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CHAPTER I

Introduction

“Here comes the Sun, to do do do, here comes the Sun...”

George Harrison

Since the dawn of time, people realized the Sun is essential for life to exist and

worshiped it as one of their main gods. From the Greek, Roman, and Celtic cultures

in Europe, the Egyptian and Mesopotamian cultures in the Middle East, the ancient

Indian and Chinese cultures in Asia, and the ancient cultures in the Americas, the

Sun always played a central role in the life of people.

Until the 16th century, the Sun was thought to orbit the Earth just like the

planets. Nicolaus Copernicus was the first to suggest that the Earth orbits the

Sun, an idea that had theological consequence and raised strong opposition from

the Christian church. Later on, partially due to the invention of the telescope, this

idea became more and more acceptable. During the 1700s and 1800s, people began

to continuously observe the behavior of sunspots, and in addition, people began to

reveal the spectroscopic properties of the Sun after Sir Isaac Newton discovered that

the light of the Sun is composed of different colors using a prism.

The Sun’s source of energy was unknown for long time. Sources such as chemical

burning and meteorite hits were proposed to explain the solar heat. However, these

1
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sources could not last long enough, in particular following geological discoveries that

revealed that the age of the Earth is about 4.5 billion years.

Our current understanding of the Sun is a result of the discovery of quantum and

nuclear physics, as well as improved astrophysical understanding. In the first half

of the 1900s, people realized that the Sun is a standard star, just like the stars we

observe in the sky, and that the source of energy in the Sun is due to nuclear fusion

reactions that take place in the solar core. This theory about nuclear burning could

explain the age of the Sun and a complete theory about solar and stellar evolution

had been developed between the 1940s to the 1960s. The historical evolution of each

particular subject is described in separate section of the introduction.

1.1 Why do we care about this anyway?

In the modern era, we know that the Sun drives life on earth. In addition, we

live in a time when understanding the space environment between the Sun and the

Earth becomes more and more important. Most of the material in this region of

space exists in the form of ionized gas, which we call “plasma”. About 99% of the

known universe (i.e. the ordinary baryonic matter) is in the form of plasma, so it

is important to understand the behavior of this state that is sometime called “the

fourth state of matter”.

So why do we care about it? Because it is interesting!!! Plasma is an ionized gas

that behaves differently than neutral gas and has some unique properties. One of the

most important properties of plasma is that it is unstable and does not like to stay

still. This fact makes it very hard to perform laboratory experiments with plasma.

For this reason, the natural environment of space becomes the actual laboratory to

study plasma physics. Plasma exists in space and in the Sun in extreme conditions
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that are almost impossible to create in laboratory such as, very high temperatures,

very low density, very fast speeds and very strong magnetic fields. This is what

makes the space environment the “playground” of plasma physicists.

On the practical side, our growing dependency on space technology and the grow-

ing space exploration makes it very important for us to understand the space envi-

ronment in order to learn how to predict its behavior. The field of space physics,

which started as a niche of astrophysics or of geosciences, has become a major, inde-

pendent field of physics with its own sub-disciplines such as: solar interior physics,

solar corona and heliospheric physics, magnetospheric physics, ionospheric physics

and even more. Some practical implementations of space physics are discussed and

demonstrated in detail in this work.

1.2 Ideal Magnetohydrodynamics

The physical description of any hydrodynamic system is done using a set of con-

servation laws for the mass (or mass density, ρ), the momentum density (ρu), and

the energy density of the fluid. This set of conservation laws is commonly known as

the Euler equations for invicsid fluids, or the Navier-Stokes equations for viscous flu-

ids. In the case of conducting fluid, the Euler equations are coupled with Maxwell’s

equations, which describe the evolution of the electromagnetic field. This coupling

enables us to treat the plasma as a single conducting fluid with the lowest level

approximation of the ideal MagnetoHydroDynamics (MHD). Other higher level ap-

proximations are resistive MHD, in which we keep the diffusion term in the induction

equation, hybrid treatment, which separates electrons from ions, and a fully kinetic

treatment [39].

The main assumptions under the ideal MHD approximation are:
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1. Quasi-neutrality - we assume that the plasma is composed of electrons and

ions, but their numbers are equal on the scale larger than the shielding scale of

a test charge called Debay length: λ2
D = ε0kT

e2n0
, where ε0 is the permittivity in

vacuum, T is the temperature, k is the Boltzmann constant, e is the elementary

charge, and n0 is the plasma number density. This way the plasma shields any

local charge within it.

2. Infinite conductivity - we assume that the plasma responds very quickly to

slow variations in the large scale fields or to fluid advection. This assumption

leads to the frozen-in concept, in which the magnetic field and the particles are

glued to each other and move together. Therefore, the conductivity, σ0 → ∞
so we can drop the diffusion term in the induction equation, ηm = 1

σ0µ0
, and we

can also obtain the relation E = −u × B (also called Ohm’s law).

3. Non-relativistic motion - We assume that all motions in the system are

non-relativistic so we can ignore high-frequency variations in E. Therefore, we

can neglect the displacement current in Ampere’s law and obtain: ∇×B
µ0

= j.

4. Local thermodynamic equilibrium - we assume that variations in tem-

perature are slow and that the particle distribution is Maxwellian for a given

temperature.

5. Five-moment approximation - we assume that the pressure can be described

in a scalar matter and that stress and heat flow are negligible.
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Under all the assumptions above, together with neglecting gravitational effects,

we can obtain the set of ideal MHD equations in conservative form [40]:

∂ρ
∂t

+ ∇ · (ρu) = 0

∂ρu
∂t

+ ∇ ·
(
ρuu + pI + B2

2µ0
I − BB

µ0

)
= 0(1.1)

∂B
∂t

+ ∇ · (uB −Bu) = 0

∂E
∂t

+ ∇ ·
[(

E + p + B·B
2µ0

)
u− 1

µ0
(B · u)B

]
= 0 ,

where E = p
γ−1

+ ρu·u
2

+ B·B
2µ0

.

The ideal MHD approximation is very useful in describing the large-scale behavior

of plasma as a fluid. However, this approximation fails to describe local and kinetic

effect that are very important in plasma physics. The main phenomena that cannot

be described by the ideal MHD approximation are magnetic reconnection, viscous

effects, and physical effects that requires resolution higher than the Larmor radius

(the gyration radius of charged particles around a magnetic field due to the Lorentz

force). In order to treat these physical effects one must use higher-order approxima-

tion such as: kinetic treatment of the plasma, resistive MHD, Hall MHD, or hybrid

methods that treat electrons and ions in separate manner.
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1.3 The Solar Interior

The Sun is a typical main sequence G type star (a star absorbs strong metallic

lines in its spectrum), which is located in the middle of the H-R diagram (seen in

Figure 1.1).

Figure 1.1: The H-R diagram, which describes the life cycle of stars in terms of its luminosity and
temperature (taken from http://spaceknowledge.net/).

Table 1.1 sumarises some of the physical properties of the Sun.

Table 1.1: Physical properties of the Sun
Quantity Symbol Value

Mass M� 1.99 × 1030 kg
Radius R� 6.96 × 108 m

Mean density ρ� 1.41 × 103 kg m−3

Surface gravitational acceleration g� = GM�
R2

�
275 m s−2

Effective blackbody temperature Teff 5, 770 K
Luminosity L� 3.83 × 1026 W

Equatorial rotation period T� 25.8 days
Equatorial angular velocity Ω� 2.8 × 10−6 rad s−1
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1.3.1 Thermonuclear Reaction and the Solar Core

The Sun was born in an interstellar gas cloud, which contains mostly hydrogen

but also heavier elements. Gravitational forces caused local instabilities in the cloud

that generated contractive conservation of angular momentum around some center

of mass. These local instabilities evolved to form an accretion disk. At the center

of the disk, the increase in mass led to an increase in pressure and temperature. At

some point, when the temperature exceeded about 2 million degrees, the pressure

was so high that the Hydrogen nuclei merged to begin the following thermonuclear

process:

1H + 1H → 2D + e+ + ν + 1.442 MeV

2D + 1H → 3He+ γ + 5.493 MeV(1.2)

3He+ 3He→ 4He+ 1H + 1H + 12.859 MeV

41H → 4He+ 2e+ + 2ν + 26.73 MeV,

where H is an hydrogen atom, D is a deuterium atom, He is an Helium atom, e+

is a positron, ν is a neutrino, and γ is a gamma ray. In this set of reactions, for

each transformation of four 1H atoms to a 4He atom, we are left with an energy of

26.73 MeV . This excess energy balances the inward gravitational force so the Sun

reaches steady-state where the fusion process is taking place inside 0.2 of the solar

radius. The steady-state will remain as long as the hydrogen is burnt in the solar

core. This supply of hydrogen should cease in about 5 billion years and then the

Sun will become a red giant and it will loose most of its material. The remaining

material of the Sun will form a white dwarf, which is very dense body that cools

down with time. This will be the end state of our Sun.
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1.3.2 Thermal Structure of the Radiation and Convection Zones

The energy produced in the solar core is transported to the surface via radiation

or convection. Radiation transport is the case, in which photons carry the energy by

being absorbed and re-emitted from the solar matter in random direction. Convection

is the case when hot cells of material rise to the surface, cool down and sink back to

the hot bottom (similar to the motion of boiled water). Heat conduction, in which

the the energy is transferred through particle collisions is not important in the solar

interior but can occur in principle in collisionless plasma.

The radiation zone extends between 0.2 − 0.75R�. The radial pressure gradient

can be written in terms of the temperature gradient:

(1.3)
dPrad

dr
=

4

3
aT 3dT

dr
,

with the radiation constant a = 4σ/c = 7.565 × 10−16 J m−3 K−4. The radiative

temperature gradient is:

(1.4)

∣∣∣∣dTdr
∣∣∣∣
rad

= − 3

4ac

κ̄ρ

T 3

L(r)

4πr4
,

where κ̄ is an opacity coefficient. In the radiation zone, the temperature structure is

governed by radiation. However, at r ≈ 0.75R�, the temperature gradient becomes

so steep and the transfer of energy by radiation is not sufficient and convection

takes over. Convection dominates when the temperature gradient is larger than the

adiabatic temperature gradient defined as:

(1.5)

∣∣∣∣dTdr
∣∣∣∣
ad

= −g�
Cp

.

Here Cp is the specific heat at constant pressure. The boundary between the radiation

and convection zones is called the “tachocline” and above it heat is transferred to

the surface in convective cells. New helioseismology measurements observed strong
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radial shear and a transition from solid rotation to differential rotation in this region.

Figure 1.2 shows the different layers of the solar interior.

Figure 1.2: Different regions of the solar interior (from Carroll and Ostlie [17]).

Figure 1.3 shows the density, temperature, and temperature gradient structure of

the solar interior.
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Figure 1.3: Density (top), temperature (middle), and temperature gradient (bottom) struc-
ture of the solar interior based on Dalsgaard helioseismology model (taken from
http://solarscience.msfc.nasa.gov).
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1.4 The Solar Cycle and Solar Dynamo

One of the most ancient measured natural signals is the number of sunspots on

the surface of the Sun. Sunspots are regions on the Sun that appear to be darker

than the surrounding area due to lower temperature. In modern days, we know that

the reason for the appearance of these sunspots is the existence of strong magnetic

flux tubes in the spots. The strong magnetic pressure prevents the hot plasma from

bellow to rise and as a result, the spots are colder than the surrounding area.

New observations in the 20th century led to the general understanding that the

magnetic field of the Sun has a dipolar configuration when the number of sunspots is

smaller (solar minimum) and it is more structured during the time when the number

of sunspots reaches its peak (solar maximum). During solar minimum conditions, the

Sun is more quiet and less active. During solar maximum however, the Sun is more

active and this is the time when the magnetic field reverses. Another observation of

sunspots is that they appear in higher latitudes (about 30 degrees from the equator)

at the beginning of the cycle and they seem to migrate to lower latitude as the cycle

progresses. By plotting the latitudes of the sunspots over time, we can obtain the

famous “Butterfly Diagram” shown in Figure 1.4.

In 1961, Babcock [8] presented a complete conceptual description for the solar

dynamo process (the process in which the solar magnetic field does not diffuses

away). The initial state is of a pure poloidal (meridional) field . Differential rotation

converts the poloidal component to a torodial (azimutal) component through the

process called the “Omega Effect”. In the next step, the toroidal flux tubes are

twisted as they emerge to the surface through the process called the “Alpha Efect”.

Due to the orientation of the Coriolis force, the twisted flux tubes appear on the



12

Figure 1.4: The latitude of sunspots over time. Positive polarity is shown in yellow, while negative
polarity is shown in blue. One can see that the polarity reverses every 11 years. This
figure was taken from http://solarscience.msfc.nasa.gov/dynamo.shtml

solar surface with a polarity opposite to the polarity of the ambient field. As more

and more flux tubes emerge to the surface, the dipolar component of the large scale

field breaks down and higher harmonics of the magnetic field appear. This process

requires the existence of meridional flow that transport the two footpoints of the

small loops to higher and lower latitudes, respectively. At the end of the process,

the field configuration returns to a pure poloidal one but with opposite polarity.

Figure 1.5: The solar dynamo process as presented in Babcock [8].

In the past two decades or so, a number of numerical models have been developed

to investigate the evolution of the solar magnetic field. The models can be divided
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into two types. Models of the convection-zone (the dominant models have been

developed at HAO by Gilman and Dikpati, and others), and surface flux-transport

models (dominated by the work of Wang and Sheeley at NRL, and Schrijver et al.). In

general, the convection-zone type of models calculates the general circulation of the

magnetic field with observed velocity field. In practice, these models solve the non-

linear, two or three dimensional induction equation. Flux-transport models calculate

the two dimensional surface transport of the magnetic field. They usually include

differential rotation, meridional flow and uniform diffusion (following Leighton, 1964

[53]). Both types of models have been significant to our understanding of the solar

magnetic field and they were able to reproduce the butterfly diagram, the Maunder

minimum, and the general behavior of the evolution of the solar magnetic field.

There are two major problems with the current models for the solar dynamo.

First, they deal only with the evolution of the “mean” magnetic field and do not

solve the complete set of MHD equations for the system. Second, they cannot treat

the pressure stratification of the interior or account for diffusion. Third, and more

important, none of the above models do not take into account the role of the three

dimensional coronal and heliospheric magnetic field in the long-term evolution of

the magnetic field of the Sun. Even the theoretical dynamo models do not take

into account the so-called open magnetic field which is dragged by the solar wind to

the heliosphere, since this component is neither poloidal nor toroidal. In order to

investigate the role of the heliospheric flux in the evolution of the solar magnetic field

we must couple the convection zone, the corona and heliosphere together. We are

far from being able to perform coupled numerical simulation of the complete system.

However, the new numerical frameworks and advances in computation resources may

provide the required capabilities in the near future.
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Recent theories suggest how the open flux can affect the evolution of the large-

scale magnetic field [32, 72]. The principle idea is that magnetic reconnection with

open and closed field lines causes an effective transport of the open flux until the

large-scale field is reversed. The idea that reconnection with closed loops leads to a

general circulation of the open flux proposed by (Fisk et al. [32, 30, 31]) in a series

of papers and we discuss this model in detail in Chapter III.

Owens et. al [72] suggested that interchange reconnection of CMEs with the

heliospheric open flux can transport the open flux as well and the field reversal. This

theoretical concept is shown in Figure 1.6. In the Babcock model, new magnetic

flux emerges to the surface with polatiry opposite to the polarity of the ambient flux

and as a result, the ambient flux is destroyed. However, the Babcock model does

not describe the detailed mechanism in which the destruction of the flux is done. In

the Fisk model, the interaction of the new flux with the surrounding flux is done

through continuous reconnection at all heights and scales. In the model proposed by

Owens et al., the new flux appears in active regions and it is transported by CMEs

and the interaction with the ambient open flux takes place in the upper corona and

heliosphere.

Figure 1.7 shows an initial result of sunspot data analysis. I averaged the latitude

of sunspots data, taken from Mt. Wilson and USAF/NOAA web sites, over each Car-

rington Rotation for each hemisphere. This way I can track an “average sunspots”

for each hemisphere. I then calculated the magnetic pole location in the heliograph-

ical frame using the g0
1, g

1
1, and h1

1 harmonics of the magnetic field expansion taken

from WSO website [35]. Once the pole coordinates are known, we can transform the

heliographic latitudes of the sunspots to the heliomagnetic frame; this transforma-

tion gives us the location of the average sunspots in the dipole frame. Figure 1.7
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Figure 1.6: Interchange reconnection of CMEs with the open flux leads to a field reversal (Owens
et. al [72]).

shows the heliographic location of the magnetic pole (black line) and the latitude

of the average sunspots in the dipole frame (red and blue lines). In general, the

migration of the sunspot latitude is consistent with the butterfly diagram. However,

the most relevant feature in the plot is the fact that the two average sunspots jump

to higher latitude. This jump occurs several months before the pole starts to migrate

to the other hemisphere. I do not attempt to explain the reason for the latitudinal

jump of the sunspots. However, this observation supports the idea that the open

flux plays a major role in the evolution of the Sun’s magnetic field. As long as the

sunspots (or CMEs originated from active regions) are located at low latitudes, they

interact mostly with the overlaying streamers. Once the sunspots move to higher
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latitudes, they begin to interact with coronal holes and destroy them. As a result,

the magnetic pole starts its migration and eventually, the field reverses.

