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Abstract 

 

This dissertation is a summary of the research on integrated closed-loop deep 

brain stimulation for treatment of Parkinson’s disease. Parkinson's disease is a 

progressive disorder of the central nervous system affecting more than three million 

people in the United States. Deep Brain Stimulation (DBS) is one of the most effective 

treatments of Parkinson’s symptoms. DBS excites the Subthalamic Nucleus (STN) with a 

high frequency electrical signal. The proposed device is a single-chip closed-loop DBS 

(CDBS) system. Closed-loop feedback of sensed neural activity promises better control 

and optimization of stimulation parameters than with open-loop devices. 

Thanks to a novel architecture, the prototype system incorporates more 

functionality yet consumes less power and area compared to other systems. Eight front-

end low-noise neural amplifiers (LNAs) are multiplexed to a single high-dynamic-range 

logarithmic, pipeline analog-to-digital converter (ADC). To save area and power 

consumption, a high dynamic-range log ADC is used, making analog automatic gain 

control unnecessary. The redundant 1.5b architecture relaxes the requirements for the 

comparator accuracy and comparator reference voltage accuracy. Instead of an analog 

filter, an on-chip digital filter separates the low frequency neural field potential signal 

from the neural spike energy. An on-chip controller generates stimulation patterns to 

control the 64 on-chip current-steering DACs. The 64 DACs are formed as a cascade of a 
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single shared 2-bit coarse current DAC and 64 individual bi-directional 4-bit fine DACs. 

The coarse/fine configuration saves die area since the MSB devices tend to be large. 

A prototype device is fabricated in 0.18 μm CMOS with a MiM capacitor option 

and occupies 2.67 mm2. The total power consumption of the entire system, including 

neural amplifiers, log ADC, current DAC, controller and digital filters, , reference 

generation, clock generation and biasing, is 112 μW in normal operation mode and 351 

μW in configuration mode, which is significantly less than that of state-of–the-art 

stimulator circuits.  

Real-time neural activity was recorded with the prototype device connected to 

microprobes that were chronically implanted in two Long Evans rats. The recorded in-

vivo signal clearly shows neural spikes of 10.2 dB signal-to-noise ratio (SNR) as well as a 

periodic artifact from neural stimulation. The recorded neural information has been 

analyzed with single unit sorting and principal component analysis (PCA). The PCA 

scattering plots from multi-layers of cortex represent diverse information from either 

single or multiple neural sources. This exploits the benefits of a three-dimensional multi-

layer neural probe such as the Michigan probe. The single-unit neural sorting analysis 

along with PCA verifies the feasibility of the implantable CDBS device for to in-vivo 

neural recording interface applications. To program an optimal closed-loop algorithm, 

further intensive studies will be necessary to examine the neural pattern changes related 

to the CDBS treatment. In addition, the CDBS device and implantable brain-machine 

interface (BMI) unit, has potential for the treatment of other neurological disorders such 

as stroke, epilepsy and seizure. 
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CHAPTER I 

 Introduction 

Parkinson's disease is a progressive disorder of the central nervous system 

affecting more than three million people in the United States [1]. Although the cause of 

Parkinson’s disease is still not fully understood, there have been reports of symptoms 

related to Parkinson’s disease including: tremor at rest, rigidity, bradykinetic movement 

and postural instability [2]. Deep brain stimulation (DBS) is one of the most effective 

neurosurgical procedures to alleviate these symptoms. In this chapter, we discuss the 

biological background and the DBS method. An explanation of the proposed system 

follows.  

1.1. Biological background 

The basal ganglia consists of several groups of neuclei that function to process 

neural information sent from the cerebral motor cortex. The cerebral motor cortex can 

essentially be thought of as the conscious part of the brain, that is, the part of the brain 

that makes executive movement decisions. When a decision is made to move a muscle, 

the sensory-motor part of the cortex sends signals to the deep area of the brain. These 

signals are received by several regions including the thalamus, basal ganglia and 

cerebellum [3]. The thalamus is the region where the signals are then relayed down the 

spinal cord to the muscles, and further processing is done in the basal ganglia [4]. This 
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processing is subsequently relayed to the thalamus again. A simplified schematic of the 

neural connections involved with executing a command to move a muscle is shown in 

Figure 1.1. 

Cortex

Basal
ganglia

Thalamus

Spinal
cord

 

Figure 1.1: A simplified schematic of the neural connections [3]. 

 

The processing in the basal ganglia has many functions, among which is judging 

whether or not a movement is appropriate. In order to accomplish this goal, the basal 

ganglia have two internal loops, a direct loop that leads to excitatory action on the 

thalamus, and an indirect loop that leads to inhibitory action on the thalamus [4].  These 

two loops work side-by-side in order for the brain to properly control desired movements. 

The basal ganglia network is shown in Figure 1.2 where STN represents the Subthalamic 
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Nucleus, GPi represents the internal part of Globus pallidus, GPe represents the external 

part of Globus pallidus. Excitatory connections are shown in green and inhibitory 

connections in red [5-11]. 

Thalamus STN

Cortex

GPi GPe

Striatum

direct

indirect

 

Figure 1.2: The basal ganglia loops [4]. 

 

The network shown in Figure 1.2 results in the two loops described above [4]. 

The excitatory loop is also called the direct loop because it passes directly from the 

striatum to the GPi and then to the thalamus, this loop contains two inhibitory 

connections, so the result is excitation of the thalamus. The inhibitory loop, because it has 

two extra connections, is also called the indirect loop. In this loop, signals pass from the 

striatum to the GPe, then to the STN and then to the GPi before ending at the thalamus. 

Because of the three inhibitory connections contained in this loop, the result is inhibition 

of the thalamus [5]. 
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Because each of these loops is needed for proper function, pathologies occur 

when either one of them overpowers the other. If the direct pathway overpowers the 

indirect, there is an excess of excitation, resulting in a hyperkinetic state, such as 

Huntington’s disease [6]. On the other hand, if the indirect pathway overpowers the 

direct, there is excessive inhibition of the thalamus, leading to a hypokinetic state, such as 

Parkinson’s disease [6-8]. The symptoms of Parkinson’s disease are revealed as inability 

to execute the desired movements introduced above. Parkinson’s disease is correlated to a 

decrease in the functioning of another basal ganglia nucleus, the Substantia Nigra 

(SN)[9]. When SN function is limited, the result is an increased signal being passed 

between the striatum and the GPe and a decreased signal being passed between the 

striatum and the GPi. This leads to the excessive inhibition of the thalamus described 

above [10-11]. 

There are several treatments currently used to alleviate Parkinson’s symptoms 

including medications and neurological surgeries. One is the administration of levodopa, 

a drug that is the precursor to the dopamine which is the neurotransmitter secreted by the 

SN [12]. This treatment has the side effect of exposing the body to high amounts of 

dopamine that can lead to other neurological problems such as nausea [12]. Another 

treatment is the ablation of the GPe to stop the indirect loop by removing one of its 

components. Clearly, the ablation of a group of brain cells is a very invasive procedure 

and can lead to many problems if any additional cells are destroyed. A treatment that is 

currently not used, but has promise in the future is transplantation, implanting new cells, 

or to use stem cells to create a new SN for the patient [2]. This method would function to 

restore normal dopamine levels in the area of the basal ganglia, but not throughout the 
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entire body as in the levodopa treatment [10-11]. While this method could work well in 

the future, it is several years off at best. 

The other treatment for Parkinson’s disease is DBS which delivers high-frequency 

electric stimulation to excite several parts of the basal ganglia including STN. DBS is a 

very effective neurosurgical procedure for the patients whose condition cannot be 

controlled with medications [12]. A thin, insulated wire or micro-machined electrode is 

surgically implanted into the deep brain target such as STN or GPi as shown in Figure 

1.3. While the mechanism of the DBS works is still unknown, it seems that the high 

frequency nature of the signal acts to diminish the effectiveness of the inhibition on the 

thalamus. 

STN

SN

Thalamus

GPi

GPe

 

Figure 1.3: Placement of the DBS probe into STN [14]. 
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1.2. Deep brain stimulation (DBS) system 

DBS has become a widely applied treatment of advanced Parkinson’s disease 

since 1997 when the United States Food and Drug Administration (FDA) approved 

unilateral DBS systems to treat Parkinson's disease [15-16]. A medical technology 

company named Medtronic [17], that is seen these days, supplies bilateral DBS devices. 

Bilateral DBS devices, which were approved by FDA in 2002, consists of two 

neurostimulators. One for each side of brain [15-16]. Similar to a cardiac pacemaker, the 

DBS uses a neurostimulator to generate and deliver high-frequency electric pulses into 

STN or GPi through extension wires and electrodes. The Soletra neurostimulator, 

introduced as the most advanced battery-operated device from Medtronic, has the 

dimension of 55 mm × 60 mm × 10 mm  and the weight of 42 g as shown in Figure 1.4 

[18].  

 

Figure 1.4: Soletra neurostimulator and DBS lead [18]. 



7 
 

The neurostimulator is fairly large size and is subcutaneously implanted under the 

clavicle as shown in Figure 1.5 [19]. An insulated extension wire runs up under the skin 

of the shoulder, neck, and head to deliver the stimulation pulses. The stimulation pulses 

are generated from the neurostimulator to the electrodes implanted into the deep brain 

area through a burrhole in the skull. Unfortunately, several hardware complications have 

been reported that affects more than 26% of the patients [20]; this includes infections 

during the surgery, extension erosion, lead wire fracture and malfunction of the 

neurostimulator. These surgical complications incidents may be reduced by a smaller size 

and stand-alone device which doesn't require any extension wire. 

 

  

Figure 1.5: Placement of the Medtronic DBS™ system [19]. 
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The Medtronic neurostimulator is programmed post-surgery by trained 

technicians to find the most effective signal parameters for alleviating Parkinson’s 

symptoms. However, it can take up to one full year to find the best parameters for 

patients [21].  The effective signal parameters are amplitude, frequency, and pulse-width. 

This effective signal matching process is still not well understood. The only current 

feedback mechanism is the visual sign of tremor attenuation. Every patient has a unique 

set of signal amplitudes, frequencies, and pulse widths that are effective to treat their 

disease. Thus patients who are being implanted with DBS have to visit their doctors 

frequently to get fine tuned adjustments of their stimulation parameters. If any internal 

information from the brain in Parkinson’s state is sensed, then the proper parameters can 

be found automatically by a dedicated microprocessor without the intricate travel to a 

medical center. 

The strongest candidate for the internal feedback signal is an abnormal pattern 

change in neural spikes or field potentials from normal status when Parkinson’s disease 

symptoms occur.  Normally, it is shown that spike signals have bandwidths with 100 Hz 

to 10 kHz and amplitude levels up to ±500 μV, and local field potentials (LFPs) have 

bandwidths with 1 Hz to 50 Hz with amplitude levels up to ±10 mV.  An excessive power 

of a 15 – 30 Hz low frequency field potential from the extracellular recording of rat's 

cortex has been delivered [22]. To measure the extracellular neural activities, multi-

channel microprobes are used. It has an ability to record a neural population activity in 

the form spike trains as well as slower LFPs.  Also, the microelectrodes must deliver the 

localized electric stimulation for an extended period up to 5 years without damaging 

brain tissue [23]. For the clinical usage in humans, the electrode should be at least 10 cm 
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in length and small cross-sectional area. This helps to minimize tissue damage and fits to 

standard stereotaxic tools with stable and biocompatible characteristics [24]. Also, the 

electrode should be stiff enough to resist insertion forces during surgery and be able to 

position the probe channels precisely closed to the small STN [25]. 

