THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

PERFORMANCE MEASURES FOR MULTIPROCESSOR
CONTROLLERS

C.M. Krishna
K G. Shin

CRL-TR-1-82

OCTOBER 1982

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

1This work was supported by NASA Grant No. NAG 1-298. All correspondence should be addressed to Profes-
sor K.G. Shin. Any opinions, findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the funding agencies.

PERFORMANCE MFEASURES FOR MULTIPROCESSOR CONTROLLERS

C. M. Krishna and K. G. Shin

Department of Electrical and Computer Engineering
The University of Michigan
Ann Arbor, MI 48109

ABSTRACT

In this report, we consider some new performance measures to charac-
terize fault-tolerant multiprocessors used in the control of critical
processes. Our performance indices are based on controller response time.
By relating this to the needs of the application, we have been able to derive
indices that faithfully reflect the performance of the multiprocessor in the
context of the application, that permit the design, evaluation and objective
comparison of rival computer systems, and that can either be definitively
estimated or objectively measured.

Using the example of a controller in an idealized satellite application,
the computation, and some uses of, the performance measures are illus-
trated.

1. INTRODUCTION

1.1. Motivation

Over the last few years, inexpensive, powerful, and reliable microprocessors
have become available. At the same time, analytical, simulation and modelling
techniques for use in computer communication networks have been developed.
Multiprocessors are therefore becoming attractive. One special application to
which they can contribute a great deal is reliable control.

Several reliable multiprocessors have been proposed and a smaller number
built. Among the latter, one might mention the Fault Tolerant Multiprocessor
(FTMP) [1] and the Software Implemented Fault Tolerance (SIFT) machine [2],
both built under contract to NASA for the control of civilian aircraft of the next
decade. Reliability requirements are stringent: the benchmark figure employed
by NASA is that the probability of controller failure should not exceed 107 for a
- ten hour flight. Naturally, such a benchmark begs the question of how "failure"
or the "performance” of a complex multiprocessor system is to be defined. In
this report, we present some measures that are appropriate in this context and
by extension, in the context of other control applications -- nuclear reactors,
life-support systems, etc. -- where controller failure can lead to catastrophic
consequences.

This work was supported by NASA Grant No. NAG 1-296. Any opinions expressed in this report
are those of the authors and do not necessarily represent the views of the funding agency.

-2-

1.2. The Nature of the Control Function

Any real-time system (of which a computer controller is an example) con-
sists of three communicating parts. These are the data acquisition, data pro-
cessing and output sections. The data acquisition section consists of sensors,
input panels and other associated equipment; the processing section consists of
the computer (in our case the multiprocessor) and the output section consists
of mechanical actuators, displays and other output devices. The system may
logically be regarded as a three-stage pipe!.

The set of tasks to be executed by a control system is predetermined and
the nature and behavior of the software known in advance -- at least in outline --
to the designer. The multiprocessor controller is therefore a rather specialized
device; it might indeed be considered custom-built for a particular application.
This fact makes it both easier and more necessary to obtain a reasonably good
performance analysis of the system.

The controller software in the processing section consists of a set of tasks,
each of which corresponds to some job to be performed in response to particu-
lar sets of enviranmental stimuli.

1.3. The Need For New Performance Indices

The determining characteristic of a computer controller's performance is
a combination of reliability and high throughput. The throughput requirements
arise from the need for quick system response to environmental stimuli. Speed
is of the essence in a real-time controller since failure can occur not only
through hardware failure in the system, but also on account of the system not
responding fast enough to events in the environment. This fact imposes a prem-
ium on controller response time and leads naturally to the work presented in
this report.

As a result of these special performance requirements, performance meas-
ures used to characterize general-purpose uniprocessor systems are no longer
appropriate for multiprocessor controllers. Conventional reliability, throughput
and availability by themselves alone have little meaning in the context of con-
trol; a suitable combination of these is necessary. New performance measures
are required, measures that are congruent to the application, permit the
expression of specifications that reflect without contortion the true system
characteristics and application requirements, in addition to allowing an objec-
tive comparison of rival systems for particular applications.

We cannot stress too heavily that it is meaningless to speak of the perfor-
mance of a computer out of the context of its application. The form the perfor-
mance measures take must reflect the needs of the application, and the com-
puter system must be modelled within this context. The multiprocessor con-
troller and the conirolled process form a synergistic pair, and any effort to
study the one must take account of the needs of the other.

It is important that performance measures should depend on parameters
that can be definitively estimated or objectively measured. Much of the work
published so far on characterizing the "goodness of fit" between the attributes
offered by a computer system (reliability, throughput, etc.) and those required
by the application depends on parameters obtained through essentially subjec-
tive analyses. (See, for example, [3]). It has been our policy in this report, how-
ever, to always base performance indices on experimentally-measureable

1. Indeed, the M°FCS system [18] of the United States Air Force is physically configured in
this manner.

-3-

quantities, i.e., controller response time for the various system tasks.

1.4. Organization of Paper

In Section 2, we discuss our new performance measures and in Section 3
means for practically obtaining these quantities. An example is presented in
Section 4, and the report concludes with Section 5.

2. PERFORMANCE MEASURES

2.1. Survey

The concept of systems that are, through built-in redundancy, much more
reliable than any of their components is not new. Some pioneering work was
done by von Neumann [4] and by Moore and Shannon [5], both in 1956.

