
Fuzzy Optimal Allocation and Arrangement of

Spaces in Naval Surface Ship Design

by

Eleanor Kate Nick

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Naval Architecture and Marine Engineering)

in The University of Michigan
2008

Doctoral Committee:

Professor Michael G. Parsons, Chair
Professor Armin W. Troesch
Associate Professor Kazuhiro Saitou
Professor David J. Andrews, University College London
Professor Bruce C. Nehrling, U.S. Naval Academy

c© Eleanor Kate Nick
All Rights Reserved

2008

To my soon-to-be husband, Dave.

ii

ACKNOWLEDGEMENTS

Thank you to my research team: Mike Parsons, Jignesh Patel, Dave Singer, Hyun

Chung, Su Liu, and Tony Daniels. Tony, we have certainly learned a lot together in

our years on the Arrangements Optimization team. Parsons, your vision, leadership,

and support have been invaluable. I am honored to be your last.

Bob Ames, thank you for being a mentor through my time at Carderock and at

Michigan. Jeff Hough, your outreach and energy are unparalleled. Kelly Cooper,

you have my great appreciation for sponsoring this research. Thank you also to the

folks at ASEE for their support through the DOD (NDSEG) fellowship.

To those who helped me along the way, I give my sincerest gratitude: Leigh

McCue Weil, Chris Kent, Steve Zalek, and Weiwei Yu. Leigh, you continue to be

an impressive role model. Elisha M.H. Garcia, we are kindred academicians for

passing our (second) qualifying exams together! Thank you to my officemates and

treasured friends who shared the ups and downs and helped make graduate school a

tremendous four years: Leigh, Steve, Jamie Szwalek, Elisha, and Piotr Bandyk.

Thank you many times over to my family. Mom & Dad, you have always helped

me to “Be the Best of Whatever You Are”. Ben, you lead the way and set the

bar. Grammie & Grampa, your unwavering love is truly a source of strength for me.

Lastly, thanks to David Kirtley for playing, traveling, understanding, and graduat-

ing.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

LIST OF APPENDICES . xi

CHAPTER

1. Introduction . 1

1.1 Overview of Work Done . 1
1.1.1 Two Part Approach: Allocation and Arrangement 1
1.1.2 Motivation for Work . 2

1.2 Fuzzy Optimization Method: Genetic Algorithm 3
1.2.1 Fuzzy Logic . 3
1.2.2 Cost Function Criteria . 4
1.2.3 Genetic Algorithm Background . 4

1.3 Implementation within Team Project . 7
1.4 Organization of Dissertation . 11

2. Previous Approaches . 12

2.1 Earliest Works . 12
2.2 Fuzzy Logic . 14
2.3 Grid Fillers . 17
2.4 Geometry and Topology . 23
2.5 Fuzzy Multi-Attributive Group Decision-Making 26
2.6 SURFCON . 27
2.7 Ongoing Work . 29
2.8 Shared Approaches . 31

3. Part 1: Allocation . 34

3.1 Problem Statement . 34
3.2 Mathematical Model . 37

3.2.1 Independent Design Variables . 37
3.2.2 Definition of the Goals and Constraints 37

3.2.2.1 Zone-deck Utility . 37

iv

3.2.2.2 Space Global and Relative Location Preferences 38
3.2.3 Definition of the Objective Function 40

3.3 Optimization Method . 41
3.3.1 Elitism and Fitness Percentage . 42
3.3.2 Tournament Selection . 42
3.3.3 Variation Operations . 43

3.3.3.1 Simulated Binary Crossover 44
3.3.3.2 Mutation . 45
3.3.3.3 Single-Point Crossover 46
3.3.3.4 Pair Swapping . 46

3.3.4 Re-seeding and Stopping Conditions 47
3.3.5 Observations from Initial Experiments 48
3.3.6 GenALLOC . 48

3.4 Optimization Results . 49
3.4.1 Parametric Studies . 53
3.4.2 Discussion . 54

4. Part II: Arrangement . 59

4.1 Two Step Approach: Topology and Geometry 59
4.2 Damage Control Deck Zone-decks . 60

4.2.1 Topology . 61
4.2.2 Geometry . 62
4.2.3 Port and Starboard Sub-Zone-decks 64
4.2.4 Center Sub-Zone-deck . 65

4.3 Stochastic Growth Loop . 67
4.3.1 Probabilistic Selections . 68
4.3.2 Move Rules . 71
4.3.3 Appendage Repair Functions . 74
4.3.4 Looping Rules and Stopping Conditions 75

4.4 Below Damage Control Deck Zone-decks . 75
4.4.1 Stairtowers and Passages From Above 75
4.4.2 Topology . 76
4.4.3 Passage Growth Control . 81

4.5 Mathematical Model . 82
4.5.1 Definition of the Goals and Constraints 82

4.5.1.1 Required Area . 83
4.5.1.2 Aspect Ratio . 84
4.5.1.3 Minimum Overall Dimension 85
4.5.1.4 Minimum Segment Dimension 86
4.5.1.5 Perimeter . 86
4.5.1.6 Adjacency and Separation 87
4.5.1.7 Access Connectivity Separation 88

4.5.2 Definition of the Objective Function 89
4.6 Optimization Method . 90

4.6.1 Variation Operations . 90
4.6.2 Adaptive Probability Roulette Selection 92

4.7 Example Problem . 93
4.7.1 Inputs . 93
4.7.2 Results . 96

4.7.2.1 Damage Control Deck 96
4.7.2.2 Below Damage Control Deck 99

4.8 Validation Problem . 105
4.8.1 Three-spaces . 106

v

4.8.2 Four-spaces . 107
4.8.3 Five-spaces . 108
4.8.4 Geometry Validated . 109

5. Conclusions . 111

5.1 Summary . 111
5.2 Intellectual Contributions . 113
5.3 Future Work . 115

APPENDICES . 117

BIBLIOGRAPHY . 124

vi

LIST OF FIGURES

Figure

1.1 Overall Arrangements Optimization schematic . 2

1.2 Sample Genetic Algorithm Variation Operations: Mutation and Crossover 6

1.3 Generic Genetic Algorithm . 7

1.4 Overall Intelligent Ship Arrangements schematic 9

2.1 An example of Lee et al.’s (2002) facilities layout and corresponding representation
of the four-segmented chromosome . 20

2.2 A feasible concept design by Van Oers et al. (2007) 31

3.1 Example Ship Inboard Profile . 35

3.2 Gaussian-Based Model for Zone-deck Area Utilization Utility UZdk
. 38

3.3 Allocation Genetic Algorithm Schematic . 41

3.4 Sample Genetic Algorithm Variation Operation: Two-space Swap 47

3.5 Allocation Inboard Profile . 49

3.6 Histogram and Analysis of Individual Space Utilities Uspaces 52

3.7 Convergence Plots of Allocation Parametric Studies 54

3.8 Effectiveness of GenALLOC on Early Population Fitness 55

4.1 Arrangements Optimization schematic . 60

4.2 Example ISA Damage Control Deck Passages and Stairtowers 60

4.3 DCD Topology Centroids Mapped to the Zone-deck 62

4.4 Space Representation using Three Boxes . 64

4.5 Center Box Initial Expansion in the Center Sub-Zone-deck 66

4.6 Stochastic Growth Loop Schematic . 67

vii

4.7 Center Box Attachments Example Steps 1 and 2 79

4.8 Center Box Attachments Example Steps 3 and 4 79

4.9 Center Box Attachments Example Steps 5 and 6 80

4.10 Example Piecewise Linear Fuzzy Utility . 83

4.11 Default Required Area Fuzzy Utility . 84

4.12 Sample Shape with Overall Dimensions and Minimum Segment Dimension MSD . 84

4.13 Default Minimum Overall Dimension Fuzzy Utility 85

4.14 Default Minimum Segment Width Fuzzy Utility . 86

4.15 Sample Proximity Distance by Closest Points . 88

4.16 Separation Distance Between Two Accesses on DCD 89

4.17 Arrangements Optimization Expanded Schematic 91

4.18 Convergence Plot for DCD GA . 97

4.19 DCD First (a and b) and Final (c and d) Solutions showing Adjacencies (white)
and Separations (black) . 98

4.20 Cost Function and Elapsed Time versus Maximum Geometry Generation Iteration
for Case 1 and 2 . 100

4.21 BDCD Parametric Study: CF vs Remaining Spots 101

4.22 BDCD Parametric Study: Remaining Spots vs Iteration 102

4.23 Below DCD Solution 1, CF = 0.8956 . 103

4.24 Below DCD Solution 2, CF = 0.8855 . 103

4.25 Below DCD Repaired Solution 2, CF = 0.9179 . 104

4.26 Three-space U = 1 Validation Solutions . 106

4.27 Four-space Validation U = 1 Solution (a) and Alternate Solution, U = 0.9892 (b) . 108

4.28 Five-space U = 1 Validation Solution . 109

A.1 Abridged Best Chromosome History with Creating Operations, Part 1 of 3 119

A.2 Abridged Best Chromosome History with Creating Operations, Part 2 of 3 120

A.3 Abridged Best Chromosome History with Creating Operations, Part 3 of 3 121

viii

LIST OF TABLES

Table

2.1 Author and Methods Comparison . 33

3.1 Global Location Preference Fuzzy Utilities for Space Groups 39

3.2 Relative Location Preference Fuzzy Utilities for Space Groups 40

3.3 Allocation Space Preference Summary . 50

3.4 Zone-deck Area Allocation Results . 50

4.1 Sample Space J Geometry Variable Matrix . 63

4.2 Probabilities for Space Growth Values -3 to +3 . 69

4.3 Percentage Probabilities for Grow and Shrink Growth Directions by Aspect Ratio . 71

4.4 Control Points for a Piecewise Linear Fuzzy Utility 83

4.5 Required Area Fuzzy Utility Default Control Points 84

4.6 Aspect Ratio Fuzzy Utility Default Control Points 85

4.7 Minimum Overall Dimension Fuzzy Utility Default Control Points 85

4.8 Minimum Segment Dimension Fuzzy Utility Default Control Points 86

4.9 Perimeter Fuzzy Utility Default Control Points . 87

4.10 Adjacency and Separation Fuzzy Utility Function Default Control Points 89

4.11 Access Separation Fuzzy Utility Default Control Points 89

4.12 Number of Swaps and Crossovers per Generation by Zone-deck type 92

4.13 Allocation Solution applied to Arrangement example problem 94

4.14 Connectivity Matrix for DCD . 95

4.15 Area Satisfaction from First and Final DCD Arrangement 97

ix

4.16 Area Satisfaction from Below DCD Arrangements 104

4.17 Three-space Validation Problem Inputs . 106

4.18 Four-space Validation Problem Inputs . 107

4.19 Five-space Validation Problem Inputs . 108

4.20 Validation Problem Statistics . 109

B.1 Final Allocation Configuration: Individual Space Utilities, Part 1 of 2 122

B.2 Final Allocation Configuration: Individual Space Utilities, Part 2 of 2 123

x

LIST OF APPENDICES

Appendix

A. Abridged Best Chromosome History with Creating Operations 118

B. Final Allocation Configuration: Individual Space Utilities 122

xi

CHAPTER 1

Introduction

1.1 Overview of Work Done

Presented in this dissertation is a new approach to generating, evaluating, and op-

timizing general arrangements of naval surface ships. Beginning from a user editable

database of spaces, the proposed algorithm returns an optimized arrangement. The

user drives the design by quantitatively defining spaces’ goals and constraints for lo-

cation, adjacency, and shape. A fully autonomous problem solver is neither feasible

nor desirable. The goal is to provide the naval architect with a semi-automated tool.

1.1.1 Two Part Approach: Allocation and Arrangement

The arrangements task is undertaken in two parts: Allocation and Arrangement.

Allocation is the assignment of a space to a region of a ship. The unit region used

is dubbed a Zone-deck. The Zone-deck is the intersection of one deck and one

subdivision. This is essentially a very large scale combinatorial bin packing problem.

With the added complexity of relative location constraints, this also becomes a type

of quadratic assignment problem.

Next, the second part handles one Zone-deck at a time defining its assigned spaces’

joiner bulkhead locations. Arrangement is done is two iterative steps: topology and

geometry. Topology gives the relative fore and aft position of each spaces’ seed

location. These locations are translated onto an orthogonal grid. In the second step,

1

they are expanded to have size and shape filling the available area of the Zone-deck

in a stochastic growth loop. The best of a modest number of geometry solutions

returns all the bulkhead locations on the grid and a cost function evaluation of the

solution. This double loop structure is shown in Figure 1.1.

Figure 1.1: Overall Arrangements Optimization schematic

1.1.2 Motivation for Work

There is currently no precise assessment of arrangements. They are typically gen-

erated by a naval architect with years of experience dictating what works. Rules

and criteria for these ad-hoc methods are documented, but they do not include all

of the consideration needed for a strong arrangements solution. General arrange-

ments remains very much an art. As the workforce and its accumulated experience

ages, it is important to capture these methodologies for preservation. This requires

the difficult task of translating the art and science of arrangement into a series of

rational decisions. Further, through implementation in a computer program, the

optimization can be linked to the extensive database of goals and constraints im-

posed by requirements and best practice. With thousands of constraints needing to

be simultaneously considered, the need for computational optimization is clear. A

further goal of this project is to write a cost function to validate solutions beyond

their present subjectivity. The advantage of making smart decisions earlier in design

is frequently addressed. Changes made to the design later become increasingly more

2

costly. This tool will allow the designer to generate and evaluate more solutions that

are closer to optimal quickly and easily in the preliminary design stage.

1.2 Fuzzy Optimization Method: Genetic Algorithm
1.2.1 Fuzzy Logic

Ship arrangement is characterized by a large number of vaguely defined, conflict-

ing and subjective considerations, opinions, and preferences as well as a plethora of

explicit requirements and constraints. As first advocated by Nehrling (1985), fuzzy

logic is an ideal way to evaluate all the cost function goals and constraints. Criteria

measures are translated to fuzzy utility values via fuzzy membership functions. The

domain of the functions are the possible parameter values for the preference in ques-

tion; they can be either discrete, such as for the preference for a space to be located

in one certain Zone-deck on the ship, or continuous, such as for a constraint for a

radar room to be within the maximum wave-guide length of its associated antennae.

The range of the fuzzy membership functions is a continuous scale between zero and

one. Zero corresponds to unsatisfactory. One is perfectly satisfied. A utility of 0.8

might signify “great”, while 0.6 is “good”. With the freedom given to the user of

editing fuzzy preference values and membership functions, the user has the capability

to give inputs that truly reflect the design intent.

There are multiple benefits to applying fuzzy logic. The trade-offs naturally oc-

curring in any interesting design problem can be modeled. A less than perfect utility

for one preference might have to suffice if another preference is to remain viable.

Fuzzy logic captures this imprecise nature while still allowing clear comparison on

the normalized range of zero to one for the many goals and constraints of various

units and scales. The effect of each variable can be uniquely studied. Lastly, fuzzy

logic pairs well with optimization. It is undesirable to return an infeasible solution

3

result and stop. By keeping low utility values, optimization can improve the solution,

rather than exit early with no results. A Boolean expression of only zero or one for

arrangements would be inadequate as there is likely no perfect ship arrangement.

1.2.2 Cost Function Criteria

Many cost function criteria are applied to test for satisfaction. In the allocation

problem, Zone-deck area utilization and space location preferences are examined.

All available area should be assigned to spaces. Spaces also have preferences to be

in certain regions of the ship and preferences for adjacency and separation to other

spaces. In the arrangement problem, space shape factors are also considered. As-

pect ratio, minimum overall dimension, minimum segment dimension, and perimeter

length are considered along with the required area. Connectivity to access is estab-

lished and maintained. Again in Part II, adjacency and separation between spaces

is considered, but at the finer scale within the Zone-decks.

1.2.3 Genetic Algorithm Background

Solutions are optimized using Genetic Algorithms, GAs. GAs are modeled af-

ter biological processes found in genetics as indicated by the vocabulary. They are

particularly useful for searching very large and sparse domains by operating on a pop-

ulation of solutions (Goldberg 1989; Gen and Cheng 1997). Allocation and topology

variables are combinatorial and discrete, and there is no gradient in the search space

to direct solutions toward an optimum as used in many other optimization algo-

rithms. The stochastic nature of a GA combines elements of existing solutions to

produce improved solutions. GAs are effective in finding solutions scattered in this

type of multi-modal domain.

In the overall work flow of the arrangements optimization task (Figure 1.1), a

GA is first used to find an optimal solution for the allocation problem. Second, a

4

separate GA is applied to the current Zone-deck’s topologies. Because a topology can

produce many geometries, n number of geometries are generated for each topology

in a stochastic process. The best geometry is determined by enumeration. After the

optimization of topologies, the best geometry for the best topology is the solution.

A Genetic Algorithm operates on a collection (a population) of solutions at once.

Each solution is a variable vector called a chromosome. A variable expressed in

the chromosome is called a gene. Genes may take on different values; these are

called alleles. For example from biology, on a chromosome there might be a gene

for eye color. Two possible alleles are blue and brown. For allocation, the gene

value expresses in which Zone-deck the associated space is located, and the alleles

are the Zone-deck indices. The allocation chromosome lists all the spaces’ Zone-deck

locations in order by space index.

As a human’s DNA changes, so too do these chromosomes. To hopefully find

better chromosomes, they undergo variation operations. The original chromosome(s)

is called the parent. The chromosome(s) created in the operation is the daughter.

The two most common operations are mutation and crossover. A mutation randomly

alters one randomly selected gene of one chromosome to a different allele. Crossover

takes two chromosomes and exchanges gene segments between them at a randomly

determined sever point. In simple crossover, the Daughter1 is the union of the Head

of Parent1 and the Tail of Parent2. Similarly, Daughter2 is the Head of Parent2 and

the Tail of Parent1. Figure 1.2 gives a simplistic view of these operations using binary

chromosomes with five genes that may each express maize or blue.

The basic sequence of a possible simple Genetic Algorithm is shown in Figure 1.3.

First an initial population of chromosomes is generated and evaluated in the cost

function. If elitism is applied, the best (elite) chromosome is tracked for preserva-

5

Figure 1.2: Sample Genetic Algorithm Variation Operations: Mutation and Crossover

tion. After each variation operation, the daughter chromosome(s) typically replaces

the parent(s) in the population. Using each chromosomes’ cost function value, the

selection operation probabilistically chooses the more fit chromosomes to survive to

the next generation, Figure 1.3.

The most common selection mechanism is Roulette Selection. Each of the possible

choices has a certain probability percentage to be chosen (Psel). In this case, cost

function values are summed and normalized over the total to find a percentage. Each

choice is assigned a cumulative probability value equal to the sum of the preceding

percentages and its own percentage (Rsel). The last choice’s cumulative probability

value, or its roulette probability value (Rsellast), is 1, and Rsel1 = Psel1 for the first

choice. A random real number between zero and one is drawn. If the random number

is less than the roulette probability value of Choicei but greater than the Rseli−1,

then Choicei is selected. Within the allocation and arrangement GAs, selection is

carried out as many times as the number of chromosomes in the population to entirely

re-write the new generation.

Generations continue until a stopping condition has been reached. Stopping con-

6

ditions may be a threshold fitness for the elite chromosome, maximum number of

generations, or by some other mechanism. At exit, the most fit chromosome is the

optimized solution.

Figure 1.3: Generic Genetic Algorithm

A Genetic Algorithm does not guarantee a global optimum, the absolute best

of any feasible design, but it can usually achieve the global optimum with a high

probability. When investigating such a large combinatorial search space, it is not

reasonable or sometimes even possible to find a perfect solution. Arrangements

have a large search space because of the many different ways there are to arrange

the spaces that will reside in a full-scale ship. By operating on a population of

solutions at once, the GA does a better job of approaching the global optimum in a

multimodal search space than an optimizer working with one solution at a time. In

this research, the genetic algorithm proved to be effective in generating and improving

upon arrangement solutions.

1.3 Implementation within Team Project

This work is part of a team project developing a full-scale prototype software for

use within the Navy’s design environment, LEAPS (Leading Edge Architecture for

7

Prototyping Systems) (Ames and Van Eseltine 2001). Intelligent Ship Arrangements

(ISA) beta version is to be released shortly after the publication of this dissertation.

An overall work flow is presented in Figure 1.4. The main contribution to the software

is the work contained here describing the algorithms developed for arrangements

optimization.

Central to the methodology of the arrangements optimization project is the de-

velopment of its space database. Upon program initiation, the user first loads one of

the available space list templates keyed to a ship-type. The project currently sup-

ports a corvette template based upon a JJMA, now Alion Science, provided Notional

Corvette. Templates document all spaces expected on the ship type by Ship Space

Classification System (SSCS) number, name, and quantity. Spaces included in the

particular ship type template are a subset of the available space library supported

by ISA.

Spaces come with default constraints extracted from NAVSEA 070 guidelines

(Naval Sea Systems Command 1992), classification society regulations, and from de-

signer experience. Spaces and constraints may be added or edited by the user through

the Constraint Editor window. Constraints are expressed as fuzzy utility functions.

