretch ratios. In the case of a strain hardening

material it is assumed the mechanical response is governed under loading by

ǫe

ǫy
� τe

τy
for τe ¤ τy,

ǫe

ǫy
� �τe

τy


m

for τe ¡ τy, (3.4.3)

whereǫe is the equivalent logarithmic strain,ǫy is the yield logarithmic strain,τe is the

equivalent Krichoff stress ,τy is the Kirchoff yield stress, andm is the hardening exponent.

The Kirchoff stress tensorτ is related to the Cauchy stress tensorσ by τ � Jσ, and the

yield logarithmic strainǫy is related to the Krichoff yield stressτy by ǫy � τy{E, whereE

is Young’s modulus. The strain energy density function based on J2 deformation theory

of plasticity that models this strain hardening under loading is given by

W �Eǫ2
y

�
χ

χ� 1

�
τe

τy


χ�1 � 1� 2ν
6

�
τe

τy


2�� E
6p1� 2νqpǫ1 � ǫ2 � ǫ3q2 � C, (3.4.4)

whereν is Poisson’s ratio andC is a constant, andτe is related toǫe by

ǫe

ǫy
� �

τe

τy


χ � 1� 2ν
3

�
τe

τy



, χ � $'&'% 1 for ǫe ¤ 2p1� νq

3
ǫy

m for ǫe ¡ 2p1� νq
3

ǫy.

(3.4.5)

The consantC is constructed to assure the continuity ofW at ǫe � 2p1�νq
3 ǫy. Also, the

equivalent logarithmic strainǫe is given by

ǫe � 2
3
pǫ2

1 � ǫ2
2 � ǫ2

3 � ǫ1ǫ2 � ǫ2ǫ3 � ǫ3ǫ1q1{2, (3.4.6)

whereǫi � lnpλiq.
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Figure 3.3: Comparison of uniaxial data and strain hardening constitutive response for
AA6063-T6.

The strain hardening law in equation (3.4.5) is matched to the quasistatic uniaxial data

in Section 2.3 for the tube alloy used in the experiments, AA6063-T6. This gives Young’s

modulus, the Kirchoff yield stress, and the hardening exponent, and a comparison of the

strain hardening curve and uniaxial data is given in Figure 3.3. Poisson’s ratio is then

chosen to give a nearly incompressible material (an accurate assumption for metals at

large plastic strains) while not producing numerical difficulties related to incompressibil-

ity, and the mass density,ρ, is obtained from standard references on Aluminum (it is not

alloy sensitive). The resulting parameter values are givenin Table 3.2.

E �69 109 Pa τy �195 106 Pa m �1/0.072 ν �0.45 ρ �2700 kg/m3

Table 3.2: AA6063-T6 uniaxial mechanical constitutive parameter values

In addition, uniaxial compression data for polyurea (see the sprayed polyurea ma-

terial from Chakkarapani et al. (2006), and the behavior in tension is assumed to be
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similar to that in compression) is used to determine its strain hardening behavior. The

resulting Young’s modulus, Kirchoff yield stress, and hardening exponent are given in

Table 3.3, along with Poisson’s ratio (chosen as for AA6063-T6) and the mass density of

the polyurea coating, obtained from Zhang and Ravi-Chandar(2008).

E �0.25 109 Pa τy �8.7 106 Pa m �1/0.12 ν �0.45 ρ �1200 kg/m3

Table 3.3: Polyurea uniaxial mechanical constitutive parameter values

To investigate alternative coatings for the tall tube and asa simple material model

for the ring expansion simulations, a compressible Mooney-Rivlin material response is

implemented. The strain energy density function is given by

Wpλ1, λ2, λ3q � ApI1 � 3q � BpI2 � 3q � CpI�2
3 � 1q � DpI3 � 1q2, (3.4.7)

whereI1, I2, and I3 are the strain invariants andA, B, C, andD are material constants

given by

A � E
8p1� νq

B � A

C � 1
2

A� B (3.4.8)

D � Ap5ν� 2q � Bp11ν� 5q
2p1� 2νq .

E andν for the Mooney-Rivlin coating are assumed to be the same as for the strain hard-

ening polyurea and are given in Table 3.3. A comparison of theuniaxial data, strain

hardening curve, and Mooney-Rivlin curve is given in Figures 3.4a and 3.4b, where Fig-

ure 3.4b is a close-up picture of the uniaxial data.

