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CHAPTER I

Introduction

In geometric group theory, one studies what can be said about the structure of

a finitely generated group based on the structure of spaces that admit an action by

the group, as well as what can be said about the structure of a space with a group

action, based on the structure of the acting group. In this dissertation, we use the

actions of groups on certain simplicial complexes to give us information about the

structures of the groups.

More specifically, in Chapter III, we use actions of groups on trees in order to

obtain a group accessibility result, i.e. that the process of decomposing a group in a

certain manner cannot go on forever, but rather must eventually terminate, leaving

a collection of subgroups that are indecomposable.

The process of decomposing groups that we work with is that of first decomposing

a group maximally as a graph of groups over finite subgroups, then decomposing the

resulting vertex groups maximally over two-ended subgroups, and then repeating

these two steps on the new resulting vertex groups, and so on. This process results

in what is called a hierarchy of the original group. In Theorem 3.2.9, we prove

that the process must always terminate for hyperbolic groups with no 2-torsion, i.e.

that all hierarchies associated to such decompositions are finite. The vertex groups
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remaining when the hierarchy is complete are indecomposable over finite and two-

ended subgroups. This result has applications to 3-manifold topology (see Theorem

3.3.2) and to K-theory (see [16]).

In deriving this accessibility result, we make heavy use of the work of Delzant

and Potyagailo [8]. They obtain a very general result about the existence of finite

hierarchies for finitely presented groups with no 2-torsion (see Theorem 3.2.1). Their

methods do not necessarily work when a group has 2-torsion, and it is for this reason

that we must assume that the groups in Theorem 3.2.9 have no 2-torsion.

In light of the work done by Delzant and Potyagailo, we must prove two main

things. The first is that their methods, which produce a hierarchy in which groups

are decomposed over some fixed “elementary” family of subgroups, work when we

alternate between decomposing maximally over finite subgroups and two-ended sub-

groups. This is seen in the proof of Theorem 3.2.9.

The second is that, although [8] only proves the existence of finite hierarchies, in

fact any hierarchy as described above must be finite. Corollary 3.2.4 and Lemma

3.2.6 are used to show this, and the proofs of both of these facts make use of Stallings’

folds on G-trees.

We remark that the contents of Chapter III will appear in Algebraic and Geometric

Topology (see [31]).

In Chapter IV, we use the coarse geometry of a group’s Cayley graph to determine

some of the structure of a certain canonical decomposition of the group. The decom-

position we are concerned with is the JSJ decomposition Γ1(G) of any one-ended,

finitely presented group G, produced by Scott and Swarup in [25].

Our main result in this chapter is Theorem 4.5.4, which shows that commensurizer

type vertex groups of these JSJ decompositions of groups are invariant under quasi-
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isometries. We prove this fact by analyzing “quasi-lines” inside Cayley graphs. We

are aided in this analysis by the work of Papasoglu [21], who proved the invariance

under quasi-isometries of other vertex groups of JSJ decompositions of groups. We

note that our work, together with results of Papasoglu, shows the invariance under

quasi-isometries of all V0-vertex groups of the Scott-Swarup JSJ decompositions of

groups.

In proving the invariance of commensurizer type vertex groups under quasi-isometries,

we make use of a number of facts which we believe to be of independent interest. In

Proposition 4.3.18, we prove that any 3-separating quasi-line in the Cayley graph of

a finitely presented group that satisfies a condition about inessential components of

its complement must be a finite Hausdorff distance from an infinite cyclic subgroup

of the group. We also make use of a geometric characterization of a commensurizer –

see Lemma 4.5.1. Another fact that we use in Chapter IV is Proposition 4.5.7, which

is a coarse geometric characterization of when a subgroup of a finitely generated

group is finitely generated.



CHAPTER II

Preliminaries

We shall begin with a discussion of the notation, definitions and background that

we will need.

Throughout this work, we shall assume that all finitely generated (finitely pre-

sented, respectively) groups come equipped with fixed finite generating sets (finite

presentations respectively). We shall assume that the given generating sets are sym-

metric, i.e. that if s is in the generating set, then so is s−1.

If X is a metric space, A a subset of X, and R > 0, we shall take the R-

neighborhood of A in X to be

NR(A) = {x ∈ X : ∃ a ∈ A such that d(x, a) ≤ R}.

If p ∈ X, we shall take the R-ball about p in X to be

BR(p) = {x ∈ X : d(x, p) < R}.

Thus neighborhoods of closed sets will be closed but balls will be open.

Recall that, if Y is a subset of a metric space X, then Y denotes the closure of Y

in X.

We will use dHaus to denote the Hausdorff distance function. Thus, if X is a
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metric space, and A and B are subsets of X, then

dHaus(A,B) = inf{R ≥ 0 : A ⊂ NR(B) and B ⊂ NR(A)}.

Definition 2.0.1. If G is a finitely generated group, with finite generating set S,

then the Cayley graph of G (with respect to S), denoted CG, is a graph with vertex

set equal to G, and, for each (g, s) ∈ G× S, a single edge joining g to gs.

Let e(g, s) denote the edge corresponding to (g, s). Note that, even if s is of order

two, so that the edges e(g, s) and e(gs, s) have the same endpoints, we do not identify

e(g, s) with e(gs, s).

Observe that G acts on CG simplicially and freely on the left. We shall consider

CG to be a metric space by taking each edge to have length one. We remark that

the Cayley graphs of G, with respect to different finite generating sets, are quasi-

isometric. (See Definition 2.0.3 below. For a proof of this fact, see, for instance,

Examples I.8.17 (1), (2) and (3) in [6].) Note also that subsets and subgroups of G

can be considered as subsets of CG.

Let G be a finitely presented group, with finite presentation 〈S : R〉, and let W

denote a 2-dimensional CW complex with one vertex, and an edge corresponding

to each pair {s, s−1} in S, with one orientation of the edge corresponding to s and

the other to s−1. Let the 2-cells of W correspond to the relations in R, with the

boundary of the 2-cell corresponding to r ∈ R glued to the 1-cells of W along r,

when thought of as a word in the alphabet S. Take each edge to be of length one,

and take each 2-cell to be metrically a regular n-gon, where n is the word length of

the corresponding relation r.

Definition 2.0.2. Let G, S, R and W be as in the previous paragraph. The Cayley

complex of G (with respect to 〈S : R〉), denoted C C = C C G, is the universal cover
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of W .

Note that the 1-skeleton of C C is CG, and that C C is simply connected.

The number of ends of a locally finite cell complex X, denoted e(X), is the

supremum, over all finite subcomplexes K of X, of the number of infinite components

of X −K. The number of ends of a finitely generated group G, denoted e(G), is the

number of ends of CG. This does not depend on the choice of finite generating sets

for G. We recall that e(G) = 2 if and only if G is virtually Z, i.e. G has a finite

index subgroup that is infinite cyclic (see Theorem 5.12 of [27]).

A finitely generated group is said to be hyperbolic if there is some δ > 0 and some

finite generating set S for G such that, for any geodesic triangle in the Cayley graph

of G with respect to S, each side of the triangle is contained in the union of the

δ-neighborhoods of the other two sides. While the value of δ depends on our choice

of a generating set, we note that hyperbolicity does not. For a proof of this fact, as

well as an introduction to hyperbolic groups, we refer the reader to [6].

Definition 2.0.3. If X and Y are metric spaces and f : X → Y is a map of sets,

then we say that f is a (Λ, K) quasi-isometric embedding, or merely a quasi-isometric

embedding, if, for all points x1, x2 ∈ X,

1

Λ
· dX(x1, x2)−K ≤ dY (f(x1), f(x2)) ≤ Λ · dX(x1, x2) +K.

We say that f is a (Λ, K) quasi-isometry, or a quasi-isometry, if f is a (Λ, K)

quasi-isometric embedding, and

NK(f(X)) = Y.

If G and G′ are finitely generated groups, then we say that G and G′ are quasi-

isometric if there is a quasi-isometry between CG and CG′ .
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We shall now discuss the basics of Bass-Serre theory, the theory of groups acting

on trees, in order to define graph of groups decompositions of groups, hierarchies,

and related concepts.

Let a group G act simplicially on the left on a simplicial tree τ , and let the action

be without inversions, i.e. such that no element of G preserves an edge of τ , but

swaps its vertices. Then we shall say that τ is a G-tree.

If τ is a G-tree, then the quotient G\τ has a natural cell structure. Associate

to each vertex v0 of Γ = G\τ the stabilizer V of one of its preimages under the

projection map τ → G\τ , and associate to each edge e0 the stabilizer E of one of its

preimages as well. We shall call such V and E vertex and edge groups, respectively,

and note that such groups associated to the vertices and edges of G\τ are uniquely

determined up to conjugacy.

To each pair (v0, e0) of a vertex v0 in Γ and an oriented edge e0 with terminal

vertex v0, associate an injective homomorphism from E to V induced by the inclusion

of the stabilizer of a lift of e0 into the stabilizer of a lift of v0. Call Γ, together with

this data, a graph of groups structure for G, and denote the graph and data also

by Γ. We shall also say that Γ is a graph of groups decomposition, or merely a

decomposition, of G.

If τ is a G-tree, G does not fix a point in τ , and Γ = G\τ is finite, then we call

Γ a proper decomposition of G. We shall say that G acts minimally on a G-tree τ if

τ contains no proper, G-invariant subtrees. Note that if G is finitely generated and

acts minimally on τ , then Γ is a finite graph. If, in addition, τ is not a vertex, then

Γ must be a proper decomposition of G.

Equivariant maps between G-trees will be very important in Chapter III, so we

define the following:
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Definition 2.0.4. Let a G-map be a simplicial, surjective, G-equivariant map be-

tween two G-trees that does not collapse any edge to a vertex.

We will now assume that τ and τ ′ are G-trees that are not vertices, and let

Γ = G\τ and Γ′ = G\τ ′.

Definition 2.0.5. If there is a simplicial, surjective, G-equivariant map τ ′ → τ

(which may collapse edges to vertices), then we call the decomposition Γ′ a refinement

of Γ.

Definition 2.0.6. Let τ ′ → τ be as in Definition 2.0.5 and not be a simplicial

homeomorphism. Moreover, assume that for each edge e of τ ′ that is collapsed to

a vertex of τ , either its vertices are in the same G-orbit, or both vertex stabilizers

properly contain the stabilizer of e. Then we call Γ′ a proper refinement of Γ.

If all edge groups of a decomposition Γ of G are in some family C of subgroups of

G, then we say that Γ is a decomposition of G over C . Since the edge groups of Γ are

determined only up to conjugacy, C should be closed under conjugacy. Note that if

Γ is a decomposition of G over C , and Γ′ is a refinement of Γ such that the associated

map τ ′ → τ does not collapse any edges to vertices, then Γ′ is a decomposition of G

over the elements of C and their subgroups.

A decomposition of G with one edge is a splitting of G, and a proper decomposition

of G with one edge is a proper splitting of G. If there exist no proper splittings of G

over a family C as above, then we say that G is unsplittable over C .

Note that if G admits a decomposition Γ′ over C , arising from an action on a

G-tree τ ′, then for any edge e of Γ′ with edge group E, there is a splitting Γ of G

associated to e, where Γ has one edge with edge group E, and Γ′ is a refinement of

Γ. To see this, let e be an edge in τ ′ with stabilizer E. Then, if G·int(e) denotes
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the G-orbit of the interior of e in τ ′, let τ be the G-tree obtained by collapsing the

components of τ ′−G·int(e) to vertices, with the action of G induced from the action

of G on τ ′. Then we may take Γ to be G\τ . We observe that if G acts minimally on

τ ′, then Γ must be a proper splitting.

Next, we define the notion of a compatible decomposition, which leads us to the

idea of a hierarchy for a group.