The collected neural signals from the microelectrodes should be conditioned using 

front-end circuits such as pre-amplifiers and analog-to-digital converters (ADCs). Due to 

the low-level amplitude of the neural spikes, integrated pre-amplifiers have been used to 

amplify the small signals before the data conversion [26]. The front-end design should be 

low-noise to guarantee the signal integrity, and low-power. During the last decade, 

several types of the front-end neural recording circuits have been proposed [27]. In the 

earliest work, Ji et al. [28] at the University of Michigan presented an active integration 

of the multi-channel microprobes with complementary metal-oxide semiconductor 

(CMOS) circuits. However, the pass-band gain is unstable and the dynamic range is 

limited by a large direct current (DC) offset [29] which depends on the electrode-tissue 

interface. To stabilize this random DC potential, Mohseni et al. employed a shunt resistor 

connected to the electrode input [27]. This parallel resistor provides a short path for DC 

signal while the alternating current (AC) gain change rarely. It can be used only for an 

acute neural recording since the impedance of the microprobes varies along the time for a 

long-term experiment. A single-chip integration of pre-amplifiers, an ADC and telemetry 

has been proposed by Song et al. at the Arizona State University [30]. Recently, more 

advanced wireless integration with 100 neural recording channels has been developed by 

Harrison et al. at the University of Utah [31].  
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However, most of the work focused only on the neural spike recording, and there 

is no truly stand-alone, small-scale system for recording both spikes and LFPs 

simultaneously, because of the challenges imposed by their signal characteristics. To 

cover the entire range of both small-signal neural spikes and large-signal LFPs, a high 

dynamic range ADC is needed to digitize all the desired neural information. 

Unfortunately, many researchers are still trying to discover the DBS locations in 

the deep brain area where DBS are most effective in alleviating Parkinson's symptoms 

[32]. Also, accurate positioning of the DBS electrode is an active research field [25]. 

Multichannel stimulation distributed throughout the target nuclei with microelectrodes 

can be a good solution for this issue if the system provides precise independent site 

control with a programmable spatial stimulation. In spite of growing interests in DBS 

research, engineering development is only limited into DBS electrode. 

 

1.3. Proposed closed-loop deep brain stimulation (CDBS) system 

This project is focused on developing a small-size and implantable CDBS device 

that searches for unique parameters of electric stimulation to treat the Parkinson’s 

disease. The proposed device has neural recording front-ends, fully programmable 

stimulating channels, and a microprocessor that runs a programmable algorithm that takes 

recorded neural signals as feedback and calculates the parameters that attenuate the 

symptoms of the disease.  A 16 channel, single-shank recording electrode is implanted on 

rat’s Motor cortex while a stimulating electrode is implanted on STN to provide 

stimulation current for Parkinson’s disease treatment. Thus, the project hypothesized that 
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there is a specific neural pattern in the Parkinson’s state and also there is the most 

effective stimulation parameters to alleviate the symptoms of abnormal patterns of neural 

information. 

 

 

Figure 1.6: Prototype model of the first CDBS system. 

 

The prototype system has been developed in two successive phases. The first 

system was built with commercially available parts, including instrumentation amplifiers, 

linear ADC, micro processor, wireless telemetry units for external monitoring and a coin 

cell battery as shown in Figure 1.6.  The first generation device was used for the 

functional derivation of the closed-loop system. The second phase is an integrated single-
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chip application-specific integrated circuit (ASIC) containing 64 channel programmable 

stimulating circuitry, eight channel neural front-end, high dynamic-range logarithmic 

ADC, and a dedicated controller to set the stimulation parameters. 

This small-scale ASIC device have many advantages: the minimized surgical 

complications because of the removal of extensions, the self-configurative parameter 

setting with an advanced neural interface capable of simultaneous neural recording of 

spikes and LFPs, and the fully-controllable multi-channel stimulation for the precise 

target positioning, as discussed in the previous section. 

Figure 1.7 shows a block diagram of the integrated CDBS device including a 

wireless transmission for the post analysis of processed neural data by an external 

inspector. 

 

LNA MUX logADC

6bit
DAC

Dedicated
Controller

Biphasic 
generator

Ch. 0

Ch. 63

Wireless
telemetry

Digital BPF
Analog BPF

Spike
sorting

Pattern
recognition

Neural 
Probe

ASIC Commercial

Neural
processing

Sorting /
Wireless

 

Figure 1.7: Block diagram of the proposed CDBS system 
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Two multi-channel neural probes were implanted in the Motor cortex and STN, 

respectively. These are used to deliver the sensed neural signals and the stimulation 

pulses. The recorded neural waves are fed through individual low-noise neural amplifiers 

(LNAs) containing analog band-pass filtering and multiplexed into a single high 

dynamic-range pipeline logarithmic ADC. The proposed logarithmic ADC exploits the 

fact that the neural spike characteristic works on a companding scale. The most suitable 

way of encoding neural spikes is to use a variable resolution depending on the signal 

amplitude. The desired dynamic range is the span of spike magnitudes from neighbor 

neurons which generate action-potentials (APs). Since a higher dynamic range can be 

achieved for a given word length with a properly designed logarithmic conversion [33], it 

provides more efficient way to cover the entire dynamic range of both neural APs and 

LFPs than conventional linear encoding. Digitally converted neural data is filtered out by 

finite-impulse-response (FIR) digital filters to separate the neural APs and LFPs for the 

post processing. The employment of the digital filters has the benefit of reducing power 

consumption. 

A microprocessor analyzes the neural patterns to classify the Parkinson’s state, 

and to search for the most effective stimulation variables for the multi-channel current 

stimulation. The parameters decide the pulse shape of the stimulation. A bi-phasic pattern 

is used to minimize the remainding charge supplied to the tissue. A 64 channel current 

steering digital-to-analog converter (DAC) is used to form the desired pulse generation. 

The 64 DACs are based on a new (2+4) bit structure formed as a cascade of a single 

shared 2-bit coarse DAC and 64 individual 4-bit fine DACs. This format saves as much 

as an order of magnitude circuit area and delivers sufficient stimulation performance. 
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Parkinson’s disease needs to be better understood so a feedback algorithm can be 

designed. To facilitate research progress in this field, there is a need for the wireless 

monitoring link to an external host personal computer (PC) located outside the body. The 

wireless telemetry eliminates the large bundle of multi-channel wiring and the 

environmental noise from these cables. Also, it does not restrict movement of animals or 

humans [34]. The proposed system employs a 2.4 GHz radio-frequency (RF) transceiver 

capable of 1Mbps data rate communication for the physiological monitoring. The 2.4 

GHz frequency band is allocated for industrial, scientific and medical (ISM) usage by US 

Federal Communications Commission (FCC) [35]. And, a 1Mbps data rate provides a 

sufficient bandwidth for the simultaneous multi-channel neural data streaming. 
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1.4. Dissertation outline  

The biology of Parkinson's disease and the current DBS system is reviewed, and 

new architecture for the closed-loop techniques to improve performance has been 

introduced. This work is also relevant to other circuits and systems for the brain-machine 

interface systems that use neural interfaces.  

Since the front-end circuitry of the proposed system is based on the micro-scale 

implantable neural interfaces, the research advances in multi-channel micro-electrode 

arrays and implantable neural recording devices in recent decades are reviewed in 

Chapter II.  Also, a prototype of the multi-modal and cascaded switched-capacitor device 

provides simultaneous recording of both neural APs and LFPs with better noise 

performance, is discussed although it is not included in the CDBS ASIC, The logarithmic 

coding technique for high dynamic range is given in Chapter III. This high dynamic 

range provides the entire coverage of the neural APs and LFPs without need for the two-

stage pre-amplifier introduced in Chapter II. The prototype circuit implementation of the 

CDBS ASIC device contains neural front-ends for both recording and stimulation as well 

as digital filters and controller, is presented in Chapter IV. The in-vivo test method and 

the measured neural data from an animal brain are described in Chapter V. Finally, the 

thesis is concluded in chapter VI with a summary and suggestions for future work. 
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CHAPTER II 

 Micro-scale implantable neural interface 

 Multi-channel microprobes are used to investigate the structure and mechanism 

of neural networks. These microprobes are capable of recording neural population 

activity in the form of spike trains as well as slower local field potentials (LFPs).  Both of 

these signal types provide unique information about biologically relevant time and spike 

pattern predictions. In some cases, implantable pre-amplifiers have been used to amplify 

the weak neural signals for the post processing, but most applications utilize external 

signal conditioning. In this chapter we will review the research in the micro-machined 

neural electrodes and the integrated front-end circuit for processing spikes and LFPs. 

This is important background information for the front-end recording channels of the 

proposed closed-loop deep brain stimulation (CDBS). In addition, a prototype of the two-

stage, multi-modal, and simultaneous neural recording device is presented.  

 

2.1. Hybrid integration of neural probes 

 

Implantable neural microprobe arrays enable sophisticated investigations of the 

structure and mechanisms of neural networks [36-37]. Recent studies in brain-machine 

interfaces have emphasized using LFPs as input signals, especially when chronically 

implanted devices lose their functionality for recording unit-spike activity [38-41].  
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Moreover, studies have also suggested that spikes and LFPs may encode different 

information [42, 43].  

The development of micro electro-mechanical system (MEMS)-based implantable 

microelectrode arrays, which began with the seminal work of Wise, et al. [44], is an 

active research area in a number of laboratories [45]. Micro-fabricated probes provide a 

number of unique advantages including: precisely defined thickness and shape, 

customizable electrode size and configuration, and batch-fabrication.  They also facilitate 

the use of many electrode sites, or in other words, many parallel recording channels.  

 

 

Figure 2.1: Neural microprobe (NEL, U of Michigan) [46]. 

 

Figure 2.1 shows the passive neural microprobes made by a MEMS process with 

thin film of sensing sites and conducting leads. The microprobes are fabricated with a 
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silicon substrate whose shape and thickness are precisely decided using boron etch-stop 

micromachining. The substrate contains a conducting array of metal recording sites and 

Polysilicon leads that are insulated by thin-film dielectrics. On the upper side of the 

dielectrics, there are metal exposures for the contact with the tissue and the bonding pads 

for the signal delivery to the interface devices [46]. The extensibility of the microprobe 

enables custom designs for various applications including the multi-plane arrays for the 

precise three-dimensional placement of recording sites in the brain [47], and the 

connection with a polymer ribbon-cable to intensify mechanical flexibility [48]. In 

addition, probe designs can expand containing micro-fluidic channels along the shanks 

for drug delivery through the blood-brain barrier [49]. 

The small size of complementary metal-oxide semiconductor (CMOS) integrated 

circuits makes this technology useful for large-scale processing of neurophysiological 

signals. The scalability of the micro-fabrication technology enables active integration 

with electronic circuits for signal conditioning. Since active probes employ front-end 

circuits, noise and distortion from the environment are buffered before transmitting the 

signal through wired or wireless links to a data acquisition system. In addition, active 

probes provide the possibility of digital signal processing (DSP) such as data 

compression and spike sorting at the front-end to enhance signal integrity and reduce the 

number of tethering wires. Active probes have two types of integration – substrate 

integration and hybrid integration. The substrate type of active probes integrates 

electronics onto the probe substrate [50] and the hybrid type integrates electronics on a 

separate chip [51-53]. However, while commercial CMOS circuit technologies have been 

reached at already impressive acceleration down to the sub-micron scale, the MEMS 
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processes for the electrode fabrication stays at the multi-micron phase that is basically 

little changed over the last two decades. The imprecision of the MEMS process limits the 

large-scale integration (LSI) circuitry in the substrate active integration.  

 For large channel count integration, the hybrid type integration is preferable 

through a mixed device in which the probe substrate and electronics are fabricated on 

separate wafers.  The hybrid probe has several advantageous attributes including high-

density integration to include on-chip electronics for DSP and wireless transmission for 

no tethering force [51]. Separate electronics with state-of-the art circuit technology 

increases the density of integration and the number of channels. For example, for a given 

circuit design, the circuit fabricated in 90 nm technology can contain 1000 times more 

electronics than that in substrate integration with 3 µm feature size. The front-end 

recording interface circuits are discussed in detail in the next section, as will a proposed 

simultaneous recording device.  

