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CHAPTER|

Introduction

The focus of this thesis is electromagnetic and thermomechkbloading processes
in solids, inspired by the primary example process of etestrgnetic forming (EMF).
EMF is a cost-fective and flexible manufacturing technique for sheet nfetathing.

It consists of connecting an actuator (typically a coppeewblenoid) to a high energy
capacitor equipped with fast action switches. When thea#gpas discharged, the large
transient current that goes through the actuator geneogtexduction strong eddy cur-
rents in the nearby metallic workpiece. The presence otthrekiced currents, inside the
magnetic field generated by the currents of the actuatarltsas Lorentz body forces in
the workpiece that are responsible for its plastic defoionat

The EMF technique was first used in this country in the 1950 @0’s, due to its
advantages in enabling the fabrication of many complex ggnparts and enhancing
the formability of low ductility materials. Numerous apgtions of EMF have been im-
plemented in industrial production; among the more spetaa@pplications are engine
nacelles made in a single piece, electromagnetic riveting @nd hammers (developed
by NASA in the mid 1980s) used in the assembly of aircraft skamd dent pullets

Recent advances in electronics and energy storage make &Ralogy ripe for mass

lEIeCtroimpaCt Inchttp://www.electroimpact.com/



Figure 1.1: A 316L stainless steel sample formed electrovatacally using a uniform
pressure actuator (courtesy of Dr. J. R. Bradley, GenerabMdesearch

and Development).

production, and plans are well under way for the large scaaufacturing of fuel cell
plates and tubular frames for the automotive industry. Grieeomost promising recent
applications is the manufacturing of fuel cell plates (Fegul.1 and 1.2), where conven-
tional stamping methods have failed and only the EMF teamicpn deliver the final
shape without wrinkling or tearing deeper channels. Anagri€rim Corporatiofi has
recently been awarded $1M for researching methods to peoithet cells more economi-
cally. A major automotive supplier, Dana Corporafipis already using EMF technology
for producing tubular structures for space frame car design

The EMF techniques are popular in the aerospace and autemadustries because
of several advantages they hold over conventional fornengriques. These advantages
are process repeatability and flexibility (due to its eleatrature, energy input can be
easily and accurately adjusted), low cost single side igofthus reducing need for lu-
brication and tool marks), and high speed (typical procesattbn is on the order of 50
usec). The most important advantage — and the main reasohdaetent interest in

EMF — is the resulting significant increase in ductility olvsel in certain metals, with

2American Trim, LLChttp: //www.amtrim. com/fuel . php

SDana Limitedhttp: //www.dana.com/technology/tailormetal.shtm
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Figure 1.2: Schematic of a uniform pressure actuator. Thegwy coil has many turns
going into the plane of the figure (courtesy of Dr. J. R. BrgdlBeneral
Motors Research and Development).

aluminum featuring preeminently among them.

Two issues are of particular importance when analyzing EMISt is the increase
in ductility and its causes, and second is the coupled moglalf the electromagnet-
ic-mechanical interactions. Thus given subsequentlypWiohg a review of the early
experimental and modeling work with EMF, are detailed déstons of the recent in-
vestigations relevant to the prediction of EMF ductilitye¢don 1.2) and to predictive
modeling of EMF processes (Section 1.3). These sectionaiaxpe state of the art and
the need for the present work, and an outline of this thesigvisn at the end of this

chapter.

1.1 Review of Early Work

Although research activity in EMF during the 1950’s and 60&s important, as evi-
denced by the (mainly experimental) number of publicati@p®rted in the engineering
literature, the research activity in the next twenty yefimn{ the early 70’s to early 90’s)

diminished to a trickle (see the survey article by Daehn et1899)). Even in the hey-



day of EMF research, the scarcity of modeling work for thesm@sses is strikingly
noticeable. The main reason can be attributed to timing:peaational methods and the
hardware required for the numerical execution of the rdlalgorithms were not yet in
place. Although the physics of these complex thermomechhpius electromagnetic
phenomena were in principle understood, the pertainingledunonlinear systems of
partial diferential equations could not be solved with the technologylable at that
time.

Of the initial modeling &orts in EMF, one should mention the work of Furth and
Waniek (1956) and Furth et al. (1957), who describe the bamgiations of the problem,
as do the analytical studies of Birdsall et al. (1961) anddghea (1964). The modeling of
Baines et al. (1965) involves many simplifying assumptjamish the goal of providing
analytical results. Subsequent work by Al-Hassani et 8671 1974) relaxed some of the
previous assumptions and calculated numerically the lipifences at the workpiece. As
computing power became cheaper and more readily accessindsv set of EMF model-
ing studies has emerged since the 1980’s. Of particularasténere is the experimental
and theoretical paper by Gourdin (1989), who studied thetrelmagnetic expansion of
copper, tin, and lead rings. Gourdin (1989) formulated bigoted problem and consider-
ably reduced the number of simplifying assumptions by tgkio account the geometry
changes of the ring to find the correct induced currents (sltovbe in close agreement
with his experimental results). His modeling of the ring’sehanical properties assumed
a uniaxial deformation and several stress-strain laws iouhot model necking or frac-
ture. It is worth mentioning here that a number of studieslaldressed the mechanical
aspects of ring expansion and fragmentation (Becker, 2G0&¢y and Benson, 1983;
Pandolfi et al., 1999; Sgrensen and Freund, 2000) using 3<ieling of the ring and

sophisticated constitutive equations and failure catelowever, these mechanics-based



studies ignored the coupled nature of the problem and intbthse velocity boundary
conditions on the specimen.

At about the same time as Gourdin (1989), Takatsu et al. (1988lished their ex-
perimental and theoretical study of the deformation of angled circular plate electro-
magnetically loaded by a flat spiral coil. They took into amtbthe rate sensitivity of
the plate and theffect of geometry change in the specimen on the induced carbemnt
ignored temperature and bendinieets (membrane solution used for the plate). Their
interest was in predicting the plate’s deformed shape, sio thodeling never addressed
the issue of localization and fracture.

Unlike the case of standard metal forming processes, toabiedh the author’s knowl-
edge there is unfortunately no English language book destid® the EMF processes,
save for the recent translation of the work by Belyy et al.7(@9 The closest engineer-
ing book on the subject is perhaps the book by Moon (1984) oagito-solid Me-
chanics”, which discusses the calculation of Lorentz fericemetals from the angle of
magnetoelastic buckling, applications that do not invddwvge strain deformations of the

electromagnetically loaded solids.

1.2 EMF Ductility

There is extensive recent work that investigates formimgtd under EMF processes.
Experimental results by Balanethiram and Daehn (1992, 188 die impact EMF
show dramatic increases (compared to conventional fornnirifpe ductility of AA6061-
T4. Their work demonstrates that electromagnetically fsfraluminum alloys are poten-
tially and significantly more ductile than conventionaltyrined steel alloys (DFQ steel,
which is about twice as ductile as conventionally formed A86-T4). A key ingre-

dient in this ductility increase is the strain-rate sewmgitiof the material’s constitutive



response, as explained by Hutchinson and Neale (1977). dlettheoretical explana-
tion of this observed increase in formability, based onyfabbupled electromagnetic and
thermomechanical modeling of the free expansion of anreleagnetically loaded ring,

was recently provided by Triantafyllidis and Waldenmyed@2).

There is further recent work (Fressengeas and Molinari9;1Bi8 and Daehn, 1996;
Imbert et al., 2005a,b; Knoche and Needleman, 1993; MearidrMolinari, 2004; Oli-
veira and Worswick, 2003; Oliveira et al., 2005; Regazzoiil.e 1986; Seth and Daehn,
2005; Seth et al., 2005; Zhang and Ravi-Chandar, 2006) exaginigh strain rate (EMF
and non-EMF) free forming limits. Oliveira and Worswick () and Oliveira et al.
(2005) show little increase in ductility due to high EMF straates, Zhang and Ravi-
Chandar (2006) show no increase in uniform strain under BERtFexpansion, and Oost-
erkamp et al. (2000) show little strain-rate sensitivityginminum. The work by Oost-
erkamp et al. (2000) uses a split Hopkinson pressure baramiere strain rates up to 2
10° s~1, with a moderate number of data points, and reports thatrappstrain-rate sen-
sitivity is an artefact and not inherent in the material. Hoer, other work, such as that
by Hu and Daehn (1996), indicates high strain rate free foilityaincreases, and Vural
et al. (2004) and Yadav et al. (1995) show significant strate-sensitivity in aluminum.
In particular, Vural et al. (2004) use the shear compressp@timen technique (e.g. see
Rittel et al. (2002)) to give extensive data for AA6061-T6tagstrain rates on the order
of 10* s~1. This data shows distinct strain-rate sensitivity abovést®. Also, several
of the above mentioned recent investigations (Fresserggehd/olinari, 1989; Hu and
Daehn, 1996; Knoche and Needleman, 1993; Mercier and MqliB@04; Regazzoni
et al., 1986) show theoretically that inertidfexts can delay instability. These investi-
gations also point to the fact that the physical dimensidribesample fiect strains to

instability and rupture.



Figure 1.3: Onset of necking in a freely, electromagndicatpanded tube (courtesy of
Professor Glenn Daehn, The Ohio State University).

In order to quantify the ductility of sheet metal, a key cgotces that of a form-
ing limit diagram (FLD), according to which a thin sheet éss-free in the thickness
direction) is subjected to proportional in-plane stragnimtil the onset of localization.
Typical examples of an EMF process with these (approxinfate)ing conditions are
circular plate expansion (loaded by a flat coil parallel ® phate) and axisymmetric tube
bulging (loaded by a cylindrical coil coaxial with the tubdjigure 1.3 shows a freely,
electromagnetically expanded tube at the end of deformatith necking zones. There
is a voluminous mechanics literature going back to the €8%0’s addressing the choice
of localization criterion as well as the influence of the ddnsve properties on the onset
of localization prediction. However, all of these investigns address a mechanical de-
formation phenomenon but none — to the best of the authodwlatdge — addresses the
coupled electromagnetic-thermomechanical localizapiablem that occurs with elec-

tromagnetic forming of sheet metal, thus motivating thespré work.



1.3 Modeling of EMF Processes

Predictive modeling of EMF and other coupled electromagfaechanical processes
has also been a topic of extensive research in recent yeami-éhalytical techniques
have been applied to these coupled problems for rings andsplath some success,
notably in the previously mentioned works of Gourdin (1988y Triantafyllidis and
Waldenmyer (2004), for ring expansion, and of Takatsu ef18188), for plate bulging.
These investigations employ fully coupled techniques tlft on known integration
forms and inductance formulas that take advantage of theageometry of rings and
plates. However, they do not generalize to arbitrary geoeset

Recently, numerical solutions of coupled electromagratgchanical problems with
more complex geometries have been discussed in the literafugood survey may be
found in El-Azab et al. (2003), and since that work much pesgrhas been made. The
coupled solutions in the literature use either loose cogplif separate electromagnetic
and mechanical solvers or a staggered approach where aduriiiee solves separately
the electromagnetic and mechanical (and thermal) probéreach solution step. Often
commercial finite element method (FEM) codes form the bakith® solution, as in
Oliveira et al. (2005), Karch and Roll (2005), and L’Eplaitr et al. (2006). Also, good
reviews of diferent coupled techniques for EMF solutions are given inndeiet al.
(2004) and Svendsen and Chanda (2005). Furthermore SveadseChanda (2005)
along with Stiemer et al. (2006) introduce a new finite eleimeohnology specifically
to solve electromagnetic-mechanical problems (see algsdret al. (2005) and Unger
et al. (2006)). Another program, which uses the Arbitrargiamgian-Eulerian (ALE)
framework, was employed by Fenton and Daehn (1998) to sim@&iF plate bulging,

and a related staggered scheme in the ALE framework is giyeRidben et al. (2006).



Despite their sophistication, all these techniques ladk lzoconsistent, fully coupled

variational formulation and a consistenffieient numerical solution algorithm.

1.4 Outline of Present Work

The goals of this investigation are twofold: first to addr&ddF ductility from a
constitutive point of view by examining the onset of straindlization in thin sheets sub-
jected to EMF loading conditions and second to present theistent formulation and
implementation of the coupled electromagnetic-mechdupicgblem in finitely strained
solids. More specifically, addressing the first objectiwalaes: i) the theoretical formu-
lation for the onset of necking in an electromagneticalided thin sheet, i.e. subjected
simultaneously to in-plane stresses and electric currgntise investigation of the influ-
ence of the process characteristics and constitutive lath@mesulting necking predic-
tions, i.e. how the various aspects of the EMF process amohthascoplastic constitutive
law influence the FLD, and iii) the comparison of the genenabty with forming lim-
its from relevant experiments. The analysis here is gerierdEMF process ductility
calculations, but for reasonable data the simulation isthas aluminum alloys and ax-
isymmetric processes. Since the constitutive choice isacdpount importance for the
FLD predictions, the bulk of the results pertain to investigg how diferent parameters
of the adopted law (hardening, rate, and thermal sengitagitvell as yield surface shape)
affect onset of necking predictions.

To address the second objective the work covers: i) the atgsiv of the general gov-
erning electromagnetic and mechanical equations, inotudirect and variational meth-
ods, ii) the application of the eddy current approximatioihte variational technique to
provide a consistent variational formulation for EMF preses that is appropriate for

numerical implementation, iii) the consistent impleméotaof this variational formula-
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tion, which provides a theoretical justification for a staggd solution scheme, and iv)
the numerical validation of the formulation and impleméiota and simulation of rel-
evant EMF processes, including the novel problem of an relezignetically expanded

tube with a non-conducting outer coating.



CHAPTER I

Ductility of Electromagnetically Loaded Thin Sheets

The ductility of thin sheets under EMF conditions is strgrigfluenced by the sheet’s
constitutive response. To investigate formability medsaus for EMF processes, one
therefore must consider the details of the constitutivpaase’s &ect on forming limits.
The consistent approach to this issue must involve the aaiypled electromagnetic and
mechanical modeling of the actuator and the workpiece. Bhéscomputationally in-
tensive process that requires the development of sopditisti@lgorithms for the solution
of a dynamic finite strain thermoplasticity boundary valuelpem coupled (in view of
the driving Lorentz body forces) to an electromagnetic fobwith moving boundaries.
Although this direct approach is the correct way for acaucaiculations of specific EMF
processes (with known part and actuator geometries), atiddassed in Chapter lll, the
designer can be helped by some simpler, and considerably rapid, calculations that
give a reasonable estimate of the ductility of a given allogler EMF conditions. With
this requirement in mind, a general theory to calculate BMBed FLD’s is proposed,
in which the calculation of strains at the onset of neckingisheet accounts for the
presence of electric currents and the resulting ohmic hgafiect.

The presentation is organized as follows. Section 2.1 dhices the theoretical for-

mulation of the onset of necking problem in a finitely straitiein sheet under combined

11
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in-plane stresses and electric currents. The analysissisdban a Marciniak-Kuczynski
“weak band” model using a full Lagrangian formulation. Tler® section deals with
the most general form of the thermoviscoplastic constieuaiw and explains the choice
for the strain and current density profiles. In Section 208pWwing a brief explanation
of the numerical algorithm adopted for solving the probkeordinary diferential equa-
tions (ODE's), the results of the investigation are presémnd discussed. The general
theory is then applied to comparisons with experiments ctiGe 2.3. Section 2.4 is a
concluding discussion of the work. The important issue @ioh for the onset of neck-
ing criterion is presented in detail and justified in the Gbapl Appendix, Section 2.A,
where the weak band imperfection criterion is compared oealized stability criterion

that is independent of imperfection size.

2.1 Problem Formulation

As discussed previously, a weak band analysis for the kettadin of deformation is
used to analyze the onset of necking in an unconstrainecty@heagnetically expanded
axisymmetric tube or plate, modeled as a biaxially stretctteeet subjected to electric
currents. The governing equations for the mechanical aedredal field quantities in the
localized deformation zone are followed by the presentaticthe rate and temperature-
dependent constitutive models for the sheet. The adoptaith sihd electric current pro-

files for modeling the EMF process complete the simulaticstdption.

2.1.1 Localization Zone Analysis

Figure 2.1 shows a thin sheet under plane stress condiiandealization of a small
portion of a tube or plate sheet, thus ignoring curvatufeces. Inertia ffects are also
ignored in the present analysis, and the tube or plate haeptdin and the 1-direction in

Figure 2.1 are taken coincident. Localized deformatiors&ianed to occur in a narrow



sheet (A) weak band (B)  sheet (A)
Figure 2.1: Reference configuration geometry of the weaklban

band (B) with normal directio = i cos® + j sin® and tangen® = —i sin® + j cos®.
These are the reference configuration directions, whiletheesponding current config-
uration quantities are denoted by s, and¢. An initial imperfection diferentiates the
band and sheet and is implemented as either a material p@rasngeometric (thickness)
discontinuity in the reference configuration propertiesthvihis model in place, one en-
deavors to calculate the deformation gradiEft stresso®, currentj®, temperature®
and internal variable (plastic straia§ inside the band from their counterpart quantities
outside the bandR*, o*, j#, 6" ande}).

The large deformations inherent in this problem lead néjuta a full Lagrangian
(reference configuration) formulation. A current configioa formulation could have
been chosen, but the Lagrangian formulation consistendgunts for the complex large
deformation kinematics, reducing the likelihood of ermotheir representation. Mechan-
ical considerations require that displacement and tradim preserved across the band.

More specifically displacement continuity across the banthtes

[F& — Fis]Ss =0, (2.1.1)

IHere and subsequently Greek indexes range from 1 to 2 while lralexes range from 1 to 3. Ein-
stein’s summation convention over repeated indexes iséwplinless specified otherwise.



14
and traction continuity requires
B A
Na/ [Hd{ﬁ - Haﬂ:l == O, (2.1.2)

where the first Piola-Kirchh® (P-K) stresdl is expressed in terms of the Cauchy stress
as

IT; = det(F)[F; o). (2.1.3)

Electrical considerations require that the electric qureend tangential component of
the electromotive force must be preserved across the baoch €urrent continuity one
has

N, [J5 — 2] =0, (2.1.4)

where the electric current density vector in the referemsdigurationJd is related toj,

its counterpart in the current configuration, by
J = det(F)[F; ikl (2.1.5)

Faraday’s induction law requires that the tangential camepé of the electromotive

force in the reference configurati@be preserved, which dictates
S. [E} —EJ] =0, (2.1.6)

where the reference configuration electromotive fdgds related to its current configu-
ration counterpar by

E = eFu. (217)

Finally, assuming adiabatic heating both outside (A) arside (B) the weak band
(thus the various field quantities need not be indexed),ggneonservation (per unit
current volume) dictates

Ul = x ool + &1, (2.1.8)
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wherey is the mass densitg,, is the specific heat,is the rate of change of the tempera-
ture,y (0 < y < 1) isthe plastic work conversion factor ange® is the plastic dissipation

(oe is the equivalent Cauchy stress afds the plastic strain).

2.1.2 Constitutive Response

Due to the electromagnetic nature of the forming processsitnulation requires two
sets of constitutive equations: one for the mechanicalomspand one for the electrical

response.

2.1.2.1 Mechanical Constitutive Law

An EMF process imposes high strain rates and high tempesatn the workpiece,
thus requiring a temperature-dependent viscoplastictitotige law, which can be de-
scribed by

Gij = LDy (2.1.9)

whereos; denotes the convected rate of Cauchy stré$%, are the solid’s elastic moduli,
andDy; are the elastic components of the strain-rate tensor. Bheefinvariant stress rate

i is given in terms of the stress ratg by
Gij = 7ij + Lok + oL, (2.1.10)

wherel,; is the solid’s velocity gradient. Note that the choice of doavected rate of
stress is arbitrary.