Definition 2.0.7. If G has a decomposition Γ, and the vertex group of a vertex v of Γ

admits a splitting, then we say that the splitting is compatible with the decomposition

if there exists a refinement of Γ in which v is replaced with an edge that is associated

to the splitting, as is described above. Equivalently, the splitting is compatible with

the decomposition if a conjugate of each edge group of the edges incident to v is

contained in a vertex group of the splitting.

Consider a group G, and a family C of subgroups of G which is closed under

conjugacy.

Definition 2.0.8. A hierarchy for G over C is a sequence G0,G1,G2, . . . of finite sets

of conjugacy classes of subgroups of G, defined inductively as follows. The set G0

contains only (the conjugacy class of) G. If i > 0, then for any conjugacy class in

Gi−1, either Gi contains that conjugacy class, or Gi contains the conjugacy classes of

the vertex groups of some proper decomposition of a representative of that class over

C . We require that at least one representative from Gi−1 be decomposed.

Thus, if a hierarchy of G over C is finite, then its last set GN contains only

conjugacy classes of subgroups that are unsplittable over C .

We note that the existence of a finite hierarchy over C does not, in general, imply

the existence of any kind of maximal decomposition over C , since the splittings
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of vertex groups need not be compatible with the decompositions producing those

vertex groups.

Definition 2.0.9. If Γ = G\τ is a finite decomposition of G over C , and there exists

no proper refinement of Γ over C , then we say that Γ is a maximal decomposition of

G over C .

One might think of defining a maximal decomposition of G over C to be a maximal

collection of compatible splittings over C . But often, such collections are infinite.

For example, consider any group G that has an infinite descending chain of subgroups

G ⊃ C0 ⊃ C1 ⊃ C2 ⊃ . . . Then we have

G = G ∗C0 C0 = G ∗C0 C0 ∗C1 C1 = G ∗C0 C0 ∗C1 C1 ∗C2 C2 = . . .

Less trivially, consider the Baumslag-Solitar group H = BS(1, 2) = 〈x, t : t−1xt =

x2〉. The normal closure of 〈x〉 in H is isomorphic to Z[1
2
] under addition, by an

isomorphism which takes x to 1, and tixt−i to 1
2i for each i. Let Ai denote the

infinite cyclic subgroup generated by tixt−i, and let K = H ∗A0 H. Note that

A0 ⊂ A1 ⊂ A2 ⊂ . . ., and that K is finitely presented. We can refine the given

decomposition of K as many times as we please, for we have that

K = H ∗A0 (A1 ∗A1 H) = H ∗A0 (A1 ∗A1 (A2 ∗A2 H)) = . . .

with the splitting associated to each edge of any of these decompositions being proper.

Thus both of the examples above have sequences of refinements that do not terminate.

This concludes our review of Bass-Serre theory.

We recall that two subgroups H and H ′ of a group G are said to be commensurable

if their intersection is of finite index in both. The commensurizer, CommG(H), of H

in G is the subgroup of elements g of G such that H and gHg−1 are commensurable.

(We note that CommG(H) is called the “commensurator” ofH inG by some authors.)
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Finally, we recall notions related to almost invariant subsets of groups (see also

[25]). Let G be a finitely generated group, and let H be a subgroup of G. A subset X

of G is said to be H-finite if X ⊂ HF for some finite subset F of G. A subset X ⊂ G

is said to be H-almost invariant, or an almost invariant set over H, if HX = X, and

the symmetric difference X+Xg is H-finite, for all g ∈ G. X is said to be nontrivial

if neither X nor its complement X∗ is H-finite.

If a group G admits a splitting over H, then the group contains a nontrivial H-

almost invariant set associated to that splitting. To see this, we shall follow Chapter

2 of [25]. Suppose that G splits as A∗HB or A∗H , let τ be the associated G-tree, and

fix a base point w ∈ τ . Define a map ϕ from G to the vertex set of τ by ϕ(g) = g ·w.

Let s be the edge of τ that is stabilized by H, and choose an orientation for s. Then

s determines a partition of the vertex set of τ into two sets; let Ys denote the vertices

of the component of τ − int(s) that meets the terminal vertex of s, and let Y ∗s denote

the vertices of the component that meets the initial vertex of s. Let Zs = ϕ−1(Ys)

and let Z∗s = ϕ−1(Y ∗s ). It is shown in [25] that Zs and Z∗s are H-almost invariant, and

that a different choice of base point w results in H-almost invariant subsets whose

symmetric differences with Zs and Z∗s are H-finite. Thus, up to H-finite symmetric

difference and complementation, Zs is uniquely associated to the given splitting of

G.

It is not true, however, that each H-almost invariant set is associated to a splitting

of G. Related to this is the notion of the “crossing” of almost invariant sets: if X is

an H-almost invariant set and Y is a K-almost invariant set in a group G, then it is

said that X crosses Y if none of X ∩ Y , X ∩ Y ∗, X∗ ∩ Y , or X∗ ∩ Y ∗ is K-finite. If

both X and Y are nontrivial, then it is proven in [23] that X crosses Y if and only

if Y crosses X. We refer the reader to [23] for more on crossings.
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We can think of a subset X of G as a vertex set in CG, hence as a 0-cochain in

CG with Z2 coefficients. Thus the coboundary δX is a collection of edges in CG. If

X and Y are as above, then it is said that X crosses Y strongly if both δX ∩ Y and

δX ∩ Y ∗ are infinite in K\CG. If X crosses Y but not strongly, then we say that X

crosses Y weakly.



CHAPTER III

Strong accessibility for hyperbolic groups

The theory of group accessibility is made up of “accessibility results” and “strong

accessibility results”. Accessibility results show that a group can be decomposed as

a graph of groups in a maximal way over a specific family of subgroups. Strong ac-

cessibility results show that a group has a finite hierarchy over a family of subgroups.

When decomposing over finite subgroups, these two notions are equivalent. In

1940, Gruško proved in [14] that any finitely generated group admits a maximal free

product decomposition, i.e., a maximal decomposition over the trivial group.

We shall say that a group is accessible over a family of subgroups if the group

admits a maximal decomposition over that family. Wall coined this term in the

early 1970’s in the context of decomposing over finite groups, and conjectured that

every finitely generated group is accessible over finite subgroups (see [32]). In 1985,

Dunwoody proved in [9] that finitely presented groups are accessible over finite sub-

groups. (In fact, both Gruško and Dunwoody showed that any decomposition of a

finitely generated or finitely presented group respectively over the appropriate family

of subgroups has a maximal refinement over that family.) In [12], published in 1993,

Dunwoody provided an example of a finitely generated group that is not accessible

over finite subgroups.

13



14

As for the question of accessibility over more general families of subgroups, Bestv-

ina and Feighn showed in [2] that, over any family of subgroups that are “small”,

any graph of groups decomposition of a finitely presented group can be refined to

a maximal one. (Any group that does not contain a copy of the free group on two

generators, for example, is small.)

In [8], Delzant and Potyagailo proved a very general strong accessibility result.

They showed that any finitely presented group without 2-torsion admits a finite hi-

erarchy over any family of “elementary” subgroups (see Definition 3.1.1). In this

chapter, we use their work to prove the following strong accessibility result:

Theorem 3.2.9 Let G be a hyperbolic group with no 2-torsion. Decompose G max-

imally as a graph of groups over finite subgroups, and then take the resulting vertex

groups, and decompose those maximally as graphs of groups over two-ended sub-

groups. Now repeat this process on the new vertex groups and so on. Then this

process must eventually terminate, with subgroups of G which are unsplittable over

finite and two-ended subgroups.

Swarup conjectured this result, without the assumption of G having no 2-torsion.

In Bestvina’s Questions in Geometric Group Theory [1], this is referred to as Swarup’s

Strong Accessibility Conjecture.

This theorem is not a special case of the strong accessibility result of Delzant and

Potyagailo for two reasons. Firstly, a hierarchy from [8] is over one fixed family of

subgroups. For this result, however, we alternate between decomposing over finite

subgroups and two-ended subgroups. Secondly, given a group and a family of ele-

mentary subgroups, [8] shows the existence of one finite hierarchy over the family.
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For Swarup’s conjecture, it must instead be shown that any hierarchy as described

is finite. By analyzing equivariant maps between G-trees, we are able to overcome

these difficulties.

As a corollary to Theorem 3.2.9, we get the following result about finite hierar-

chies in 3-manifolds:

Theorem 3.3.2 Let M be an irreducible, orientable, compact 3-manifold with hy-

perbolic fundamental group. The process of decomposing M along any maximal, dis-

joint collection of compressing disks, then decomposing the resulting manifolds along

maximal, disjoint collections of essential annuli, then the resulting manifolds along

compressing disks, then again along essential annuli and so on, must eventually ter-

minate with a collection of manifolds, each of which has incompressible boundary and

admits no essential annuli, or is a 3-ball.

3.1 Elementary families of subgroups and Stallings’ folds

Before proving these theorems, we will need to introduce a few more definitions

and facts. In [8], Delzant and Potyagailo prove the existence of a finite hierarchy

for any finitely presented group with no 2-torsion over any family of “elementary”

subgroups, which are defined as follows.

Definition 3.1.1. If G is a finitely presented group, and C a family of subgroups

of G, then C is said to be elementary if the following conditions are satisfied:

1. If C ∈ C , then all subgroups and conjugates of C are in C .

2. Each infinite element of C is contained in a unique maximal subgroup in C .

3. Ascending unions of finite subgroups in C are contained in C .
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4. If any C ∈ C acts on a tree, then C fixes a point in the tree, fixes a point in

the boundary at infinity of the tree, or preserves but permutes two points in the

boundary at infinity.

5. If C ∈ C is an infinite, maximal element of C and gCg−1 = C, then g ∈ C.

We will be interested in applying the results of [8] to a pair (G,C ), when C is

the set of all finite and two-ended subgroups of G. The following proposition is the

reason we assume hyperbolicity in Theorem 3.2.9.

Proposition 3.1.2. If G is a subgroup of a hyperbolic group, and C is the set of all

finite and two-ended subgroups of G, then C is elementary.

In order to show this, we must recall a few facts about two-ended and hyperbolic

groups.

Theorem 3.1.3. A finitely generated group G is two-ended if and only if it is vir-

tually Z, i.e., it contains an infinite cyclic subgroup of finite index.

See Theorem 5.12 of [27] for a proof of this fact. The next lemma follows from

Lemmas 1.16 and 1.17 of [20].

Lemma 3.1.4. Any two-ended subgroup H of a hyperbolic group G is contained in a

unique maximal two-ended subgroup, which is equal to the commensurizer CommG(H)

of H in G.

This implies the following:

Corollary 3.1.5. If G is a subgroup of a hyperbolic group, and H ⊂ G is two-ended,

then H is contained in a unique maximal two-ended subgroup of G, which is equal to

CommG(H).
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Proof. Let G′ be a hyperbolic group containing G, and let H ⊂ G be two-ended.

If H ′ ⊂ G is two-ended and H ⊂ H ′, then H ′ must commensurize H, i.e. H ′ ⊂

CommG(H). Note also that H ⊂ CommG(H) ⊂ CommG′(H) and CommG′(H) is

two-ended by Lemma 3.1.4, so CommG(H) is two-ended. Thus CommG(H) is the

unique maximal two-ended subgroup containing H.

The next fact is Theorem III.Γ.3.2 in [6]:

Theorem 3.1.6. If G is a hyperbolic group, then G contains only finitely many

conjugacy classes of finite subgroups.

We can now prove Proposition 3.1.2:

Proof of Proposition 3.1.2. Let G be a subgroup of a hyperbolic group, with C the

collection of all finite and two-ended subgroups of G. Then property 1 of Definition

3.1.1 is immediate, and property 2 is shown in Corollary 3.1.5. Since G is contained

in a hyperbolic group, property 3 follows from Theorem 3.1.6.