Contrary to the neural recording probes, DBS electrodes deliver relatively large 

electric current pulses for stimulation. In order to apply DBS devices with the optimal 

functionality, diverse long-term stimulation research (in a proper animal model such as 

rats) is needed. Since a deep-set STN of a rat is tiny and is located in the deep brain area 

far away from the surface (about 10 mm), the DBS electrodes are designed to allow 

accurate positioning in the basal ganglia [23] and sufficient stiffness to resist insertion 

forces during surgery [24]. In addition, the electrodes must be bio-compatible to avoid 

chronic tissue response, have a sharp tip and a tapered shank for the minimally invasive 

design, and be stable enough not to migrate from the first implanted position [25]. 

Figure 2.2 shows an example of a multi-channel DBS neural probe that is able to 
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accurately stimulate the STN developed by NeuroNexus Technology [54]. The probe is 

based on silicon substrate in 15 µm thickness for minimally invasive tissue injury.  It also 

has a conducting pattern of recording sites and leads deposited with iridium. The 

electrode has 32 channels to provide a diverse spatially distributed stimulation and is 

separated by a distance of 100µm for each of the recording sites. The channel impedances 

vary depending on the tissue response within 200 kΩ to 3 MΩ [54]. 

 

 

Figure 2.2: 32-channel silicon-substrate probes for DBS [54]. 
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2.2. Switched‐capacitor amplifying filter 

As reviewed above, multi-channel microprobes are capable of recording neural 

population activity in the form of spike trains as well as slower LFPs. Both signal types 

provide unique information about biologically relevant time and spike pattern predictions 

[55].  

However, there is no truly stand-alone, small-scale system for simultaneously 

recording both spikes and LFPs because of the challenges imposed by each of their signal 

characteristics. For the simultaneous recording of both neural signals, the amplifier 

system must exhibit a high dynamic range, which can be limited by the need for good 

noise performance and high ADC dynamic range (at least 16 bits). Together, these 

considerations inevitably limit the number of recording channels. 

Here, a new architecture is introduced that uses a two-stage amplifier structure, 

which generates filtered LFP output at the first stage and processed spike output at the 

second stage as shown in Figure 2.2 [56]. The proposed device employs a switched-

capacitor circuit to reduce flicker (1/f ) noise and is less process dependent than a resistor 

based circuit. The first stage is designed as a low-Q bi-quad filter that passes a 10 Hz to 

10 kHz frequency band with an amplification of 100 times for LFPs sensing. The second 

stage implements a high-Q bi-quad filter, which passes only 100 Hz to 10 kHz signals 

with an additional amplification of 10 times for spikes recording.  
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2 poles 2 poles

Stage 1 Stage 2

 

Figure 2.3: Basic architecture of the proposed system. 

 

Figure 2.4 shows the equivalent electrical model of the neural microprobe, made 

by bulk micromachining and patterning of recording sites and lead wires. For the 

electrode-electrolyte interface, measurement of the Michigan probe shows that the 

spreading resistance, Rsp is 250 k Ω , the electrode resistance, Re is 200 G Ω , the 

capacitance, Ce is 600 pF, and the interconnect resistance, Ri is 100 kΩ. Because of the 

high electrode resistance, most currents flow through the capacitor except for extremely 

low frequency signals [27]. 
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Figure 2.4: The simplified equivalent electrical model of the neural probe included a 

spreading resistance (Rsp), faradaic electrode resistance (Re), non-faradaic electrode 

capacitance (Ce), probe trace resistance (Ri), and shunt capacitance (Cp). 

 

 

Band-pass charge amplifiers are generally used to connect to this type of probe, as 

shown in Figure 2.5 because capacitive matching provides more accuracy than resistive 

dividers.  
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Figure 2.5:  General band pass amplifier. 

 

If the inputs to the charge amplifiers remain constant, the leakage currents that 

supply a constant current will saturate the output voltage to the supply limit. Hence, the 

voltage across the capacitor should be reset often enough so that leakage currents have no 

influence [57]. The switched-capacitor circuit refreshes the voltage across the capacitor 

frequently. Although this general charge amplifier works well, a very large feedback 

resistance, R, has been reported by R.H. Olsson at el. [58]. For example, for a 100 Hz 

high pass pole with 1 pF C2 capacitance , at least 1.6 GΩ resistance is indicated by 

Equation (2.1). Olsson et al. replaced the resistor with diode-connected transistors to 

form the large resistance. We describe another strategy to emulate a large resistance with 

a switched-capacitor technique. 
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As we scale down the transistor feature size, another issue arises since the 1/f 

noise of a MOSFET varies inversely with the transistor area (WL). The noise of a 

MOSFET consists of thermal noise and flicker (1/f ) noise. Since 1/f noise is more 

important at lower frequencies, neural amplifier designs are focused on reducing this 

noise [59]. Empirically, PMOS transistors have about two to five times less 1/f noise than 

NMOS transistors and the first stage transistor is the dominant noise source. For example, 

input noise spectral density for a PMOS transistor is: 
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where the width (W) and length (L) of transistor is 1 µm and 0.18 µm, respectively 

and the 1/f noise constant of a PMOS transistor, B, is  2.02×10-22 (V-m)2 . To estimate 

the root-mean-square (RMS) noise in the bandwidth from 1 Hz to 1 kHz, we perform the 

integration as: 
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Since this device noise may be too large for the neural recording, we apply 

circuit techniques to suppress the 1/f noise below the thermal noise with switched-

capacitor modulation. The parallel switched capacitor equivalent resistor circuit in Figure 

2.6 [60] consists of two controlled switches with control clock phases, φ1 and φ2, and a 

capacitor, C. The control clocks are non-overlapping complimentary signals. Hence, the 

input switch is shorted and the output switch is opened to charge the capacitor to the 

input voltage during phase, φ1, and the input switch is opened and the output switch is 

shorted to deliver that stored charge to output during phase, φ2. 

 

1φ 2φ

 

Figure 2.6:  Resistor emulation with switched capacitor circuit. 

 

This charge transfer works as a resistor with a periodic control clock. For 

example, with a 0.1 pF capacitor and a 1 MHz clock, the emulated resistance is given by: 
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The switched capacitor circuit modulates the signal to multiples of the sampling 

frequency as shown in Figure 2.7. Since 1/f noise at the sampling frequency is much less 

than that at the baseband, the switched capacitor circuit can be used to eliminate 1/f  noise 

like a chopping amplifier [61-66]. 

 

sampling
ω

sampling
ω2

Modulated 
signals

1/f corner 
≈ 100Hz

 

Figure 2.7:  1/f noise rejection by modulation with a switched capacitor circuit. 

 

The 1/f noise with this sampling should be less than the wideband thermal noise. 

For this to occur, the sampling frequency has to be greater than the 1/f noise corner 

frequency and greater than twice the bandwidth of the input signal. The noise power 

spectral density (PSD) after sampling is given by [67], 
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where Ao is the amplifier gain, and fc is the sampling frequency. The spectral 

density of the thermal noise of a transistor with 10 µS conductivity can be calculated by: 
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Combining Equations (2.5) and (2.6) together, we can find the noise corner where 

the thermal noise is equal to the 1/f noise. For a PMOS input device with 1 µm width and 

0.18 µm length, 
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Since the general value of the noise corner frequency is 210.5 kHz, a sampling 

frequency of more than 500 kS/s is required to achieve complete elimination of 1/f noise. 

However, a 100 kS/s sampling frequency used for the prototype device is sufficient to get 

the desired signal-to-noise ratio (SNR) in simulation. 

Second-order bi-quad circuits have the advantage of potentially realizing complex 

poles and zeros. A band-pass second order response in the continuous time domain can 

be written in general as: 
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Where ω0 is the pole frequency, Q is the pole quality factor and K is coefficient 

for the amplification [68]. 

Charge injection and switching noise are non-idealities which need to be 

addressed when designing the switches. The amount of charge injected into the channel 

by the switching of the clock can be approximated as [69]: 
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Where W, L, Cox, Vtn, are transistor parameters, Vck and Vin are the clock and 

signal amplitudes respectively. If it is assumed that the charge splits equally between the 

source and drain, it follows that placing half-sized dummy transistors on either side 

controlled with an opposite clock absorbs most of this injected charge. In addition, the 

effect of switching noise can be eliminated by using a differential circuit implementation, 

because the noise equally affects both signal paths.  

The differential circuit realization is shown in Figure 2.8 and the transfer function 

of the circuit is given by [63]: 
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Figure 2.8: Low Q bi-quad with differential switched capacitor circuit. 
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Figure 2.9: Frequency response of the low Q bi-quad. 

 

To allow the circuit to pass all LFPs and spikes and limit direct current (DC) and 

high frequency noise, the coefficients are chosen as α1 = 0.7π, α2 = α3 = 0.01π, α4 = 0.7π, 

and K = 100 with a 100 kS/s sampling frequency. The simulated frequency transfer 

function is shown in Figure 2.9. 

However, the pass band of the second stage, which passes spikes only, is narrow 

with a relatively high-Q value. If we use the circuit shown in Figure 2.8, we would need 

very large capacitors to meet this frequency range. Instead, we modify the circuit 

topology to high-Q circuit, to avoid large element spreads, as shown in Figure 2.10 and 

the transfer function is given by [63]: 
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To pass spikes only and limit LFPs and high frequency noise, the coefficients are 

designed as α1 = 0.75, α2 = 0.007π, α3 = 0.01π, α4 = 0.8, and K = 10 with a 100 kS/s 

sampling frequency, and the simulated frequency transfer function is shown in Figure 

2.11.  

 

 

Figure 2.10: High Q bi-quad implemented with a differential switched capacitor circuit. 
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Figure 2.11: Frequency response of the high Q bi-quad. 

The overall amplification is performed in two stages as shown in Figure 2.3 as 

presented above. The first one is modulated signal amplification with low-Q band pass 

filtering matched to 40 dB gain.  The second stage has relatively low gain (20 dB) and 

high-Q band pass filtering. 

 

2.3. Prototype implementation 

The layout was made to be as symmetric as possible to eliminate mismatches 

between the differential paths. A die photograph of the fabricated circuit is shown in 

Figure 2.12. The prototype device is fabricated in 0.18 μm CMOS with a Metal-insulator-

Metal (MiM) capacitor option and occupies 0.0032 mm2 per each amplifying filter. The 

power consumption per each amplifier is 89 µW per channel. 
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Figure 2.12: Die photograph of the fabricated device. 

Testing was performed with pre-recorded neural data in the Neural Engineering 

laboratory (NEL) at the University of Michigan. Neural data were converted to an audio 

signal and supplied to the input of the prototype neural filter. The output of the circuit is 

delivered to an 8bit ADC and the ADC output is transmitted to a personal computer (PC) 

through a logic analyzer. The test board contains the fabricated neural amplifier, ADC, 

current sources and radio-frequency (RF) connectors for power and clock supplies. The 

acquired data is analyzed with a MATLAB tool.  

Figure 2.13 show the pre-recorded real-time fast-recording raw data (a) and the 

frequency responses (b) which contain spikes, LFPs and noise. The signal amplitudes are 

laid within the range of ±1 mV and the frequency spectrum by Fast Fourier Transform 
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(FFT) in the MATLAB software shows clean spikes around 1 kHz, LFPs at low 

frequency and high frequency noises. 

 

Noise

 

   (a) Real-time recording        (b) Frequency spectrum 

Figure 2.13: Original neural signal. 

 

 

The output from the first stage shows a high frequency noise reduction as shown 

in Figure 2.14. The gain of the filter is measured as 870.96 (58.8 dB). After the amplitude 

adjustment, the magnitude range of the real-time neural signal (a) is placed between -1 

mV to 0.7 mV. We can see the high frequency noise is suppressed below the 0 dB level in 

the FFT plot (b). 
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(a) Real-time recording      (b) Frequency spectrum 

Figure 2.14: In-vitro test output with low-Q bi-quad. 

 

The output from the second stage shows spike trains with removing LFPs as 

shown in Figure 2.15. The measured gain is 90.16 (39.1 dB).  After the amplitude 

adjustment, the real-time spike signal (a) range is between -125 µV to 115 µV. We can 

see the LFPs are decreased below the 0 dB level at the FFT plot (b). 
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(a) Real-time recording               (b) Frequency spectrum 

Figure 2.15: In-vitro test output with high Q bi-quad. 