Figure 1.7: The evolution of the magnetic pole heliographic position (black line) and the two “av-
erage sunspots” position (red and blue lines) in the dipole frame.

The two models provide not only an explanation about the role of the open flux

of the Sun in the reversal process, but also demonstrate how does the Sun transfer

from one potential stage to another. The large-scale magnetic field of the Sun is

considered to be potential field. However, the new emerging flux introduces a non-

potential component, which the Sun gets rid of by reconnection processes. We are

still far from fully understanding the long-term and large-scale evolution of the solar

magnetic field. This work is part of the global effort to develop tools that will

provide better understanding of the physical system. I believe that the key to a real

understanding of the solar dynamo is to study the coupling between the convection

zone and the solar corona, as well as observing stellar dynamos of other stars. The

behavior of a stellar magnetic field depends on the star’s basic properties. Therefore,

we might learn something new just from observing and analyzing stellar cycles.
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1.5 The Solar Corona

The solar atmosphere is called the “solar corona” due to its appearance during

solar eclipses. When the moon covers the bright solar disk, the solar atmosphere can

be seen as a halo or corona around the occulting disk of the Moon. The solar corona

extends to about 10 solar radii and we call the part of the solar atmosphere that fills

up the interplanetary space simply the “heliosphere”.

The solar corona is dominated by the highly stratified density structure, on one

hand, and by the structure of the magnetic field, on the other hand. At the photo-

sphere, the electron density is of the order of 109 cm−3 and it drops exponentially

with height. The layer that extends from the photosphere to about 1.1 solar radii

is called the “chromosphere”. This layer is the place in which the plasma becomes

fully ionized, so the gas follows magnetic field lines. This is why the density structure

is not spherically uniform but is oriented with the structure of the magnetic field.

In open field regions, the plasma can easily flow along the field lines so the density

and temperature is relatively low. In closed field line regions, such as the helmet

streamers (the closed field region), the plasma is trapped in the magnetic loops so

the density and temperature are higher. This concept is shown in Figure 1.8.

Figure 1.9 shows observation based models for the electron density in different

regions of the solar corona.

The temperature structure of the corona is still not fully understood. The pho-

tospheric temperature is about 5000◦ K, which matches the observed blackbody

radiation. In the chromosphere, the temperature rises to about 104 K and then it

jumps to about 1 million degrees across a narrow transition zone. The astrophysics

community has been puzzled with this observation for many years, since it seem
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Figure 1.8: Plasma can freely flows along open field lines, while it is trapped in close field lines.

to violate the second law of thermodynamics. It is just counter-intuitive that the

temperature of the solar atmosphere, which expands into space, raises to such high

temperature. We know now that the heating of the solar corona is due to the com-

bination of stratified atmosphere and the coronal magnetic field. This combination

leads to a dumping of magnetic and acoustic waves that heats the corona. The ex-

act mechanism however, is still under debate and I discuss this subject in detail in

Section 1.7. Figure 1.10 shows the temperature structure of the corona.
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Figure 1.9: Observational based models for electron density of the corona in different regions (from
Aschwanden [7]).
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Figure 1.10: Temperature structure in the solar corona as a function of height (taken from Trina
Coleman’s webpage).
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1.6 The Solar Wind

Until the middle of the 20th century, the Sun was considered to be in a hydrostatic

equilibrium. Due to its huge mass, astronomers did not believe that gas can escape

the Sun’s gravity. During solar eclipses, people did observe the solar corona extends

up to several solar radii and in addition, people were aware of solar eruptions in which

gas is released into space. These gas particles were often called “solar radiation” or

“solar rays” and they were considered to be local jets that the Sun spits into a nearly

empty space. In the early 1900s, Birkeland was the first to relate events on the Sun

to disturbances of the Earth’s magnetic field by realizing that the solar radiation

must be composed of charged particles. The first spectroscopic measurements of

the solar corona, revealed that its temperature is of the order of million degrees

K. Sydney Chapman showed that the heat conductivity of the corona should be

so high, that the corona should extend up to Earth’s orbit and beyond. In 1951,

Biermann suggested that comet tails always pointed away from the Sun due to a

constant radiation. However, the density in his calculations was unreasonably high.

Biermann’s work was followed by a similar paper by Alfvèn in 1957.

1.6.1 The Hydrostatic Sun

Let us assume steady-state, spherical symmetry and let us neglect magnetic field

effects and heat conduction [40]. The continuity, momentum, and energy equations

become:

(1.6)

1
r2

d
dr

(r2ρu) = 0

ρudu
dr

+ dp
dr

+ ρGM�
r2 = 0

3
2
udp

dr
+ 5

2
p 1

r2
d
dr

(r2u) = 0,
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If we assume that an hydrostatic solution (u = 0) the pressure at infinity is finite:

(1.7) p(r → ∞) = p� exp

[
−mpGM�

2kTR�

]
.

Even with this basic problem, the idea that the Sun continuously expands was un-

acceptable among the astrophysics community. And than came Parker...

1.6.2 The Expanding Solar Atmosphere

In 1958 Parker solved the system of eq. 1.6 without setting u to zero. In this case,

the three equations can be combined to obtain a differential equation for the speed:

(1.8)
u2 − a2

s

u

du

dr
=

2a2
s

r
− GM�

r2
,

with constant polytropic index, γ and the sound speed, a2
s = γ p

ρ
. The general solution

for eq. 1.8 is:

(1.9)
1

2
u2 − a2

s ln u = 2a2
s ln r +

GM�
r

+ C,

where C is a constant of integration. Eq. 1.8 can be re-written as follow

(1.10)
du

dr
=

u

u2 − a2
s

2a2
s

r

(
1 − U(r)

2kT

)
,

where U(r) is the gravitational potential. This equation introduces a singularity in

the denominator when u = as but dominator becomes zero at the same time, so by

using L’Hospital’s rule, it can be shown that there is a valid solution. The point in

which both the dominator and the denominator become zero is called the “critical

point”. This is also the point where the flow becomes supersonic. Parker realized

that this type of equation is exactly the same as the equation for “De Laval Nozzle”

in hydrodynamics. This equation describes a subsonic flow in a nozzle that becomes

supersonic at the inflection point between diverging and converging cross-sections (as

in a jet engine). Figure 1.11 shows the possible solutions for the solar wind. Cases I
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and II have double value solutions so they are not valid. Case III is not valid since

it is supersonic at the base of the corona, and Case V provides finite pressure at

infinity. The only physically valid solution is Case IV in which the flow is subsonic

bellow the critical point and is supersonic above it.

Figure 1.11: The possible mathematical solutions from eq. 1.9.

The physical reason for the solar wind is actually straightforward. The Sun is

located in space where the external pressure is essentially zero, so the pressure gradi-

ent between the hot solar corona and interstellar medium is enormous. Even though

the Sun’s gravity is very large it cannot oppose this pressure gradient. Particles

try to escape from the Sun due to the pressure gradient but gravity holds them

back until they reach the critical point. At this point, the pressure gradient over-

comes the gravitational force and the gas is accelerated to an asymptotic speed of

500 − 800 km/s. Figure 1.12 shows the different solutions for a flow speed with

different base temperatures.

The hydrodynamic description of the solar wind can be written in the form of

energy conservation along a streamline [74]. Parker realized that the gas in the
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Figure 1.12: Different solutions for the flow speed for different base temperatures from Parker, 1958
[73].

corona must be highly conducting, therefore the field lines must be stretched with

the flow. In this case, the energy equation can be written as follow:

(1.11) u
∂u

∂l
+

1

l

∂p

∂l
+
∂Φ(l)

∂l
= 0,

where Φ(l) is the gravitational potential and l is the coordinate along the streamline

path. Assuming that p(l) = p0

(
ρ(l)
ρ0

)γ

and 1 < γ < 5/3, we can integrate eq. 1.11

to obtain Bernoulli’s integral:

(1.12)
1

2
u2(r) +

γ

γ − 1

p0

ρ0

[
ρ(r)

ρ0

]γ−1

+ Φ(r) =
1

2
u2

0 +
γ

γ − 1

p0

ρ0
+ Φ0.

Here we changed the path coordinate, l, to the radial coordinate, r, and we used the

notation 0 for the coronal base values. The concept of Bernoulli integral is useful

in practice and it is implemented in our numerical model as a key feature. The

complete description appears in Chapter II.

The idea of a continuous flow from the Sun was so revolutionary at the time,
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that Parker’s paper was rejected by two reviewers. Fortunately for Parker (and for

us...), Subrahmanyan Chandrasekhar was the Astrophysical Journal editor and the

paper was published after all. This is a unique case where good networking actually

advanced science (Parker and Chandrasekhar worked together at the University of

Chicago). The debate had been going on for several years until the Soviet Lunik 1

spacecraft measured the solar wind for the first time in 1961. A couple of years later,

the American Mariner 2 spacecraft continuously measured the solar wind properties

for three months and provided a clear proof that the solar wind exists as Parker

predicted it.

Even though Parker’s solar wind solution predicts the existence of a supersonic

flow from the Sun, there are some issues that it cannot fully explain. The main

issue is that in reality, the critical point is located much closer to the Sun than the

one predicted by the hydrodynamic model. This means that there is an additional

physical mechanism that accelerates the solar wind even more. The main candidate

to provide the required extra energy is the coronal magnetic field. In addition, the

solar wind has been observed to be bi-modal (see Figure 1.13), with fast solar wind

(u ≈ 700 − 800 km s−1) originating from high magnetic latitude and coronal holes,

and slow solar wind (u ≈ 400 km s−1) originating from the coronal holes boundaries.

The two types of plasma seems to differ from each other not only in speed, but also

in density, temperature, and composition. Parker’s mechanism seems to work pretty

well for the fast wind but it fails to explain how the slow wind is accelerated. In

the next section, I will discuss the issue of the solar coronal heating and solar wind

acceleration. In Section 1.9, I will discuss the consequences of the solar wind on the

general structure of the Heliosphere.



26

Figure 1.13: Ulysses measurements of the solar wind speed as a function of heliolatitude for solar
minimum (left) and for solar maximum (right). The bi-modal structure of the solar
wind is clear during solar minimum, while it is more structured during solar maximum
(from: McComas et al. [65]).
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1.7 Heating of the Solar Corona

The origin, acceleration, and heating of the solar wind have been debated by the

solar-heliospheric community for decades. Although there is significant progress in

this area, the available theoretical models for turbulent processes in the solar wind

(i.e., turbulent heating) can not provide yet a reliable and quantitatively accurate

agreement with the observed solar wind parameters at 1 AU. We also lack a detailed

description of the three-dimensional structure of the interplanetary magnetic field,

which affects the transport of solar energetic particles through the heliosphere.

The theory of origin and evolution of the solar wind is challenged by the following

two fundamental problems. In the first place stands the “coronal heating” problem;

the temperature in the solar atmosphere raises by two orders of magnitude from the

photosphere (T < 104 K) to the corona (Te ≈ Ti ≈ 106 K) across a narrow transition

region [7]. The coronal plasma expands into the interplanetary space, guided by

the magnetic field close to the Sun, to form the solar wind. Second, there is a

discrepancy between the observed values of coronal temperature and the observed

solar wind speeds in the inner heliosphere (IH), in particular at 1 AU. The solar wind

at a heliocentric distance of 1 AU has a speed of usw ∼ 800 km s−1when originating

from regions of open magnetic field lines; this is the so-called fast solar wind. On

the other hand, the solar wind associated with regions of closed field lines (or helmet

streamers), is slow, with a speed of usw ∼ 400 km s−1; this is the so-called slow

solar wind. In both cases, the kinetic energy of a pair of proton and electron is much

greater than their thermal energy in the solar corona (SC): mp(400 km s−1)2/(2kB) ≈

107K � Te+Ti = T . The discrepancy for the fast solar wind is more than an order of

magnitude. Note that even the gravitational potential energy at the solar surface is
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greater than the the thermal energy: GM�mp/(R�kB) = 2.3×107 K � T . Therefore,

the theory needs to explain how the solar wind plasma originates from the Sun, how

it is accelerated to escape the solar gravity, and how it is further powered to reach

the observed speed and the bi-modal structure in the inner heliosphere.

The most commonly accepted theory regarding heating of the solar corona sug-

gests that the source of energy to heat and accelerate the solar wind comes from

wave-particle interaction and turbulent cascade. In this theory, MHD waves with

frequencies close to the particles resonant frequencies, are damped in the corona and

provide the particles with the observed energies [50, 22]. It is not clear however,

what are the dominant resonant frequencies. Is it ion waves? electron waves? Alfvén

waves? On one hand, if the coronal heating is dominated by the minor species and

heavier ions, then the heating occurs due to low frequency ion-cyclotron waves. On

the other hand, observations have shown that the final solar wind speed is inversely

proportional to the electron temperature [37]. This implies that the heating is driven

by high frequency waves. In addition, there is an evidence that the so-called fast

solar wind that originates from large coronal holes, and the slow solar wind that

originates from the coronal hole boundary, are different in composition, tempera-

ture, and density. This might suggest that the acceleration mechanism for the two

populations is actually not the same.

An alternative approach considers the large-scale heating as a result of small-

scale magnetic reconnection processes and nanoflares that occur in the low corona

[75, 30, 103]. Fisk [30] showed how local reconnection events in the corona result in a

large-scale electric field, which leads to a large-scale Poynting flux to provide excess

of energy to accelerate the solar wind. Fisk related this energy flux to the electron

temperature, Te, in the corona and proposed the following formula for predicting the
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solar wind speed:

(1.13)
u2

2
=
A

Te

− GM�
R�

.

Here A is a constant, which depends on the mass flux carried by the solar wind. The

inverse relation between the final solar wind speed and the electron temperature was

confirmed observationally by Gloekler et al. [37]. Eq. 1.13 has been used in a global

simulation of the solar corona and the results are presented in Section 2.8.

Even though the solar wind heating is still an open issue, the recent STEREO and

HINODE missions should reveal some of the unknown physics. Figure 1.14 shows

the different models for coronal heating.

Figure 1.14: Different models for coronal heating at the chromosphere and at the corona (from
Aschwanden 2004 [7]).
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1.8 Coronal Mass Ejections

One of the most fascinating features among solar phenomena is Coronal Mass

Ejection (CME). It had been observed in details by Skylab during the 70s̀. In the

past two decades, observations from the SOHO, TRACE, and YOHKOH satellites,

and new ground-based observations have dramatically increased our knowledge about

CME properties. Although the structure and evolution of CMEs is now well defined,

the mechanism of CME initiation is still not fully understood. On average, CME

ejects into the interplanetary space 1023 Maxwells of magnetic flux and 1016 g of

plasma. During the quiet phase of solar cycle there are approximately two CMEs per

week and during the active period there is a CME every day. Figure 1.15 shows the

four main observable features of CMEs. The white light brightening due to plasma

accumulation at the CME front (a), Hα emissions from prominence eruption (b),

chromospheric Hα ribbons (c) and X-ray loops (d).

The Hα emissions are associated with solar flares and are cooler than the ob-

served soft X-ray emissions since they are reflected from denser regions. Soft X-ray

emissions are produced in loops with footpoints mapped into the location of the Hα

ribbons. These loops have temperature of T > 107 K and therefore the emissions are

thermal in their origin. The hard X-rays are produced by non-thermal electrons and

accompanied by radio signal, protons with energy up to 100 MeV are also observed.

Figure 1.16 shows schematics of the CME features and their location.
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Figure 1.15: The four main observable features of CMEs. The white light brightening due to
plasma accumulation at the CME front (a), Hα emissions from prominence eruption
(b), chromospheric Hα ribbons (c) and X-ray loops (d) (taken from Forbes 2000 [34]).

Figure 1.16: Schematics of the CME features (taken from Forbes 2000 [34]).
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The generally accepted explanation of CMEs is related to loss of stability of the

coronal magnetic field. The energy density released in a large CME is of the order of

100 erg cm−3 . Tables 1.2 and 1.3 show the energy and energy density for different

sources in the solar corona. One can see that the magnetic energy is the only source,

which can support an eruption.

Table 1.2: Energy Requirements for a Moderately Large CME
Parameter Value

Kinetic energy (CME, prominence, and shock) 1032 ergs
Heating and radiation 1032 ergs

Work done against gravity 1031 ergs
Volume involved 1030 cm3

Energy density 100 ergs cm−3

Table 1.3: Estimates of Coronal Energy Sources
Energy Density

Form of Energy Observed Average Values ergs cm−3

Kinetic ((mpnV 2)/2) n = 109 cm−3, V = 1 km s−1 10−5

Thermal (nkT ) T = 106 K 0.1
Gravitational ((mpngh)/2) h = 105 km 0.5

Magnetic B2/8π B = 100 G 400

Since gravity and pressure gradient forces are negligible in the solar corona, the

common way to describe its magnetic field is the force-free approximation (the

Lorentz force is zero). In the force-free configuration electric currents can flow only

along the field lines. This is the minimum energy state that a non-potential magnetic

field can have. Because the photosphere is much denser than the corona, the field

lines are considered to be “line-tied”, which means that the footpoints of field lines

are attached to the photosphere. This approximation assumes that the footpoints

photospheric velocity is much smaller than the Alfven speed in the corona (the speed

of the magnetic perturbation), hence the magnetic field will reconfigure itself to any

change of the footpoint and will remain quasi-static. Most of CME models assume

that these photospheric motions, in addition to the emerging of new magnetic flux
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from the sub-surface, can shear and twist the coronal magnetic field until it looses

its equilibrium and erupts.