The strain rate may be additively decomposed into an el&stia plasticDP and a
thermalD? part, as follows

Dij = Dfj + Df} + Df}. (2.1.11)

The plastic part of the strain rate for a viscoplastic solldcl is described in terms of
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only one internal variable® — the accumulated plastic strain —is

DP = &P 0e (2.1.12)
] (90'”'
while the thermal part of the strain rate is
Df, = ns;, (2.1.13)

wherer is the thermal expansion ceient. The internal variable® determines the size
of the material’s current yield surface, which is chardetat by the equivalent stress,

and the relation betweeas® and the solid’s quasistatic uniaxial response: g (€P, 9) is

o | ((oeloi) \ Y™
&P = b [(g (ep,Je)) —1], (2.1.14)

wherem(6) is the solid’s rate-sensitivity exponent that is (in gefjeagunction of tem-
perature andg is a material constant. Expressions that are based on eqas will be
given subsequently fare (cojj) andg (e®, 6).

Attention is now turned to the required kinematical relaioThe components of the
strain rateD;; and velocity gradient;; are given in terms of the deformation gradient and
its rate by

Dij = %(Lij +Li),  Lij = FuFyt (2.1.15)

In the preceding equations the constitutive relations aesgnted in a general three

dimensional form. For the EMF tube or circular disk bulgimmslation, a state of plane

stress is assumed. Consequently, only in-plane defornsaite considered, and in view

of transverse isotropy of the sheet one has
Fos =Fs =0, (2.1.16)
while the state of plane stress dictates

iz = 0. (2.1.17)
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The plane stress version of the constitutive equationqRi4 thus expressed as
Gop = 22,505, (2.1.18)

where the plane stress elastic modﬂi’(f;y& and the full three-dimensional moduli are
related by
jjﬁy(s = Lops — 5%33(538333)7153%5- (2.1.19)
To complete this temperature-dependent, viscoplastiehaw experimentally based
elements are necessary: the rate-independent uniaxfnmess = g(eP,0) and the
yield surfacere (o7;).
The experimentally motivated (see Yadav et al. (2001))iradependent uniaxial re-

sponse employed here is given by

g(e".6) = oy [1 + E—S]n [1 - (9?:‘9;0)&] , (2.1.20)

whereoy is the yield stress;, = o/E is the yield strainn is the hardening exponerst,

is the melting temperaturé; is the reference temperature, an$ the thermal sensitivity
exponent.

The mechanical constitutive equations are completed \wihyteld surface descrip-
tion. Three diferent yield surfaces are considered in this work. The firgtesfamiliar
von Mises (isotropic, quadratic) yield surface, included domparison purposes. The
second is an isotropic, non-quadratic yield surface. Thesenodels are appropriate for
isotropic materials that do not exhibit the Bauschingtga, i.e. materials that exhibit no

difference between their tensile and compressive responskelspnare described by
1
e = [(Jor— 02 + |02 — o3l + |03 — 1)) /2] ", (2.1.21)

whereg is a codficient determined by the yield surface and material typesrate the

principal values of the Cauchy stress tensor. The von Misdd gurface require8 = 2,
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and for the non-quadratic surface, experimental evidenggestss = 8 for aluminum
(see Barlat et al. (1997b) and references cited therein).
The third yield surface considered is an anisotropic noadgatic yield surface YId94,

proposed for aluminum alloys by Barlat et al. (1997a). Itesaibed by
Te = (xS — S + ay)ss — i + aolsi — ) /2], (2.1.22)

where agaig = 8 for aluminum. Moreover, the auxiliary isotropic streqsvith princi-

pal valuess, s, s3) is related to the actual Cauchy stresby

Here) i) 3@ 0 0 0
—3(cs) g(es+c) -—3(@) 0 0 O
oLy Lo | 2@ s st 0000
0 0 0 ¢, 0 O
0 0 0 0cs O
0 0 0 0 O c

The experimentally determined parametegsay, a;, C1, Cy, Cs, Ca, Cs, Cg Which deter-
mine the sheet’s anisotropy are taken here as constankmuldsbe mentioned in YId94
the parameters,, oy, @, are more generally functions of the stress state. The axes of
material anisotropy are taken to coincide with the axes gufg 2.1 (i.e. the rolling di-
rection is aligned with the 1-direction), so the stress depace otv,, @y, a; is actuated
only for strain paths with one positive and one negativegyoia strain (Barlat et al.,
1997b). However, for these paths the influence of the yietthsa anisotropy on the lo-
calization strain is not found to be significant (see alsaBet al. (2003)), thus justifying

our choice of using constant, ay, a.
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2.1.2.2 Electrical Constitutive Law

In addition to the mechanical an electrical constitutivepanse of the material is

required. Here for simplicity an isotropic Ohm’s law is assd,
€ = 1(0)]as (2.1.24)

wherer (0) is the resistivity of the isotropic sheet that is in generlrection of tempera-
ture. This relation in addition to equation (2.1.7) allowgiation (2.1.6) to be utilized (in
addition to equation (2.1.4)) to find the curreftsn the weak band.

One now has in equations (2.1.9)—(2.1.24) a complete gemeriof the solid’s consti-
tutive response, where the necessary material constandesarmined from experiments.

An account of the material constant selection is given below

2.1.3 Material Parameter Selection

Finding an alloy where all the relevant material parametarthe viscoplastic model
in Sections 2.1.1 and 2.1.2 have been determined expeaiheista rather formidable
task. A combination of AA6061-T6 and AA6016-T4 paramet@mss the best available
option for conducting a meaningful simulation. Constitatparameters for AA6061-T6
are given by Yadav et al. (2001), based on experimentalteebylYadav et al. (1995),

and are presented in Table 2.1.

oy = 276 MPa E = 69GPa ¢, — o, /E
n=00741 m-=00870 «-05
& =1000sT 6, — 298K 0, — 853K

Table 2.1: AA6061-T6 uniaxial response parameter valuaddyY et al., 2001)

Additional material parameters are required to implemgoagions (2.1.8) and (2.1.12).
These parameters can be found from standard tables forralam{see also Triantafyl-

lidis and Waldenmyer (2004)) and are presented in Table 2.2.
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u = 2700 kgm® c, = 896 Jkg-K
x =09 rh=265108Qm n=2310°1K

Table 2.2: AA6061-T6 material parameter values (Triaritalig and Waldenmyer, 2004)

Values for the parameters describing the alloy’s yieldazafare also needed. Unfor-
tunately, there is no information in the open literatureareling values for these param-
eters for AA6061-T6. This forces a compromise to be made,these parameters are
obtained from the closest available material data. Butat. €2003) provides these data,
which pertain to AA6016-T4, and the values for the corresiiog parameters are given

in Table 2.3.

ay =20 ay =35 a;, =10
c; = 1.0474 ¢, =0.7752 c3=1.0724 cg = 0.9288

Table 2.3: AA6016-T4 yield surface parameter values (Betiel., 2003)

Triggering localized deformation requires an initial imfeetion in the weak band,
according to Marciniak and Kuczynski (1967) who first intuodd this concept in pre-
dicting forming limit diagrams in the tensile region. laillly a thickness imperfection
distinguished the weak band (e.g. Marciniak and Kuczyns867)), but imperfections
in other material parameters were subsequently shown tedfalun predicting forming
limits (e.g. Needleman and Triantafyllidis (1978)). Resuwif this method are sensitive to
the magnitude of the imperfection. Alternative methods ttwanot utilize an imperfec-
tion have been proposed for rate-independent solids byest#End Rice (1975) and for
rate-dependent solids by Triantafyllidis et al. (1997) fadtunately, the deformation the-
ory approach proposed by Storen and Rice (1975) cannotrimraeed for viscoplastic
solids, while the perturbation method introduced by Tiadyitidis et al. (1997) produces

unreasonable results for tensile loading (see ChapterpkeAgdix, Section 2.A).
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For reasons discussed in detail in the Chapter 1l Appendéxyteak band method of

Marciniak and Kuczynski (1967) has been adopted. A weakinetb® yield stressry is
implemented using the imperfection parameétsuch thab& =(1- g)a{,*. In choosing
a value for¢ simulated quasistatic (rate-independent, isothermaiifog limit curves
using proportional straining paths and varyihgalues are considered. The sensitivity
of these curves tg is most pronounced for biaxial stretching strain pathsX 0, e, >
0), while strain paths with one positive and one non-posipivincipal strain€;, > O,
e < 0) show relatively little dependence on the value of the irfgmtion parameter. The
resulting onset of necking curves are compared with theraxpatal quasistatic forming
limit diagram for AA6061-T6, presented by LeRoy and Embut948). Requiring a
value foré that gives the best overall agreement between simulateshaadured forming
limit curves resulted in the present choicefof 0.001.

The issue of a temperature-dependent strain-rate setysitivheeds also to be ad-
dressed. The constant value fargiven in Table 2.1 does give a reasonable correlation
with experimental constitutive data (Yadav et al., 200h) ¢his value will be used in
the “base case” set of parameters. However, there is comgpellidence (see Krajewski
(2005); Ogawa (2001)) that the strain-rate sensitivitynisnereasing function of temper-
ature,m(6).

To obtain a reasonable estimate fof®), the work of Tirupataiah and Sundararajan
(1994) and Ogawa (2001) is used. Tirupataiah and Sundaraf&994) show a material-
dependent transition strain rate between low strain-ransitvity and high strain-rate
sensitivity. For aluminum with properties similar to AAGDA 6, the transition occurs at
or below 100 s?; typical EMF strain rates are well above this. Thus, onladat strain
rates above 1007$ are appropriate to fit a temperature-dependent strairseatsitivity

for EMF processes. Ogawa (2001) provides stress versun sata data on AA6061-
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T6 at 5% strain (or 6%, noted appropriately in the paper)dangeratures ranging from
77 K to 473 K and strain rates up to511(° s~1. Equations (2.1.14) and (2.1.20) are
used to findm at the diferent temperaturesn(is assumed independent of strain rate); the
guasistatic flow stress is adjusted to that indicated by @ga@01) at each temperature
(for the quasistatic case = g(eP, 6) from equation (2.1.20)). Moreover, it is required that
m(6) matchm constant at room temperature; a constant must be added fonttéonal
dependence afn on 6 implied by the data in Ogawa (2001). The following empirical

relation is thus proposed (whefés in degrees K)
m(#) = (140 10°°)9* — (8.44 107%)6 + 0.214 (2.1.25)

as the best fit for the above described experimental datatkenefore most appropriate

in the temperature range 77K 60 < 473 K).

2.1.4 Strain, Strain Rate, and Current Density Profiles

A proportional straining path is the standard assumptiotife calculation of FLD'’s,
i.e. e, = pe with p a constant such thatl/2 < p < 1. A uniaxial stress state oc-
curs forp = —1/2 whilep = 1 represents an equibiaxial plane stress state. However,
in contrast to the quasistatic forming case of rate-inddpehsolids where the FLD is
independent of the strain histogy(t), the present calculations on an electromagnetically
formed viscoplastic solid need a time-dependent straifilerq(t), in addition to a time-
dependent current density profilgt). The strain, strain rate, and current density profiles
are motivated by the ring calculations of TriantafyllidrsdeWaldenmyer (2004).

Therefore, since the principal hoop strain rate is shapea smooth pulse, a sinu-
soidal strain rate pulse is assumed for simplicity. Henecefpulse of duration# the

principal strains are taken to be

alt) = = [1 - cos(”—t>] L eft) — palt), (2.1.26)

4To
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which gives for the corresponding strain rate

 Temax _,

é(t) = 87, sin (4”—;) : (2.1.27)

The maximum principal strairg,ay, and the characteristic timeg, are variables of the

simulation to be subsequently specified.
The dfect of implementing the simplified strain profile above isgstigated by com-
parison with a linear time-dependent strain profile. Againd pulse duration of#, the

linear strain profile is taken as

alt) = Z“szt, e(t) = pa(t), (2.1.28)

which gives a constant corresponding strain rate

&t) = Z";""OX. (2.1.29)

Here for comparison purposes.x andrg are equal to those in the sinusoidal strain pro-
file.

Due to the electromagnetic nature of the process, knowletltfee principal current
flowing through the sheet is also necessary. Keeping in nfiadihg simulations (Tri-
antafyllidis and Waldenmyer, 2004) and the fact that in toblging only a current in the
hoop direction occurs, with a pulse duration typically tudlthe strain pulse duration, the

following sinusoidal form of the principal current densisyadopted for simplicity

nt

j1(t) = JmaxSIn (?> . J2(t) =0, ji=0fort> 27, (2.1.30)
0

whereJnax is the maximum principal current density. It is also assuthatino backward
current is allowed to flow, so that for> 27q, j; = j, = 0. Although the exact nature of
the strain and current density time profiles depends on tlii@o of the coupled electro-

magnetic and thermomechanical boundary value problenné&dievant experiment, the
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profiles chosen above are good approximations of the caézlfaofiles of the EMF ring
work (Triantafyllidis and Waldenmyer, 2004) thus justifgithe simplifying assumptions
of equations (2.1.26), (2.1.27) and (2.1.30).

To complete these profiles, some physically motivated &afoery, enax and Jmax
must be selected. As defined in equations (2.1.26)—(2.1¢38)one quarter of the total
forming time, which equals the time to the electric currefitst maximum. This defini-
tion is motivated by the work of Triantafyllidis and Waldeyer (2004), where is the
time to the first maximum of the electric current in the forgeircuit in isolation (with-
out a workpiece). The fully coupled results show a similardito the electric current’s
first maximum, and the total forming time is approximatehy.4 In the present work
this characteristic time in combination with., determines the forming rate (see equa-
tion (2.1.27)). Without a fully coupled EMF boundary valuelplem simulation gmax
must be specified a priori. The value @f,x needs to be greater than the EMF necking
strain for all materials and processes of interest, butoukhbe reasonable as well. If
€max IS chosen highrg must be large to keep the applied strain rate similar to ENigsra
The method in the present work takggy as a constant (regardless of the strain path
with valueenax = 0.8 which is greater than all of the necking results found here.

With e,a« Specified, the strain and strain rate profiles need entg be complete. An
appropriate value is found by appealing to a property of itkeoplastic material model,
namely its overstress. Due to the dynamic nature of an EMF process, the workpiece
experiences higher flow stresses than it would in a quasigiaicess at identical strains
and temperatures. The amount by which the flow stress extieedsasistatic flow stress

is the overstress, defined as

q

e(ij)
gt (2.1.31)

¢

«Q
N—

Assuming the material constitutive response is fully defjgecan be related to the strain
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rate through equation (2.1.14). Specifically, assumingiaxied process for simplicity
and thate? = € = ¢ (a reasonable assumption at the large strains inherent iR EM

processes), one has

€1

o= ((1+ Q)YmO 1), (2.1.32)
0
The maximum strain rate implies
_ T€max 1/m(6) -1
0

Thus given an appropriate value of maximum oversttgss 7o is specified; since both
mande) influence the time scale of a proce&sa is chosen to give a physically mean-
ingful forming speed. The valug,.x = 0.15 is therefore the base case in all subsequent
calculations.

Finally, the value forJ,a is chosen by considering the temperature increase needed
to cause melting. From equation (2.1.8), the temperaturease of the material is due
to two sources: plastic work and ohmic heating. As shown énrthg simulations (Tri-
antafyllidis and Waldenmyer, 2004), by the end of the forganocess the dissipation of
the plastic work and specimen ohmic heating are compardbis.allows the following

approximation to equation (2.1.8)
1o = 20 (6) (jala) - (2.1.34)

From equation (2.1.30) the time-dependent form of the Btectrrent is known, and
equation (2.1.34) may be integrated with respect to tintédf is taken as constant, an
assumption that will subsequently be used throughout thalations. Integrating equa-

tion (2.1.34) fromt = O tot = 47, gives

UCo(6 — 00)\ V2
Jmax: (F)(ZTOO)> . (2135)
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If one takes) = 6, Jnmax from equation (2.1.35) is such that melting occurs at theand

the simulation, i.e.

Co(fm — 60) \ /2
Jmett = (W) . (2.1.36)
I'to

To avoid meltingJ,ax must be lower thad,e, and a reasonable value for EMF processes
IS Jmax = 0.15Jner. This value, along withe,nx = 0.8 andry from equation (2.1.33),
completes the base case forming conditions for the presentations, and the result of
the above analysis iy = 78.8 usec,Jnax = 2.69 1 A/m? and a maximum forming

speed of 3989,

2.2 Forming Limit Results

The goal of the present section is to present an applicafitmeayeneral theory pro-
posed in the previous section. Following the descriptiomhef numerical solution al-
gorithm, the section proceeds with the calculation of th®Far the “base case” alloy
and the investigation of its dependence on the various mhf@operties and loading

parameters.

2.2.1 Assumptions and Numerical Implementation

In the interest of simplicity it is assumed that the mategahcompressible. For the
large strains encountered during the EMF process, thigrgsson is quite reasonable
since compressibility féects in metals — due to elastic distortion and thermal sip&in
their crystals — are an insignificant part of the overall ity dominated deformation.
Consequently, the total strain rate is decomposed intelzas elasti(Diej (D = 0)
and pIastioDi'Oj (D = 0) parts, the first property requiring a poisson ratie- 0.5 and
the second property guaranteed for yield functions whiehiadependent of the first

invariant of the stress;;.
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With these simplifying assumptions in place, the goverrengations are cast as a
system of first order ODE’s. These ODE’s are solved using &licarder Runge-Kutta
algorithm. For the solution outside the band only the adialbgeating equation (2.1.8)

and the constitutive equations are required, i.e. one has
XA = fA(XA, t), XA = [O'f, 0'9, eAp, QA] (2.2.1)

whereo ando are Cauchy principal stresses. Inside the localized b&ediour con-
tinuity equations (2.1.1), (2.1.2), (2.1.4) and (2.1.6)egsix scalar equations, which in
addition to energy balance equation (2.1.8) and the foust@oitive equations detailed
in Section 2.1.2 (three for the in-plane stressggand one for the internal variabé&)
can completely determine the eleven variable electromecakstate inside the band
(Fop (4), 00 (3), Ju (2), €P (1), 6 (1)) in terms of the known counterpart field quantities
outside the band. Note, th¢ are obtained directly (without recourse to ODE’s) from
equations (2.1.4)—(2.1.7), while due to the incrementalnesof plasticity calculations,
the rate forms of equations (2.1.1) and (2.1.2) are requif@dce again, the resulting

eguations are cast as a system of first order ODE’s
X5 = fg(X%,1), X° = |07y, 055 0755 Fri Fo1, Fio, Foo, €, 6°), (2.2.2)

where the t-dependent termsfigxB, t) are functions okA.

The numerical localization calculations require estdlitig a necking criterion. Lo-
calization occurs wheg? becomes unbounded for a finite valueef}f which is numer-
ically implemented as whe&/e: > 10. The value 10 is chosen arbitrarily but is ad-
equately large to have a negligibl&ext on the calculated necking strain. The necking
of the imperfect sheet depends on the anlef the imperfection in the reference con-
figuration (see Figure 2.1), which can take any value0D < x/2. The value that

minimizes the necking strain outside the band gives thelgdogmning limit strains. One
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must therefore test through the entji@er/2) range of band angles (satisfactory accuracy
is obtained using increments 0f180) for each load path, and this results i® = O for
0<p<1lbutd#0for-1/2<p<0.

Finally, numerical precision of the localization strairlatdations must be checked.
First, the quasistatic case has an analytical solutiop fer0 ands = 2 (isotropic J flow
theory of plasticity) ofeq,e« Obtained at the maximum of the nominal stress. Uging
0.001 and an adequately small time step (see below) the aredlgblution is recovered.
Second, for both the quasistatic and rate-dependent dasdisie stepAt, is chosen by
requiring less than 0.001 change in necking strain for&stryecrease. This results in the
nondimensional time stepg /7o ~ 3 10~7 for the quasistatic process antfro ~ 2 10~°

for the EMF processes.