On the allocation level there are global and relative constraints; functions are dis-

crete by placement into a Zone-deck. Global position is with respect to absolute

location in the ship (i.e. from the bow and baseline). Within ISA, global constraints

are handled by assigning utility values to each Zone-deck explicitly. Relative con-

straints are between two spaces, though the software platform is expandable to relate

a space’s distance to a fixed location or component, complex of Zone-decks or spaces,

or pathway. At the arrangement level, required area, aspect ratio, minimum overall

dimension, minimum segment dimension and perimeter are also editable constraints

8

Figure 1.4: Overall Intelligent Ship Arrangements schematic

9

along with relative position. The space list also states required area and a space

index number.

Second, the user imports a LEAPS database. This may contain output from

ASSET (Advanced Surface Ship Evaluation Tool) (Naval Surface Warfare Center,

Carderock Division 2005) a preliminary design synthesis tool which produces the

necessary main structure for ISA: the hull form, decks, and main transverse bulkhead

geometry. By a splicing routine, which is part of the LEAPS API (application

programming interface), ISA defines the Zone-decks from the known structure. Zone-

decks are assigned index numbers used for bookkeeping and optimization. They are

not indicative of placement in the ship; the Zone-deck’s known subdivision and deck

coordinates define its location. A subsequent calculation finds the available area

for each Zone-deck. Those that are too small to realistically contain any spaces are

marked as exclusion zones. Also, Zone-decks that are fully occupied by machinery

or other pre-assigned functions are declared exempt from the allocation.

The Damage Control Deck is designated next by the user selecting all the relevant

Zone-decks. Here two longitudinal passages are drawn with continuity along the

entire deck. A default two stairtowers are placed within each subdivision. The ISA

program allows these to be flipped between the outside and inside of the longitudinal

passages. Transverse passages are required at least in alternating subdivisions. It is

necessary to recognize the division of the Zone-deck by its passages into Sub-Zone-

decks. Spaces can then be allocated to the multiple smaller Sub-Zone-decks rather

than the aggregate Zone-deck area. At this point spaces may also be fixed to a Zone-

deck. This significant portion of the user interface development has been primarily

by Parsons, Chung, Nick, Daniels, Liu, and Patel (2008).

10

1.4 Organization of Dissertation

This dissertation lays out the presented work in five chapters. In chapter two,

previous and ongoing approaches in the field of arrangements optimization give a

context for the present work. Chapter three presents the allocation problem. Part

II, the arrangements problem, is presented in chapter four. The algorithms, math-

ematical model, optimization method, and results are described for both parts. A

validation problem is also offered at the end of chapter four to illustrate the success of

the geometry algorithm. A summary of presented work and future work is included

in the concluding chapter.

11

CHAPTER 2

Previous Approaches

2.1 Earliest Works

The US Navy’s attempts to pen a computer-aided ship arrangements program

began in the late 1960s. A brief history was given by Carlson and Cebulski of

the Naval Ship Engineering Center in 1974 (Carlson and Cebulski 1974). INGAR

was the first program. It addressed two-dimensional equipment layout. Next came

DEKSUP which allowed a user to drag and drop bulkheads into place for deck and

topside design. In 1971, Computer Graphics Arrangement Program (COGAP) was

introduced. The scope expanded to hull geometry. Three orthogonal views were

available to display the user generated layout. With the subsequent Computer Aided

Ship Arrangement Program (CASGAP), Cebulski and Carlson hoped to include

optimization and more descriptive graphic input and output in their program. They

recognized the need to improve the quantity and quality of design options while still

preserving an iterative and user-oriented approach.

CASGAP was composed of ten Modules. Main structural bulkheads were drawn

in one. Another module assembled a list of required compartments. This module

also takes credit for the first explicit enumeration of compartment requirements.

Previously, many requirements were simply assumed or intuited by the designer.

These requirements were detailed with size information and adjacency relationships

12

to other compartments.

The pith of the arrangements design resided in the “Arrange” Module. In two

steps, compartments were first assigned to a subdivision and then second defined

by bulkhead locations. Compartments were composed of cuboid volumes called

“chunks”. By chunking, complex compartment shapes were formed with simple

volume calculations. In addition to chunk definitions, compartments had these char-

acteristics: Ship Work Breakdown Structure (SWBS) number (Naval Sea Systems

Command 1985); required area and volume; required x, y, and z lengths; longitudinal,

transverse, and vertical global coordinates; bulkhead requirements; insulation cate-

gory; access requirement; safety category; group number; and a functional pointer.

Due to the relatively high number of independent variables, optimization was seen

as infeasible with the existing processor power. Instead a designer would alter the

design slightly and look for improvement. The assessment criteria were not discussed.

Hence the iterative design nature was preserved in CASGAP, but neither automation

nor optimization was achieved.

The General Arrangements Design System (GADS) was described by Carlson

and Fireman, both then working in the Naval Sea Systems Command (Carlson and

Fireman 1987). A confluence of conflicting challenges drove this program’s creation.

Rising costs penalized longer development periods and wasteful designs. Yet finances

were increasingly limited. Smart decisions needed to be made quickly, but warships

were becoming more complex. A forty to seventy years anticipated life span had

to adapt to changing mission requirements and advancing technologies. While au-

tomation was needed to reduce iteration time, the designers had to be in the loop as

the arrangement process was heavily dependant on human creativity and judgment.

However, as a design was continuously updated by different designers, inconsisten-

13

cies between versions occurred. A single database system was needed to keep all

designers involved on the same page.

The GADS system consisted of 29 sub-programs centralized around the Ship

Arrangement File (SAF), which acted as a database queried by the Data Access

Mechanism (DAM). The SAF was responsible for main ship parameters: hull form,

superstructure envelope, bulkheads, decks, access, compartment list, traffic flow, and

manning. With the SAF, GADS had the flexibility to break problems into smaller

problems using only some of the sub-programs. GADS itself was also a sub-system

of the NAVSEA Computer Supported Design system.

Similarly to its predecessor’s modules, GADS’ sub-programs handled the different

steps in an arrangement task, but they reached a much greater level of detail. In

addition to compartment requirements, hull form, deck and watertight bulkheads,

the topside was arranged, manning and access routes were planned including passages

and trunks, and zones (ie. fire and Collective Protection System) were defined. The

total list of compartment attributes exceeded forty attributes.

The arrangement was still generated entirely by the user, but the advantage of

GADS was that as the arrangement was made, calculations were dynamically per-

formed to alert the user if minimum requirements were not satisfied. For example,

bulkhead locations for a compartment could not be placed to enclose less than the

required area. Area, access, and V-Line requirements were all automatically checked.

Thus, the user could only make viable solutions.

2.2 Fuzzy Logic

To add rational decision making to the arrangement process, Nehrling first ad-

vocated the use of Fuzzy Set Theory, a method to evaluate and compare both rigid

and flexible goals and constraints (Nehrling 1985). He too saw the drawbacks of the

14

“non-analytic” and subjective environment in which designers made decisions. With

a practically infinite number of possible solutions and a high impact on ship perfor-

mance, arrangements was a difficult and critical task. Yet, there was no objective

definition of a good total arrangement.

As described in chapter one, Fuzzy Set Theory translates all design preferences

into fuzzy utility values via fuzzy membership functions. The domain of the functions

are the possible parameter values for the preference in question. The range, or

possible utility values, of all membership functions is continuous from zero to one.

In this manner preferences even with dissimilar units are normalized to the same

scale. They can then be compared easily to reveal trade-offs between alternatives.

Nehrling’s Fuzzy Membership Functions were written for seven criteria applied

to a sample group of twenty ships. All ships were evaluated on: time to general

quarters (T [minutes]), habitability index (H [ft3 per person]), deployment ratio (R

[ND]), vulnerability factor (P [ND]), future growth (F [ft]), appearance (A [ND]), and

equipment access ratio (E [ND]). The computed and assigned performance values

were taken as the arguments for the membership functions. Ship’s criteria utility

values, Uc, for each criterion c were then combined by taking the intersection,
⋂

,

representing “AND” to find Uship, eq. 2.1.

Uship = Ut

⋂

UH

⋂

UR

⋂

UP

⋂

UF

⋂

UA

⋂

UE = min(UT , UH , UR, UP , UF , UA, UE)

(2.1)

The largest Uship, U∗

ship, then corresponds to the best design. Nehrling also showed

how traditional rigid constraints like the ones implemented in the GADS system were

added to the fuzzy membership functions. Any design whose criteria parameter value

fell outside the feasible range was then excluded from the set of designs to be consid-

ered. Weighting factors on each criteria were also introduced to give greater effect to

15

those deemed more important. The outcome was sensitive to the new formulation

showing the importance of choosing not only appropriate weighting functions, but

more so, the shape of the fuzzy membership function.

Shortly after Nehrling’s publication, Cort and Hills were the first to utilize his pro-

posed Fuzzy Set Theory approach to rationally evaluate a surface ship arrangement

(Cort and Hills 1987). Same as in the GADS system, the hull form was taken as a

problem input, and preliminary decks and bulkheads were placed as dictated by other

design logic. These structures were again used to delineate zones, but the zone bins

were defined by having contents with a common function. Cort and Hills carried out

the allocation problem by applying a generic cost function to their multi-objective

optimization problem.

Their cost function related distance D with association A added with an environ-

mental loading factor E multiplied by a weighting factor L eq. 2.2.

Cmin = min(
∑ ∑

AijDij +
∑

EiL) (2.2)

With this formulation, the desire for adjacency or separation between compartments

was captured. The second term penalized against environmental loading such as

machinery noise, propeller vibration, or ship motions. Constraints were evaluated

with fuzzy logic sets, and then used in the cost function to find an overall cost C for

the arrangement.

The optimization was limited to simply choosing the minimum cost function values

of various proposed alternative arrangements. However, constraint measures were not

normalized, so an additional calculation was made to adjust to a scale from zero (the

best) to one (the worst, or maximum cost). Therefore, Cort and Hills’ work is not

an example of formal optimization, but it is an application of fuzzy set theory to

establish an evaluation criterion.

16

2.3 Grid Fillers

After Fuzzy Logic, the next leap in arrangements’ design evolution came from the

architecture field by the application of an evolutionary algorithm. Jo and Gero from

the Department of Architectural and Design Science of the University of Sydney

proposed using a Genetic Algorithm (GA) to handle the combinatorial problem of

allocation (Jo and Gero 1998). They noted that for a design problem with n number

of spaces, the possible number of ways to put them in a linear sequence was n!.

The problem is of the category NP-complete, for nondeterministic polynomial time

referring to the required computation time. The computation time does not scale

up linearly with additional parameters. In the NP-complete class of problem, it is

computationally infeasible to find a global optimum. Instead a set of non-dominated

solutions are commonly generated. It is unreasonable to investigate the entire search

space, but investigating only one solution at a time is also ineffective. The Genetic

Algorithm offers an intelligent way to cover the search space by operating on a

collection of solutions at once.

Jo and Gero were optimizing how to best layout spaces in a predefined building

envelope. Their spaces had a designated activity and required area. The prototype

problem laid out 21 total spaces in a four floor building. Two spaces were fixed and

not included in the optimization. The GA chromosome laid out the order in which

the remaining 19 spaces were assigned to locations in the building. Spaces’ index

numbers were written in binary. Five digit genes were used to express numbers zero

to eighteen. This ordered list became a popular approach, and would later grow into

a formal topology.

An orthogonal grid organized the fixed available internal space. Grid units were

called modules, and each activity’s required area was translated into a number of

17

required modules. From the top floor to the bottom, a set path through all modules

was defined. According to the order that each activity was listed in the chromosome,

the progression through the modules assigned the module’s area to the activity until

the activity’s required number of modules was acquired.

While this formulation did result in feasible spaces, they often had irregular shapes

due to the wiggly nature of the assignment path. Also, the one module by one

module approach to assigning spaces seems to be unnecessarily slow and arduous

when dealing with activity spaces that want larger areas.

After the entire path was traversed through the building assigning area for each

activity in the chromosome sequentially, the arrangement was evaluated using a

cost function very similar to Cort and Hill’s. Global and relative location were not

evaluated using Fuzzy Set Theory. Solutions were optimized with a GA.

Single point crossover and mutation operators in the Jo and Gero’s GA explored

new areas of the search space. However, by the end of 500 generations, there was little

diversity left in the population. The best utility was found in the unique chromosomes

suggesting that a much greater effort ought to be made in maintaining diversity.

Adequate population diversity in the algorithms presented in this dissertation is

generated by applying more variation operations and is preserved in the custom

selection operations.

The work of Lee, Han, and Roh was motivated by advances in facility layout plan-

ning (FLP) of the architecture field, but applied to a naval vessel (Lee et al. 2002).

They also used a double summation cost function like Cort and Hill’s to capture

their multi-objective optimization: minimize transportation cost (f1) and maximize

adjacency (f2). Weighting coefficients, w1 and w2, were multiplied with each objec-

tive to give variable representation to the two terms. A third term added internal

18

penalty functions to the objective function. Since constraints were not expressed

in separate functions, the problem is classified as unconstrained. The user wrote

upper and lower bound inequality constraints, gi, for compartment area and aspect

ratio. Ru was the corresponding weighting term for each penalty function, u. The

unconstrained optimization problem is given in eq. 2.3.

Min F ′ = w1 ·
M−1
∑

i=1

M
∑

j=i+1

(fi,j×di,j)+w2 ·
M−1
∑

i=1

M
∑

j=i+1

(C−bi,j×ci,j)+

6
∑

u=1

(Ru×max(gu, 0))

(2.3)

The user predefined: M, the number of compartments; fi,j, the material flow

between compartments i and j ; and ci,j , an integer adjacency value between 0 (“un-

desirable for compartments i and j to be located close together”) and 5 (“it is

absolutely necessary”). The user also specified the quantity, widths, and lower and

upper location limits of the longitudinal and transverse passages. Distances, di,j were

calculated with Dijkstra’s algorithm of graph theory. From distance and a maximum

distance, the bi,j term was found between 0.0 (far apart) and 1.0 (close together).

The included example problem arranged the area on the Damage Control Deck

between three watertight bulkheads enclosing two subdivisions. Two longitudinal

passages extended the length of the available area and a transverse passage was

placed in each subdivision.

Arrangement of eight compartments was expressed in a four segment chromosome.

The first segment gave the order in which compartments would be laid into the avail-

able area. Like Jo and Gero, the available area was filled up in a set path. Lee et

al. started in the aft-port corner, moved forward, and then continued to the center-

line and starboard regions again filling aft to forward across the middle watertight

bulkhead. The second segment gave the allotted area for the compartments in the

same order as the first segment. Interference between compartments and watertight

19

Figure 2.1: An example of Lee et al.’s (2002) facilities layout and corresponding representation of
the four-segmented chromosome

bulkheads was avoided by placing the next space in the next region if there wasn’t

enough room in the current one. The remaining area in the last region was called

void space. A refinement operation filled in the void space by assigning it to the

compartment already occupying that region. Compartments were all rectangular.

No unique geometry or vertical stairtowers were considered. Only area and a rough

relative position were included. The third and fourth segments of the chromosome

dictated where the longitudinal and transverse passages, respectively, were located.

An example chromosome and its corresponding geometry are seen in Figure 2.1.

A Genetic Algorithm was used to optimize the chromosome solution. Crossover

and inversion altered the sequence of the compartments and the passages. Mutation

acted on the areas in the second segment.

The goal of Lee et al. was to meet the need of better space utilization rising from

less dense and larger volume payloads. However, their algorithm would have been

unable to deal with an over-allocated area. The areas allotted for each compart-

ment became arbitrary when those values in the second chromosome segment were

20

allowed to be mutated in the Genetic Algorithm. The compartment’s function and

its required area are inextricably related. Void space becomes wasted space. It does

not appear that they found a way to use the available space optimally. Assuming

an equal available hull volume and required spaces’ volume defined by the ASSET

level output to the arrangements optimization software, the Allocation part solves

the space utilization problem in the work presented here.

From the University of Zagreb in Croatia, Slapnicar and Grubisic also used a se-

quential ordering of compartments in their three step MARRSD (Modular Approach

to Ro-Ro Ship Design) approach to layout optimization (Slapnicar and Grubisic

2003). Their problem was divided into three stages: compartment creation, disposi-

tion, and valuation. The primary difference of this approach was in stage one where

compartment length and width were fixed. Compartments were not allowed to ro-

tate (exchange length and width dimensions). As with previous approaches, these

compartments were also rectangular, and their preferred proximity to other com-

partments, pre-fixed objects, and boundaries were defined in a connectivity matrix

during the problem set up.

Concurrent with precedence, Slapnicar and Grubisic laid out their compartments

in one zone of the ship at a time with a known shape and overlayed grid. Com-

partments were placed in the grid by the random order dictated in the compartment

list. Their location was determined by a search of available area. Compartments

were packed in starting at one corner and filled in bordering the previous so long

as there was sufficient room. As with Lee, Han, and Roh, the search for free space

proceeded from aft to fore and then transversely. This pattern followed conventional

“knapsack” problem methodology. Conversely, the search was on the much smaller

grid size rather than by the regions delineated by the longitudinal passages. The

21

compartment location was defined by the grid points (called knots) occupied.

Layouts were optimized with a closest to utopia calculation. Six attributes were

evaluated for each arrangement: area utilization of the zone, distance and com-

munication between compartments, proximity between compartments and pre-fixed

objects, proximity between compartments and the outside boundary, and lastly the

disposition of all compartments. Recognizing the trade-offs between the objectives,

a Pareto-solution was sought. A Pareto-optimal solution cannot improve in one ob-

jective without sacrificing performance in another (Papalambros and Wilde 2000).

The best (maximum in this case) value achieved for each attribute i is noted as MYi.

The solution offering the best of all attributes was called utopia, UP, eq. 2.4.

UP = (MY1, MY2, MY3, MY4, MY5, MY6) (2.4)

While utopia is not feasible, the goal is to find the solution closest to it. This distance

DP in criterion space is calculated for each solution and its attributes’ values, PYi,

eq. 2.5.

DP =
√

(MY1 − PY1)2 + . . . + (MY6 − PY6)2 (2.5)

MARRSD was exemplified for an aft accommodations zone of a Ro-Pax vessel.

Twenty-one cabins, four fixed compartments, and seven service compartments were

originally placed around two passages. The passages were each represented in two

segments for a total of 32 arrangable compartments to be handled by the optimiza-

tion. A total of 1,434,899 of the possible 32! (∼ 2.6 ∗ 1035) variations were generated

in 23 minutes. Their final solution, as defined with the initial adjacency preferences,

appeared to have strong area utilization. The only apparent drawback was that one

of the passages was disjointed. It was treated as two separate components and placed

only by searching for available area rather than looking for a logical place to maintain

22

continuity with the other passage components. While Lee, Han, and Roh gave too

much flexibility in their compartments’ area, Slapnicar and Grubisic perhaps were

too restrictive in their compartments’ definition.

2.4 Geometry and Topology

Medjdoub and Yannou approached the architectural layout problem with a novel

two step approach: topology and geometry (Medjdoub and Yannou 2000). The topol-

ogy step emulated the process that an architect goes through to sketch functional

relationships between two spaces without consideration of actual dimensions. These

topological relationships were shown by graphically connecting nodes representing

rooms, cardinal directions, stairs, and corridors.

A full enumeration of all possible combinations of connections was recognized as

inefficient. By introducing constraints and negating redundant solutions, the search

space was limited to a reasonable size. The remaining topologies were explored by an

automated branch and bound optimization within Medjdoub and Yannou’s software,

ARCHiPLAN. Each node in the tree represented a design choice. If a choice violated

constraints, the branch was omitted and a new branch was examined. By a depth-first

search all options were attempted. A cost function measured converged solutions. As

the search continued, new solutions were pairwise compared to the earlier converged

solution to find the better one until the entire tree was explored and a global optimum

was revealed. ARCHiPLAN offered more alternatives than the user could generate in

comparable time. Should the user want to narrow the choices, additional constraints

and criteria could be added, and the topology optimization re-run.

Valid solutions were presented to the user before proceeding to the second step, the

geometry definition. From each single topology, Medjdoub and Yannou purported

that there were multiple possible geometries. Yet each geometry could be traced

23

back to uniquely one topology.

Spaces were drawn on an orthogonal grid as rectangles defined by two corner points

(X1,Y1) and (X2,Y2). To form L and T shapes, two rectangles were placed next to

each other. The space’s length, width, and surface area were given appropriate upper

and lower bounds. These constraints defined allowable integer domains for X1, X2,

Y1, and Y2. Aspect ratio limitations further confined these domains. Also, two

spaces’ rectangles were not allowed to occupy the same area. If the topology made

two spaces adjacent, then they had to share a minimum overlapping contact. These

constraints were rigid, not fuzzy. Criteria expressed in the cost function were given

weighting functions by the user. Medjdoub and Yannou used two criteria, minimal

stair and corridor space and minimal total wall length, to show the flexibility of their

formulation to handle assorted user preferences.

Optimization was done by enumeration and a branch and bound search. How-

ever, increasing the numbers of variables brought an explosion of generated solutions

without one designated optimum. Medjdoub and Yannou were only able to tackle

what they called a middle-size problem with twenty spaces on two floors. Solu-

tions showed tightly packed rectangular rooms. Only corridors had L and T shapes.

Their program showed significant advances in the simplification and organization by

approaching the layout optimization problem in two steps.