The energy scheme of a CME is as follow. Initially, the system is in steady state

and free energy begins to build up due to the shear of the field lines. At some critical

point, the system looses its stability when the field lines cannot hold the forces that

act on them; some of the field lines are opened and material is ejected to space.

After the eruption, the system arranges itself to a lower energy state. Therefore,

the pre-eruption state, where all the field lines were closed, need to have an higher

energy than the post-eruption state where some of the field lines are open (the

footpoints location of both states remain unchanged). In 1984, Aly [3] showed that

for ideal MHD magnetic configuration with the same inner boundary conditions (the

footpoints location), the fully open field line configuration always has higher magnetic

energy than the force-free configuration; the ratio of the fully open configuration to

the potential field (sun centered dipole) is about 1.66. The paradox is simple. In

order to open the field lines we need to put energy into the system, but in order to

get the eruption, we need the system to release energy.

The current models for CME initiation are proposed under Aly’s limitation, while

others try to work out the paradox assuming non-ideal MHD processes such as,

magnetic reconnection and the existence of current sheets, or assuming a change

in the inner boundary conditions (flux emergence). There are three main types of

models for CME initiation [84]: 1) the so-called “flux-rope” models in which the

CME is initiated by introducing a flux rope that goes through slow shearing and

twisting motions of its footpoint so that the magnetic energy stored in the rope

increases until the rope becomes unstable and erupts; 2) the so-called “shear-arcade”

models in which the eruption the footpoints in a set of closed magnetic field lines
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are sheared and the eruption is obtained by magnetic reconnection of the raising

field with an overlaying background field; 3) flux-emergence models in which the

eruption is a result of new magnetic flux emerging to the surface and interacting

with the surrounding magnetic field and plasma. Figures 1.17 - 1.19 show examples

of sheared-arcade, flux-rope, and flux-emergence CME initiation models.

Figure 1.17: An example of a shear-arcade model - the “breakout” model taken from Lynch et. al
2004 [59]. The arcade interacts with the overlaying field.
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Figure 1.18: An example of a flux-rope model taken from Roussev et. al 2003 [82]. The initial flux
rope goes unstable and erupts.

Figure 1.19: Eruption of a three-dimensional emerging magnetic flux rope as a model for CMEs by
W. B. Manchester [62]. Panel (a) illustrates the Lorentz force, which drives the shear
flows producing the eruption. Here, magnetic stream lines (confined to the y−z plane
at the central cross section of the rope) are drawn as white lines while black lines show
the direction of the current density. The existence of the Lorentz force (j× B) out of
the plane is clearly seen where the field and current density are oblique. The magnetic
field crosses j in opposite directions on opposite sides of the rope producing the shear
stress. The horizontal cross-field current is the result of the large vertical gradient
in the axial magnetic field component shown in color. The horizontal shear velocity,
which clearly occurs where j and B are non-parallel is shown in Panel (b). Panel (c)
shows Lorenz-force-driven shear flows driving an eruption in a magnetic arcade, which
also explains CMEs.
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1.9 The Heliosphere

The Heliosphere is basically the interplanetary space extending from the Sun to

the boundary of the solar system. This boundary is called the Heliopause and it

separates the subsonic solar wind from the interstellar medium. There is a termina-

tion shock before the heliopause where the solar wind slows down to subsonic speed

and there is probably another bow shock on the other side where the interstellar gas

becomes subsonic. Figure 1.20 shows the different regions in the heliosphere with

the location of the Voyager 1 and 2 spacecrafts.

Figure 1.20: The different regions in the heliosphere with the location of the Voyager 1 and 2
spacecrafts (taken from NASA’s website).

Since the solar wind is very highly conducting gas, the magnetic field of the Sun

is dragged out by the solar wind and opened up into the heliosphere. In the frame

rotating with the Sun, charged particles move along magnetic field lines. Therefore,

the shape of the helispheric magnetic field determines the dynamics and transport of
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solar wind particles, Solar Energetic Particles (SEPs), and cosmic rays (even though

the bulk kinetic energy of the solar wind is much greater than its magnetic energy).

1.9.1 The Parker Spiral

Suppose the solar wind plasma flows radially from the Sun. Each plasma parcel

drags the magnetic field with it, so the magnetic field should be parallel to the solar

wind direction. These paths are also equipotential since E′ = u′ × B = 0. Let us

consider the effect of the solar rotation. In the frame of reference rotating with the

Sun, the solar wind velocity is:

(1.14)
ur = dr

dt
= usw

uφ = r sin Θdφ
dt

= −Ω�r sin Θ,

where Ω� = 2.810−6 rad s−1 is the solar rotation, and Θ is the heliographic latitude.

Solving for r and φ we obtain the equation for φ(r):

(1.15) φ(r) = φ0 − Ω�
usw

(r − Rs).

This equation describes an archemidian spiral and is called the Parker Spiral. Rs is

the radius in which the solar magnetic field lines are assumed to be purely radial.

This radius is commonly refers to as the “source surface”, and is discussed in detail

in Section 2.4.1.

The heliospheric magnetic field configuration is:

(1.16) B = Bs

(
Rs

r

)2

er − Bs

(
R2

s

r

)
Ω� sin Θ

usw
eφ,

where Bs is the field strength at the source surface. Since the radial component drops

like 1/r2, while the azimuthal component drops like 1/r, the spiral has an angle of

about 45◦ at the Earth orbit and close to 90◦ at Saturn’s and Jupiter’s orbits. Figure

1.21 shows the Parker spiral and the magnetic field lines configuration for different

heliolatitudes.
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Figure 1.21: The Parker spiral, streamlines, and magnetic field lines configuration for different
heliolatitudes. (taken from NASA’s website).
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1.9.2 Deviations from the Parker Spiral

The general dynamics in the heliosphere is controlled by the Parker spiral. How-

ever, in-situ measurements observed deviations from the predicted behavior of plasma.

In order to explain these deviations, new theories were born where some of them,

for example particle diffusion, became a completely new fields in space physics. In

this section we will mention the main ideas about deviations from the Parker spiral

without getting into details on each subject.

• Superthermal Particle diffusion

Charged particles gyrate around magnetic field lines with guiding center that

moves along the field lines. Therefore, the transport of charged particles is gen-

erally prefferred along magnetic field lines. In order to explain the observed

particle distributions however, a transverse particle motion must be taken into

account. The main mechanism in which particles move across field lines in the

heliosphere is through a diffusion processes. The physical mechanism of particle

diffusion in heliosphere is as follow. Even though the large-scale magnetic field

follows the Parker spiral its small-scale is quite turbulent with local irregular-

ities. These small deviations in the magnetic field introduce small-scale pitch

angles that cause particles to move across the large-scale field line.

• Pickup ions

So far, we discussed the motion of superthermal charged particles in the he-

liosphere. However, the interstellar medium contains neutral gas and dust, in

particular near planets, moons comets and asteroids. These nuetrals are often

heavier than hydrogen. If some neutral particle becomes ionized due to solar

radiation or charge-exchange process, it starts to gyrate around the magnetic
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field line. The field line moves with the solar wind plasma with speed of usw, so

eventually, the guiding center of the new ion (or pick-up ion) is accelerated to

speed of the order of usw. In addition, the random velocity of the pickup ions

is also close to usw. This mass loading process slows down the solar wind in the

heliosphere.

• Solar differential rotation

When the Ulysses spacecraft measured energetic particles at high heliolatitudes

for the first time, it observed particles that were thought to exist only at low

latitudes. The temporal evolution of these particles has a clear periodicity of

about 27 days, which is about the same as the solar rotation period. In 1996,

Fisk [29] proposed an explanation for this observation as follow. Since the

Sun rotates differentially, while the top of the corona seems to rotate rigidly,

there will be excursion of the field lines due to the motion of the magnetic field

footpoints on the photosphere and due to the mis-alignment of the rotation

axis with the magnetic axis. This will lead to migration of field lines from one

latitude to another and can explain how particles originating on a low latitude

filed line can appear in higher latitudes. The left part of Figure 1.22 shows a

schematics of the Fisk model. Ω marks the rotation axis of the Sun, M marks

the magnetic axis and P marks the magnetic field line originated from the solar

pole. One can see that at the top of the corona (the external surface), this field

line appears in different latitude. The difference in the heliospheric spiral is

shown in the middle and the right parts.
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Figure 1.22: A schematics of the Fisk model (left). Ω marks the rotation axis of the Sun, M marks
the magnetic axis and P marks the magnetic field line originated from the solar pole.
The middle figure shows the unperturbed Parker spiral, and the right figure shows the
modified spiral due to differential rotation.

1.10 The purpose of this work

Numerical tools provide an alternative to analytical solutions of physical prob-

lems, which are described in mathematical form. Most of the physical systems we

deal with and we try to understand are so complicated and non-linear, that it is

impossible to derive an analytical solution, unless large number of assumptions and

simplifications are made. Numerical simulations, particularly with the current and

future computational power, provide us with the opportunity to solve the physi-

cal problem with much less simplifications and sometime even allow us to solve the

complete problem. Of course, numerical models have their own issues, which will

be discussed in Chapter II. In this work, I use numerical simulations to study the

physics of the solar corona, the heliosphere, and CMEs. The physical system of the

solar corona and the heliosphere is not only non-linear, but it introduces a huge

range of both temporal and spatial scales. This range of scales made it impossible to

resolve some of the physics even with very sophisticated numerical models. I present

some of the first numerical simulations performed using the concept of numerical

framework, a concept in which different models for different physical domains are

coupled together. This cutting-edge technology represents the next generation of
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numerical modeling.

This work is divided to three major parts:

In Chapter II, I present a global, three-dimensional model for the solar corona and

the inner heliosphere (up to 1 AU) in order to study the evolution of the large-scale

quite Sun. This part is important in order to learn about the long-term evolu-

tion of the solar magnetic field, the magnetic connectivity between the Sun and the

Earth, the ambient solar wind conditions at the vicinity of the Earth, and the global

structure of the heliospheric magnetic field. This model can be later used to study

long-term dynamics in the corona and heliosphere such as the effect of differential

rotation on the structure of the heliospheric magnetic field, or the three dimensional

evolution of the heliospheric magnetic field through the solar cycle.

In Chapter III, I investigate the effect of magnetic reconnection on the transport

of the open magnetic flux of the Sun. Since the open flux of the Sun is the magnetic

field component, which connects the Sun with the Earth, it is important to predict

its evolution in time. I present a numerical model for the transport of the open flux,

which includes components of new theoretical models. I show that the solution is

different if this effect is taken into account.

In Chapter IV, I perform a Sun-to-Earth simulation of a CME event. I study the

CME propagation in the interplanetary space and the importance of the ambient

solution on the propagation. In addition, this simulation is important to demon-

strate the opperationality of the numerical model for the purpose of space weather

prediction. This kind of simulations are the essence of any numerical, dynamic, and

physics based space weather forecasting tools.

In Chapter V, I describe the planned future work and some open issues.



CHAPTER II

A Global MHD Model for the Solar Corona

“We consider the dynamical consequences of Biermann’s suggestion that

gas is often streaming outward in all directions from the Sun with velocities

of the order of 500−1500 km/sec. These velocities of 500 km/sec and more

and the interplanetary densities of 500 ions/cm−3 (1014 gm/sec mass loss

from the Sun) follow from the hydrodynamic equations for 3× 106 K solar

corona. It is suggested that the outward-streaming gas draws out the lines

of force of the solar magnetic fields so that near the Sun the field is very

nearly in a radial direction. Plasma instabilities are expected to result in the

thick shell of disordered field (10−5 gauss) inclosing the inner solar system,

whose presence has already been inferred from cosmic-ray observations.”

E. N. Parker, Astrophysical Journal, 1958.

2.1 The Ambient Solar Wind

The ability to predict the physical conditions in the interplanetary space, as well

as at the vicinity of the Earth on a daily basis has become significantly important

in the past few decades. The growing dependency on satellite communication, the

planned space missions, and the hazards to systems on the ground brought the

concept of Space Weather. Unlike atmospheric forecasting tools, which have been

43
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in use for decades, the tools for space weather forecasting are yet very limited. The

prediction of space weather depends mostly on satellites, which observe the activity

on the Sun (such as SOHO and STEREO) or satellites, which can measure the solar

wind conditions at the vicinity of the Earth (such as ACE and WIND). Since the

forecasting time of these near Earth satellites is about 60 minutes [36], we need to

develop dynamical numerical models for the space environment in order to improve

the forecasting time.

The Space Weather Modeling Framework (SWMF) is a computational tool for

simulating the space environment from the solar photosphere all the way to the

Earth’s upper atmosphere. The complete description of the SWMF can be found

in [99]. The SWMF includes the numerical models for the Solar Corona (SC) and

the Inner Heliosphere (IH), which describe the interplanetary space between the Sun

and the Earth. The SC and IH components are being used to describe the physical

conditions of the ambient solar wind and the dynamical conditions during a space

weather event [21].

In this chapter, I focus on modeling the ambient conditions for the SC and IH using

the technolgy of the SWMF for the first time. Since the most important parameter

in space weather forecasting is the arrival time of the Interplanetary Shock (IS) of

a Coronal Mass Ejection (CME), it is important to obtain the correct background

conditions in which this shock propagates through.

2.1.1 Previous numerical simulations of the solar corona and heliosphere

Previous work has been done to model the SC and IH using global MHD models,

which can be divided according to their solar wind heating mechanisms. The most

straightforward method is to predefine the volumetric heating in an empirical man-

ner. As an example for this category of heating mechanism I mention the MAS code
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for the solar corona developed at SAIC by (Mikic, Linker, Riley, Lionello, and Titov

[67, 55, 56, 81]), the ENLIL code for the helisphere developed by Odstrcil and Pizzo

([69, 70]), Suess et al. ([95]), and the early BATS-R-US solar corona modeling by

Groth ([42]).

A more physics-based method to obtain a solar wind solution is to use the WKB

approximation of the Alfvén wave turbulence to obtain the extra energy required to

heat and accelerate the solar wind. The main model uses this approach has been

developed by Usmanov et al. ([102, 101]).

An alternative method is to assume that the extra energy gained by the solar wind

can be represented as a change in the polytropic index, γ. The acceleration of the

solar wind, as well as the difference in the final speed of the fast and slow solar wind

is obtained by using a non-uniform distribution of γ in the energy equation. The

first model to use this approach has been developed by Wu et al. ([114]). Roussev

et al. ([83]) presented a new model for the solar corona based on the BATS-R-

US global MHD code, in which the the non-uniform distribution of γ was related to

the distribution of the magnetic field in the corona.

2.1.2 Scientific contribution of this work

In this work, I present a new numerical model for the solar corona and heliosphere

(Cohen et al. [19]) based on the model by Roussev et al. which adpots the non-

uniform γ as well. However, in order to obtain a more realistic solution, I specify the

distribution of γ using an empirical model for the solar wind. This way the model is

constrained by the observed solar wind at 1 AU and it should provide better results

at 1 AU. Since the solar wind heating and acceleration in the model are constrained

by an empirical input, it should also provide the correct solution for the solar corona.

In order to validate a global model, one needs to compare its output thoroughly
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with observations. For the particular purpose of space weather forecasting, the model

should match the observations of the spacecrafts, which measure the solar wind

conditions at the vicinity of the Earth. Here I present a long-term validation of our

steady-state SC and IH model. I compare the model’s result with ACE and WIND

observations for the hydrodynamical parameters, as well as for the magnetic field.

This validation is crucial in order to decide whether the model can be used as an

operational space weather forecasting system.

2.2 The BATS-R-US Code

The BATS-R-US code has been developed as a general, global tool to simulate

plasma phenomena in space. In particular, the model has been developed to deal with

the wide variety of temporal and spatial scales in space physics and has Adaptive

Mesh Refinement (AMR) capabilities. The code solves the set of ideal Magneto-

HydroDynamic (MHD) equations using modern, high-order finite volume upwind

schemes based on the Riemann Problem (RP). The RP defines discontinuous initial

condition, for example, in two neighboring grid cells. The information between the

two states propagates at certain characteristic speeds associated with characteristic

waves (CWs), which depend on the physical properties of the system. Mathemat-

ically, the CWs are the possible solutions for the set of equations describing the

system. In MHD, there are 8 equations with 7 CWs. This degeneracy is a result of

the requirement that ∇ · B = 0 and this issue will be discussed in details in section

2.2.5. This section describes the BATS-R-US code in detail.

2.2.1 Physical basis for BATS-R-US

This hyperbolic, conservative set of eq. 1.1 can be written in a matrix form [80]:

(2.1)
∂U

∂t
= (∇ · F)T = S,
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where in the case of eq. 1.1, S = 0. The set of primitive variables is

(2.2) W = (ρ, ux, uy, uz, Bx, By, Bz, p)
T ,

and the conserved variables are

(2.3) U = (ρ, ρux, ρuy, ρuz, Bx, By, Bz, E)T ,

with

F =



ρu

ρuu + pI + B2

2µ0
I − BB

µ0

uB −Bu(
E + p+ B·B

2µ0

)
u − 1

µ0
(B · u)B



T

.(2.4)

The electric field can be obtained through the relation E = −u × B.