Work in modelling fault-tolerant multiprocessors was done by Bouricius ef.
al, [6], who took into account the impact of transient and permanent failures,
Borgerson and Frietas, [7], who studied the PRIME computer as a gracefully
degrading system, and other researchers who, like their precursors, used Mar-
kov models in the representation of these systems [8]-[11].

With only one exception ([B]), the work referred to above assumed tradi-
tional performance measures. Other workers recognized the shortcomings of
these and defined new ones. Among these, one might mention Beaudry [12] and
Meyer [13].

The chief drawback of Beaudry's measures is that they express the capabil-
ity of the system as a whole, not with respect to particular tasks. The computer
is treated as a monolith in terms of the services it delivers. The implicit presup-
position is that all tasks are qualitiatively of the same form and have practically
the same "cost" as a function of the response time® However, the tasks that a
real-time computer controller executes are typically widely varying both in
terms of the demands they make on various entities of the multiprocessor and
in the fact that they are of unequal importance. The performance measures of
Beaudry thus express the performance of the computer without reference to the
particular needs of the application, i.e., without discriminating between the
impact on performance between individual jobs.

Meyer's concept of performabilify represents a useful advance in the
search for appropriate performance measures. However, the actual perfor-
mance measures used sometimes require further refinement. For example, in
[18], Meyer employs as the performance measure, Y, the fraction of arrived
tasks that are processed by a system S in an interval of time [0,t]. This, as in the
case of Beaudry's performance measures allows for no discrimination between
individual controller tasks.

Again, in none of the work cited above is there any attempt to systemati-
cally study the actual cost of the overhead incurred in computation.

To remove, at least partially, the limitations of the work cited above, we
present here some new performance measures. We begin with some definitions
and some basic concepts.

2. Or equivalently, that it does not matter if they do not.

2.2. Definitions and Basic Concepts

Because of the stochastic nature of the transient and/or permanent
failures of components in a multiprocessor, the load-dependent blocking at
shared resources, and conditional branches in the software, a probabilistic
model is required to properly represent the behavior of a multiprocessor con-
troller. A state-space model can be formulated, with the states representing the
current operational capacity of the system®. Multiprocessor response time is a
function of the state. System response time is the time interval between the
moment of task initiation and the actuator and/or display result that occurs.

A task is lriggered when some set of events in the operating environment
initiates its execution. If the environment is stochastically stationary, there are
intertrigger distributions.

Every time a task is triggered, a unique wersion of it is created. This version
is called an extant version until its execution is complete. Versions are num-
bered in sequence of triggering: successive versions of task i being denoted by
Ei1 Zi2 etc. The response time associated with a version Z;; is denoted by
RESP(ij). under the assumption that the system continues operating until the
version completes executing. (This is clearly only valid so far as the expected
response time is finite). The extant time of a particular extant version of task i
is the difference between the absolute (or system) time at present and that at
the moment of triggering. When an extant version finishes executing, its extant
time is frozen by definition. Thus, the extant time at t of a version Z;; that was
triggered at time 7;; with the system in state n;; is defined by
ED(’[‘[Ei,]-,Ti'j,ni_j,t]=min[t—‘ri,j. RESP(IJ)]

A controller task may be critical or non-critical. A critical task has a hard
deadline [15], the violation of which leads to dynamic failure. The deadlines are
generally random variables. Non-critical tasks have no such deadlines* .

The mission lifefime is the duration of operation between successive ser-
vice stages.

2.3. The Performance Measures

We define a cost function Cj(£) associated with system response time ¢ for
task i. For critical tasks, the cost function takes the following form:

gi(€) if ¢ <ty
Ci(6) =| « otherwise (1)

where g;(£) is a suitable continuous function of ¢ that increases monotonically®
in [0, tg], is zero for all £>ty;, and we recognize ty as the hard deadline associ-
ated with critical task i.° For noncritical tasks, C;(¢) is continuous, monotoni-
cally increasing and therefore always bounded for a finite response time. For
consistency, we assume that the costs accrue as execution proceeds. In other
words, if task i was triggered T units ago and has not yet been completed, its
contribution to the cost so far accrued is Ci(7).

3. The actual definition of the states depends on the system that is being modelled. Choosing
a suitable formulation to facilitate system anelysis is often a challenging task.

4. Note that dynamic failure encompasses the traditional notion of catastrophic hardware
failure as well as other causes (software crashes, system reconfiguration, electromagnetic in-
terference on the communications network, etc.) of missing one or more hard deadline.

5. In practice, all that can be assured of the behavior of g;(£) is that it is monotonicall non-
decreasing. However, we shall need to invert the cost function and so we assume a strictly
increasing cost function in [0,t4;]

-5-

The cumulative cost function associated with task i, T(t), is defined as fol-
lows:
‘h('-)
Ty(t) = 121 Ci(EXT(E; .7 5,14 5t)) (2)
where there have been g(t) triggers for task i in the interval [0,t]. The system
cost function in a system with r different tasks is defined as:

S(t) = ;’lrim. (3)

Let L(t) = Prob { Mission Lifetime < t |, Q the set of states of the controller, and
A € Q the subset of states in which failure is not certain. Note that failure is cer-
tain when the expected response time goes to infinity. This, of course, means
that the system is overloaded and has a utilization exceeding unity. This
corresponds to hardware failure sufficiently massive to render the system dead
for all practical purposes. Define B = Q-A. Our performance measures are then®:

Cost Index, K(x) = fProbiS(t) < x} dL(t) (4)
0
Probability of dynamic failure, pgy,= f Prob {S(t) = o} dL(t) (5)
0
Mean Cost, M = fEfS(t) |system never enters state set BJdL(t) (6)
0

Variance Cost, V = fVariS(t) | system never enters state set BJdL(t) (7)
0
We define also the following auxiliary measures:

Cost Index for Task i, K;(y) Ef Prob{li(t) < y}dL{t) (8)
0
Mean Cost for Task i, M; = f E{I(t) | system never enters state set BJdL(t) (9)
0

Variance Cost for Task i,V;= f Var{l(t) | system never enters state set BJdL(t) (10)
0

The auxiliary measures are principally for use during the design phase.