Michalek, Choudnary, and Papalambros advanced the two step approach in their

work at the Optimal Design Laboratory at the University of Michigan (Michalek

et al. 2002). Instead of the sequential steps applied by Medjdoub and Yannou,

Michalek iterated between topology and geometry. The objective of the topology

optimization was to find the best geometry. A Genetic Algorithm was used to opti-

mize the topologies. Only feasible topologies were passed to the geometry step for

24

evaluation in each generation of the Genetic Algorithm. Geometries were optimized

by a hybrid Simulated Annealing and Genetic Algorithm approach. Michalek’s archi-

tectural optimization problem also expanded the scope of objectives and constraints

and re-formulated the independent variables expressed in vector form as x. He was

the first to set up a formal optimization problem in standard negative null form

(Papalambros and Wilde 2000).

Topologies by Michalek et al. defined connectivities between spaces and spaces’

rough location. A connectivity matrix, φij, expressed the connectivity between space

i to space j and to the outer available area boundary in all four cardinal directions

where I = total number of spaces for i = 1, 2, . . . , I and j = 1, 2, . . . , I, N, E, S, W.

If connectivity were required, φij = 1, else, φij = 0. Topology rough locations were

plotted on a grid from two independent integer variable coordinate points (xi, yi).

Links were added to illustrate the required connectivities between spaces. For a

feasible arrangement topology, the links could not intersect; the graph had to be

planar.

A topology generated by the Genetic Algorithm that passed the constraints was

then evaluated in the geometry step. With this topology definition, each topology

could make multiple different geometries, and a single geometry could be made by

more than one topology.

Geometry was defined by ten continuous variables for each space. A rectangle was

the default shape for each space. More complex shapes were stated to be possible

by using two contiguous rectangles, but this case did not appear for any of the

living spaces in the presented solutions (Michalek 2001). An arbitrary internal point,

(xi, yi), was placed on an orthogonal grid. The grid was oriented with the four

cardinal directions. Four more variables, Ni, Ei, Si, Wi, gave the distances to the

25

corresponding walls from the internal point. Window dimensions were included in

the last four variables: ωN , ωE, ωS, and ωW .

There were four types of spaces expressed with these variables: rooms, boundaries,

hallways, and accessways. Constraints varied by type. Rooms were not allowed

to overlap. Rooms were forced inside boundaries, and accessways were made to

intersect rooms. Equality constraints confined rooms to touch boundary edges. Rigid

inequality constraints limited minimum area, length, width, and aspect ratio. Lastly,

a window had to be smaller than the wall in which it fits. All constraints had to be

satisfied to ensure a valid solution.

Solutions were optimized with respect to a multi-objective cost function: min

f(x). Michalek increased the scope of space layout optimization by including terms

to minimize heating, cooling, and lighting cost. As in previous studies, he also

minimized wasted space or non-living space.

The problem was highly multi-modal and constrained. A first attempt to solve

it used CFSQP (a C version of Feasible Sequential Quadratic Programming), but

found that while it was fast and robust, the algorithm too quickly converged on a

nearest local optima in the multi-modal search space. CFSQP was too dependent

on a strong initial starting point. For a better global search, Michalek et al. (2002)

tried Simulated Annealing (SA) and Genetic Algorithm. However in the highly

constrained field, feasible solutions eluded detection. Ultimately, a hybrid approach

of alternating global and local search was used. For a design problem of up to seven

rooms, the hybrid SA/SQP approach was able to produce reasonable solutions.

2.5 Fuzzy Multi-Attributive Group Decision-Making

Authors of the studies above commented on the subjectivity of inputs and the need

to discern what qualified a good arrangement in order to produce arguably better

26

solutions. While most of the research above dealt with improving the arrangements

algorithms, Ölçer, Tuzcu, and Turan aimed instead to write better inputs and to

make a better choice from the Pareto-optimal design alternatives (PODAs) (Ölçer

et al. 2006). Their Fuzzy Multi-Attributive Group Decision-Making (FMAGDM)

methodology aggregated the opinions of a collection of experts to make the best

choice.

A commercial GA-based optimization program, FRONTIER, was used to create

a set of Pareto-optimal designs. The N alternatives were each evaluated on K at-

tributes. M number of experts judged each alternative Xj for all its attributes Ai.

Their assessments Rij were entered into a three-dimensional array. Ölçer et al. also

accounted for weightings for attributes w and experts we assigned by a moderator.

Each expert defined a fuzzy membership function for each attribute. Fuzzy meth-

ods were used to capture the imprecise nature of their decisions. These functions

were normalized across all experts. An actual consensus among experts was not re-

quired. All assessments R were combined to get a net fuzzy opinion. The PODAs

were ranked and the best was selected. Selection applied both a closest to utopian

and farthest from negative-ideal solution formulation.

2.6 SURFCON

Andrews, Dicks, and Pawling developed an alternate Building Block method for

ship arrangement synthesis at the University College London (Andrews and Dicks

1997). The first application of the building block methodology was on submarines

in 1990. The SUBCON program (Andrews 1996) and later the SURFCON pro-

gram (Andrews and Pawling 2003) were developed and ultimately included within

the commercial PARAMARINE software. UCL’s approach aimed to modernize the

traditional ship design spiral sequence: initial sizing, parametric survey, layout, and

27

performance analysis. Concurrent engineering principles supported a more integrated

decision making process (Andrews 2003).

Andrews’ approach stemmed from first addressing the ship’s functional require-

ments, and then letting these elements play defining roles in the ship’s arrangement

and hull form. By delaying the hull form generation step, the hope was to foster

innovative hull form solutions, particularly the trimaran.

Only the most important design specifications, such as payload or mission, are

considered in the first step. Depending on the size and type of ship, these then

drive the major features and topside arrangement in step two. Often the topside

arrangement is the battle ground for design decisions that influence the rest of the

above and below deck arrangements. Trade-offs in weapon placement and clearance,

aviation, and other equipment are dealt with primarily. Initial sizing and weight

constraints are then checked for this rough design. The building block methodology

is structured to reveal failures early on when they are most easily and cheaply fixed.

After major features, the next breakdown of ship structure is the building block

unit. A building block is identified by physical and functional attributes. The blocks

fall into one of four functional groups: infrastructure, float, move, and fight. Seven

weight groups also characterize the blocks: structure, personnel, ship systems, main

propulsion, electrical power, payload, and variable. In three-dimensional space, the

building blocks are controlled by drag and drop, and their properties dynamically

update as their position is edited.

Functionally related spaces are collocated in Super Building Blocks. Tankage is

allocated at this level. When all initial blocks are gathered, a hull form is wrapped

around the structure, and external modules analyze weight balance, space utiliza-

tion, powering, seakeeping and maneuvering, powering, and structural requirements.

28

Subsequent stages can resolve the building blocks into finer subdivisions. The ship

design converges by disaggregating building blocks into spaces.

Ship concepts are validated, but not formally optimized by the building block

methodology. The user makes improvements by studying the effect of each block on

the design’s performance by moving the block and re-evaluating the analysis. An-

drews proposed that the goal of preliminary design was specification development,

rather than development of the design itself. With the inside-out approach, SURF-

CON delivers an effective ship concept development tool.

2.7 Ongoing Work

Concurrent in development with the present work is the work of Van Oers et al.

from The Netherlands (Van Oers, Stapersma, and Hopman 2007). Their preliminary

space allocation software responds to an inferred Catch-22 in the design process.

Modern tools give increasingly more advanced output, but require input with a

corresponding finer level of detail as well. Thus some preliminary tools are reliant

on input that surpasses the preliminary level, and the benefit of the early-stage

integrated approach is lost. Van Oers’ software, in turn, only takes a rough pre-

defined content list and generic hull envelope and gives a feasible ship concept that

is still flexible enough to allow low cost alterations.

Functional space allocation is done on a two-dimensional x-z plane inboard profile

grid, with x positive towards the bow and z positive up from the keel. The longi-

tudinal grid unit is 1m. Vertical grid size equals the deck height, 3m. Spaces are

all rectangular with fixed dimensions. Space height may exceed one deck. Loca-

tion may also be fixed at the beginning of the algorithm. An important addition in

this work is the explicit representation of required free area around a physical space

for proper operation. Having compared relative topology definitions and absolute

29

position definitions, Van Oers chose the latter “scale coordination parametrization”

approach to space location. Van Oers also contrasted the bin-packing versus wrap-

ping approaches, and settled on a hybrid of the two. Available space is enclosed by

a generic hull form that could be adjusted slightly to satisfy requirements; the upper

envelope is unbounded.

Each space has two independent variables: initial location in x and initial location

in z. In sequence, each space is placed, first looking for available area in its initial

location. The search continues to the closest horizontal position and then to higher

decks until either a feasible location is found or it is returned to its initial location

and overlapped with the occupant previously blocking its deposition.

Using the spaces’ initial locations as genes, a Genetic Algorithm optimizes the

chromosomes of (x,z) coordinates with Tournament selection, Simulated Binary Cross-

over (SBX) (Deb 2001), and elitism. The objective function has four parts to be min-

imized: total overlap, center of gravity, total void space, and internal circulation cost.

Internal circulation cost is calculated using a similar double summation formulation

as seen previously. Overlap is considered between spaces, but also between spaces

and the required buffer area around spaces (ie. gun firing arc). Using a population

of 150 chromosomes over 150 generations, the total run time takes approximately

ten minutes.

Post-processing reduces the population returned by the GA’s terminal generation

to only designs with zero overlap. After post-processing, the designer is left with

a handful of feasible designs from which to differentiate winners. One sample solu-

tion is included in Figure 2.2. Van Oers’ work shows promising early results, and

will eventually be extended to three-dimensions and modified to use a refined space

definition and to include passages.

30

Figure 2.2: A feasible concept design by Van Oers et al. (2007)

2.8 Shared Approaches

A great amount was learned from the past authors. Like Cort and Hills, the al-

gorithm presented here will follow the example of Nehrling by applying Fuzzy Sets

to evaluate design criteria. Roughly half of the authors discussed used a Genetic Al-

gorithm as the chosen optimization method. The set-ups of Medjdoub and Yannou

and Michalek et al. will be adapted by formulating a two step, topology and geom-

etry, arrangement problem. The two steps will be undertaken after first allocating

spaces to Zone-decks. Called a zone in the literature by Cort and Hills, Slapnicar

and Grubisic and others, the case for breaking the ship into discrete bins for al-

location is well supported from the earlier works. For Zone-decks on the Damage

Control Deck, passages will be set as they were by Lee, Han and Roh except with

very different controls. All the authors except Andrews and Van Oers used a fixed

envelope of the available volume as will be taken as an input here. The assumption

31

is that the synthesis tool ASSET has sized the envelope adequately. An orthogonal

grid overlaying the area is justified by multiple past works. Similar to Michalek’s

room variable definitions, the geometry solution variable bulkhead locations will be

defined with respect to the grid’s origin. The three box approach to be introduced

is reminiscent of CASGAP’s use of chunks. Parallels can also be drawn to work on

VLSI (Very-large-scale integration) chip layout. In pursuit of not reinventing the

proverbial wheel, the motivation for many design choices made in formulating the

presented algorithms has come from these past experiences.

A summary of past and present methods is given in Table 2.1. The first column

marks authors who used fuzzy logic to evaluate solutions. GA’s were used by five

of the included works. Programs limited to manual drag and drop (D&D) methods

are marked in the third column. Authors with an X in the “Grid” column delin-

eated the available area with an orthogonal grid. Grid spots or ship regions that

were filled in an prescribed order, as by Lee, Han, and Roh, are indicated in the

“Fill” column. Most arrangements were made for a known hull form or surrounding

boundary, column 6. The included work from the architecture field also used a fixed

area envelope. The only Naval Architects who did not use an input hull form were

also the two who used Design Building Blocks, DBBs. The incorporation of both

allocation (column 8) and arrangement (column 9) of spaces as optimization prob-

lems is unique to this author. Those who specifically placed spaces’ bulkheads or

rooms’ walls are credited with performing arrangement. The two step geometry and

topology (G&T) arrangement process is indicated in the last column.

32

Table 2.1: Author and Methods Comparison

Fuzzy GA D&D Grid Fill Hull DBB Alloc Arr G&T
Carlson, Fireman X X X X
Nehrling X
Cort and Hills X X X X

Ölçer, Tuzcu, Turan X X
Jo and Gero X X X X
Lee, Han, Roh X X X X
Slapnicar and Grubisic X X X X X
Medjdoub and Yannou X X X X
Michalek X X X X X
Andrews X X
Van Oers X X X X
Nick X X X X X X X

GA = Genetic Algorithm
D&D = Drag & Drop
DBB = Design Building Block
Alloc = Allocation
Arr = Arrangement
G&T = Geometry & Topology

33

CHAPTER 3

Part 1: Allocation

3.1 Problem Statement

The allocation problem objective is to assign each space i required in the ship to a

Zone-deck k with consideration of its global and relative space location preferences,

Uci
, and to provide efficient space utilization of the Zone-decks. The available space

should be fully utilized, but not over committed. Utilization is the total area of

assigned spaces divided by the available assignable area in the Zone-deck. If too much

required area is assigned to a given Zone-deck, then each space is compromised by

having to shrink in size to fit. Comfort and functionality are lost in these instances.

Should too little area be filled by spaces, then each space may be made comfortably

larger, but the excess space is ultimately wasteful. Under-utilization should not be

as harshly punished as over-utilization. To allow space for unassigned functions such

as lockers, minor passages, air shafts, etc, only a significant fraction (perhaps 95%)

of the available assignable Zone-deck area would be the goal to be assigned to the

spaces.

A schematic profile view of the prototype ship that will be used here as the

primary illustration example is shown in Figure 3.1. This four-deck, six-subdivision

configuration with seventeen Zone-decks might be typical of a small combatant, such

as a corvette. There are two arrangeable decks within the hull and two decks in

34

Figure 3.1: Example Ship Inboard Profile

the superstructure. Like the Zone-decks, the spaces are identified by a sequential

number.

There are 70 spaces in the example problem to be presented here. To mimic

spaces having similar purposes, such as medical, aviation, or accommodations, the

seventy spaces are grouped into six groups. All spaces within one group share the

same global and relative location preferences, but they do not have preferences to

be close to other group members. Each group is color coded to facilitate solution

evaluation.

The global Zone-deck location goal is split into separate goals for deck placement

and for subdivision placement in this original prototype problem instead of an explicit

matrix of preference values for each individual Zone-deck. The total number of

discrete global space preferences is the product of the number of spaces with the sum

of the number of subdivisions and the number of decks, in this case 70×(6+4) = 700.

Preferences relating the proximity or distance between each pair of spaces are rel-

ative preferences. Proximity is measured longitudinally and vertically by increments

of subdivisions and decks, respectively. For example, if two spaces are assigned to the

same Zone-deck then their proximity is zero in both directions. Discrete adjacency

and separation preferences can be stated for up to three subdivisions longitudinally

and up to two decks vertically. If a distance between two spaces is greater than these

35

extents, then the value is taken as the greatest extent stated. For an adjacency re-

quirement, the preference will be high for a near zero proximity and decrease as the

two spaces move further apart, either longitudinally or vertically. For a separation

requirement, the preference value will be low for a near zero proximity and increase

as the two spaces move further apart. Any space can be related to as many other

spaces as required by the design.

In the example presented here, there are the 700 individual global location con-

straints and 850 sets of reciprocal adjacency and separation constraints in addition

to the 17 Zone-deck area utilization goals. Each of the 70 spaces can be allocated

to uniquely one of the 17 Zone-decks giving a theoretical solution search space of

1770 = 1.35 × 1086 total possible allocation solutions. After the Zone-deck area uti-

lization constraints are considered, however, many of these solutions are infeasible

because each Zone-deck could only accommodate about 70/17 ≈ four to five spaces

if all spaces and all Zone-decks were of average size. The resulting optimization

problem is still, however, a large combinatorial problem and quite difficult.

The space allocation problem is an NP-hard combinatorial problem; the solutions

are discrete and each solution is unrelated to its neighbors. There is no solution

surface with gradient information that can be exploited to help solve the optimization

problem. No algorithm has been developed to effectively find a global optimum for

the NP-hard class of problems. However, reasonable success has been found using a

Genetic Algorithm (Goldberg 1989; Gen and Cheng 1997; Li and Parsons 1998; Li

and Parsons 2001; Deb 2001). This problem will be formulated and illustrated for

the example ship with 70 spaces and 17 Zone-decks.

36

3.2 Mathematical Model
3.2.1 Independent Design Variables

The independent variable vector for the allocation problem is defined as an integer-

coded chromosome, eq. 3.1.

x = [x1, x2, . . . , xI] (3.1)

I is the total number of spaces and the xi are integers [1, 2, . . . , K] that assign space

i to one of the K Zone-decks within the ship. This becomes a very difficult combi-

natorial problem, as noted, since assigning seventy spaces to 17 Zone-decks involves

KI = 1770 ≈ 1085 possible designs.

3.2.2 Definition of the Goals and Constraints

A Zone-deck is constrained by how much total area can be assigned to it. Each of

the K Zone-decks is assumed to have 95% of its assignable area available for spaces.

The Zone-deck utilization is defined as the sum of the required areas Aik of all of the

spaces Ik currently assigned to Zone-deck k divided by the total assignable area of

that Zone-deck Ak, eq. 3.2,

Area Utilization of Zonedeck k = UUk
=

∑I
i=1 Aik

Ak
(3.2)

3.2.2.1 Zone-deck Utility

The Zone-deck utilization utility UZ−dk
is modeled mathematically as a Normal

(Gaussian) distribution function that can take on different standard deviation pa-

rameter values for over-utilization and under-utilization, eq. 3.3 and Figure 3.2.

UZ−dk
= e−

(UUk
−µ)2

2σ2 ,
σ = σunder if UUk

< µ

σ = σover if UUk
> µ

(3.3)

This example Zone-deck fuzzy utilization utility is centered at µ = 0.95 to match the

assumed assignable area for spaces. For utilization less than or greater than µ, the σs

37

Figure 3.2: Gaussian-Based Model for Zone-deck Area Utilization Utility UZdk

shown in Figure 3.2 and used in the example below are σunder = 0.4 and σover = 0.2,

respectively. As seen in the figure, all Zone-deck area utilization fuzzy utility values

are in the range: [0,1]. Utility UZ−dk
= 1 designates full satisfaction (i.e., 95% of the

Zone-deck’s assignable area is utilized) while UZ−dk
= 0 designates no satisfaction

or unacceptable. Using minimum correlation fuzzy inference (Kosko 1992), the final

Zone-deck utility UZ−d, from the viewpoint of all of the Zone-decks, is the minimum

utility of all the 17 Zone-decks, eq. 3.4.

Zonedeck Utility = UZ−d = min(UZ−d1 , UZ−d2 , . . . , UZ−dK=17
) ≤ 1 (3.4)

3.2.2.2 Space Global and Relative Location Preferences

The spaces can each have global placement preferences and relative preferences.

For simplicity in presenting the example design and to facilitate evaluation of the so-

lutions, color-coded groups of spaces are assumed here to share the same global and

relative preferences. Spaces numbered 1-10 (blue), 11-15 (magenta), 16-25 (gray),

46-60 (green), and 61-70 (yellow) are assumed to be related spaces (such as medical,

38

accommodations, aviation, storeroom/galley/messroom/scullery, etc.). Spaces in the

26-45 (cyan) group have no preference for global location as might occur with store-

rooms. All fuzzy location utility preferences are discrete to a unique subdivision or

deck and between zero and one. For global location constraints, the location of each

space in the longitudinal and vertical direction is given a preference value. Table 3.1

shows the global location preference utility values used in the example.

Table 3.1: Global Location Preference Fuzzy Utilities for Space Groups

Longitudinal Vertical
Subdivision Preference Deck Preference

Stern Bow Baseline SS
Space 6 5 4 3 2 1 1 2 3 4

1:10 1.0 0.6 0.3 0.2 0.1 0.1 1.0 1.0 0.5 0.4 strong stern and in hull

11:15 0.6 0.8 1.0 1.0 0.8 0.6 1.0 0.6 0.4 0.2 amidships and strong low

16:25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.5 weak in hull

26:45 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 no preference

46:60 1.0 1.0 1.0 1.0 1.0 1.0 0.2 0.4 0.6 1.0 strong high

61:70 0.1 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 1.0 strong toward bow

Similarly, adjacency constraints between any two spaces are user defined by dis-

crete fuzzy preference values. Adjacency relationships are not required and depend

upon the designer’s intent. Spaces in the 26:45 (gray) and 61:70 (yellow) groups are

assumed to have no relative preferences. All relationships are given twice recipro-

cally in this example. Table 3.2 enumerates these relationships by space group. For

example, each space 1 through 10 has a strong preference for separation from each

space 11 through 15 (particularly in the longitudinal direction) and vice versa. The

zero location is the current location of space A and the utility values are for the

various relative locations of the other space B.

The overall utility of the location of each individual space is also defined using

a minimum correlation fuzzy inference returning the minimum preference value of

the applicable global position constraints and adjacency constraints for that space.