As for property 4, assume that a group C acts on a tree. If C is finite, then C

must fix a point of the tree. If C is virtually Z, then C must have an axis, so C

preserves two points in the boundary of the tree. Thus C satisfies 4.

For property 5, let C be any maximal, infinite two-ended subgroup of G. It follows

from Corollary 3.1.5 that C = CommG(C). If NG(H) denotes the normalizer of any

subgroup H of G, then we always have that

H ⊂ NG(H) ⊂ CommG(H).

Thus NG(C) = C, so property 5 follows.

We shall conclude this section with a discussion of folds between G-trees, which

were introduced by Stallings (see [30]). Here, as well as in later arguments, we
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shall denote vertices and edges with lower case letters, and their stabilizers with the

capitalizations of those letters.

Definition 3.1.7. A fold on a G-tree τ is a G-map that identifies two adjacent edges

e and f of τ , identifies g ·e with g ·f , for all g ∈ G, and makes no other identifications.

If e and f meet at a vertex v, and are also incident to vertices x and y respectively,

then the identification of e with f is such that x is identified with y.

The next result shows that any G-map can often be decomposed into a series of

folds. It follows from the proposition in Section 2 of [2].

Proposition 3.1.8. If φ is a surjective G-map from a G-tree τ ′ to a G-tree τ , G\τ ′

is finite, and all the edge stabilizers of τ are finitely generated, then φ = φn ◦ φn−1 ◦

. . . ◦ φ1, for some collection of folds {φi}.

As described by Bestvina and Feighn in [2], folds can be broken up into several

different types, depending on whether e and f are in the same G-orbit, and whether

x, y and v are in the G-orbits of one another. For simplicity, we shall work only

with folds that are such that neither x nor y are in the G-orbit of v. Note that, by

subdividing edges of our G-trees, we can always assume that any G-map φ as above

is a composition of such folds.

If φ : τ ′ → τ is such a fold, then φ must be one of three types, which, following [2],

we will call types IA, IIA, and IIIA. These types correspond to the following three

cases: when no g ∈ G takes x to y, when some g ∈ G takes x to y and e to f , and

when some g ∈ G takes x to y, but does not take e to f .

Let π denote the projection map τ ′ → Γ′ = G\τ ′, and let Φ: Γ′ → Γ be the map

induced from φ. Our figures below indicate how, in each case, Φ will alter π(e ∪ f).

Since Φ cannot alter the underlying graph, or edge or vertex groups, of Γ′−π(e∪f),
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these must describe Φ completely.

When no g ∈ G takes x to y, we will say that the fold is of type IA. In this case,

π(e ∪ f) will change as indicated in Figure 3.1.

X

Y

V

E

F

IA
V (X,Y)

(E,F)

Figure 3.1: A fold of type IA, with vertices and edges labeled with their associated groups

A fold of type IIA occurs when some g ∈ G takes x to y and takes e to f , in which

case we have that g ∈ V , the stabilizer of v. Here, the image under π of the segment

e ∪ f is a single edge, and folding changes only the labeling of Γ′. See Figure 3.2.

V
(E,g)

(X,g)
IIA

V E
X

Figure 3.2: A fold of type IIA

Lastly, we have a fold of type IIIA when some g ∈ G takes x to y and does not

take e to f . Note that then g translates along an axis containing e and f . In Γ′, we

get what is shown in Figure 3.3.

V
IIIA (E,F)

(X,g)V X

E

F

Figure 3.3: A fold of type IIIA
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3.2 Strong accessibility

In this section, we shall prove Swarup’s conjecture for hyperbolic groups with

no 2-torsion. We shall first define the notion of complexity used by Delzant and

Potyagailo in [8], and then carefully state their result.

Let G be a finitely presented group, let C be a family of elementary subgroups of

G, and note that G is the fundamental group of a finite, two-dimensional simplicial

orbihedron Π for which vertex stabilizers are in C . (For example, G is the funda-

mental group of a finite, two-dimensional simplicial complex. In this case, vertex

stabilizers are equal to the trivial group.) For any such Π, we define T (Π) to be the

number of faces of Π, and b1(Π) to be the first Betti number of the underlying space.

Then we define the complexity of Π to be

c(Π) = (T (Π), b1(Π)).

The complexity of G with respect to C is defined to be

c(G,C ) = c(G) = min c(Π),

where the minimum is taken over all Π with vertex groups elements of C and G =

πorb1 (Π). Lexicographical ordering is used.

Proposition 3.4 of [8] shows that if c(G) = (0, 0), then G must be the fundamental

group of a tree of groups (possibly just a vertex), with finite edge groups, and vertex

groups in C . We are taking G to be finitely presented, so we note that any such tree

will be finite.

A group is said to have a dihedral action on a tree if the group acts on the tree,

has an axis, and some elements of the group interchange the endpoints of the axis.

In [8], the following theorem is proven:
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Theorem 3.2.1. [8] Let G be a finitely presented group, with C a family of ele-

mentary subgroups of G and c(G,C ) > (0, 0). Suppose G has a proper decomposition

over C , with τ the associated Bass-Serre tree, and suppose further that no C ∈ C

has a dihedral action on τ .

Then there is a proper decomposition of G over C with associated tree τ ′ such

that there is a G-map τ ′ → τ , and, if {Gv} denotes the vertex groups of G\τ ′, then∑
T (Gv) ≤ T (G), and maxv c(Gv,C ∩Gv) < c(G,C ).

With C defined to be the finite and two-ended subgroups of a group G, as long

as G has no 2-torsion, it follows that the action of any C ∈ C on any G-tree τ is not

dihedral.

Remark 3.2.2. We will want to apply Proposition 3.1.8 to the map τ ′ → τ . In order

to do this, we need surjectivity. For the moment, we shall merely note that, if G

acts on τ minimally, then τ ′ → τ must be surjective. If the action is not minimal,

then τ ′ maps onto a G-tree contained in τ , and all of the edge and vertex groups of

τ outside of this subtree are contained in C .

We shall now present several lemmas, which will be used to bridge the gap between

Theorem 3.2.1 and Swarup’s Strong Accessiblity Conjecture for groups with no 2-

torsion.

Lemma 3.2.3. Let G be a finitely generated group, and C a family of subgroups of

G which is closed under conjugation and subgroups. Suppose that φ : τ ′ → τ is a

surjective G-map between G-trees with all edge stabilizers in C . Moreover, suppose φ

is such that, for each edge e of τ ′, stab(e) is contained in stab(φ(e)) with finite index.

Let Γ′ = G\τ ′, and Γ = G\τ , and suppose that Γ′ is finite, and the edge groups of Γ

are all finitely generated. Then if Γ′ admits a proper refinement over C , so does Γ,
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and the additional edge groups in the refinements are the same.

From this, we immediately have the following:

Corollary 3.2.4. If G, C , Γ and Γ′ are as in Lemma 3.2.3, and Γ is a maximal

proper decomposition of G, then Γ′ must be maximal as well.

Proof of Lemma 3.2.3. We will start by showing that if φ is a fold, then a proper

splitting of a vertex group of τ ′, which is compatible with Γ′, induces a proper

splitting of the image of the vertex group which is compatible with Γ, over the same

edge group. From this, it will follow that a proper refinement of Γ′ induces a proper

refinement of Γ.

So assume that φ : τ ′ → τ is a fold. We use our notation from above, so that φ

identifies e to f and x to y, where e and f meet at the vertex v ∈ τ ′, and similarly,

identifies g ·e to g ·f for each g in G. Let vertex w ∈ τ ′ be such that W , the stabilizer

of w, admits a proper splitting over some C ∈ C , which is compatible with Γ′. Thus

there exists a tree τ ′ and a G-equivariant map ζ ′ : τ ′ → τ ′ which merely collapses

each edge in the orbit of c to a vertex in the orbit of w. We would like to find a tree

τ such that there is a similar collapsing map ζ : τ → τ , a fold φ taking τ ′ to τ , and

such that the following diagram commutes:

τ ′
φ→ τ

ζ ′ ↓ ↓ ζ

τ ′
φ→ τ

For our first case, assume that w is not in the G-orbit of v, nor of x nor y. Then

we may define φ to identify ζ ′−1(e) to ζ ′−1(f), and ζ ′−1(g · e) to ζ ′−1(g · f), for each

g in G. The edge c, as well as the edges in the G-orbit of c, are untouched by such a

fold, so the above diagram must commute. Also because no edge gets identified to c
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or any of its translates, and because the refinement Γ′ of Γ′ is proper, it follows that

φ induces a refinement of Γ which is proper.

Next, assume that w is in the G-orbit of x, and not of v. (w may be in the orbit of

y.) Then we may again define φ directly, taking that it identifies ζ ′−1(e) to ζ ′−1(f),

and similarly for the G-orbits of e and f . Define the map φ∗ to take the stabilizer of

any vertex or edge z in τ ′ to the stabilizer of φ(z), and let a and b be the vertices of c.

Recall that A =stab(a), and so on. Then in this case, φ∗(C) = C, while A ⊆ φ∗(A)

and B ⊆ φ∗(B). It follows again that Γ is a proper refinement of Γ because Γ′ is a

proper refinement of Γ′. To see this, we note that if C ↪→ A and C ↪→ B are not

isomorphisms, then neither are the new injections in τ . If instead g ∈ V takes a to

b, then g will take φ(a) to φ(b). Thus we have that Γ is a proper refinement of Γ.

It remains to consider the case in which w is in the G-orbit of v. Without loss of

generality, we assume that w = v. By abuse of notation, we will denote ζ ′−1(e) by e,

and ζ ′−1(f) by f . Suppose that e and f are adjacent in τ ′, so both contain either a

or b. Here again, we may simply define φ to identify e to f , and extend equivariantly.

Then φ∗ takes A, B and C to themselves, and if there is some g ∈ V which takes a

to b, then g must also take φ(a) to φ(b). Hence, this induced refinement Γ must be

proper.

So for our last case, assume that w = v, and that e and f are not adjacent in

τ ′. Without loss of generality, take that e contains a and f contains b, i.e. E ⊆ A

and F ⊆ B. Here, we will use our hypothesis that E and F are of finite index in

φ∗(E) = φ∗(F ) to show that either E ⊆ C or F ⊆ C. If E ⊆ C, then we may alter

τ ′ by ‘sliding’ e so that it is incident to b instead of a, and do the same with the

G-orbit of e. If F ⊆ C, then we can slide f instead. By doing this, we are able to

create a proper refinement of Γ′ of the type discussed in the previous paragraph, and
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may refer now to that argument.

To show that this is possible, assume that neither E nor F is contained in C, and

choose elements gE ∈ E − C and gF ∈ F − C. Then the subset of τ ′ which is fixed

pointwise by gE is a subtree of τ ′ which is disjoint from the subtree of points fixed by

gF . Thus gEgF acts by translation on an axis in τ ′. Both E and F are contained in

φ∗(E), hence so is gEgF , but because gEgF has an axis, it is of infinite order, and no

power (gEgF )n is contained in E or F , except when n = 0. This means that E and

F must be of infinite index in φ∗(E), which is a contradiction. Thus either E ⊆ C

or F ⊆ C as desired.

We have seen now that if φ : Γ′ → Γ is a fold, and if Γ′ admits a proper refinement

by a splitting over a subgroup C, then Γ must also admit a proper refinement by a

splitting which is also over C. For general φ, Proposition 3.1.8 implies that φ is a

composition of folds. If Γ′ admits a proper refinement, then by what we have shown,

the refinement pushes through each fold, giving a proper refinement of Γ, as desired.

Next, we note the following fact, which we shall make use of with n = 2:

Lemma 3.2.5. Let G be a finitely generated group, with a G-tree σ and associ-

ated decomposition Σ, identified with G\σ. Let V1, . . . , Vn be stabilizers of vertices

v1, . . . , vn of σ, and let σ0 be the smallest subtree of σ containing {v1, . . . , vn}. Then

the orbit of σ0 under 〈V1, . . . , Vn〉 is connected, thus a subtree of σ.