To accurately compute the mean and variance cost indices would require us
to take account of the fact that the mission might end before one or more com-
putations is completed. Termination of the mission implies a cessation of all con-
troller activity. One would therefore have to incorporate into the calculations
the probability of the mission ending before some tasks have been completely
evaluated. This is not difficult to do, but is tedious and when the mission lifetime
is long compared to both the expected task service time and the mean inter-
trigger interval, it is often useful to substitute the following modified parame-
ters:

Modified Cost Index, K(x) = i{l—pdyni_{Probig(t) = x}dL{t)} for x <= (1)
11

Pdyn for y=oo

8. The Cost Index is generally only for use when rival multiprocessors are being compared.

-8 -

Mean Modified Cost, M= E{S(t) | system never enters state set BJdL(t) (1R)
Variance Modified Cost, ¥ = f Var{S(t) | system never enters state set BJdL(t), (13)
0

and the auxiliary measures K;, M;, and ¥; are defined analogously, with
Q1(t)

Tyt) = :;lgi(RESP(ij)) (14)

r
and S(t) = },T}(t). Also, from physical considerations, there exists a T<= such

i=1
that for all t=T, L(t)=1, so that the above integrals always converge.

For values of t much greater than either the mean task completion time or
intertrigger interval, the modified costs are good approximations to their exact
counterparts. This is of value, since it applies to most mission lifetimes, (for air-
craft, mission lifetime can range from 30 minutes to 10 hours, while for space-
craft, it can range up to several months) and the modified parameters are much
easier to compute. In the examples presented in this report, we evaluate modi-
fied values throughout.

2.4. Expressions for the Performance Measures

Let P,(t) be the probability that at time t the system is in state v € Q, and
Pé‘)(t) the probability that the system is in state a € A, given that in a mission
lifetime of £, it never enters a state in B. Let Pm(j)(t)dt be the probability of
arrival of one version of task i in [t,t+dt], and w;, and W;, the density and distri-
bution functions, respectively, of the controller response time for task i when in
state a. Further, denote the distribution of the hard deadline for task i, if criti-
cal, by Fg;. Then,

f -
pam® Y [[S 1-W (@)1 (1)Pariy(t) AtAL(£)dFa(w) + EB[Pp(t)dL(t) (15)

a€A w=0 {=0 t=0

Pagn ® 3 Pagngy — (r-1) %) [P(t)dL(t) (16)
i=1 beB 0

where the approximations hold whenever (as is almost invariably the case in
practice) each of the integrals is much less than one.

Let Ei,a be a random variable denoting the contribution to T of a single ver-
sion of task i, with the system in state a € A, tot(i) the value of ; over a mission

lifetime given that the system remains in state-set A throughout, and
T

syst =)} tot(i). Let Ilgrp()(u,9) be the probability of u arrivals of versions of task i
i=1

in an interval of length %, and H§(s) the distribution for the sojourn time of the

system in state v in a mission of length §.

Then, define the following characteristic functions:

(Q)

f fe—sqwi'a(gi—l(q))dq dFg(t) if task i is critical
t=0 q=0

v, (3) =] - (17)
e ®w; ,(g; "' (q))dq otherwise
0

\ =

For the eveluation of a single system, the other three measures are sufficient.

for all a € A,
pap® =T 5 f Z[qu,(s)]u ey (,8) AHY(S) dL(t) (18)
and
Peysi(s) = igmms) (19)

The reader will have noticed two implicit assumptions: (a) that the service
time for a task is much less than the sojourn time of the system at any one
state,” and (b) that costs incurred by each task-version are independent.

The Cost Indices can now be determined by inverting giu((s) and gge(s),
and weighting with the appropriate probability of dynamic failure.

2.5. Application of the Performance Measures

The mean cost, variance cost and the probability of dynamic failure can all
be used in the design and evaluation of individual systems.

The design of every multiprocessor is the result of a multiplicity of deci-
sions regarding scheduling sirategy, individual component redundancies, speed
differentials, etc. The performance measures can be used as optimization cri-
teria in this context. Specifically, the cost function can be used in the following.

(i) Placement of recovery blocks for backward error recovery.
(ii) Dynamic control of queues at processors and memory.
(iii) Deriving tradeofis between control overhead and hardware cost.
(iv) Deriving tradeoffs between dynamic failure probability and
mean conirol overhead for each multiprocessor.
(v) Derivation of optimal (or quasi—optimal) task allocatién and

reallocation strategies.

The above is only a sampling of the uses to which the performance meas-
ures can be put. Indeed, any decision that affects in any way the response time
of the controller can be objectively and rigorously evaluated.