 

If we increase the time resolution of the real-time recording plotted in Figure 2.15 

(a) in order to see spikes in details, we can see a very clean spike as shown in Figure 

2.16. The duration of the spike is approximately 1 ms with an amplitude of 220 µVpp. 

 

 

Figure 2.16: A single spike at the high-Q bi-quad output. 

The noise performance is expressed in terms of an equivalent input noise, 

which gives the same output noise as the circuit under no other input. The device noise is 

measured at the output with the inputs shorted together. Then, the equivalent input noise 

spectral density (INSD) of the complete circuit is calculated by dividing the output noise 

by the gain. The measured output noise is 2.06mVrms and the equivalent input referred 

voltage as 2.36 µVrms and it represents INSD is 23.6 nV/√Hz. This value is less than 
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source signal power and we can achieve an SNR as much as 30 dB. The 1/f noise 

components are rejected by the modulation and the INSD is flat across the signal band, 

since there remains only frequency independent noise sources such as thermal and shot 

noises. Table 2.1 shows the summary of the device.  

 

Table 2.1: Switched-capacitor filter performance. 

Spec.  Measured data 

Power supply 1.8 V 

Sampling frequency 100 kS/s 

Die size 44 μm × 73 μm 

Power Consumption 89 μW /ch.  

INSD 23.6 nV/√ Hz 

Pass band gain for low Q 39.1 dB 

Pass band gain for high Q 58.8 dB 

Technology CMOS 0.18 μm 
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CHAPTER III 

 Logarithmic ADC 

 

For a simultaneous neural recording of the spikes and local field potentials (LFPs), 

a two-stage filtering device, that separates the recorded neural data into a low-frequency, 

low-resolution signal set and a high-frequency, high-resolution spike set, is proposed in 

the previous chapter. Instead, a high dynamic range logarithmic analog-to-digital 

converter (ADC) and digital filtering can replace the analog filtering saving power 

consumption and area. 

Most natural signals, including light intensity and audio amplitude, are measured 

on a logarithmic scale. A properly designed logarithmic coding scheme is more efficient 

than conventional linear encoding, in that, a higher dynamic range can be represented for 

a given word length.  For example, Figure 3.1 shows that logarithmic coding achieves 

better image quality than linear coding for the same number of bits. 

Expansion of dynamic range is traditionally achieved through automatic gain 

control (AGC) or nonlinear compression [71]. However, an AGC amplifier cannot 

respond to rapidly fluctuating signals. A logarithmic amplifier can be used to compress 

the dynamic range of an input signal [72], but this approach requires a look-up table to 

precisely describe the device-derived non-linear characteristics. Alternatively, a back-end 

digital compander [73] can be combined with a high-resolution ADC. However, this 

method is power-hungry and complex. Direct logarithmic analog-to-digital conversion 
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has exactly the same beneficial characteristics as the combination of a logarithmic 

amplifier and linear ADC, but with potentially much lower power consumption.  

 

(b) Log 3bit coding(a) Linear 3bit coding   

Figure 3.1: Image quality comparison for standard image [70] with 3 bit linear and 3 bit 

logarithmic coding. 

 

In this chapter, we describe a logarithmic pipeline ADC technique and present a 

prototype logarithmic ADC which demonstrates a high dynamic range of 80 dB [33]. 

This approach is advantageous for many applications where high dynamic range is 

required such as audio, imaging and sensing. A novel switched capacitor (SC) 

logarithmic pipeline ADC architecture, that does not require squaring or any other 

complex analog function, is introduced in this chapter. Unlike a conventional pipeline 

ADC, the pipeline stages do not include an MDAC, so that the required accuracy of the 

reference voltage is greatly relaxed. Performance metrics such as signal-to-noise-ratio 

(SNR) and dynamic range are also discussed.    
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3.1. Logarithmic pipeline architecture 

 

With logarithmic coding, the LSB size varies with the input signal level. Similar 

to a companding digitizer, small signals are quantized at fine resolution, whereas changes 

in large signals are quantized at coarse resolution. Figure 3.2 shows an example of a 5 bit 

logarithmic companding characteristic. Larger voltage input results in larger least 

significant bit (LSB) size.   
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Figure 3.2:  Companding characteristics of 5 bit logarithmic quantization. 
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An L-bit logarithmic ADC converts an input analog voltage (Vin) to a digital bit 

sequence (bL-1, bL-2, …, b1, b0), mapping to a logarithmic domain. This mapping equation 

is shown in Equation (3.1). 
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In Equation (3.1), the input voltage Vin is divided by the full-scale ADC input 

range (Vrange), mapping the input to a nominal range from 0 to 1. A code efficiency factor, 

C is introduced. Larger values of C result in a more logarithmic input-to-digital-output 

relationship, emphasizing smaller signals, and resulting in a higher dynamic range. Figure 

3.3 illustrates how the code efficiency factor, C, affects the input-to-output relationship.  
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Figure 3.3:  6 bit logarithmic characteristics for three values of code efficiencies, C. 
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Although the LSB size of a conventional ADC, Vrange/2L
,
 is constant over the 

entire input range, the logarithmic LSB size of a logarithmic ADC is C/2 L. As a result, 

the LSB size varies depending on the input amplitude. For the 8 bit logarithmic ADC, 

which is demonstrated in this work, C is set to 3, resulting in the minimum LSB size to 

1.109×10-4 Vrange. The theoretical dynamic range of considering only the positive polarity 

part of the logarithmic ADC range is 85 dB. A sign bit adds an extra 6 dB, resulting in a 

91 dB theoretical dynamic range. The methodology for calculating theoretical dynamic 

range is presented later in this section. 

Limited minimum detectable voltage due to noise, linearity, and device matching 

problems make practical circuit implementation with C>3 difficult. For example, with C 

= 2, and assuming Vrange is 1 V, the minimum LSB size of 8bit ADC is 0.37 mV. On the 

other hand, with a code efficiency factor of 4 (C = 4), the minimum LSB size is only 7.5 

µV, which makes noise and matching difficult and impractical to overcome. 

  By rewriting Equation (3.1), the analog input corresponding to a digital code is 

given by Equation (3.2). 
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The varying LSB size is calculated by subtracting vin values from Equation (3.2) 

for two adjacent digital codes. Subtracting analog input values for codes 0 and 1, results 

in the minimum LSB size. If we subtract the analog input values corresponding to the 
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maximum digital codes 2L and 2L-1, we obtain the maximum LSB size. Equation (3.3) 

includes both the minimum and maximum LSB sizes. 
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The dynamic range (DR) is defined as the ratio of the input range (Vrange) to the 

smallest resolvable signal, or the smallest difference between adjacent codes, as: 
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Then, by substituting Equation (3.3), dynamic range is calculated as:  
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(3.5)

The proposed logarithmic-domain pipeline ADC architecture is based on simple 

scalar multiplication and does not require cumbersome analog math operations such as 

squaring or exponents. A direct log-adaptation of a conventional linear 1.5-bit-per-stage, 

pipeline ADC would replace subtraction with division, and multiplication by 2 with 
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squaring [54]. Since log10Vin - log10Vref = log10(Vin/Vref ) in a logarithmic pipeline ADC, a 

conditional attenuation (or gain) replaces subtraction, depending on the decision of the 

sub-ADC. This pipeline stage differs from a conventional 1.5 bit pipeline ADC’s 

multiplying digital-to-analog converter (MDAC), which uses a linear stage that subtracts 

one of three MDAC settings; Instead, the logarithmic 1.5-bit-per-stage architecture 

presented here sets three different inter-stage gains. These three gains are achieved by 

switching in different values of feedback capacitance across an OpAmp. Figure 4 shows 

the three gain setting from the previous stage output (Vin) to the current stage output 

(Vresidue). The 1.5 bit sub-ADC determines the stage gain and the residue plot.  
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Figure 3.4: Implementation of the logarithmic pipeline. 
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Although figure 3.4 also includes a squarer, we see next how squaring is 

eliminated in this log ADC architecture. In a log ADC, squaring is equivalent to a 

multiplication by 2 in a radix-2 pipeline ADC. Instead of attempting precise analog 

squaring, we achieve the same overall result by scaling the comparator reference voltages 

and gain settings for each pipeline stage (A similar scheme is proposed in [74]). In a 

logarithmic pipeline ADC, the residue of each stage is scaled to the full-scale input 

voltage range of the next stage. Considering that 2xlog10(Vresidue)=log10(Vresidue2), this 

requires squaring of the residue, but accurate and reliable squaring is difficult in the 

analog domain.  
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Figure 3.5: Logarithmic ADC residue plots. 

 

Figure 3.5 (b) shows the residue characteristic of a 1.5 bit logarithmic ADC 

pipeline stage. For comparison, a direct linear relationship between input and output is 

plotted in Figure 3.5 (a). The residue plots are described on a logarithmic sale with a 

normalized log10 range from -3 to 0 (i.e. C = 3).  The residue of figure 3.5 (b) is divided 

into three regions as there are two comparators. A modified approach in figure 3.5 (c) 
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uses the same comparator thresholds, but the gain settings are chosen so that the residue 

now falls entirely into the top vertical half (i.e. logarithmic range: -1.5 to 0, or a 

corresponding linear range: 10-1.5 to 1). Squaring of the residue of figure 3.5 (c) would 

double its logarithmic range to appear identical to the residue of figure 3.5 (b). However, 

instead of squaring, a different set of comparator reference voltages is chosen for the next 

stage. The reference voltages are set in the top half of figure 3.5 (c), effectively achieving 

a rescaled residue with the same shape (Figure 3.5 (d)). This approach is not only easier 

to implement but also advantageous since the reference and signal voltages become larger 

(i.e. closer to a normalized logarithmic value of 0) going down the pipeline. For example, 

the upper threshold of the second stage is 137 mV whereas, that of the first stage is 31.6 

mV. Larger references are easier to generate and have more tolerance for comparator 

errors. 1 

The classic 1.5-bit-per-stage redundancy scheme used in linear pipeline ADCs 

[75] is adapted here to reduce the required accuracy of the comparators. Unlike the case 

with a linear pipeline, reference voltages are not used in MDAC stages, and therefore, 

redundancy significantly reduces the required accuracy of both the comparators and 

voltage references. In a 1.5 bit stage, the input range of each stage is divided into three 

regions, corresponding to the three possible outputs of the two comparators: “00”, “01” 

and “11”. Redundancy can correct for  both comparator offset errors and reference 

voltage errors with a range given by Equation (3.6). 

                                                 

1  This log ADC architecture is fundamentally different to a classical linear pipeline 
architecture. A 1 bit per stage pipe subtracts binary weighted values of the reference from 
the input, attempting to reach a final residue of zero. On the other hand, this log pipeline 
gains up the input at each stage, ultimately attempting to achieve a residue of full scale. 
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 ∆Vin,correct = log10 Vref ± (1/4) log10 Vref  (3.6)

 

The easiest way to calculate the reference voltages is to begin on a logarithmic 

scale and then to return to linear scale. For the residue plot of ith stage, the center of the x-

axis is at –C/2i on a logarithmic scale. If Equation (3.6) for digital correction is applied, 

the reference voltages are defined as: 
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where Vref1 is the lower threshold and Vref2 is the upper threshold. Similarly, the gains 

for stage i are:  
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In Equation (3.8), G1 is the highest gain setting for stage inputs less than Vref1; G2 

is the gain for the stage inputs that lie between Vref1 and Vref2; and G3 is the bypass gain 

for the stage inputs larger than Vref2 for the ith  stage. Note that G1 = G2
2. 

In a conventional pipeline ADC, gain errors are caused by capacitor mismatch, 

finite opamp gain, and incomplete settling of the residue amplifiers. These gain errors 

reduce the linearity of the ADC. While both MDAC errors and gain errors are sources of 

nonlinearity in a conventional pipeline ADC, only gain errors contribute to nonlinearity 

in this logarithmic pipeline structure because it does not include an MDAC.   