For the ring expansion simulations, the compressible Mooney-Rivlin response param-

eters are taken as in Table 3.4. These values are carried overfrom aluminum, with the
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exception thatE is chosen to give strains similar to those that would result from strain

hardening AA6063-T6 aluminum.

E �1.725 109 Pa ν �0.45 ρ �2700 kg/m3

Table 3.4: Ring expansion mechanical constitutive parameter values

With the material constitutive response detailed the numerical implementation is com-

plete. One may now move to simulations of electromagnetic forming processes.

3.4.2 Comparison with 1-D Ring Expansion

A check on the accuracy of the simulation is obtained from theresults for a thin

ring being expanded by a four turn coil with small cross section turns. The FEM results

here are compared with results from the 1-D semi-analyticaltechnique in Triantafyllidis

and Waldenmyer (2004), modified to accept an input coil current and the compressible

Mooney-Rivlin material of Section 3.4.1.2. The Mooney-Rivlin material is chosen for

the test ring expansion problems due to its simple formulation and implementation.

The geometry of the ring expansion process is chosen such that the filament assump-

tions inherent in Triantafyllidis and Waldenmyer (2004) are accurate, and thus the ratio

of cross section size to separation distance is kept at 0.1 orless. A test problem is set up

that is inspired by the results in Triantafyllidis and Waldenmyer (2004) but uses a four

turn coil similar to that in the tube expansion experiments of Section 2.3. The dimensions

of the problem are given in Table 3.5 under Test Problem 1. Thecoil turns and the ring

have square cross sections, and the ring is fitted on the coil symmetrically aroundZ � 0.

In addition, the input electric current parameters in equation 3.4.1 are chosen such

that for the Mooney-Rivlin material discussed above the strains are on the order of those

in Section 2.3 and such that the electric current decays by half at the second pulse. These

values are given in Table 3.6. The magnitude of the resultingelectric current is about
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Test Problem 1 Test Problem 2
Rc 0.02205 m 0.02205 m
Rw 0.03195 m 0.03195 m
Pc 0.0099 m 0.0099 m
Zw 0.00045 m 0.000225 m
Tc 0.0009 m 0.00045 m
Tw 0.0009 m 0.00045 m

Table 3.5: Geometry of ring expansion test problems

twice that calculated in Triantafyllidis and Waldenmyer (2004) while the characteristic

time closely matches those ring results.

Test Problem 1 Test Problem 2
Imax 60 103 A 60 103 A
t0 12.6 10�6 s 12.6 10�6 s
k 0.5 0.5

Table 3.6: Ring expansion applied electric current parameters

Results of this simulation are plotted in Figure 3.5, where the nondimensional radial

position of the ring midline is plotted against nondimensional time. The 1-D solution

uses the 1-D analysis of Triantafyllidis and Waldenmyer (2004), and the FEM solutions

are from the 2-D FEM simulation introduced in this work. The coil impact radius is the

radius of the ring midline at which the inner radius of the ring is equal to the outer radius

of the coil. Since there is no interest in modeling impact, the simulation is terminated just

before this event.

In Figure 3.5 the FEM solution begins with 36 elements in the ring and with increas-

ing mesh density shows convergence of the solution to a result with a slightly greater

maximum deformation than that of the 1-D solution. Though they are close, the differ-

ence in the results is intriguing. Because Triantafyllidisand Waldenmyer (2004) calculate

mutual inductances on the assumption of interacting filaments, the results can be expected
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Figure 3.5: Midline radial position of ring expanded by fourturn coil.

to differ for problems with significant cross section size relativeto separation distance.

As discussed, the first test problem here has a small cross section to separation distance

ratio, but this ratio may still influence the result.

To test the influence of the cross section size, a second test problem is set up with

smaller cross section coil turns and ring, where all the other dimensions are the same

as in the first test problem. The geometry of this problem is given in Table 3.5 under

Test Problem 2. The coil turns and the ring have square cross sections with one quarter

the area of those in the first test problem. The results of thissimulation are shown in

Figure 3.6, where again the nondimensional ring midline radial position is plotted against

nondimensional time. The reference mesh has 16 elements in the ring but is much denser

in the air than the reference mesh in the first test problem. The denser mesh of the second

test problem has nine elements for every four in the reference mesh. Compared to the

first test problem, the displacements are larger but the 1-D and FEM results are closer

together, and there is only a small change between meshes indicating the dense mesh is
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Figure 3.6: Midline radial position of ring expanded by fourturn coil: Smaller cross
sections.

close to the converged solution.