Proof. Fix any w ∈ 〈V1, . . . , Vn〉. It will suffice to show that w · σ0 is connected to σ0

in 〈V1, . . . , Vn〉 · σ0.

We can write w = w1w2 · · ·wm−1wm, where each wi is contained in some Vji . Then

wm ·σ0 intersects σ0 at the vertex stabilized by Vjm , the subtree wm−1 ·(wm ·σ0∪σ0) =
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(wm−1wm ·σ0)∪(wm−1 ·σ0) intersects σ0 at the vertex stabilized by Vjm−1 , the subtree

wm−2·((wm−1wm·σ0)∪(wm−1·σ0)∪σ0) = (wm−2wm−1wm·σ0)∪(wm−2wm−1·σ0)∪(wm−2·

σ0) intersects σ0 at the vertex stabilized by Vjm−2 , and so on. Continuing in this

manner, it follows that the translates w ·σ0 = w1w2 · · ·wm ·σ0, w1w2 · · ·wm−1 ·σ0, . . .,

w1w2 ·σ0, w1 ·σ0, σ0 make a subtree, hence w ·σ0 is connected to σ0 in 〈V1, . . . , Vn〉·σ0.

From this, it follows that if σ is a G-tree, and v1, . . . , vn are vertices of σ with re-

spective stabilizers V1, . . . , Vn ⊂ G, then the 〈V1, . . . , Vn〉-orbit of the smallest subtree

containing {v1, . . . , vn} is a 〈V1, . . . , Vn〉-tree.

We can now prove the following:

Lemma 3.2.6. Let Γ = G\τ be a maximal proper decomposition of a finitely pre-

sented group G over a family C which is closed under conjugation and subgroups. Let

Γ′ = G\τ ′ be the decomposition from Theorem 3.2.1, with φ : τ ′ → τ the associated

G-map. Assume that, for each edge e of τ ′, stab(e) is contained in stab(φ(e)) with

finite index. Then, for each vertex group V of Γ, either V is a vertex group of Γ′, or

V ∈ C .

Proof. By Remark 3.2.2, we can assume that φ : τ ′ → τ from Theorem 3.2.1 is a

surjection.

We may subdivide the edges of τ and τ ′ so that, for each edge of τ and τ ′, the

vertices of that edge are in different G-orbits, yet still φ : τ ′ → τ is a G-map. Again,

from Proposition 3.1.8, φ is a composition of folds. Our subdivision of the edges of

τ and τ ′ ensures that φ is, in fact, a composition of folds of types IA, IIA, and IIIA.

Assume first that φ is a fold of type IA, IIA, or IIIA. Using that Γ is maximal,

we will show that, for any vertex group Z of Γ, either Z is isomorphic by the given
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injection to one of its edge groups, or Z is a vertex group of Γ′, hence has smaller

complexity than G. Thus for a composition of such folds, a vertex group of the target

decomposition is either a vertex group of the source decomposition, or is in C .

We employ our previous notation, so that φ is a fold which takes edge e of τ ′ to

edge f , and vertex x to vertex y, with e and f sharing the additional vertex v. It

is immediate that, for all vertices z′ of τ ′, stab(z′) = stab(φ(z′)) if z′ is not in the

G-orbit of x or y. Hence it suffices to show the above statement for Z = stab(φ(x)).

Consider the case in which φ is a fold of type IA. Recall that φ(x) = φ(y) has

stabilizer Z = (X, Y ), and consider the action of Z on τ ′. Lemma 3.2.5 implies that

this gives the decomposition of Z that is pictured in Figure 3.4. Thus (X, Y ) =

X

Y

E

F

V     (X,Y) ∩

Figure 3.4: Decomposition of Z in the case when φ is a fold of type IA.

X ∗E (V ∩ (X, Y )) ∗F Y . If this decomposition gives a proper splitting of Z which is

compatible with Γ, i.e. the edge stabilizer of any edge adjacent to φ(x) is contained in

a vertex group of the splitting, then this splitting would induce a proper refinement

of Γ. This would be a contradiction, however, because Γ is assumed to be maximal.

We claim first that the decomposition is compatible with Γ, hence either splitting

from the decomposition is compatible with Γ. This follows because E and F are

contained in V , so the stabilizer (E,F ) of φ(e) is contained in V ∩ (X, Y ), and

any other edge incident to φ(x) is untouched by the fold, hence has stabilizer either

contained in X or contained in Y .

Therefore this decomposition of Z must not give a proper splitting. [X ∗E (V ∩
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(X, Y ))] ∗F Y not being proper implies that either Z = Y or Y = F . If Z = Y , then

Z is a vertex group of τ ′. Otherwise, Y = F . But also X ∗E [(V ∩ (X, Y )) ∗F Y ] is

not a proper splitting, so either Z = X or X = E. If Z = X, then, as before, Z

is a vertex group of τ ′. Otherwise, Y = F and X = E, so Z = (X, Y ) = (E,F ),

and hence Z is an edge group of τ . Thus if φ is a fold of type IA, then either Z is

isomorphic to a vertex group of Γ′, or an edge group of Γ.

Consider next the case in which φ is a fold of type IIA. There is some g ∈ G

taking e to f , and fixing v, and φ(x) is stabilized by (X, g). The action of this

subgroup on τ ′ gives the splitting of Z = (X, g) that is in Figure 3.5, and hence

E
XV     (X,g)∩

Figure 3.5: Decomposition of Z in the case when φ is a fold of type IIA.

(X, g) = (V ∩ (X, g)) ∗E X. It is clear that (E, g) ⊂ (V ∩ (X, g)), so if we show that

any other edge group of Γ contained in (X, g) is contained in one of the new vertex

groups, then the compatibility of this splitting of (X, g) with Γ will follow. But as

above, since the fold only affects the edge group labeled (E, g), then any other edge

group incident to the vertex labeled (X, g) must have been contained in X.

We note that since g ∈ V ∩ (E, g), but g /∈ E, this splitting induces a proper

refinement of Γ unless X = E, in which case (X, g) = (E, g). Thus if φ is of type

IIA, Z = (X, g) must be an edge group of Γ.

If φ is a fold of type IIIA, then there is some g ∈ G taking x to y, but not taking

e to f . Recall that Z = stab(φ(x)) is (X, g), and consider the action of (X, g) on

τ ′. The quotient by this action contains the decomposition of (X, g) given in Figure

3.6, thus (X, g) = ((V ∩ (X, g)) ∗F X)∗E, where this HNN extension is by g. A
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X

E

F

V     (X,g)∩

Figure 3.6: Decomposition of Z in the case when φ is a fold of type IIIA.

refinement by an HNN extension must always be proper, so it remains to show that

this splitting induces a refinement of Γ, i.e. is compatible with the other splittings

of Γ. To do this, we must show that the stabilizer of any edge incident to φ(x) is

contained in ((V ∩ (X, g)) ∗F X). The argument for this is similar to the above:

except for φ(e), any edge d incident to φ(x) is again untouched by the fold, hence

has stabilizer equal to the stabilizer of φ−1(d), which is contained in X, as φ−1(d)

is incident to x. X ⊂ ((V ∩ (X, g)) ∗F X), so our splitting is compatible with the

splitting over D.

Now recall that φ(e) is stabilized by (E,F ). But both E and F stabilize v, hence

are in V . Also, E and F , when conjugated by g, stabilize x, hence (E,F ) is in (X, g).

Thus stab(φ(e)) = (E,F ) ⊂ (V ∩(X, g)) ⊂ ((V ∩(X, g))∗F X), so the given splitting

of (X, g) is compatible with the other splittings of Γ. But this means that there is a

proper refinement of Γ, a contradiction. Hence φ cannot be a fold of type IIIA.

We now address the situation in which φ = φn ◦ φn−1 ◦ . . . ◦ φ1, where each φi is a

fold of type IA, IIA, or IIIA. Let Γi denote the decomposition G\φi◦φi−1◦. . .◦φ1(τ ′).

Lemma 3.2.3, and the fact that Γ is maximal, imply that the decompositions Γ′, Γ1,

Γ2, . . ., Γn−1 are all maximal, and since Γ and Γ′ are proper decompositions, each Γi

is also proper. Thus, for each i, the vertex groups of Γi are edge groups of Γi, or are

vertex groups of Γi−1. It follows that any vertex group of Γ is isomorphic to either a

vertex group of Γ′, or an edge group of some Γi, thus is in C . (Note that our early

subdivision of edges of Γ′ only adds edge groups to the collection of vertex groups of
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Γ′, hence does not affect this result.)

Before proving Theorem 3.2.9, we shall need two additional facts. The first is a

result from Scott and Swarup [25] about the existence of maximal decompositions

over two-ended subgroups:

Theorem 3.2.7. Let G be a one-ended, finitely presented group, and let Γ be a proper

decomposition of G over two-ended subgroups. Then Γ admits a refinement Σ which

is a maximal proper decomposition of G over two-ended subgroups.

Proof. Let τ be the G-tree corresponding to Γ. For any vertex v of valence two

of Γ which is not the vertex of a circuit and has incident edges e and f such that

E = V = F by the given injections, collapse either e or f . Continue this process

until no such vertices remain, and denote the resulting decomposition by Γ. We have

now removed enough redundancy from Γ to be able to apply Theorem 7.11 of [25],

with corrected statement in [24], giving us that Γ has a maximal refinement Σ.

We claim now that Σ induces a maximal refinement Σ of Γ, i.e. that we may put

the collapsed edges back into Σ corresponding to their location in Γ. This can be done

by merely subdividing each edge of Σ which corresponds to an edge e (respectively

f) of Γ when, as in our notation above, the edge f (respectively e) was collapsed to

a point.

The second result we will need is the following:

Lemma 3.2.8. If G is a finitely presented group, and Γ is a decomposition of G over

finitely generated subgroups, then the vertex group(s) of Γ are also finitely presented.

For a proof of this, we refer the reader to Lemma 1.1 in [3].

We can now prove Swarup’s conjecture for hyperbolic groups with no 2-torsion:
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Theorem 3.2.9. Let G be a hyperbolic group with no 2-torsion. Decompose G maxi-

mally over finite subgroups, and then take the resulting vertex groups, and decompose

those maximally over two-ended subgroups. Now repeat this process on the new vertex

groups and so on. Then this process must eventually terminate, with subgroups of G

which are unsplittable over finite and two-ended subgroups.

Remark 3.2.10. We note that the proof below also goes through if G is a finitely

presented subgroup of a hyperbolic group.

Proof. First, we will note that the above process must terminate for any finitely

generated group H such that c(H) = (0, 0), with respect to the family of finite and

two-ended subgroups of H. Recall that in this case, H is the fundamental group

of a tree of groups with finite edge groups, and finite or two-ended vertex groups.

If the tree consists of just one vertex, then H is finite or two-ended. When H is

finite, then it is unsplittable over all subgroups and hence the process terminates. If

H is two-ended, then H admits one nontrivial decomposition, which is over a finite

subgroup and has finite vertex groups, thus the above process must also terminate.

More generally, let H be the fundamental group of a tree of groups as described

above. The only vertex groups of the tree which admit any splittings are the two-

ended groups. As noted above, each splits over a finite subgroup, and the resulting

vertex groups are finite, hence unsplittable. Any collection of splittings of H over

finite subgroups are compatible, hence we may combine any splittings of vertex

groups of the tree with the splittings of H determined by the edges of the tree to get

a decomposition of H over finite subgroups with vertex groups which are completely

unsplittable. It follows that the process terminates for any H such that c(H) = (0, 0).