39

Table 3.2: Relative Location Preference Fuzzy Utilities for Space Groups

Longitudinal Vertical
Aft Forward Lower Higher

Space1 Space2 -3 -2 -1 0 1 2 3 -2 -1 0 1 2

1:10 11:15 0.7 0.6 0.5 0.1 0.5 0.6 0.7 1.0 0.8 0.6 0.8 1.0 strong sep

1:10 46:60 1.0 0.8 0.7 0.5 0.7 0.8 1.0 1.0 1.0 0.8 1.0 1.0 weak sep

11:15 46:60 0.2 0.3 0.4 1.0 0.4 0.3 0.2 0.3 0.5 1.0 0.5 0.3 strong adj

16:25 46:60 1.0 0.8 0.7 0.5 0.7 0.8 1.0 1.0 1.0 0.8 1.0 1.0 weak sep

26:45 no pref

61:70 no pref

The overall space utility, from the viewpoint of the entire ship arrangement Uspaces,

is defined as the average of these values, eq. 3.5,

Uspaces =
1

I

I
∑

i=1

min(all Uglobali , all Urelativei
) ≤ 1 (3.5)

where Uglobali denotes the vertical and longitudinal global preferences for space i and

Urelativei
denotes the relative preferences for space i. By taking the average over all

spaces, no one space can dominate the overall utility of the solution and prevent

an otherwise good solution from being recognized. Within ISA, the global location

constraints and the adjacency separation constraints are given as (Zone,Deck) = (x,z)

discrete matrices rather than separate values for the Zone (x) and deck (z) as used

here. Weighting factors are also introduced to give greater emphasis to the needs of

the more important spaces, such as a Combat Information Center.

3.2.3 Definition of the Objective Function

Goodness of the overall arrangement is a function that satisfies both the space

location utilities and the Zone-deck area utilization utilities. The goal is to find

the maximum U of the overall ship space allocation utility, U∗, by increasing both

the Zone-deck utility UZ−d, eq. 3.4, and the overall space utility Uspaces, eq. 3.5.

Each component utility has a value in the range from zero to one. Fuzzy product

inference establishes the overall ship space allocation utility U (Kosko 1992). An

40

equal weight is given to both component utilities in defining the utility of the overall

space allocation utility, eq. 3.6.

U∗(x∗) = max
x

U(x) = max
x

[UZ−d · Uspaces] ≤ 1.0 (3.6)

3.3 Optimization Method

As introduced previously, a Genetic Algorithm was chosen to solve this challenging

optimization problem. The specific GA developed here has evolved from an existing

GA (Kent 2005). The Fortran 90 GA code running on a PC with a Pentium 4 CPU,

2.80 GHz processor and 512 MB of RAM can process 4000 generations of this 70

space, 17 Zone-deck example problem in approximately two minutes. A schematic

for the Allocation GA is shown in Figure 3.3.

Figure 3.3: Allocation Genetic Algorithm Schematic

Each integer-coded chromosome, eq. 3.1, represents a different candidate alloca-

41

tion for the spaces within the ship. There is an element or gene for each space to

be assigned. Thus, the chromosome’s length is equal to the total number of spaces

I. The value of the gene, its allele, expresses the numbered Zone-deck assignment

for that space. Thus, the integer gene values vary from one to the total number of

Zone-decks, K. Fifty chromosomes are included in the population. This number was

chosen to give enough population diversity without having too many wasteful extras.

3.3.1 Elitism and Fitness Percentage

The elite chromosome and the fitness percentage (FP) of each chromosome i are

identified in the last step of the cost function evaluation. Elitism exempts the elite

chromosome from variation operations to avoid replacement by the daughter(s) and

mandates its survival in selection to preserve the optimization work accomplished so

far. Extra copies of the elite chromosome are frequently present in the population

after selection, and they are susceptible to variation. FP is used to rank the chromo-

somes for consideration in their selection to be re-written into the next generation’s

population. The FP eq. 3.7 divides the ith individual’s fitness Ui, from eq. 3.6, by

the sum of all the chromosomes’ fitnesses.

FPi =
Ui

∑I
j=1 Uj

(3.7)

3.3.2 Tournament Selection

Kent’s original selector, a Roulette algorithm, took the selection probability for

each chromosome from its fitness percentage. To maintain population diversity,

however, a more lenient selection process was introduced. The Double Round Tour-

nament algorithm by Michalewicz decreases the probability that a dominant super-

chromosome would become over represented (Michalewicz 1996). It is also compu-

tationally more efficient and more effective in real-coded problems. Double Round

42

Tournament selection was used successfully by Li (Li and Parsons 1998; Li and Par-

sons 2001).

The tournament selection’s multi-round process finds each chromosome to be writ-

ten into the next generation. In the first round, 30 chromosomes of the 50 in the

population are randomly selected. This allows for the chance of lesser chromosomes

being selected if a super-chromosome and its derivatives were not picked as part of

the thirty. These thirty are ordered by fitness percentage and the top three survive to

round two. With a random number draw, 0.0 ≤ Rnd ≤ 1.0, one of these is selected

with a probability corresponding to its fitness rank, eq. 3.8.

Survivor Chrom # =

Chrom #1 if 0.0 ≤ Rnd ≤ 0.5

Chrom #2 if 0.5 ≤ Rnd ≤ 0.8

Chrom #3 if 0.8 ≤ Rnd ≤ 1.0

(3.8)

Thus, the most fit has a 50% chance of selection; the second has a 30% chance, and

the third has a 20% chance. Tournament selection is performed 50 times to select

each new chromosome in the next generation’s initial population.

3.3.3 Variation Operations

Four operations were included to act on the allocation chromosomes. Simulated

Binary Crossover (SBX) and two-space swap were added to the two basic operators

discussed in chapter one, mutation and single-point crossover, Figure 1.2. Studying

the initial allocation results prompted the creation of “swap”. This variation opera-

tion does not have an obvious biological analogy, but exchanges the values between

two genes. For swap to be a viable operation, it must only operate on genes that have

the same set of possible alleles. All daughters replace their parents in the population;

thus, the elite chromosome is exempt from variation. When called, mutation, single-

point crossover, and swap are each executed 25 times. SBX is invoked differently to

43

control its great global search power.

3.3.3.1 Simulated Binary Crossover

In an effort to increase the diversity in the population and its global searching

power, an algorithm by Deb called Simulated Binary Crossover (SBX) was added

during algorithm development (Deb 2001). In binary coding, a single crossover point

may fall within the bits expressing a variable’s value. When segments are exchanged

in the crossover, a new value is then introduced to the variable that has been di-

vided. This additional variation is not present in real coding because only values

that were present in the parent chromosomes will appear in the daughters. Also

greatly increasing its power, SBX is a type of uniform crossover, rather than single

or double-point crossover. It operates on all genes in the chromosome during one

function call. SBX aims to induce similar variation into real-coded algorithms as

present in binary-coded algorithms by formulating daughters as a weighted average

of the two parents.

First a random number u is drawn. If u is less than or equal to 0.5, the daughter

gene values will lie in between those of the parents. Otherwise the daughter allele will

be less than the smaller parent allele and greater than the larger parent allele. The

u is used to calculate β, a spread factor, proportional to the difference between the

parent genes, eq. 3.9. The difference between the offspring gene values is proportional

to the parents’ difference.

β =

(2u)1/(η+1) if u ≤ 0.5

1
2(1−u)

1/(η+1)
otherwise

(3.9)

The spread factor η is a non-negative measure, adjustable by the designer, controlling

nearness of the daughters to their parents. A larger η leads to a higher probability of

tight solutions. The lowest operable value, η = 1, is used here to encourage a looser,

44

or greater, difference from the parents. Daughters xt+1
1 and xt+1

2 replace parents xt
1

and xt
2, respectively, using eqs. 3.10 and 3.11,

xt+1
1 = 0.5[(1 + β)xt

1 + (1 − β)xt
2] (3.10)

xt+1
2 = 0.5[(1 − β)xt

1 + (1 + β)xt
2] (3.11)

When the two parents are dissimilar this algorithm is effective. However, it is

less effective as they become more similar. This ineffectiveness often occurs in the

later generations when many chromosomes share some of the same desirable schema.

The power of this operation is maintained by checking to make sure the selected

chromosomes are different before engaging SBX. SBX is also treated with a cooling

function. The great variety it introduces is less desirable as the population converges

in later generations. At each generation, SBX is carried out a “Cool” number of

times, eq. 3.12,

Cool = floor(PopNum/2 − floor(t/T) × (Comps/2)) (3.12)

where T is the maximum number of generations; t is the generation number. Pop-

Num is the number of chromosomes in the population, and Comps is the total number

of spaces. Floor is the round down operator. For PopNum = 50, cool starts at 25

and decreases quadratically to zero in this example.

3.3.3.2 Mutation

Mutation, along with single-point crossover, is a parallel to the process seen in

genetics. A single chromosome of the population is chosen randomly by a random

real number draw, Rnd, between [0,1] translated into a positive integer chromosome

number, eq. 3.13,

Parent = ceiling(Rnd × Number of spaces) (3.13)

45

where ceiling is the round up operation. Parallel translation from a real random

number to integer selection is used throughout the algorithm. Next, one gene corre-

sponding to a space index number is picked randomly. To select the mutated value

from the total number of Zone-decks, all Zone-decks are given an equal chance of

assignment with the same random selection pattern. With this process it is possible

to select the same value as the parent value. This potential small loss in effectiveness

is offset by calling for twenty-five mutations in each generation. With seventy genes

each in fifty chromosomes this number of mutations changes only 0.7% of the genes.

Mutation introduces less variation than crossover. Thus, it could be said to be a

much less powerful operator than crossover, but it is much more effective in improving

the fitness of top chromosomes. Once good chromosomes are found, only small

tweaking will find better alternatives.

3.3.3.3 Single-Point Crossover

Single-point crossover exchanges the end tails of two parent chromosomes. Parent

chromosomes are selected by random real number draws. Single-point crossover

splices the two chromosomes at only one point. The cross point between genes is

randomly selected between one and (NumComps - 1) to make sure at least one space

is in the head and in the tail. It is an essential operator when the mean and best

fitness are relatively poor in earlier generations. In this period, great variation must

be introduced to find new regions of the search space.

3.3.3.4 Pair Swapping

Investigations revealed that the best chromosomes only improved in the later part

of the search when spaces of like size were exchanged between two Zone-decks (Nick

et al. 2006). Neither single-point crossover nor mutation could effectively carry

out this trade. Two space swap was introduced to do this further refinement. In

46

this operation two randomly selected genes of one randomly selected chromosome

swap assignments, Figure 3.4. This was found to be more effective than mutation

in generating new best chromosomes in the latter part of the searches. This can be

seen in Appendix A that tracks the elite chromosome and variation operation that

formed it through a complete GA of 3717 generations.

Figure 3.4: Sample Genetic Algorithm Variation Operation: Two-space Swap

3.3.4 Re-seeding and Stopping Conditions

Reseeding and stopping conditions are the only ways to pause and stop, respect-

fully, the generations. Should the GA not find a new elite chromosome in a user-

specified number of generations (e.g. 200) then the progression of generations is

paused and a new population is randomly reseeded to replace the stagnant popula-

tion, less the best chromosome which is retained by elitism. Generations cease when

a stopping conditions is reached:

• A maximum number of generations (e.g. 5000)

• A maximum number of reseedings with no additional progress (e.g. 5)

Both conditions imply that the population has probabilistically converged. The

nature of a genetic algorithm guarantees a good solution and provides a high prob-

ability of finding the global maximum. The ultimate solution is at the discretion of

the naval architect after observing the results of a sufficient number of runs.

47

3.3.5 Observations from Initial Experiments

Most runs were found to converge to significantly different chromosomes. This

implies that there are many local optima in the search space. However, the history

of the best chromosomes through the optimization runs typically showed conver-

gence through a series of mutations and two-space swaps on a chromosome that

was found in the first twenty generations out of thousands. After that, local op-

tima never replaced this strong parent schema. This pattern of convergence results

from what is called a super-chromosome. When the majority of chromosomes are

poor, a chromosome with moderate fitness will quickly over-populate and become a

super-chromosome. Strong schemas have the best probability of surviving through

the tournament selection. Copies and altered copies of this original strong parent

flood the population. To increase the effectiveness of the GA, the greatest possible

diversity in the population should be maintained and it must have the search power

to find drastically different chromosomes.

Three specialized features were introduced to address these goals. The first two,

tournament selection and Simulated Binary Crossover, were described above. The

third modification, GenALLOC, introduced a new way of determining the initial

population of the GA to accelerate the progress in the early generations.

3.3.6 GenALLOC

GenSTART was the first initial population generator. In this subroutine each

space was sequentially selected and then randomly assigned to a Zone-deck. This led

to a large fraction of the chromosomes having very low utility since the area utiliza-

tion of many Zone-decks was outside reasonable limits. GenALLOC was designed to

give better starting points for the Zone-deck utilization by ensuring that in the initial

population each Zone-deck has about the same number of spaces assigned to it. This

48

is achieved by randomly “dealing” out the spaces to the Zone-decks sequentially until

all spaces have been allocated. With 17 Zone-decks to be filled with seventy spaces,

each Zone-deck is, therefore, randomly assigned either four or five spaces. GenAL-

LOC replaced the predecessor subroutine, GenSTART, and reduced the number of

possible solutions from about KI = 1086 to about 1075 with each member of the

initial population appoximately satisfying the Zone-deck utilization constraints.

3.4 Optimization Results

The best space allocation found for the 70 space, 17 Zone-deck example using

3717 generations of the GA described above is shown in Figure 3.5. For reference,

the general space global location and relative adjacency/separation constraints are

summarized qualitatively in Table 3.3. The detailed preferences were shown previ-

ously in Tables 3.1 and 3.2. The resulting Zone-deck utilities are all 0.993 or above,

and from eq. 3.4 the UZ−d = 0.993. The individual Zone-deck area utilizations are

detailed in Table 3.4. The space utilities average Uspaces from eq. 3.5 was 0.7271. A

table of the individual space utilities for the final configuration is given in Appendix

B. These component utilities give an overall space allocation fitness of U∗ = 0.722

by eq. 3.6.

Figure 3.5: Allocation Inboard Profile

49

Table 3.3: Allocation Space Preference Summary

Global Location Goals Relative Location Constraints

1:10 stern, low 1:10 11:15 strong separation

11:15 amidships, low 1:10 46:60 weak separation

16:25 low 11:15 1:10 strong separation

26:45 no preference 11:15 46:60 strong adjacency

46:60 high 16:25 46:60 weak separation

61:70 bow 26:45 no preference

46:60 16:25 weak separation

46:60 11:15 strong adjacency

46:60 1:10 weak separation

61:70 no preference

Table 3.4: Zone-deck Area Allocation Results

Zone-deck Area Assigned Area Available Utilization UUk
Utility UZ−dk

1 267.0 280 0.953 1.000
2 145.4 150 0.969 0.996
3 264.1 280 0.943 1.000
4 232.8 250 0.931 0.999
5 194.8 200 0.974 0.993
6 237.5 250 0.950 1.000
7 207.1 220 0.941 1.000
8 145.4 150 0.969 0.996
9 204.2 220 0.928 0.999
10 116.8 120 0.974 0.993
11 194.8 200 0.974 0.993
12 233.7 250 0.935 0.999
13 142.5 150 0.950 1.000
14 137.8 150 0.918 0.997
15 230.9 250 0.923 0.998
16 194.8 200 0.974 0.993
17 288.8 300 0.963 0.998

50

While overall the solution shown in Figure 3.5 appears suitable, there are still

some spaces that appear to not fully meet the constraints. For example, space 13

prefers to be low in the ship, but it is assigned to the top deck amidships. Seven

green spaces are also penalized with a global preference of 0.4 for placement on the

Damage Control Deck when they want to be high in the ship. However, the GA

does not take this value within the cost function, because their relative preference

is even lower at 0.3. Green spaces have a very strong adjacency constraint to the

magenta spaces. Space 13, two decks above, controls this constraint causing all five

green spaces to have a low score. Thus, the seemingly simple move of 13 to a lower

deck would address both issues.

Space 22, in Zone-deck 13, would also be better satisfied at a lower position.

However, it is only weakly constrained. Gray spaces are 100% satisfied on both

lower decks. On deck 3 they are 0.7 globally satisfied. In Zone-deck 13, their relative

preference value is also 0.7 for only being one Zone away from green spaces. This

desired separation was also not achieved in Zone-deck 3 where both gray and green

are assigned. In fact, for the majority of spaces having a relative preference value less

than 1.0, the relative preference value became the governing minimum space utility

value.

The individual space utilities for this solution are plotted in Figure 3.6 which

shows how many spaces obtained each utility value. Twenty-seven spaces had no

global or relative preference. “No preference” is assigned a default value of 1.0 for all

locations. These spaces are indicated in the 1.0 utility column. Three spaces have

a minimum active global preference of 0.8. Of the 40 spaces that have a relative

preference less than one, nearly 75% of those (29) have a relative preference as its

minimum preference. These relative preferences ranged from a high of 0.8 to a low

51

of 0.3. Of the 11 remaining spaces, 10 have equal minimum global and relative

preferences and only one, space 13, has a global location value of 0.2 as its active

minimum preference.

Figure 3.6: Histogram and Analysis of Individual Space Utilities Uspaces

For the ship arrangements designer, it is easier to visually identify apparent in-

consistencies from among the 700 global preference constraints than it is from the

850 relative adjacency/separation constraints. However, experience has shown that

this visually suggested rearrangement rarely proves effective. When the author at-

tempted to improve upon the solution generated by the Genetic Algorithm by visual

inspection, only one of 30 proposed rearrangements actually improved the overall

utility.

Only proposed changes that maintained at least the same assigned area in each

Zone-deck matched or improved the utility level found by the Genetic Algorithm.

While Zone-deck utilities are all very high, the algorithm is also very sensitive to this

measure with the σs chosen (σunder = 0.4 and σover = 0.2) for the Zone-deck area

52

utilization constraint. This is a result of taking the minimum over all Zone-decks,

rather than the average as is done for the space utilities.

The seemingly obvious rearrangement of space 13 to a lower deck was found to

be difficult. Lowering space 13 to deck 2 resulted in the same two deck vertical

separation problem with green spaces strongly adjacent to the superstructure. Ex-

changing 13 with an equal area cyan (no preference) space in Zone-deck 3 gave a

lower average space utility (0.7178 as compared to 0.7271). Sacrificing an equal area

swap for a placement in Zone-deck 6 with the rest of the magenta group, raised the

average space utility from 0.7271 to 0.7414. However, the Zone-deck utility was pe-

nalized due to area over-utilization. As a result, the overall allocation utility actually

dropped to 0.6898. A dozen other rearrangements attempted for space 13 and space

22 also resulted in poorer overall utility. These efforts were paramount in verifying

the importance of the swap operator and the overall effectiveness of the optimization

as compared to a manual method.

3.4.1 Parametric Studies

Parametric studies were carried out to compare the three main improvements

introduced into the GA for the space allocation problem: GenALLOC, Double Round

Tournament selection, and Simulated Binary Crossover (SBX). Figure 3.7 shows the

effect on convergence of adding these features successively. Thicker black lines show

runs performed using the baseline GenStart and initial Roulette selection. In the next

series of tests, GenStart was replaced by GenALLOC generating the red lines. Green

lines show the results of replacing Roulette with Double Round Tournament selection.

Lastly, the runs colored blue have GenALLOC, Double Round Tournament, and

SBX. One blue run was able to surpass the best fitness found without the three

additional features. Because each solution starts from a randomly generated initial

53

Figure 3.7: Convergence Plots of Allocation Parametric Studies

population, the final solutions vary even when identical algorithm elements are used.

3.4.2 Discussion

Convergence plots of elite fitness versus generation, Figure 3.7, show a steep slope

in the early generations. A closer look in this region shows an even quicker con-

vergence rate with the added features. Generally the best fitnesses were found by

algorithms that ran longer. This suggests that stopping conditions might be relaxed.

The maximum reseedings could be increased from five to perhaps ten or twelve.

Elite fitness in the initial population using GenALLOC is improved up to an or-

der of magnitude above populations written using the purely random method Gen-

START. Figure 3.8 gives evidence of this improvement in the early stages of the

algorithm. Another benefit of GenALLOC is the effective reduction of the search

space. As noted earlier, GenSTART theoretically has about 1086 possible solutions

for the example problem, while the GenALLOC seeded domain tends to more closely

satisfy the Zone-deck allocation constraints effectively leading to about 1075 theoret-

ically possible solutions.

54

Figure 3.8: Effectiveness of GenALLOC on Early Population Fitness

A study of the generation history of the best chromosomes revealed that after

the initial major changes, mutations and swaps provided all of the fitness improve-

ment, Appendix A. This analysis further revealed the extent of population uniformity

past the early generations. With this multiplicity of the super-chromosomes, a cool-

ing function is not actually needed on Simulated Binary Crossover (SBX). In fact,

perhaps a “heating” function is needed to counteract premature convergence. An

alternative would be to reduce the number of chromosomes randomly selected in the

first round of the Tournament Selection. The mutation rate could also be increased

from acting on 25 genes (of the total 70 × 50 = 350) to a much larger number,

perhaps 90 (∼25%).