The maximum discrepancy between the 1-D and the densest meshFEM results for

the first ring expansion case is 4.9% of the maximum deformation, and it occurs near

the point of maximum deformation. The second ring expansioncase has a maximum

discrepancy between the 1-D and the densest mesh FEM resultsof 3.5% of the maximum

deformation, but this occurs neart{t0 � 16. The maximum discrepancy for the portion of

the results with positive displacement is 3.1%. This shows that for the geometry here the

cross section size has a small effect on the difference between the two simulations.

The electric current for the second test case for the 1-D and densest mesh FEM re-

sults is plotted in Figure 3.7. This provides another check on the accuracy of the solution.

The input coil electric current is the same in each solution,and the induced ring elec-

tric currents are plotted as dashed curves. The results showvery good agreement, with

the discrepancy less than 2% of the maximum induced current making the dashed lines
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Figure 3.7: Electric currents in four turn coil and expanding ring: Smaller cross sections.

indistinguishable in the figure.

Figures 3.5, 3.6, and 3.7 show close agreement between the FEM formulation dis-

cussed here and the 1-D formulation of Triantafyllidis and Waldenmyer (2004). This

indicates the FEM simulation correctly solves the coupled electromagnetic-mechanical

problem of ring expansion, and thus the following section turns to tube expansion pro-

cesses.

3.4.3 Tube Expansion

For the tube expansion simulations, the geometry is matchedas closely as possible

to that of the experiments in Section 2.3. The geometry of thefour cases is given in

Table 3.7, where only the tube height varies between simulations. A minor change from

the experiments is the substitution of square cross sectioncoil turns for the circular cross

section turns, thus avoiding meshing difficulty for the coil. Each coil turn has a square

cross section with the same area as the circular ones in the experiments, and the tubes are
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placed on the coil symmetrically aroundZ � 0. Also, the height of the short tube is taken

as two thirds that of the even tube (as previously noted, the height of the short tube is not

directly based on an experiment), and the coated tube is simply the tall tube with coating

applied to the outside surface.

Tall Tube Even Tube Short Tube Coated Tall Tube
Rc 0.023825 m 0.023825 m 0.023825 m 0.023825 m
Rw 0.029375 m 0.029375 m 0.029375 m 0.029375 m
Pc 0.0094 m 0.0094 m 0.0094 m 0.0094 m
Zw 0.085 m 0.0317 m 0.02113 m 0.085 m
Tc 0.0056275 m 0.0056275 m 0.0056275 m 0.0056275 m
Tw 0.00175 m 0.00175 m 0.00175 m 0.00175 m

Table 3.7: Geometry of tube expansion processes

In the first two tube expansion simulations, that of a tube taller than the coil and a

tube even with the coil, the driving input electric current in the coil is measured from the

corresponding experiments in Section 2.3. The short tube process uses the same input

electric current as the even tube, and the same input electric current is applied to the

coated tubes as to the uncoated tall tube. The analytical form of input electric current in

equation (3.4.1) is matched to the measured electric current, and the resulting parameter

values are given in Table 3.8.

Tall Tube Even Tube Short Tube Coated Tall Tube
Imax 137 103 A 130 103 A 130 103 A 137 103 A
t0 17 10�6 s 26.6 10�6 s 26.6 10�6 s 17 10�6 s
k 0.3 0.3 0.3 0.3

Table 3.8: Tube expansion applied electric current parameters

3.4.3.1 Expanded Tubes without Coating

The first tube expansion process is that of a tube taller than the forming coil. Expand-

ing the tube until just before significant unloading occurs results in the deformed tube
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Figure 3.8: Deformed configuration at maximum midline displacement of tall tube de-
formed by four turn coil:t{t0 � 3.9

in Figure 3.8, where light grey denotes the undeformed tube and black denotes the coil

and deformed tube. Comparing the final deformed shape of the simulated tube with that

in the corresponding experiment of Section 2.3 (allowing for necking and failure) shows

that the deformed configuration is captured reasonably well.

There are two major differences between the experiments of Section 2.3 and the sim-

ulations here. First is the presence of necking and failure in the experimentally expanded

tubes. The major strain in every case is in the hoop, i.e.Θ, direction. Thus for necking

and/or failure to occur axisymmetry must be broken, which is not incorporated into the

model here. However, the goal of the experiments was to deform the tubes up to the

onset of necking or failure and no further. Therefore, the deformations in the simulations

and in the experiments are expected to be reasonably similar, as the tall tube expansion

demonstrates.