Now we let G be any hyperbolic group. Then G must be finitely presented,

thus, by [9], it has a maximal decomposition over finite subgroups. Choose such a
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decomposition (which must be finite), and let τ be the associated tree. Let C be the

family of all finite and two-ended subgroups of G, and let τ ′ be the G-tree resulting

from an application of Theorem 3.2.1. Note that since the map τ ′ → τ collapses no

edges to vertices, stabilizers of edges of τ ′ are subgroups of stabilizers of edges of τ ,

hence the decomposition of G associated to τ ′ is over finite subgroups of G.

Thus Lemma 3.2.6, applied taking the family of elementary subgroups to be the

collection of finite subgroups of G, implies that any vertex stabilizer V1 of τ either

is finite or is a vertex stabilizer of τ ′, hence is of smaller complexity (with respect to

the family of finite and two-ended subgroups of V1) than G. Certainly the process

described above must terminate for finite groups, so we may assume that V1 is not

finite.

By Lemma 3.2.8, V1 must be finitely presented. Let C1 be the collection of finite

and two-ended subgroups of V1, i.e. C1 = C ∩ V1. By Proposition 3.1.2, C1 is

elementary in V1. Note that V1 must have one end, so by Theorem 3.2.7, V1 has a

maximal decomposition over two-ended subgroups. By Remark 3.2.2, we can assume

that this decomposition is finite. Let τ1 be the corresponding V1-tree, and τ ′1 the tree

from Theorem 3.2.1.

Since V1 has one end, the edge groups of τ ′1 are also two-ended, and thus any

edge group of τ ′1 is of finite index in the image edge group from the map τ ′1 → τ1.

Therefore, Lemma 3.2.6 gives us that if V2 is a vertex group of τ1, then V2 is in C1

or has smaller complexity than V1, with respect to the family C2 = C1 ∩ V2 of the

finite and two-ended subgroups of V2. We note that V2 is finitely presented, and C2

is elementary in V2.

If V2 is in C1, then V2 could admit one nontrivial maximal decomposition, which

would be over a finite subgroup and would have finite vertex groups. Otherwise, we
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can repeat the arguments above, decomposing V2 maximally over finite subgroups,

decomposing the resulting vertex groups maximally over 2-ended subgroups, etc.

Complexity of the resulting groups continues to decrease, so we must eventually

reach a collection of subgroups of G which are unsplittable over any finite or two-

ended subgroups, as desired.

3.3 Application to 3-manifolds

We will now use this result to get the hierarchy theorem for 3-manifolds stated

earlier. First, we recall that a surface N in a 3-manifold M is said to be essential

if N is properly embedded in M , 2-sided, π1-injective into M , and is not properly

homotopic into the boundary of M .

Lemma 3.3.1. Let M be a compact, connected 3-manifold, and let A = {Ai}i∈I be

a nonempty, finite collection of disjoint, non-parallel, essential surfaces in M , such

that {π1(Ai)} is contained in a family C of subgroups of G = π1(M) which is closed

under subgroups and conjugation. Suppose further that A is maximal with respect to

collections of disjoint, non-parallel essential surfaces of M with fundamental groups

in C . Let Γ be the decomposition of G which is dual to A . Then Γ is a maximal

proper decomposition of G over C .

Proof. Assume for the contrapositive that Γ is not maximal. Then there exists some

vertex group V of Γ which admits a proper splitting over some C ∈ C which is

compatible with Γ. Let L be the graph of groups for such a splitting of V , and let p

denote the midpoint of the edge of L. Let N denote the union of the component of

M −A which corresponds to V with the surfaces Ai which correspond to the edge

groups incident to V . We can define a map from N to L which is an isomorphism on

π1, with each Ai in N mapped to a vertex of L, and such that the map is transverse
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to p. Note that each component of the inverse image of p is a properly embedded,

2-sided surface in N . Furthermore, Stallings showed in [29] that we can homotope

this map on N rel ∂N to a new map f such that the surfaces comprising f−1(p) are

π1-injective in M (see also [15]).

We may further assume that these components are not parallel to the boundary of

N , because of the following. Let S denote a component of f−1(p) which is boundary

parallel in N , and let R be the region made up of S and the component of N − S

through which S can be homotoped to ∂N , so R is homeomorphic to S × I. Then

we may homotope f to take R to p, and then to take a small neighborhood of R

past p, so that p is not contained in f(R). We may then homotope f to map the

elements of A ∩ R to the other vertex of L, so that still p is not in f(R), and still

f is an isomorphism on π1. Note that, because L is the graph of groups of a proper

splitting, and f is surjective on π1, this process will never make f−1(p) empty.

We have arranged that the components of f−1(p) are essential in M . Because f

is π1-injective, the fundamental group of each component of f−1(p) is conjugate to

a subgroup of C and so is in C . Since f maps the Ai’s to vertices of L, the surfaces

f−1(p) are disjoint from A . Also, as components of f−1(p) are not boundary parallel

in N , they are not parallel to elements of A . Hence A is not maximal.

We note that each component of f−1(p) induces a refinement of Γ. Suppose, in

addition to the hypotheses on M in the above lemma, that M is irreducible. Then

we can homotope f to remove any sphere components of f−1(p), so that any simply

connected component of f−1(p) must be a compressing disk for M . Thus, a maximal

collection of compressing disks in an irreducible, connected 3-manifold M induces a

maximal proper decomposition of G over the trivial group.

It also follows that, if A is a maximal collection of annuli in M , and M is as in
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the above lemma, has incompressible boundary and is irreducible, then the graph

of groups Γ corresponding to A must be maximal over the family generated by all

infinite cyclic subgroups of π1(M).

Recall that, if M is orientable and irreducible and π1(M) = G is infinite, then

G has no torsion (see Hempel [15]). Hence any essential surface in M with finite

fundamental group must be simply connected, and any essential surface with two-

ended fundamental group must be an annulus. We also note that it follows from

the Geometrization Theorem proven by Perelman (see [7], [19]) that M as above

has a hyperbolic fundamental group if and only if M is hyperbolic and has no torus

boundary components.

These observations, together with Theorem 3.2.9, imply the following theorem.

Theorem 3.3.2. Let M be an irreducible, orientable, compact 3-manifold with hy-

perbolic fundamental group. The process of decomposing M along any maximal, dis-

joint collection of compressing disks, then decomposing the resulting manifolds along

maximal, disjoint collections of essential annuli, then the resulting manifolds along

compressing disks, then again along essential annuli and so on, must eventually ter-

minate with a collection of manifolds, each of which has incompressible boundary and

admits no essential annuli, or is a 3-ball.



CHAPTER IV

On the quasi-isometry invariance of the Scott-Swarup JSJ
decompositions of groups

Roughly speaking, a JSJ decomposition of a group is a graph of groups decomposi-

tion that encapsulates the structure of the different splittings the group admits over

two-ended subgroups, in the same way that a JSJ decomposition of a 3-manifold

indicates the structure of the essential maps of annuli and tori into the manifold.

Many different versions of these decompositions have been defined (see [17], [28],

[22], [4], [5], [11], [13]). In particular, Dunwoody and Sageev defined a version in

[10], and, more recently, Scott and Swarup defined a version in [25]. In the most

general cases, the decompositions have been shown to exist for one-ended, finitely

presented groups.

In [21], Papasoglu proved that Dunwoody and Sageev’s JSJ decompositions of

one-ended, finitely presented groups are invariant under quasi-isometries. By this,

we mean that if f : CG → CG′ is a quasi-isometry, then the image under f of any

vertex group of a JSJ decomposition of G is a finite Hausdorff distance from a vertex

group of a JSJ decomposition of G′. In the following, we show the quasi-isometry

invariance of vertex groups of the JSJ decompositions of Scott and Swarup for which

the methods of [21] are not sufficient.

We also show that properties of these vertex groups, such as whether or not they

35



36

are finitely or infinitely generated, are preserved under quasi-isometry. We do this

by analyzing “quasi-lines” in the Cayley graphs of groups that separate the graphs

into at least three “essential” components, making use of several results from [21].

It turns out that this simple separation property gives the rigidity necessary to draw

algebraic conclusions from the geometry of the groups.

4.1 The Scott-Swarup JSJ decomposition

In [25], Scott and Swarup construct a canonical JSJ decomposition Γ1(G) of any

one-ended, finitely presented group G, in which the vertex groups “enclose” all split-

tings of G over two-ended subgroups, and moreover, enclose all nontrivial almost

invariant subsets of G over two-ended subgroups. We will now describe Γ1(G).

Γ1(G) is a regular neighborhood, as defined in [25], of all the nontrivial almost

invariant subsets of G over two-ended subgroups. Thus Γ1(G) is a bipartite graph

of groups with fundamental group G, and with vertices said to be either V0-vertices

or V1-vertices. If v is a vertex of Γ1(G), then its vertex group, G(v), is defined up to

conjugacy, and is said to be either a V0- or V1-vertex group, depending on whether v

is a V0- or V1-vertex.

Furthermore, each nontrivial almost invariant subset of G over a two-ended sub-

group is “enclosed” by some V0-vertex. In the case that such an almost invariant set

is associated to a splitting of G, this means that the enclosing V0-vertex group admits

a splitting that is compatible with Γ1(G). Moreover, when Γ1(G) is refined by this

splitting, the added edge is associated to the given splitting of G. Each V0-vertex of

Γ1(G) encloses at least one such splitting of G over a two-ended subgroup.

Each V0-vertex v is one of three types:

1. v is isolated
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2. v is of Fuchsian type, or

3. v is of commensurizer type.

If v is isolated, then v is of valence two. Moreover, if we let e1 and e2 denote the

edges incident to v, then the inclusions of G(e1) and G(e2) into G(v) are isomor-

phisms, and all three subgroups are two-ended.

If v is of Fuchsian type, then G(v) is finite-by-Fuchsian, where the Fuchsian group

is a discrete group of isometries of the hyperbolic plane or of the Euclidean plane,

but is not finite nor two-ended. Associated to each peripheral subgroup of G(v)

there is exactly one corresponding edge e incident to v, and G(e) is conjugate to that

subgroup.

Lastly, if v is of commensurizer type, then v is not isolated nor of Fuchsian type,

and there is a two-ended subgroup H of G such that G(v) =CommG(H). Only in

this case is it possible that the subgroups carried by the edges incident to v are not

two-ended, and in fact they may not even be finitely generated. From this, one is

able to see that the V1-vertex groups of Γ1(G) may not be finitely generated either.

We will now discuss properties of almost invariant sets which depend on the types

of the vertices by which the sets are enclosed. In [18], given a group G with a

subgroup H, Kropholler and Roller defined the number of coends of H in G to be

ẽ(G,H) = dimF2(PG/FHG)G,

where PG is the power set of all subsets of G, and FHG is the set of all H-finite

subsets of G. PG/FHG forms a vector space over Z/2Z under the operation of

symmetric difference. Thus a subset X of G represents an element of (PG/FHG)G if

and only if the symmetric difference X+Xg is H-finite for all g ∈ G. (Note that this

is the same as the definition of an H-almost invariant set, without the assumption
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that HX = X.) This is equivalent to the coboundary δX of X being an H-finite set

of edges. We call any such X an H-KR almost invariant set.

All almost invariant subsets of G discussed in the remainder of this subsection are

over two-ended subgroups.

If v is isolated, then the only almost invariant sets enclosed by v are those from

the splitting of G associated to the edges incident to v, hence v does not enclose

any crossing almost invariant sets. Conversely, if a V0-vertex v does not enclose

any crossing almost invariant sets over two-ended subgroups, then v is isolated.

Moreover, if X is an H-almost invariant set of G which is enclosed by v, then by

part 1 of Theorem 1.8 from [26], ẽ(G,H) must be 2 or 3.

If v is of Fuchsian type, then v is not isolated, and any almost invariant sets

enclosed by v that cross do so strongly. (See Propositions 7.2, 7.4 and 7.5 of [25].)