2.2.2 Numerical solution

The general explicit, upwind finite-volume numerical scheme can be written as:

(2.5)
dUi

dt
Vi +

∑
faces

F · n̂ dS = SiVi,

where Ui and Si are the cell-averaged conserved variables and source terms, respec-

tively, Vi is the cell volume, and F is the flux passing through the cell face in the

normal direction, n̂ (see Figure 2.1).

The numerical flux can be obtained using the eigenvalues of the MHD system,

λk, and the left and right corresponding eigenvectors, lk, and rk, respectively. These

parameters correspond to the CWs of the system, which are the entropy wave, three

magnetic-flux waves, a pair of Alfvén waves, fast magnetosonic wave, and slow mag-

netosonic wave. The numerical flux is:

(2.6) F · n̂(UL, UR) =
1

2
(F · n̂(UL) + F · n̂(UR)) −

8∑
k=1

Lk(UR − UL)|λk|Rk,
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Figure 2.1: The normal fluxes, F flowing through the faces of the cells.

with

(2.7) Lk = lk
∂W

∂U

(2.8) Rk =
∂U

∂W
rk.

2.2.3 Numerical limiters

Modern higher-order, finite volume schemes use the concept of Total Variation

Diminishing (TVD) to maintain the scheme monotonicity and to prevent the ap-

pearance of a new local extrema in the numerical solution, U . With the spatial

index, i, and the temporal index, n, the TV is defined as:

(2.9) TV =
∑

i

|Ui − Ui−1|,
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with the TVD requirement that

(2.10) TV (Un+1) ≤ TV (Un).

The manning of eq. 2.10 is that the gradients in the numerical linear reconstruction

must be limited, since gradient overshooting will lead to the appearance of oscillations

in the numerical solution. In BATS-R-US , the user can choose between number of

numerical limiters such as, “minmod”, “superbee”, and “mc” beta limiter. The

different limiters differ from each other by their robustness and accuracy.

In the case of adaptive Cartesian grids, such as in BATS-R-US , a more careful

limiting treatment is needed [93]. For a refinement interface such as in Figure 2.2,

eq. 2.9 becomes:

(2.11) TV =
r∑

i=1

S|Ui−1 − Ui| +
∑

f

Sf

[
|Ur − Ur+1,f | +

I+1∑
i=r+2

|Ui−1,f − Ui,f |
]
,

where S is the face area of the cell. The finer cells are enumerated with the index

i, r + 1 ≤ i ≤ I in the longitudinal direction and with the index f in the transversal

direction.

Figure 2.2: Cell enumeration around the refinement interface [93].

2.2.4 The local time stepping algorithm and its convergence rate

In order to speed up the simulation time, one can choose to use a “local time

stepping” for steady-state numerical simulations. The local time stepping is the case
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in which the time step is calculated individually for each cell. The absolute number

of iterations, n, is not very meaningful by itself. To derive a relevant convergence

parameter, R, for a particular grid, consider first the time accurate explicit scheme.

In this case, the rate of the numerical solution converges to a steady state is inversely

proportional to the characteristic time:

(2.12) tc =

∫ ROB

R=1

∆x

C(x)
,

during which the physical perturbations propagate from say, the inner boundary

to the outer boundary (OB), with C being the characteristic speed. Therefore, the

proper convergence parameter is the ratio of the simulation time to the characteristic

time:

(2.13) R =
n∆t

tc
=

n∑
n

1

CFL(n)

,

where I represent the integral along the straight line as a sum by the cells it intersects,

with the local Courant-Friedrichs-Levy number CFL(n) = C∆t
∆x

.

For a stability of the explicit scheme, I use CFL ≤ 0.8. The values of the inverse

to the CFL number in eq. 2.13 are close to unity only in the smallest cells near the

Sun, where the speed C has its maximum value ( Cmax∆t
(∆x)min

≈ 0.8). To the contrary,

at larger heliocentric distances, the inverse of the CFL number may be 2-3 orders of

magnitude larger
(

∆x
∆xmin

)(
Cmax

C(x)

)
� 1, drastically degrading the convergence.

That is why I use the local time stepping algorithm in simulating a steady state

solution, which automatically maintains the local CFL number to be equal to 0.8
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everywhere, with the choice of a local time step,

(2.14) ∆t(x) = 0.8
∆x

C(x)
.

In this case the convergence parameter becomes:

(2.15) R =
0.8n

Nx
,

where Nx is the typical number of cells (of any grid) intersect with the line as

described above.

2.2.5 ∇ · B control in BATS-R-US

In order to follow Maxwell’s equations in the MHD numerical solution, we need

to maintain the non-hyperbolic constrain of ∇ · B = 0 within the machine roundoff

error. However, by simply setting the divergence of the magnetic field to be zero, we

change the character of the equations, since the eight MHD conservation laws are not

fully independent. Powell [80] demonstrated that by following the MHD equations

and by keeping the terms proportional to ∇·B and rearranging the equations, we can

obtain a set of source terms that are proportional to ∇·B in a way that these sources

will be advected out of the system as long as the initial and boundary conditions

satisfy ∇ · B = 0 . This source term is:

(2.16) S = −∇ · B



0

B

u

u ·B


In this case, eq. 2.5 becomes:
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(2.17)
dUi

dt
Vi +

∑
faces

F · n̂ dS = S = −



0

B

u

u · B


∑
faces

B · n̂ dS.

This method of controlling ∇ · B is called the eight wave method and it is the

default method in BATS-R-US . Other methods to limit ∇·B such as, the projection

scheme, constrained transport, and ∇·B diffusion [98] are also implemented in BATS-

R-US .
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2.2.6 Grid structure

The grid used in BATS-R-US is adaptive with blocks of arbitrary size. Each block

corresponds to a node of the tree structure and can be devided into eight ’children’

blocks if a grid refinement is necessary. Removing refinement from a block can be

done in the same way. Each block also holds the information of all the ’ghost-cells’

needed for the computation. Figure 2.3 shows the grid cells of a refined block next

to an un-refined block (red), together with the ghost-cells around them (green).

Figure 2.3: The block structure of BATS-R-US . Large cell blocks require the same amount of
computation as small cell blocks. Each block is provided with the required set of ghost-
cells (green).
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The tree structure of BATS-R-US is very convenient for two reasons. First, the

block distribution among the nodes makes the code parallelization very easy, since

each ’parent’ block holds the information needed by all the children blocks. In

addition, the number of cells in the refined and un-refined block is the same so

that load balancing can be easily achieved. Figure 2.4 shows the tree structure of

BATS-R-US .

Figure 2.4: Schematics of the parallel architecture of BATS-R-US . Each parent block has the in-
formation from all its children blocks.
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The AMR criteria in BATS-R-US can be geometric, as well as physics based. The

geometrical AMR is usually done when a refinement around a particular region is

needed. Examples for geometric AMR are refinement around an object or along a

predicted CME trajectory. Geometrical based AMR is usually known in advance and

is done at the beginning of the simulation. Alternatively, a more dynamical AMR

is the physics based one. This AMR is done when a particular area, usually one

with sharp gradients (or shocks), can not be captured by the original resolution. An

examples for physics based AMR criteria are:

(2.18)

|∇ · u|√V

|∇ × u|√V
|∇ × B|√V

One use of physics based AMR is the tracking of a CME shock as it propagates

in space. Another commonly used physics based AMR situations is AMR around

the Earth’s magnetopause, or around the heliospheric current sheet, which are less

dynamic than CMEs but the criteria for refinement is still physical. Figure 2.5 shows

the grid structure of a simulation of the Earth’s magnetosphere as it changes due to

AMR.
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Figure 2.5: An example of of the AMR throughout a simulation of the Earth’s magnetosphere from
the initial grid state (top-left) to the final grid state (bottom-right).
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2.3 The Space Weather Modeling Framework

In order to perform numerical simulations of large and complex systems in more

details and higher resolution, one should adopt the concept of numerical framework.

The basic idea behind this concept is that the whole domain should be split into

separate sub-domains, where separate numerical models are applied to each one of

the domains. Each model can have its own grid structure and its own physical

characteristics, and the models are coupled through a common interface. The space

environment is a great example of how the use of a framework can significantly

increase our capabilities due to it’s wide range of spatial and temporal scales.

The SWMF has been developed at the Center for Space Environment Modeling

(CSEM) and it contains separate modules for simulating the space environment from

the surface of the Sun to upper atmospheres of the Earth and other planets. The

physical domains are:

1. Solar Corona (SC), BATS-R-US based.

2. Inner Heliosphere (IH), BATS-R-US based.

3. Global Magnetosphere (GM), BATS-R-US based.

4. Upper Atmosphere (UA), Global Ionosphere Thermosphere Model (GITM).

5. Inner Magnetosphere (IM).

6. Solar Energetic Particles (SP), based on U. of Arizona particle transport code.

7. Radiation Belt (RB).

8. Polar Wind (PW).

9. Ionosphere Electrodynamics (IE).
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The framework architecture is designed in a way so the run is done using a single

executable. The coupling is done through a standard interface coupler, which ensures

that each model receive the needed information in the correct units, frame of reference

etc. In addition, SWMF contains a large set of utilities that can be used by each

of the modules, such as, parallelized algorithms for field line tracing, interpolations,

transformation between space physics coordinate systems, and more. The SWMF

architecture is designed in a way that the code will run in an efficient matter. Figure

2.6 shows the general structure of the SWMF, the different domains and the coupling

between them.

Figure 2.6: Module structure and coupling architecture of the SWMF.
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2.4 Numerical Model for the Solar Corona and Heliosphere

2.4.1 The potential field approximation

The solar corona is dominated by its magnetic field. Therefore, it is important

to know what is the three dimensional structure of the magnetic field in order to

study the physical processes in the corona. Since the solar magnetic field can be

routinely measured only at the photosphere, where the plasma density is high enough

for measuring the Zeeman Splitting, one needs to find a way to approximate the

global structure of the coronal magnetic field. The most commonly used method to

approximate the coronal magnetic field is the so-called ’potential field’ approximation

[2]. In this approximation, it is assumed that the Alfvén speed is much larger than

the speed of convective motions in the low corona, so the field line relaxation time is

much shorter than the typical advection time scale. In other words, the field line will

respond quickly to any motion we apply on it (this motion can be seen as electric

current) so in practice the magnetic field is static. Under the assumption that there

are no currents in a physical system, we can write Ampere’s law as follows:

(2.19) ∇× B = 0,

and we can write B as a gradient of some scalar potential ψ:

(2.20) B = −∇ψ.

Since we also know that

(2.21) ∇ · B = 0,

combining eq. 2.20 with eq. 2.21 results in the Laplace equation for the scalar

potential:

(2.22) ∇2ψ = 0.
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The general solution for this equation in spherical coordinates for

R0 < r < Rs is:

ψ(r, θ, φ) =

∞∑
n=1

n∑
m=0

[
R0

(
R0

r

)n+1

+Rs · cn
(
r

Rs

)n
]

× (gm
n cosmφ+ hm

n sinmφ)Pnm(θ),(2.23)

which gives ψ = 0 at r = Rs for the choice of cn = −
(

R0

Rs

)n+2

, particularly as

Rs → ∞. Pnm are the associated Legendre Polynomials, which are a function of

cos θ. The coefficients gm
n and hm

n can be determined from the photospheric magnetic

field data and have magnetic field dimension.

Following the above solution, we can obtain the solution for the magnetic field

components (Altschuler et al. 1969, eqs. 8-10):

Br = −∂ψ
∂r

=

∞∑
n=1

n∑
m=0

[
(n + 1)

(
R0

r

)n+2

− n

(
r

Rs

)n−1

cn

]
× (gm

n cosmφ + hm
n sinmφ)Pm

n (θ),(2.24)

Bθ = −1

r

∂ψ

∂θ
= −

∞∑
n=1

n∑
m=0

[(
R0

r

)n+2

+ cn

(
r

Rs

)n−1
]

× (gm
n cosmφ+ hm

n sinmφ)
∂Pm

n (θ)

∂θ
,(2.25)

Bφ = − 1

r sin θ

∂ψ

∂φ
=

∞∑
n=1

n∑
m=0

[(
R0

r

)n+2

+ cn

(
r

Rs

)n−1
]

× m

sin θ
(gm

n sinmφ− hm
n cosmφ)Pm

n (θ).(2.26)

We can determine the harmonic coefficients from the observed photospheric values

of Br as follows. The orthogonality relation over a sphere with r = 1 for the general
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Legendre functions is:

1

4π

π∫
θ=0

2π∫
φ=0

Pnm(θ)


cosmφ

sinmφ

Pn′m′(θ)


cosm′φ

sinm′φ

 sin θdθdφ =

Wδnn′δmm′ ,(2.27)

where W is the normalization factor. For the general Legendre functions,

(2.28) W =
2

2n+ 1

(n +m)!

(n−m)!
,

and

(2.29) W =
1

2n + 1

for the Schmidt normalization, so the relation between the Schmidt (Pm
n ) and the

general Legendre functions (Pnm) is:

(2.30) Pm
n (θ) =

{
2
(n−m)!

(n+m)!

}1/2

Pnm(θ).

In BATS-R-US , the polynomials are calculated with the Schmidt normalization. For

r = R0 = 1, the radial magnetic field becomes:

(2.31) Br(θ, φ) =
∞∑

n=1

n∑
m=0

Rn


gm

n

hm
n

Pm
n (θ)


cosmφ

sinmφ

 ,

where Rn =

[
(n+ 1) + n

(
1

Rs

)2n+1
]
.

Following eq. 2.27, we can obtain the harmonic coefficients from the photospheric

magnetic data, assuming the Schmidt normalization of the Legendre functions (Altschuler

et al. 1969):

(2.32)

 gm
n

hm
n

 =
2n+ 1

4πRn

π∫
θ=0

2π∫
φ=0

Br(r = R�, θ, φ)Pm
n (θ)

 cosmφ

sinmφ

 sin θdθdφ,
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where

Br =


Bmagnetogram for radial magnetogram,

Bmagnetogram

sin θ
for Line-of-Sight magnetogram.

The discretized version of eq. 14 is (Altschuler et al. 1969, eq. 15):

(2.33)


gm

n

hm
n

 =
1

A

2n + 1

Rn

Nθ−1∑
i=0

Nφ−1∑
j=0

Br(i, j) · dai,j · Pm
n (θi)


cosmφj

sinmφj ,


where dai,j = sin θidθdφ and A =

∑Nθ−1
i=0

∑Nφ−1
j=0 dai,j = 4π for r = R�.

Figure 2.7 shows examples of the three-dimensional structure of the coronal mag-

netic field computed using the potential field approximation.

Figure 2.7: Examples of the three-dimensional structure of the coronal magnetic field computed
using the potential field approximation from Altschuler & Newkirk, 1969 [2].
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2.4.2 The synoptic solar wind

Numerical reproduction of the solar corona steady-state conditions has been ex-

tensively investigated since the famous work by (Pneuman and Kopp 1971 [79]).

Traditionally, the deposition of energy and/or momentum into the solar wind has

been described by means of some empirical source terms [100, 66, 67, 95, 114, 42,

e.g.]. In these models, the sources of plasma heating and solar wind acceleration are

typically modeled in a qualitative sense, and the spatial profiles for the deposition

of the energy or momentum are usually modeled by exponentials in radial distance.

In more realistic models, the solar wind is heated and accelerated by the energy and

momentum interchange between the solar plasma and large-scale Alfvén turbulence

[47, 24, 10, 102, 101].

Due to the small number of observations at 1 AU, it is reasonable to adopt semi-

empirical models. Assimilating a long history of solar wind observations, these mod-

els are very efficient and quite accurate. A particular example is the Wang-Sheeley-

Arge model (WSA) [6, 5]. This model uses the observed photospheric magnetic field

to determine the coronal field configuration, which is then used to estimate the dis-

tribution of the final speed of the solar wind, usw. The common disadvantage of

semi-empirical models is that they are physically incomplete.

I use the model by [19] to obtain the steady-state SC and IH solution. The SC and

IH modules of SWMF are versions of the BASTRUS global MHD code, which is fully

parallel and has adaptive mesh refinement capabilities (see [80]). Our SC model is

driven by high-resolution SOHO MDI magnetograms. I use the magnetogram data to

calculate the potential magnetic field, assuming the source surface is at Rss = 2.5R�,

where R� is the solar radius, and use this distribution of the magnetic field as an

initial condition.
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The heating and acceleration of the solar wind plasma are achieved by using a

non-uniform spatial distribution of γ. In order to obtain a more realistic distribution,

I use the empirical Wang-Sheeley-Arge (WSA) model as an input to our model [6].

The WSA model is found to be very reliable although in principle, our model can use

any empirical prediction for the solar wind speed such as in [30]. The WSA model

uses the potential field distribution to obtain the magnetic flux tube expansion factor

defined as [109]:

(2.34) fs =
|B(Rs)|R2

s

|B(R0)|R2
0

.