Ideally, a stage output is the product of the input signal and the gain; vout = vin 

G(vin), where G(vin) is the ideal (closed-loop) gain of the interstage amplifier defined in 

Equation (3.8). If we express the total gain error as ε(vin), then the actual gain is G(vin)(1+ 

ε(vin)). For example, without gain error, the mid-gain range of the first stage of the 

prototype ADC is 5.62, but varies from 5.57 and 5.68 with a ±1% capacitor mismatching 

error. If we express the relationship between the input and output of each pipeline stage 

in the logarithmic domain, the stage output or residue can be written as Equation (3.9): 

 

 
)1(log)(logloglog 10101010 ε+++= ininout vGvv ε(vin))  

(3.9)

 

If ε is small (|ε(vin)| << 1), we can approximate log10(1+ ε(vin)) ≈ ε(vin)/e, where e 

is the natural logarithmic constant (e ≈ 2.718) giving:  

 

evGvv ininout /)(logloglog 101010 ε++= ε (vin)/e  
(3.10)
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A new residue plot considering gain error is drawn in Figure 3.6. The last term in 

this equation, ε(vin)/e, causes an undesired gain shift of ε(vin)/e in logarithmic domain.  

The ε(vin)/e term represents the input referred error in the logarithmic relationship 

between the stage input and output. 
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Figure 3.6: 1.5 bit residue plot and error due to finite gain 

 

The gain error, ε(vin), can be divided into a random component and a systematic 

component; ε(vin) = εr+ εf(vin). The random part, εr, is due to device imperfections, in 

particular capacitor mismatch. On the other hand, the systematic component, εf(vin), 

results from deficient amplifier gain and is inversely proportional to the feedback 

factor(β).  In other words, the systematic component of gain error is predictable if we 

know the feedback factor and the operational amplifier (Op Amp) gain.   

    The systematic gain error can be derived from finite DC gain as: 
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(3.11)

 

Where A0 is the Op Amp gain, and we assume that β, the feedback factor is the 

inverse G(vin), the ideal gain.  

    Using this approximation for gain error, Figure 3.7. plots the systematic 

component of the closed-loop stage gain error due to finite direct current (DC) gain. The 

gain error depends on the gain setting, and therefore there is a different gain error for 

each of the three input regions defined in Equation (3.8). The absolute value of gain error 

in the low-range is much larger than that in the mid-range since G1 is the square of G2.  
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Figure 3.7: Input-referred systematic gain error due to finite OpAmp gain for a 1.5b 

logarithmic stage. 
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    The grey line in the figure represents the common offset (-(G1+1)/2eA0) which 

is the average of the maximum gain error in the low range and the minimum gain error in 

the high range. Then, the distances from common line to the low range gain error and the 

high gain range error are same, and it leads to the effective systematic error which is the 

maximum distance from the errors to common offset as (G1-1)/2eA0.  

    To guarantee the overall ADC linearity, this effective systematic error should 

be less than the LSB size. Note that in an 8bit logarithmic ADC an LSB = C/2L-1 = 0.023 

in logarithmic domain. Combining with Equation (3.10), the effective gain error due to 

finite DC gain in the logarithmic domain is then expressed as εf/e( = (G1-1)/2eA0). To 

achieve an INL less than 0.5 LSB, the maximum gain error of the first stage can be up to 

3.1%, compared to only 0.62% [76] in an 8bit linear ADC. Unlike a linear ADC the 

logarithmic ADC which does not include an MDAC, further reducing the requirements 

for linearity.  The non-linearity error caused by MDAC is larger in practice than the non-

linearity caused by gain error in linear ADCs [76]. From the above criteria, we can 

estimate the gain requirement of the Op Amp limited by the finite DC gain from feedback 

as: 
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(3.12)

 

Where K is the number of inter-stage Op Amps which cause gain errors, C is the 

code efficiency factor. Since the effect of gain error is cumulative over all stages, the gain 

error margin should be spread over the pipeline stages as a factor of K. K is 5 for the 
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prototype 8bit logarithmic ADC and C is 3. As shown in Equation (3.12), the gain 

requirement decreases exponentially down the pipeline. To achieve an integral non-

linearity (INL) less than 1 LSB, the minimum Op Amp gain of the first stage should be 

greater than 1202 (= 61.6 dB), but only 182 (= 45.2 dB) in the second stage.      

The thermal noise of the first stage is the dominant source of noise, since the first 

stage gain is large enough to minimize the input referred noise contribution of other 

stages. The input referred noise of ith stage of an SC amplifier is given by [77],  
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Where Ci is the sampling capacitor of ith stage, gm1 is the transconductance of 

input transistors and Bn is the noise bandwidth that is gm1/4(2+Gi)Ci [77] and Gi is the 

high gain of ith stage. The first term is the sampling noise and the second is thermal noise 

in the hold phase. If we neglect the parasitic capacitances, the total input referred noise 

power can be calculate as: 
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Where vn
2 is the total input-referred noise power, vn,SH

2 is the noise of the sample 

and hold amplifier, vn1
2 is the noise of the first stage and vn2

2 is the noise of the second 

stage. Since the gain of the first stage is relatively large, the noise contribution from 
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second stage can be ignored. For C = 3, the high gain of the first stage is 31.6 and then, 

the total input referred noise is 4.67kT/Ci (V2). To sense the minimum detectable signal, 

1.1×10-4 Vrange , for C = 3 at room temperature, the minimum input capacitor size is 

obtained as, 

 

pFkTC i 92.1
)101.1(

67.4
24 =

×
= −

 
(3.15)

 

3.2. Logarithmic ADC implementation 

A signed 8-bit, 6-stage, fully-differential, logarithmic pipeline converter is 

implemented as shown in Figure 3.8. The gain and references values, shown in the figure 

are derived using Equation (3.7) and (3.8) with C = 3. Much like a linear pipeline ADC, 

each stage includes a 1.5 bit sub-ADC. However, instead of a 3-level MDAC, one of 

three gain settings is selected by switching in different values of feedback capacitor 

across an operational amplifier, depending on the sub-ADC decision. As discussed above, 

the redundant 1.5 bit architecture relaxes the requirements for comparator and comparator 

reference voltage accuracy. The accuracy of stage residue is largely unaffected by errors 

or noise on a distributed reference since the residue is decided by a programmable gain 

and not MDAC subtraction.  
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Figure 3.8: Logarithmic ADC architecture. 

 

Figure 3.9 shows a fully differential pipeline stage controlled by two non-

overlapping Φ1 and Φ2. One of three feedback capacitors is selected to give one of three 

different gains depending on the sub-ADC decision. While Φ1 is high, the stage input is 

sampled, and the feedback capacitor is reset. Φ2 is the gain phase. 
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Figure 3.9: Logarithmic ADC stage. 

 

Since this logarithmic stage does not use an MDAC, the reference voltage settling 

requirement is relaxed by the architecture. The common mode voltage, VB, is only for the 

charge extraction for reset to common mode voltage which is 600 mV in the prototype.  
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The operational amplifiers are implemented as folded cascade telescopic amplifiers with 

PMOS input pairs. Since large signals are more coarsely quantized than small signals in 

logarithmic conversion, the logarithmic ADC is less sensitive to OpAmp gain non-

linearity.  

Since the highest gain setting for the first stage is 31.6   (gain settings are 31.6, 

5.6 and 1) a cascade of two programmable SC gain stages is used to implement the first 

pipeline stage, as shown in Figure 3.10.  
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Figure 3.10: The first pipeline stage is comprised of a cascade of two SC amplifiers. 

 

One of the two comparators for the first stage is placed in front of each amplifier. 

The amplification of the first SC gain stage allows the same reference voltage to be used 

for both comparators and also relaxes the accuracy required for lower reference voltage.  
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Subsequent pipeline stages require far less gain and are implemented with single SC 

amplifiers. The sixth stage of the pipeline is a 2-bit logarithmic flash ADC. All stage 

reference voltages are generated on-chip. 

  A logarithmic function does not define for negative inputs, but most differential 

natural signals have a polarity. To handle negative signals, a first sign decision is made at 

the front of the pipeline as shown in Figure 3.11. The sign stage determines the input 

polarity, and if necessary inverts the polarity of input to the remainder of the pipeline. 

This sign decision must ultimately be made at the full accuracy of the ADC. To achieve 

the required accuracy, the sign decision is made by a combination of two comparators; 

one after the front-end SHA and another at the output of the first stage. The second 

comparison is much more accurate because of the gain of the first stage. The estimate 

made by the front-end comparator is sufficiently accurate to allow the first stage to 

correctly process the input. For small inputs where the ADC is more sensitive to sign 

errors, the first stage is set to the high gain setting of 31.6, with each of the cascaded 

amplifiers providing a gain of 5.6. In the prototype device, the first decision has a 

tolerance equal to the lower threshold of the first stage (1.22 mV), whereas the second 

decision has a margin of 6.83 mV because the second decision is made after 5.6 times 

multiplication at the first stage. If the first decision is wrong, the second comparator 

corrects the polarity. An XOR of the first decision and the second decision generates the 

sign bit (MSB). 
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Figure 3.11: Polarity decision. 

 

The sample and hold circuit uses a single capacitor between input differential 

signal and output nodes for fast and linear operation [69] as shown in Figure 3.12. The 

operational amplifier used in sample and hold circuit has the same folded cascoded 

structure as that of the amplifiers in the pipeline stages. To minimize the effect of charge 

injection, bottom plate sampling is used [78]. During the sampling phase, Φ1, common 

mode voltage is provided internally to reset the input nodes and output nodes to the 

common mode. At the amplifying phase, Φ2, the signal paths are flipped to the output 

nodes and the charge on the input nodes are transferred to output nodes. 
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Figure 3.12: Sample and hold circuit, and first polarity check comparator. 

 

  A two-stage regenerative comparator technique based on [79] is employed.  D 

flip-flops perform synchronization of data from different stages and a ripple-carry adder 

adds the synchronized data to produce the overall 8-bit digital output [80, 81].  
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3.3. Prototype measurements 

A prototype device is fabricated in 0.18 μm CMOS with a metal-insulator-metal 

(MiM) capacitor option and occupies 0.56 mm2 (2.1 mm2 including I/O) as shown in 

Figure 3.13. The ADC consumes 2.54 mW at 22 MS/s (including clock, reference 

generation, biasing, and digital circuitry). 

 

 

Figure 3.13: Logarithmic ADC die micrograph. 
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Plots of the DNL and INL values obtained from measurements of the prototype 

ADC are shown in Figure 3.14. The definitions of DNL and INL for a logarithmic ADC 

are similar to those for a linear ADC except that in a logarithmic ADC the ideal step size 

is different for each code. 
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Figure 3.14: Measured DNL and INL of logarithmic ADC. 
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The major difference between a linear and a logarithmic ADC is that, for the latter, 

the LSB size varies along with the input signal (while the ratio of adjacent trip voltages 

remains constant). To measure DNL and INL, we exploit the fact that a logarithmic ADC 

with an exponential input voltage behaves like a linear ADC. The measured maximum 

|DNL| and |INL| are 0.22 LSB and 0.77 LSB, respectively. 

Figure 3.15 shows the measured dynamic performance versus input amplitude. 

The peak measured DR, spurious-free dynamic range (SFDR) and signal-to-noise and 

distortion ratio (SNDR) are 80 dB, 44 dB and 36 dB, respectively. The dynamic range is 

far greater than that of a linear ADC, however non-linear logarithmic conversion 

somewhat degrades peak SNDR. Nevertheless, the measured peak SNDR is close to the 

37.9 dB ideal value for compression of C = 3 implemented in the prototype. Figure 3.16 

and Figure 3.17 show the measured dynamic performance versus input frequency and 

sampling frequency, respectively.  
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Figure 3.15: Measured SNDR, SFDR, and THD versus input amplitude. 
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Figure 3.16: Measured SNDR, SFDR, and THD versus input frequency. 
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Figure 3.17: Measured SNDR, SFDR, and THD versus sampling frequency. 
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A logarithmic pipeline ADC architecture that does not rely on squaring or device 

exponential behavior is proposed and implemented. Since the pipeline does not include 

MDAC, the required accuracy of the reference voltage is relaxed. A prototype 

logarithmic ADC was fabricated in 0.18 μm CMOS technology and the measurements of 

the logarithmic ADC prototype show  a high dynamic range, comparable to sigma-delta 

ADC, but achieved with a wide bandwidth and very low power consumption.  