2.2.2 Forming Limit Diagrams

The numerically calculated FLD’s are presented in Figur@sti2rough 2.11. More
specifically, the influence of material properties is préséim Figures 2.2—-2.7, while the
influence of various loading parameters is given in Figur8s211.

The dfect of EMF on the FLD is presented in Figure 2.2, with six farghiimit
curves, three each for EMF and quasistatic forming conati@@uasistatic results are
obtained from the dynamic simulation by imposing a low farghspeed, minimal strain-
rate sensitivity, and an isothermal process). For each orkeothree yield surfaces
presented in Section 2.1.2.1 there are two FLD curves, anenf&MF process and one
for its quasistatic counterpart. Use of an EMF process tesula significant increase
in forming limit strains as compared to a quasistatic oné¢nefdame, and the increase
is dependent on the yield surface. This dependence is iangari thep > 0 region,

while p < 0 shows negligible influence of the yield surface choice. i¢¢éothat the
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Figure 2.2: Comparison of EMF versus quasistatic formingtlcurves for an alloy with
a given uniaxial response for thredfdrent yield surfaces.

necking strains for the isotropjg = 2 surface (von Mises) are unrealistic even for the
guasistatic loading. The reason is the low curvature of tbllsurface, in particular
nearp = 1, a known deficiency of flow theory models (see discussiorioned and Rice
(1975)). Of the three yield surface models considered hleeeanisotropic nonquadratic
surface, Yld94, is the best choice based on comparison hatlexperimental quasistatic
FLD presented in LeRoy and Embury (1978). Hence in all subsegcalculations the
Y1d94 model is used. From the curves generated with thisl\getface, the EMF process
provides between a 25% & 1) and 225%4 = —1/2) increase in forming limits over a
guasistatic process.

The necking angl®,ecx Of the weak band (wherg is the angle of the band in the
current configuration related to its reference configuratounterpartd by tan(¢) =
tan(®)exp(e; — €)) is plotted for the base case EMF process against the stém r

p = /e in Figure 2.3a. Fop > 0, ¢neck = 0, While forp < 0, dneck # O; Preck
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approaches 40 degreesm@as> —1/2. These values af for bothp < 0 andp > 0 mirror
known quasistatic results (see Hill (1952); Storen an®RI®75)), indicating thagneck
is insensitive to EMF processes.

In order to give an idea of a typical temperature increasetalttee application of an
EMF process the temperatures at the onset of necking fordke base EMF process,
both outsideq”) and inside ¢%) the weak band, are shown in Figure 2.3b plotted against
the strain ratip = ;/€;. A temperature rise between 30 K and 80 K in the sheet (A) is
predicted, with the minimum at = 0 and the maximum at = 1. Moreover, there is a
significant temperature filerence between the sheet (A) and weak band (B) due to higher
plastic strain rate and higher current density. The rantitioa of this additional rise in
temperature inside the band will be discussed subsequently

Figure 2.4 shows the influence on necking of the speed of thE fidcess, with the
quasistatic (QS) forming limits shown for comparison. Gliag the loading speed is
equivalent to changing the nondimensional time ségs, which for consistency (since
m also controls viscosity) is driven by the maximum overstggy as discussed in Sec-
tion 2.1.4. Increasingmax COrresponds to increasing the forming speed, which results
higher necking strains as expected from the material’ogisg. The increase in ductility
due to EMF #ect is greatest fop < 0, where the forming limit curve shifts up, and
decreases with increasipg

The influence of the hardening exponens shown in Figure 2.5. An increase in
is known to increase the forming limits for a quasistaticqess (e.g. Storen and Rice
(1975)), and the same influence is seen here for an EMF protleesncrease in necking
strains is found for botp < 0 andp > 0, with the minimum increase occurring@at= 1.
Moreover with the values af considered here & n < 0.25, there is a parallel shift in

the forming limit curves fop < 0. Forp > 0 with small values oh the necking strains
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Figure 2.3: a) Angle of the weak band in the current configonaat the onset of neck-
INg ¢neck VErsus principal strain ratip for the base case EMF process. b)
Temperature at the onset of neckifigs as a function of the principal strain
ratio p both outside (A) and inside (B) the weak band for the base E&4e
process.
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Figure 2.4: Influence of the process’s characteristic tig@ased on the resulting maxi-
mum overstresénay) on the forming limit curve.

increase with increasing while for large values of this trend is reversed, Witk
decreasing for increasing

Figure 2.6 shows the influence on ductility of the strairersgnsitivity exponernn.
As expected from the thermally insensitive case (see Husom and Neale (1977)), the
forming limits increase with increasing, with the minimum ductility increase occurring
atp = 1. Here the influence ahis calculated for a fixed maximum strain rate (E@ro
fixed), which implies that the pulse time for all experimerains fixed.

The dfect of the temperature sensitivity exponens presented in Figure 2.7. Recall
that for temperature sensitive solids an increase in teatyer reduces the flow stress,
i.e. weakens the material. From equations (2.1.14) and2@) 1t also follows that a
lower « indicates stronger temperature sensitivity. Since thekvib@ad receives more
heating than the sheet (see Figure 2.3b) through additpbastic work and higher current

densities, consequently an increased temperature sggsiteakens the band more in
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Figure 2.5: Influence of the hardening exponeon the forming limit curve.
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Figure 2.6: Influence of the rate sensitivity exponerwith nondimensional time scale
égro kept constant) on the forming limit curve.
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relation to the sheet, which encourages necking. This nmestmeexplains why a decrease
in a (i.ean increase in temperature sensitivity) causes a decre#sefiorming limits for
all values ofp.

In Figure 2.8 is shown the influence of the initial temperatron the FLD. The
sheet and weak band in all cases have the same initial tetapeErthe base case initial
temperature is the reference temperatigre: 298 K. The form of the uniaxial response,
equations (2.1.14) and (2.1.20), indicates that an inergaemperature makes the flow
stress, for subsequent temperature changes, less temrpesansitive forr < 1, equally
temperature sensitive far = 1 and more temperature sensitive for> 1. Also, Fig-
ure 2.7 indicates that the forming limits increase with dasing temperature sensitivity.
These observations explain the influenc#,ain the forming limits. In particulay = 1
shows negligible dependence én while calculations with thermal sensitivity values
a = 0.5 anda = 2 indicate that for increasing forming limits fora < 1 increase and

forming limits for@ > 1 decrease.
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Figure 2.8: Influence of initial temperatutieon the forming limit curve for three ffierent
thermal sensitivity exponents.

Figure 2.9a presents the influence of the electric curremsitieon the FLD. Plastic
dissipation produces two orders of magnitude more temper difference between weak
band and sheet than ohmic dissipation in the base case EMEg®.0This indicates the
electric current primarily heats the workpiece uniformiye(the same amount inside
and outside the band), and by the results in Figure 2.8 onecéxfncreased forming
limits with increased electric current. However,Rsx approaches,,e; the temperature
difference (between weak band and sheet) due to ohmic dissigiproaches that of
plastic dissipation. For largé,.x ohmic dissipation has a strong negative influence on the
forming limits since an increased temperatur@estence encourages necking. The result
is the upper bound on the forming limits for increasihgy observed in Figure 2.9a.

In Figure 2.9b the temperaturefidirence between weak band and st#€et ¢*, for
the caseImax = 0.15Jmeit, Imax = 0.50Jmer anNd Imax = 0.70Jmer, IS plotted with respect

to nondimensional tim&/z, for the strain patly = 0. To illustrate the mechanism behind



36

0.8 - : . . |
s 0,=0 €5 =0 s';\:g'?‘”,
0.6 |
w 04 r @
0.2 +
0
-04 0.8
20 : . |
— Jmax = 0.18J,¢; (Base)
"""" Jmax = 0.50J et
””” JImax = 0.70d it
15 ¢ |
<
= 10} Plastic Work 1)
m|
fer)
5 - -
Ohmic
O L S Y
0 0.5 1 1.5 P

thty

Figure 2.9: a) Influence of electric current densify on the forming limit curves for
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the upper bound on the forming limits for increasifig, the temperature fference is
divided into a part due to plastic dissipation and a part duehmic dissipation. As
Jmax INncreases the plastic dissipatioitdrence between zones A and B is reduced while
the corresponding fference in ohmic dissipation dramatically increases dukitming

of the weak band and the subsequent electric current dansigase. Betweebx =
0.50Jmeit and Jmax = 0.70J1e; these two influences add to produce minimal change in
68 — #”; this correlates with negligible change in the forming lisnjsee Figure 2.9a).
The increased® — 6* due to unequal ohmic heating encourages necking and cactger
the uniform temperature increase that delays necking (sgped-2.8).

Figure 2.10 shows the results of implementing a temperatapendent strain-rate
sensitivitym(6) as described by equation (2.1.25). Since the strain-ratsitsdty in-
creases with temperature, itSext overrides the influence of the ohmic dissipation. The
forming limits thus behave monotonically with respect te tlectric current. This in-
dicates the temperature dependence of the strain-ratgigénstrongly influences the
FLD for EMF processes.

The influence of the strain profile on necking is presentedigurfé 2.11. The si-
nusoidal base case profile (equations (2.1.26) and (2)lipmpared with the simple
linear profile (equations (2.1.28) and (2.1.29)), whegfg andr are kept at the base case
values for both profiles. Figure 2.11 shows the profile héle imfluence on the forming
limits, and this further supports the use of equations 2B)land (2.1.27) as a reasonable
approximation to the actual strain profile encounteredmiyan EMF process.

Figures 2.2—-2.11 illustrate how the electromagnetic fagrprocess enhances sheet
ductility. The dfects of material properties and EMF process characteyibige been

examined in detail.
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Figure 2.10: Influence of electric current density,, on the forming limit curves for a
temperature-dependent strain-rate sensitivifg).
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2.3 Experimental Comparisons

The work of this section pertains to the comparison of sinutes based on the for-
mulation discussed previously in Section 2.1 to experigatdta obtained from a series
of experiments on electromagnetically expanded aluminlioy &aubes. Section 2.3.1
gives a discussion of the experimental procedure, thetsmbeaf material properties for
the AA6063-T6 tube alloy and a description of the strain amaent density profiles. In
Section 2.3.2 four dierent experiments are presented and compared to the camcisp

theoretical simulations.

2.3.1 Experimental Problem Formulation

The general theory of the EMF-based FLD has been discussenbpsly and is here
specialized to electromagnetic tube expansion expersnditie experimental procedure
is first discussed, followed by the presentation of tempeeatlependent viscoplastic con-
stitutive models for the tube sheet. The formulation is clengal by introducing the strain

and current profiles adopted for modeling the EMF process.

2.3.1.1 Experimental Procedure

Figure 2.12 shows a schematic of the set-up for the elecyogeta tube expansion
experiments. It consists of a capacitor bank connecteddteaaid actuator placed inside
an aluminum alloy tube. The experiments are conducted wsicgmmercial Maxwell
Magneform capacitor bank with a maximum stored energy ofll@ ke energy is stored
in 8 capacitors, each with a capacitance of 5325The system has a maximum working
voltage of 8.66 kV. Both the number of capacitors and chargwitage can be adjusted
to control the discharged energy. One Rogowski probe, Rligaré 2.12, is used to

measure the primary current. A second such probe, R2 in &igur2, measures the
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Figure 2.12: Schematic representation of the experimsetalp for electromagnetic ex-
pansion of tubes.

aggregate coil current, which is the product of the numberodfturns and the primary
current, combined with the induced current in the tube.

Figure 2.13a shows one of the bare coils fabricated by cowriaiespring winding
from 6.35 mm diameter ASTM B16 brass wire. Two coils are usetiése experiments,
one with four turns (as shown in Figure 2.13a) and an othenwsntical coil with ten
turns. Both coils have an outer diameter of 54 mm and pitch.4fMm. The wire is
covered with heat shrink-wrap tubing to provide insulatzom then potted in urethane.
Figure 2.13b shows the actual experimental configuratiadh am aluminum alloy tube
sample fitted over the epoxy-coated coil. The tube sampe&A6063-T6 aluminum
alloy with an inner diameter of 57 mm and a wall thickness @6Inm. The outer surface
of each tube is electrolytically etched with a pattern of 215 diameter circles in order
to measure the strain in the expanded samples.

For each combination of coil and sample size, multiple sespre expanded with
incrementally increasing discharge energies until angnésvel suficient to initiate
necking angbr fracture of the tube is reached. Major and minor limitissaare then
measured from the deformed circles in areas where neckiograclabeled “Unsafe”,
and in areas where no necking or failure is evident, labeBade’.” Figure 2.14 shows a

sample deformed tube for each of the four possible comlminatf tube length and coil
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Figure 2.13: a) The bare 4-turn coil. b) Sample-actuatofigaration. The 31.7 mm tall
aluminum tube sample is shown fitted around the urethanedo&turn
coil.

length. The short coil is approximately the same length7 8im, as the short tubes; the
long coil is about the same length, 85.1 mm, as the long tubeSigure 2.14, tubes (a)
and (b) are short while tubes (c) and (d) are long, and tules(h(c) are deformed using
a 4-turn coil while tubes (b) and (d) are deformed using aut@-toil. The data gathered
will subsequently be compared with the onset of neckingutatomns described above.
Full details of these experiments are published in SethgR00

In addition, data on the tube material’s uniaxial quasistttess-strain response are
gathered using an MTS machine. Samples are cut from the AA8B&ubes according
to the ASTM tensile sample standard (0.630 cm wide, 2.54 cig)loy water jet. Tests
are conducted at a strain rate of 3.31@7!, and the uniaxial quasistatic stress-strain
response in equation (2.1.20) (with constant temperdatured,) is fit with data corre-
sponding to a sample cut longitudinally from the tube (tva@nse samples are omitted
since the curvature of the tube requires substantial $tieigng for them, altering the
material’s behavior in the test). Figure 2.15 gives a comsparof the experimental data

and analytical fit. The resulting material parameters atailgel below.
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Figure 2.14: Final configuration showing localized neckirigubes deformed using the
experimental EMF setup. a) 31.7 mm tube deformed with 4-twih b)
31.7 mm tube deformed with 10-turn coil. ¢) 85.1 mm tube defet with
4-turn coil. d) 85.1 mm tube deformed with 10-turn coil.
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Figure 2.15: AA6063-T6 uniaxial quasistatic stress-str@sponse: experimental data
and corresponding theoretical fit.
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2.3.1.2 Selection of Material Constants

The electromagnetically expanded tubes are made of AAG@2-tube alloy. How-
ever, material constants required for the determinatidhe§uasistatic FLD are obtained
from experiments using flat sheet blanks. In addition, aepethdent measurement of
rate and thermal sensitivity parameters, at the strairs rael temperatures of interest,
requires highly specialized equipment that is not avadlablus. The strategy adopted
to address these issues is to use uniaxial quasistatic ¢éasturements from AA6063-T6
to obtain the values of Young’s modul&s yield stressry, and hardening exponent
and to rely on existing independent experiments on a clas#dyed alloy, AA6061-T6,
for which the remaining required material parameters haenlpublished in the open
literature. From uniaxial tests on thin strips cut longitadly from AA6063-T6 tubes,

the best fit (see Figure 2.15) is achieved using the valueahieR.4.

E=69GPa o, — 190MPa ¢ = 0,/E n= 00769

Table 2.4: Material parameters from AA6063-T6

The remaining parameters are obtained froffedent sources. The rate and thermal
sensitivity related parameters are based on experimentadgy et al. (1995, 2001) and
are given in Table 2.1.

The mass density, thermal and electrical properties arat from standard refer-
ences on aluminum (they are not alloy sensitive) and arengivdable 2.2. The value
of the plastic work conversion factgris the same as in Triantafyllidis and Waldenmyer
(2004).

The remaining parameters to be determined pertain to thactesization of the yield
surface and the size of the imperfection amplitgdéo this end the band is modeled by

a discontinuity in the yield stress, using = (1 — ¢)o. The yield surface is modeled
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as isotropic, non-quadratic (see definition in equatiod.pd)), and the exponeptis
taken as in Barlat et al. (1997b) for aluminum. The valu& of then chosen as before
to give the most reasonable agreement with the availablsigfatic FLD experiments

on AA6061-T6 by LeRoy and Embury (1978), as shown in Table /e parameters

B=8 ¢£=10°

Table 2.5: Material parameters for FLD of AA6061-T6

given in Tables 2.1, 2.2, 2.4 and 2.5 completely charaaehz mechanical, thermal
and electric properties of the model used to run the simaratof the free expansion

experiments of the tubes.

2.3.1.3 Strain, Strain Rate and Current Density Profiles

As previously, the present calculations of FLD’s are basedha simplifying as-
sumption of proportional strain paths. It is assumed that, = &/é1 = p, where
—1/2 < p < 1 with the lower limit corresponding to uniaxial stress ahd tipper to
equibiaxial plane stress. Moreover, as before for the timgendent viscoplastic re-
sponse of the material in EMF processes, strain historyanfias the solid’s response
and hence a strain profitg(t) is also required. Determining the exact strain profile)
requires solution of a coupled electromagnetic and thereatyanical problem of the tube
plus its actuator coil, a feasible but complicated and tioresaming task that is discussed
in Chapter Ill. Such a modeling approach would be the 2-Diwarsf the 1-D ring calcu-
lations done by Triantafyllidis and Waldenmyer (2004). e interest of simplicity, and
since a pulse-like strain rate history is expected for thephsirains at any height of the
expanding tube, the sinusoidal-shape strain and strarprafiles of equations (2.1.26)

and (2.1.27) are assumed.
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The electromagnetic nature of the problem also requiresvigage of the time-
dependent current density. As for the strain profile, thesandal pulse current density of
equation (2.1.30) is assumed. Experimental observatamgiell as fully coupled elec-
tromechanical calculations in the ring problem (Trianliedis and Waldenmyer, 2004)
show that the time duration of the first (and much larger)enirpulse is approximately
half the duration of the strain rate pulse, thus explainimg teason for the choice in
equation (2.1.30).

The characteristic timey, which is half of the measured duration of the main current
pulse, and the maximum densily., are available experimentally, according to Table 2.6.
These parameter values are obtained from electric curegsts time traces taken from
tube expansion experiments. An example of one of thesestrheze from case (a), is
shown in Figure 2.16a. The comparison between experimanthlsimulation current
traces is shown in Figure 2.16b, along with the dimensi@$tsain versus time trace.
The energy used to expand the tube in each configurationés givTable 2.6, and the
pulse timery, and maximum current densit,.x used in the corresponding simulation

are also listed accordingly.

Label Tube (mm) Coll Energy (kJ) Jmax (A/m?) 14 (usec)

a 31.7 4-turn  6.72 51020 23
b 31.7 10-turn 8.00 48210 36
c 85.1 4-turn  7.52 2.50 %0 16
d 85.1 10-turn 13.92 48510 335

Table 2.6: Experimentally Determined Parameters

Also note that from several experiments performed, only {tabeled a, b, c, d in
Table 2.6) are to be simulated here.
The final issue to be resolved is the choice of the maximum Bt@neqna in equa-

tion (2.1.26) for simulating the selected four experimeiitse choice adopted stems from
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and coil. b) Comparison of the experimentally determinedent density
profile with the simulated current density profile. SimuthtBmensionless
strain profile also shown in b). These plots correspond to.@ B8in tube
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the experimental technique of gradually increasing theciapr energy until tube neck-
ing andor failure is detected. Consequently for each simulation is run with a certain
value of enax for which no necking is detected. A simple forward marchiaghinique
gradually tests larger values &f.x until necking is achieved at @9¢,.. AS an example
of the forming speeds that result from this technique, feeog) in Table 2.6 the maxi-

mum simulation strain rate ranges from 4932 @lane strain) to 87933 (uniaxial).

2.3.2 Comparison of Results

At the completion of Section 2.3.1 the formulation of the EM€alization problem is
fully defined. The numerical algorithm used to solve the goweg equations is identical

to that discussed in Section 2.2.1. Comparison of simuiatial experiment follows.