For the evaluation of existing designs, it is suggested that the measures be
used in a two-stage process. First, the probability of dynamic failure of the
designed system is computed and this compared with that required by the
specifications. In the event that the system meets the dynamic failure require-
ments, expressions for the mean and variance costs are derived, and fine-tuning
of the design carried out by studying the sensitivity of the measures to changes
in system structure, speed, etc. If the system does not meet the dynamic failure
requirements, the mean and variance costs are not computed. Instead, the sys-
tem is redesigned to the point where the failure requirements are met before
mean and variance costs are considered. Figure 1 summarizes the approach.

The System and the Task Cost Indices may be regarded as the distribution
functions of random variables that we shall call the system cost and the task
cast respectively. The system cost can be used in the comparison of two or

7. State changes occur when hardware or software failures occur in the system. The rate at
which these occur is far smaller than the mean task completion time. Also, of course, g; is
invertible in [0, tqi].

-8 -

more rival computer systems. Since the system cost function can be regarded
as representing the actual running costs {(in money terms, for example), some
function of it can be used to rank candidate systems. The actual function used
depends on the desired criterion. For instance, if it is desired to rank candidate
architectures on the basis of expected running cost and the performance func-
tionals for the controlled process are suitably chosen, the expectation of the
system cost function would be used and the architectures would be ranked
according to this criterion.

The task costs can be used as indicators of the contribution of individual
tasks to the cost of control.

3. ON DETERMINING THE PERFORMANCE MEASURES

In what follows, the real-time system consists of the confrolled process
(often referred to simply as the "process”) and the controller (i.e., the multipro-
cessor).

Four items need to be determined, prior to computing the performance
indices. These are the distribution of the hard deadlines tg; for each critical task
i, the finite cost function g; for each task j, the multiprocessor response time
distribution as a function of its state, and the P,(t) for all v € Q. We concentrate
here on the first two, referring the reader to the example presented in Section 4
and the queueing theory and probability literature for the last two.

3.1. Derivation of the Hard Deadlines

Typically, critical tasks are associated with life-critical activity and so one
is especially concerned in finding practical means for accurately estimating
Payn- In order to do so, the hard deadlines must first be derived. In most cases,
since the environment is only stochastically known, this takes the form of pro-
bability distributions.

To explain the derivation of the distribution of ty;, a state-variable approach
is useful. A general process may be described as

x(t) = f(x(t), u(t).) (20)

where x € R" is the state vector, u € R™ is the input vector, and t represents
time. The input vector can be partitioned

u' = [uf | uf] (21)

where ug is the environment input’ subvector®, It represents the effects of the
environment on the controlled process. For example, a gust of wind is an
environmental input when the controlled process is an aircraft.

uc is the control input subvector. It represents the input delivered under
controller command in response to an environmental input. For obvious reasons,
it is always bounded.

The process is required to perform within a certain subset of the state-
space. Let the admissible set of the state vector be bounded and denoted by X,.
Note that the admissible state-space is not necessarily static.

The control ug is employed to keep the process in X;. The control is clearly
a function of ug. Since X, is bounded, there is a bound on the controller
response time allowed. This bound is the hard deadline. Since the process

8. By definition, an input from an I/0 panel is also an environmental input.

-9-

dynamics and the distribution of ug are known, the distribution of each hard
deadline can in theory be determined.

For clarity, we restate the above. The system response time -- the interval
between a trigger and the termination of the resulting controller response -- can
be divided into two portions: controller think-time (i.e., the controller response
time) and the actuation time during which the process reacts to the environ-
mental trigger under controller directives. The hard deadline ty; associated with
a control task i which is triggered by an environmental input is the maximum
controller think time permitted, consistent with environmental conditions, the
process dynamics and the requirement to keep the system within the admissible
state-space, Xj.

Clearly, in order to derive the hard deadlines, a precise formulation of the
process dynamics is required. Since such a formulation is a required part in the
design of a critical process, no additional requirements are imposed on the sys-
tem designer.

For an example in determining hard deadlines, the reader is directed to
Section 4.

3.2. Derivation of Finite Cost Functions

Very little work has been published in this area. Cost functions of this type
are usually -- and if at all -- specified in an ad-hoc manner. The main problem
here is that the cost functions must be linked to the controlled process to have
any concrete meaning. Contemporary workers (e.g., [3]) have skirted the prob-
lem -- with less than convincing results -- by ascribing qualitatively-defined
"weights'' to controller attributes (conventional reliability, throughput, etc.) and
attempting to match these to corresponding weights for the application (also
qualitatively obtained).

Controlled processes have performance measures that are functionals of
system state and input, and which express the cost of running the process [17],
[18]. The traditional formulation is:

J(t) = f,(x(t), uft), t) (22)

where J(t) is the instantaneous performance measure , f, the functional and the
other symbols have their usual meanings.

The cost of running the process over, say, an interval [tg, t1],

Y
@ = Jfi(t)dt (23)
ty

We claim that a good representation for gi(¢) is given by®

_ (&) - (o) for D=<é<tgy

&i(é) 0 otherwise (24)

where:

9. It is easy to see that many other suitable representations of the cost function can exist.
For instance, one can modify {}(7) to include higher moments of the contribution to ®. How-
ever, for most practical purposes, the above measure should suffice. It is usually only when
the intertrigger or service time distributions exhibit strongly non-Markovian behavior that
such a modification needs to be considered. Also, g; is 0 for values of response time greater
than the associated hard deadline since to speak of finite cost after failure has occurred is

meaningless.

-10 -

Q(n)
Uej
See Section 4 for an example.

Expected contribution of ugto @ if response time of task i =7,

n

control input subvector associated with task i.