The WSA model provides an empirical relation for the spherical distribution of the

solar wind speed at 1AU as a function of fs and the angular distance of a magnetic

field footpoint from the coronal hole boundary, θb. In our model, I use the following

formula [5]:

(2.35) usw = 265 +
1.5

(1 + fs)1/3

{
5.9 − 1.5e[1−(θb/7)5/2]

}7/2

km s−1.

I assume that far from the Sun the total energy is dominated by the energy of

the bulk motion and that the thermal and gravitational energy are negligible. I

also assume that at the coronal base the bulk kinetic energy is zero. Due to energy

conservation, we can use the Bernoulli equation to relate the two ends of a streamline

(or magnetic field line):

(2.36)
u2

sw(θ, φ)

2
=

γ0(θ0, φ0)

[γ0(θ0, φ0) − 1]

p0(θ0, φ0)

ρ0(θ0, φ0)
− GM�

R�
.

Here usw is the input solar wind speed from the WSA model, G is the gravitational

constant, and M� is the solar mass. γ0, p0, and ρ0 are the photospheric values for the
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polytropic index, pressure, and mass density. The coordinates θ0, φ0 represent the

location of the field line footpoint, usw(θ, φ) originated from. I interpolate γ from

its photospheric value to a spherically uniform value of 1.1 on the source surface

at r = 2.5R�. γ is linearly varied from 1.1 to 1.5 for 2.5R� < r < 12.5R�, and

γ = 1.5 above 12.5R�. Figure 2.8 shows the spatial distribution of γ. Once the

spatial distribution of γ is obtained, I solve the MHD equations self-consistently

using this location dependent polytropic index in the energy equation to obtain the

steady state solution for the SC and solar wind.

Figure 2.8: The spatial distribution of γ used in our model. γ is specified on the solar surface
using the Bernoulli integral and been interpolated to spherically uniform value of 1.1
at r = 2.5R�. γ is linearly varied to a value of 1.5 for 2.5R� < r ≤ 12.5R�.

The above distribution of γ enables us to reproduce the bi-modal structure of the

solar wind speed. However, the distributions of the coronal density and temperature
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are still not determined. It is known that the faster wind originates from coronal

holes, where the density is lower than the density in the closed field regions. In

order to obtain this observed property, I scale the base density, ρ0, and the base

temperature, T0, at each point on the solar surface with the inverse of the input speed

from the WSA model. I would like our model to be driven only by the magnetogram

data without any particular parameterization for each Carrington Rotation (CR).

Therefore, I parameterize the model for the general cases of solar minimum and

solar maximum conditions.

I use 9 levels of grid refinement in the SC model to obtain a grid cell size of 0.02R�

on the solar surface. I refine the grid throughout the simulation to obtain a grid cell

size of 0.2R� near the current sheet. I run the SC model without the IH model for

10000 iterations until a steady state is obtained.

Since the solar wind is super-Alfvénic at the SC-IH boundary, all the information

propagates outward. Therefore, it is sufficient to couple the models only for a single

iteration if the SC module is already in a steady state. In our model, the spherical

SC-IH boundary is set at r = 17R�, while the Cartesian outer boundary for SC is set

at x, y, z = 24R�. When the coupled mode is turned on, the inner boundary in IH

is driven by the SC values at r = 17R�, while the outer boundary conditions (BCs)

for SC are constrained by the IH values at the Cartesian distance of 24R� from the

center of the Sun. Therefore, the SC steady state solutions for the SC stand-alone

run and coupled SC-IH run are not identical (but close). After obtaining a steady

state in SC, I turn on the IH module for a coupled run of 2500 iterations. I then

turn off the SC module until a full steady state in IH is achieved after another 3500

iterations. I refine the grid in the IH module to obtain a grid cell size of r = 0.2R�

near the current sheet.
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In order to obtain a more physical solution for the heliospheric current sheet, we

implemented the Roe Solver (RS) to our model [92] (see App. B). The RS is the

most exact and least diffusive Godunov-Type numerical solver in BATS-R-US . The

use of the RS is practically equivalent to the use of another level of grid refinement.

Therefore, it should better resolve the heliospheric current sheet, where magnetic

reconnection occurs and the ideal MHD approximation breaks down. This is the

first implementation of this new and highly sophysticated numerical solver.

I run our model on the NASA ALTIX supercomputer with the use of 64 processors

for each CR. With this amount of processors, it takes about one week of wall clock

time to obtain a steady state solution for 14 Carrington Rotations.
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2.5 Validation of the MHD Model

2.5.1 Solar minimum

I ran the model for CRs 1916-1929 (November, 1996 to November, 1997). During

this period the Sun was under solar minimum conditions and the solar magnetic field

configuration was dipolar.

The relationship between the total magnetic flux predicted by the magnetogram-

driven potential field model and the total magnetic flux observed at 1AU is still

under debate. Currently, the MDI data provider recommends that I multiply the

magnetogram values by a factor of 1.8. However, for solar minimum conditions, I

obtain a better result for the magnetic field with the use of a scaling factor of 2.5.

For solar minimum, I use a base density value of ρ0 = 4.3 × 108 cm−3.

Figure 2.9 shows a cut along the y = 0 plane in the frame of reference rotating with

the Sun, which represents the central meridian of CR 1922. Color contours represent

the radial solar wind speed, while streamlines represent the magnetic field lines. I

obtain a thin current sheet surrounded by slow solar wind speed of 300−400 km s−1,

which extends up to 20◦ above and below the current sheet.

Figures 2.10-2.13 show a comparison of the simulation results with ACE and

WIND 1AU data. The comparisons are for solar wind radial speed, magnetic field

magnitude, plasma number density, and plasma temperature. Shaded transitions

mark the Carrington rotations. The red line represents hourly averaged satellite

data obtained from http://cdaweb.gsfc.nasa.gov, while the black line represents an

extraction of the MHD variables along the satellite trajectory during the particular

CR in the steady state simulation domain using the same time interval as the satellite

data. The yellow bars mark the periods of time when CMEs were observed [16,

48]. Since these are dynamical transients, the steady state model should not be
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Figure 2.9: A cut in the steady state solution for the SC during CR1922. Color contours represent
the radial solar wind speed and streamlines represent the magnetic field lines.

expected to match the observations at these particular periods. Nevertheless, the

model predicts rather well the periodic co-rotating interaction regions (CIRs). In

order to avoid the effect of the CME transients on the statistics, I set both data and

model values to be zero during these periods.
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Figure 2.10: A comparison of the simulation results with ACE and WIND data at 1AU for solar
wind radial speed.
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Figure 2.11: A comparison of the simulation results with ACE and WIND data at 1AU for magnetic
field magnitude.



72

Figure 2.12: A comparison of the simulation results with ACE and WIND data at 1AU for plasma
number density.
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Figure 2.13: A comparison of the simulation results with ACE and WIND data at 1AU for plasma
temperature.
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Table 2.1 shows statistical analysis of the results for solar minimum conditions.

It shows the cross-correlation (CC) between the model and the data (excluding the

CME transients) and normalized root mean square (RMS) error. The values are for

the solar wind radial speed, ur, plasma number density, N, magnetic field, B, and

plasma temperature, T. The CC between the data and the model is very good (0.8)

for ur and reasonable (0.4) for the other variables. In particular, the model provides

reasonable magnitudes of all the magnetohydrodynamic variables simultaneously,

and the normalized RMS error is less than 1 (it is only 27% for ur).

Overall, the model predicts interplanetary features rather well (which can be

obtained by a steady-state model) such as CIRs and transients from fast to slow

solar wind. However, in some cases, the inaccuracy in the solar wind speed shifts the

features onset time earlier or later as compared with the observations.

Table 2.1: Statistics for solar minimum results.
Cross-correlation Normalized RMS

ur 0.82 27%
N 0.35 87%
B 0.4 59%
T 0.4 65%

2.5.2 Solar maximum

I run the model for CRs 1972-1984 (January,2001 to January,2002). During this

period the Sun was under solar maximum conditions and the solar magnetic field

was highly structured and was not dipolar any more.

For solar maximum conditions, the magnetic flux obtained in the simulation is

smaller than the observed flux at 1AU by a factor of at least 1.5, even when the

magnetogram scaling factor is 4. For solar maximum case, I multiply the model

result for the magnetic field at 1AU by a factor of 2, after using a scaling factor of

4 for the input MDI magnetogram. I discuss this magnetic flux issue in Section 4.2.
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For solar maximum, I use base density value of ρ0 = 3.5×108 cm−3, which is slightly

smaller than the base density used for solar minimum.

Figure 2.14 is similar to Figure 2.9 but for solar maximum conditions during

CR1973. One can see that the heliospheric current sheet is highly tilted and the

slow solar wind extends to higher magnetic latitudes.

Figure 2.14: A cut in the steady state solution for the SC during CR1973. Color contours represent
the radial solar wind speed and streamlines represent the magnetic field lines.

Figures 2.15-2.18 show a comparison of the model results with ACE data. Display

settings are the same as Figures 2.10-2.13, and one can see that the amount of CME

transients (yellow bars) is larger than in the case of solar minimum.
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Figure 2.15: A comparison of the simulation results with ACE data at 1AU for solar wind radial
speed.
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Figure 2.16: A comparison of the simulation results with ACE data at 1AU for magnetic field
magnitude. The magnetic field from the simulation is multiplied by 2.
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Figure 2.17: A comparison of the simulation results with ACE data at 1AU for plasma number
density.
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Figure 2.18: A comparison of the simulation results with ACE data at 1AU for plasma temperature.
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Table 2.2: Statistics for solar maximum results.
Cross-correlation Normalized RMS

ur 0.79 29%
N 0.32 97%
B 0.5 62%
T 0.32 75%

Table 2.2 shows a statistical analysis of the solar maximum results. Overall, the

statistics is similar to solar minimum case, except for the fact that it has been done

with the models result for the magnetic field multiplied by another factor of 2.

2.6 Discussion on the Results of the MHD Model

In this work, I attempt to validate our model by comparing its output with satellite

data at 1AU. The success was not guaranteed because the satellite measures the solar

wind parameters along a particular trajectory, and the local values could be poorly

predicted even by a global model, which is correct overall. Especially subject to

errors are the model predictions for the vicinity of the current sheet. With the

model prediction for the sheet location offset by only few grid points, the predicted

solar wind speed would be much higher than observed. Nevertheless, the model

predictions of the measurements are rather good, even for solar minimum when the

satellite is located close to the current sheet. It is also important that we benefit

from the reliability and simplicity of the WSA model without loss of accuracy.

For solar maximum, the most meaningful result is the fact that the magnetic field

magnitude at 1AU cannot be reproduced by the MHD model without using a very

large scaling factor for the magnetogram data. This result is consistent with the

idea that during solar maximum, about 30 − 50% of the observed heliospheric open

flux originates from active regions and CMEs interchange reconnection [33, 68, 110,

87, 71, 81]. Because the surface value of γ in our model is uniform in the closed

field regions (where the expansion factor goes to infinity), our model is essentially
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“blind” to this region and cannot reproduce the magnetic flux originated from active

regions. Although the prediction of the heliospheric open flux by the MHD model

is not perfect, it is still useful in predicting space weather events. This is due to the

fact that the most crucial parameter for space weather forecasting is the arrival time

of the interplanetary shock and the orientation of Bz (which I do not attempt to

predict in this work). If the model can provide a reasonable prediction for the speed,

density, and Bz, we should expect the magnitude of the background magnetic field

to be less important. However, the Bz of the wind is often compressed and amplified

in the sheath to a level that is geoeffective.

In this work, I adjust the model parameters for each type of solar conditions in

order to investigate whether this model can be operational. It appears that the

results could be slightly improved by parameterizing the model for each particular

CR, in particular, the solar wind speed and the arrival time of the periodic features

such as CIRs.
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2.7 Conclusions for the MHD Model

I have developed a three-dimensional model for the solar corona and the inner

heliosphere. I have performed a long-term validation of the model for one year

of solar minimum and one year of solar maximum using comparison of the model

results with satellite observations at 1AU [20]. Overall, the model is found to predict

rather well the magnitude of the magnetohydrodynamical variables, as well as the

quiet heliosphere periodic features, in particular for solar minimum conditions. For

solar maximum conditions, the model predicts the solar wind speed, density, and

temperature reasonably well. However, the model’s prediction for the magnetic field

magnitude at 1AU is still not reliable enough.

It is important to note that even though the model still needs some improve-

ments, it provides a very good solution considering the fact that it is driven by

magnetograms. This model, as well as the WSA model, has a dependency on the

potential field approximation and the location of the source surface, which introduces

another degree of freedom. Even though the model seems to be useful, I assume it

will provide better result with the application of a more self-consistent solar wind

heating mechanism such as Alfvén wave heating.

In addition to space weather forecasting, the model can provide information about

the large-scale structure and long-term evolution of the heliospheric magnetic field.

This information can be useful to investigate large number of physical phenomena

such as particle transport, evolution of the Parker spiral, interaction of the solar

wind with the outer planets and comets, and the solar dynamo. In the context of

space weather, I plan to investigate the model’s capabilities to predict Bz at 1AU,

which is a parameter of great importance for predicting geomagnetic activity.
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2.8 Model Solution with Fisk’s Heating Function

I run the model for the solar corona with Fisk’s solution for the final solar wind

speed (eq. 1.13). I define Te to be a function of
[

Br(R�)
|B(R�)|

]2

so that Te = 800, 000 K

in coronal holes and Te = 1.5 × 106 K in the helmet streamers. These parameters

were taken from Feldman et. al 1999 [28] and one can show that these temperatures

match final solar wind speed of 400 − 800 km s−1 with the proper choice of the

constant A.

Figure 2.19 shows a comparison between the Fisk’s model with the WSA model

results. The main conclusion is that even though the input speed between the models

is not identical, the large scale steady-state is similar. This simulation requires

further investigation, since the final speed from the Fisk’s model is more structured.
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Figure 2.19: Comparison between the results for the WSA model (left) and Fisk’s model (right)
for the final speed distribution (top) and the steady-state solution for the solar corona
(bottom). Color contours represent the solar wind speed and streamlines represent
magnetic field lines.



CHAPTER III

Magnetic Reconnection Processes in the Solar Corona

“Perhaps most troubling at least to me is the behavior of the poloidal

field. In the above discussion we converted the toroidal field into a poloidal

field by the effect. Yet if you look at the Sun the poloidal field basically opens

into the heliopshere. The field at the poles of the Sun at solar minimum

forms the heliopsheric magnetic field, and reverse polarity every 11 years.

We will argue that the poloidal field is quite constant during the solar cycle,

and moves on the solar surface by interactions with closed flux. Its behavior

has nothing to do with an internal dynamo. This is something that has not

been resolved.”

Lennard Fisk - class notes on the Sun and the Heliosphere

3.1 Magnetic Reconnection Processes and the Solar Meridional Flow

In this chapter I investigate the transport of the open magnetic flux of the Sun

as part of the general circulation of the solar magnetic field. This work is the first

numerical work to study the possible coupling between the internal solar dynamo and

the evolution the magnetic field in the solar corona. solar dynamo models, on one

hand, treat the global circulation of the internal magnetic field of the Sun without

taking into account the coronal field. Solar corona models, on the other hand, take

85
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into account only the field above the surface and the inner boundary conditions are

specified in some arbitrary manner (but with strong physical or observational basis

though). With the current computational capabilities, we are still unable to perform

a complete coupled numerical simulation of the solar interior and the solar corona.

For this reason, we need to investigate one aspect of this coupling at a time.

Meridional motions are significant both in the photospheric flux-transport models

[108, 106, 111, 107, 61, 60], and in flux-transport dynamo models [26, 25]. It has

been demonstrated by both types of models that an average meridional flow with

a magnitude on the order of 10 − 20 m s−1 is required to maintain the magnetic

dynamo, and to obtain the field reversal. In addition, some recent papers suggest

that a modification of the meridional flow can explain the variations from one solar

cycle to another [88, 26, 107].

The surface motions on the photosphere consist of differential rotation, random

convective motions, and meridional flow. While the differential rotation has been

extensively investigated using GONG and SOHO MDI measurements [45, 44, 86],

and the random motion has been studied by several authors [53, 108, 89, 15], it is

difficult to characterize the meridional flow due to its weak signal compared to the

differential motion. Early estimates of the meridional flow from day-to-day ground

based Doppler measurements [27] obtained a flow of the order of 20 m s−1. More

recent Doppler estimates were done using GONG and MDI data [45, 11], and were

in agreement with an average flow of 20 m s−1. However, these measurements

showed that the flow can be enhanced by a factor of 2-3 during the solar cycle.

Helioseismology analysis of MDI data [116] obtained a meridional flow on the order

of 20 m s−1 as well. A different approach to estimate the photospheric meridional

flow was done by tracking the motions of magnetic features on the solar surface using
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magnetogram data [51, 52, 91]. The average meridional flow was found to be of the

order of 10 m s−1 with variations of up to 5 m s−1 during the solar cycle. All the

above observations agree with the theoretical restriction of a maximum meridional

flow speed on the order of 10 − 20 m s−1.