The second major difference is the hyperelastic formulation that causes the material
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to return to its reference configuration during unloading, which is not the case with the

plastic deformation in the experiments. To mitigate this difference one looks at the de-

formed tubes before unloading. For the first two tubes simulated (i.e. those taller than and

even with the coil height) the final deformed configuration before significant unloading

corresponds with the first maximum of the displacement of thetube midline. However,

the third tube (i.e. the one shorter than the coil) shows dramatic shape changes in the tube

before this maximum, which will be addressed subsequently.

A closer look at the deformation of the tall tube with respectto time is given in Fig-

ure 3.9 where the nondimensional radius of the tube midline is plotted with respect to

nondimensional time. The first pulse of the electric currentcauses a pulse in the displac-

ment up tot{t0 � 3.9, at which point the nondimensional radius peaks, and this is when

the deformed tube shape in Figure 3.8 is plotted. Moreover, the input coil and induced

tube electric currents are shown, plotted with the nondimensional radius to show the rel-

ative timing. These results agree with the discussion in Section 2.3 of the timing of strain

and electric current history. However, since a hyperelastic material is implemented the

tube attempts to contract after loading, and the plateau of midline radius fromt{t0 � 4

to t{t0 � 7 is a result of the contraction of other parts of the tube. Thesimulation is

terminated before coil impact.

An examination of the electric current density in the deforming tube is given in Fig-

ures 3.10, 3.11, and 3.12. These figures are the electric current density at three relevant

times showing the initial current and subsequent current reversal. Note that the scales on

the x-axis and y-axis have been adjusted to show the electriccurrent density more clearly,

which has the effect of distorting the tube shape and deformation.

In Figure 3.10 the electric current density att{t0 � 0.5 is plotted, which is approx-

imately halfway through the initial coil electric current pulse. As expected, the electric
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Figure 3.9: Midline radial position and electric currents of tall tube deformed by four turn
coil.

current is concentrated on the inside surface of the tube, near the coil. Note that the

electric current density here is negative because the initial coil electric current is positive.

Figure 3.11 shows the electric current density att{t0 � 1.25, just after the peak of

the first pulse of coil electric current. The peak electric current density has moved from

the inside surface to the middle of the tube and has dissipated in maximum intensity,

indicated by the scale.

In Figure 3.12 the tall tube electric current density is shown att{t0 � 2, when the coil

electric current is equal to zero. The electric current density in the tube has already re-

versed from what it was initially, with Figure 3.12 almost aninverse image of Figure 3.10

(allowing for deformation). Note, however, that the maximum current density is signif-

icantly less as the coil electric current decays and the separation between coil and tube

increases.
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Figure 3.10: Electric current density (A/m2) distribution in the cross section of tall tube:
t{t0 � 0.5
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Figure 3.11: Electric current density (A/m2) distribution in the cross section of tall tube:
t{t0 � 1.25
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Figure 3.12: Electric current density (A/m2) distribution in the cross section of tall tube:
t{t0 � 2

The second tube expansion process is that of a tube approximately the same height

as the forming coil. Expansion until significant unloading starts to occur results in the

deformed configuration shown in Figure 3.13, where light grey denotes the undeformed

configuration and black the deformed shape. Again, in Figure3.14 the tube midline radial

position versus time is plotted along with the electric current versus time for the coil and

tube. The time at which the deformed configuration of Figure 3.13 occurs is denoted,

which corresponds with the maximum midline displacement. This simulation also shows

good qualitative agreement with the corresponding experimentally expanded tube.

The third tube expansion process is that of a tube shorter than the forming coil ex-

panded using the same electric current input as for the tube of even height with the coil. In

this process unloading significantly changes the characterof the deformed configuration,

so there is not a close relationship between max deformationand the configuration before

significant unloading occurs, the latter of which corresponds to the experimental results.
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Figure 3.13: Deformed configuration at maximum midline displacement of tube de-
formed by four turn coil of equal height:t{t0 � 5
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Figure 3.14: Midline radial position and electric currentsof tube deformed by four turn
coil of equal height.
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Figure 3.15: Deformed configurations of short tube deformedby four turn coil.