3.3. Remarks

By connecting the activity of the controller system with that of the con-
trolled process, a proper foundation has been provided for the definition of con-
troller performance. All quantitites relating to the performance measures can
be calculated from quantities that may be estimated or measured. It is true that
our methods presuppose a knowledge of the controlled process and its dynamics
that may not at first be accurately available. However -- and this is the crucial
point - an understanding of the dynamics of the process will surely increase
with experience (say with a mathematical model or a prototype). There is there-
fore a learning curve associated with process operation and hence by induction
another for the performance measures. Note that we are here considering criti-
cal processes such as nuclear reactors or aircraft and that such processes call
for extensive testing and analysis before release or installation. Also, the
operating environment for these critical processes is usually well known, so that
a good model generally exists for the intertrigger distributions.

One can express uncertainty about the accuracy of the individual cost func-
tions in terms of a confidence measure. The sensitivity of the system cost to
changes in the cost functions is given indirectly by the individual task costs. The
latter can therefore be used with confidence intervals for the cost functions to
obtain a confidence interval for the system cost.

The vital point to note here is that this present effort is probably the first in
which the computer controller is designed specifically with a particular con-
trolled process in mind. Carrying through with this idea, we note that the design
of the controller will depend on the nature of the controlled process. This is a
departure from tradition since controlled processes and computer controllers
have evolved separately as distinct and independent disciplines.

4. EXAMPLE

In this section, we present an example for the determination of hard dead-
line distributions, mean and variance costs, and the analysis of a multiprocessor
system. Both the example process and the multiprocessor are somewhat ideal-
ized, the principal purpose being to illustrate what has gone before.

4.1. The Process

4.1.1. Description

The controlled process is a communications satellite of mass m, floating in
free space. One critical controller task (task 1) is to keep it within a sphere of
radius R centred on a “rest position"”, x. The environment is characterized by a
series of impulses, deriving from meteorite impacts, and arriving along random
directions. The meteorites arrive according to a Poisson distribution with
parameter A. The satellite must be restored to rest at x; before the next
meteorite comes in. The energy the meteorites impart to the satellite is
assumed to be constant at k units per impact.

The controller employs rockets to respond to the impulses and can impose
a maximum thrust of a units of force in any direction. The rockets must be
adjusted to the right direction, and this deployment takes 7, units of time.

-11 -

The performance index with respect to this one task is ® = total energy
expended by the rockets. The problem is to determine the distribution of t4; and
the finite cost function, g,(t).

4.1.2. Derivation of t4; Distribution

Catastrophic failure will occur either if the satellite is not restored to rest
at xg by the time the next impulse comes along, or if the satellite leaves the
admissible state space,

tq; is the maximum think-time, and finding it is equivalent to solving for the
minimum actuation time. We clearly have a bang-bang control solution. Using
standard methods from optimal control theory, we conclude that

tg = max § min[A(7), t;], 0} (25)

where 7 is the interval between successive meteorite arrivals,

_ VZkm km , TVZIkm
A(T) = T—T,+ < —2\/ e L (26)
=~/ B.g-k
t, = ok R " (R7)
The distribution function for tg; is given by:
0 if¢<0
Far(¢) = {1 — e™M7O jf 0< ¢ <ty (28)
1 otherwise

4.1.3. Derivation of g,

Notice that since the environment is stochastic, the controller will always
order maximum thrust. The duration for which the thrust is maintained will
depend on the response time, £. All computations are made under the condition
that £<t,,. Using the laws of mechanics, we arrive at the following result, which
the reader may easily verily:

Expected contribution of ug; to @ if response time = £,

0,(6) = 0,00) + N/ Z g (29)
We can therefore now write:
el =/ _":—Eag for O<é<ty (30)

The cost function C;(¢) is now completely determined. It only remains for us to
obtain the controller response time distribution and state probability functions.

Remark: Notice the tradeoff between t4; and g;. As the rocket thrust, a, is
increased, the expected value of t4, increases, meaning that more time is
available for the controller, and the chances of catastrophic failure are
reduced. This is paid for in the form of increased operating cost, i.e., g,
rises faster.

-12-

4.2. The Multiprocessor

4.2.1. Description

The multiprocessor is configured as shown in Figure 2. It has ¢ processors
and a dispatcher with an infinite buffer which dynamically assigns tasks to pro-
cessors as they come in and the processors become free. Input rate is Poisson,
with parameter A; for task i. There are r tasks in the system, and all are critical.
All tasks have an identical service time distribution!®. There is no common
memory in the system, each processor is assumed to have all the system appli-
cations software stored in its private memory!!. The dispatcher schedule is
FCFS. Processors fail at an exponential rate of w, the dispatcher (which is
assumed to have internal redundancy) with rate x4, and each of the q redundant
buses {of which only one is active at any one time) with rate u;,. Components fail
independently of each other, and coverage is 100%. Queueing delays at buses
are small enough to be 1gnored12

4.2.2. Determining Task Execution Rate

The time taken to execute a task on a processor is a random variable whose
distribution is affected by operating conditions and system parameters. The dis-
tribution is determined by operating system characteristics, processor failure
rates (both transient and permanent) and the probability of incorrect transmis-
sion over the intercommunication medium together with the conditional
branches within the executed code.