The example space allocation problem limits daughter gene values to integers

bounded by one and seventeen, thus limiting the effectiveness of SBX. If values

are generated beyond the extents of one and seventeen then the surpassed boundary

values are taken instead. Therefore, there is an unwanted propensity to assign values

to these two “boundary” Zone-decks. In its defense, upon examining the output

55

history of best chromosomes of various runs, SBX did cause a greater variation

between successive bests. At times, entirely new elite chromosomes were introduced

due to this operation. It is also important to note that Zone-deck indices do not

strictly correspond to location. Thus, a daughter value significantly different from

the parent value does not necessarily signify a new physical location assignment far

from the parent Zone-deck assignment.

Since the mean fitness of the population is not of great practical importance, there

would be little drawback in maintaining, on average, a less fit and, thus hopefully,

a more diverse population. Although the tournament selection parameters used did

not significantly produce this intended effect, an even more porous selection method

might. This would be particularly critical after a reseeding when the population is

most susceptible to being taken over by the super-chromosome held over by elitism.

Greater diversity must be coupled with greater variation. Even more clever oper-

ators could be introduced to reach a higher level of fitness. Due to the widely varying

space sizes, a one-to-one swap does not typically exchange equal areas, as needed, in

and out of a Zone-deck. A dynamic Multi-space Swapping Operator could be used

to allow two-for-one, three-for-one, and other combinations of space swaps. Other

new operators could have the power to seek out the poorest spaces for relocation in

the best chromosome using fitness percentages.

Instead of aiming for more local maxima, the algorithm could be improved in an

opposite manner. As later improvements come from variations of the same chro-

mosome, it might be appropriate to switch to Simulated Annealing where, instead

of expending computational time on many chromosomes, only one chromosome is

manipulated near the end of the solution process.

Along with improving the optimization, the overall utility can also be re-formulated

56

to better capture the designer’s goals. The current overall spaces’ utility definition

tends to be more sensitive to relative preferences than to global preferences. A

weighting factor, γ , between zero and one could be added in the space utility defi-

nition to provide more control of these relative influences as shown in eq. 3.14,

Uspaces =
1

I

I
∑

i=1

min[γ min(all Uglobali) + (1 − γ)min(all Urelativei
)]/Cy (3.14)

A larger γ favors global constraints in the minimum selection. The correction Cy

would be defined to restore the desirable range [0, 1] for Uspaces.

Also, the Zone-deck area utilization utility is highly sensitive. Experience might

conclude this over-sensitivity ought to be loosened. The standard deviations of the

Gaussian model curve could be increased, or a new utility function defined and

evaluated. ISA defines the Zone-deck utility with an added term for the average

Zone-deck utilization utility, eq. 3.15 (Parsons et al. 2008),

Zonedeck Utility = UZ−d = min(UZ−d1 , UZ−d2, . . . , UZ−dK
) × 1

K

K
∑

k=1

UZ−dk
(3.15)

An alternative to smarter programming is smarter constraint inputs. Lower values

give the preferences more effective weight through the minimum correlation inference.

Preference values for the example test problem here were adjusted iteratively using

this technique. Spaces with no stated preferences (represented by a preference of 1.0

for all locations) actually may have inhibited other spaces having preferences from

finding their ideal location. It is harder to move a space with preference 1.0 from a

location than one with a lower preference value. The “No preference” model as used

in the example design may not be the most effective model. In an actual design,

however, there would be relatively few spaces left completely unconstrained with no

preference.

57

An alternative, hybrid agent-Genetic Algorithm approach has solved this exact

problem with a higher utility than found by the Genetic Algorithm described here

(Daniels and Parsons 2006; Daniels and Parsons 2007). A hybrid of agents and a

genetic algorithm working together has been found to be highly successful reaching

a utility level exceeding 0.74 for the test allocation problem presented here. This

hybrid approach has been incorporated into the ISA software (Parsons et al. 2008).

58

CHAPTER 4

Part II: Arrangement

4.1 Two Step Approach: Topology and Geometry

The two step topology and geometry approach for Part II is presented again in

Figure 4.1. After the Allocation has been performed, each Zone-deck has known

contents, and one Zone-deck is operated on at a time. Topology describes the global

and relative positioning of the space centroids within the Zone-deck. This topology

is expressed as a real chromosome that is passed to the geometry generation routine.

Geometry defines the detailed size and shape of the spaces; the location of the

bulkheads defining the spaces. These definitions follow the work of Medjdoub and

Yannou (2000) and Michalek, Choudhary, and Papalambros (2002). This double-

loop structure embeds the geometry generation routine as the cost function U(x) of

the topology Genetic Algorithm optimization. The final arrangement solution for

each Zone-deck U∗(x) is thus from the topology that has the best corresponding

geometry.

In order of Zone-deck priority, each Zone-deck arrangement is designed and opti-

mized. The default order begins with the middle of the deck (most likely the Damage

Control Deck) with the primary longitudinal passages. Major vertical access loca-

tions are established on this deck in the optimization. The process proceeds to the

lower priority Zone-decks fore and aft on that deck and then below and above. This

59

Figure 4.1: Arrangements Optimization schematic

order is editable by the user within ISA.

4.2 Damage Control Deck Zone-decks

Damage Control Deck (DCD) Zone-decks are characterized by having two contin-

uous main passages extending fore to aft along most of the deck. These subdivide

the Zone-deck into a port, center, and starboard Sub-Zone-deck (SZD) (Nick and

Parsons 2007). In the initial problem formulation within ISA, the designer can edit

the default placement of these longitudinal passages, Figure 4.2.

Figure 4.2: Example ISA Damage Control Deck Passages and Stairtowers

Athwartships passages are included here, but not fixed. They are arranged by

the topology optimization. Also in this window, the designer designates whether the

Zone-deck’s stairtowers reside to the inside (in the Center SZD) or to the outside

(Port or Starboard SZD) of the main longitudinal passages. Stairtowers have fixed

dimensions that can be edited by the designer, but the optimization determines

their longitudinal position. Once the stairtowers are located on the Damage Control

60

Deck they become fixed objects above and below to ensure stair continuity. The

stairtower’s area is removed from the available area of it’s Sub-Zone-deck. Allocation

may then be performed to the proper available area for each of the three Sub-Zone-

decks.

4.2.1 Topology

Topologies are written preserving the output of the allocation optimization. The

topology chromosome has three gene segments for the port, center, and starboard

Sub-Zone-decks. The length of each segment is equal to the number of spaces al-

located to that Sub-Zone-deck. Segments are concatenated into one integer-coded

chromosome delineated by markers for the port (PLP) and starboard (SLP) longi-

tudinal passage locations. An additional arrangeable marker (TP) is included in the

center segment if the Zone-deck is designated to have an athwartships passage. The

included spaces in each gene segment will stay the same through the optimization as

inherited from the allocation, but they will be re-ordered to find the best topology.

The order that spaces are listed in the chromosome represents the longitudinal or-

der (fore to aft) of the spaces. The gene segments are ordered from port to starboard.

For example, a DCD Zone-deck with three Sub-Zone-decks, 14 total allocated spaces

and an arrangeable athwartships passage might have the following two alternative

topology chromosomes.

Topology 1:

Port SZD Center SZD Stbd SZD

1 2 3 PLP 4 5 6 TP 7 8 9 10 SLP 11 12 13 14

61

Topology 2:

Port SZD Center SZD Stbd SZD

3 1 2 PLP 4 6 9 10 TP 7 8 5 SLP 12 11 14 13

A visual representation of Topology 1 is given in Figure 4.3. The “forward of” and

“aft of” relationships are seen as well as the division between the Sub-Zone-decks.

The topology chromosome establishes the starting points on a grid used in generating

the geometry.

Figure 4.3: DCD Topology Centroids Mapped to the Zone-deck

4.2.2 Geometry

The Zone-deck geometry is modeled on an orthogonal grid. Each grid cell repre-

sents equal area at a grid spacing corresponding to the frame spacing, 1 m, or other

practical reference distance for the design. From hull form and bulkhead inputs, the

dimensions of the available space envelope are known. Longitudinal passages and

other fixed objects are set. A curved hull could be accommodated by letting the

outer grid spots represent area less than 1m2 to match the reduced area available

where the grid would be truncated.

62

The design independent variables used in the stochastic growth algorithm are the

placement of the spaces’ fore, starboard, aft, and port side bulkheads on the grid.

Each space is modeled using a three-box model. Each space is first expressed with

only a center (C) box. Up to two additional appendage boxes (A and B) may grow

adjacent to the center box. With this three box formulation, spaces can take on

the more variable shapes: L’s, T’s, Z’s etc., needed to grow around other spaces,

stairtowers, fixed objects, and blockages.

The sample space J shown in Figure 4.4 has grown an additional A appendage

box to enable it to become a L-shaped space to fit around the center box of adjacent

space J + 1. Space J’s corresponding solution variable of bulkhead locations is given

in Table 4.1. Location is with respect to the grid’s coordinate system origin at the

port and aft corner. The four rows are the grid locations for the four bulkheads in

the fore (+x), starboard (+y), aft (−x), and port (−y) directions, respectively. The

three columns of Table 4.1 are for the C center box and for the A and B appendage

boxes, respectively. Since there is no second appendage, the third B box column is

all zeros in this case. The center box’s aft bulkhead and the A appendage’s forward

bulkhead are at the same location (7) because they must be connected, but there

is no physical bulkhead along the overlap. The current geometry solution is always

updated graphically on the “Map” (Figure 4.4) and in matrix form (Table 4.1).

Table 4.1: Sample Space J Geometry Variable Matrix

+x
+y
-x
-y

11 7 0
14 10 0
7 5 0
6 6 0

63

Figure 4.4: Space Representation using Three Boxes

4.2.3 Port and Starboard Sub-Zone-decks

Geometry is created first for the port and starboard SZDs. Due to the relatively

thin dimensions of these regions, the Zone-deck length is divided simply by the

proportional area requirements of the spaces using the given topology. Thus, there

is a bijective relationship from topology to geometry for the port and starboard Sub-

Zone-decks. All outer spaces fill the area from hull to passage along their proportional

length.

Spaces are purely rectangular except when a fixed object is present or a stairtower

has to be placed. In this case, the stairtower area is added to the largest space

when assessing proportional area requirements and placing the dividing transverse

bulkheads between the spaces. Then the stairtower footprint is taken out of the

largest space, which is split into two boxes to accommodate the subtraction. On the

port side, the stairtower is placed at the forward extent. On the starboard side, the

stairtower shares the aft bulkhead. Of course, the stairtower is placed next to the

longitudinal passage, and connectivity for each space to the passage is automatically

64

assured.

4.2.4 Center Sub-Zone-deck

The center SZD problem is simplified by splitting it into a bow and stern section

with the athwartships passage, if one is designated by the chromosome. The sum of

the required areas of spaces placed fore of the passage is divided by the total required

area. This percentage is multiplied by the Zone-deck length to find the appropriate

location to fix the athwartships passage. Only treating one section at a time greatly

increases the geometry convergence rate.

After the available area is defined, the center boxes are mapped to the grid. The

boxes are first given one grid unit (1m2). Original seed locations are placed in a line

longitudinally down the center of the section in order prescribed by the topology. The

interval between seed locations is calculated by relative required area. For example,

a space in need of a larger area has a larger buffer from other spaces to facilitate its

growth into the surrounding area.

The center box’s first growth is to the port or starboard longitudinal passage.

Once the center box grows to a passage, it “attaches” and is not allowed to shrink

from it. In this way, the first access is maintained throughout the entire algorithm

by the center box. Based on occupancy, a space may require additional accesses.

Up to two access connectivities are evaluated. The two can be required to be on

different passages or be indifferent to which passage(s) the accesses are on. A space

can also express preference to attach to the port or starboard passage. This is helpful

for satisfying an adjacency requirement to another space in the outside SZD or for

collecting certain functions on a specific side. If the port or starboard direction has

been specified, then the center box extends to the required side. Otherwise, the side

is chosen by which one has less required area attached to it already. The center

65

box also shrinks one grid line away from the center towards its passage to prevent

interference with spaces on the opposite side growing fore and aft.

The last initial expansion of the center boxes is in the fore and aft direction. In

the bow and in the stern section, the spaces that are forward and aft are allowed

to grow longitudinally to that extent. This expansion is also fixed so that the space

may not shrink from this direction. If there is only one space in the section, then it

automatically fills the entire available area. Figure 4.5 shows a center Sub-Zone-deck

after the center boxes have undergone their initial expansion.

Figure 4.5: Center Box Initial Expansion in the Center Sub-Zone-deck

To give the spaces on the Damage Control Deck the highest priority to satisfy

their needs, the stairtowers, if applicable, are first placed amid the initial center

boxes. The initial placement is found in two steps. First the bow or stern section

is chosen. If both the port and starboard stairtowers were set to the inside of the

passages then the port stairtower is placed in the bow and the starboard stairtower

is placed in the stern. This split is made to assure a minimum separation distance.

If only one of the stairtowers was set to the inside, it is placed in the section that

has more leftover area (or less over committed area) from its known available area

and total spaces’ required area. If the stairtower examines a section that has already

been filled by a single space, then the single space can be split into two boxes to

accommodate the stairtower similar to what is done with the Port and Starboard

66

Sub-Zone-deck’s largest space. A port stairtower searches within its section from fore

to aft for available open length. A starboard stairtower looks from aft to forward for

a place where it can fit between the center boxes next to the starboard longitudinal

passage. The stairtower is not, however, fixed in this initial location. During the

stochastic growth loop, an adjacent space can push the stairtower longitudinally as

it attempts to grow.

4.3 Stochastic Growth Loop

Once the center boxes have been expanded and stairtowers have been added as

appropriate, the stochastic growth loop is activated. The basic loop sequence of

this algorithm is shown in Figure 4.6. Each iteration begins with three selections

to determine the attempted move: Space, Direction, and Growth. Then the move

is tested according to a series of rules. If the move is allowed, the Map and the

space’s bulkhead locations in the independent variable matrix are updated. Looping

continues until a stopping condition is reached. The converged arrangement is then

evaluated.

Figure 4.6: Stochastic Growth Loop Schematic

The cost function reveals strong solutions obtained by applying a method of rea-

soned randomness to the initial selections. Each of the three selections are made

67

probabilistically to improve the arrangement. For example, a small space has a

higher probability to grow rather than to shrink. However, the random draw may

return a move that is disadvantageous. This is necessary to prevent pre-mature con-

vergence or stagnation. Even if one space is fully satisfied, it may have to move in

an unfavorable way to allow another space to attain its needs.

4.3.1 Probabilistic Selections

First, a space is selected. The probability of selection of compartment j, Pselj, is

based on space area needs and the remaining unoccupied area using eq. 4.1. AAj is

the current amount of acquired area; RAj is the area required for the space. NumSp

stands for the number of spaces in the SZD section (bow or stern). SZDarea is the

available area of the section, and Open is the area currently left unoccupied in the

section. NoFix is a nondimensional multiplier.

Pselj =
|AAj − RAj| + NoFix × Open/SZDarea

(
∑NumSp

i=1 |AAi − RAi|) + NumSp × NoFix × Open/SZDarea
(4.1)

A larger difference between required area (RA) and acquired area (AA) leads

to a higher probability of that space’s selection. Due to the second term in the

numerator, however, there is always a non-zero chance of selection. Therefore, no

compartment becomes pre-maturely fixed before all available space is occupied. The

NoFix multiplier is used to give an appropriate weight to this second term. In

this formulation it has the numeric value of the length of the SZD currently being

arranged by the stochastic growth loop. Without the multiplier the effect of this

term is negligible. If the multiplier is too large then the selection is too random

rather than being based on need expressed by the first term. Selection probabilities

are normalized to fall between zero and one. A Genetic Algorithm style Roulette

Selection method is applied to choose a space from these probabilities.

68

Second, the growth value is chosen based on the selected space’s area needs. Area

Satisfaction, ASi, is calculated for the selected space i, eq. 4.2.

ASi =
AAi − RAi

RAi
(4.2)

A negative AS indicates a need to grow, and thus, the space is given a higher prob-

ability to grow and a lower probability to shrink. Six regions of Area Satisfaction

are defined as: AS ≤ -0.5, -0.5 < AS ≤ -0.25, -0.25 < AS ≤ 0, 0 < AS ≤ 0.25,

0.25 < AS ≤ 0.5, and AS > 0.5. Each region has unique probabilities for positive

or negative growth (shrinkage). Probabilities are derived from a probability density

function, eq. 4.3, with mean µ = 1 and a standard deviation σ that can be edited by

the designer. The x values for eq. 4.3 are found in Table 4.2 for each region.

PDF(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (4.3)

Table 4.2: Probabilities for Space Growth Values -3 to +3

Growth AS ≤ -0.5 -0.5 < AS ≤ -0.25 -0.25 < AS ≤ 0
-3 µ + 5σ µ + 4σ µ + 3σ
-2 µ + 4σ µ + 3σ µ + 2σ
-1 µ + 3σ µ + 2σ µ + σ
1 µ + 2σ µ + σ µ
2 µ + σ µ µ + σ
3 µ µ + σ µ + 2σ

Growth 0 < AS ≤ 0.25 0.25 < AS ≤ 0.5 AS > 0.5
-3 µ + 2σ µ + σ µ
-2 µ + σ µ µ + σ
-1 µ µ + σ µ + 2σ
1 µ + σ µ + 2σ µ + 3σ
2 µ + 2σ µ + 3σ µ + 4σ
3 µ + 3σ µ + 4σ µ + 5σ

The far left column in Table 4.2 indicates the growth value in grid spacing units.

A space may have a positive or negative growth value up to three. There is no option

69

for a growth value of zero. In the column under each region, values are taken from

the Normal PDF at the indicated x variable values to find the relative probability

of selecting the corresponding growth value in the left hand column. For example

with σ=0.2 and AS = 0.1, a growth of -1 will have the probability corresponding

to PDF(µ) = PDF(1) = 1.99. The probability of growing by +2 is PDF(µ + 2σ)

= PDF(1.4) = 0.27. These PDF values are normalized by the total sum of its

column. Again, a Roulette Selection method picks a growth value from a random

draw between zero and one.

A positive growth value will cause the selected space to try to grow larger by one

grid unit at a time, and multiple moves up to the space’s growth value can be made

in a single iteration. Particularly at early iterations when the spaces are all small and

somewhat spread out, this stepping mechanism allows for quicker area filling. The

three selection functions constitute a substantial component of the computational

time of each iteration. By allowing multiple moves without re-selecting the move,

efficiency is increased.

If a growth attempt fails, the remaining moves are not attempted as they would

also fail. Failure here is defined as encountering any blockage. Both growth and

shrinkage have additional rules associated with them as described later on. Logically,

a negative growth value will prompt shrinkage. One grid unit is attempted per

iteration. Multiple shrink steps are not taken regardless of a growth value < -1.

The last selection made is to one of four directions. This choice is based on aspect

ratio. The overall dimensions ∆x and ∆y are found by examining all boxes’ bulkhead

locations, where x is the longitudinal direction and y is the transverse direction. If

a compartment is to grow, it will have a tendency to select a direction that favors

increasing its shorter dimension. Similarly, a shrinking compartment is more likely

70

to shrink from its longer dimension. If the aspect ratio is less than 0.5, then the

probability to increase aspect ratio is even greater. These probabilities expressed as

a percentage are all found in Table 4.3. The direction is selected by a random number

draw correlated to one of the four directions by the Roulette Selection method.

Table 4.3: Percentage Probabilities for Grow and Shrink Growth Directions by Aspect Ratio

Grow
∆x < .5∆y ∆x < ∆y ∆y < .5∆x ∆y < ∆x ∆y = ∆x

Psel+x 40 30 10 20 25
Psel+y 10 20 40 30 25
Psel

−x 40 30 10 20 25
Psel

−y 10 20 40 30 25

Shrink
∆x < .5∆y ∆x < ∆y ∆y < .5∆x ∆y < ∆x ∆y = ∆x

Psel+x 10 20 40 30 25
Psel+y 40 30 10 20 25
Psel

−x 10 20 40 30 25
Psel

−y 40 30 10 20 25

4.3.2 Move Rules

Before a move is attempted, the algorithm identifies the selected space’s boxes

that are allowed to move in the selected direction. If any appendages have already

grown in that direction, then these appendages may grow and the center box will

not. Otherwise, with no appendages in front of it, the center box is the first active

box. Next, the algorithm looks for appendages in the directions perpendicular to

the selected direction. These appendages attempt the move as well. An appendage

in the opposite direction from the selected direction never moves. There is always

at least one box active, and all three boxes may be active. Each active box takes a

turn attempting the move.

A valid move must be within bounds. Bounds are defined by passages and water-

tight bulkheads in the Center Sub-Zone-deck and by the hull and watertight bulk-

heads on Zone-decks below the Damage Control Deck. If the selected space has

71

positive growth, the move fails if it tries to grow past the boundary.

A successful growth move can only be made into available grid spots. No two

compartments (space, passage, vertical access, or any other blockage) may occupy

that same spot at the same time. Therefore, if growth is blocked anywhere along the

length, then the move fails or additional rules come into play depending on what the

blockage is and whether a center box or an appendage box is active. If all adjacent

spots are open, then the bulkhead is moved.