As mention above, the meridional flow is important for the transport of magnetic

flux on the Sun. The magnetic flux of the Sun is composed of closed magnetic flux

regions, where both ends of the magnetic field lines are attached to the Sun, and

open magnetic flux regions, where one end of the field lines is attached to the Sun

and the other end is dragged by the solar wind into the heliosphere. While the closed

magnetic field lines are located within the Alfvénic point, the heliospheric magnetic

field is controlled by the open magnetic flux. During solar minimum conditions, the

open flux geometry is of two coronal holes with opposite polarity separated by a

single current sheet; the magnetic polarity is reversed approximately every 11 years,

possibly due to rotation of the current sheet [85, 32]. It has been observed that the

open magnetic flux of the Sun remains virtually constant throughout the solar cycle

comparing to the total flux [106, 110]. In addition, it has been argued that CMEs do

not change the background amount of open flux through the process of interchange

reconnection [23, 31]. Under these assumptions, Fisk and co-workers, in a series of

papers [29, 31, 33, 32], constructed a new transport model for the evolution of the

open magnetic flux of the Sun. The model proposed by Fisk and co-workers (hereby

Fisk model) is an alternative for the common use of the potential field approximation

(see Section 2.4.1) in describing the solar magnetic field. The potential field approxi-

mation is a very convenient tool to describe a static configuration of the solar corona

magnetic field and to get the location of the boundary between the open and closed

magnetic flux regions. It is also very straightforward to implement in numerical



88

models since it requires only the harmonic coefficient extracted from the measured

line-of-sight photospheric magnetic field and the use of associated Legendre polyno-

mials. However, the potential field approximation can only give a static snapshot in

time and does not describe the continuous dynamic evolution of the coronal magnetic

field.

The Fisk model, in turn, proposes a dynamic model for the evolution of the

open magnetic flux in the photosphere, solar corona, and heliosphere through solar

differential rotation and magnetic reconnection of open field lines with closed loops.

The effect of solar differential rotation on the evolution of the heliospheric magnetic

field as predicted by the model has been studied both theoretically [90, 23, 14, 13] and

numerically [57]. In this chapter, we present a numerical simulation of the transport

of open magnetic flux on the surface of the Sun. We solved the two-dimensional

advection-diffusion equation for the open (radial) component of the solar magnetic

field taken from [31]:

(3.1)
∂Bo

∂t
= ∇2(κBo) −∇ · (uBo).

The advection term in the equation represents the real motion of the plasma on the

solar surface and the components of u are the solar differential rotation and uniform

meridional flow. The diffusion term represents two diffusion processes: (1) diffusion

of field lines footpoints in the network lanes and (2) diffusion due to reconnection of

open field lines with closed loops proposed by [31]. We investigate the steady state

solution for the photospheric magnetic field for solar minimum and solar maximum

conditions. We then compare the results for a case in which we use only the uniform

network lanes diffusion, and for another case, in which we include the diffusion
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due to reconnection. Previous work has been done to study the evolution of the

open magnetic flux on the solar surface [106, 111, 110, 107, 61, 60]. However, these

studies did not include the effect of magnetic reconnection in the diffusion term as

our model does. Flux transport through reconnection process can be described as

a modification of the large-scale advection motion [31]. Therefore, diffusion due to

magnetic reconnection can be an effective mechanism to modify the surface flow on

the Sun, in particular, the meridional flow which has been observed to have temporal

variations. We investigated the role of diffusion resulting from magnetic reconnection

in the temporal variations of the meridional flow.

3.2 Physical Model

3.2.1 Theory

The theoretical description of the model for the transport of open magnetic flux

due to reconnection with loops follows [31]. There are several assumptions that the

model makes. As mentioned in the previous section, it is assumed that the open

magnetic flux remains virtually unchanged during the solar cycle. The size of the

loops is much smaller than the size of supergranules, and the loops are randomly

oriented. The magnetic flux concentrations on the surface act like particles, so that

the random motion of the field line footpoints in the network lanes as well as the

motion due to magnetic reconnection can be described as a diffusive process. Every

time two field lines with opposite polarity meet each other in the low corona they

reconnect. When two loops meet, they reconnect to create a larger loop and a smaller

loop of secondary importance. When an open filed line meets a loop, the magnetic

reconnection causes the open field line to be transported by a distance of the scale of

the size of the loop. In both cases, a smaller loop is created and the model assumes

that this loop subducts and gets out of the system.
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The mathematical derivation of the model takes into account the rate of emergence

of loops, average size, and average amount of magnetic flux of the loops on the solar

surface. In addition, some numerical factors arise due to the fact that the diffusion

coefficient, κ, is a two-dimensional tensor, and also because magnetic reconnection

occurs only on one side of the loop.

The theory manifests in equation (3.1). The components of the advective velocity

u = (uθ, uφ) are [111, 107]:

uφ = 13.38 − 2.30 sin2 L− 1.62 sin4 L deg day−1,

which represents the solar differential rotation and,

uθ = vm cos2 L| sinL|0.025,

with

vm = 10 m s−1,

which represents the poleward meridional flow. Here L is the heliospheric latitude.

The diffusion coefficient, κ, is given by:

(3.2) κ =
δh̄2

2δt

(
1 +

Bl

Bo

)
.

The term δh̄2/(2δt) represents the constant diffusion coefficient due to the ran-

dom motion of the field line footpoints in the network lanes with a typical value

of 600 km2 s−1 [106, 32]. This diffusion coefficient is modified by the magnetic re-

connection processes, and it depends on the density of the open magnetic flux, Bo,

and on the magnetic flux contained in the loops emerging on the surface, Bl.

Equation (3.1) can be written in the following convenient form:

(3.3)
∂Bo

∂t
= −∇ · [(u + w)Bo] + κ∇2Bo,
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where

(3.4) w = − 1

Bo

∇
(
δh̄2

2δt
Bl

)
.

Here w is the additional velocity due to the reconnection events. This velocity

depends on the gradient of Bl. Therefore, if the rate of emergence of loops is smaller

at the poles, there will be an effective poleward motion in addition to the meridional

flow. In our simulation, we introduced the following linear dependence of Bl on Bo:

(3.5) Bl = 10 − 8.5
|Bo|

max |Bo| [G].

The physical reason for this relation is the fact that the loops are destroyed by

reconnection faster where the open magnetic flux is larger.

Equation (3.5) states that the magnetic flux of emerging loops Bl is strong (about

10 G) in regions where the magnitude of Bo is weak (outside of coronal holes) and

weak (about 1.5 G) in regions where the magnitude of Bo is strong (inside coronal

holes) [31].

In general, equations (3.3,3.4) describe a mechanism to modify the convective

component (u) of the open flux on the solar surface. The azimuthal component

of w modifies the differential rotation (uφ), while the meridional component of w

modifies the large-scale surface meridional motion (uθ). Equation (3.3) demonstrates

that the global motion on the photosphere is a combination of both advective and

diffusive motions. It also demonstrates how the processes above the photosphere are

important for the general circulation of the magnetic field of the Sun.

3.2.2 Grid and Boundary Conditions

For our simulation, we used a uniform, two-dimensional spherical mesh of 180 ×
360 grid points with one degree resolution in θ and φ, respectively. The boundary
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conditions in longitude (φ) are periodic and for the poles (θ = 0, π), we use the 180

degrees cross cells as the ghost cells for the first grid points from the pole.

3.2.3 Numerical Scheme

The advective term, A, of equation (3.1) is discretized with a conservative two-

stage Lax-Wendroff scheme. The diffusive term, D, is added using an implicit time

and central spatial discretization:

(3.6) Bn+1
o = Bn

o + A(Bn
o ) + D(Bn+1

o ).

This linear system is solved using BiCGSTAB method [104].

If the diffusive term had been solved explicitly, the stability condition would

allow a time step of the order of ∆t = 10−1 sec. The CFL stability condition for

the advective term allowed a time step of the order of ∆t = 50 sec. We applied

filtering by averaging the first and last latitude grid rows; this filtering practically

increased the size of the smallest cells and, as a result, the time step allowed by the

CFL stability condition increased as well. The use of filtering and implicit scheme

for the diffusive term allowed a time step of ∆t = 150 sec, which resulted in a much

faster convergence to steady state.

3.2.4 Initial Conditions

The initial distribution of the open magnetic flux was set using the Potential Field

Source Surface extrapolation [1]. The harmonic coefficients were taken from the Stan-

ford WSO webpage (http://soi.stanford.edu/˜wso) and the field configuration was

mapped to the solar surface. Although we use the observed field configuration, our

investigation does not require the use of the real field and can instead use an idealized

dipole configuration. Figure 3.1 shows the initial distribution of the magnetic flux

for solar minimum (CR1908) and for solar maximum (CR1959).
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Figure 3.1: Initial distribution of the open magnetic flux (radial magnetic field) on the solar sur-
face for solar minimum conditions (CR1908 - top) and for solar maximum conditions
(CR1959 - bottom). The white dashed line marks the location of the current sheet.
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3.3 Simulation Results

We simulated the transport of open magnetic flux on the surface of the Sun. For

each iteration, in addition to advancing the solution for the magnetic flux density,

we calculated the diffusion coefficient, κ, and the velocity, w, which is a result of the

reconnection process. Figure 3.2 shows the diffusion coefficient and the components

of w for solar minimum and solar maximum initial conditions.

For solar minimum case, there is a preferred, large-scale, poleward gradient in κ,

and wθ has a magnitude of 2 − 7 m/s, which is the same scale as the background

meridional flow. The sign of wθ corresponds to latitude, meaning that negative flow

is northward and positive flow is southward. We calculated w for solar minimum

configurations with opposite polarities (CR1766, CR1908) and in both cases the flow

was poleward. The magnitude of wφ is negligible compared to the magnitude of wθ

in the case of solar minimum, and the magnitude of both components is very large

close to the current sheet, due to the strong gradient in this region (as a result of the

change in the sign of the magnetic field). However, in the Fisk model, reconnection

does not occur in the current sheet, therefore, this region does not contribute to w.

In our simulation, although the magnitude of w in these regions is high, it always

appears in pairs of positive and negative velocity in a relatively small area. As

a result, the net effect of w is canceled in these regions, and we expect to see a

significant effect only in large-scale regions with a preferred direction of w.

In the case of solar maximum, the gradient of κ is isotropic and there are opposite

components of w in most regions, so we expect the net effect of the reconnection

processes to be smaller.
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Figure 3.2: Meridional (top) and Azimuthal (middle) components of w and κ (bottom) for initial
distribution of solar maximum (left) and solar minimum (right).
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3.3.1 Solar Minimum Case

Figure 3.3 shows the steady state solution for solar minimum case. A steady state

is achieved when the poleward motion is balanced by the equatorward diffusion,

which is dominated by the uniform diffusive motion of the field line footpoints in

the network lanes. For the case of uniform diffusion, a steady state is achieved after

about 2 years (about 30 CR), and the “Coronal holes boundary” is located at about

50 degrees from the poles. In the case of non-uniform diffusion a steady state is

achieved after 2.5 years (about 45 CR) and the boundary moves poleward to about

35 degrees from the poles.
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Figure 3.3: Steady-state solution for solar minimum conditions with uniform diffusion (top) and
with non-uniform diffusion (bottom). The white dashed line marks the location of the
boundaries of the coronal holes for the case of uniform diffusion.
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Figure 3.4 shows the distribution of the magnetic field for the initial conditions and

for the steady state with uniform and non-uniform diffusion coefficient at φ = 180◦.

We found that in the solar minimum steady state solution, the meridional motion

is enhanced by the magnetic reconnection processes. The enhancement is due to a

large-scale preferred direction in the gradient of κ and in wθ. During solar minimum

conditions, the solar magnetic field is organized in a dipolar shape with two separate

regions of open and closed magnetic field lines. Each of these regions has a typical

rate of emergence of loops on the solar surface so the spatial change in the rate

of emergence of loops is also directed poleward. All of the above lead us to the

conclusion that the effect of diffusion due to reconnection processes is significant in

a structured configuration of the solar magnetic field. This is mainly due to the fact

that all the parameters, which control the behavior of the reconnection diffusion, in

particular the rate of emergence of loops, have different characteristics in regions of

open and closed magnetic field lines.
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Figure 3.4: A latitudinal cut at φ = 180◦ for the solar minimum case at steady state. The black
line represents the initial state, the blue line represents the steady state solution with
uniform diffusion, and the red line represents the steady state solution with non-uniform
diffusion.
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Since the meridional component of w depends on Bl, variations from cycle to

cycle in the rate of emergence of new flux can cause changes in the solar surface

meridional transport. As mentioned in Section I, it has been suggested that variations

in the solar surface meridional flow can explain the variations in the solar cycle.

Our simulation showed that reconnection of open field lines with closed loops is an

effective mechanism to modify the meridional flow.

3.3.2 Solar Maximum Case

Figure 3.5 shows the steady state solution for solar maximum conditions with

uniform diffusion due to footpoints motion in the network lanes, and non-uniform

diffusion, which also includes the effect of reconnection. It can be seen that the

steady state solutions for the cases of uniform and non-uniform diffusion are very

similar. The reason that the two cases are almost the same can be found in Fig

3.2. In the solar maximum configuration the solar magnetic field is unstructured.

The gradient in κ is isotropic and, as a result, there is no preferred enhancement in

the background flow. Solar maximum configuration results in local enhancements of

the background flow. However, these local enhancements appear in pairs of opposite

velocities so the large-scale net increase is very small.

Our simulation shows that the effect of diffusion due to magnetic reconnection is

significant for the case of structured magnetic configuration (solar minimum condi-

tions) and is small for the case of unstructured magnetic configuration (solar maxi-

mum conditions).
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Figure 3.5: Steady-state solution for solar maximum conditions with uniform diffusion (top) and
with non-uniform diffusion (bottom).
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3.4 Discussion on the Flux-transport Model

We investigated the temporal evolution of the photospheric open magnetic flux for

solar minimum configuration and solar maximum configuration. The study included

the effect of diffusion of the open field lines due to magnetic reconnection, in addition

to field line footpoints diffusion in the network lane and advective motion. Our two-

dimensional simulation demonstrates that magnetic reconnection processes between

open field lines and closed loops plays an important role in the transport of the open

magnetic flux on the photosphere. We found that the effect of magnetic reconnection

is significant for solar minimum conditions, but small for solar maximum conditions.

In addition, we found that during solar minimum conditions, the flow is enhanced

mainly poleward. Therefore, the effect of reconnection of open field lines with closed

loops can be an effective mechanism to modify the solar surface meridional transport

of the open flux and cause variations over the solar cycle. [15] found that large

observed magnetic features tends to diffuse faster than small magnetic features. This

is consistent with the idea that the displacement of an open field line as a result of

reconnection is dependent on the size of the reconnected loop; in other words, the

larger the loop, the larger the displacement. [91] mention that meridional flow is

stronger in regions where the flux butterflies are steepest, which is consistent with

the flow dependence on the spatial gradient of the emerging flux. Our simulation also

demonstrates the importance of the large-scale effects and may raise the following

question: Since all estimates of meridional flow result in an average flow pattern, is

it possible that all the meridional motions are actually the same large-scale average

motions due to the random walk of footpoints and the random magnetic reconnection

events? If this is the case, then photospheric flux-transport models should be focused
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more on the investigation of random motions on the photosphere. Since equatorward

flow in the deep Sun, which is required due to mass conservation considerations, has

not been observed yet, it may be helpful to investigate the problem in terms of

magnetic diffusion and random behavior of the deep Sun magnetic fields.

Our simulation [18] shows the complexity of the solar magnetic field, and gives us

physical insight into the importance of the convection zone, and the solar corona, as

a single coupled system. We demonstrated that the distribution of the rate of emer-

gence of flux on the photosphere can control the magnitude of the meridional flow

and affect the variations from one solar cycle to another. However, the distribution

of new emerging flux is dependent on internal processes, which can determine the

variations, and these processes are not fully understood.



CHAPTER IV

Simulation of a Sun-to-Earth Space Weather Event

“The sea was angry that day, my friends, like an old man trying to send

back soup in a deli.”

George Costanza

The importance of space weather forecasting has become increasingly evident in

recent years. The major March, 1989 Quebec blackout, demonstrated the poten-

tial hazard in such a phenomenon [12]. In order to predict the impact of a space

weather event, we need to know the solar wind conditions in the vicinity of the Earth.

Currently, the only source of real-time available data are the solar wind parameters

measured by satellites far from the Sun. Such data provide a forecasting time of

about an hour before the actual geoeffective impact takes place [36]. In order to ex-

tend our forecasting time, we need a tool, that can predict the solar wind conditions

close to the Earth within a time frame that is significantly shorter than the CME

travel time from the Sun to the Earth.

Solar, Heliospheric and INterplanetary Environment (SHINE), is a National Sci-

ence Foundation (NSF) supported scientific community for solar and heliospheric

physics exploration. Among its activities, the SHINE community has chosen several

campaign events for the purpose of studying CME events from Sun to the Earth.

104
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The May 12, 1997 CME event is one of these campaign events. This particular

SHINE campaign event had been chosen, because it is separated in time from other

CME events and it occurred during solar minimum [9, 78, 96, 54, 4, 58, 64, 112,

49, 76, 77, 41, 46]. Nevertheless, some particular features of this event are difficult

to reproduce in numerical simulations, because the description of the solar wind for

solar minimum is not accurate enough. In this work, we use the SWMF to simulate

the May 12, 1997 CME event from Sun to the Earth in order to validate the physical

correctness of the models adopted in the framework.