In any reliable system, the effects of the perturbations due to hardware
failures or electromagnetic interference are very small due to their low proba-
bility of occurrence. It is generally assumed in analyses of this type that the
software execution time assuming no perturbation due to hardware failure or
interference is exponentially distributed. Since the perturbations are small, we
approximate them by assuming the service rate still to be exponential, but shift-
ing its parameter slightly to allow for the perturbations. Let this parameter be
M. To determine u, we use the probability model shown in Figure 3. g is the
density function for the execution time of the software assuming no perturba-
tions due to failure, incorrect transmissions, etc. This quantity can be derived
through experiment, and naturally depends on the nature of the code. mj is the
density function of the j-th perturbation and q; is the probability that this per-
turbation occurs during one execution of the code. Both these quantities can be
determined by experiment and/or analysis. Assuming, for analytical simplicity,
that the perturbations are mutually independent, the characteristic function of
the service time pdf for the code, ®,, can be written down by inspection as:

$p(s) = Bo(s) H{mJ (s)+1- aJ} (31)

where

®,(s) is the characteristic function of m{t).

10. This assumption (used by many authors eg., [14])is removed by us in [20].

11, This assumption is not as unrealistic as it might seem. With memory densities rising, and
costs falling, there are emerging designs based on this idea (eg., CM?FCS system [21]). The
removal of this assumption entails analysis of a blocking problem. For a study of this type of
system, see [22].

12. This is characteristic of this type of system. Messages transmitted are invariably either
control messages or very small packets of data.

-18 -

The mean and variance of the execution time can be determined from &,(s).
Let them be M and V, respectively. Then, the value of u is taken to be

min{l/ M, 1/V{. This is generally a rather conservative estimate.

4.2.3. Analysis of the Multiprocessor
(a) Response Time Density Function: System fairlure occurs when the
PR
dispatcher fails, all buses fail, or when there are n = [E—j processors or less
functioning. The state description is: y=0 when there is system failure, and

y=n+1, ..., ¢, when there is no system failure, and there are n+1, ... ,c, proces-
sors respectively functioning in the system. Clearly, A={n+1, ..., ¢}, and B={0}.

) o
Let A = Ehi. The system at state x (x>0) is essentially an M/M/x queue
i=1
when the (small) dispatcher service time is ignored. Therefore, the pdf of the

response time of the system in state x (x>0) for each taski =1, ..., r is given by
[23]:
M N-xu+uW (0)] — [1-W.(0)][A- Rl
Wi'x(t) - p'e [Xﬂ #' x()] _[— x()][xlu']ﬂ'e . (32)
A= (x—1)u
where:
i -1
_q X p) RS LAy xp
Wa(0) =1 x!(X=N/) Z'\‘lj! i X (,u.) Xp—A (83)

(b) State Probability Functions:

Let pp(t). pa(t), and pp(t) be the probability of failure of a processor,
dispatcher and bus by time t respectively, where:

pp(t) = 1 — e (34)
pp(t) = 1 —e ™ (35)
pa(t) = 1 — ™ (36)
Then, the probability of the system being in state 0 at time t,
n |c . :
Po(t) ®) [i][pp(t)]”[l-pp(t)]‘ + [po(t)]? + pa(t) (37)

and, the corresponding probability for state a, for a=n+1, ..., ¢,

Py(t) ~ [1 - i[Pb(t)]”pd(t)ﬂ[[Z][pp(t)]°‘“[1—pp(t)]“]. and (38)

(c) Sojourn Time Distribution Function, HX(t): If t, is the random variable
representing the sojourn time of the system in state a, it is easy to see that:
t, = max[min{T—0,, Ta} . 0] (39)
where T is the mission lifetime,
(]
2 tj if a<e
Oa = Jj=a+1

0 if a=c (40)

-14 -

and T, is exponentially distributed with parameter .
The derivation is conceptually straightforward. We therefore present only the
result. For a=n+1, ..., ¢c-1,

0 for t<0
HJ(t) = { 1=F, (T-t){1-Feq (t)}{1-Fra(t)} for O<t<T (41)
1 for t=T
where
ro for t<0
c—a ot
Fo (t) = AR (”J)“Ptg forO<t<T (42)
=1
1 for t>T
(@) = (=1)et
A (—1)!(c—a—j)'al(a+)) (43)
0 for t<0
F"": (t) = 1—e ' for t=0 (44)
Fro(t) = 1 - kf Fo,(k—t)dFe(k) (45)
=t

Fe(t) = e MY (1—e ™Y1 + (1-e ™) (1-§1-e7Y9) + (1-e) (1-e Y2 (48)
Also,

0 for t<0
HI(t) = Foa(t) +F () ~Frm(t)F(t) for Ost<T (47)
¢ (] .
1 for t>T
where
— 4 _ . ~Cyt
F-t-:(t) =1-¢ (48)

4.3. Numerical Results

We consider the contribution to the probability of dynamic failure of the
task considered above. It is assumed that R=1.75, k=0.1, m=2, a=1. and that
there is an average of one impact an hour. In addition to the triggers created by
meteorite impacts there are others, and the total load upon the system can be
characterized by an input arrival rate of 39 every hour. The range of mission
lifetimes considered is zero to ten hours.

Failure rates for individual components of the multiprocessor are as fol-
lows: p,=107%, up=107% (4=1,1078, where the time units here are hours.
(Dispatcher and memory, failure rates are extremely low since it is assumed that
they possess internal redundancy.)

For a system of this type, the only design variables are the number of pro-
cessors, the number of buses, and the speed of the hardware. The graphs that
make up Figure 4 show the marginal benefit to be gained from the addition of
processors when x=20. Addition of buses, it was found, has practically no
impact on the probability of dynamic failure or on the mean and variance costs

-15-

for the range of lifetimes considered. (Mean and variance costs are equal in this
system).