Each adjacent spot along the length of the bulkhead attempting to move forward

is checked one by one. Unoccupied regions along the length covering at least the

minimum dimension are called FreeSpots. All FreeSpots and in turn, blocked re-

gions are found. If a single FreeSpot encompasses the entire length, then the box is

unblocked and it grows. The move simply fails if an appendage is blocked at any

spot.

If a center box is blocked by another space or something immovable, then it will

grow an appendage into a FreeSpot. Multiple appendages can grow adhering to the

rule of no more than two total appendages. If there is more than one FreeSpot, the

one that shares a side bulkhead location with the center box is selected. This helps

maintain regular shapes. If no FreeSpot is available at the beginning or end of the

searched length, then the choice is made randomly. Once the center box is blocked,

the remaining growth steps to the growth value are not taken.

Special blockage situations arise when a box runs into a moveable object like a

stairtower on the Damage Control Deck. This may be pushed fore and aft along the

passage. A space growing transversely clearly can not push the stairtower. Same as

other moves, first it must be verified that the stairtower will not be pushed outside

the extents, and second, the spots on the far side of the stairtower must be open.

72

If both of these conditions are met, the stairtower is pushed. Conversely, on the

below Damage Control Deck Zone-decks, the stairtower is fixed and the passages

have variable length longitudinally.

A successful growth move is tested to see whether the selected space’s bulkhead has

reached an extent. Once a box reaches an extent, it is advantageous to adhere to it.

This reduces chattering and speeds convergence. The “NoShrink” test examines the

space’s current area and aspect ratio. If the space’s acquired area exceeds required

area by more than 10%, then the growth does not stick. When it is already too large,

it is undesirable to prevent shrinking. The active box must also have an aspect ratio

within the acceptable limits. It is important to make sure it is a good placement

before fixing a bulkhead.

Each box individually records in which directions’ bulkheads are fixed, or “NoShrink”

directions. These bulkheads cannot grow larger without violating the border con-

straint and they are not allowed to shrink either. Initial center box expansions that

attach to passage and the fore and aft extents are recorded as NoShrink directions.

When a negative growth value is chosen, the move first queries whether the selected

direction is a NoShrink direction. If so, the shrink move fails, and the looping con-

tinues.

Negative growth moves have less requirements than positive growth. A center box

is not allowed to shrink smaller than a specified minimum dimension. An appendage

that attempts to shrink smaller than the minimum dimension in either the x or

y direction is simply deleted. Before a center box shrinks, the program checks to

see if it would disconnect from any appendages on the perpendicular sides from the

shrinking bulkhead. If the overlap between center box and appendage decreases

too much then the appendage is deleted. Similarly, when an appendage attempts

73

to shrink and it decreases the overlap such that the center and appendage box are

essentially two separate spaces, then the appendage is deleted. Shrink rules maintain

required connectivity between a space and its passage and between appendages to

the center box.

4.3.3 Appendage Repair Functions

Additional repair functions preserve the integrity of the three-box formulation.

The first two functions look at redundancy. An appendage that is as wide as the

center box no longer looks like a separate appendage. In this case, it is included in

the center box. For example, an appendage box in the +x direction sharing the same

−y and +y bulkhead locations as the center box is deleted and the center box’s +x

bulkhead is re-written in the position of the deleted appendage’s +x bulkhead. One

rectangle remains from the two abutting rectangles. In the same way, two adjoining

appendages that grew in the same direction and to the same length away from the

center box are re-written as one appendage. These two repair operations are called

for every space every ten iterations.

It is also beneficial to periodically delete small appendages. Before this clean-

up repair, final solutions often had small jogs in the spaces’ overall outer footprint

due to appendages that were only 1 unit long. Although they are deleted when they

shrink past minimum dimensions on any iteration, appendages only start growth one

unit long. Every 50 iterations, appendages that are still one unit long are deleted.

The flexibility to have two appendages at once is essential while they are continually

grown and deleted in the stochastic growth loop even though the best solutions rarely

contain spaces with two appendages.

74

4.3.4 Looping Rules and Stopping Conditions

One iteration of the stochastic growth loop may attempt the same move for mul-

tiple boxes of the selected space and for multiple steps. After a failed move, the next

box attempts the move. Once all boxes have tried to move, the move is repeated if

the growth value is greater than one. After the steps finish, the next iteration begins

with the three selection functions.

A tally keeps track of how many grid spots are left open at each iteration. Looping

ceases when one of two stopping conditions is reached. Either a maximum number

of iterations has been reached or there are no more open spots left. Smaller sections

arranged on the Damage Control Deck typically exit upon filling all the available

area. Below, the the maximum number of iterations is usually the active stopping

mechanism.

4.4 Below Damage Control Deck Zone-decks
4.4.1 Stairtowers and Passages From Above

Zone-decks below the Damage Control Deck (DCD) are arranged after the Zone-

deck above it on the DCD is arranged. The stairtower on the DCD is continued

down to the lower decks and fixed. Passages are drawn adjacent to the stairtowers

to the inside or outside as they were above.

A variety of stairtower and passage configurations from the DCD must be handled

on the lower decks. To reduce the number of configuration cases explicitly treated,

the two stairtowers are simply compared to find which one is fore and aft. If neither

is ahead of the other, the port stair-tower is labeled fore. The two cases (Port forward

or Starboard forward) proved to be robust enough to handle all configurations.

Unlike on the DCD, the longitudinal passages do not have to extend the length

of the Zone-deck. The watertight bulkheads are not penetrated. Instead, passages

75

start only one unit longer than the stairtowers. The forward passage extends one unit

towards the aft, and the aft one goes forward. The spaces control how the passages

grow and shrink. Therefore, there is no internal division to define multiple Sub-Zone-

decks. The entire available area in the lower decks is considered one Sub-Zone-deck

and arranged all at once by the stochastic growth loop.

4.4.2 Topology

The below DCD topology chromosome is not split by indicators for passages; it

contains only space index numbers. Space order in the chromosome only roughly

translates to a port to starboard and a fore to aft placement as compared to the

DCD chromosome. Rather than follow a strict definition of topology, chromosome

order is mapped to the center box attachment positions along the two passages.

There are essentially two kinds of attachments: a side and an end attachment.

Side attachments are to the port or starboard side of the passage. A center box’s

side attachment is a NoShrink direction (it can neither grow nor shrink in that

direction). End attachments are not NoShrink directions to allow for the passages’

variable length as the end space grows and shrinks in the attachment direction. If

two attachments are required, they will be either one side and one end attachment

or two side attachments. Center boxes are not placed with two end attachments due

to the greater control an end attachment has over the passage length.

The number of access attachments is primarily determined by the space’s person-

nel capacity, particularly in battle manning. This center box placement routine can

accommodate zero and up to as many as all of the spaces having two connections.

Although this latter scenario is rare and results in poor arrangements; the algorithm

left more available area unoccupied particularly to the outside of the passages. Better

arrangements are found with fewer constraints for multiple connectivities.

76

The chromosome follows a transverse order like on the DCD by placing the first

spaces on the port passage and the last spaces on the starboard passage. This, like

many other design choices, is done based upon the spaces’ area requirements. Half

of the total area required in the Zone-deck is calculated. In order as laid out by the

topology chromosome, spaces are assigned to the port passage while summing the

accumulated required area. When the accumulated area surpasses half of the total

required area, the last assigned space is instead placed on the starboard passage if

half of the number of spaces have already been added to the port passage. If less

than half of the number of spaces have been assigned to the port passage, then it

stays with the port passage. The remaining spaces are assigned to the starboard

passage. Each space keeps its chromosome order relative to the other spaces on its

passage to assign longitudinal position.

The smallest space, and only the smallest, is relegated to the outside of the passage

unless it requires two connectivities to access. If its capacity demands two accessways

then no space is placed to the outside, and the smallest is treated based upon its

longitudinal order dictated by the chromosome. This logic was added after generating

many geometries and finding that the best geometries consistently had this layout.

All other spaces attach to the ends or to the inside of the passage.

Remaining spaces are placed in six steps. The attachment routine will be pre-

sented here for only the port stairtower (PST) forward case, but the steps are simply

mirrored for the opposite case. In the following figures, four additional spaces are

assumed to have been assigned to the port passage (shown in blue), and with three

additional cyan spaces assigned to starboard. The numbers one to seven correspond

to the space order in the chromosome and S is the smallest space already placed to

the outside. These three graphics, Figures 4.7 - 4.9, show only the relevant portion

77

of a Zone-deck to illustrate the remaining spaces’ placement on the passages by the

following six steps:

1. Most forward space on forward stairtower

2. Most aft space on aft stairtower

3. Spaces along the inside length of the forward stairtower

4. Spaces along the inside length of the aft stairtower

5. Most aft space on the forward stairtower

6. Most forward space on the aft stairtower

In step one, the first space on the forward stairtower is placed (unless the first

was the smallest, and then the second is used). It is positioned at the fore end of the

passage sharing the passage’s forward bulkhead with its center box’s aft bulkhead.

However, if the stairtower was placed at the forward watertight bulkhead, then this

placement is not available. The space is brought to the inside at the forward extent

of the passage. Should this space require two access points, then it affixes to the

port passage’s side and grows transversely to the starboard passage which grows

forward to meet it. The starboard passage fore end is capped by the double access

space. Step two repeats this logic, except for the most aft space of the aft passage.

A single attachment in step one and a double attachment in step two is shown in

Figure 4.7(a), while the opposite case is illustrated in Figure 4.7(b).

The next step returns to the forward passage to place spaces along its inside length.

If the aft starboard space did not grow over to cap the end of the port passage in

step two, then the last port space is left to the fifth step. Otherwise it is included

here; see space 4 in Figure 4.8(a). Progressing fore to aft for the remaining spaces in

78

(a) (b)

Figure 4.7: Center Box Attachments Example Steps 1 and 2

the order dictated by the chromosome, the center boxes are put on the inside of the

passage starting just aft of the stairtower. Each subsequent center box is placed two

units further aft than the last one growing the passage aft along as needed, ie. space

3 in Figure 4.8(b). If any of these spaces require two passage attachments, then it

grows towards the starboard, and the starboard passage grows forward to meet it (if

the passage did not already grow forward in step one, or for an earlier center box in

this step). Space 2 in Figure 4.8(a) demonstrates this behavior. The same procedure

is followed in step 4 to place spaces along the inner length of the starboard passage

progressing aft to fore.

(a) (b)

Figure 4.8: Center Box Attachments Example Steps 3 and 4

79

At step 5, only two spaces maximum are left to cap the passages. In the (a)

example, space 4 was included in step 2, but in the B example it is added in step 5

at the aft end of the port passage. Step 6 attaches the most forward space on the

starboard passage to its forward end. Space 5 in Figure 4.9(a) completes the routine

in this way. Should the addition of a double access space in step 6 require that the

port passage grow aft to meet it, then the space added in step 5 is re-drawn at the

new position on the longer passage. This is the only repair needed when following

the outlined steps.

(a) (b)

Figure 4.9: Center Box Attachments Example Steps 5 and 6

The routine’s specific order prevents interference between the center boxes and

satisfies the need for access while also preserving the transverse and longitudinal

topology given in the chromosome. Passages grow to keep the center boxes spread out

and to allow for spaces to reach between the passages for double access, if required.

Stairtowers that roughly trisect the Zone-deck length generate the best arrange-

ments. Stairtowers placed very close together on the DCD leave limited room for

space attachment and growth. When the stairtowers are separated by a longer dis-

tance, the passages must grow longer using up valuable area. It also leaves little

room between the stairtower and the watertight bulkheads for end cap spaces to

80

grow. Logic within the DCD arrangement algorithm helps to produce this preferred

stairtower spread distance.

End attachments are made when possible. It was found that leaving these open

(in lieu of making more side attachments) resulted in the nearby grid spots remaining

unoccupied. Some topologies obviously will result in better geometries, but it is left

to the optimization to reveal the best.

The stochastic growth loop is called after the center boxes are mapped. The

same move rules apply to the below DCD Zone-decks supplemented by new rules for

passage growth. As before, once one of the two stopping conditions is reached, the

loop exits and the converged arrangement is evaluated.

4.4.3 Passage Growth Control

Side and end attachments can both grow and shrink the passage(s) to which they

are attached. If the space is attached to two passages, then it will attempt to adjust

both passages as necessary. Only center boxes have this control as they grow and

shrink in the fore and aft directions. Passages only orient longitudinally. Transverse

passages were not found necessary. Passages should only be as long as needed to

reach all the spaces attached to it. It is preferable to assign available area to the

spaces rather than to circulation.

Passage growth is activated by a space attempting to shrink away from the pas-

sage, such that the passage must grow to stay connected. An end space shrinking

from its attachment direction will automatically “pull” the passage. Since the pas-

sage grows into a spot freed by the shrinking space no additional test is necessary

to allow the move. Each time a space attached on a side shrinks from the fore or

aft direction it tests to make sure that it maintains the required overlap for access.

If, for example, a shrink from the aft direction would bring the aft bulkhead to the

81

same location as the passage’s fore bulkhead (zero overlap), then the space tries to

pull the passage forward. The grid spot just beyond the passage must be open to

let the passage grow. Often, the end is capped, and the pull fails. If the side space

cannot pull the passage to retain access, then the space’s shrink move fails.

Passages shrink when a center box grows. This typically occurs after the adjoining

space has shrunk away (pulling the passage) and it is now growing back. Two checks

are performed. First, the passage is not allowed to shrink if it would disconnect from

any other spaces. Second, the passage will not shrink shorter than its stairtower’s

extents. Any time an end attachment grows in the direction of the passage it has to

perform these checks to allow the growth and passage push. The side attachments

only check when their previous attachment position may have been the one limiting

the minimum passage length and the growth might enable the passage to be pushed

back. Passage are only as long as is required to keep contact.

4.5 Mathematical Model
4.5.1 Definition of the Goals and Constraints

Geometries are evaluated on eight criteria. Five criteria are for shape: required

area satisfaction RAS, aspect ratio AR, minimum overall dimension MOD, mini-

mum segment dimension MSD, and perimeter length. Adjacency and separation

preferences to other spaces are examined, as well as the connectivity requirements.

Criterion success is assessed using fuzzy utility membership functions. Once the

measure of interest x is found, it becomes the argument of a fuzzy preference func-

tion y= U(x) to calculate a corresponding fuzzy utility value between zero and one.

Table 4.4 shows the control points used to define a generic linear piecewise contin-

uous fuzzy utility versus criteria measure, x. B and t stand for bottom and top,

respectively. L and u stand for lower and upper, respectively. The resulting utility

82

function is shown in Figure 4.10. These utilities are obtained for each space from

the default space constraint database and then edited, as required, by the designer

to reflect unique requirements for the design.

Table 4.4: Control Points for a Piecewise Linear Fuzzy Utility

x 0 bl tl t tu bu b
y= U(x) 0.0 0.05 0.95 1.0 0.95 0.05 0

Figure 4.10: Example Piecewise Linear Fuzzy Utility

4.5.1.1 Required Area

The Required Area Satisfaction RAS is the ratio of the space’s acquired area AA

to its required area RA, eq. 4.4

RASi =
AAi

RAi

(4.4)

A space with more area than necessary, RAS > 1, is more comfortable. However,

the extra acquired area is likely the result of another space’s shortage of space. If a

space is too small, it may no longer be able to provide the intended function. The

control points, Table 4.5, and plotted utility, Figure 4.11, for the default required

area fuzzy utility are as follows:

83

Table 4.5: Required Area Fuzzy Utility Default Control Points

RASi 0 0.50 0.98 1.10 1.50 2
URASi

0.0 0.05 1.0 1.0 0.05 0

Figure 4.11: Default Required Area Fuzzy Utility

4.5.1.2 Aspect Ratio

Aspect Ratio AR is the ratio of overall dimensions, ∆x and ∆y, from all j boxes

of space i, eq. 4.5. Figure 4.12 illustrates ∆x, ∆y, and minimum segment dimension

MSD. The most useful spaces have an aspect ratio near 1. Large deviations from

one result in inefficiently shaped spaces. In the default utility, spaces with an Aspect

Ratio between 1
3

and 3 are considered acceptable. The control points for the default

Aspect Ratio fuzzy utility are shown in Table 4.6.

Figure 4.12: Sample Shape with Overall Dimensions and Minimum Segment Dimension MSD

ARi =
∆x

∆y
=

max(Forej) − min(Aftj)

max(Starboardj) − min(Portj)
(4.5)

84

Table 4.6: Aspect Ratio Fuzzy Utility Default Control Points

ARi 0 0.30 0.33 3.00 3.30 6.0
UARi

0.0 0.05 1.0 1.0 0.05 0

4.5.1.3 Minimum Overall Dimension

The lesser of ∆x and ∆y is taken as the minimum overall dimension MOD, eq. 4.6.

MODi = min(∆x, ∆y) (4.6)

This criterion is used to ensure adequate room for any required large machinery or

equipment. The minimum overall dimension fuzzy utility is also a reflection of aspect

ratio because utility is calculated in terms of required area. The default control points

are as follows in Table 4.7. The resulting default minimum overall dimension fuzzy

utility is shown in Figure 4.13.

Table 4.7: Minimum Overall Dimension Fuzzy Utility Default Control Points

MODi 0 0.5
√

RAi 0.55
√

RAi > 0.55
√

RAi

UMODi
0.0 0.05 1.0 1.0

Figure 4.13: Default Minimum Overall Dimension Fuzzy Utility

85

4.5.1.4 Minimum Segment Dimension

The flexibility of the three box approach requires additional controls. The mini-

mum segment dimension (MSD, Figure 4.12) of space’s shape must be checked. To

ensure usability, no extension from the compartment can be narrower than the mini-

mum dimension MD. The default minimum dimension is 2.0 m enabling an entryway,

if required for access. Appendages only grow into a FreeSpot wider than or equal to

the minimum width, but the smallest width must be at least wider than 1.2× MD

to be fully satisfied as defined by the default control points, Table 4.8. The resulting

default minimum segment dimension is shown in Figure 4.14.

Table 4.8: Minimum Segment Dimension Fuzzy Utility Default Control Points

MSDi 0 1 1.2× MD > 1.2× MD
UMSDi

0.0 0.05 1.0 1.0

Figure 4.14: Default Minimum Segment Width Fuzzy Utility

4.5.1.5 Perimeter

Some L and T shaped spaces can satisfy all the required area, aspect ratio, and

minimum dimension criteria, but they are still not an ideal shape. This was discov-

ered in early experimentation that yielded spaces composed of two nearly square

elements with a very small overlap. This imperfection is caught by controlling

86

the perimeter. The default perimeter fuzzy utility control points are shown in

Table 4.9. An additional control point may be added to the polyline at perhaps

(10×
√

RA/3,0.1) if the user finds the default too lenient.

A square has the shortest perimeter to enclose a given volume using only orthog-

onal grid lines. Therefore, to foster square shapes, the perimeter fuzzy membership

function gives perfect utility to a space with a perimeter approximately equal to

4×
√

RA. Utility should drop both above and below the ideal length. The default

shortest fully satisfied perimeter is 98% of the perimeter of a square of the required

area. The longest fully satisfied perimeter control point is for a space with perfect

area satisfaction and a 3:1 aspect ratio. A longer perimeter results from shapes with

poorer aspect ratio or from the appendages. Where RAl is a length with the same

value of the required area RA, a space with dimensions RAl by 1 has the longest

possible perimeter 2RAl + 2 for the RA. Shorter perimeters are found from spaces

that do not meet their required area constraints. However, a small and awkwardly

shaped space can still satisfy the perimeter constraint. Therefore, the combination

of all the constraints is needed to fully capture what mathematically constitutes a

functional shape.

Table 4.9: Perimeter Fuzzy Utility Default Control Points

Peri 1 0.98×4
√

RAi 8
√

RAi/3 2RAl + 2
UPeri

0.0 1.0 1.0 0.0

4.5.1.6 Adjacency and Separation

Spaces can have adjacency and/or separation constraints relative to other spaces

or locations. Proximity constraints are evaluated for each space in the current Zone-

deck. For two related spaces, the separation in the x (longitudinal) and y (transverse)

directions are found using the two closest points between them. This gives a conser-

87

vative approximation for separation. If the target space is in a Zone-deck that has not

yet been arranged, the closest point of the Zone-deck to which it has been allocated

is used for the target’s location. However, since the allocation has already assessed

separation and adjacency in the increments of Zone-decks, only proximity constraints

between spaces in same Zone-deck or in adjacent Zone-decks are calculated. This

smaller distance scale is for fine tuning.