Also, Theorem 7.8 of [25], tells us that, if X is an H-almost invariant set that is

enclosed by a vertex v of Fuchsian type, then we have that either ẽ(G,H) = 2, or X

is associated to the splitting given by an edge incident to v.

If v is of commensurizer type, then any two almost invariant sets enclosed by v that

cross do so weakly. Moreover, if X and Y are almost invariant sets over subgroups H

and K that are enclosed by v, then H and K are commensurable (see Propositions

7.3 and 7.5 of [25]), G(v) = CommG(H) = CommG(K), and ẽ(G,H) = ẽ(G,K) is at

least 4. Conversely, if H is a two-ended subgroup of G such that ẽ(G,H) ≥ 4, then

there is a commensurizer vertex group of Γ1(G) that is equal to CommG(H). (See

part 1 of Theorem 1.8 from [26].)
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4.2 Papasoglu’s result for ΓDS

We now consider JSJ decompositions of quasi-isometric one-ended finitely pre-

sented groups. We shall first discuss the existing results for the JSJ decomposition

given by Dunwoody and Sageev in [10].

The JSJ decomposition of a group G as given in [10] is a graph of groups decom-

position of G, say ΓDS(G), which is bipartite. Call the two types of vertex groups

white and black, and then all the black vertex groups are either of Fuchsian type or

of isolated type (see the previous section). Thus all of the edge groups of ΓDS(G)

are two-ended. ΓDS(G) describes all the splittings of G over two-ended subgroups,

in that if G splits over a two-ended subgroup C, either as A ∗C B or A∗C , then C is

conjugate into a vertex group of ΓDS, has a finite index subgroup which is contained

in a black vertex group, and each white vertex group is conjugate into A or B.

In [21], Papasoglu proves the quasi-isometry invariance of this JSJ decomposition.

Specifically, the author proves the following.

Theorem 4.2.1. [21] Let G and G′ be one-ended, finitely presented groups. Suppose

that f : CG → CG′ is a quasi-isometry. Then there is a constant C > 0 such that if

A is a subgroup of G conjugate to a vertex group, a vertex group of Fuchsian type, or

an edge group of the graph of groups ΓDS(G), then f(A) has Hausdorff distance less

than or equal to C from a subgroup of G′ conjugate to, respectively, a vertex group,

a vertex group of Fuchsian type, or an edge group of ΓDS(G′).

Given any one-ended, finitely presented group G, ΓDS(G) differs from Γ1(G) as

follows. The Fuchsian type vertex groups of ΓDS(G) and the Fuchsian type vertex

groups of Γ1(G) are the same (up to conjugacy), and have the same edge groups.

Also, the isolated vertex groups of Γ1(G) are vertex groups of ΓDS(G), and have the



40

same edge groups. Thus V1-vertices adjacent only to Fuchsian and isolated vertices

of Γ1(G) are the same as the corresponding white vertex groups of ΓDS(G). So Γ1(G)

differs from ΓDS(G) only at the vertices of commensurizer type, and the adjacent

edges and V1-vertices.

The edges and V1-vertices adjacent to vertices of commensurizer type need not

have any special structure. We do, however, know a good deal about the structure

of the vertex groups of commensurizer type, so we shall consider those vertex groups

in the following.

4.3 Quasi-lines

In order to study the geometry of vertex groups of Γ1(G) of commensurizer type,

we will make use of the “quasi-lines” that were fundamental in [21]. In this section,

we define these objects, and discuss some of their properties.

Let X be a metric space, and let l : R → X be injective, continuous, and

parametrized by arc length (that is, for each x, y ∈ R, length(l[x, y]) = dR(x, y)).

Suppose further that l is a uniformly proper map, i.e. that for every M > 0, there

exists an N > 0 such that if A ⊂ X with diam(A) < M , then diam(l−1(A)) < N .

Then we shall say that l is a line.

To a line l, we associate the distortion function Dl(t) : R+ → R+, where

Dl(t) = sup{diam(l−1(A)) : diam(A) ≤ t}.

Let L be a closed, path connected subspace of X containing l, with N > 0 such that

any point in L can be joined to l by a path in L of length less than or equal to N .

If φ : R+ → R+ is a proper, increasing function and, for all t > 0, Dl(t) ≤ φ(t), then

we will say that L is a (φ,N) quasi-line, or simply, a quasi-line. We shall refer to φ

and N as constants for L.
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The following lemma shows that the restriction that a line be embedded is not an

important one.

Lemma 4.3.1. Let l′ be a uniformly proper simplicial map from R into a graph

X (taking R to be a simplicial complex with vertex set Z). Then there is a line

l : R→ X with Im(l) ⊂ Im(l′), and such that dHaus(Im(l),Im(l′)) <∞.

Proof. As l′ is uniformly proper, there is some maximal n = n(l′) ∈ R such that the

preimage of some point in Im(l′) has diameter n. Because l′ is simplicial, note that

n ∈ Z. We shall induct on n. Note that we are done if n = 0, for then l′ is already

an embedding.

Let S denote a maximal disjoint set of closed intervals of size n in R such that

the endpoints of each interval are sent to the same vertex of X by l′. Let ι : R→ R

denote the quotient map attained by identifying each component of S ⊂ R to a point,

and define ι−1 to take each such point to an endpoint of its full preimage. Since

the endpoints of each component of S are identified by l′, there is a well-defined,

continuous map l1 : R→ X defined by l1(t) = l′ ◦ ι−1(t).

Clearly l1 is simplicial, thus is parameterized by arc length, and we note that l1

is uniformly proper, for if A is any subset of X, then diam(l−1
1 (A)) ≤ diam(l′−1(A)).

Furthermore, we have that dHaus(Im(l1), Im(l′)) ≤ 1
2
n(l′).

It remains to show that n(l1) < n(l′). To see this, let us suppose that there are

t0, t1 ∈ R such that |t0− t1| ≥ n(l′), and l1(t0) = l1(t1). Suppose that t0 is the image

of a collapsed segment under ι. Then there exist two points s, s′ ∈ R that are the

endpoints of this segment, with ι(s) = ι(s′) = t0, l′(s) = l′(s′), and |s − s′| = n(l′).

If ι−1(t1) is a point, then let s1 denote that point. If ι−1(t1) is a segment, then

let s1 denote an endpoint of that segment. Then l′(s1) = l′(s) = l′(s′), and either

|s1 − s| > |s − s′| or |s1 − s′| > |s − s′|. But |s − s′| = n(l′), so this contradicts the



42

definition of the function n.

Thus we may suppose that ι−1(t0) and ι−1(t1) are single points. If ι collapses

no segments in the interval [ι−1(t0), ι−1(t1)] then we reach another contradiction, for

[ι−1(t0), ι−1(t1)] must be an interval of size n(l′), whose endpoints are mapped to the

same vertex of X by l′, and that is disjoint from S. This contradicts the maximality

of S.

Finally, suppose that ι collapses a segment [s, s′] in [ι−1(t0), ι−1(t1)]. Then |s−s′| =

n(l′), so |ι−1(t0)− ι−1(t1)| > n(l′). The endpoints ι−1(t0) and ι−1(t1) must share the

same image under l′, and again this contradicts the definition of the function n.

Thus n(l1) < n(l′), and the lemma follows.

In this paper, we will be concerned with two-ended subgroups, their (left) cosets,

and images of these under quasi-isometries. The following lemmas indicate why

quasi-lines will be relevant to our discussion.

Lemma 4.3.2. Let G be a finitely generated group, and H ⊂ G a two-ended subgroup.

If R > 0 is large enough so that NR(H) ⊂ CG is connected, then it is a quasi-line.

Proof. Let H be a two-ended subgroup of G, let 〈h〉 ∼= Z be a finite index subgroup

of H, and let R > 0 be such that NR(H) ⊂ CG is connected. Let p be a simplicial

path in NR(H) from the identity to h. Let l0 : R → NR(H) ⊂ CG be the natural

map onto ∪n∈Zh
n · p that is parameterized by arc length.

Note that there is some N > 0 depending on 〈h〉 and R such that each point of

NR(H) can be connected to Im(l0) by a path in NR(H) of length less than or equal

to N . If we can show that l0 is uniformly proper, then it will follow from Lemma

4.3.1 that NR(H) is a quasi-line.

We claim first that there is a bound on the diameter of the preimage under l0 of
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any vertex in CG. Let v1, . . . , vk be the vertices of p. Since G acts freely on CG, for

any distinct indices i, j, there is at most one nonzero value of n such that vi = hn ·vj.

Thus l−1
0 (vi) is a set of at most k points, say of diameter di. Since 〈h〉 acts on Im(l0)

by simplicial isometries, we also have that diam(l−1
0 (hn ·vi)) = di for any n. It follows

that the diameter of the preimage of any vertex of CG is bounded by maxi{di}.

Now fix some M > 0, and suppose that there are subsets Yi of CG such that

diam(l−1
0 (Yi)) → ∞, with diam(Yi) < M for all i. It follows that there are points

ai, bi ∈ R such that d(ai, bi)→∞, while d(l0(ai), l0(bi)) < M for all i. We can further

assume that l0(ai) and l0(bi) are vertices of CG, for each i.

By translating the pairs (ai, bi) by the action of elements of 〈h〉, we may assume

that the image of each ai is contained in p. Since p has only finitely many vertices, by

passing to a subsequence, we can further assume that all ai get mapped to the same

vertex v. Let A denote l−1
0 (v), and recall from the above that diam(A) is bounded.

Then dHaus(A, bi) → ∞, and the l0(bi) are all contained in a ball about v with

radius M . Any such ball has only finitely many vertices, so infinitely many bi get

mapped to some vertex v′. But l−1
0 (v′) also has finite diameter, and this contradicts

that dHaus(A, bi)→∞.

Lemma 4.3.3. Let f : CG → CG′ be a (Λ, K) quasi-isometry and let L ⊂ CG be a

(φ,N) quasi-line. Then there is some R0 = R0(Λ, K, φ,N) > 0 such that, for all

R ≥ R0, NR(f(L)) is a quasi-line.

Proof. Let l be the line associated to L. Note that f ◦ l|Z is a uniformly proper map

of Z into f(L) ⊂ CG′ . Let zi be a vertex in CG′ that is closest to f ◦ l(i), for each

i ∈ Z, and let d be an upper bound for d(zi, zi+1), for all i ∈ Z. Note that d can be

taken to depend only on the constants associated to L and f .

Then there is some R0 ≥ d (which can also be taken to depend only on Λ, K, φ,
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and N) such that L′ = NR0(f(L)) is connected. For each i ∈ Z, NR0(f(L)) contains

a shortest (simplicial) path pi from zi to zi+1. Let l′′ denote the natural map of

R onto ∪ipi that is parameterized by arc length. Since the restriction of l′′ to the

preimage of {zi} is uniformly proper, and each path pi is a geodesic, it follows that

l′′ is uniformly proper.

Note that there is some N > 0 such that each point of NR0(f(L)) can be connected

to Im(l′′) by a path in NR0(f(L)) of length less than or equal to N . Thus Lemma

4.3.1 implies that NR0(f(L)) is a quasi-line. Certainly if R > R0, then NR(f(L)) is

also a quasi-line, so Lemma 4.3.3 follows.

Remark 4.3.4. In this paper, we shall work with a quasi-isometry f : CG → CG′ , and

a two-ended subgroup H of G. We will discuss a neighborhood of NR(H) that is a

quasi-line in CG, as well as translates of this quasi-line under the action of G. We

will also discuss quasi-lines in CG′ that are neighborhoods of the images under f of

these translates, given by Lemma 4.3.3.

As a group acts on its Cayley graph by isometries, all of the translates of NR(H)

will be quasi-lines, and shall share the same constants. Since these are all isometric,

the argument given in Lemma 4.3.3 shows that the quasi-lines in CG′ that we shall

consider will also have the same constants as one another.