The marginal benefit to be gained from raising the processor strength from
R to 3 is considerable; above a processor count of 8, the marginal benefits are
practically non-existent for probability of dynamic failure. (Note that these
remarks hold good only for mission lifetimes in the range considered.) The
failure rate at the asymptotic level of infinite processors is principally due to
the probability of working processors exceeding the hard deadline, and the
mean and variance costs become the cost associated with mean processor ser-
vice time. If better performance than that provided by the asymptotic level is
required, it can only be obtained by the introduction of faster hardware.

We study the results from a variation in hardware speed in Figure 5. Figure
5 shows the asymptotic value for the probability of dynamic failure and the
mean cost for different processor speeds, i.e., different values of u. Here again,
one can compute the marginal benefit to be gained in terms of mean cost and
dynamic failure probability, this time as a function of processor speed.

One could, of course, generalize this process and attempt to derive a func-
tion pgyn(t)=tfgs(u.c,t), and similar functions for the mean and variance costs.
Several quantities of great practical importance to designers and evaluators can
be derived from such functions, but this is out of the scope of this present
report.

4.4. Remarks
With reference to the above example, several points are worth elaborating.

First, note that A™(0) is a positive quantity; this in turn means that the pro-
bability that the hard deadline is zero is also positive. Since A™}(0) depends only
upon the parameters of the controlled process. this means that there is,
inherent in the controlled process itself, a certain predisposition to failure that
cannot be removed by upgrading the quality of control provided. Specifically,
1—e™M7O j5 the probability of dynamic failure basic to the controlled process
itself. That is, the probability of dynamic failure cannot be lowered beyond this
point without altering the characteristics of the controlled process.

Next, consider the effects of adding processors to the controller system.
Our curves show that after a certain point, the marginal benefit to be gained
from further additions is vanishingly small. Also, as processor speed is increased
beyond limit without altering the failure characteristics of the processors them-
selves, another asymptotic limit is reached. This is because the dynamic failure
probability consists of two components: the static part and the non-static part.
The non-static part which is the probability of missing the hard deadline when
the processor is in a state a € A drops with increasing processor speed. However,
the static component which represents the probability of the system entering a
state in state-set B remains unaltered. Together with the underlying process-
determined probability of failure, this ultimately becomes the dominant term in
the dynamic probability expression and is the asymptotic limit.

It is easy to see how the above can be extended to provide quite valuable
tradeoff curves in multiprocessor design. When cost of the hardware is included
to the reckoning for example, it becomes possible to study the tradeoff between
initial capital cost of the controller and controller overhead.

Limitations on space do not permit us to pursue this last point further.
However, our case that the performance indices presented in this report can be
applied to a far wider range than can the conventional computer performance

- 16 -

measures should be apparent from the above.

5. DISCUSSION

In this report, we have presented performance indices that are objective in
the way they measure performance. Due to this objectivity, they can be used to
advantage in both the design and evaluation phases of the development of a con-
troller system.

As for design, the measures should help identify quasi-optimal architec-
tures and operating systems. In the former category are included decisions
regarding the interconnection structure and component speed differentials. In
the latter category, we include the choice of schedule in the access of shared
resources, the design of failure recovery procedures --especially the optimal
placement of recovery points— and algorithms controlling the allocation and
reallocation of tasks to the individual processors. The lack of objective indices so
far has forced contemporary workers to employ overly simplistic performance
indices, most notably in solving the task allocation problem (such as ascribing
unit cost to each transaction on the interconnection network [24].)

In the sphere of evaluation, the measures can be used to provide either an
absolute or relative index to controller performance. In the former case, the
performance functional, f;, has to be defined with particular care, and the
indices provide a measure of the overhead cost incurred in control. A second
important application is the comparison of rival controller systems for particu-
lar applications,

We stated earlier that any decision that had any impact on controller
response time could be rigorously and objectively evaluated by use of our per-
formance measures. The cost functions are therefore of universal applicability
in the real-time field; indeed their units might properly be considered the basic
currency in controller performance evaluation. This universality and underlying
rigor has been the principal contribution of this report.

Acknowledgements

The authors wish to thank Rick Butler and Milton Holt of the NASA Langley
Research Center and Y. H. Lee of The University of Michigan for technical discus-
sions.

REFERENCES

[1] A. L. Hopkins, et. al, "FTMP -- A Highly Reliable Fault-Tolerant Multiproces-
sor for Aircraft”, Proc. JEEF, Vol. 66, No. 10, pp. 1221-1239, October 1978.

[R] J. H. Wenseley, et, al, "SIFT — Software Implemented Fault Tolerance,” Proc.
IEEE, Vol. 68, No. 10, pp. 1240-1256, October 1978.

[3] M. J. Gonzalez and B. W. Jordan, "A Framework for the Quantitative Evalua-
tion of Distributed Computer Systems", JEFE Trans. Comput., Vol. C-29, No.
12, Dec. 1980, pp. 1087-1094,

-17-

[4] J. von Neumann, "Probabilistic logics and the Synthesis of Reliable Organ-
isms from Unreliable Components”, in Automata Studies, pp. 43-98, Prince-
ton University Press, Princeton, NJ 1956.

[5] E. E. Moore and C. E. Shannon, "Reliable Circuits Using Less Reliable
Relays", J. Franklin Inst., Pt. I, Vol. 262, pp. 191-208, and Pt. II, pp. 281-297,
1956.