Figure 4.15: Sample Proximity Distance by Closest Points

The distance, d, between the spaces is calculated by either a Euclidean or Man-

hattan formulation using ∆x and ∆y as shown in Figure 4.15. Euclidean (eq. 4.7) is

the straight line length between the two closest points, for example for a noise buffer

from machinery to accommodations. If the travel path is of interest, as in wave guide

length limitations, the Manhattan formulation (eq. 4.8) can be used. The default

control points for the piecewise linear fuzzy utilities for adjacency and separation

constraints are shown in Table 4.10.

dEuc =
√

(∆x)2 + (∆y)2 (4.7)

dMan = ∆x + ∆y (4.8)

4.5.1.7 Access Connectivity Separation

To qualify as an accessway, the connectivity to the passage must be wide enough

for a door (approximately 1m). The first connectivity for every space is set early

88

Table 4.10: Adjacency and Separation Fuzzy Utility Function Default Control Points

d 0.0 0.50× Beam 2× Z-d Length Ship Length
UAdji

1.0 0.95 0.05 0.0

d 0.0 1 0.50× Beam Ship Length
USepi 0.0 0.5 0.95 1.0

in the arrangement and preserved. On the Below DCD Zone-decks, the second

connectivity is also mandated from the beginning. However, spaces that require more

than one access connection on the DCD must be evaluated to make sure the second

connection is present and a sufficient distance, d, apart from the first one. Figure 4.16

shows how distance is calculated for three cases (left to right): a space connected to

a longitudinal and an athwartships passage, a space connected onto two longitudinal

passages, and a space with access on only one longitudinal passage. Appendages also

contribute to the separation distance. The default access connectivity separation

fuzzy utility control points for access separation distance are shown in Table 4.11.

Figure 4.16: Separation Distance Between Two Accesses on DCD

Table 4.11: Access Separation Fuzzy Utility Default Control Points

d 0 2× MD
√

RAi

√
RAi ≥

√
RAi

UAcci
0 0.05 0.95 1.0 1.0

4.5.2 Definition of the Objective Function

The goal is to find the maximum utility value for a given topology for the current

Zone-deck, U∗. Minimum correlation fuzzy inference is used to make the decision

89

(Kosko 1992). The objective function defined in eq. 4.9 calculates the overall utility

for the geometry from the fuzzy utility values. For each space i, the minimum utility

value from all criteria is taken into an average over all the N spaces.

U =

∑N
i min(URASi

, UARi
, UMODi

, UMSDi
, UPeri

, all UAdji
, all USepi

, UAcci
)

N
(4.9)

Each run of the geometry generation routine results in a different solution due to

the randomness applied to the space, growth, and direction selection. After multiple

runs, the candidate topology’s best geometry utility U∗ is established by exhaustive

search and returned as the topology optimization cost function value.

4.6 Optimization Method

A Genetic Algorithm is applied to each Zone-deck to establish the topology that

yields the highest utility geometry. Figure 4.17(a) again shows the double loop

structure that alternates between the topology chromosome manipulation and the

geometry cost function in each generation of the GA. The corresponding expanded

steps of the Part II GA are included in Figure 4.17(b).

4.6.1 Variation Operations

Arrangement GA variation operations are tailored to preserve the allocation so-

lution to the DCD Sub-Zone-decks and to the Below DCD Zone-deck. On the Dam-

age Control Deck, crossover and swap are both applied. Crossover is adapted to

only allow crossover points between chromosome Sub-Zone-deck segments. One seg-

ment and two chromosomes are selected randomly. Then the two entire segments

are switched between the two chromosomes. Technically, this becomes a two-point

crossover if the second (middle) gene segment is exchanged. Using this adaptation,

the contents of each Sub-Zone-deck in all chromosomes as established in the alloca-

tion are maintained. As there are no Sub-Zone-decks segments below the DCD, the

90

(a) (b)

Figure 4.17: Arrangements Optimization Expanded Schematic

crossover operation is not used for below DCD Zone-decks since this would invalidate

the allocation.

Swap is applied for both DCD and non DCD Zone-decks, but on the DCD Zone-

decks, swap is also altered to only manipulate spaces within one Sub-Zone-deck

segment at a time. When swap is called, one of the Sub-Zone-decks (SZDs) is picked

by a random draw translated to selection probabilities. The port and starboard SZDs

each have a 20% chance of selection, and the center SZD is given a probability of 60%

as it typically will have more spaces to re-arrange. For below DCD chromosomes,

no chromosome segment selection is necessary; the entire chromosome is considered

one SZD segment. The two swapped spaces are randomly selected from within the

selected gene segment. There is, however, a catch to make sure that the athwartship

passage in the center Sub-Zone-deck is not swapped into the first or last position.

For better algorithm performance, at least one space resides in the bow and in

the stern section. A random draw between one and the selected segment’s length

91

determines how many exchanges are performed within the segment each time swap is

called. Since fewer variation operators are used compared to the allocation GA, these

additional exchanges help produce the desired amount of diversity in the population.

Due to the high computational cost of the geometry generation, the population

number (number of chromosomes in the population, PopNum) is small and daugh-

ter chromosomes do not replace the parents. Instead, daughter chromosomes are

placed in a second, temporary population. The number of daughters collected in

the temporary population is equal to the population number. Each crossover oper-

ation produces two daughters, and swap produces one daughter. Therefore, to give

equal representation to both operations, GAs optimizing a DCD Zone-deck perform

crossover PopNum/4 times and swap is called PopNum/2 times each generation.

When acting on a non DCD Zone-deck, the number of swap calls is equal to the

PopNum. The population number should be a multiple of 4 so that the number of

operations calculated is an integer. These statistics are included in Table 4.12.

Table 4.12: Number of Swaps and Crossovers per Generation by Zone-deck type

DCD non DCD
Crossover PopNum/4 0

Swap PopNum/2 PopNum

4.6.2 Adaptive Probability Roulette Selection

The selection operation selects chromosomes from both the original population

and the temporary population. Selection probabilities for all 2×NumPop chromo-

somes are again calculated by summing and normalizing the utility values to find the

fitness percentages (Psel) and the corresponding Roulette probability values (Rsel).

The elite chromosome is automatically included in the next generation. The small

population is more susceptible to losing diversity by repeated selection of the fitter

92

chromosomes. Adaptive Probability Roulette was, therefore, written to ensure that

a single chromosome can only be selected once to survive to the next generation.

After a chromosome is selected, its probability of selection percentage (Psel)

is subtracted from the total and then re-written to zero. The Rsel values of the

chromosomes following in the list are re-calculated, and the next random draw is

taken from between zero and the new decreased total. This repeats until NumPop

chromosomes have been selected for the next generation’s population.

4.7 Example Problem
4.7.1 Inputs

The topology/geometry arrangements optimization algorithm is illustrated by a

proof-of-concept example for one subdivision with a Damage Control Deck (DCD)

Zone-deck and an associated below DCD Zone-deck. Contents of each Sub-Zone-deck

as an assumed solution from the Allocation problem are shown in Table 4.13 with

the spaces’ area and number of accessway requirements. The total desired area of

the spaces allocated to each Sub-Zone-deck reasonably matches the available area of

the Sub-Zone-deck through the allocation process.

Both Zone-deck footprints are 24m by 24m with a 1m grid spacing. The port

stairtower (shown later in grey) is set outside the port longitudinal passage in the port

DCD Sub-Zone-deck, while the starboard stairtower is assigned to be on the inside

of the starboard passage. Compliant with Naval Sea Systems Command (1992),

passages are 1m wide, and the stairtowers are longitudinally oriented, 3m long by

1m wide. The available area given in Table 4.13 reflects the subtraction of these

dimensions.

An additional pre-defined fixed object (perhaps representative of a trunk) is ac-

counted for in the port SZD geometry (shown later in black) to show that SZDs not

93

Table 4.13: Allocation Solution applied to Arrangement example problem

Space Number ReqArea [m2] AccNum
DCD, Subdivision 1

Port SZD Available Area: 141 m2

1 54 1
2 48 1
3 42 1

Port SZD Assigned Area: 144 m2

Center SZD Available Area: 227 m2

4 20 1
5 48 1
6 15 1
7 30 1
8 80 2
9 36 1

Center SZD Assigned Area: 229 m2

Stbd SZD Available Area: 144 m2

10 36 1
11 36 1
12 36 1
13 36 1

Stbd SZD Assigned Area: 144 m2

DCD, Subdivision 0
14 n/a n/a

DCD, Subdivision 2
15 n/a n/a

Below DCD, Subdivision 1
Below SZD Available Area: 564 m2

16 134 1
17 80 1
18 56 1
19 60 1
20 60 1
21 115 2
22 60 1

Below SZD Assigned Area: 565 m2

94

arranged by the Stochastic Growth Loop can also handle blockages. The area of the

blockage is, however, not accounted for in subdividing the outer SZD, because trunk

size is assumed to be small compared to the spaces. Therefore, the space(s) around

the blockage are may be short on area satisfaction. A further refinement to account

for this area loss is appropriate. While it is not possible to handle every intricacy of

arrangement choices, the most common complexities are included.

Adjacency and separation constraints are enumerated in a connectivity matrix,

Table 4.14. To more strongly express constraints, they are expressed reciprocally.

Hence the matrix is symmetric across the diagonal. A proximity constraint to self,

marked with an X, is not meaningful. A value 1 indicates a preference for adjacency;

2 indicates separation. Two additional spaces are included to show the ability to

relate to objects outside of the current Zone-deck. Space 14 was allocated to the

next Zone-deck forward, and assumed to already be arranged. Space 15 is assumed

to reside in the next, un-arranged Zone-deck aft.

Table 4.14: Connectivity Matrix for DCD

Port SZD Center SZD Stbd SZD Fwd Aft
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 X 1 1 2 1 1
2 1 X 1
3 X 1
4 1 X 1 1 2 1 2
5 1 X 1
6 1 1 X 1
7 1 X 1 1
8 2 X 2
9 2 1 X 1 1
10 1 X
11 1 X 1
12 1 1 X
13 1 1 X
14 1 1 2 X
15 1 2 X

There are 40 adjacency and separation constraints, 5×(3 + 6 + 4) = 65 shape

95

constraints, and one extra double access constraint for a total of 106 fuzzy utilities to

calculate in the DCD cost function. With six spaces and an arrangeable athwartships

passage in the center Sub-Zone-deck there are 7! = 5040 possibilities. However, since

the athwartships passage will not be in the first or last position, the center SZD

search space is reduced by 2×6!=2×720=1400 to 3600 giving a total search space of

3!×3600×4! = 518,400 variations of the independent variable. The below DCD has

7! = 5040 possible topologies.

4.7.2 Results

4.7.2.1 Damage Control Deck

The GA improved the arrangement solution by 28% from the first generation.

Convergence is seen in Figure 4.18. The initial arrangement is seen in Figure 4.19(a)

and has a utility value of 0.7093, eq. 4.9. Below it is the final solution, Figure 4.19(c).

The best fitness of 0.9112 was found at generation 87 of 100. This example written in

object oriented C++ ran in 192 seconds (3 minutes and 12 seconds) with a population

of eight chromosomes and five geometries generated per topology on a 1.73 GHz PC

with 1 GB RAM.

A noticeable improvement can be seen in the final solution. Most obviously, there

are no longer any open spaces. Exiting at the maximum iteration number with grid

spots left unoccupied does not directly affect the cost function value, but often, as

in this case, some spaces have less than their required area and the user may decide

to manually repair the solution. As reported in Table 4.15, there is a good match

between acquired area and required area in the final solution.

Strong, practical shapes were generated in both solutions. The only irregularity

is final Space 9’s small extension to fill in the area next to the stairtower. Though

appendages are not desirable, they are necessary to complete more complex design

96

Figure 4.18: Convergence Plot for DCD GA

Table 4.15: Area Satisfaction from First and Final DCD Arrangement

Space First Final Required Area
1 51 47 54
2 44 48 48
3 42 42 42
4 15 20 20
5 49 50 48
6 15 16 15
7 22 30 30
8 80 74 80
9 25 37 36
10 36 36 36
11 36 36 36
12 36 36 36
13 36 36 36

problems that consider vertical and horizontal passages, stairtowers, and fixed ob-

jects.

Space 8 was required to have two passage connectivities. It is fully satisfied by

the first solution since the space lies between both longitudinal passages. In the final

solution, the separation distance between accessways can be greater with attachments

97

(a) (b)

(c) (d)

Figure 4.19: DCD First (a and b) and Final (c and d) Solutions showing Adjacencies (white) and
Separations (black)

98

to the starboard and athwartship passages. The resulting thinner aspect ratio (7:3)

is not as good, but it is still within the acceptable 3:1 range. Also, by not attaching

to the port passage, space 8 improved its utility for the separation constraint from

space 1 in the port SZD.

The final solution greatly improved the adjacency and separation goals, Table 4.14.

Figures 4.19(b) and 4.19(d) overlay arrows depicting these goals on the solutions.

For example, Space 6’s three adjacency (shown in white) lengths, which were promi-

nent in the first solution, are shortened in the final. Placing 9 in the stern section

and 4 towards the bow helped satisfy the six proximity constraints on 4 including

separations (in black) to 9 and to 15 and an adjacency to space 14. Arrows extend-

ing out of the Zone-deck to the right are representative of a relationship to space 14,

and similarly arrows to the left are to space 15 in the aft Zone-deck. The topology

optimization is clearly responsive to proximity criteria.

The stairtower configuration established in the final DCD solution is brought

down to the below DCD Zone-deck optimization as a fixed constraint.

4.7.2.2 Below Damage Control Deck

The Below Damage Control Deck case proved to be a more difficult problem.

Not only is the available area handled at any one time much larger, but it also has

variable blockages within the area from the fixed stairtowers and associated passages.

The example Zone-deck is also over-allocated. The example problem is written to

demonstrate how well the algorithm handles non-ideal and realistic scenarios. At

least 2(2×3)=12 of its 576m2 are dedicated to accessways leaving only 564m2 for

the total 565m2 of required area assigned to it. Therefore, it’s important to keep

passages short and to fill up all of the available area. Frequently, however, the

stochastic growth loop exited at the maximum number of iterations rather than

99

converging to no area remaining unoccupied. Therefore, the sensitivity to maximum

iterations was a key concern.

To find reasonable solutions, the maximum geometry generation iterations and

the number of geometries generated per topology had to be increased from the DCD

problem. A study was conducted to establish how these two parameters affect the

resultant cost function in order to find the optimal geometry generating parameter

values. The highly stochastic nature of the algorithm mandates repetition to cull

out poor solutions, but the algorithm also reaches a point of diminishing returns the

longer the optimization runs. The goal is to find the minimum parameters necessary

to find strong solutions before computation time becomes excessive.

Two topology cases were considered. Running the optimization with all spaces

requiring a single access gave the first test chromosome. The second chromosome

was the GA’s elite from a case with two spaces required to have double access.

For each case, ten geometries were made for six different maximum iteration caps

ranging from 2500 to 20000. The average and maximum of the ten fitness values

were plotted versus maximum iteration, Figure 4.20. The right hand axis, Average

Figure 4.20: Cost Function and Elapsed Time versus Maximum Geometry Generation Iteration for
Case 1 and 2

100

Time Length [sec], corresponds to the bottom two lines labeled Time Duration. As

expected, duration monotonically increases with maximum iteration. However, the

cost function values do not. Fitness is remarkably independent of maximum iteration.

This justifies the use of the smallest maximum iteration that still generates strong

solutions.

The smallest maximum was determined by the parameter’s relationship with re-

maining grid spots. There is only a loose, inverse relationship between cost function

and remaining spots, Figure 4.21. Yet, it is still desirable to produce a solution that

requires less repair work by the designer to allocate the unoccupied remaining spots

to spaces.

Figure 4.21: BDCD Parametric Study: CF vs Remaining Spots

The case for choosing a maximum of 7500 iterations is supported by a plot of

remaining spots versus maximum iteration number, Figure 4.22. There was also

an increase in average cost function at 7500 iterations, Figure 4.20. Therefore, to

balance computational time and performance, a maximum iteration limit of 7500

was placed on the below DCD Zone-deck geometries for the example problem.

A second parametric study looked at how many geometries should be generated

each time the GA calls the cost function. Over 15 runs of ten geometries each,

101

Figure 4.22: BDCD Parametric Study: Remaining Spots vs Iteration

the best geometry appeared, on average, at number 6.4. This makes the case for

generating all ten geometries each time. If duration becomes a greater concern, the

number of geometries could be reduced from 10 to 7.

The following results were produced by a population of 8 chromosomes each gen-

erating 10 geometries with a maximum iteration limit at 7500 for each cost function

call. Same as on the DCD, 8 chromosomes were chosen to balance population di-

versity and computation time. Two solutions are given representing the variety

produced from different optimization runs on this multi-modal and discontinuous

topology search space. Computation times vary from run to run, but roughly each

GA generation making 80 geometries takes just over one minute.

A 25 generation run took 1550 seconds (25 minutes, 50 seconds) and found the

topology (17 21 20 19 18 16 22) with the top fitness value of 0.8956, Figure 4.23.

The corresponding geometry shows perfect satisfaction of the shape criteria and the

double access requirement on space 21. However, there is a significant fault: RAS16

= 0.75. Space 16 is short 33m2, and the remaining spots are not adjacent to it.

While this solution gave the best cost function value, it is not easily repaired. It is

left to the designer to decide which of the numerically top solutions is best and how

102

Figure 4.23: Below DCD Solution 1, CF = 0.8956

to repair it if needed.

Figure 4.24: Below DCD Solution 2, CF = 0.8855

The best topology (18 17 21 20 16 19 22) as determined by the author has only

a 1.1% lower cost function value at 0.8855. The corresponding geometry is shown

in Figure 4.24; its two main faults are easily fixed. First, there are open spots

between space 18 and the port passage. Space 18’s center box is responsible for

a side attachment to the passage aft of the stairtower. Therefore, the portion of

the space extending forward is an appendage. Since an appendage cannot grow an

103

appendage in the present algorithm, there is no mechanism for space 18 to grow back

toward starboard into the empty grid spots. These spots must be manually allocated

for space 18. To keep its almost exact area satisfaction, space 18’s forward bulkhead

can then shrink by one. This enables space 17 to grow aft and push the passage

1m shorter. The second fault to address is an excess of area in Space 17 and too

little area in Space 16. The bulkhead between them is simply translated 2m towards

port. Area requirements for the three solutions is given in Table 4.16. After the

three repair steps, the resulting geometry, Figure 4.25 has an improved cost function

of 0.9179.

Figure 4.25: Below DCD Repaired Solution 2, CF = 0.9179

Table 4.16: Area Satisfaction from Below DCD Arrangements

Space Soln 1 Soln 2 Rep Soln 2 Required Area
16 101 118 130 134
17 70 86 81 80
18 54 57 57 56
19 60 60 60 60
20 62 56 56 60
21 120 113 113 115
22 60 53 53 60

Sum: 527 543 550 565

104

Final assessment is left to the designer for two reasons. First, it is impractical

to algorithmically repair the plethora of scenarios that may be produced. Second,

it is not the author’s intent to remove the designer from the arrangement process.

On the contrary, it is essential to include the user’s discerning judgment. Visual

inspection and real-time expert input are powerful tools that are to be included in

the optimization of arrangements.

4.8 Validation Problem

For a full-scale Zone-deck, it is unlikely to attain a perfectly satisfied solution.

Compromises between conflicting goals drive the best possible utility lower than

one. Yet, to give confidence that this compromised solution is still the best, the

algorithm must demonstrate its ability to find a perfectly satisfied solution when

there is one.

Three validation problems are presented with “perfect” (U = 1) solutions found

by alternative optimization methods or other means. The efficacy of the topology

optimization by the GA has already been verified in the example problem. Thus,

only the geometry generation is validated here. The topology of the known solution

is input to the geometry generation routine. For each problem, the routine is run ten

times generating up to ten geometries and exiting upon finding a U = 1 geometry.

Results are given for the average of the ten runs. Twenty-eight of thirty runs were

able to generate an optimal solution.

The validation Zone-deck is treated like a center SZD section of the DCD. Spaces

require connectivity to either the port or starboard side. Center boxes are placed

longitudinally and then expanded to a side access and to the extents. Only shape

criteria are evaluated in the cost function, eq 4.9. Proximity and double access

constraints were successfully represented in the example problem. The maximum

105

iteration is 2500. The available area is 12m by 12m and each problem has a goal of

100% area utilization.

4.8.1 Three-spaces

The first and simplest problem arranged three spaces. Their required areas are

given in Table 4.17. For the given topology, 1-2-3, there is more than one way to

arrange a perfectly satisfied geometry. Any U = 1 solution was accepted to exit

the run. Three of these solutions are shown in Figure 4.26. Variations 4.26(a)

and 4.26(b) are more desirable, but the L shape is allowed using the same fuzzy

membership functions as applied in the example problem. Over ten runs, a perfect

geometry was found, on average, at number 3.5 of ten possible geometries in an

average time of 0.192 seconds.

Table 4.17: Three-space Validation Problem Inputs

Space Required Area
1 72
2 42
3 30

(a) (b) (c)

Figure 4.26: Three-space U = 1 Validation Solutions

This problem is also solved by an exhaustive search in a Matlab program. Upper

and lower bounds on area and aspect ratio are written for the three spaces. Bounds

are defined by the region of the fuzzy utilities equal to one. The 12 inequality

106

constraints are in terms of two independent variables, x and y. Assuming a layout

like Figure 4.26(a), x is the longitudinal length of space 3, and y is the transverse

width of space 3. The remaining feasible domain gave a single integer solution of x

= 6 and y = 5. This is the same solution found by the stochastic growth loop. Thus,

for this layout with space 1 extending the full beam and space two and three split

with a longitudinal joiner bulkhead, the algorithm found the single global optimum.

4.8.2 Four-spaces

The 4-space validation problem adds in a fixed blockage, thus, requiring the use

of appendages to fill the available area. Problem inputs are given in Table 4.18.