2.3.2.1 Comparison of Experimental and Theoretical Resudt

The presentation of experimental results and the correbpgrtheoretical simula-
tions is given in Figures 2.17 to 2.22. More specifically tixparimentally obtained
FLD’s for cases (a) through (d) (see Table 2.6) plus the spording theoretical sim-
ulation results are presented in Figure 2.17, Figure 2.8yré 2.21 and Figure 2.22
respectively. For comparison purposes the conventiorasigtatic FLD’s for the same
cases (calculated in the absence of currents and using ratggr ppulse duration times
7o) are also plotted in these figures to show the ductility iaseedue to the EMF process.
Additional information for the first experiment (case (a))provided in Figure 2.18 (cur-
rent configuration localization angdeversus strain ratip) and Figure 2.19 (temperatures
inside#® and outsid@” the band versus strain raid.

The FLD results for the short tufsidort coil combination (case (a)) are presented in
Figure 2.17. Notice that the experimental data are alpfer 0 and clustered about the

uniaxial stress patlp(= —1/2), as expected from Figure 2.14a, which shows localization
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Figure 2.17: Comparison of simulated and experimental iiogriimits for an AA6063-
T6 31.7 mm tube deformed using a 4-turn coil and 6.72 kJ ofggn@rase
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at the top and bottom ends of the short tube. Both the measm@édomputed results
show a significant increase in ductility in the electromapadly expanded AA6063-T6
tube compared to the quasistatic curve, although the stionlaverestimates the forming
limits. Moreover, using Figure 2.15 one can observe thabudal quasistatic AA6063-T6
necking and failure occurs approximatelyegty = 0.11. This corresponds with the=
—1/2 quasistatic forming limit in Figure 2.17 due to the use aftaegular high aspect
ratio (width to thickness) samples in the uniaxial quasistasts (see Section 2.3.1.1).
This observation is an experimental confirmation of the illitycincrease in free forming
using EMF, which is captured reasonably well by the presiemtigtion.

The theoretically calculated current configuration catiangle¢ versus the strain
ratio p for the short tubgshort coil experiment modeled in Figure 2.17 is plotted ig-Fi
ure 2.18. Notice that similar to the quasistatic cases a decreasing function @f for

-1/2 < p < Owhile¢ = 0 forp > 0. Although localization angles arefficult to
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Figure 2.18: The localization angdein the current configuration as a function of strain
ratio p, for the simulation of the 31.7 mm tube deformed with a 4-twi
at 6.72 kJ (case (a)).

measure, where the necking band is visible along the fufitteiof the tube (case (d),
corresponding tp = —1/2) ¢ ~ 40°.

The theoretically calculated insid€ and outside?” the band respectively tempera-
tures at localization, as a function of strain rgtidor the experiment modeled in Fig-
ure 2.17, are plotted in Figure 2.19. Notice that the neckengperature is minimum for
p = 0, as expected from the fact that the critical strain,is a minimum here. Since
7o IS kept constant for each case, the minimum critical straieggthe minimum strain
rates and lowest flow stresses and thus the lowest amounastigtissipationreeP.
This dissipation contributes somewhat more thermal engrgy the ohmic #ect to the
temperature change (Triantafyllidis and Waldenmyer, 2004

Figures 2.20 through 2.22 show the results from the remgithiree experiments (see

Table 2.6 and also Figure 2.14). More specifically Figur® ZRows the results for the
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Figure 2.19: The temperature insiéand outsid&” the band at localization as a func-
tion of principal strain ratig, for the simulation of the 31.7 mm tube de-
formed with a 4-turn coil at 6.72 kJ (case (a)).

shorter tube with the longer coil (case (b)) which shows &ngdst discrepancy between
theory and experiments. This deviation can be explained fre fact that the failed tube
in Figure 2.14b is a highly distorted toroidal segment, wltle assumptions adopted for
the computation of the FLD are based on uniformly expandibgs.

The FLD in Figure 2.21 corresponds to the only experiment d#ta in thep > 0
region, as expected for case (c), in Figure 2.14c, whereréagtarts at the middle of the
tube. Experimental points gn = 0 show agreement with theoretical predictions while
experimental points fgp > 0 show large deviations from theoretical results. This dis-
crepancy is expected from the fact that yield surface pa@mand anisotropy of sheet
play a crucial role for the determination pf> 0 part of the FLD, and our simulation’s
simplified isotropic yield surface can be improved with a exsophisticated anisotropic

alloy description. Moreover, as with case (a), despite @stamation of the forming lim-
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Figure 2.20: Comparison of simulated and experimental iflogriimits for an AA6063-
T6 31.7 mm tube deformed using a 10-turn coil and 8 kJ of enégge

(b)).

its, a free formability increase is clearly shown experitaén

Finally, Figure 2.22 corresponds to the long td»eg coil combination and the corre-
sponding experimental data are again clustered aroundthgial stress path = —1/2,
as expected from Figure 2.14d, which shows failure near titesections of the tube.
This comparison shows the closest agreement between merand simulation, with
the forming limits minimally overestimated.

It should be noted that the theoretical predictions for allrfexperiments are pre-
dictably close to each other given the proximity of the valoéthe strain rates, current
densities and characteristic times between the foffierdint experiments. A critical dis-

cussion of the experimental and theoretical results isgsudsequently.
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2.4 Discussion of Results

The present analysis shows a significant increase in dydtiiim quasistatic to EMF
conditions; the greatestftierence occurs for strain paths with load path strain gato0.

In the casep < 0, the angle of the weak band at necking in the reference aoatign
®neck # 0. And, when compared to results for> 0, the predicted forming limits for
o < 0 are insensitive to imperfection amplitud@nd the yield surface choice. The rea-
son for this ductility increase is the high strain rates, paned to conventional forming,
inherent in an EMF process, given that the strain-rate geitgiof the material delays
the onset of necking (see Hutchinson and Neale (1977)). Tésept work shows that
the details of the strain time profile do not significantfieat the forming limits, though
the strain rate of the loading does. Increasing the electieent density can also in-
crease ductility, though above a certain current densitggdditional ductility increase is
found. However, the influence of the initial temperatdrelepends on the temperature
sensitivity exponend, which indicates that the influence of electric current dgnaill
also vary with the material properties. Moreover, if a terapgre-dependent strain-rate
sensitivitym(6) is implemented, such thatincreases with temperature in accordance to
existing experimental data, the limit on the ductility iease for increasing current den-
sity disappears and strains at the onset of necking for a fixedrease monotonically
with increasing current density.

The material constitutive response is of paramount impegan determining form-
ing limits for EMF processes. The anisotropy and yield stefdetails strongly influence
the forming limits in thep > 0 region, whileo < 0 is largely un#fected by these aspects.
However, the EMF formability isféected for all values g by the hardening exponent

n; ductility increases as increases. Similarly, increasing the strain-rate seiitsitexpo-
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nentm for a fixed forming speed increases the onset of neckingistrdihe temperature
sensitivity exponent also has the same correlation with ductility. Increasingcreases
forming limits.

For the free expansion experiments, the main reason fontlheased ductility of alu-
minum alloys has been shown (Triantafyllidis and Waldenm@04) to be their strain-
rate sensitivity at the high rates associated with the EMIegsses. To this end, it is
important to obtain an accurate constitutive descriptioihe alloy that has strain rate as
well as temperature sensitivity in its mechanical resppgisen the important heating ef-
fects due to the plastic dissipation and the induced cwsré&ithough it was not possible
to measure all the required constitutive properties of tpeamentally used (AA6063-
T6) tube alloy, a careful literature search has given theareimg properties from reliable,
independently obtained data of a closely related (AA606)-sheet alloy. Implement-
ing these properties shows an increase in formability duate sensitivity in the FLD
simulations, which is confirmed experimentally. Howevemparing experiment to sim-
ulation shows overestimation to varying degrees in eaahnifay limit diagram. A more
accurate experimentally based constitutive charactesizaf the material is necessary
for further investigations.

In addition to the influences on formability investigatedhe present work, there are
a number of other possible factors to be addressed. It isrtiamoto recall that all the
results here depend on the imperfection paramgtarost significantly for strain paths
with p > 0, a rather undesirable — but inevitable under adopted #iyimg assumptions
— feature of the FLD analysis.

There is also some controversy about the magnitudéaegistence of a free forming
EMF ductility increase over conventional techniques. Thesent work considers only

tube free expansion, while others (Imbert et al., 2005kéMa and Worswick, 2003; Oli-
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veira et al., 2005; Zhang and Ravi-Chandar, 2006) have derel dfferent geometries.
Oliveira and Worswick (2003) and Oliveira et al. (2005) ades forming aluminum
sheet into a rectangular die opening. No formability imgment in their electromag-
netically free formed parts is reported. Those authors dbbF strains higher than the
guasistatic forming limits but attribute them to strainlpethanges after workpiece failure.
However, Imbert et al. (2005b) do show EMF free forming sisabove the traditional
guasistatic limits of their aluminum alloy on safe (no neckior failure) parts. Those
experiments use aluminum sheet free formed into a circigeopkening and indicate that
EMF may enhance free formability. It should be noted thateleetromagnetic process
free forming strain rates of Oliveira and Worswick (2003y &liveira et al. (2005) are
approximately half of the rates encountered in the presguarenents, and the aluminum
alloy is AA5754, a considerably fierent alloy than the tube alloy AA6063-T6. Work by
Vural et al. (2004) and Yadav et al. (1995) shows a distinayadlependent threshold
above which strain-rate sensitivity becomes importamticating these dierences may
significantly influence the experiments. This issue sho@dnvestigated in the light
of complete experimental evidence, especially since themah constitutive response
is alloy-dependent (e.g. the transition strain rate vasiekely between aluminum alloys
(Tirupataiah and Sundararajan, 1994)).

Inertia is ignored in these necking simulations. In presianpublished work on ring
expansion (Triantafyllidis, 2004), an increase in dutgtibccurred with an increase in
ring density (with all other ring properties remaining ttzare). More sophisticated dy-
namic stability analyses have been carried out for barséleregeas and Molinari, 1989)
and rings (Mercier and Molinari, 2004) that show how ines&ects the critical wave
number, influencing (delaying) necking. Other work (Hu arakebn, 1996; Knoche and

Needleman, 1993; Regazzoni et al., 1986; Zhang and Ravidaina2006) has shown
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similar results, indicating that inertia should be accedrfor in dynamic necking calcu-
lations. Similarly, contactféects are known to strongly influence high velocity forming
(e.g. Balanethiram and Daehn (1994); Imbert et al. (2005b))

Finally, the present work makes the implicit assumptiort tha thermal response of
the material is the same under quasistatic and EMF formiegds At the time scale of
EMF forming (i.e. on the order of 5@sec) the material thermal constitutive response may
vary greatly from that observed at conventional speedsthEBuexperimental evidence
is needed to characterize the material’'s response to tetuperchanges over these time
scales. However, in spite of the adopted simplifying asdionp and given the indepen-
dence of results of strain profile, the current investigatan provide a useful and fairly

accurate predictive tool for making ductility calculatsfor EMF processes.

2.A Appendix: Justification of Necking Criterion

The necking criterion used in the electromagnetic FLD datoons is a weak band
initial imperfection criterion, similar in spirit to the itkness inhomogeneity criterion
first introduced by Marciniak and Kuczynski (1967) to accolam necking in the biax-
ial stretching region of an elastoplastic solid within thaniework of classical plastic-
ity theory (smooth yield surface and normality). The depard of the necking strain
predictions on the size of the initial imperfection is a mEthindesirable feature of this
approach, which has lead to the proposition of alternateekimg criteria. For the case
of rate-independent solids, Storen and Rice (1975) pegbasiecking criterion based on
the loss of ellipticity in the equations governing the imaental plane stress deformation
of the sheet, which are based on a deformation type theoriaefigity, thus predicting
necking independently of imperfections. Unfortunatetystapproach cannot be gener-

alized for viscoplastic solids, whose incremental respassgoverned by their elastic
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moduli.

To avoid the assumption of an initial imperfection, Tridyligdis et al. (1997) pro-
posed a linearized perturbation criterion for the stapitif elastoviscoplastic solids,
which was based on the grovitiecay of the perturbation acceleration in response to a
velocity perturbation of unit norm. This criterion was erpad upon by Massin et al.
(1999) and generalized for continua by Nestorovi¢c et 200(®. Unlike the compres-
sive load cases for which it was conceived, the applicatfdhis linearized perturbation
criterion to the analysis of necking under tension givesahstic results (critical strain
decreases for increasing load rates) and hence had to baaateahas a candidate necking
criterion. However, the comparison of the necking preditifor the linearized pertur-
bation and initial imperfection criteria for the case of daséoviscoplastic bar subjected
to uniaxial tension is both novel (to the best of the authknewledge) and useful and

merits a brief presentation.

2.A.1 Kinematic and Constitutive Relations

For simplicity, no thermal fects are considered and the material in the uniaxially

loaded bar is treated as incompressible. The latter assumpélds
al = AL, (2.A.1)

wherea (A) is the current (reference) cross section ared gbylis the current (reference)

length. In this finite strain problem the strain,is defined as
e =In(l/L), (2.A.2)

and the first Piola-Kirchhi® stress ]I (forcereference area), can be expressed with the

help of equations (2.A.1) and (2.A.2) in terms of the Caudhgss o, and straing, by

I1 = oexp(—e). (2.A.3)
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The uniaxial strain is decomposed into elaséfg,and plasticeP, parts, and the con-
stitutive response reads

o =Ee, € =¢€e—¢€". (2.A.4)

For a viscoplastic material the relation betwe@nand the solid’s quasistatic uniaxial

response(eP) is governed by the functioR,
€” = F(o,g(eP)). (2.A.5)

Here two versions of the functioR, namelyF, andF;, will be used. F is the same

power law constitutive model that was used for the FLD calttahs, i.e.

. o 1/m
Fo=¢& [(m) - 1] , (2.A.6)

wheremiis the strain-rate sensitivity exponent agftlis the viscoplastic time scaler,
represents an alternative linear overstress model

L 2.A7
= 2l —g(e)], @A)

where oy is the material’s uniaxial yield stress. It is important totex thate] is not
equivalent between the two constitutive laws. The uniayigdsistatic response for both
versions ofF is

g(e?) = oy [1 + E—T, (2.A.8)

&
wheree, = oy/E andn is the hardening exponent. Base case values of materiahpara

ters from the FLD simulations (see Tables 2.1 and 2.2) aceussd here.

2.A.2 Linearized Perturbation Analysis

For the one dimensional bar model, the linearized pertighatability criterion, in-
troduced in Triantafyllidis et al. (1997), works as follave®nsider that at timg a pertur-

bation in the field quantities of zone B of the bar (see insefigure 2.A.1) is introduced
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Figure 2.A.1: Nondimensional first Piola-Kirchfiostress II/oy) versus logarithmic
strain for three values of imperfection parametéased on the power law
constitutive model and the sinusoidal strain profile. Thredosersus strain
is plotted both outside (A) and inside (B) the weak band tlustrating
the existence of the necking strain.

and letAf = fg — f5 denote the dierence in the field quantitf between the perturbed
(B) and unperturbed (A) parts of the bar. Furthermore asdhatethe perturbation re-
sults in a giveme > 0. In this linearized stability analysis a perturbation éided to
be stable when the resultidg < 0, i.e. when the rate ofé decreases near tilig One
can thus defind = A€/A¢; an unstable bar results in > 0. Hence A = 0 signals the
onset of a necking instability, and the correspondingaaitcondition is independent of
the size of the perturbation.
Equilibrium of the bar implies

AII = 0. (2.A.9)

Linearizing about the principal solution (zone A) the resp®of the bar to a perturbation

in €, one obtains from the first and second rate of equation (2.A.9

ATl = .3Aé + FioAe = 0 (2.A.10)
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and

ATl = (F2A + Fn1) Aé + Fpohe = 0, (2.A.11)

where the cofficients.% o, -711, -%20, -%21 and.#>; are given by

yloz—[(E—O')é—i-O"—i-Ezg—F],

o
11 =E-—o,
oF (_oF oF 8y ..
=B — |[E—— - —==+2 2.A.12
To=E32 ( o ogoer 6) (2.A12)
e L E@ o (5-20¢ 1 08— 0?).
oo
Sy = — [2(E—0')é+2d'—|— Eza—l.:] ,
oo
5/22 =E—o.
Writing equations (2.A.10) and (2.A.11) in matrix form gs/e
ey]_]_ y]_() AE
=0. (2.A.13)

yZZA"Fyz;L 5/20 Ae

Nonzero solutions to the above matrix equation exist ontlgefdeterminate of the coef-

ficient matrix is zero, which implies

_ yllyZO_yloyZl

A
L1052

(2.A.14)

Notice thatA is a function of the time-dependent solution of the viscsfitzbar prob-
lem, and for a well posed problem at the onset of the bar'sihgpl < 0. An instability
occurs whem\ = 0, which from equation (2.A.14) gives the following conditiat the
onset of instability

11520 — F10521 = 0. (2.A.15)
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To implement this criterion the principal solution of theagioviscoplastic bar is for-
mulated as a set of two first order ODE’s from the rate of eguaf2.A.4) and equa-
tion (2.A.5), namely

x = f(x,t), x=]o,¢€"]. (2.A.16)

These are solved with a fourth order Runge-Kutta algorithna, numerical precision is
ensured by keeping the same time step as used in the FLD atiddid. The necking

criterion,A = 0, is detected via a simple bisection method.

2.A.3 Initial Imperfection Analysis

The analysis here is the one-dimensional (uniaxial stremsjon of the two-dimen-
sional theory presented in Section 2.1. As a strain profigied to the bar, the strains
outside,e”, and inside B, the weak band are compared (see the inset diagram in Fig-
ure 2.A.1). Necking occurs when the ratio of the plasticistrate inside the band to
that outside the band becomes unbounded, i.e. ifjg? — oo. The imperfection is
implemented asrﬁ‘ =(1- f)a{,*, with the reference imperfection parameger 0.001
carried over from the FLD calculations.

From the rate of force continuity across the band, i.e. ooty of the first Piola-
Kirchhoff stress ratél, one obtains with the help of equation (2.A.3) the followietp-

tion between the stress and strain rates inside and outsdedak band
exp(—€?) (6 — é*c?) = exp(—€°) (¢® — €% ") . (2.A.17)

This equation along with the equations (2.A.4nd (2.A.5) determine the solution in
the weak band. As in the linearized perturbation analyBesprincipal solution (outside
the band) is formulated from the rate of equation (2.Aa)d equation (2.A.5) as two

ODE’s. Then, these two equations (the rate of equation ,/Aand equation (2.A.5))
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applied inside the band and equation (2.A.17) give three ©®RIE the three unknowns
o8B, B andeg, i.e.

xB = f(xBt), x®=][c® €€ (2.A.18)

where thet-dependent terms are functions of the principal solutit(t). These ODE’s
are solved with a fourth order Runge-Kutta algorithm usimg $ame time steps as the
FLD calculations. The necking criterion is numerically imented as whegb/ek >
10. This value, 10, is chosen in accordance with the previtu® calculations and has

negligible éfect on the computed critical strains.

2.A.4 Strain Profile Selection

The applied strain profile must be specified for the compteticthe simulation. Two
different profiles are considered, a sinusoidal profile and alipefile that match the,

profiles taken in the FLD calculations, which are given by

eft) - = [1 - cos(%)] - ) = g (2.A.19)

Due to the same considerations as in the FLD weyk, = 1 is used in the present work,

andry is varied through the terr&ffo, with further discussion following in Section 2.A.5.

2.A.5 Results and Discussion

The section compares the onset of necking predictions frenabove introduced two
criteria and for the four combinations of two constitutiesvk, power lawF, and linear
overstres$|, and two load profiles, sinusoidal and linear.