Previous work has been done to simulate a CME’s propagation into the interplan-

etary space using the observed conditions of the ambient solar wind and the CME

properties (Wu et al. 1996, Groth et al. 2000, Vandas et al. 2002, Manchester et al.

2004, Odstrcil et al. 2004 [113, 42, 105, 63, 70]). These simulations were driven by

pre-specifying the observed values in to the inner boundary conditions or by some

arbitrary eruption from the Sun.

In this work (Cohen et al. 2008 [21]), we do not impose the solar corona obser-

vations as either initial or boundary conditions, but rather we constrain the self-

consistent solution with the observed properties of both the ambient solar wind and

the CME. After the background solar wind solution is obtained using the model de-

scribed in Chapter II, we superimpose a semi-circular, out-of-equilibrium flux rope

(based on Titov and Démoulin 1999 [97]) and propagate the resulting CME from the

Sun to the Earth. We then compare the SC result with a series of LASCO white-light

images, and the IH result with WIND observations. This way, the CME in the model

is much more realistic, even though it is not obtained by a complete physics-based

mechanism.

This is the first simulation of real Sun-to-Earth CME event with realistic input
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parameters. This simulation is part of the effort to develope real-time space weather

forecasting system.

4.1 Simulation of the May 12, 1997 event

In order to simulate the May 12, 1997 CME event, we obtain the ambient solution

for CR1922 using the solar corona model described in Section 2.4.2. It is important

to note that while the WSA model is useful in practice, it only provides the solar

wind speed and the magnetic field polarity at 1 AU. The MHD model, on the other

hand, provides a three dimensional spatial distribution of the solar wind parameters

everywhere, so that it is possible to investigate transient CME moving through the

background solution. The main advantage of our ambient solar wind model is that we

impose the empirical, observation based input model onto the self-consistent MHD

solution.

We run the simulation on a Center for Space Environment Modeling (CSEM)

local Mac cluster using 40 processors. The smallest grid cell size in the SC model is

dx = R�/42; the grid cell size at 1AU is dx = 4R�, and it is finer in the heliospheric

current sheet (dx = 1R�). The steady-state solar corona solution is obtained within

10 hours of computing time, while the CME travel time of four days is simulated

within three days of computing time.

Figure 4.1 shows a comparison of the steady-state simulation results with in-situ

WIND observations at 1 AU for the period of time prior to the CME event. The

density, temperature, and magnetic field differences between the model and data are

less than a factor of two. The simulated speed of this particular period, however, is

higher than that observed. We would like to note that we ran the ambient model

for another Carrington Rotation (CR1958), which is near solar maximum, and the
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agreement of the simulated speed with the observed one at 1 AU is significantly

better in that case [19]. A possible reason for the difference in the quality of the

results for solar minimum and solar maximum is discussed in Section 4.2 below.

Figure 4.1: Simulation results (solid curve) and WIND data (dotted curve) for the ambient solar
wind conditions of CR1922. Plots are shown for solar wind speed (top-left) magnetic
field (top-right) number density (bottom-left) and temperature (bottom-right) respec-
tively.

In order to model the CME eruption, we superimposed an out-of-equilibrium

flux rope solution onto the steady-state SC model [82]. The flux rope location and

orientation are chosen to match the magnetogram and EIT observations of AR 8038

during the eruption on May 12, 1997. Figure 4.2 shows the magnetogram of CR1922

with black arrow pointing to wards NOAA Active Region 8038.

The free energy released in the eruption depends on the ratio between the rope

radius to the height of the loop above the surface (or the loop’s radius), and on the

magnitude of the toroidal current. We tune these parameters to match the observed

CME properties taken from the SOHO LASCO CME catalog [115]. Figure 4.3 shows

the flux rope embedded in the SC model in the vicinity of the active region.
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Figure 4.2: Magnetogram of Carrington Rotation 1922. NOAA Active Region 8038 is shown by the
black arrow. The background color indicates the radial component of the magnetic field;
red color represents positive polarity, whereas blue color shows the negative magnetic
polarity. The black line represents the polarity inversion line.

Figure 4.4 shows the CME propagation in SC model after 10 hours, which is about

the time the CME crosses the SC-IH boundary. This boundary is located at 17R�

and the total size of SC model is 24 × 24R�. The CME front speed at this time is

≈ 650 km s−1.

Figures 4.5 and 4.6 show a comparison of synthetic white-light images produced

by our simulation and LASCO C2 and C3 images, respectively. Both artificial and

real images are made of temporal running differences of integrated density images.

Light color represent higher density region, while dark color represent low density

region. The white arrows show similarities in the location of the CME front, while

the yellow arrows mark similarities in the dark spots due to the streamer expansion.
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Figure 4.3: Zoom on the vicinity of the active region (15◦N < θ < 30◦N, 125◦ < φ < 150◦). Color
contours are the same as in Figure 4.2. White streamlines represent the magnetic field
lines of the superimposed flux rope, black arrow represents the flux rope orientation,
and red triangles represent the grid.
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Figure 4.4: The CME propagation after 10 hours as it approaches the outer boundary of SC model,
located at 24R�. Color contours represent flow speed and streamlines represent mag-
netic field lines.
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Figure 4.5: Synthetic white-light images produced by the simulation (left) and observed LASCO
C2 white-light images (right) at t = 7 : 35 (top) and t = 8 : 35 (bottom).
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Figure 4.6: Synthetic white-light images produced by the simulation (left) and observed LASCO
C3 white-light images (right) at t = 12 : 51 (top) and t = 14 : 51 (bottom).
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Figure 4.7 shows comparison of the simulation result with WIND observations

at 1 AU. The main difference is that the simulated CME speed is higher than the

observed one, so that the simulated shock arrival time is earlier than observed ar-

rival time. This is due to the fact that the speed in the ambient solar wind model

was higher than observed. However, the magnitude of the density peak and the

temperature peak match well the values observed at the shock.

Figure 4.7: Simulation results (solid curve) and WIND data (dotted curve) for the May 12, 1997
CME event. Plots are shown for solar wind speed (top-left) magnetic field (top-right)
number density (bottom-left) and temperature (bottom-right), respectively. The gray
lines mark the actual shock arrival time.
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4.2 Discussion of the Initial Results

We simulate the May 12 1997 space weather event from the Sun to 1 AU. It

appears that the background solar wind conditions are not sufficiently reproduced

in the simulation. To some extent,this is due to the WSA model, which does not

well reproduce solar minimum conditions due to the sensitivity of spacecraft location

with respect to the location of the current sheet [5]. For a CME as slow as u ≈ 600

km s−1, the extra advection due to the inaccurately simulated background solar wind

(which is too fast, see Fig. 4.1), yields an early shock arrival (see Fig. 4.7). It seems

that the flux rope should be resolved on a finer resolution so that its integrity can be

maintained as it originates from a small scale active region. This way, the interaction

of the eruptive flux rope with the surrounding magnetic flux will be more precise,

and the properties of the magnetic cloud at 1 AU will be in better agreement with

observations. With the current resolution of the active region, even the result for

magnetic field magnitude at 1 AU is not in good agreement with the observed value.

With better resolution of the active region, as well as the implementation of vector

magnetogram data in our model, we expect to get better agreement for the field

magnitude, as well as for the magnetic field components. An accurate reproduction

of the magnetic field components, in particular Bz, reflects good resolution of the

magnetic cloud propagation and integrity.

We demonstrate the effect of the background with the simulation results of a

second event for which the modeled velocity agrees well with observations. Figures

4.8 and 4.9 show results for a simulation of the April 21, 2002 CME event, which

occurred under solar maximum conditions. It is clear that the simulation results for

both the background solar wind and for the event itself, in the case of the 2002 event,
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are in better agreement with observations than the results for the 1997 event. The

discrepancy in the shock arrival in the 2002 CME event is about 4 hours, while the

discrepancy in the shock arrival in the 1997 CME event is more than 24 hours.
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Figure 4.8: Simulation results (solid curve) and ACE data (dotted curve) for steady-state helio-
sphere driven by MDI magnetogram as of April 18, 2002. Plots are shown for solar
wind speed (top-left) magnetic field (top-right) number density (bottom-left) and tem-
perature (bottom-right) respectively.
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Figure 4.9: Simulation results (solid curve) and ACE data (dotted curve) for the April 21, 2002
CME event. Plots are shown for solar wind speed (top-left) magnetic field (top-right)
number density (bottom-left) and temperature (bottom-right), respectively. The gray
lines mark the actual shock arrival time.
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4.3 Improved Simulation

In order to obtain a better solution for our simulation, we modified its setup

as follow. First, we implemented the Roe solver to the SC model (see section B).

This modification enables us to obtain a more accurate solution for the ambient

solar wind. In particular, this solver provides a better numerical solution for the

heliospheric current sheet, which appears as V shape lines in the previous simulation

due to over-reconnection. The Roe solver also resolves better the vicinity of the

flux-rope and prevents it from over-reconnecting with the ambient field. Figure 4.10

shows a comparison of the ambient solar wind model and WIND observations at

1 AU three days prior to the CME arrival. One can see that this comparison is

better than the one in Figure 4.1.

Figure 4.10: A comparison of the steady state simulation results (red line) with WIND data (blue
line) for Solar wind radial speed (top left), magnetic field (top right), number density
(bottom left), and temperature (bottom right) three days prior to the CME arrival.

Figures 4.11 and 4.12 show a comparison of the artificial white-light images pro-
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duced by the simulation with LASCO white-light images for C2 and C3, respectively.

It can be seen that the location of the CME front matches in both cases, as well as

the general structure in the C2 case. In C3 however, the simulated CME seemed to

be flatenned. This might be due to reconnection with the ambient magnetic field.

In any case, the location and width of the CME matches rather well to the observed

line-of-sight images. This indicates that the coronal density in the model based on

the Roe solver is well reproduced.
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Figure 4.11: Synthetic white-light images produced by the simulation (left) and observed LASCO
C2 white-light images (right) at t = 7 : 34 (top) and t = 8 : 33 (bottom). White
arrows mark the CME front.
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Figure 4.12: Synthetic white-light images produced by the simulation (left) and observed LASCO
C3 white-light images (right) at t = 12 : 51 (top) and t = 14 : 51 (bottom). The
orientation of the CME seems to be twisted by 90 degrees due to interaction with the
ambient magnetic field.
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Figure 4.13 shows the CME in the corona after 10h of simulation time from the

top, side and front. Color contours represent the solar wind speed, while iso-surface

represent a density ratio of 4 between the current and initial density.

Figure 4.14 shows a comparison of the simulation result with WIND data at 1AU.

This time the shock arrival time matches much better the observed arrival time

compared to the first simulation, where the shock appears one day earlier. The

density jump is of about 4 as it should be. However, the magnitude of the magnetic

field is too low since the flux-rope diffuses away as it reaches 1 AU.



123

Figure 4.13: The CME in the corona after 10h of simulation time from the top, side and front.
Color contours represent the solar wind speed, while iso-surface represent a density
ratio of 4 between the current and initial density.
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Figure 4.14: A comparison of the simulation results (black line) with WIND data (blue line) for
Solar wind radial speed (top left), magnetic field (top right), number density (bottom
left), and temperature (bottom right), respectively. The gray lines mark the actual
shock arrival time.
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4.4 Conclusions for the Simulation of a CME Event

Following this simulation, we arrive at two main conclusions. First, our simulation

demonstrates how crucial the model’s ambient solar wind conditions are and how they

affect the accuracy of the CME propagation. This is especially true for CMEs whose

speed and magnetic field strength are of the same order as those in the background

solar wind, such as the event simulated in this paper. The chosen campaign event,

which occurred during solar minimum conditions, and was isolated in time from

other CMEs, provides an excellent example to benchmark our computational models

of the solar corona and inner heliosphere with real observations. We also conclude

that the active region must be resolved highly resolved so the integrity of the flux

rope can be maintained all the way to 1 AU.

Our second conclusion concerns the practical application of a simulation of a Sun-

to-Earth space weather event. Our comparison demonstrates that the CME prop-

erties, which are required for the simulation’s initial setup such as the free energy,

density, origin, and orientation can be automatically obtained from the available

magnetic field and white-light observations. The STEREO and HINODE missions

should provide a wider range of data to be used for the simulation’s initiation, in-

cluding vector magnetograms and three dimensional observations of the CME.

This work represents a step forward in the development of real-time, automatic,

space weather forecasting tools. Our future efforts will focus on improving the back-

ground solar wind model and the CME initiation model.



CHAPTER V

Conclusions and Future Work

5.1 Summary of this Work

In this work I present a series of numerical investigations of the solar corona. The

work has three major parts:

• Global MHD model for the solar corona and inner heliosphere: I

developed a global MHD model for the solar corona and for the inner heliosphere.

This model provides the ambient condition for the solar wind and it has been

validated with long-term satellite data.

• Flux-transport model for the open magnetic flux of the Sun: I devel-

oped a flux-transport model for the photosphere in order to study the effect of

magnetic reconnection on the transport of the Sun’s open magnetic flux. This

simulation showed that this process is important and can modify the magnitude

of the surface meridional flow, which controls the magnitude of the particular

solar cycle.

• Numerical Simulation of a Sun-to-Earth CME Event: I performed a

numerical simulation of the May 12, 1997 CME event from the Sun to the Earth.

This simulation demonstrated how the SWMF can be used for the operational
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purposes of space weather forecasting. This simulation also addressed the issues

and problems expected in the process in order to improve it in the future.

The main conclusion of this work is that numerical tools nowdays really get to

the point where they can be used to solve big and complex physical problems. The

physical system of the solar corona is an excellent example of such system and our

simulations have demonstrated how does this system can be better understood using

computer models. We can expect that the benefits of numerical models will grow

due to the growth of our computation capabilities.

5.2 Future Work

Following the conclusions of this work, I have three main suggestions. First, we

should develop a global model for the solar corona, which contains a self-consistent

heating mechanism. This will remove a major part of the constrains from the current

model and should improve it. Second, I propose to further investigate the role of the

open flux in the long-term evolution of the solar and heliospheric magnetic field. In

particular, I believe in the necessity of a coupled model of the convection zone and

the solar corona. Third, I propose to investigate the behavior of other stars in the

context of our Sun in order to learn more about its behavior and evolution.

At this point, when I am completing my PhD, I am happy to know that there

are plenty of open questions in the field of Space and Solar Physics, which guarantee

many years of fun!!!
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APPENDIX A

Physical Constants and Notation

Notation:

ρ - mass density n - number density

u - velocity p - pressure

B - magnetic field E - electric field

j - current density T - temperature

σ - conductivity µ - permeability

ε - permittivity 
 - solar parameters

Physical Constants:

Boltzmann constant: k = 1.3807 × 10−23 J K−1

Elementary charge: e = 1.6022 × 10−19 C

Electron mass: me = 9.1094 × 10−31 kg

Proton mass: mp = 1.6726 × 10−27 kg

Gravitational constant: G = 6.6726 × 10−11 m3 s−2 kg−1

Speed of light in vacum: c = 2.9979 × 108 m s−1

permeability of free space: µ0 = 4π × 10−7 H m−1

permittivity of free space: ε0 = 8.8542 × 10−12 F m−1

Plank constant: h = 6.6261 × 10−34 J s

Stephan-Boltzmann constant σ = 5.67051 × 10−8 W m−2 s−1 K−4



130

APPENDIX B

The Roe Solver

An alternative approach to the eight-wave scheme is introduced in a recent paper

by Sokolov et al. [92] and is implemented as well in BATS-R-US . The ∇ · B =

0 condition requires the continuity of the magnetic field normal component, Bn,

through any surface. If a discontinuity appears in Bn across the face of the control

volume, the RP for the MHD equations is ill-posed. However, if Bn is continuous,

then the initial jumps in seven other MHD variables determine seven amplitudes

of the CWs and the RP is well-posed. This approach differs from the eight wave

scheme in the sense that in the eight wave method, an extra CW is added, while in

this approach one of the jump conditions is eliminated by maintaining, Bn contineous

across the face.

The general conservation law is introduced in the form:

(B.1)
∂U

∂t
+ ∇ · F = 0.

The approach proposed by Godunov [38] and implemented in the eight wave scheme

introduces the source term proportional to ∇ · B :

(B.2)
∂U

∂t
+ ∇ · F + G (∇ ·B) = 0 .
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The conserved variables, U, and their fluxes, F, are (with the notation for inner

product, ⊗):

(B.3) F(W) = u⊗ U + ptot (0, I, 0,u)T − B ⊗ G(W) ,

(B.4) W = (ρ,u,B, p)T , U(W) = (ρ, ρu,B, E)T , G(W) = (0,B,u,u · B)T ,

(B.5) E =
ρu2

2
+
B2

2
+

P

γ − 1
, ptot = p+

B2

2
.

Godunov [38] showed that as ∇·B = 0 holds, Eqs.(B.1) and (B.2) have coinciding

solutions, but their quasi-linear formulations differ. The advantage of Eq.(B.2) is that

its Jacobian is non-degenerated.