We note next that quasi-lines are two-ended:

Lemma 4.3.5. Let L be a quasi-line contained in a locally finite simplicial graph X.

Then e(L) = 2.

Proof. Let φ and N be constants for L, and let l ⊂ L be the line associated to L.

Then every point in L can be connected by a path of length less than or equal to N

to l, and e(l) = 2, so e(L) ≤ 2. As l is injective and of unit speed, and X is a locally
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finite graph, we must have that e(L) ≥ 1.

To see that e(L) = 2, first note that if a, b ∈ R are such that |a − b| > φ(2N),

then d(l(a), l(b)) > 2N . Thus if we fix a′ < b′ ∈ R such that b′ − a′ > φ(2N), then,

for any q ∈ l((−∞, a′]) and q′ ∈ l([b′,∞)), d(q, q′) > 2N . Let K be the set of all

points p ∈ L such that there is a path of length less than or equal to N contained in

L that connects p to l((a′, b′)). Since X is locally finite, K is compact. Thus L−K

contains two infinite components - one intersecting l((−∞, a′]) and one intersecting

l([b′,∞)).

Definition 4.3.6. If L is a quasi-line in a metric space X, then a connected com-

ponent C of X −L is said to be essential if C ∪L has one end. Otherwise, C is said

to be inessential.

If C is not contained in NR(L), for any R ≥ 0, then we shall say that C is nearly

essential.

Definition 4.3.7. If there is some m0 > 0 such that, for each p ∈ L, each essential

component of the complement of L intersects a vertex of Bm0(p), then we say that

L satisfies ess(m0).

Definition 4.3.8. If m1 > 0 is such that each inessential component of the com-

plement of L is contained in the m1-neighborhood of L, then we say that L satisfies

iness(m1).

L is said to be n-separating if the complement of L has at least n essential com-

ponents.

Scott and Swarup show that, if CommG(H) is a vertex group of Γ1(G) of commen-

surizer type, then ẽ(G,H) ≥ 4 (see [26], Theorem 1.8). We will see in Lemma 4.4.1

that this is equivalent to there being some R > 0 such that NR(H) is a 4-separating
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quasi-line.

Next, we shall show that any quasi-line in a one-ended finitely presented group has

only finitely many essential components in its complement, and moreover satisfies

ess(m0) for some m0. In doing this, we will make use of the following:

Definition 4.3.9. Let L and C denote subsets of a metric space X, let n > 0, and

let x, y ∈ C ∩L. Then we shall say that x and y are connected by an (L, n)-chain in

C ∩ L if there are points x = z0, z1, . . . , zk = y in C ∩ L such that, for each i, there

is a path in L connecting zi to zi+1 of length less than or equal to n.

In the proofs of the next lemmas, we shall work in the Cayley complex, C C , for

G. Recall that, if G = 〈S : R〉 is a finite presentation for G, then the associated

Cayley complex is the universal cover of the 2-complex made up of one vertex, an edge

corresponding to each set {s, s−1} of elements of S, and a disk glued on corresponding

to each relation in R. The 1-skeleton of C C is the Cayley graph CG for G with respect

to S, and C C is simply connected.

Lemma 4.3.10. Let G be a finitely presented group with finite presentation 〈S : R〉,

let L be a (φ,N) quasi-line in CG, let 0 < ε � 1 and let Nε(L) denote the ε-

neighborhood of L in C C . Then let L′ be an open set in C C such that L ⊂ L′ ⊂

Nε(L) and such that L′ deformation retracts onto L.

Then there is some n0 = n0(S,R, φ,N, ε) such that, if C ′ denotes any component

of C C −L′, and x, y ∈ C ′ ∩L′, then x and y are connected by an (L′, n0)-chain {zi}

in C ′ ∩ L′. Moreover, the path in L′ connecting any two zi and zi+1 can be taken to

be in L, outside of an initial segment containing zi and a final segment containing

zi+1, each of length less than or equal to ε.

To prove this, we first need the following.
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Lemma 4.3.11. Let G,C C , L, L′, and ε be as in Lemma 4.3.10. Let C C ′′ denote

the union of C C together with a disk added at each simple closed edge path of L′ of

length less than or equal to φ(2(N + ε) + 1) + 2(N + ε) + 1, and let L′′ denote the

union of L′ with these disks. Then L′′ is simply connected.

Proof. Let l be the line associated to L, so that l ⊂ L ⊂ L′, and note that L′ is a

(φ,N + ε) quasi-line. Recall that the edges of C C are of length one, and metrically,

the 2-cells of C C are regular polygons. Let the disks added to create C C ′′ and L′′

metrically be regular polygons.

Assume that there is some simple closed curve γ in L′′ that is not null-homotopic.

Note that γ can be homotoped in L′′ to a simplicial path that is contained in L′ ∩

C C (1) = L′ ∩ (C C ′′)(1). Let γ now denote the image curve under this homotopy.

There exists a further homotopy of γ to a curve that is contained in l except for

finitely many segments in L′ ∩ C C (1) of length bounded by 2(N + ε) + 1 as follows:

suppose that γ meets l, and that σ is a component of γ − (l ∩ γ) of length greater

than 2(N + ε) + 1. Recall that each point of σ can be joined to l by a path in L′ of

length no more than (N + ε). Let s0, s1, . . . , sk be points in σ such that s0 and sk are

the endpoints of σ, and, for each i, the portion pi of σ between si and si+1 is of length

no more than 1. Let qi denote a shortest edge path from si to l (so qi is constant

for i = 0, k), and homotope σ so that each pi is replaced with −qi ∪ pi ∪ qi+1, where

−qi denotes the path qi, traversed in reverse. Repeat this process on any remaining

segments of γ − (l ∩ γ) of length greater than 2(N + ε) + 1, and it follows that the

resulting path is homotopic in L′′ to γ, and is contained in l except for segments of

length bounded by 2(N + ε) + 1.

If γ does not meet l, then we can instead apply the above process, with σ = γ, to

points s0, . . . , sk of σ such that, for each i, if j denotes i mod (k + 1) and j′ denotes
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(i + 1) mod (k + 1), then the portion of σ between sj and sj′ is of length no more

than 1.

Now consider the set of all closed edge paths that are homotopic to γ within

L′′, that meet l, and that are contained in l except for finitely many segments in

L′ ∩ C C (1) of length bounded by 2(N + ε) + 1, and choose one that minimizes the

number of such segments. If it is not simple, then we may consider instead a simple

closed subcurve of it that is not null-homotopic. Denote this again by γ.

Let Σ = {σi} be the set of segments of γ − (l ∩ γ). We shall induct on |Σ|. We

note that, since γ is simple and l is an embedding, |Σ| > 0.

If |Σ| = 1, then let Σ = {σ}, and let p and q denote the endpoints of σ. Recall

that d(l−1(p), l−1(q)) ≤ φ(d(p, q)) ≤ φ(2(N + ε) + 1). Thus γ represents a word in

the generators of G of length less than or equal to φ(2(N+ε)+1)+2(N+ε)+1. But

this means that L′′ must contain a 2-cell attached along γ, so γ is null-homotopic.

Fix i > 1, and assume that any simple closed edge path in L′′ with |Σ| < i is

null-homotopic in L′′. Let γ now be a simple closed edge path in L′′, homotoped as

mentioned above, with |Σ| = i. Fix σ ∈ Σ and let p and q again be the endpoints of

σ. Then we again have that d(l−1(p), l−1(q)) ≤ φ(d(p, q)) ≤ φ(2(N + ε) + 1). Thus

{σ ∪ l([l−1(p), l−1(q)])} ⊂ (σ ∪ l) is a closed curve in L′ of length less than or equal

to φ(2(N + ε) + 1) + 2(N + ε) + 1. But then L′′ contains a disk D with boundary

attached to this curve.

Thus σ can be homotoped, rel ∂σ, across D to lie in l. Doing this decreases

|Σ|. The resulting closed curve may no longer be simple, but can be homotoped

to remove spikes, so that the resulting curve is equal to a union of closed, simple

subcurves and segments connecting them. Each subcurve has less than |Σ| segments

that are not contained in l, thus are null-homotopic in L′′. It follows that γ was



49

originally null-homotopic in L′′. Thus L′′ is simply connected.

Proof of Lemma 4.3.10. Again let l be the line associated to L, and let C C ′′ and L′′

be as in Lemma 4.3.11.

We shall first show that, if this lemma holds for L′′ in C C ′′, then it holds for

L′ in C C . Thus assume that we can find some n′′0 > 0 so that, for any component

C ′′ of the complement of L′′ in C C ′′, an (L′′, n′′0)-chain in C ′′ ∩ L′′ connects any

two points in C ′′ ∩ L′′. Suppose also, as in the statement of the lemma, that paths

in L′′ connecting points in the (L′′, n0)-chains can be taken to be in L, outside of

ε-neighborhoods of their endpoints.

Recall that L′′ differs from L′ only by disks with boundary in L′, and these disks

are not contained in C C . It follows that the intersections of L′ with the components

of C C−L′ are the same as the intersections of L′′ with the closures of the components

of C C ′′ − L′′. Let C ′ be a component of C C − L′. Then there is automatically an

(L′, n0)-chain as desired between any two points of C ′ ∩ L′, for n0 ≥ n′′0. Thus, the

lemma will follow for n0 = n′′0.

Now, we shall prove the lemma for L′′, which is simply connected. If {Cα} denotes

all of the components of the complement of L′′, then we can apply Van Kampen’s

theorem to {Cα ∪ L′′} to see that each Cα ∪ L′′ is simply connected. Since L′′ and

each Cα are connected, we have that Cα ∩ L′′ is connected. Thus for any fixed

x, y ∈ Cα ∩ L′′, there exists a path p from x to y contained in Cα ∩ L′′.

Without loss of generality, we can assume that the frontier of L′ (which equals the

frontier of L′′) meets any edge of (C C ′′)(1) in only finitely many points. The group

G has one end and C C is simply connected, thus each edge of C C is contained in a

2-cell. The same is true for C C ′′, thus we can take |{p∩ (C C ′′)(1)}| to be finite, with

p still contained in Cα ∩ L′′. Let z0, z1, . . . , zk denote the elements of p ∩ (C C ′′)(1),
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numbered in the order in which they are traversed by p, traveling from x to y, with

z0 = x, zk = y.

Since G is finitely presented, there is some K0 = K0(S,R) such that K0 is the

maximal perimeter of a 2-cell in C C . Thus K ′′0 = max{K0, φ(2(N + ε) + 1) + 2(N +

ε)+1} is the maximum perimeter of 2-cells in C C ′′. Any component of p− (C C ′′)(1)

must be contained in such a cell, thus its interior can be replaced by a segment in

(C C ′′)(1) with length less than K ′′0 . As p ⊂ Cα ∩ L′′ = Cα ∩ L′, and L′ deformation

retracts to L, we can further assume that this segment is contained in L′. Hence each

such path is contained in L′′, so {zi} is an (L′′, K ′′0 )-chain from x to y in Cα ∩ L′′.

It remains to show that there are paths between consecutive zi’s that are contained

in L except near their endpoints and are of bounded length. Recall that l is the line

associated to L. Let pi be the path in L′′ ∩ (C C ′′)(1) of length less than or equal to

K ′′0 connecting zi to zi+1, and let wj be a point in l that can be connected to zj by

a path qj of length less than or equal to N + ε. We can take qj to be contained in

L, except for initial and terminal segments of length less than or equal to ε. Then

d(wi, wi+1) ≤ K ′′0 + 2(N + ε), so there is a path p′i in l from wi to wi+1, of length less

than or equal to φ(K ′′0 + 2(N + ε)). Then qi ∪ p′i ∪ qi+1 gives us a path between zi

and zi+1 of length less than or equal to K ′′0 + 2(N + ε) + φ(K ′′0 + 2(N + ε)), that is

contained in L except for initial and terminal segments no longer than ε.