Figure 2.A.1 presents the dimensionless first Piola-Kiothktress I1, versus log-
arithmic strain,e, in the bar with power law viscosity subjected to a sinuslogtiain

profile. The initial imperfection model is examined, drigoy, versuse is given for both
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outside (A) and inside (B) the band. The rate of deformatsget by the dimension-
less measure of characteristic spgefo)~*, with (€)79)~ = 26.9. Results for three
different values of the imperfection parametere calculated.

In a quasistatic process necking is predicted at the maxifowe (equivalently max-
imum IT). For a viscoplastic bar the maximum force during a procegsedds on the
loading rate due to its strain-rate sensitivity. From dfuilm the force in the bar out-
side and inside the weak band must be equal, but due to thweelseakness of the band
€ > & This unequal strain rate allows the weak band to reach higfinesses than
the outside zone thus permitting considerable elongatést he point where the max-
imum force occurs; the strain-rate sensitivity stabilites weak band by strengthening
the material as the strain rate increases. Necking occues fdr some forcél/o, the
strain rate inside the band tends to infinity. The imperéetparameter stronglyfi@cts
the force level at which this necking phenomenon happens.

The dimensionless first Piola-Kirchfigtress versus strain response of the power law
elastoviscoplastic bar subjected to a sinusoidal straifilprand for characteristic speeds
(é570)~* from 0.159 to 100 is presented in Figure 2.A.2. Necking dations for the
initial imperfection analysis with three fiiérent imperfectionsé(= 1073, 1074, 107°)
and the linearized perturbation method are shown. Thalnitiperfection calculations,
for each fixed¢ value, show higher necking strains for higher speeds. Tiealized
perturbation criterion shows the opposite trend, agrewiii the initial imperfection
model’s necking strain prediction at quasistatic speedsximum force) and predicting
decreasing necking strains from there as the speed insteddso, ast decreases the
initial imperfection criterion necking strain predictiomcreases as noted previously, and
for all £ values an upper limit on the necking strain exists such thavea certain speed

further loading rate increases have little influence.
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Figure 2.A.2: The nondimensional first Piola-Kirclthetress versus logarithmic strain
for varying loading rates (the stress increases with iregtnggoading rate),
based on the power law constitutive model and the sinussicah profile.
The onset of necking strain prediction from the linearizedyrbation cri-
terion is recorded, as is the necking prediction from thigahimperfection
analysis for three values of imperfection paraméter



65

€heck
|
|

—— Sinusoidal
—————— Linear

_— Perturbation

Figure 2.A.3: Onset of necking strain versus nondimensistrain rate based on the
power law constitutive model for the sinusoidal and lingaaia profiles
using initial imperfection and linearized perturbatiorteia.

In Figure 2.A.3 the necking strains predicted by each daterand calculated for
the power law constitutive model, are plotted against thedimaensional characteristic
speed. Onset of necking results for both the sinusoidaliaedd strain profiles are pre-
sented, using three values of the imperfection parangeted the linearized perturbation
criterion. The initial imperfection based necking curvlew increasing necking strains
with increasing speed. The plateau in the onset of neckinlyg respect to deformation
rate is also clear, and the influence of the linear strainlprifinot pronounced accord-
ing to these results. Perturbation based results show thesdp trend, i.e. a decrease
of necking strain for an increase of loading rate. Note atsdtie linearized perturba-
tion results that the linear loading profile shows higheknegstrains than its sinusoidal
counterpart, in contrast to the initial imperfection arib@.

The counterpart to the results in Figure 2.A.3 calculatégltiime for the linear over-
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Figure 2.A.4: Onset of necking strain versus nondimensistrain rate using the lin-
earized perturbation criterion and based on the linearstness constitutive
model for the sinusoidal and linear strain profiles.

stress constitutive model are presented in Figures 2.Ad2ak.5. The diference in the
magnitude ofeeck fOr the linearized perturbation and initial imperfectianteria neces-
sitates separate plots. A comparable stress-strain resgmtweert, andF, requires
differenté} values, giving unequal speefts o) for processes with the same forming
time 7o.

The strain at necking for the linearized perturbation ddte versus nondimensional
loading speed is shown in Figure 2.A.4. Results for both heseidal and linear strain
profiles are shown. At quasistatic speeds the onset of ngskiain approaches the qua-
sistatic necking value (maximum force) for both strain pesfi Similarly to the results
for the power law constitutive model, a'qg’ro)—l increases the linearized perturbation
necking strain prediction decreases, but in contrast tgtwveer law material (see Fig-

ure 2.A.3) the sinusoidal strain profile shows higher negkimains than the linear profile.
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Figure 2.A.5: Onset of necking strain versus nondimengistnain rate using the initial
imperfection criterion and based on the linear overstreastiutive model
for the sinusoidal and linear strain profiles.

Also noteworthy, the strain at necking for the linear straiofile is no longer constant
with respect to forming speed.

Finally, the onset of necking strain for the initial impegtien criterion versus nondi-
mensional characteristic speed for the sinusoidal andis&rain profiles is given in
Figure 2.A.5. As expected for all three valuesépthe imperfection necking strain pre-
diction approaches the quasistatic value(&é’go)*l — 0, but it increases considerably
at high deformation rates. For loading ratg§ro) * > 1 the necking stains for the
linear overstress model (Figure 2.A.5) are rather @) unrealistic (and much higher
than those for the power law model (Figure 2.A.3)). Also,ikasthe power law model,
the predicted necking strains with the linear overstresgehior the linear strain profile
are higher than those for the sinusoidal profile. Howevewi#sthe power law model,

the predicted necking strains increase aecreases, and there is an upper limit on the
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necking strains for increasing loading speed.

Itis clear from the results presented above that realisto&img predictions are gained
only with the initial imperfection criterion. In all the ces considered, the linearized
perturbation criterion gives onset of necking strains thatrease from the quasistatic
value (maximum force) monotonically with increasing laaglirate. This result is in
contradiction with experimental evidence from high straite free forming results that
show formability equal to or greater than that under quascstonditions (see Hu and
Daehn (1996); Hutchinson and Neale (1977); Oliveira andswak (2003)). The initial
imperfection criterion is at this point the reasonable chdor ductility calculations of

interest in this work.



CHAPTER I

Formulation and Numerical Implementation of EMF Processesn
Finitely Strained Solids

The present chapter pertains to the consistent, fully @xlphodeling of electro-
magnetic-mechanical processes, specifically in the confdxMF. The governing equa-
tions are Maxwell’s equations in deformable solids and tleemanical equation of mo-
tion (along with the equations describing thermi@éets and internal variable evolution,
as necessary). A consistent variational formulation ofeleetromagnetic problem in
deformable solids was introduced by Lax and Nelson (1976) derived Maxwell's
equations, the electromagnetic fields, and the electroetaghagrangian in the ref-
erence configuration (i.e. the Lagrangian or material desen). This Lagrangian is
the reference configuration counterpart of the classiadtemagnetic Lagrangian in
the current configuration (i.e. the Eulerian or spatial dpsion). Trimarco and Mau-
gin (2001) and Trimarco (2007) combine the electromagnetgrangian terms with the
necessary mechanical terms to give an electromagnetibanaal reference configu-
ration Lagrangian, from which the Euler-Lagrange equatigive Maxwell's equations
and the mechanical equation of motion. Their variationahteque provides Maxwell’'s
equations in the reference configuation, but for EMF, theyexoirent approximation to
Maxwell’s equations is all that is necessary. The presemkwwooposes a variational

technique that consistently provides the governing eqonatunder the eddy current ap-

69



70

proximation. Following this, through application of a \&tronal integration technique,
the resulting numerical scheme is shown to provide a camistaggered solution algo-
rithm.

The discussion begins in Section 3.1 with a derivation ofciigpled electromagnet-
ic-mechanical equations. Section 3.1.1 presents theal&nivin the current configura-
tion, following the technique of Kovetz (2000). Having dexil the governing equations,
Section 3.1.2 turns to the reference configuration form es¢hequations and the elec-
tromagnetic fields, derived using a method similar to thataf and Nelson (1976).
The resulting relations between current and reference gunafiion fields allow the in-
troduction of the electromagnetic-mechanical Lagrangaan the subsequent variational
technique based on the least action principle is discugss&kction 3.1.3, completing
the general formulation. Section 3.2 proposes the vanatiprinciple under the eddy
current approximation and discusses the restriction ohtimaerical implementation to
axisymmetric forming cases, adopted to simplify this figgblecation of the general the-
ory. The resulting formulation is numerically implementeith a variational integration
technique, as outlined in Section 3.3. Results of releviagt and tube expansion sim-
ulations are presented in Section 3.4. In addition, the Inprablem of a tube with a
nonconducting outer coating is solved and tffea of the coating quantified. Finally,

Section 3.5 is a concluding discussion of the formulatioth i@sults.

3.1 Formulation of Fully Coupled Electromagnetic-ThermalMechan-
ical Problem

Two methods for deriving the fully coupled governing eqaas and interface condi-
tions of an electromagnetic-thermal-mechanical procesgr@sented. First is the direct

method, which uses conservation principles in the currenfiguration to derive the
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governing equations and boundary conditions. This apjbreasentially follows Kovetz

(2000), where the interested reader is addressed for additdetails. Subsequently,
kinematic relations from continuum mechanics are applettansform the governing
equations from the current to the reference configuration.

Using the relations between current and reference configaréields, the second,
variational method is presented, namely the classical-kasn principle (see Lax and
Nelson (1976) for the purely electromagnetic case) in thereace configuration. This
method gives the reference configuration governing equsitamd interface conditions,

and it is shown that the two methods agree.

3.1.1 Conservation Law Approach (Current Configuration)

Gauss'’ law states the electric charge conservation in atrasbcontrol volumev(t)
that is allowed to move and deform following the materialedEtic charge conservation

dictates

den ds= | qadv, (3.1.1)
[ denas- ]

ov(t) v(t)

whereodv(t) is the surface boundary of the control volunie), n is the outward normal
to the surfacev(t), d is the electric displacement, ands the volumetric charde The
pointwise form of Gauss’ equation and the associated exter€ondition follow from the
arbitrariness of the control volume and standard argumentdving Gauss’ divergence
theorem, namely

ved=gq, ne[d] =0, (3.1.2)

where[ ] denotes the jump in a quantity across a surface. For sirplamd without

loss of generality, it is assumed from here on that all electrarges and currents within

IHere and subsequently Chapter Il defines symbols indepeiyaef Chapter Il, with standard notation
used whenever possible.
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the problem domain are volumetric.
Faraday’s induction law states that the circulation of tleeteomotive intensity&
about a closed circuits(t) opposes the change of the flux of the magnetic fitldrough

the surfaces(t), i.e.

§808d|=—%fbonds, (3.1.3)
os(t) s(t)

where ds(t) is the line boundary of the control surfasg), sis the tangent vector to
0s(t), andn is the normal to the surface directed positively using tightrhand rule
applied tos on ds(t). Again, since the control surface is arbitrary, the poistviorm

of Faraday’s equation and the associated interface conditillow by using standard

arguments involving Stokes’ theorem

vx&=—b nx[&] =0, (3.1.4)

&
where( ) denotes the flux derivative. Note that since the control ma&wr surface may

move and deform the conservation laws must be written ingerh@alilean invariants.
The electric displacememnt and magnetic field are themselves Galilean invariant, as
is the electromotive intensii§, which is defined in terms of the non-Galilean invariant

electric fielde, magnetic fieldo, and displacement by

E=e+Uxb, (3.1.5)

where( ) = d( )/dt denotes the material time derivative. The relation betwaerent

positionx, reference positioiX, and displacement of a material point is
X=X+u. (3.1.6)

Recall that the flux derivative for any vector fields defined by

f*E(Z—IJrl'J(vof)—vx(fjxf):f'—(ﬂv)oerf(vol'J) (3.1.7)
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and satisfies

d *
Effondsszonds, (3.1.8)
s(t) s(t)
thus justifying the pointwise form of Faraday’s law in eqaat(3.1.4).

The nonexistence of magnetic charge in integral form isesged by

J bends=0. (3.1.9)

ov(t)

The pointwise equation and interface condition follow ashe case of Gauss’ law in
equation (3.1.2),

veb=0, ne[b] =0. (3.1.10)
The fourth and final electromagnetic conservation law is Arefs equation, which
states that the circulation of the magnetomotive interltabout a closed circuits(t)
is equal to the total current flux through the surfa@g@ which is bounded bys(t),

§ﬂo$dl=%fdonds+ J ends (3.1.11)

os(t) S(t) S(t)

The first term on the right hand side of equation (3.1.11) esdisplacement current
flux throughs(t) while the second term accounts for the induction currentteNbat

the magnetomotive intensityf and the conduction current densijfy are both Galilean
invariant. Similar arguments to those used for the Faradayih equation 3.1.4 lead to

the pointwise form of Ampere’s equation and the associateface condition, namely
vxH=d+J, nx[H]=0. (3.1.12)

Note that according to the simplifying assumption discdsgehe beginning of this sub-
section there is no surface electric current taken into@ticd’ he magnetomotive inten-

sity H and conduction current density are defined as

H=h—-Uxd J=j—qi, (3.1.13)
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whereh is the H field andj is the electric current density.
In addition to the four electromagnetic conservation lafive additional principles
are needed, three from mechanics and two from thermodysarhicst is conservation

of mass, which in integral form states

d
< j pav=0, (3.1.14)
v(t)

wherep is the mass density. The arbitrariness of the control voJumiech always fol-

lows the same set of material points, yields the pointwiseaggn
po+p(vel)=0. (3.1.15)

For simplicity, itis assumed here and subsequently thdistbntinuities propagate at the
speed of the material. Consequently no jump condition isle@éor mass conservation.
The next mechanics principle is that of conservation ofdimaomentum, generalized

for the electromagnetic-mechanical system. In integnahfthis is given by

%JpngZ [otavs [ ras (3.1.16)

v(t) v(t) av(t)

whereg is the generalized electromagnetic-mechanical momentoime( specified sub-
sequently),f is the mechanical body force, ands the generalized electromagnetic-me-
chanical traction on the surface of the control volume (&tdoe specified subsequently).
It is further assumed that Cauchy’s formula relates thetelgagnetic-mechanical sur-

face tractiort to o, the generalized electromagnetic-mechanical (Maxwekss,

t=neo. (3.1.17)

The fieldsb and h are denoted here as the magnetic field and H field, respactilethe literature
they are also referred to as the magnetic flux and magnetic fetpectively, andl is often denoted as the
current potential (Kovetz, 2000).



75

The pointwise form of the conservation of linear momentuh gre associated interface
condition follow from the arbitrariness of the control vole, by using standard argu-

ments which involve Gauss’ divergence theorem,
pd=veo +pf, nefo] =t, (3.1.18)

wheret in the jump condition is the applied mechanical surfacetivac
The third mechanics principle is the conservation of angm@mentum, generalized

for the electromagnetic-mechanical system, which states

%JX/\png:JX/\pde%-JXAtdS. (3.1.19)

v(t) v(t) ov(t)

The pointwise form follows from the arbitrariness of the tohvolume and the use of

mass and linear momentum conservation in equations (3.arnb(3.1.18)

pUAg=0" —0. (3.1.20)

Note that no associated interface condition is needed silha#erfaces propagate at the
speed of the material.

The first thermodynamic principle pertains to the balangaov¥er, which states that
the rate of change of the control volume’s internal energqisal to the power supplied
externally, i.e.

d . .
o pedv= | pfeudv+ teuds
V(1) v(t) ov(t)

+ Jph dv + J (—Qg) e nds (3.1.21)

v(t) ov(t)

+ J(—Sxﬂ)onds,

ov(t)

SRecall that the wedge product is definedhas b = ab — ba.
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wheree is the specific internal energy. The first line in the right ¢hesnde of equa-
tion (3.1.21) is the supplied mechanical power, where tist ferm is the body force
contribution and the second term is the surface tractionribtion. The second line
in the right hand side of equation (3.1.21) is the suppliexirttal power, where the first
term accounts for internal heating and the second term atedor surface heating. The
specific rate of heating, i.e. the rate of heating per massem®ted byh and the heat
flux through the surface is denoted byand is oriented such that a positive value indi-
cates heat flux out of the control volurhi€inally, the third line in the right hand side of
equation (3.1.21) is the supplied electromagnetic powerth the surface. The elec-
tromagnetic energy flux is given by the Poynting veé&ox J, again oriented such that
a positive value indicates energy flux out of the control vadu The pointwise form of
the energy balance and the associated interface conditilowfonce again from the ar-
bitrariness of the control volume using standard argumientdving Gauss’ divergence

theorem, namely

pE=p(fel+h) +ve(cel—q—ExH),

Nel[—celi+q+&xH]=0. (3.1.22)

The second thermodynamic principle is the entropy prodacthequality, which
states that the rate of change of the control volume’s eptropst be greater than or
equal to the entropy supplied to it, i.e.

d h —q
o Jpsdv = Jp? dv + J (T> e nds, (3.1.23)

v(t) v(t) ov(t)

wheres is the specific entropyandT is the absolute temperature. The first term in the

4The reader must not confuse the scalar specific rate of lydaiith the vector H fielch nor the vector
heat fluxq with the scalar volumetric charge

5The reader must not confuse the scalar specific entseyith the line tangent vects.
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right hand side of equation (3.1.23) accounts for the egtsypplied by the internal
heating, and the second term accounts for the entropy sabp)i the heat flux through
the surface of the control volume. The integral form prosidéarough the same argu-
ments used for the energy balance in equation (3.1.22) dimdyise entropy production

inequality and associated jump condition,

08> p?h tve (—?q> Ne l[g]] >0, (3.1.24)

With the necessary balance laws in place, the method of Goieand Noll (Cole-
man and Noll, 1963) is used to find the material’s constiautaws. In order to do so,
one needs first the electromagnetic constitutive laws inctiveent configuration. For
simplicity, and motivated by the EMF applications of int&ret is assumed that the mag-

netization and polarization of the material are negligdole hence

d=ge h= ib, (3.1.25)
Ho

whereg is the permittivity of free space ang is the permeability of free space. The
next piece of information required pertains to the speciée £nergys, which is defined

by (see Kovetz (2000))

py =pe —Tps—p(gel) + 2 (e b)

2
€0 1 .
_E(e.e)_%(bo b) + (d x b) e U. (3.1.26)

This states that equals the total specific internal energy less the energyaitiermal,
kinetic, and electromagnetic sources (the expression uatean (3.1.26) also assumes
that there is no polarization or magnetization in the matgri

For the case of non-dissipative, non-magnetizable, andpotarizable materials, it
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is assumed that the specific free enérgy
y=y(F, T), (3.1.27)

whereF is the deformation gradienk, = 0x/0X. From the pointwise energy balance in
equation (3.1.22) the expression fdris substituted into the entropy production inequal-
ity. Rearranging the result using equations (3.1.15),.25)1 and (3.1.26), the pointwise

entropy production inequality (3.1.24) can be rewritten as

[aT —p(g—;/:/> oF' + e (%(eo el —ee)

+,Uio (%(bo b)l — bb) — (d x b)ﬂ]:(l',lv)
—p[g—ﬁ—l—sl'l.'—[pg—pﬂ—dxb]oﬁ (3.1.28)

-J,-joa—i—(_?q) ovl > 0.