Two figures of merit are compared with recently published converters in Table 

3.1. The figure of merit (FOM1): 

 

stepconversionJ
Fs

PowerFOM ENOB ./
21 ×

=  (3.17)

 

(based on total power consumption including clock, reference generation, biasing, 

and digital circuitry) is 2.38 pJ/conversion step. The dynamic range figure of merit 

(FOM2) is 174 dB. 

 

FOM2=20log10(DR)+10log10(BW)-10log10(Power)= 174 dB (3.18)
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Table 3.1:  Performance comparison 

 [72] [82] [83] This Work 

Dynamic Range 60dB 58.4dB 77dB 80.2dB 

Topology log diode Linear ∑∆ log pipeline 

Speed (2x BW*) 312.5S/s 30MS/s 20MHz* 22MS/s 

SNDR 49dB 58.4 dB 69dB 35.6dB 

Power 3µW 4.7mW 56mW 2.54mW 

FOM1 (pJ/con) 40.1 0.23 0.24 2.38 

FOM2 (dB) 137.2 156.5 162.5 174 
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CHAPTER IV 

Closed-loop Deep Brain Stimulator 

 

This chapter describes a 64 channel closed-loop deep brain stimulator that 

searches for the optimum treatment parameter of Parkinson’s disease by sensing tremors 

in neural signals. The system provides programmable current stimulation and senses 

neural signal with 8 channel pre-amplifier and a 200 kS/s 8 bit logarithmic ADC. The 

entire device, implemented in 0.18 μm CMOS, occupies 2.67 mm2, and consumes 112 μW 

in normal operation mode and 351 μW in configuration mode from a 1.8 V supply [84]. 

This device provides continuous stimulation pulses in normal operation mode, while in 

configuration mode it performs simultaneous neural recording for parameter settings as 

well as the current stimulation.  

4.1. Closed-loop DBS device architecture 

As discussed in Chapter 1, Parkinson's disease is a progressive neurological 

disorder, affecting more than three million people in the United States. Deep Brain 

Stimulation (DBS) is one of the most effective treatments of Parkinson symptoms. DBS 

excites the Subthalamic Nucleus (STN) with a high frequency electrical signal. This 

chapter describes a single-chip closed-loop DBS. Closed-loop feedback of sensed neural 

activity promises better control and optimization of stimulation parameters. 
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Thanks to a novel architecture, the prototype system incorporates more 

functionality while consuming less power and area compared to other systems. Eight 

front-end low-noise neural amplifiers (LNAs) are multiplexed to a single high-dynamic-

range logarithmic pipeline analog-to-digital converter (ADC). Instead of an analog filter, 

an on-chip digital filter separates the low frequency neural field potential signal from the 

neural spike energy. To alleviate disease symptoms, a 64 digital-to-analog converter 

(DAC) stimulator channels generate independent, bi-phasic, stimulation current signals. 

An on-chip controller sets the stimulation pulse amplitude, duration and repetition rate, 

spanning the effective range of parameters for clinical usage.  
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Figure 4.1: The system architecture of CDBS. 
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Figure 4.1 shows a block diagram of the device architecture. Low power 

consumption is the key for longer battery life. The device directly interfaces with 

recording and stimulation electrodes. Eight recording electrodes [46] are implanted in the 

motor cortex and 64 stimulating electrodes are implanted in the STN [85]. Important 

information is gained both from the neural voltage spikes (400 Hz to 5 kHz, with 

amplitude levels up to ±500 μV) and the low frequency field potential (10 Hz to 50 Hz, 

with amplitude levels up to ±10 mV). The eight channels are fed through individual 

LNAs and multiplexed into a single high dynamic-range pipeline logarithmic.  
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Stimulation time
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Figure 4.2:  Signal parameters of stimulation. 
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An electrical current stimulation system has been developed to span the range of 

effective parameters for treatment of Parkinson’s disease and Dystonia. Each of the 

electrical parameters including amplitude, pulse width and stimulating frequency (rate), 

as shown in Figure 4.2, must be optimized to treat the disorders.   

In commercial voltage-stimulating devices, the amplitude for clinical use ranges 

from 0 V to 10.5 V.  However, considering the optimization of battery life and efficacy 

for the implanted device, it is not necessary for the voltage to be above 3.6 V. An increase 

in voltage amplitude above 3.6 V may result in a minimal change in the clinical effects, 

yet drains battery and significantly reduces battery longevity [86]. However, since the 

impedance of the chronically implanted electrodes gradually increases by a reactive 

tissue response, the supplied charge to tissue with the voltage stimulation may decrease 

[87]. This may worsen the clinical efficacy. Therefore a current stimulation is superior to 

the voltage stimulation because the amount of charge injection never changes for the 

entire period of DBS treatment. 

The pulse width range of the stimulation pulses is between 60 μs and 450 μs, with 

60 μs being a default.  With the Medtronics neurostimulators, if an amplitude of 3.6 V is 

not sufficiently effective and no stimulation-induced side effects are present, the pulse 

width can be increased to 90 μs. An increase from 60 μs to 90 μs leads to an increase in 

battery drainage by approximately 50%. Pulse widths of more than 90 μs are not 

generally recommended in STN stimulation; however, they are found to help patients 

with Dystonia [9, 85].  

Although the range for stimulation frequency is between 2 Hz and 185 Hz, 

Medtronic states that as a rule, a frequency of 130 Hz should be used initially [9].  Other 



72 
 

studies suggest that the frequency be above 90 Hz [88]. On the contrary, no effect or even 

worsening of symptoms with stimulation frequencies lower than 50 Hz and plateau at 185 

Hz has been reported from recent studies [9, 88-90]. An increase beyond the tableland 

may bring more benefit; however, it is important to maintain an optimal ratio of 

additional benefit to battery drainage. 

 

4.2. Circuit implementation 

The eight neural sensing channels are amplified by individual LNAs and are 

multiplexed into a single logarithmic pipeline ADC. Logarithmic encoding is well-suited 

to neural signals and is efficient, since a large dynamic-range can be represented with a 

short word-length. To save area and power consumption, a relatively large dynamic-

range ADC is used, making analog automatic gain control unnecessary.  

For the integrated logarithmic ADC as shown in Figure 4.3, the code efficiency 

factor [33] is set to 1 so that the LSB size is 1.8×10-3 Vrange, indicating a dynamic range of 

55 dB. Much like a linear switched-capacitor pipeline ADC, each stage includes a 1.5 bit 

sub-ADC. However, instead of a 3-level MDAC, one of three gain settings is selected by 

switching in different operational amplifier (Op Amp) feedback capacitors depending on 

the sub-ADC decision. The redundant 1.5 bit architecture relaxes the requirements for the 

comparator accuracy and comparator reference voltage accuracy. All ADC-stage 

reference voltages are generated on-chip. The sampling speed is 200 kS/s. 
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Figure 4.3:  Logarithmic ADC integrated in CDBS. 

 

The front-end band-pass LNAs (similar to [31]), have a gain of 100 as shown in 

Figure 4.4. To minimize 1/f noise, PMOS input pairs are used and the gain of the first 

stage is made large enough, giving an pass-band RMS noise of 5.29 µVrms. The high 

pass zero and the low pass pole are given [50]: 
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Figure 4.4:  Front-end low noise neural amplifier. 
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Important information for the feedback algorithm is gained not only from the 

neural voltage spikes (400 Hz to 5 kHz, with amplitude levels up to ±500 μV), but also 

from the low frequency field potential (10 Hz to 50 Hz, with amplitude levels up to ±10 

mV). The low-frequency LNA pass-band zero is set at 15.8 Hz, and the high frequency 

pole at 5.31 kHz so that the LNA pass-band covers both the field potential activity and 

the spike energy. (From Equation (4.1), C1 = 10 pF, C2 = 100 fF, R = 100 MΩ, gm = 0.1 

µS.) Since a practical implementation of the high resistance consumes too much area in 

silicon, a diode-connected transistor pair is used to form such a large resistor [58]. In 

addition, a cascode transistor pair is added to increase the power supply rejection ratio 

(PSRR).  

Separation of the low-frequency field potential from the higher frequency spike 

energy is done with an on-chip 22 taps finite-impulse-response (FIR) Butterworth type 

digital filter. Using digital filters instead of analog or mixed-signal filters provide many 

advantages. First of all, a digital filter is programmable so that its operation may be 

adjusted without modifying hardware while generally an analog filter may be changed 

only by modifying the design. A digital filter is used for diplexers to separate two 

frequency bands of spikes and LFPs. While analog filter circuits are subject to drift and 

are dependent on temperature, a digital filter does not suffer from these issues, and is 

extremely robust with respect to both time and temperature.  

Unlike an analog counterpart, a digital filter can easily implement higher order 

filtering with extremely low power consumption. With a use of digital filter, the filter 

power consumption may be reduced by an order of magnitude. The transfer function of 

the high-pass digital filter for the spike detection and that of the low-pass digital filter for 
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the field potential used in the system are shown in Figure 4.5 and Figure 4.6, 

respectively. 
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Figure 4.5:  High-pass digital filter for the spike detection.  
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Figure 4.6:  Low-pass digital filter for the spike detection.  
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The stimulation parameters are supplied to the on-chip stimulation controller via 

an I/O channel. This on-chip controller generates stimulation patterns to control the 64 

on-chip current steering DACs. All clocks are generated internally from a single 200 kHz 

external reference.  
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Figure 4.7:  64 channel current DAC controller architecture. 

 

The electrical stimulator generates 64 channels of biphasic charge-balanced 

current stimulation as shown in Figure 4.7. The stimulation frequency is programmable in 

the range from 31 Hz to 1 kHz. The stimulation time (duty cycle) can be set from 5 µs to 

320 µs in 5 µs steps. The stimulation current is programmable in 3 µA steps up to a 

maximum value of 135 µA and the default current amplitude of 100 µA. The stimulation-

parameter data registers contain chronological information, such as frequency and duty 

cycle, and are programmed through a shared 6 bit I/O channel controlled by three control 
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register pins (C1, C2 and C3). The stimulation parameters are writable through 6 bit I/O, 

generally in four cycles, depending on the control pins, (see the Table 4.1).   

 

Table 4.1: Stimulation control register operation mode 

C3 C2 C1 Functions 

0 0 0 Normal recording mode 

0 0 1 Low pass filtered recording 

0 1 0 High pass filtered recording 

0 1 1 Default set up (130Hz, 90µs, 100µA) 

1 0 0 Select the channel address to be modified 

1 0 1 Set the stimulation current amplitude 

1 1 0 Define the duty cycle (stimulation period) 

1 1 1 Define the frequency 

 

 

The 64 DACs are formed as a cascade of a single shared 2-bit coarse current DAC 

and 64 individual bi-directional 4-bit fine DACs as shown in Figure 4.8. The coarse/fine 

configuration saves die area since the MSB devices tend to be large.  Because the shared 

2 MSB DAC operates as a pre-scaler, 48 current values are possible. In the fine ADC, a 

polarity switch selects the positive or negative DAC output to achieve charge-balanced 

bi-phasic stimulation, helping to reduce the risk of long-term tissue damage.  
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Figure 4.8:  MSB shared (2+4) bit bi-phasic current DAC. 