Therefore Figure 3.15 shows two deformed configurations. The first, att{t0 � 2, occurs

before significant unloading and qualitatively matches with the experimentally obtained

toroidal shape in the case where the tube is shorter than the coil. The configuration at

t{t0 � 5.3 corresponds with the maximum midline displacement and hasa significantly

different shape than that att{t0 � 2. The corresponding points on the midline radial

position versus time curve are denoted in Figure 3.16, wherethe radial position and elec-

tric current are given together. The exact geometry of the simulation does not match

that in the experiments, but the relationship between tube and coil is similar and thus the

character of the results agrees.

The three tube expansion processes discussed above are in qualitative agreement with

experimental results. This indicates the simulation correctly models the electromagnetic-

mechanical interactions, and the next section discusses the solution of the problem of an

electromagnetically expanded tube with a nonconducting coating applied to the outside.
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Figure 3.16: Midline radial position and electric currentsof short tube deformed by four
turn coil.

3.4.3.2 Expanded Tubes with Coating

Recent work by Zhang et al. (2008) examines the effect of a polymer coating applied

to the outside surface of an electromagnetically expanded ring or tube. Therefore, the

present work now turns to the electromagnetic expansion of the tall tube with a coating

applied to the outside, a novel EMF simulation problem that is easily handled by the

general theory presented here. An example FEM mesh of such a problem is given in

Figure 3.17. As before the coil and tube are shown in grey and the air in white, and

the coating, which is twice the thickness of the tube, is shown in light grey. Coatings

of varying thickness are simulated, and the coating is modeled as either strain hardening

polyurea or a material that follows the Mooney-Rivlin type response discussed previously.

As an example of the effect, in Figure 3.18 the midplane of the tube (excluding coat-

ing) is plotted for the case of no coating and of a polyurea coating twice the thickness of
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Coil

Tube Coating

Figure 3.17: Example FEM mesh for axisymmetric expansion oftube with coating.

the tube itself. The deformed shape is plotted at the maximumdisplacement of the mid-

line before unloading, which corresponds to approximatelyt{t0 � 3.9 for both the un-

coated and coated cases. The maximum displacement atZ � 0 is significantly decreased,

but surprisingly the overall shape of the deformed tube is not impacted significantly.

A plot of the maximum displacement of the tube midline (nondimensionalized with

respect to the maximum deformation without coating) against the coating thickness (nondi-

mensionalized by the tube wall thickness) for each coating material quantifies the effect

of the coating. This result is given in Figure 3.19. As expected, increasing the coat-

ing thickness decreases the deformation. Also, the Mooney-Rivlin material has a more

pronounced effect on the deformation, due to its stronger stiffening with increasing dis-

placement.

3.5 Discussion of Results

The previous sections of Chapter III present a consistent formulation of electromag-

netic-thermal-mechanical processes. The result is a variational formulation incorporating

the eddy current approximation that is appropriate for modeling EMF processes. This

consistent variational formulation combined with variational integration justifies a stag-
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gered solution algorithm that efficiently solves the fully coupled system. This algorithm

is implemented for axisymmetric problems, and a range of problems is solved, including

ring expansion processes, which are compared with known solutions, and tube expansion

processes, which are inspired by the experiments of Section2.3. Finally, the novel prob-

lem of a tube with a non-conducting outer coating is addressed, quantifying the coating’s

effect.

The general theory presented in Section 3.1 is applicable toany electromagnetic-ther-

mal-mechanical process, and the 3-D theory of Section 3.2 isapplicable to any such

process that admits the eddy current approximation. Sections 3.2.2, 3.3, and 3.4 special-

ize this theory to the processes of interest in this work. Axisymmetry is introduced and

allows a wide array of practical EMF processes to be simulated while also simplifying

the implementation. However, a 3-D implementation will be important to analyze gen-

eral EMF processes of industrial interest and should be pursued. Also an input electric

current, assumed to be known a priori, is employed. Though this is an accurate way to

simulate experiments, modeling the forming circuit would be useful for predictive simu-

lations. Implementing a capacitor circuit coupled to the FEM solution is straightforward,

and the author has produced results with a capacitor circuitfor limited cases. Full imple-

mentation of this capability is underway.

In addition, the work here is specialized to hyperelastic materials. The actual plas-

tic response of the workpiece and coatings may be more accurately modeled by elasto-

plastic, elasto-visco-plastic, or thermo-visco-plasticmaterial constitutive responses. The

third choice would entail the modeling of heat generation aswell. Implementing these

constitutive models would be complicated by the lack of constitutive data on materials

under the forming conditions of EMF, as discussed in ChapterII, though fully coupled

modeling such as presented here can help illuminate these issues. Moreover, with more
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accurate constitutive modeling one can make quantitative comparisons with experiments,

and the author is currently working with experimental researchers to do so.