This inequality must hold for any admissible thermodynapnaxess, i.e. for arbitranyv,
T, andl, which implies that the terms grouped in brackets must be. ZEine vanishing

of the term multiplyinglv provides the electromagnetic-mechanical stress expressi

o=pFe (g—ﬁ)T + € (ee— %(eo e)l)

1 1 :
o (bb ~S(be b)I) +0(d x b). (3.1.29)

sought

The electromagnetic-mechanical stress can be dividednetthanicalg,,, and electro-

8In generaly is taken as a function d¥, T, 0, &, B, andvT. For details, see Kovetz (2000).
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magneticoem, parts

O =0m+ Oem

T
on=pF e (2—;/:’> (3.1.30)

Fan = €0 (ee— %(eoe)l) L (bb— %(b. b)l) 1 (d x b),

Ho
Although for simplicity (and without loss of generality)ig assumed that the material is
hyperelastic, in general the mechanical stress may be givete form, as a function of
F andT and some internal variables. Evolution laws for the intewagiables would be
necessary to complete the mechanical constitutive demerip
The vanishing of the term multiplyin@. in equation (3.1.28) provides the entropy

relation

L

S=— )
oT

(3.1.31)

while the vanishing of the term multiplying in equation (3.1.28) provides the electro-

magnetic-mechanical momentum relation

g=10+ }(d x b). (3.1.32)
P

One can now verify using equations (3.1.29) and (3.1.32) ttia angular momentum
balance in equation (3.1.20) is satisfied.
Upon taking into account equations (3.1.29), (3.1.31), @t.32), the final form of

the entropy inequality equation (3.1.28) is
—q
Fe&E+ (?) ovT > 0. (3.1.33)

Substituting forg from equation (3.1.32) into the pointwise linear momentuua

tion (3.1.18) one obtains

veo + pf zp% (%(d X b)) + pU. (3.1.34)
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Using the definition oér from equation (3.1.29), and Maxwell’s equations (3.1.2)1(4),
(3.1.10), and (3.1.12), the above equation of motion maytibér simplified to the more

physically transparent form
veon+ jx b+qge+pf =pl, (3.1.35)

which shows that the divergence of the mechanical strggdus the Lorentz force terms,
j x b+ ge, plus the mechanical body forpd equal the inertia terml. It is worth noting
that the Lorentz force terms have appeared as a result oetherglized electromagnet-

ic-mechanical stress, without assuming their existenagoai.p

3.1.2 Transformation of Field Quantities from Current to Reference Configuration

Kinematic relations from continuum mechanics are now useabtain the relations
between current and reference configuration fields and tsfivtem the previous con-
servation laws to their reference configuration counterp@o this end, one needs the
three equations relating volume elements, oriented lieenehts, and oriented surface
elements in the reference and current configurations (8teofavhich is Nanson'’s for-

mula), namely
dv=JdV, sd = (FeS)dL, nds=J(NeF1)dS; J = detF) (3.1.36)

whereS is the tangent to the line elemenit ¢ the reference configuration amdis the
normal to the surface elemerdh the reference configuration.

Beginning with conservation of charge, equation (3.1.4¢l asing equation (3.1.36)
to transform the integration from current to reference gamfition yields

J(JF‘l ed)eNdS = JJq dv. (3.1.37)

ov \Y

"Here and subsequently capital letters will be used to dasigield quantities in the reference config-
uration corresponding to the lowercase field in the currenfiguration.
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This implies the definitions
D=JF led Q=Jg (3.1.38)

whereD is the reference configuration electric displacement@imslthe reference con-
figuration volume charge density. The pointwise Gauss’ g the reference config-
uration and the interface condition follow from the arhiinass of the reference config-
uration control volume using standard arguments as in theeuconfiguration case in
equation (3.1.2), namely

VeD=0, Ne[D]=0. (3.1.39)

Note that whereasis the gradient operator in the current configurat®ins the gradient
operator in the reference configuration.
Next, the kinematic relations in equation (3.1.36) are i@opto Faraday’s law in

equation (3.1.3), which yields

§(8 eF)eSdL = —% J(JF_l e b) e NdS. (3.1.40)

0S S

This leads to the definitions
E=&eF, B=JFleb, (3.1.41)

whereE is the electromotive intensity in the reference configoratndB is the mag-
netic field in the reference configuration. The pointwiseaBay’s equation and asso-
ciated interface condition in the reference configuratigotv, similarly to the current
configuration case,

VxE=-B, Nx[E]=0. (3.1.42)

Note also that the reference configuration relations arplsito derive since the reference

configuration is independent of time.
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Attention is focused next to the non-existence of magndtarge, equation (3.1.9),
which with the help of equation (3.1.36) gives in the refeenonfiguration
J(JF1 eb)eNdS =0. (3.1.43)

oV
Using the previous definition fdB in equation (3.1.41) leads to the pointwise statement

and associated interface condition in the reference canatligun,
VeB=0 Ne[B]=0. (3.1.44)

The transformation of Ampere’s law in the reference confitjon comes from ap-
plying equation (3.1.36) to equation (3.1.11), yielding

%((H. F)eSdL = %J(JF‘lod)o N dS+J(JF‘1og’)o NdS.  (3.1.45)

oS S S
This leads to the definitions

H=HeF, J=JF1eJ, (3.1.46)

whereH is the magnetomotive intensity in the reference configaraéindJ is the con-
duction electric current density in the reference confitiang With these definitions,
the pointwise Ampere’s equation and interface conditiothi reference configuration

follow in a similar fashion as for the current configurati@ase, equation (3.1.12),
VxH=D+J, Nx[H]=0. (3.1.47)

Having established Maxwell’s equations in the referencafigaration attention is
turned next to the mechanical conservation laws. The stateaf conservation of mass,

equation (3.1.14), is transformed to the reference cordtgur using equation (3.1.36),

% f JodV =0, (3.1.48)

\%

8The reader must not confuse the vector conduction eleairient density in the reference configura-
tion J with the scalar density for volume change- det F).
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which leads to the definition

00 = Jp, (3.1.49)

wherepg is the mass density in the reference configuration. The wgetmass conserva-

tion equation in the reference configuration, counterpgtiaation (3.1.15), is therefore

S0 = 0. (3.1.50)

To find the relations between current and reference contigaratress and traction
fields, one needs the conservation of linear momentum andhyaetrahedron argu-
ment equation (3.1.17). Transforming equations (3.1.16) @.1.17) with the help of

equation (3.1.36) yields

d ds
EJJpngZJpr dV+JtE ds (3.1.51)
\% \% ov
and
T=NeIlL (3.1.52)
This implies the definitions
T=t9 =g (3.1.53)
= l— = [ ] i
ds’ 7

whereT is the surface traction in the reference configuration Hnd the electromag-
netic-mechanical first Piola-Kirchliffostress’. Cauchy’s formula (equation (3.1.17)) and
Nanson’s formula (equation (3.1.36)) lead to the secontigdagquation (3.1.52). With
these definitions, the pointwise equation of motion andesponding interface condi-

tion in the reference configuration which follow from eqoat (3.1.51), (3.1.52), and

9The reader must not confuse the vector surface tractioreinetterence configuratiohwith the scalar
temperaturd .
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(3.1.53), in a similar fashion that equation (3.1.18) fakal from equations (3.1.16) and
(3.1.17), are

poQZVOH-i-pof, Ne[II] =T. (3154)

The above derived reference configuration expressionsiéocirrent configuration field
guantities introduced in Section 3.1.1 are the indispdesagredients for the variational

approach that follows.

3.1.3 \Variational Approach (Reference Configuration)

One of the most féicient ways to obtain Maxwell's equations, in the current-con
figuration, through a variational approach (Hamilton'snpiple, see Lazzari and Nibbi
(2000)) is based on a potential formulation such that Fara@guation, equation (3.1.4),
and the statement of no magnetic charges, equation (3, hfEO}atisfied identically. A
vector potentiala, and scalar potentiah, are defined such that

b=vxa e=v¢—%‘. (3.1.55)

The potentials in this formulation are not uniquely deteraai. A gauge condition must
be applied for unique potentials, which will be discussdassguently.

This potential formulation reduces the number of non-auatibcally satisfied Maxwell’'s
equations to two. A purely electromagnetic Lagrangian igegists in terms of the gen-
eralized coordinates and¢ such that the Euler-Lagrange equations of the correspgndin
(Hamilton’s) variational principle are Gauss’ and Ampsrequations. This Lagrangian
density is

€

(= i(eo e

3t
240

wheree andb are in terms of and¢ through equation (3.1.55).

(beb)+ jea—aqg, (3.1.56)

In order to transform the current configuration electrongignLagrangian density

to its reference configuration counterpart, the vector aaths potentials must be trans-
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formed accordingly. Substituting equation (3.1.41) intuation (3.1.55) yields after

some manipulation (see Nelson (1979) for details)

B=VxA

E=-VO- A, (3.1.57)

where the reference configuration vector poter®iadnd reference configuration scalar

potential® are given in terms of their current configuration counteiphy

D=¢—Clea (3.1.58)

As in the current configuration, the reference configuragiotential formulation iden-
tically satisfies Faraday’s equation, equation (3.1.42¢l the statement of no magnetic
charges, equation (3.1.44). Notice that these referencigcomwation potentials are still
not unique, requiring a gauge condition.

With this formulation, the reference configuration Lagriamgor the full electromag-
netic-mechanical case can now be obtained by adding theanieeth energy component
to the electromagnetic part in equation (3.1.56). To a&htbis one first needs to define
the auxiliary termg* as

E*=E—-(F'el)xB (3.1.59)

(whereE* is not to be confused with a flux derivative term). Then, giteat the la-
grangian density transforms to the reference configurationJdsadding the necessary
mechanical energy terms, and substituting for the currenfiguration fields in terms

of the reference configuration fields with equations (3,1(3)1.38), (3.1.41), (3.1.46),
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(3.1.57), and (3.1.59) yields the reference configuratiagrangian
1. .
KEJ <J€+po (é(uou)—w(C)+ f ou)) dv + JToudS
R3 0Q

= @ “oC e E* —i oCoe
_J<2 (E"eCleE) — 575 (BeCoB) (3.1.60)

R3

+JoA—Q(D—i-po(}(l',loCI)—w(C)—i-fou>>dV—i—JToudS,

2
0Q

where the independent fields abg A, andu andC = F' e F is the right Cauchy-
Green tensor. Her® is the domain occupied by the body, a#d is the surface of this
body. Notice that the densify(X) # 0 for X € Q andpg(X) = 0 for X € R3 — Q.
Integration oveiR?® is necessary since electric and magnetic fields exist ngtiarthe
solid (X € Q) but also in its surrounding spack € R® — Q). Moreover, note thab and
u are assumed continuous through®&eitbut only the tangent component Af i.e. A;, is
assumed continuous across an interface.

Hamilton’s principle states that the action integgal defined as the integral of the

Lagrangian defined in equation (3.1.60) over the time irdty,t,], is stationary®
t2
07 =0, ¥ = fg dt, (3.1.61)
t

wheres® = 0,5A = 0, andéu = 0 att = t; andt = t,. The resulting Euler-Lagrange
eguations are the governing equations of the electrom@agmetichanical system. More

specifically:

0Here and subsequentydenotes the variation of a functional.
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Taking the variation of# with respect tab yields

ta

F o[00] :JU(V. (JE* ¢ C™1) — Q) 6@ dV

i RS

- JI[(N o (@JE* o C")) 50| dS} dt = 0, (3.1.62)

oQ

where integration by parts and Gauss’ divergence theorem i@en used. Using equa-
tions (3.1.5), (3.1.25), (3.1.38), (3.1.41), and (3.1tb@)reference configuration electro-
magnetic constitutive relation one observes that the gobtgrms appearing in parenthe-

sis and brackets in equation (3.1.62) is the reference amatign electric displacement
D=gJE*eC™t. (3.1.63)
Consequently equation (3.1.62) implies
VeD=0Q, Ne[D] =0, (3.1.64)

that is Gauss’ equation and interface condition in the ezfee configuration, equa-
tion (3.1.39), as expected.

Taking the variation of# with respect toA gives

2

Zalon] = [{ [ (g (@8 el -7 ((w2EmsC

t1 RS

X (F1-0)+$(B.C)> +J> e 5A DV

_ ”KN y ((EOJE* eCY) x (FLe0) (3.1.65)

0Q

+$(B.C))) .5A]] dS} ot =0,

where integration by parts, identities for triple produetsd Stoke’s theorem have been

used. Similarly to equation (3.1.63), using equations.{3} (3.1.25), (3.1.38), (3.1.41),
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and (3.1.46) one observes that the group of terms appearipgrenthesis and brackets

in equation (3.1.65) is the reference configuration H field

1 1.
H zm(BoC)—(F tell) x D. (3.1.66)

Consequently equation (3.1.65) yieltls
VxH=D+J, Nx[H]=0, (3.1.67)

which is Ampere’s equation and the related interface camdiequation (3.1.47), in the
reference configuration, again as expected.

Finally, the variation of# with respect tau will yield the equation of motion and
surface traction condition in terms of the electromagnetechanical momenturg and
stressr. Applying integration by parts and Gauss’ divergence taeogives the station-

ary condition

Fulou] =J{J(v.n— % (((eIE* e C!) x B) « F )

i RS

—potj+pof) o 5U dV (3.1.68)

—J(No[[H]]—T)ocSudS} dt = 0,
0Q

where the reference electromagnetic-mechanical firsafaichaof stresdl is given by

= W\ I((E*ec) (CreE") o FT— L (E*ecteEr) Ft
~po( 52 ) +eI( (B eCT)(CTeE) o FT—3(E e CT e EY)

L L (BB cFT_ 1 (BeCeB) F—l) +(Fel)(DxB)eF™ (3.1.69)
HoJ 2

Consequently from equations (3.1.68) and (3.1.69) ondrubta

Vell + pof = % (DxB)e F_l) + poll = poQ, N e [II] =T, (3.1.70)

1By the definitions oN andA; one hag((N x H) ¢ §A] = (N x [H]) e 5A:.
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which are the reference configuration equation of motioniatsiface condition of equa-
tion (3.1.54) as expected.

A final note is in order at this point. To complete the variatibformulation pre-
sentation one must show that equation (3.1.70) transfoorttseir current configuration

counterparts. Using the-II relation in equation (3.1.53) one has
Vell =J(veo). (3.1.71)

Considering in addition equations (3.1.5), (3.1.25), &6}, (3.1.38), (3.1.41), (3.1.50),
and (3.1.59), the reference configuration equation andfatte conditions of motion

transform to equation (3.1.34) and the interface conditicequation (3.1.18), their cur-
rent configuration counterparts derived with the directhrodt It is thus shown that the
variational method agrees with the direct method for MaXs/efjuations and the equa-

tion of motion.

3.2 Eddy Current Formulation

For the EMF processes of interest the problem formulatiog beasimplified con-
siderably by applying the eddy current approximation. &weihg the description of the
eddy current approximation for the general 3-D case, theaseproceeds with the ax-
isymmetric version of this approximation and ends by présgithe modeling of the coill

under a given current.

3.2.1 General Casein 3-D

The aspects typical of EMF processes that make this singtiibic appropriate: the
material velocities are much less than the speed of ligatetlective electric current fre-
guencies are on the order of 10 kHz, the geometry is on the ofdecm, and the material

electrical conductivities are large. Detailed discussibthis approximate formulation
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may be found in the literature, e.g. in Hiptmair and OstraW®805) and references cited
therein. From the above assumptions follows that the eddguapproximation essen-
tially consists of neglecting electric energy from the Eggians in equation (3.1.56).
Imposing the eddy current approximation implies displagetrcurrents are neglected,
which means volumetric charges are not accounted for angelt@nservation must be
imposed separately. The resulting approximate Lagranges not depend o and
Gauss’ equation is no longer a result of the variational gdoce.

With this approximation, the Lagrangian may be divided iaiteetic energy, 7", and

potential energy?, as

L= -2, (3.2.1)
where.#” and & are given by
0% EJ% (G o) dV
RS
QEJ( ! (BoCoB)—JoA+po(‘P(C)—fou)>dV (3.2.2)
PATON
R3
— JT eU dS.

oQ

The action integral# is formed by integratingZ over a time intervaltf,t;] and
Hamilton’s principle is applied as previously (see equaf®1.61)). Taking the variation

of .# with respect toA gives

raon = [{[ (7 (5 8+0) +3) sonen

i R

_aﬂ[(N . (;TlJ B .C))) .5A]] dS} ot = 0. (3.2.3)

The eddy current simplification implies that the terms ingpdineses in equation (3.2.3)

are the reference configuration H field. From equation (8)la@d sincee << 1 one



can define the approximate H field by
= — (B C) (3 2 )
H= 5 . 24

Thus the variation with respect & results in the reference configuration approximate

Ampere’s equation and interface condition, given by
VxH=J, Nx[H]=0, (3.2.5)

which agrees with equation (3.1.67) once the displacermafrmmf) is neglected.

Taking the variation of# with respect tai, one has

ta

Zu[ou] zf{f(VoH—poU+pof)05udV

i RS

_J(N.[[H]]—T)oéu ds} dt =0, (3.2.6)

0Q

where the approximate nominal stress fiHithas now been defined by

o\ 1 ro1 L

Equation (3.2.6) implies the pointwise equation of motiod &nterface condition in the

reference configuration,
Vell +pof = poU, Ne[II] =T. (328)

which results from equation (3.1.70) when electric disptaent terms are neglected.
To complete the formulation charge conservation must beogeg separately, since
it cannot follow from Hamilton’s principle with the eddy aent simplification. The

reference configuration charge conservation equationrgedace condition are

Vel=0 Ne[J]=0 (3.2.9)
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and must be imposed in addition to Hamilton’s principle fog €ddy current approxima-
tion.
To solve the governing equations (3.2.5), (3.2.8), and 93the constitutive law for
J is needed. Here an isotropic Ohm’s law with constant condticts assumed, given
by
j=c(e+lxb)=J=0JCtleE. (3.2.10)

3.2.2 Axisymmetric Processes

Implementing the aforementioned general theoretical fdation for axisymmetric
problems significantly simplifies the resulting formulatiby reducing the independent
variables on theR,Z) space to threefy, Ug, Uz),'? as it will be shown in the first sub-
section. However, special care must be taken with the axisstmic formulation in the

forming coil under a given current, and this is the objecthef $econd subsection.

3.2.2.1 Axisymmetric Formulation

The forming process of interest is assumed rotationallymsgtric (in the z-direction),
implying that no field depends on ti#ecoordinate. The corresponding symmetry group
is Co, i.e. when the solution is invariant to coordinate transfations corresponding to
solid body rotations around the z-axis. From the assumedrstry it is expected that
there is no hoop displacement, (= 0) and the only nonzero component of the current

density and electric field is the hoop component, j.es jsis ande = &i,y. Also from

?Here and subsequentlyd, andz are the current configuration cylindrical coordinates wétspective
unit vectorsi,, ig, andi,, andR, ®, andZ are the reference configuration cylindrical coordinateth wi
respective unit vectong, ie, iz. Subscripts of, 8, andz indicate fields in terms of current configuration
coordinates, and subscriptsRf®, andZ indicate fields in terms of reference configuration coortdina
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symmetry, there is no hoop component of the magnetic figld=(0). To summarize,

0
%:Oy urs UZ¢O, UHZO’ er, eZ:O’eH¢O’

b, b, #0, by =0; j, j=0, jo#0. (3.2.11)

The above results are consistent with Ohm’s law, equatichiB). Moreover from the
electric field - potential relation, equation (3.1.55), doned with equation (3.2.11), one
obtains that

a, azzo,a(,#o;%:%:%zo, (3.2.12)
i.e. the only independent fields ag u;, andu,. Using the relations between current and
reference configuration electric current and potentiaysiagons (3.1.46) and (3.1.58)

respectively, one has in the reference configuration
U= URig + Uziz, A = Agig, ® =0, J = Jpip, (3.2.13)

where® may be chosen as any arbitrary constant and is here set to zero
With this formulation in place, it is straightforward to siadhat the Coulomb gauge
condition, charge conservation, and two associated ader€onditions in the reference

configuration are identically satisfied, that is
VeA=0
Ne[A] =0
Vel=0 (3.2.14)
Ne[J] =0.
Note that whereas equations (3.23ldhd (3.2.14) must hold in 3-D processes as well,
equations (3.2.14and (3.2.14)are here a result of axisymmetry. In general, other gauge

conditions may be chosen, and nonzero jumps in the normakofdctor potential may

OocCcur.
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3.2.2.2 Forming Caoll

Though the forming process of interest is assumed to be geically axisymmetric,
the forming coil in reality must be a continuous spiral. lderto model such a coil in
the axisymmetric framework, the formulation must inclulde tiriving electric field. The
approach here is similar to that in Stiemer et al. (2006).hEz=m! turn is approximated
as a stationary torus, unconnected geometrically from therdurns. It is required that

the electric current density remain axisymmetric, whiclplies in each coil turn

J = Jo(R 2)ie. (3.2.15)

Using equations (3.1.57) and (3.2.10) and recalling thatctil does not deform (refer-

ence and current configuration are the same), one has

oD
oD
3=0= A =0 (3.2.16)

Thus® is not a function ofR or Z, and from equation (3.2.15%) is not a function of
0. Sincely = —0o ((%) 2+ A@> 2 must in view of equation (3.2.16) be a constant.