The topology is 4-5-6-7. With a maximum of ten geometries each run, not every

run found the optimal U = 1 solution, Figure 4.27(a). Twice, the routine ended

with an alternate strong solution, U = 0.9892, Figure 4.27(b). Each space in this

solution missed the required area by ± 1m2. These two runs made all 10 geometries

in search of a U = 1 solution. The average number of geometries made was 5.0, and

the average duration was 0.055 seconds.

Table 4.18: Four-space Validation Problem Inputs

Space Required Area
4 25
5 35
6 46
7 35

Introducing one additional space leads to an explosion in the number of variables

that could be defined for varied layouts. Even before allowing multiple boxes to

accommodate a blockage, there are at least a dozen possible cases. A full enumeration

and optimization of all the ways to subdivide the available area might likely reveal

more alternate U = 1 solutions. However, since another solution cannot improve

107

(a) (b)

Figure 4.27: Four-space Validation U = 1 Solution (a) and Alternate Solution, U = 0.9892 (b)

upon a solution with U = 1 as defined by this cost function, it is reasonable to find

one perfect solution to validate the geometry generation.

A goal of this research has been to create an explicit and objective cost function

to define a good arrangement. A mathematical proof or exhaustive search to find a

single global optimum would validate the cost function’s ability to quantify superior

characteristics more than it would serve to validate the ability of the geometry gen-

eration to create these characteristics. For the purpose of a preliminary design tool,

the first priority is to find a selection of good geometry solutions.

4.8.3 Five-spaces

Two blockages with the dimensions of stairtowers and five spaces were included in

the last and most difficult validation problem. The topology is 8-9-10-11-12. From

these inputs, Table 4.19, the known U = 1 solution (Figure 4.28) was found quickly.

Table 4.19: Five-space Validation Problem Inputs

Space Required Area
8 15
9 39
10 27
11 42
12 15

108

Figure 4.28: Five-space U = 1 Validation Solution

4.8.4 Geometry Validated

A summary of all three validation problem’s computation statistics is given below,

Table 4.20. When a perfect utility is obtainable, the stochastic growth loop can find

Table 4.20: Validation Problem Statistics

Number of Spaces Average Geoms Average Time [sec] Average Time/Geom [sec]
3 3.5 0.192 0.055
4 6.0 0.274 0.046
5 2.8 0.293 0.105

it given multiple attempts. Although the 4-space problem required more geometries,

its average time per geometry was less than the 3-space problem. The longest time

overall and per geometry was for the 5-space problem, but its number of geometries

required was also the lowest at 2.8. The problem with fewer ways to arrange the

spaces in a highly satisfied manner required a longer computation time. Whereas,

the 3 and 4 space geometries converged quickly, but not always to the absolute best

possible geometry. Of 30 runs, the mode of the number of geometries required before

successfully producing a perfect utility was two. Thus, although the average is over

twice as many, the algorithm typically found the ideal quickly. Six of the 30 runs had

to generate ≥ 8 geometries raising the average. The trade-off between performance

and speed is balanced within the algorithm. The randomness that at times results

in longer computation times is also integral to the robust logic that produces perfect

109

solutions for problems of varying difficulty. From the strong performance on these

three problems, it is reasonable to conclude that for more complex problems, the

geometry generation routine is producing the best solutions given the parameters

judged to be practical.

110

CHAPTER 5

Conclusions

5.1 Summary

The algorithms presented take designer inputs for a ship’s spaces and return

a full-scale general arrangement solution. The problem is broken into two parts:

Allocation of spaces to Zone-deck regions in the ship and Arrangement of spaces

within each Zone-deck. Spaces are arranged with consideration to global and relative

position, required area, aspect ratio, minimum dimensions, and access requirements.

Arrangement is performed in two iterative steps. First, topology designates the

relative longitudinal and transverse position of the spaces. Second, geometry grows

the spaces from these initial seed positions to fill the available area. Fuzzy utilities

are used to express the goals and constraints of the design.

For Part I, allocation is solved for an example problem assigning 70 spaces to

17 Zone-decks. The independent variable vector is an ordered list by space index

number of each space’s assigned Zone-deck index number. The allocation solution

evaluates Zone-deck area utilization and spaces’ relative and global position goals.

Adjacency and separation distance between spaces is measured in increments of deck

and subdivision. Global position is assessed by deck and subdivision. Each discrete

distance and position has an editable default fuzzy preference value.

A Genetic Algorithm optimizes the integer-coded chromosome. In addition to

111

simple crossover and mutation, Simulated Binary Crossover (Deb 2001) and a new

operation, swap, diversify the population. Swap exchanges the placement of two

randomly selected spaces as is particularly required in later generations to maintain

proper area utilization. A Double-round Tournament Selection converges the popula-

tion. In approximately two minutes, the Fortran 90 code performed 4000 generations.

The final elite allocation chromosome had excellent Zone-deck area utilization and

optimized fitness for spaces’ global and relative placements.

For part II, two typical Zone-decks in one subdivision of a sample ship are ar-

ranged. The relative longitudinal and transverse position of each space’s seed location

given by a topology chromosome is translated onto an orthogonal grid. In the geom-

etry step, spaces are expanded to have size and shape filling the available area in the

stochastic growth loop. Spaces are defined by up to three contiguous boxes allowing

for L, T, C and Z shapes. The Zone-decks are arranged one at a time in sequence.

The Damage Control Deck (DCD) Zone-deck is arranged first. It is divided into

three Sub-Zone-decks (SZDs) by the fixed port and starboard longitudinal passages.

Vertical stairtower longitudinal positions are optimized by the algorithm and then

fixed for the below DCD Zone-deck that is arranged second. There, passages have

variable length controlled by the spaces growing and shrinking. Spaces maintain

connectivity to one or two passages as required. There are no SZDs in the below

DCD Zone-deck; the entire available area is arranged at once.

Converged geometries are evaluated in the arrangement cost function. This evalu-

ates each space’s required area satisfaction, aspect ratio, minimum overall dimension,

minimum segment dimension, perimeter length, connectivity to access, and again,

proximity constraints to other spaces. Editable piecewise linear fuzzy utility func-

tions translate each criteria measure to a fuzzy utility. For each Zone-deck, the best

112

of a modest number of geometry solutions returns all the bulkhead locations and a

cost function value to a Genetic Algorithm optimization of the topology chromosome.

The objective of the topology GA is to find the best corresponding geometry.

Tailored swap and crossover variation operators are applied to preserve the allocation

solution to the DCD Sub-Zone-decks and to the Below DCD Zone-deck. Adaptive

Probability Roulette Selection ensures that a single chromosome can only be selected

once to survive to the next generation. The geometry step provides the cost function

for the topology optimization.

The DCD Zone-deck GA improved the example arrangement solution by 28% from

the first generation. This example written in object oriented C++ ran in approxi-

mately three minutes for 100 generations with a population of eight chromosomes and

five geometries generated per topology. The final solution shows a great improvement

in adjacency and separation constraints. Both the DCD and non DCD Zone-deck

algorithms produce spaces with practical shapes and required area satisfaction. The

below DCD GA runs approximately one minute per generation due to the larger

arrangeable area and the variable length passages. A final below DCD Zone-deck

geometry was manually repaired to allocate left-over area and to improve two spaces’

required area satisfaction by shifting their shared bulkhead. The resulting geometry

is the best as deemed by the author.

5.2 Intellectual Contributions

The success of this work is a result of novel approaches. Access maintenance and

shape flexibility are key advances on previous work. The following list enumerates

the new contributions to arrangements optimization.

• The two part allocation and arrangement optimization can handle a full scale

ship from a space database and main hull structure and return spaces’ bulkhead

113

locations.

• The integer-coded allocation chromosome automatically assigns each space to

uniquely one discrete Zone-deck. From this efficient formulation, alternative

optimization methods may be attempted, for example, the hybrid GA-Agent

approach.

• Complex shapes needed in realistic designs are possible with the three-box ap-

proach.

• Probabilistic move selections attempted with heuristic move rules make the

stochastic growth loop robust and effective in generating converged geometries.

• Spaces may require connectivity to port and/or starboard passage for single or

double access. Continuity is assured for longitudinal passages along decks and

for vertical stairtowers in subdivisions.

• Fuzzy logic is exemplified for arrangements optimization.

• The optimization cost function provides a quantitative criterion for the assess-

ment of arrangements that can lead to a more objective, repeatable process.

• Constraint definitions capture best practices of the aging workforce and its

accumulated experience. The constraint database is transferable for use on

similar designs.

The goal to provide the naval architect with a semi-automated tool has been sat-

isfied. The allocation and arrangement optimization replaces significant man hours,

allowing the designer to generate and evaluate more design alternatives in less time

with readily available computing power. As design is a highly iterative process, the

114

designer remains in the loop by editing goals and constraints, evaluating the solutions

produced, and then by re-editing and arranging again.

5.3 Future Work

There are more variations of types of Zone-decks than demonstrated here in the

development and example problems. DCD Zone-decks in the bow and stern subdi-

visions typically have different passage configurations, and thus different Sub-Zone-

decks (SZDs). A combination of the stochastic growth loop and the approach taken

for the port and starboard SZDs can be applied, but the detailed implementation has

not been included in this work. Smaller available areas with fewer allocated spaces

may actually be left to the designer to simply subdivide. Specific treatment of the

superstructure is also left to later work, but it may be treated with the same funda-

mental algorithms as used on the DCD. Zone-decks on the DCD with no athwartship

passage are also not yet coded, but no new logic is necessary to accommodate these.

It is simply an extension of the work already presented.

More substantial adaptations will have to be written to handle non-orthogonal

entities. Hulls are not orthogonal, but curvature drawn on a u-v space can be mapped

to the orthogonal x-y grid. Then, every grid spot is not 1m2; a more explicit available

area calculation will need to be made. Slanted passages can be also be accounted for

by re-defining the available area of the grid spots that are truncated. The stochastic

growth loop presented can then be applied on the grid overlaying the available area.

Some modular spaces with fixed dimensions (such as used in some staterooms)

should be treated differently from the current stochastic growth loop rules. The user

could re-write the fuzzy utility shape criteria functions to only allow a tight margin

of error around the pre-defined shape. However, this approach would be expected

to result in many poor solutions. Instead, these spaces can be given proper shape

115

in the center box expansion stage before the growth loop. A positive growth in

one direction would then have to be paired with a negative growth in the opposite

direction to achieve translation.

A future paradigm shift in the independent variable formulation could better

allow for other types of movement. It could be advantageous to translate spaces and

to enable one space to push or pull another. Variables could define the bulkhead

location between two spaces rather than, or in addition to, defining the bulkhead for

one space. This challenge is left to longer term future work.

116

APPENDICIES

117

APPENDIX A

Abridged Best Chromosome History with Creating

Operations

GA search history of the best allocation chromosome is shown along with the

generation of introduction and associated fitness value, Figure A.1. The genetic op-

erations that resulted in the new best chromosome are shown at the right. Where

the genetic changes are visible in the abridged chromosome, the changes are high-

lighted by boxes. Note that more than one genetic operation operated on most of

the new best chromosomes. The search terminated at generation 3717 following five

reseedings with no further progress. The first allele in the first best chromosome

indicates that space 1 is assigned to Zone-deck 13. The box between generation 5

and generation 6 indicates that for the new best chromosome created in generation

6 one of the three mutations or the two space swap moved space 3 from Zone-deck 5

to Zone-deck 9.

118

Figure A.1: Abridged Best Chromosome History with Creating Operations, Part 1 of 3

119

Figure A.2: Abridged Best Chromosome History with Creating Operations, Part 2 of 3

120

Figure A.3: Abridged Best Chromosome History with Creating Operations, Part 3 of 3

121

APPENDIX B

Final Allocation Configuration: Individual Space Utilities

Table B.1: Final Allocation Configuration: Individual Space Utilities, Part 1 of 2

Space Long. Pref Vert. Pref Min Global Pref Relative Pref Min Utility
1 1.0 1.0 1.0 0.7 0.7
2 0.6 1.0 0.6 0.6 0.6
3 0.6 1.0 0.6 0.6 0.6
4 1.0 1.0 1.0 0.7 0.7
5 1.0 1.0 1.0 0.7 0.7
6 0.6 1.0 0.6 0.6 0.6
7 1.0 1.0 1.0 0.7 0.7
8 1.0 1.0 1.0 0.7 0.7
9 0.6 1.0 0.6 0.6 0.6
10 0.6 1.0 0.6 0.6 0.6
11 1.0 0.4 0.4 0.4 0.4
12 1.0 0.4 0.4 0.4 0.4
13 1.0 0.2 0.2 0.3 0.2
14 1.0 0.4 0.4 0.4 0.4
15 1.0 0.4 0.4 0.4 0.4
16 1.0 1.0 1.0 0.8 0.8
17 1.0 1.0 1.0 0.7 0.7
18 1.0 1.0 1.0 0.8 0.8
19 1.0 1.0 1.0 0.5 0.5
20 1.0 1.0 1.0 0.8 0.8
21 1.0 1.0 1.0 0.8 0.8
22 1.0 0.7 0.7 0.7 0.7
23 1.0 1.0 1.0 0.8 0.8
24 1.0 1.0 1.0 0.8 0.8
25 1.0 1.0 1.0 0.8 0.8

122

Table B.2: Final Allocation Configuration: Individual Space Utilities, Part 2 of 2

Space Long. Pref Vert. Pref Min Global Pref Relative Pref Min Utility
26 1.0 1.0 1.0 1.0 1.0
27 1.0 1.0 1.0 1.0 1.0
28 1.0 1.0 1.0 1.0 1.0
29 1.0 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0
31 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0
33 1.0 1.0 1.0 1.0 1.0
34 1.0 1.0 1.0 1.0 1.0
35 1.0 1.0 1.0 1.0 1.0
36 1.0 1.0 1.0 1.0 1.0
37 1.0 1.0 1.0 1.0 1.0
38 1.0 1.0 1.0 1.0 1.0
39 1.0 1.0 1.0 1.0 1.0
40 1.0 1.0 1.0 1.0 1.0
41 1.0 1.0 1.0 1.0 1.0
42 1.0 1.0 1.0 1.0 1.0
43 1.0 1.0 1.0 1.0 1.0
44 1.0 1.0 1.0 1.0 1.0
45 1.0 1.0 1.0 1.0 1.0
46 1.0 0.4 0.4 0.3 0.3
47 1.0 1.0 1.0 0.5 0.5
48 1.0 1.0 1.0 0.4 0.4
49 1.0 1.0 1.0 0.4 0.4
50 1.0 0.4 0.4 0.3 0.3
51 1.0 0.4 0.4 0.3 0.3
52 1.0 1.0 1.0 0.5 0.5
53 1.0 0.4 0.4 0.3 0.3
54 1.0 0.6 0.6 0.5 0.5
55 1.0 0.6 0.6 0.4 0.4
56 1.0 0.4 0.4 0.3 0.3
57 1.0 0.6 0.6 0.5 0.5
58 1.0 0.4 0.4 0.3 0.3
59 1.0 0.4 0.4 0.3 0.3
60 1.0 0.6 0.6 0.4 0.4
61 1.0 1.0 1.0 1.0 1.0
62 1.0 1.0 1.0 1.0 1.0
63 0.8 1.0 0.8 1.0 0.8
64 0.8 1.0 0.8 1.0 0.8
65 1.0 1.0 1.0 1.0 1.0
66 1.0 1.0 1.0 1.0 1.0
67 1.0 1.0 1.0 1.0 1.0
68 1.0 1.0 1.0 1.0 1.0
69 0.8 1.0 0.8 1.0 0.8
70 1.0 1.0 1.0 1.0 1.0

Average Space Utility: 0.7271

123

BIBLIOGRAPHY

124

Bibliography

Ames, R. and R. Van Eseltine (2001). Architecture for multidiscipline integration of analyses in
a common product model environment for LHA(R) topside. In Electromagnetic Code Con-
sortium (EMCC) Meeting, Kauai, Hawaii.

Andrews, D. (1996, June). Subcon–A new Approach to Submarine Concept Design. RINA WAR-
SHIP 96 Symp. London.

Andrews, D. (2003, September). A Creative Approach to Ship Architecture. RINA International
Journal of Maritime Engineering.

Andrews, D. and C. Dicks (1997). The Building Block Design Methodology Applied to Advanced
Naval Ship Design. Proc. IMDC , 3–19.

Andrews, D. and R. Pawling (2003). SURFCON - A 21st Century Ship Design Tool. Proc.
IMDC 3.

Carlson, C. and D. Cebulski (1974). Computer-Aided Ship Arrangement Design. Naval Engineers
Journal 86 (5), 33–40.

Carlson, C. and H. Fireman (1987). General arrangement design computer system and method-
ology. Naval Engineers Journal 99 (3), 261–273.

Cort, A. and W. Hills (1987). Space layout design using computer assisted methods. Naval En-
gineers Journal 99 (3), 249–260.

Daniels, A. and M. Parsons (2006). An Agent-Based Approach to Space Allocation in General
Arrangements. Proc. IMDC , 673–695.

Daniels, A. and M. Parsons (2007). Development of a hybrid agent-genetic algorithm approach to
general arrangements. In Proc. 5th International Conference on Computer Applications and
Information Technology in the Marine Industries (COMPIT), Cortona, Italy, pp. 197–211.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. New York, NY:
Wiley.

Gen, M. and R. Cheng (1997). Genetic Algorithms and Engineering Design. New York, NY:
Wiley Interscience.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Read-
ing, Massachusetts: Addison-Wesley.

Jo, J. and J. Gero (1998). Space layout planning using an evolutionary approach. Artificial
Intelligence in Engineering 12, 149–162.

Kent, C. (2005). Original genetic algorithm code designed using materials from NA 570 Advanced
Marine Design. Technical report, University of Michigan, Ann Arbor, MI.

Kosko, B. (1992). Neural networks and fuzzy systems: a dynamical systems approach to machine
intelligence. Upper Saddle River, NJ: Prentice-Hall, Inc.

Lee, K., S. Han, and M. Roh (2002). Optimal compartment layout design for a naval ship using
an improved genetic algorithm. Marine Technology 39 (3), 159–169.

Li, J. and M. Parsons (1998). An Improved Method for Shipbuilding Market Modeling and
Forecasting. SNAME Transactions , 157–183.

125

Li, J. and M. Parsons (2001). Complete design of fuzzy systems using a real-coded genetic algo-
rithm with imbedded constraints. Journal of Intelligent and Fuzzy Systems 10 (1), 13–37.

Medjdoub, B. and B. Yannou (2000). Separating topology and geometry in space planning.
Computer Aided Design 32 (1), 39–61.

Michalek, J. (2001). Interactive Layout Design Optimization. Master’s thesis, University of Michi-
gan.

Michalek, J., R. Choudhary, and P. Papalambros (2002). Architectural Layout Design Optimiza-
tion. Engineering Optimization 34 (5), 461–484.

Michalewicz, Z. (1996). Genetic Algorithms+ Data Structures= Evolution Programs. Springer.

Naval Sea Systems Command (1985). NAVSEA Extended Work Breakdown Structure (ESWBS)
(59040-AA-IDX-010/SWBE 5D ed.). Washington, DC: Naval Sea Systems Command.

Naval Sea Systems Command (1992). NAVSEA Design Practices and Criteria Manual for General
Arrangements Design Chapter 070 (T9070-AB-PRO-010 Rev. A ed.). Washington, DC: Naval
Sea Systems Command.

Naval Surface Warfare Center, Carderock Division (2005). Advanced Surface Ship Evaluation Tool
(Version 5.2.0 ed.). West Bethesda, MD: Naval Surface Warfare Center, Carderock Division.

Nehrling, B. (1985). Fuzzy Set Theory and General Arrangement Design. Proc. IFIP/IFAC Conf.
on Computer Applications in the Automation of Shipyard Operations and Ship Design, Tri-
este.

Nick, E. and M. Parsons (2007). Fuzzy Optimal Arrangement of Spaces within a Zone-deck
Region of a Ship. Proc. PRADS 1, 666–673.

Nick, E., M. Parsons, and B. Nehrling (2006). Fuzzy Optimal Allocation of Spaces to Zone-decks
in General Arrangements. Proc. IMDC , 651–671.

Ölçer, A., C. Tuzcu, and O. Turan (2006). An integrated multi-objective optimisation and fuzzy
multi-attributive group decision-making technique for subdivision arrangement of Ro–Ro ves-
sels. Applied Soft Computing Journal 6 (3), 221–243.

Papalambros, P. and D. Wilde (2000). Principles of Optimal Design: Modeling and Computation.
Cambridge University Press.

Parsons, M., H. Chung, E. Nick, A. Daniels, S. Liu, and J. Patel (2008). Intelligent Ship Ar-
rangements (ISA): A new approach to general arrangement. In Proc. ASNE Day.

Slapnicar, V. and I. Grubisic (2003). Multi - Criteria Optimisation Model of Deck Layout Design.
Proc. IMDC 3.

Van Oers, B., D. Stapersma, and H. Hopman (2007). Development and implementation of an
optimisation-based space allocation routine for the generation of feasible concept designs. In
Proc. 5th International Conference on Computer Applications and Information Technology in
the Marine Industries (COMPIT), Cortona, Italy, pp. 171–185.

126