[6] W. G. Bouricius, ef. al, "Reliability Modelling Techniques for Self-Repairing
Computer Systems," Proc. ACM 1969 Annual Conf., pp. 295-309, August
1969.

[7] R.R. Borgerson and R. F. Frietas, "A Reliability Model for Gracefully Degrad-
ing and Standby-Sparing Systems,” [EEE Trans. Comput., Vol. C-24, pp.
517-525, May 1975.

[8] G. N.-Cherkesov, "Semi-Markovian Models of Reliability of Multichannel Sys-
tems with Unreplenishable Reserve of Time," Engineering Cybernetics, Vol.
18, pp. 65-78, Mar/April 1980.

[9] J. Losq, "Effects of Failures on Gracefully Degradable Systems,” Seventh
Annu. Int?l Conf. on Fault-Tolerant Compuling, Los Angeles, CA, pp. 29-34,
March 1977.

[10] R. Troy, "Dynamic Reconfiguration: An Algorithm and its Efficiency Evalua-
tion,” op. cit, pp. 44-49.

[11] J. F. Meyer, et. al, "Performability Evaluation of the SIFT Computer," /EEE
Trans. Comput., Vol. C-29, No. 8, pp. 501-509, June 1980.

[12] M. D. Beaudry, "Performance-Related Reliability Measures for Computing
Systems," IEEFE Trans. Comput., Vol. C-27, No. 6, pp. 540-547, June 1978.

(18] J. F. Meyer, "On Evaluating the Performability of Degrading Computer Sys-
tems," IEEE Trans. Comput., Vol. C-29, pp. 720-731, August 1980.

[14] J. F. Meyer, "Closed-Form Solutions of Performability," IEEE Trans. Com-
put., Vol. C-31, No. 7, pp. 648-657, July 1982.

[15] G. K. Manacher, "Production and Stabilization of Real-Time Task Schedules,"
J. ACM, Vol. 14, No. 3, July 1967, pp. 439-465.

(16] J. A. White, ef. al, "Multimicroprocessor Flight Control: System Architec-
tural Concepts," Proc. AIAA Comp. in Aerosp. Conf., pp. 87-92, October 1979.

[17] D. E. Kirk, Optimal Contral Theory, Prentice Hall, Englewood Cliffs, NJ, 1970.

-1B-

[18] A. P. Sage, Optimum Systems Control, Prentice Hall, Englewood Cliffs, NJ,
1977.

[19] M. Reiser and K. M. Chandy, eds., Computer Performance, North-Holland
Publishing Co., Amsterdam, 1977.

[R0] C. M. Krishna and K. G. Shin, "Approximate analysis of Queues with Multiple
Job Classes," under preparation.

[21] S. J. Larimer and S. K. Maher, " The Continuously Reconfiguring Multiproces-
sor," NATO-AGARD Meeting on Tactical Airborne Computing, Roros, Norway,
1981.

[22] C. M. Krishna and K. G. Shin, "Queueing Analysis of a Canonical Model of
Real-Time Multiprocessors,"” submitted for publication.

[23] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, John Wiley,
New York, 1974.

[R4] W. W. Chu, et. al, "Task Allocation in Distributed Data Processing,” Com-
puter, Vol. 13, No. 11, pp. 57-70, Nov. 1980.

Are Payn

requirements
met?

No

v

Yes

Is it

l

possible to
improve pdyn with

Yes No

Evaluate_expression
for M and V

a few system

changes?

v

1 Y Y
Update design based
onﬁfen51tfy1ty of gﬁyn, .
M, and V to design Carry out| Reject
changes improvements structure
as unsuitable

¢ L !

I
STOP

the
new design
significantly
better than the
preceding
one?

Yes

STOP

Figure 1 System Refinement

Processors

A., i=1, ..., r

Dispatcher

T

LY

\/

To Actuators

Figure 2 A Real-Time Multiprocessor

ay |
T
—>— TT'O >
Incoming
Tasks

Figure 3

v

Determining Task Response Time

e e~ @ ¢ @ -l e

A

To Actuators
R e

PROBABILITY OF DYNAMIC FAILURE

7 | | | | l

1x10~
0.00 2.00 4.00 6.00 8.00 10.00

MISSION LIFETIME

Figure 4 Sensitivity of Performance to Change
in Processor Number

25.00

20.00

15.00

10.00

MEAN MODIFIED COST

5.00

0.00

0.00

—

| | l | I

2.00 4.00 6.00 8.00 10.00
MISSION LIFETIME

Figure 4 (cont.) Sensitivity of Performance

to Change in Processor Number

wn = 1.0
S
x = 2.0
wn
I
¥
@ 3
>
-F_‘J "
@
(T
Om
He
I x
o
€ w = 5.0
a
L
O
>3
P_ ——
H
1 w»
@ -
85 =7.0 .
of
xe
a =
wn
I
wn
S
©0.00 2.00 4.00 6.00 8.00 10.00
MISSION LIFETIME
Figure 5 Sensitivity of Performance to Change in Processor

Speed

] /
u=1.0
- p = O.l
b=
8.
*—.
wn
cs
D(D
L
H
il b= 2.0
(an]
(@)
o
QL
Zz<r
(e
(W1]
p =y
8. p = 5.0
N
p=17.0
a
S 4 = + + — —
“h.00 2.00 4.00 6.00 8.00 10.00
MISSION LIFETIME

Figure 5 (cont.)

Sensitivity of Performance to Change
in Processor Speed