GivenAUy, the change in the electric potentilover coil turnk,
(3.2.17)

With this formulation, the electric potential drops in allet coils,AUy, can be ex-
pressed in terms of the coil currehtt) and the magnetic vector potentid} as fol-
lows: Recall from Ohm’s law, equation (3.2.10), that sinle toil does not deform,
J = | = oe = oE. Integrating over the cross section in R& plane of a coil turn gives

the total current in the coil,(t). Assuming the coil has a rectangular cross section in the
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R-Z plane aligned with th&-Z axes

I(t)szonde

Sk

z—aJ(Vd)JrA)oi@dS
Sk

AUy

- | <A® ' ﬁ) ds (3.2.18)
Sk

. h b
= —UJA@ ds — %In(i)AUk,
Sk

whereSy is the surface of the coil’s cross section, = ie iS the normal to the cross-
section,h is the height of the cross sectidmn, is the outside radius of the cross section,
and g is the inside radius of the cross section. This equation neagdived forAUy

in terms of I (t) andA@, and using equations (3.1.57), (3.2.10), and (3.2.17) toph

component electric current density in coil tukis given by

Jo = = (1n B @+JA'®ds — oA (3.2.19)
° " hR\ a o ' o
Sk

This expression for the electric current density in the isoslubstituted into the varia-
tional formulation, equation (3.2.1), to yield a boundaajue problem dependent only on
Ae. However, the integral in equation (3.2.19) is over therertross section of the coil

turn, which introduces non-local relations into the sulnss finite element formulation.

3.3 Numerical Implementation

The numerical implementation of the general theory emptbgsvariational inte-
gration approach. According to this method space and tirregpolation schemes are
concurrently applied to the Lagrangian, followed by theatswnal principle applied on
the discrete nodal variables for each time step (Marsden/éest, 2001; Sanyal et al.,

2005).
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In the axisymmetric cases discussed here, the independaables, functions oR
andZ, are: nonzero displacemenksandu; and nonzero magnetic vector potential com-
ponentAg. All the independent variables are continuous functionttiefspace variables,
as discussed in Section 3.2.2. Therefore, employing nodié felements one has the

discretization in space, given by

Ae(R Z;1) ~ M(R Z) o (1)

Ue(R Z;1) ~ N(R Z)  py(t). (33.1)

where A¢ is the vector potentiaA inside an elementy. is the displacement inside
an elementM is the spatial interpolation matrix of element basis funrasi for A, N is
the spatial interpolation matrix of element basis functitor u, g, are the nodal degrees
of freedom forA in the element, ang, are the nodal degrees of freedom tom the
element. Four node bilinear quadrilateral elements ard teseliscretize the reference
configuration, with the same mesh being employedA@andu. These linear elements
are appropriate since the Lagrangian, equation (3.2Mglas only up to first derivatives
of A andu.

Using the backward Euler approximation for time discrét@g one has

LR Z:E) ~ s () ()~ e G
Ae(R Zit) » M(R Z) ® Qq(ti), Ge(ti) ~ At
o
Ue(R Z; 1) =~ N(R Z) o py(ti), Pu(ti) = —p'e Atpe , (3.3.2)

whereq,, andp, are the degrees of freedom in an element at tiraadAt = t; — t,_;.

With the above space and time discretization and using #penoidal rule for time
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integration of#, a discrete actior#¢ is defined by

tm
ﬁzj Z(A,u,0,1) dt
to

At N At
~ — %+ At L+ —A 3.3.3
> o+ IZ; i + 5 M ( )
N At

M-1 At
LEHA DY L S =T
i=1

2 2

where the Lagrangian is from equation (3.2.1) and approwachdiscretely by using

equations (3.3.1) and (3.3.2),
L =Z(At),ut),at), t)
~ zd(qi’ d’ piil’ti)' (334)

The degrees of freedom at tihehroughout the domain of integration in space are given
by g andg. Upon application of Hamilton’s variational principle Witespect to these

discrete degrees of freedom, the discrete governing emsadire
F5[od] =0, 7 [6p] =0, (3.3.5)

wheresqg® = 6g™ = 0 andsp’® = spM = 0. These equations provide the time
stepping routine to solve for the degrees of freedom at eiach $tep, that is given
[d,d~L, g, p~] one calculategg™*?, p*]. The choice of the approximations to the
time derivatives and integral in equations (3.3.2) and.83,3espectively, allows for the
coupled problem to be solvedfeiently. One may calculatg*? independent ofy+?,
since there are né terms in.# and thus no coupling terms betweArand. Theng+?
is given in terms ofy, p, andp*?, thus justifying a staggered solution algorithm for the
fully coupled problem.

To complete the implementation the initial and boundarydtioons are needed. The
initial conditions are given by

=0 p=0. (3.3.6)



98

Note that the problem is driven by the time dependent inpedtet current (t), as dis-
cussed in Section 3.2.2.2.

The problem also requires application of the essential Baynconditions. In addi-
tion to axisymmetry, the processes discussed subsequaht®l have mirror symmetry

aroundZ = 0. This implies the essential boundary conditionsAcare

(R=0}= (Ao =0}

(R +Z% - 0} = {Ag — 0}. (3.3.7)

R = Qs the axis of rotational symmetry, implyidg, = 0, and the electromagnetic fields
decay to zero at infinity. For simplicity, the latter bounglaondition is implemented by
taking a large area of meshed air and applyfeg= O at the edges. In the following
calculations it has been confirmed that the size of the aihrisdarge enough as to accu-
rately model the infinity boundary condition. Feyone need impose only the boundary
condition

{Z=0} = {u; =0}, (3.3.8)

which is dictated by mirror symmetry.

Note that outside the workpiece the displacements are netrdmed by the varia-
tional procedure. The coil is stationary, and in the surdog air the equation of motion
is satisfied identically, as expected. However, it is nesmgsw assume a distribution of
displacement in the air in order to ensure the mapping betneference and current con-
figurations remains invertible. Moreover, this distrilmtiafects the numerical solution
and if not carefully chosen can cause the simulation to goa pesults. In the present
work, a simple distribution of displacements in the air iplemented that adjusts with
the displacements in the workpiece as necessary.

It is also important to note the influence of the forming cailtbe finite element ma-
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trices. Equation (3.2.19) implies that each degree of fveeth a coil turn cross section
is directly coupled to every other one, through the integkar the cross section. This
introduces non-local relations into the finite element rodttand the resulting sthess
matrices are no longer symmetric.

The numerical techniques detailed above are implemented tise finite element
program FEAP2. Moreover, the choice of the numerical integration techagwill be
discussed further in a subsequent publication. Details®fiblution algorithm will be

given there, along with an analysis of the technique andiplesslternatives.

3.4 Results

One can now turn to simulations of electromagnetic formingcpsses, and the nu-
merical simulation is employed to model two types of proessg-irst is that of ring ex-
pansion, compared with the semi-analytical solution o&ftafyllidis and Waldenmyer
(2004) that uses known integration forms and inductanaaditas. The ring expansion
test problem provides a check on the accuracy of the sinoulati

Second is the process of tube expansion, inspired by theimgs of Section 2.3.
Figure 2.13a shows a bare four turn coil from the experimertd Figure 2.13b shows
that same coill, potted in epoxy, with a tube fitted around tikbefore deformation. Fig-
ures 1.3 and 2.14 show examples of deformed tubes from spehiments. Accounting
for axisymmetry and mirror symmetry, along the= 0 plane, as discussed in Section 3.3,
an FEM mesh for tube expansion is shown in Figure 3.1, inolydi close-up view of
the coil and tube. The coil and tube are denoted in grey andithe the meshed area in

white.

3Finite Element Analysis Prograhttp://www.ce.berkeley.edu/~rlt/feap/
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Figure 3.1: Example FEM mesh for axisymmetric tube expansio

In the following simulations, a cylindrical four turn coikpands three tubes of vary-
ing height: one taller than the coil, one of approximatelgreneight with the coil, and
one shorter than the coil. The first two are based directhyhergeometry of the experi-
mental tubes (Section 2.3) while the third is chosen as &septative process with a tube
shorter than the forming coil. Finally, motivated by Zhanglke (2008) the expansion of
the tall tube with a non-conductive coating applied to thtsole is addressed, which to
the best of the author’s knowledge is the first simulatiorhed problem in the literature.

The basic dimensions of the axisymmetric ring and tube esipanproblems are
shown in Figure 3.2, where the origin O is at the interseabitthe axisymmetry axis, i.e.
the Z-axis, and the plane of mirror symmetry, i.e. the- O plane. The midlines of the
coil turns and workpiece are denoted with solid dots, anditiplane of the workpiece
is denoted with a dashed line. The relevant dimensions adgus of the coil midlines,
R.; radius of workpiece midlineR,; pitch of the coil,P.; height of the workpieceZ,;
coil turn cross section thicknes§,; and workpiece cross section thicknesg, where
foraringZ, = Ty/2.

In the subsequent simulations, unless otherwise notedytrall finite element mesh

is chosen to give a result corresponding to the convergedign) based on simulation
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Figure 3.2: Dimensions of ring and tube expansion problems.

runs with varying meshes and time steps. An example of tteivelmesh density is
shown in Figure 3.1, where the area in and near the workpeteail are meshed more
finely than the air farther away. The space between the cdihamkpiece is meshed very
finely to provide adequate mesh density as the workpiecenelspand the convergence
study established the adequacy of a relatively coarse niéstireelements in each square
coil turn, which is used throughout the following work anohgiifies the implementation
(see the discussion of non-local coupling between coil elgmin Section 3.3).
Furthermore, there are two regions of air mesh: one withlatgments (necessary
near the workpiece, see Section 3.3) and one stationaryréffien of air with non-zero
displacements is the air with radius greater than the ocaitsidius of the coil, up to a
distanceR‘r’neshin the R direction from the outside of the workpiece and up to a distan
zd _in theZ direction from the top of the coil or workpiece, whichevetafier. The air
mesh without displacements extends beyond this distarid&s.gandZesnin theRand
Z directions, respectively. In all cases, the extension efdain mesh is chosen relative
to the inner radius of the workpiece, i.&®" = R, — T,/2. In the first test problem

of the ring expansionR?d Z4 = 2R" and Rmesh = Zmesh = 10RY. The second

esh —
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ring expansion test problem modifies thisRf), ., = Z°.., = R} and shows no loss of
accuracy. Therefore, the subsequent tube expansion siomsaiseR? | = 7% = R

andRyesh = Zmesh = 10R™.

The time step\t is chosen for convergence, which is verified using the ringaesion
simulations, and is set tht = 1078 s. In general decreasing the time step below that
required for stability showed negligible change in the olu The choice of mesh and
time step will be explored in detail in a subsequent publcat

In addition, the input electric current is necessary. Sincgypical EMF processes
the electric current in the forming coil is very close to apementially decaying sinusoid

(see for example Figure 2.16a), the general form taken iptégent work is

[(t) = ImaxSIN (;-:()) exp(ln(k) (2it0> — @) , (3.4.1)

wherety is the characteristic time of the current pulkgy is the electric current dt= to,
andk is a decay parametek, = |(3tp)/Imax- This general form is fit to the individual

forming processes.

3.4.1 Material Constitutive Behavior

For this first implementation of the general theory, tempeeadtects are ignored, so
the thermal dependence of the constitutive behavior isegssary. The electromagnetic

and mechanical material response are discussed subsgquent

3.4.1.1 Electromagnetic Constitutive Response

Since the applications of interest involve metals undeh loigrrent density, magneti-
zation and polarization can be safely ignored, and equéBidn25) gives the constitutive
relations between the electric field and electric displaa@nand between the magnetic

field and H field. Only Ohm’s law is required to relate electiicrent with electric field,
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and Ohm’s law with constant conductivity is given in equatf8.2.10). See Table 3.1 for
the values of the electromagnetic constitutive parametdrieh are the same throughout
the following simulations. These values are chosen becaaseer is a typical actuator
material and in the experiments of Section 2.3 the tubes wade of AA6063-T6 alu-
minum alloy. The parametergs ande, are the permeability and permittivity of vacuum,
respectively, and these values along with those of thetngsysof aluminum,r,, and
copper,rcy, are available in standard references. Also, note thatdhérgs applied to

the tall tube are assumed to have zero conductivity.

o =1.26 10° N/JA? & =8.8510F/m rn =2.6510%Qm rc, =1.68 10°Qm

Table 3.1: Electromagnetic constitutive parameter values

3.4.1.2 Mechanical Constitutive Response

As a first implementation, the mechanical constitutive oese of each material can
be approximated by a hyperelastic strain energy functiamo mechanical constitutive
laws are employed. One is a formulation based,afeformation theory of plasticity (see
Abeyaratne and Triantafyllidis (1981) and referenceddditerein). For metals undergo-
ing moderate deformations with nearly proportional logdamd neglecting ratefiects,
J, deformation theory of plasticity can be used for initialptropic materials (Anand,
1979). Moreover, this formulation can be fit to any uniaxi@am hardening response.
Because of this, it is also a good constitutive law to modelfttst coating of interest,
polyurea, which is assumed isotropic with no raféeets. In general however, rate ef-
fects are more important in polyurea than the metals ofésteand future work should
consider the rate dependence of the polyurea constit@smonse. The second mechani-

cal constitutive law is a compressible Mooney-Rivlin folation (Hallquist, 2006) that is



104

implemented to model a potential alternative coating ondhéube. The Mooney-Rivlin
material is also used in the ring expansion simulations.

The hyperelastic strain energy density function is defined b
W(/ll, /12, /13) = pol//, (342)

where A, 1,, and A3 are the principal stretch ratios. In the case of a straindrang

material it is assumed the mechanical response is goverrst loading by

€e Te €e

& Ty €y

m
E) for 7e > 1, (3.4.3)
Ty

wheree. is the equivalent logarithmic straim, is the yield logarithmic straing. is the
equivalent Krichdf stress 7y is the Kirchdt yield stress, anthis the hardening exponent.
The Kirchdt stress tensor is related to the Cauchy stress tengdoy = Jor, and the
yield logarithmic straire, is related to the Krichb yield stressry by ¢, = 7,/E, whereE

is Young's modulus. The strain energy density function daseJ, deformation theory

of plasticity that models this strain hardening under logds given by

woge| X ()7 12 ()’ f—E  qre+e?+C (344)
Y v+ 1\g 6 \7 B(L_2y) tTRTE) T 2

wherev is Poisson’s ratio an@ is a constant, and, is related tas, by

2(1+v)
€ o\ 1—2v /1 1 fore < 3o
s \n) 3 \5)x 217 ) (3:45)
y y y m fore > ———¢,.
3
The consanC is constructed to assure the continuityWfat e, = 2(1; 2 . Also, the
equivalent logarithmic straie, is given by
2
€=3(6 16+ 6 — a6 — 6 —aa)', (3.4.6)

3

wheree = In(4).
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Figure 3.3: Comparison of uniaxial data and strain hardgconstitutive response for
AAB063-T6.

The strain hardening law in equation (3.4.5) is matchedeathasistatic uniaxial data
in Section 2.3 for the tube alloy used in the experiments, 88&T6. This gives Young's
modulus, the Kirchfi yield stress, and the hardening exponent, and a comparighe o
strain hardening curve and uniaxial data is given in FiguB ®oisson’s ratio is then
chosen to give a nearly incompressible material (an acewssumption for metals at
large plastic strains) while not producing numericdlidulties related to incompressibil-
ity, and the mass density, is obtained from standard references on Aluminum (it is not

alloy sensitive). The resulting parameter values are givdable 3.2.

E =69 10 Pa 7, =19510¢ Pa m=1/0.072 v =0.45 p =2700 kgm?®

Table 3.2: AA6063-T6 uniaxial mechanical constitutivegraeter values

In addition, uniaxial compression data for polyurea (seedprayed polyurea ma-

terial from Chakkarapani et al. (2006), and the behavioremsion is assumed to be
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similar to that in compression) is used to determine itgrstnardening behavior. The
resulting Young’s modulus, Kirchlbyield stress, and hardening exponent are given in
Table 3.3, along with Poisson'’s ratio (chosen as for AA6063and the mass density of

the polyurea coating, obtained from Zhang and Ravi-Cha(208).

E =0.2510Pa 7,=8.710 Pa m=1/0.12 v =0.45 p =1200 kgm®

Table 3.3: Polyurea uniaxial mechanical constitutive peater values

To investigate alternative coatings for the tall tube anc ample material model
for the ring expansion simulations, a compressible MooReyin material response is

implemented. The strain energy density function is given by
W(Ay, A2, A3) = A(l; — 3) + B(l, — 3) + C(I;2 —1) +D(I3 — 1)% (3.4.7)

wherely, |5, andl; are the strain invariants ardl B, C, andD are material constants

given by
E
A= 8(1+v)
B=A
C= %A+ B (3.4.8)
o _ ABv—2) +B(1ly - 5)

2(1—2v)
E andv for the Mooney-Rivlin coating are assumed to be the samerdbédcstrain hard-
ening polyurea and are given in Table 3.3. A comparison ofuthiexial data, strain
hardening curve, and Mooney-Rivlin curve is given in FiguBed4a and 3.4b, where Fig-
ure 3.4b is a close-up picture of the uniaxial data.
For the ring expansion simulations, the compressible Mgdriglin response param-

eters are taken as in Table 3.4. These values are carriedroaealuminum, with the



250

200

150

100

True Stress (MPa)

50

14

107

Strain Iliardeniné Fit
********** Mooney-Rivlin
+  Uniaxial Data

i G i

(a)

0.1 0.2 0.3 04 0.5 0.6 0.7

True Strain

12

10

True Stress (MPa)

Strain Hardening Fit |
Mooney-Rivlin -

Uniaxlial Data Lt

0.1 0.2 0.3 0.4 0.5 0.6 0.

True Strain

(b)

7

Figure 3.4: Mechanical constitutive response of coatingg. Comparison of uniax-
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sponses. b) Close-up view of uniaxial polyurea data andnshardening
response.
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exception thak is chosen to give strains similar to those that would resolnfstrain

hardening AA6063-T6 aluminum.

E—=172510Pa v =0.45 p —2700 kgm®

Table 3.4: Ring expansion mechanical constitutive paramatiues

With the material constitutive response detailed the nicabmplementation is com-

plete. One may now move to simulations of electromagnetimiing processes.

3.4.2 Comparison with 1-D Ring Expansion

A check on the accuracy of the simulation is obtained fromrawilts for a thin
ring being expanded by a four turn coil with small cross secturns. The FEM results
here are compared with results from the 1-D semi-analytézinique in Triantafyllidis
and Waldenmyer (2004), modified to accept an input coil curaed the compressible
Mooney-Rivlin material of Section 3.4.1.2. The Mooney-Rivnaterial is chosen for
the test ring expansion problems due to its simple formariedind implementation.