The work here also presents many opportunities. One may implement the strain lo-

calization discussion of Chapter II and/or relevant inertial effects into the coupled electro-

magnetic-thermal-mechanical formulation of Chapter III to produce more accurate pre-

dictions of ductility in EMF expansion processes. In addition, other forms of failure can

be explored, in particular those under electromagnetic compression of tubes, which in-

volve stability analyses. The consistent variational formulation is well suited for stability

and energy calculations.

Moreover, the formulations discussed here have application in many other areas be-

sides EMF. One such area is microelectromechanical devices, to which related formula-

tions have been applied (Li and Aluru, 2002). Another area ofinterest is electroactive

materials with magnetization and/or polarization. Implementing magnetization in a nu-

merical implementation similar to that here to solve problems involving magnetic field-

responsive polymers and elastomers (Filipcsei et al., 2007; Kankanala and Triantafyllidis,

2004, 2008) is a particularly interesting direction of inquiry.



CHAPTER IV

Conclusion

The electromagnetic-thermal-mechanical process of EMF has the distinct advantage

over conventional forming techniques of an increase in ductility for some metal alloys of

industrial interest. The FLD is a useful design tool in the prediction of ductility limits for

conventional forming techniques. Thus, in the present work, the classical free-expansion

FLD concept for flat sheets is extended to include electromagnetic forming operations. In

particular, a flat sheet of strain hardening, strain-rate sensitive, and temperature sensitive

material, which is subjected to in-plane electric currentsand a high strain rate biaxial

loading, is modeled using a Marciniak-Kuczynski type weak band analysis. The imposed

forming conditions are chosen to correspond with those of actual axisymmetric EMF pro-

cesses. Though the solution of a fully coupled EMF boundary value problem is required

to exactly model the behavior of the metal workpiece under EMF conditions, the present

FLD analysis provides significant insight into the formability of the aluminum sheet for

EMF processes by focusing on conditions for the onset of a localized necking. The influ-

ence of strain hardening, strain-rate sensitivity, temperature sensitivity, yield stress, yield

surface, and process characteristics on the forming limitsis found and discussed.

This work follows with the quantitative comparison betweentheoretical calculations

for the onset of necking in sheets and experimental results obtained from the free ex-

126
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pansion of electromagnetically loaded aluminum alloy tubes on which strain-measuring

grids have been etched. The electromagnetic generalization of the FLD concept is used

to study the ductility of aluminum sheets, as measured locally in the necked regions of

the failed tubes. Given the approximations inherent in the FLD concept (essentially the

assumed strain and current paths that can differ substantially from the actual ones at the

necked zone) there is agreement between theory and experiment, showing that the ductil-

ity increases in free forming due to the use of an EMF process.The present comparison

between theory and experiments shows that the EMF-based FLDconcept is a useful tool

to predict ductility limits of metal sheet in free expansionexperiments.

Also addressed is the solution of fully coupled EMF boundaryvalue problems for

predictive modeling of EMF processes. This involves the solution of a coupled electro-

magnetic-mechanical (and thermal, as necessary) problem.The governing equations are

Maxwell’s equations in deformable solids and the mechanical equation of motion, both

under the eddy current approximation. This implies the needfor a consistent, fully cou-

pled variational formulation and an efficient numerical algorithm. Past work in modeling

EMF processes has not been based on such a variational framework nor provided such a

solution algorithm.

The present work provides a consistent variational formulation that is shown to agree

with the known governing equations of coupled electromagnetic-mechanical systems.

The variational technique includes the eddy current approximation, so it is appropriate

for modeling EMF processes. Moreover, variational integration applied to this formula-

tion justifies a consistent and efficient staggered solution algorithm. The resulting numer-

ical implementation is validated against the known solution of a small cross section ring

expanded by a coil composed of small cross section turns. Subsequently, the simulation

of the free electromagnetic expansion of tubes is shown to produce results in agreement
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with experimental evidence. Following this, the novel problem of an electromagnetically

expanded tube with a non-conducting outer coating is addressed, and the effect of the

coating is quantified. The validation of the simulation and subsequent results show that

the present formulation and implementation provide a fullycoupled solution to electro-

magnetic-mechanical problems, particularly in the context of EMF.
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