 

4.3. Prototype measurements 

A prototype device is fabricated in 0.18 μm CMOS with a MiM capacitor option 

and occupies 2.67 mm2 (4.48 mm2 including I/O) as shown in Figure 4.9. Eight 

stimulation output has been selected out of total 64 channel DACs since the number of 

I/O pads are limited. During the configuration mode when the signal patterns to achieve 

an optimal stimulation are determined, the total power consumption of the entire system, 

including neural amplifiers, logarithmic ADC, current DAC, controller, digital filters, the 

reference generation, clock generation and biasing, is 351 μW, which is significantly less 
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than that of state-of–the-art stimulator circuits. In normal operation mode, an 1.8 V 

analog supply is turned off so that only current DACs and digital logics are in active 

because the recording devices do not need to work all the time except during the period 

of parameter matching. In this mode, the power consumption is only 112 μW.  
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Figure 4.9: Closed-loop DBS die micrograph. 

 

Plots of the measured signal-to-noise and distortion ratio (SNDR) of the 

combination of front-end neural amplifier and log ADC, as well as the measured 

DNL/INL of the log ADC, are shown in Figure 4.10 and Figure 4.11, respectively. To 

measure the frequency response of the recording front-end, the frequency of the input 
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signal has been swept from 0.5 Hz to 10 kHz with an increment of 0.1 Hz. Since the 

front-end neural amplifier has a gain of 100, the normalized pass-band gain is 

measured at 40 dB. At 200 kS/s, the log pipeline ADC achieves a peak measured 

SNDR of 44 dB for a 1 kHz sinusoidal input. The pass-band is lied between 10.8 Hz 

and 5.7 kHz similar to the range calculated by Equation 4.1, and covering the 

frequency of interests.  
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Figure 4.10: Measured SNDR of the combination of the neural amplifier and the log 

ADC. 

 

The DNL and INL are calculated based on Equation 3.16 and the maximum 

measured |DNL| is 0.25 LSB and the maximum |INL| is 0.47 LSB.  
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Figure 4.11: Measured DNL and INL of the logarithmic ADC. 

 

To measure stimulation patterns, a 1 kΩ load is connected to emulate the tissue 

environment. Figure 4.12 shows the measured output of stimulation DAC with a bi-

phasic pattern. With 1 kΩ load, the measured voltage is around 100 mV indicating that a 

peak stimulation current is 100 µA for the default set-up. The area under the plot 

represents the amount of sourced or sinked charge by the stimulator. The measured 

amount of the supplied charge to the load and the absorbed charge from the load are well 

matched with 0.1% accuracy.  
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Figure 4.12: Measured output of the stimulation DAC. 

 

Physiological sodium chloride solution (0.9% NaCl) was used for the electrolytic 

testing of the DACs. Two Platinum electrodes with 5 mm length and 0.2 mm diameter are 

put into the chemical solution for the stimulation and reference sites, respectively. The 

electric potential at the stimulation site is recorded to measure the impedance and the 

stimulation pattern. The impedance of the electrolytic platinum contact is measured as 

1012 Ω at 1 kHz. A fine plot of the stimulation output on the electrolytic condition has 

been showed in Figure 4.13. The stimulation parameters are at default. 
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Figure 4.13: Measured output of the stimulation DAC. 

 

The electrolytic measurement of the stimulation device shows some capacitive 

latency and reaches up to 89% of the final values. However, it still provides balanced bi-

phasic stimulation to eliminate the injected charges for electrical safety.  

The DNL and INL of the current DAC have been measured by voltage change 

across the load resistor with amplitude parameter sweeping as shown in Figure 4.14. The 

current DAC has a maximum measured |DNL| of 0.37 LSB and a maximum measured 

|INL| of 0.48 LSB.  



85 
 

 

10 20 30 40
-1

-0.5

0

0.5

1

DIGITAL OUTPUT CODE

IN
L(

LS
B

)

10 20 30 40
-1

-0.5

0

0.5

1
D

N
L 

(L
SB

)

DAC INL

DAC DNL

Max DNL = 0.52

Min DNL = -0.37

Max DNL = 0.88

Min DNL = -0.41

 

Figure 4.14: Measured DNL and INL of the logarithmic ADC. 

 

Figure 4.15 shows the measured overall frequency responses of the combined 

front end, ADC and digital filters. The LPF passes only the low frequency field potential 

information, while the HPF filters out the low frequency signals, passing spikes only. 

Along with the application of pre-recorded analog brain signals, the high-pass-filter 

(HPF) output clearly shows neural spikes as well as a periodic stimulation artifact. 
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Figure 4.15: Frequency response of neural amplifiers, logarithmic ADC, low pass digital 

filter (above) and high pass digital filter (below) output. 
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The device specifications are compared with recently published neural interface 

systems in Table 4.2. There are two neural recording devices ([31], [92]) and two 

stimulators ([93], [94]) for the comparison. Harrison et al. has reported a fully integrated 

neural recording system with a 433 MHz frequency shift keying (FSK) transmitter at [31]. 

The device incorporates low-noise 100-channel neural recording from an implanted Utah 

electrodes [95]. However, the low data rate (330 kbps) delivers only one-bit digitized 

spike trains which can be used for limited neural applications. In addition, the real three-

dimensional (3-D) multi-layer neural recording is impossible with this device, because 

the Utah probes are coplanar channels. Recently, Chae et el. has presented a 128-channel 

neural system which has an ultra-wide band (UWB) wireless telemetry with 90 Mbps 

data rate. It can transmit full-scale neural data including the spike shape, spatial and 

temporal information without any sacrifice of active channels. However, there is still no 

genuine stand-alone, integrated, and simultaneous device which provides both neural 

recording and stimulation functionality.  

Since the target application of the proposed device is different from general brain-

machine interface (BMI) systems described in [31] and [93], only eight numbers of 

recording channels are sufficient. However, the power consumption of each LNA channel 

is dramatically reduced by the mixed-signal filters which relax the front-end analog 

filtering requirements. Also, integration of the efficient high dynamic range log ADC 

significantly saves power consumption of the whole system.  

 The stimulating performance of the CDBS is more advanced. It provides a 

flexible stimulation with 64 independently programmable channel DACs. Also, the 

device has only 7.4 µW power consumption for each stimulation channels, increasing 
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efficacy and longevity of a battery life. The total power consumption in full-configuration 

mode is comparable to the commercial Medtronics neurostimulator, but the proposed 

system has a larger number of stimulation channels as well as an eight-channel recording 

unit. The device was designed and fabricated in sub-micron CMOS circuit technology, 

and the feasibility of state-of-the-art semiconductor technology and emerging 

biotechnology was verified.  

 

Table 4.2:  Performance comparison 

 [31] [92] [93] [94] This work 

Application Recording Recording Stimulator Stimulator 
Recording + 

stimulation 

Electrodes Cortex Cortex Cortex Retina STN 

LNA Channels 100 128 0 0 8 

LNA Pow/Ch. 45.4µW 23.9µW N/A N/A 9µW 

Filter Analog Analog None None Analog/digital 

ADC 10b SAR 6-9b SAR N/A N/A 8b log pipeline 

Stim. # of Ch. 0 0 32 15 64 

Stim. # of bits N/A N/A 6bit 5bit 7bit 

Stim. Pow/Ch. N/A N/A 258µW 87µW 7.4µW 

Total power 13.5mW 6mW 8.3mW 1.3mW 0.35mW 

Process tech. 0.5µm 0.35µm 1.5µm 0.5µm 0.18µm 

Die Size (mm2) 4.7×5.9 8.8×7.2 4.6×4.6 2.3×3.0 1.8×1.5 
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CHAPTER V 

In-vivo neural test 

The prototype testing systems were developed in two phases. The first system was 

developed to measure the electrical performance as described in the previous chapter and 

evaluate the functionality of the system when applied to an animal. This benchtop system 

was built with a relatively large printed circuit board (PCB) with conventional 

instruments including power supplies and logic analyzer as shown in Figure 5.1. The 

second prototype was then constructed using the wearable version of the PCB and 

incorporating a wireless telemetry system.  

5.1. Benchtop prototype 

 The benchtop prototype board consists of a CDBS integrated circuit (IC), an 8051 

based micro-controller and passive components. Three independent power sources supply 

1.8 V digital, 1.8 V analog and 3.3 V electro-static discharge (ESD) protection supplies. 

During each experimental session, neural electrophysiological data from an eight-channel 

chronically implanted microprobe were sampled at 25 kHz. Recorded data sets were 

typically 30 sec in duration and repeated ten times a day. Recordings were referenced 

differentially to a body potential from an anchored screw. These signals were 

simultaneously amplified and band-pass filtered by the CDBS IC.  
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Figure 5.1: Test bench. 

 

The neural information was processed in the CDBS chip, and then, the digitally 

converted signal was sampled by a logic analyzer which is connected to a host personal 

computer (PC) with a general purpose interface bus (GPIB) protocol. An ADuC841 chip 

[96] which is a 8051 based micro controller from Analog Device Inc. is used for the 

mode control to set up the stimulation parameters and configure the recording filters as 

described in Table 4.1.  
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In-vivo intra-cortical neural recording interface was chronically implanted in 

Long Evans rats for long-term neural data collection as shown in Figure 5.2.  

 

 

Figure 5.2: Animal test: unit NS-11 (Long Evans). 

 

Male Long Evans rats (~350 g) were anesthetized with an intraperitoneal injection 

of a mixture of ketamine, xylazine, and acepromazine and maintained with ketamine 

updates [97]. A single craniotomy was made in each rat and a chronic channel printed 

circuit board (NeuroNexus Inc. [98]) connected with 16-channel single shank 

microelectrode and a 16-pin Omnetics nano-connector [99] was mounted near the 

craniotomy and anchored to the skull with a bone screw and dental acrylic. A microprobe 

was implanted into the primary motor cortex on the rat’s brain. All procedures were 
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carried out following the National Institute of Health (NIH) guidelines [100] for the care 

and use of laboratory animals and were approved by the University of Michigan 

Committee on Use and Care of Animals (UCUCA) [101]. 

A measured neural signal with a digital high-pass filter setting for spikes selection 

is plotted in Figure 5.3. Undesired high-frequency noise and low-frequency field 

potentials were blocked by both analog and digital filters, and clear neural spikes were 

recorded from the device. The stimulation parameters are fixed at default mode (100 μA 

amplitude, 130 Hz frequency and 90 μs stimulation time). Although most of the 

stimulation signal is filtered out, stimulation artifacts with exact 7.69 ms period (130 Hz) 

are still apparent.  

 

Figure 5.3: Measured neural signals. 

 

 Figure 5.4 shows the frequency response of the measured neural information 

computed by the Fast Fourier Transform (FFT). The fundamental 1 kHz frequency of 

neural spikes is clearly shown.  
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Figure 5.4: Frequency response of the neural signal. 

 

 An important metric of the signal quality is signal-to-noise ratio (SNR) which is 

calculated by the estimate ratio of spike amplitude to the background noise level [42]. 

The background noise may come from instruments, floating body potential, and tethered 

wires affected by external noise sources such as 60 Hz power noise. Amplitude 

thresholding is used for the classification of neural spikes from background noise, and the 

threshold is set by a manual input. During a 10-second time-window of the real-time fast-

recording, 292 neural spikes (Firing rate of 29.2 Spikes/sec) are detected with 50 μV 

thresholding, and the average signal peak is calculated as 87.1 μV. The root-mean-square 

(RMS) value of background noise which absolute amplitude is under 50 μV is measured 

as 17.2 μV, and it gives SNR of 14.2 dB. 
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5.2. Wearable device 

The electrical performance and functionality of the CDBS design was evaluated 

using the benchtop system described above. However, a small size, wearable system with 

wireless telemetry is required for a clinical use.  Miniaturized PCBs were designed with 

low-noise and low-power consumption to deliver the neural stimulation signal via  

wireless telemetry to the   front-end microelectrode device. Two separate PCB designs 

function as transmitter and receiver, respectively, as shown in Figure 5.5.  
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Program
dongleAntenna

Wireless /
µ-controller CDBS
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Figure 5.5: Implantable printed circuit boards. 