For the Godunov-like scheme the Jacobian need not be, but the numerical flux

must be, the basic element. Thus, to benefit from the idea of the Jacobian modi-

fication, it should be applied to the numerical flux. For Eq.(B.1) the finite volume

formulation reads: Ui(t+∆t)−Ui(t) = −(∆t/Vi)
∑

j σij(Fn)ij, where ∆t is the time

step, the index j enumerates the neighbors of the control volume, Vi, σijnij is a face

area vector, (Fn)ij is the numerical flux, subscript i, j, ij denote the variables in the

correspondent control volume or at the face between them, and subscript n denotes

the dot product by the unity vector, nij, normal to the face: Fn = nij ·F, Bn = nij ·B

etc. Assume that a discretization for ∇ · B in terms of the face values of Bn,

(B.6) (∇ · B)i =
1

Vi

∑
j

σij(Bn)ij ,

turns to zero. In this case the SDTB added to the finite volume formulation:

(B.7) Ui(t+ ∆t) − Ui(t) = −∆t

Vi

∑
j

σij(Fn)ij − ∆tGi (∇ · B)i ,
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modifies the numerical fluxes: (Fn)ij → (Fn)ij + (Bn)ijGi, but not their total. Now

we can reduce constructing the numerical scheme for the total of the numerical flux

and source term proportional to ∇ ·B to the well-posed RP.

To analyze Eq.(B.7), it is re-written using the entity, (
∑

j σijnij) ·(Fi+Bi⊗Gi) =

0:

(B.8) Ui(t+ ∆t) − Ui(t) = −∆t

Vi

∑
j

σij [(Fn)ij +BnfGi − (Fn)i − (Bn)iGi] .

The following equation holds for the total of the flux and the STDB in Eq.(B.8):

(B.9) (Fn)i − Gi [Bnf − (Bn)i] = F̃n(W̃i) − (un)i [Bnf − (Bn)i]U
(R)
8 ,

where U
(R)
8 = (0, 0,nij, Bnf)

T is one of the right eigenvectors of the Jacobian of

Eq.(B.2). In the modified set of primitive variables, W̃i = Wi + (0, 0, [Bnf −

(Bn)i]nij , 0)T , (Bn)i is substituted for the value at face, Bnf = (Bn)ij. Thus, by

applying Eq.(B.9) to the state i and j one achieves the continuity in Bn across the

face ij.

An Extra Magnetic Pressure (EMP), PM , is involved in the modified flux, F̃n:

Ẽi = Ei + (PM)i , (P̃tot)i = (Ptot)i + (PM)i , (PM)i = [Bnf − (Bn)i]
2 /2 .

We choose (Bn)ij to be an arithmetic average of the cell-centered values:

(B.10) (Bn)ij =
1

2
[(Bn)i + (Bn)j ] .

Consider the explicit first order Godunov-like scheme according to Eq.(B.7). It is

conservative as long as (∇ ·B)i turns to zero. Using Eqs.(B.8)-(B.10), we obtain:

Ui(t+ ∆t) − Ui(t) = −∆t

Vi

∑
j

σij

{
(Fn)ij − (F̃n)i +

(un)i

2
[(Bn)j − (Bn)i]U

(R)
8

}
.

The RS should be applied to handle the flux difference above. Note that the flux

in the ith cell state comes in a modified form, with Bn equal to the face value
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(Bn)ij. Therefore, the left hand side initial condition in the RP will be at the

same value of Bn. Repeating the same considerations for jth control volume, we

find that the right hand side initial condition for the RP equals W̃j, so that Bn is

continuous through the face. The EMP is also continuous through the face: (PM)i =

(PM)j = [(Bn)i − (Bn)j ]
2 /8. The RP is well-posed and the RS7, F̃RS7

n (W̃i,W̃j),

gives a numerical flux. However, an extra diffusive flux proportional to U
(R)
8 should be

added to stabilize the residual part of the STDB. Finally the Godunov-like numerical

flux in Eq.(B.7) is as follows:

(B.11) (Fn)ij = F̃RS7
n

(
W̃i,W̃j

)
+

1

2
D8 [(Bn)i − (Bn)j ]U

(R)
8 .

The following choice of the extra diffusion coefficient ensures the scheme monotonicity

both for ith and for jth control volumes:

(B.12) D8 = max [0 , (un)i , −(un)j] .

A distinctive feature of the present approach is the use of the EMP. It is present

in the conserved variables and fluxes (hence, in the governing equations for the RP)

in the same manner as the magnetic pressure at parallel shocks. We assume that in

the RS the EPM evolves in accordance with the same governingequation (PM ∼ ρ2),

which may be used in the form of a conservation law,

(B.13)
∂(PM/ρ)

∂t
+ ∇ · (uPM/ρ) = 0 .

The way to handle the EPM in the RS7 solver depends on the solver choice. Partic-

ularly, in the Godunov scheme with the exact RS one would need to solve Eq.(B.13)

together with the MHD SCL. On the other hand, for a more simple HLL-type solver

[43] the EMP modifies only the fluxes in the left and right states as well as the speed
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of sound:

(B.14) a2 =
γP

ρ
+

2PM

ρ
,

which is to be used in calculating the maximum perturbation speed.

Figure B.1 illustrates the above approach. [94] mentioned that the numerical

diffusion in the explicit Godunov-like scheme can be interpreted as the conservative

averaging in the initial conditions in the RP. Applying this observation to the extra

diffusive flux, one can interpret its effect as substituting Bn for its averaged value,

(Bn)ij = Bnf , in the region −D8∆t < x − xf < D8∆t, x = nij · x being the

spatial coordinate along the direction of nij and xf being the face position. While

averaging the magnetic energy in the same region, the EMP arises from the difference

between the averaged magnetic pressure and the magnetic pressure of the averaged

field: D8∆t((1/2)(B2
n)i + (1/2)(B2

n)j − B2
nf) = 2D8∆tPM . Now, Eq.(B.9), applied

to the ith side of the ijth face, can be interpreted as the Hugoniot relationship at

the discontinuity, moving with the speed (un)i, which dynamically separates the W̃i

state from ith state and accounts for the effect from the source term during the time

step: −(un)i[Ũ((W̃i) − Ui] + [F̃n(W̃i) − (Fn)i] = −Gi[Bnf − (Bn)i]. In the region

of the RS7 fan Bn is continuous and the EMP is present.
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Figure B.1: The geometry of the RS7 fan and side discontinuities.



BIBLIOGRAPHY

136



137

BIBLIOGRAPHY

[1] M. D. Altschuler, R. H. Levine, M. Stix, and J. Harvey. High Resolution Mapping of the
Magnetic Field of the Solar Corona. Sol. Phys., 51:345–375, March 1977.

[2] M. D. Altschuler and G. Newkirk. Magnetic Fields and the Structure of the Solar Corona. I:
Methods of Calculating Coronal Fields. Sol. Phys., 9:131–149, September 1969.

[3] J. J. Aly. On some properties of force-free magnetic fields in infinite regions of space. Astro-
phys. J., 283:349–362, August 1984.

[4] A. Anttila and T. Sahla. ERNE observations of energetic particles associated with Earth-
directed coronal mass ejections in April and May, 1997. Ann. Geophys., 18:1373–1381, Novem-
ber 2000.

[5] C. N. Arge, J. G. Luhmann, D. Odstrcil, C. J. Schrijver, and Y. Li . Stream Structure and
Coronal Sources of the Solar Wind During the May 12th, 1997 CME. J. Atm. and Sol.-Ter.
Phys., 66:1295–1309, October 2004.

[6] C. N. Arge and V. J. Pizzo. Improvement in the Prediction of Solar Wind Conditions Using
Near-Real time Solar Magnetic Field Updates. J. Geophys. Res., 105:10,465–10,479, May
2000.

[7] M. Aschwanden. Physics of the Solar Corona, an Introduction. Springer, 2004.

[8] H. W. Babcock. The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. Astro-
phys. J., 133:572, March 1961.

[9] D. N. Baker, X. Li, S. G. Kanekal, K. W. Ogilvie, R. P. Lepping, J. B. Blake, L. B. Callis,
G. Rostoker, H. J. Singer, and G. D. Reeves. A strong CME-related magnetic cloud interaction
with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration
on May 15, 1997. Geophys. Res. Lett., 25:2975–2978, August 1998.

[10] A. Barnes. Theory of Magnetohydrodynamic Waves – The WKB Approximation Revisited.
J. Geophys. Res., 97:12,105–12,112, August 1992.

[11] S. Basu and H. M. Antia. Changes in Solar Dynamics from 1995 to 2002. Astrophys. J.,
585:553–565, March 2003.

[12] L. Bolduc. GIC observations and studies in the Hydro-Qubec power system. J. Atm. and
Sol.-Ter. Phys., 64:1793–1802, November 2002.

[13] R. A. Burger and M. Hitge. The Effect of a Fisk-Type Heliospheric Magnetic Field on
Cosmic-Ray Modulation. Astrophys. J. Lett., 617:L73–L76, December 2004.

[14] R. A. Burger, Y. van Niekerk, and M. S. Potgieter. An Estimate of Drift Effects in Various
Models of the Heliospheric Magnetic Field. S. Sci. Rev., 97:331–335, May 2001.

[15] R. Cameron and A. Hopkins. A new estimate of the solar meridional flow. Sol. Phys.,
183:263–276, December 1998.



138

[16] H. V. Cane and I. G. Richardson. Interplanetary Coronal Mass Ejections in the Near-Earth
Solar Wind During 1996-2002. J. Geophys. Res., 108:SSH 6–1, April 2003.

[17] B. W. Carroll and D. A. Ostlie. An Introduction to Modern Astrophysics. Addison, Wesley,
Longman, 1996.

[18] O. Cohen, L. A. Fisk, I. I. Roussev, G. Toth, and T. I. Gombosi. Enhancement of Photospheric
Meridional Flow by Reconnection Processes. Astrophys. J., 654:1537–1542, July 2006.

[19] O. Cohen, I. V. Sokolov, I. I. Roussev, C. N Arge, W. B. Manchester, T. I. Gombosi, R. A.
Frazin, H. Park, M. D. Butala, F. Kamalabadi, and M. Velli. A Semi-Empirical Magne-
tohydrodynamical Model of the Solar Wind. Astrophys. J. Lett., 645:L163–L166, January
2007.

[20] O. Cohen, I. V. Sokolov, I. I. Roussev, and T. I. Gombosi. Validation of a synoptic solar wind
model. J. Geophys. Res., 113:A03104, March 2008.

[21] O. Cohen, I. V. Sokolov, I. I. Roussev, N. Lugaz, W. B. Manchester, T. I. Gombosi, and C. N.
Arge. Validation of a Global 3D Heliospheric Model With Observations for the May 12, 1997
CME Event. J. Atm. and Sol.-Ter. Phys., 70:583–592, February 2008.

[22] S. R. Cranmer, A. A. van Ballegooijen, and R. J. Edgar. Self-consistent Coronal Heating and
Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence. Astrophys. J.
Sup., 171:520–551, August 2007.

[23] N. U. Crooker, J. T. Gosling, and S. W. Kahler. Reducing Heliospheric Magnetic Flux
from Coronal Mass Ejections Without Disconnection. J. Geophys. Res. (Space Physics),
107(A2):1,028, February 2002.

[24] R. L. Dewar. Interaction Between Hydrodynamic Waves and a Time-Dependent, Inhomoge-
neous Medium. Phys. of Fluids, 13:2,710–2,719, 1970.

[25] M. Dikpati. Solar magnetic fields and the dynamo theory. Adv. S. Res., 35:322–328, 2005.

[26] M. Dikpati, G. de Toma, P. A. Gilman, C. N. Arge, and O. R. White. Diagnostics of Polar
Field Reversal in Solar Cycle 23 Using a Flux Transport Dynamo Model. Astrophys. J.,
601:1136–1151, February 2004.

[27] T. L. Duvall, Jr. Large-scale solar velocity fields. Sol. Phys., 63:3–15, August 1979.

[28] U. Feldman, K. G. Widing, and H. P. Warren. Morphology of the Quiet Solar Upper Atmo-
sphere in the 4×104 < Te < 1.4×106 K Temperature Regime. Astrophys. J., 522:1,133–1,147,
September 1999.

[29] L. A. Fisk. Motion of the Footpoints of Heliospheric Magnetic Field Lines at the Sun: Impli-
cations for Recurrent Energetic Particle Events at High Heliographic Latitudes. J. Geophys.
Res., 101(A7):15,547–15,554, July 1996.

[30] L. A. Fisk. Acceleration of the Solar Wind as a Result of the Reconnection of Open Magnetic
Flux with Coronal Loops. J. Geophys. Res., 108(A4):1,157, April 2003.

[31] L. A. Fisk. The Open Magnetic Flux of the Sun. I. Transport by Reconnections with Coronal
Loops. Astrophys. J., 626:563–573, June 2005.

[32] L. A. Fisk and N. A. Schwadron. The Behavior of the Open Magnetic Field of the Sun.
Astrophys. J., 560:425–438, October 2001.

[33] L. A. Fisk, N. A. Schwadron, and T. H. Zurbuchen. Acceleration of the Fast Solar Wind by
the Emergence of New Magnetic Flux. J. Geophys. Res., 104:19,765–19,772, September 1999.



139

[34] T. G. Forbes. A Review on the Genesis of Coronal Mass Ejections. J. Geophys. Res.,
105:23,153–23,166, October 2000.

[35] A. C. Fraser-Smith. Centered and eccentric geomagnetic dipoles and their poles, 1600 - 1985.
Reviews of Geophysics, 25:1–16, 1987.

[36] H.. Gleisner and J. Watermann. Concepts of medium-range (1-3 days) geomagnetic forecast-
ing. Adv. in Spc. Res., 37:1116–1123, August 2006.

[37] G. Gloeckler, T. H. Zurbuchen, and J. Geiss. Implications of the Observed Anti-Correlation
Between Solar Wind Speed and Coronal Electron Temperature. J. Geophys. Res. (Space
Physics), 108(A4):1,158, April 2003.

[38] S. K. Godunov. Symmetric form of the equations of Magnetohydrodynamics. In Numerical
methods for mechanics of continuum medium, volume 1, page 1, 1972.

[39] T. I. Gombosi. Gaskinetic Theory. Cambridge University Press, 1994.

[40] T. I. Gombosi. Physics of the Space Environment. Cambridge University Press, 1998.

[41] N. Gopalswamy and M. L. Kaiser. Solar eruptions and long wavelength radio bursts: The
1997 May 12 event. Adv. in Spc. Res., 29:307–312, 2002.

[42] C. P. T. Groth, D. L. DeZeeuw, T. I. Gombosi, and K. G. Powell. Global Three-Dimensional
MHD Simulation of a Space Weather Event: CME Formation, Interplanetary Propagation,
and Interaction with the Magnetosphere. J. Geophys. Res., 105:25,053–25,078, November
2000.

[43] A. Harten, P. D. Lax, and B. Van Leer. On Upstream Differencing and Godunov-Type
Schemes for Hyperbolic Conservation Laws. SIAM Review, 25:35–61, 1983.

[44] D. Hathaway, P. Gilman, J. W. Harvey, F. Hill, R. B. Howard, H. P. Jones, J. Kasher, J. B.
Leibacher, J. Pintar, and G. W. Simon. GONG Observations of Solar Surface Flows. Science,
272:1306, May 1996.

[45] D. H. Hathaway. Doppler Measurements of the Sun’s Meridional Flow. Astrophys. J.,
460:1027, April 1996.

[46] H. Isobe, T. Yokoyama, M. Shimojo, T. Morimoto, H. Kozu, S. Eto, N. Narukage, and
K. Shibata. Reconnection Rate in the Decay Phase of a Long Duration Event Flare on 1997
May 12. Astrophys. J., 566:528–538, February 2002.

[47] S. A. Jacques. Momentum and Energy Transport by Waves in the Solar Atmosphere and
Solar Wind. Astrophys. J., 215:942–951, August 1977.

[48] L. Jian, C. T. Russell, J. G. Luhmann, and R. M. Skoug. Properties of Interplanetary Coronal
Mass Ejections at 1AU During 1995-2004. Sol. Phys., 239:393–436, December 2006.

[49] V. K. Jordanova, C. J. Farrugia, R. M. Thorne, G. V. Khazanov, G. D. Reeves, and M. F.
Thomsen. Modeling ring current proton precipitation by electromagnetic ion cyclotron waves
during the May 14-16, 1997, storm. J. Geophys. Res., 106:7–22, January 2001.

[50] J. A. Klimchuk. On Solving the Coronal Heating Problem. Sol. Phys., 234:41–77, March
2006.

[51] R. W. Komm, R. F. Howard, and J. W. Harvey. Meridional Flow of Small Photospheric
Magnetic Features. Sol. Phys., 147:207–+, October 1993.

[52] S. Latushko. Meridional drift in the large-scale solar magnetic field pattern. Sol. Phys.,
149:231–241, February 1994.



140

[53] R. B. Leighton. Transport of Magnetic Fields on the Sun. Astrophys. J., 140:1,547–1,562,
November 1964.

[54] X Li, D. N. Baker, M. Teremin, T. E. Cayton, G. D. Reeves, R. S. Selesnick, J. B. Blake, G. Lu,
S. G. Kanekal, and H. J. Singer. Rapid enchancements of relativistic electrons deep in the
magnetosphere during the May 15, 1997, magnetic storm. J. Geophys. Res., 104:4467–4476,
March 1999.
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