The geometry of the ring expansion process is chosen sutththilament assump-
tions inherent in Triantafyllidis and Waldenmyer (2004¢ accurate, and thus the ratio
of cross section size to separation distance is kept at delssr A test problem is set up
that is inspired by the results in Triantafyllidis and Waldgyer (2004) but uses a four
turn coil similar to that in the tube expansion experimeftSexction 2.3. The dimensions
of the problem are given in Table 3.5 under Test Problem 1. childurns and the ring
have square cross sections, and the ring is fitted on theyeoit®trically around = 0.

In addition, the input electric current parameters in eiquaB.4.1 are chosen such
that for the Mooney-Rivlin material discussed above thaisgrare on the order of those
in Section 2.3 and such that the electric current decays lhatike second pulse. These

values are given in Table 3.6. The magnitude of the resultlegtric current is about
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Test Problem 1 Test Problem 2

R. 0.02205 m 0.02205m
Ry 0.03195m 0.03195m
P. 0.0099 m 0.0099 m
Z, 0.00045m 0.000225 m
T, 0.0009 m 0.00045 m
Tw 0.0009 m 0.00045 m

Table 3.5: Geometry of ring expansion test problems

twice that calculated in Triantafyllidis and Waldenmye®(2) while the characteristic

time closely matches those ring results.

Test Problem 1 Test Problem 2

Imax 60 1G A 60 1C° A
to 126 10°s 12.6 10°s
k 0.5 0.5

Table 3.6: Ring expansion applied electric current pararset

Results of this simulation are plotted in Figure 3.5, whéeerondimensional radial
position of the ring midline is plotted against nondimemnsibtime. The 1-D solution
uses the 1-D analysis of Triantafyllidis and WaldenmyeiO@0 and the FEM solutions
are from the 2-D FEM simulation introduced in this work. Thoél ampact radius is the
radius of the ring midline at which the inner radius of thegrig equal to the outer radius
of the coll. Since there is no interest in modeling impaat,gimulation is terminated just
before this event.

In Figure 3.5 the FEM solution begins with 36 elements in thg and with increas-
ing mesh density shows convergence of the solution to atresthl a slightly greater
maximum deformation than that of the 1-D solution. Thougtythre close, the fier-
ence in the results is intriguing. Because Triantafyllahsl Waldenmyer (2004) calculate

mutual inductances on the assumption of interacting fildméme results can be expected
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Figure 3.5: Midline radial position of ring expanded by faum coil.

to differ for problems with significant cross section size relatoveeparation distance.
As discussed, the first test problem here has a small croserséz separation distance
ratio, but this ratio may still influence the result.

To test the influence of the cross section size, a second rasiem is set up with
smaller cross section coil turns and ring, where all the rothensions are the same
as in the first test problem. The geometry of this problem vemiin Table 3.5 under
Test Problem 2. The coil turns and the ring have square cext®Bs with one quarter
the area of those in the first test problem. The results ofdinmilation are shown in
Figure 3.6, where again the nondimensional ring midlinéalgebsition is plotted against
nondimensional time. The reference mesh has 16 elemethts g but is much denser
in the air than the reference mesh in the first test problere.démser mesh of the second
test problem has nine elements for every four in the referenesh. Compared to the
first test problem, the displacements are larger but the tdDREM results are closer

together, and there is only a small change between mesheatind the dense mesh is
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Figure 3.6: Midline radial position of ring expanded by faurn coil: Smaller cross
sections.

close to the converged solution.

The maximum discrepancy between the 1-D and the densest Rigdhresults for
the first ring expansion case is 4.9% of the maximum defoonatnd it occurs near
the point of maximum deformation. The second ring expans&se has a maximum
discrepancy between the 1-D and the densest mesh FEM re&8I&9% of the maximum
deformation, but this occurs neidt, = 16. The maximum discrepancy for the portion of
the results with positive displacement is 3.1%. This shdwsfor the geometry here the
cross section size has a smdleet on the dierence between the two simulations.

The electric current for the second test case for the 1-D andebkt mesh FEM re-
sults is plotted in Figure 3.7. This provides another chetkhe accuracy of the solution.
The input colil electric current is the same in each solutand the induced ring elec-
tric currents are plotted as dashed curves. The results sagngood agreement, with

the discrepancy less than 2% of the maximum induced curraking the dashed lines
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Figure 3.7: Electric currents in four turn coil and expamgdimg: Smaller cross sections.

indistinguishable in the figure.

Figures 3.5, 3.6, and 3.7 show close agreement between tkeféinulation dis-
cussed here and the 1-D formulation of Triantafyllidis andl®dnmyer (2004). This
indicates the FEM simulation correctly solves the coupliedteomagnetic-mechanical
problem of ring expansion, and thus the following sectiams$uo tube expansion pro-

cesses.

3.4.3 Tube Expansion

For the tube expansion simulations, the geometry is matakedosely as possible
to that of the experiments in Section 2.3. The geometry offthee cases is given in
Table 3.7, where only the tube height varies between simonlgat A minor change from
the experiments is the substitution of square cross sectibturns for the circular cross
section turns, thus avoiding meshingtdiulty for the coil. Each coil turn has a square

cross section with the same area as the circular ones in gegiments, and the tubes are
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placed on the coil symmetrically aroudd= 0. Also, the height of the short tube is taken
as two thirds that of the even tube (as previously noted, éinghth of the short tube is not
directly based on an experiment), and the coated tube idiimptall tube with coating

applied to the outside surface.

Tall Tube Even Tube Short Tube Coated Tall Tube
R. 0.023825m 0.023825m 0.023825m  0.023825m
Ry 0.029375m 0.029375m 0.029375m  0.029375m
Pc
Z

0.0094 m 0.0094 m 0.0094 m 0.0094 m
w 0.085m 0.0317m 0.02113 m 0.085m
T, 0.0056275m 0.0056275m 0.0056275m 0.0056275m
Tw 0.00175m 0.00175m 0.00175m 0.00175m

Table 3.7: Geometry of tube expansion processes

In the first two tube expansion simulations, that of a tubkeitahan the coil and a
tube even with the coil, the driving input electric curremthe coil is measured from the
corresponding experiments in Section 2.3. The short tubegss uses the same input
electric current as the even tube, and the same input eenirrent is applied to the
coated tubes as to the uncoated tall tube. The analytiaal ébiinput electric current in
equation (3.4.1) is matched to the measured electric dyaad the resulting parameter

values are given in Table 3.8.

Tall Tube Even Tube Short Tube Coated Tall Tube
Imax 137 1GA 1301GA 1301GA 1371GA
to 1710°%s 26.610°s 26.610°s 1710°s
k 0.3 0.3 0.3 0.3

Table 3.8: Tube expansion applied electric current pararset

3.4.3.1 Expanded Tubes without Coating

The first tube expansion process is that of a tube taller theforming coil. Expand-

ing the tube until just before significant unloading occugsults in the deformed tube
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Figure 3.8: Deformed configuration at maximum midline disgiment of tall tube de-
formed by four turn coilt/t, = 3.9

in Figure 3.8, where light grey denotes the undeformed tuloeldack denotes the coil
and deformed tube. Comparing the final deformed shape oirtihdated tube with that
in the corresponding experiment of Section 2.3 (allowingfecking and failure) shows
that the deformed configuration is captured reasonably. well

There are two major élierences between the experiments of Section 2.3 and the sim-
ulations here. Firstis the presence of necking and failutee experimentally expanded
tubes. The major strain in every case is in the hoop@,alirection. Thus for necking
andor failure to occur axisymmetry must be broken, which is mabrporated into the
model here. However, the goal of the experiments was to aetbe tubes up to the
onset of necking or failure and no further. Therefore, thewheations in the simulations
and in the experiments are expected to be reasonably simdhe tall tube expansion
demonstrates.

The second major fference is the hyperelastic formulation that causes theriakte
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to return to its reference configuration during unloadingjoh is not the case with the
plastic deformation in the experiments. To mitigate thi§edence one looks at the de-
formed tubes before unloading. For the first two tubes sitedlé.e. those taller than and
even with the coil height) the final deformed configuratiofobe significant unloading
corresponds with the first maximum of the displacement ottibe midline. However,
the third tube (i.e. the one shorter than the coil) shows dtershape changes in the tube
before this maximum, which will be addressed subsequently.

A closer look at the deformation of the tall tube with respgectime is given in Fig-
ure 3.9 where the nondimensional radius of the tube midBngotted with respect to
nondimensional time. The first pulse of the electric curtises a pulse in the displac-
ment up tot/t, = 3.9, at which point the nondimensional radius peaks, and shighien
the deformed tube shape in Figure 3.8 is plotted. Moreoferjriput coil and induced
tube electric currents are shown, plotted with the nondsiweral radius to show the rel-
ative timing. These results agree with the discussion iti@e2.3 of the timing of strain
and electric current history. However, since a hyperelastterial is implemented the
tube attempts to contract after loading, and the plateauidiime radius fromt/t, = 4
tot/ty = 7 is a result of the contraction of other parts of the tube. 3iheulation is
terminated before coil impact.

An examination of the electric current density in the defoigrtube is given in Fig-
ures 3.10, 3.11, and 3.12. These figures are the electriertwtensity at three relevant
times showing the initial current and subsequent curremrsal. Note that the scales on
the x-axis and y-axis have been adjusted to show the electnient density more clearly,
which has the fect of distorting the tube shape and deformation.

In Figure 3.10 the electric current densitytay = 0.5 is plotted, which is approx-

imately halfway through the initial coil electric currentilpe. As expected, the electric
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Figure 3.9: Midline radial position and electric currentsadl tube deformed by four turn
coil.

current is concentrated on the inside surface of the tuba; the coil. Note that the

electric current density here is negative because thaliibil electric current is positive.

Figure 3.11 shows the electric current density/&f = 1.25, just after the peak of
the first pulse of coil electric current. The peak electricrent density has moved from
the inside surface to the middle of the tube and has dissipatenaximum intensity,
indicated by the scale.

In Figure 3.12 the tall tube electric current density is shait/t, = 2, when the coll
electric current is equal to zero. The electric current dgms the tube has already re-
versed from what it was initially, with Figure 3.12 almostiawerse image of Figure 3.10
(allowing for deformation). Note, however, that the maximaurrent density is signif-
icantly less as the coil electric current decays and theragpa between coil and tube

increases.
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Figure 3.12: Electric current density (#?) distribution in the cross section of tall tube:
t/tg = 2

The second tube expansion process is that of a tube appr@iyntiae same height
as the forming coil. Expansion until significant unloadingrts to occur results in the
deformed configuration shown in Figure 3.13, where lighygtenotes the undeformed
configuration and black the deformed shape. Again, in Figuré the tube midline radial
position versus time is plotted along with the electric eatrversus time for the coil and
tube. The time at which the deformed configuration of Figud83ccurs is denoted,
which corresponds with the maximum midline displacemehts Simulation also shows
good qualitative agreement with the corresponding expartaily expanded tube.

The third tube expansion process is that of a tube shortertti@forming coil ex-
panded using the same electric current input as for the tideen height with the coil. In
this process unloading significantly changes the charattée deformed configuration,
so there is not a close relationship between max deformatidrthe configuration before

significant unloading occurs, the latter of which corregfsto the experimental results.
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Figure 3.15: Deformed configurations of short tube deforimetbur turn coil.

Therefore Figure 3.15 shows two deformed configuration firkt, att/to = 2, occurs
before significant unloading and qualitatively matcheslite experimentally obtained
toroidal shape in the case where the tube is shorter thanoiheThe configuration at
t/to = 5.3 corresponds with the maximum midline displacement andahsignificantly
different shape than that gty = 2. The corresponding points on the midline radial
position versus time curve are denoted in Figure 3.16, witereadial position and elec-
tric current are given together. The exact geometry of theukition does not match
that in the experiments, but the relationship between tuldecail is similar and thus the
character of the results agrees.

The three tube expansion processes discussed above asdifatiye agreement with
experimental results. This indicates the simulation atyanodels the electromagnetic-
mechanical interactions, and the next section discussesolition of the problem of an

electromagnetically expanded tube with a nonconductiragicg applied to the outside.
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Figure 3.16: Midline radial position and electric curreatshort tube deformed by four
turn coil.

3.4.3.2 Expanded Tubes with Coating

Recent work by Zhang et al. (2008) examines tfiea of a polymer coating applied
to the outside surface of an electromagnetically expanohedar tube. Therefore, the
present work now turns to the electromagnetic expansioheotall tube with a coating
applied to the outside, a novel EMF simulation problem tisagasily handled by the
general theory presented here. An example FEM mesh of sucbbdem is given in
Figure 3.17. As before the coil and tube are shown in grey hedatr in white, and
the coating, which is twice the thickness of the tube, is showlight grey. Coatings
of varying thickness are simulated, and the coating is neatlat either strain hardening

polyurea or a material that follows the Mooney-Rivlin typsponse discussed previously.

As an example of thefgect, in Figure 3.18 the midplane of the tube (excluding coat-

ing) is plotted for the case of no coating and of a polyuredingdwice the thickness of
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Figure 3.17: Example FEM mesh for axisymmetric expansicmiloé with coating.

the tube itself. The deformed shape is plotted at the maximigpiacement of the mid-
line before unloading, which corresponds to approximatély = 3.9 for both the un-
coated and coated cases. The maximum displacemgntdl is significantly decreased,
but surprisingly the overall shape of the deformed tube tsmpacted significantly.

A plot of the maximum displacement of the tube midline (noneinsionalized with
respect to the maximum deformation without coating) agaimescoating thickness (nondi-
mensionalized by the tube wall thickness) for each coatiatenal quantifies thefect
of the coating. This result is given in Figure 3.19. As expdgtincreasing the coat-
ing thickness decreases the deformation. Also, the Mo&tielya material has a more
pronounced #ect on the deformation, due to its strongeftetiing with increasing dis-

placement.

3.5 Discussion of Results

The previous sections of Chapter Il present a consisteniitation of electromag-
netic-thermal-mechanical processes. The result is atiara formulation incorporating
the eddy current approximation that is appropriate for nindeEMF processes. This

consistent variational formulation combined with vagatl integration justifies a stag-
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gered solution algorithm thatieciently solves the fully coupled system. This algorithm
is implemented for axisymmetric problems, and a range dblpras is solved, including
ring expansion processes, which are compared with knownisot, and tube expansion
processes, which are inspired by the experiments of Se2t®rinally, the novel prob-
lem of a tube with a non-conducting outer coating is addgsggantifying the coating’s
effect.

The general theory presented in Section 3.1 is applicaldey@lectromagnetic-ther-
mal-mechanical process, and the 3-D theory of Section 3dpdicable to any such
process that admits the eddy current approximation. Sex8a®.2, 3.3, and 3.4 special-
ize this theory to the processes of interest in this work.spmimetry is introduced and
allows a wide array of practical EMF processes to be simdlateile also simplifying
the implementation. However, a 3-D implementation will bgportant to analyze gen-
eral EMF processes of industrial interest and should beupdtsAlso an input electric
current, assumed to be known a priori, is employed. Thoughishan accurate way to
simulate experiments, modeling the forming circuit woudduseful for predictive simu-
lations. Implementing a capacitor circuit coupled to thé/Fgolution is straightforward,
and the author has produced results with a capacitor ci@uiimited cases. Full imple-
mentation of this capability is underway.

In addition, the work here is specialized to hyperelastitemals. The actual plas-
tic response of the workpiece and coatings may be more detyiraodeled by elasto-
plastic, elasto-visco-plastic, or thermo-visco-plast@terial constitutive responses. The
third choice would entail the modeling of heat generationval. Implementing these
constitutive models would be complicated by the lack of tituisve data on materials
under the forming conditions of EMF, as discussed in Chaptéinough fully coupled

modeling such as presented here can help illuminate thesess Moreover, with more
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accurate constitutive modeling one can make quantitatugparisons with experiments,
and the author is currently working with experimental reskears to do so.

The work here also presents many opportunities. One mayeimgt the strain lo-
calization discussion of Chapter Il giodrelevant inertial fects into the coupled electro-
magnetic-thermal-mechanical formulation of Chapterdliproduce more accurate pre-
dictions of ductility in EMF expansion processes. In additiother forms of failure can
be explored, in particular those under electromagneticpression of tubes, which in-
volve stability analyses. The consistent variational folation is well suited for stability
and energy calculations.

Moreover, the formulations discussed here have applicatianany other areas be-
sides EMF. One such area is microelectromechanical devegich related formula-
tions have been applied (Li and Aluru, 2002). Another aremtafrest is electroactive
materials with magnetization afuat polarization. Implementing magnetization in a nu-
merical implementation similar to that here to solve praitdenvolving magnetic field-
responsive polymers and elastomers (Filipcsei et al., 20@@kanala and Triantafyllidis,

2004, 2008) is a particularly interesting direction of ifrgu



CHAPTER IV

Conclusion

The electromagnetic-thermal-mechanical process of EMRlna distinct advantage
over conventional forming techniques of an increase inilitydior some metal alloys of
industrial interest. The FLD is a useful design tool in thediction of ductility limits for
conventional forming techniques. Thus, in the present witik classical free-expansion
FLD concept for flat sheets is extended to include electraratgforming operations. In
particular, a flat sheet of strain hardening, strain-ratesisige, and temperature sensitive
material, which is subjected to in-plane electric curreartd a high strain rate biaxial
loading, is modeled using a Marciniak-Kuczynski type weakdbanalysis. The imposed
forming conditions are chosen to correspond with those tofedh@xisymmetric EMF pro-
cesses. Though the solution of a fully coupled EMF boundatyevproblem is required
to exactly model the behavior of the metal workpiece undeFEdnditions, the present
FLD analysis provides significant insight into the formapibf the aluminum sheet for
EMF processes by focusing on conditions for the onset of ailoed necking. The influ-
ence of strain hardening, strain-rate sensitivity, terapge sensitivity, yield stress, yield
surface, and process characteristics on the forming lisiitund and discussed.

This work follows with the quantitative comparison betwelbeaoretical calculations

for the onset of necking in sheets and experimental resblizimed from the free ex-
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pansion of electromagnetically loaded aluminum alloy tube which strain-measuring
grids have been etched. The electromagnetic generalzatithe FLD concept is used
to study the ductility of aluminum sheets, as measured Ip@althe necked regions of
the failed tubes. Given the approximations inherent in thB Eoncept (essentially the
assumed strain and current paths that céliedsubstantially from the actual ones at the
necked zone) there is agreement between theory and exprshewing that the ductil-
ity increases in free forming due to the use of an EMF proc€&ks. present comparison
between theory and experiments shows that the EMF-basedcBh&ept is a useful tool
to predict ductility limits of metal sheet in free expansexperiments.

Also addressed is the solution of fully coupled EMF boundaalue problems for
predictive modeling of EMF processes. This involves theisoh of a coupled electro-
magnetic-mechanical (and thermal, as necessary) prodleengoverning equations are
Maxwell’s equations in deformable solids and the mechamigaation of motion, both
under the eddy current approximation. This implies the rfeed consistent, fully cou-
pled variational formulation and arffeient numerical algorithm. Past work in modeling
EMF processes has not been based on such a variational faaknear provided such a
solution algorithm.

The present work provides a consistent variational fortmutethat is shown to agree
with the known governing equations of coupled electroméigmaechanical systems.
The variational technique includes the eddy current appration, so it is appropriate
for modeling EMF processes. Moreover, variational integraapplied to this formula-
tion justifies a consistent andhieient staggered solution algorithm. The resulting numer-
ical implementation is validated against the known solutbba small cross section ring
expanded by a coil composed of small cross section turnssesuiently, the simulation

of the free electromagnetic expansion of tubes is shownddyme results in agreement
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with experimental evidence. Following this, the novel geob of an electromagnetically
expanded tube with a non-conducting outer coating is adddesand theféect of the
coating is quantified. The validation of the simulation anbdsequent results show that
the present formulation and implementation provide a fatypled solution to electro-

magnetic-mechanical problems, particularly in the conteEMF.
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