 

  

The transmitter PCB consists of a CDBS ASIC described above, a micro 

controller including wireless transceiver [102] and Omnetics nano-connector [99] as well 

as an on-board wireless antenna and programming dongle connector. The transmitter 
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PCB was mounted on top of the rat’s head using dental acrylic anchored to a bone screw. 

The transmitter PCB has a size of 19 mm by 26 mm and weighs 3 g making it well suited 

for the animal implantation.  The receiver board includes the same wireless transceiver to 

receive the transmitted neural data and send control signals.  The control signals are 

generated by a host PC connected with a universal asynchronous receiver and transmitter 

(UART) serial interface [103].  

An nRF24E1 chip from Nordic Semiconductor Inc. [102] was used for the neural 

analysis and wireless delivery. It is a single chip 8051 compatible microcontroller which 

contains internal voltage regulators and an nRF2401 2.4 GHz radio-frequency (RF) 

transceiver capable of 1 Mbps data rate communication over 125 multi-channels.  

The schematic of the nRF24E1 chip is shown in Figure 5.6. The only external 

components required to build a complete system are a 16 Mhz crystal, decoupling 

capacitors, and an external 32 kByte Electrically Erasable Programmable Read-Only 

Memory (EEPROM). The microcontroller has a 256 Byte data Random Access Memory 

(RAM) and a 512 Byte ROM which contains a bootstrap loader executed automatically 

after power-on reset or software request. The custom program is loaded into a 4 kByte 

RAM from the external serial EEPROM by the bootstrap loader.  
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Figure 5.6: The structure of nRF24E1 [102]. 

    

The nRF24E1 has two general purpose bi-directional CMOS I/O ports. Port 0 is 

used to configure the CDBS operation modes, and port 1 reads neural data from the 

CDBS ASIC. The RADIO port controls the wireless transceiver functions.  

The implantable system mounted on top of a male Long Evans rat’s (342 g) brain 

is shown in Figure 5.7. A 3.6 V-720 mAh Lithium-ion rechargeable battery supplies 

power. The estimated battery life is 68 hours for the configuration mode with full-

operation of the microcontroller and wireless communication, and 923 hours for the 
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normal operation mode that provides a stimulation-only function without wireless 

monitoring.  

 

receiver

Transmitter

 

Figure 5.7: The implantable prototype system (unit NS-17). 

 

During the analysis of each recording session, units on each electrode channel 

were identified using software-defined thresholding, template-matching, and principal 

component analysis. Software written in Matlab [104] was used for neural decoding and 

the parameter control. 

A measured real-time neural signal from the implanted device is plotted in Figure 

5.8. A time-window that contains relatively large number of neural spikes has been 

selected, although the average firing rate was calculated as 47.2 spikes/sec at 10 sec 

continuous time-window with a 50 μV thresholding. Similar to the previous setting, the 
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stimulation parameters were set on the default mode, and there remains the stimulation 

artifacts with 7.69 ms period (130 Hz). The overall signal patterns are same with the 

electronic test-bench described above except that there seems to be more noisy data 

sensed together. While the average neural peak is 93.5 μV, the noise level is measured as 

28.9 μV that gives the SNR of 10.2 dB. Although the external noise from the tethered 

connections is minimized at the implantable device, closely located mixed-signal 

components affect each other, increasing a possibility of more noise. For example, the 

residue of digital clocking at the microcontroller may contaminate the signal quality of 

the analog front-end.  

 

Stimulation 
artifacts

Spikes

 

Figure 5.8: Measured neural signals 

 

 Figure 5.9 shows the frequency response of the measured information by FFT. 

The fundamental neural spikes still lie in around 1 kHz frequency. 
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Figure 5.9: Frequency response of the neural signals. 

 

For the post-processing such as neural decoding, a single-unit spike sorting is a 

widely-used method in neuroscience research. A well-sorted neural information provides 

a better decoding accuracy, correspondent neural sources (the number of neurons near the 

recording sites), and systematic changes of an organic condition [105]. 

A raster of the spike train outputs from the 74 sorted single clusters at a channel 5 

is shown in Figure 5.10. The threshold is set to 50 µV, and the average peak is measured 

at 105 µV with the maximum apex of 267 µV. Figure 5.11 shows another sorted single-

unit plot from a channel 8 that is located in a lower brain layer.  
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Figure 5.10: Single-unit neural spike sorting (Channel 5). 
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Figure 5.11: Single-unit neural spikes sorting (Channel 8). 
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In many neural interface studies, Principal-Component analysis (PCA) is a 

standard neural sorting procedure [106]. PCA is a useful technique to simplify the high 

dimensionality of large data sets [107] such as correlated single-unit neural spikes. PCA 

can also be used to find desired spikes in noisy data. Each principal component is a linear 

superposition of the original variables so that all the principal components are orthogonal 

to each other to avoid any redundancy. A feature classification by PCA provides the 

spatial and temporal neural information, and enables further analysis such as a movement 

prediction [108]. 

Figure 5.12 shows a scatter plot of the single-unit recording from the channel 

number 5. The plot shows the neural signal amplitudes data projected onto the first two 

principal components. There is a unit cluster of strongly correlated neural activities 

seemingly coming from a single neuron which is located near the channel 5.  
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Figure 5.12: The Principal Component Analysis of the neural signals from channel 5. 
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Figure 5.13 shows another scattering plot from the channel 8. The unit plot of the 

first two principal components shows that there are two distinct regions as circled with a 

red dotted line and a green dotted line. This represents solid evidence of two independent 

neural sources from different neurons. 
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Figure 5.13: The Principal Component Analysis of the neural signals from channel 5. 

 

 The single-unit neural sorting analysis along with PCA verified the 

feasibility of the implantable CDBS device as an application to in-vivo neural recording 

interface. To analyze an applied closed-loop algorithm, it would be necessary to examine 

the principal components change when the stimulation current varies. Also, more data 

sets from multiple rats should be collected to build a strong statistic model. 
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CHAPTER VI 
Conclusion and future work 

6.1. Conclusion  

In this dissertation, the biological background of Parkinson’s disease and the 

efficacy of deep brain stimulation (DBS) for the treatment of Parkinson’s disease have 

been discussed. DBS is an emerging therapeutic technology for hypokinetic neurological 

disorders, such as Parkinson's disease. In order to reach the most effective treatment 

results, the stimulation parameters should be adjusted based on the individual patient’s 

condition, which can be achieved by a neuro-physiological feedback algorithm. A single-

chip closed-loop DBS (CDBS) device, which senses a tremor in neural activities, has 

been proposed for the self-configuration of stimulation parameters. The noteworthy 

neural information includes both high-frequency neural spikes and low-frequency local 

field potentials (LFPs) that have different amplitude levels. For the simultaneous 

recording of both neural ensembles, a high dynamic range device is required. It can be 

achieved either by separating the two signal bands with a cascaded analog front-end, as 

described in Chapter 2, or by an implementation of a new logarithmic analog-to-digital 

converter (ADC), which provides a high dynamic range efficiently, as proposed in 

Chapter 3.  

For the first approach, a two stage bi-quad pre-amplifier design is introduced for a 

simultaneous, multi-modal recording of extracellular neural action potentials and LFPs. A 
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switched capacitor technique is used for resistor emulation and 1/f noise reduction. The 

switched capacitor circuit modulates the signal so that 1/f noise may be reduced to below 

thermal noise. The switched-capacitor amplifying filter prototype performs well in 

recording neural spikes and field potential, simultaneously.  

However, a logarithmic coding technique is a more sophisticated way of the 

simultaneous neural recording. This approach is ideal where a high dynamic range, but 

not a high peak SNDR, is required as in neural encoding. A switched-capacitor 

logarithmic pipeline ADC scheme, which depends on simple scaling functions, has been 

proposed. To verify the feasibility of the logarithmic pipeline conversion technique, a 

signed, 8-bit 1.5 bit-per-stage prototype ADC is implemented in 0.18 μm CMOS. The 22 

MS/s ADC has a measured dynamic range of 80 dB and a measured dynamic range figure 

of merit (FOM) of 174 dB. The measurement of the logarithmic ADC prototype shows an 

excessively high dynamic range covering the entire neural signal range.  

The novel logarithmic ADC has been integrated into CDBS device with other 

advanced neural front-ends. The CDBS system generates independently programmable 

stimulation currents. In addition, it senses and filters neural activities recorded with an 

eight channel low-noise neural amplifier (LNA), and a 200 kS/s 8 bit logarithmic pipeline 

ADC. A new (2+4) bit current DAC and parameter controller for effective biphasic 

stimulation has been designed. The 64 channel point-controllable stimulation enables the 

formation of various stimulus patterns for the most effective treatment of Parkinson’s 

symptoms. The entire system is implemented in 0.18 µm CMOS with a MiM capacitor 

option, occupies 2.67 mm2 while consuming 112 μW in the simulation-only normal 

operation mode and 351 μW under the full configuration mode from a 1.8 V supply. In 
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practice, CDBS systems are useful for self-configuration of stimulation parameters. Well-

matched parameters by CDBS maximize the effectiveness of stimulating treatment and 

save power consumption, increasing battery life. In addition, the CDBS is an integrated 

single-chip, micro-scale and implantable device that reduces potential hardware 

complications significantly. Also, the invasive surgical area has been minimized, thus the 

degree of tissue damage and likelihood of infection has been reduced.  

The electrical performance of a prototype CDBS Application-specific Integrated 

Circuit (ASIC) has been tested, and it satisfies the criteria of neural interface devices with 

huge reduction of the power consumption compared to the state-of-the-art neural 

interface circuits. The prototype ASIC has been integrated into a miniature printed circuit 

board (PCB) that contains a 2.4 GHz Industrial, Scientific and Medical (ISM) band 

transceiver as well as an on-board printed antenna. The wireless telemetry is used to 

identify the feedback algorithm by monitoring neural activities; it will enhance the 

knowledge of the mechanism of Parkinson’s disease and DBS treatment.  

In-vivo neural data are presented and analyzed with real-time fast recording, 

single-unit sorting and the principal-component analysis (PCA) tool. They were done by 

the extracellular neural recording from the motor cortex of two Long Evans rats, which 

were implanted with a 16-channel chronic neural electrode. This device verifies the 

feasibility of CDBS ASIC for the expanded neural applications, such as a neuro-

physiological data acquisition system for chronic monitoring and a brain-machine 

interface for the visual, auditory and paralysis prosthetics. 
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6.2. Future work  

Future research should be focused on investigating the parameters related to the 

neuro-physiological condition. The feedback algorithm for the optimal stimulation for 

Parkinson’s disease treatment will be programmed based on the research of the neural 

mechanism for Parkinson’s disease and DBS efficacy.  For the clinical study, it will be 

useful to examine a well-defined animal model with a neurological disorder. A widely-

used tool for dopamine neurons research is lesioning with the neurotoxin 6-

hydroxydopamine (6-OHDA) [109]. This method has also been applied in investigations 

of the effects of experimental and clinical approaches related to the treatment of 

Parkinson's disease. Future research may employ this same technique to develop a 

Parkinson’s state in a rat in order to validate the effectiveness of the treatment that the 

CDBS device provides. 

Multi-channel stimulation should be tested to evaluate diverse patterns of stimuli. 

The effective patterns are generated by either a manual or an automatic programming of 

stimulation parameters, depending on the result of the neuro-pathological model. Also, a 

genuine single-chip solution, which integrates all CDBS functions and an embedded 

digital signal processor for neural decoding, will be beneficial in that it will further 

reduce the device dimensions, minimizing invasive exposure to potential infection. 

Since DBS devices are considered to have potential hazards [110], the CDBS 

should have sufficient in-vivo data not only to prove the hardware functionality and the 
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clinical efficacy, but also to ensure the safety and the long-term durability. In addition, 

the applications of CDBS can be extended to other neurological disorders, such as 

epilepsy and seizure [111]. However, the DBS research for the treatment of these 

pathologies is at an early stage, and the effective stimulating patterns and the target 

location in brain need to be examined in depth. 
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