Thus, if Cα denotes any complementary component of L′′, then, for any n′′0 >

[K ′′0 + 2(N + ε) + φ(K ′′0 + 2(N + ε))], any two points of Cα ∩L′′ can be connected by

an (L′′, n′′0)-chain (which is also a (L′, n′′0)-chain) of paths contained in L, outside of

initial and final subpaths of length no more than ε in L′. Hence the lemma follows,

for any n0 > [K ′′0 + 2(N + ε) + φ(K ′′0 + 2(N + ε))].

We can now prove that quasi-lines in finitely presented groups satisfy ess(m0).
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Lemma 4.3.12. Let G = 〈S : R〉 be a one-ended finitely presented group, with

L a (φ,N) quasi-line in CG. Then CG − L contains only finitely many essential

components. Moreover, there is some m0 = m0(S,R, φ,N) such that L satisfies

ess(m0).

Proof. We shall prove that L satisfies ess(m0), for some m0 > 0. Since CG is lo-

cally finite, it will follow that the complement of L contains finitely many essential

components.

Let C be a component of the complement of L in CG. We shall use Lemma 4.3.10

to show that there is some n > 0 (not depending on our choice of C) such that any

x, y ∈ C ∩ L are connected by an (L, n)-chain in C ∩ L ⊂ CG ⊂ C C . (Recall that

in Lemma 4.3.10, we proved a similar statement in C C .) Let L′ be as defined in

Lemma 4.3.10, so, for some 0 < ε � 1, L ⊂ L′ ⊂ Nε(L), L′ is open in C C , and L′

deformation retracts onto L.

Fix any such x and y, and, as C is connected, there is a simple oriented edge path

p in C connecting them. Recall that L′ deformation retracts onto L, so each edge

in p must intersect some component C ′ of C C − L′, with (C ′ ∩ C C (1)) ⊂ C. Thus

p is a union of segments p1, p2, . . . , pk such that, for each i, the terminal vertex of

pi is equal to the initial vertex of pi+1, and each pi intersects L′ in components of

length no more than ε containing its initial and terminal vertices, with the rest of pi

contained in some component C ′ of the complement of L′.

By Lemma 4.3.10, the endpoints of each pi can be connected by an (L′, n0)-chain

{z′j} in C ′ ∩ L′. Recall that, moreover, a path of length no more than n0 between

any two consecutive points in the chain is in L, outside of initial and final segments

of length no more than ε, and that L′ deformation retracts onto L. Thus, each z′j

is a distance of no more than ε from a point zj ∈ C ∩ L such that {zj} forms an
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(L, n0 + 2ε)-chain in C ∩ L, connecting the endpoints of pi. Concatenating these

chains, we see that, for n = n0 + 2ε, x and y can be connected by an (L, n)-chain in

C ∩ L as desired.

From now on, we shall work only in CG, not C C .

We shall now find an m0 > 0 such that there is an (L, n)-chain in the frontier of

each essential component C of the complement of L that must intersect the m0-ball

about any given point of L.

Fix any a ∈ L and R � 0. As C is essential, e(C ∪ L) = 1, and, from Lemma

4.3.5, recall that L must have two ends. It follows then that C must intersect both

unbounded components of L−BR(a); let x be in the intersection of C ∩L with one,

and y in the intersection of C ∩ L with the other. By the work above, there exists

an (L, n)-chain, {zi}, from x to y in C ∩ L.

Recall that L is a (φ,N) quasi-line, and let l be the line associated to L. Then,

for each i, there is a path in L of length less than or equal to N connecting zi to

some wi ∈ l. For each i, d(zi, zi+1) ≤ n, thus d(wi, wi+1) ≤ n+ 2N , and thus there is

a path in l between any two adjacent wi’s, of length less than or equal to φ(n+ 2N).

Let a0 ∈ l be of distance less than or equal to N from a ∈ L. As R � 0, x and

y are such that there is some i with l−1(wi) ≤ l−1(a0) ≤ l−1(wi±1), and hence, for

some j, d(a0, wj) ≤ 1
2
φ(n+ 2N). Thus

d(a, zj) ≤ d(a, a0) + d(a0, wj) + d(wj, zj) ≤
1

2
φ(n+ 2N) + 2N.

Since zj ∈ C, and zj is of distance less than 1 from a vertex of C, it follows that, for

any m0 ≥ [1
2
φ(n+ 2N) + 2N + 1], C intersects Bm0(a) in a vertex. Thus L satisfies

ess(m0).

We note that the argument above also proves the following:
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Corollary 4.3.13. Let G = 〈S : R〉 be a one-ended finitely presented group, with L

a (φ,N) quasi-line in CG and C a component of CG−L, which need not be essential.

Let m0 = m0(S,R, φ,N) be as in Lemma 4.3.12.

If K ⊂ L is such that the 2N-neighborhood of K separates L into two infinite

components and C meets both of those components, then Bm0(x) meets C in a vertex,

for each x ∈ K.

Remark 4.3.14. We note that, by Lemma 4.3.12, since all quasi-lines with which we

are concerned in any one Cayley graph will have the same constants, they will all

satisfy ess(m0) for some fixed m0.

Next, we shall see in Proposition 4.3.18 that any 3-separating quasi-line satisfying

ess(m0) and iness(m1) is a finite Hausdorff distance from an infinite cyclic subgroup

of G. As we are going to see in Lemma 4.3.21, Lemma 4.3.22 and Remark 4.3.23,

all of the quasi-lines that we are concerned with satisfy iness(m1), for some m1, so

Proposition 4.3.18 will apply to our setting.

Note that such a statement need not be true for quasi-lines that are not 3-

separating. For example, consider the nearest-point projection of a line l0 in R2

with irrational slope into the Cayley graph of Z2, where the vertices are taken to be

the integer lattice points in R2. Let L denote a large enough neighborhood in CZ2

of the projection of l0 so that L is connected. Then L is a 2-separating quasi-line

in CZ2 that satisfies ess(m0) and iness(m1) for some m0 and m1, and is an infinite

Hausdorff distance from any subgroup of Z2.

In order to prove Proposition 4.3.18, we will need to know that 3-separating

quasi-lines do not cross one another in an essential way. Following [21], we say that

a, b ∈ CG are K0-separated by a quasi-line L if d(a, L) > K0, d(b, L) > K0, and a

and b are in distinct essential components of CG − L. The following is Proposition
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2.1 from [21]:

Proposition 4.3.15. [21] Let L be a 3-separating (φ,N) quasi-line contained in

the Cayley graph CG of a finitely presented group G = 〈S : R〉, and suppose that

L satisfies iness(m1). Let L′ ⊂ CG be a 2-separating (φ′, N ′) quasi-line satisfying

ess(m′0) and iness(m′1).

Then there exist r = r(S,R, φ,N,m1, φ
′, N ′,m′0,m

′
1) and K0 = K0(S,R, φ,N,m1,

φ′, N ′,m′0,m
′
1) such that for any two points a, b ∈ L, if dCG

(a, b) > r, then a and b

are not K0-separated by L′.

In other words, if there is some a ∈ L that is in an essential component C of the

complement of L′, dCG
(a, L′) > K0, and b ∈ L is in a different essential component

of the complement of L′, with dCG
(a, b) > r, then dCG

(b, L′) ≤ K0.

Let K ′ = max{K0,m
′
1, r − K0}, and note that, since L′ satisfies iness(m′1), it

follows that L is contained in the K ′-neighborhood of L′ ∪ C. Let K = K ′ + 2m′0,

and since L′ satisfies ess(m′0), we also have that L is contained in theK-neighborhood

of C.

Thus we have the following corollary to Proposition 4.3.15:

Corollary 4.3.16. Let L and L′ be 3-separating quasi-lines in the Cayley graph of

a finitely presented group G = 〈S : R〉 such that L is a (φ,N) quasi-line satisfying

iness(m1), and L′ is a (φ′, N ′) quasi-line that satisfies iness(m′1). Then there is some

K = K(S,R, φ,N,m1, φ
′, N ′,m′1) such that L is contained in the K-neighborhood of

an essential component of the complement of L′.

We shall also need the following lemma, both to prove Proposition 4.3.18 and also

to prove another later result.

Lemma 4.3.17. Let G = 〈S : R〉 be a one-ended, finitely presented group, and let
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{Li} be a collection of 3-separating (φ,N) quasi-lines in CG satisfying iness(m1).

Suppose that ∩iLi contains a vertex.

Then there is some constant x = x(S,R, φ,N,m1) such that if, for all i, j, Li *

Nx(L
j), then {Li} is finite.

Proof. Let m0 = m0(S,R, φ,N) be as in Lemma 4.3.12, so that each Li satisfies

ess(m0). Let K = K(S,R, φ,N,m1, φ,N,m1) be as in Corollary 4.3.16, so that,

for each i, j, Li is contained in the K-neighborhood of an essential component of

the complement of Lj. Furthermore, let m′0 = m0(S,R, φ,N + K), so that, for

any i, NK(Li) (which is a (φ,N + K) quasi-line) satisfies ess(m′0). Then let x >

max{K,m′0}, and assume that Li * Nx(L
j) for all i and j.

Let L0 denote {Li}, and suppose that L0 is infinite. Then choose any element L0

from L0. As L0 satisfies ess(m0), the complement of L0 has only finitely many es-

sential components, so there is some essential component B0 whose K-neighborhood

contains infinitely many elements of L0. Let L1 = {L ∈ [L0 − L0] : L ⊂ NK(B0)}.

Choose L1 from L1, and let B′1 be the essential component of the complement of L1

whose K-neighborhood contains L0. Note that x > K implies that B′1 is unique.

As L1 is infinite, there is some essential component of the complement of L1

whose K-neighborhood contains infinitely many elements of L1. Let B1 denote this

component, and let L2 denote {L ∈ [L1 − {L0, L1}] : L ⊂ NK(B1)}. Choose L2

from L2, and continue on in this manner. This produces an infinite sequence of

quasi-lines {Li} and subsets of C , {Bi} and {B′i}, such that, for each i, Bi is an

essential component of the complement of Li such that Lj ⊂ NK(Bi) for all j > i,

and B′i is an essential component of the complement of Li such that Lj ⊂ NK(B′i)

for all j < i (with perhaps Bi = B′i). Each Li is 3-separating, so we may set Di to

be an essential component of the complement of Li that is not equal to Bi nor B′i,
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for each i.

We shall see next that the Di’s are basically disjoint. Let i 6= j, and note that,

since Li is not contained in the x-neighborhood of Lj, there must be some point

p ∈ Li such that Bx(p) does not intersect Lj. Thus Bx(p) is contained in Bj or B′j.

Note that, for each i, Di − NK(Li) is a collection of essential and inessential

components of the complement of NK(Li). Since Di is an essential component of the

complement of Li, it is not contained in NK+m′1
(Li), so Di − NK(Li) must contain

an essential component Ei of the complement of NK(Li). As x > m′0, Bx(p) must

meet each essential component of the complement of NK(Li), so, in particular, Bx(p)

meets Ei, hence Bx(p) ∪ Ei is connected.

The quasi-line Lj is disjoint from Di − NK(Li), hence does not meet Ei, or the

union Bx(p) ∪ Ei. It follows that this union is contained in Bj or B′j, so is disjoint

from Dj, and hence from Ej ⊂ Dj. Thus, the Ei’s are disjoint.

Now we recall that ∩iLi contains a vertex y ∈ CG, and hence Bm′0
(y) intersects

each Ei. Since these regions are disjoint, Bm′0
(y) must contain a collection of vertices

in bijection with {Li}. But G is finitely generated, hence Bm′0
(y) has only finitely

many vertices, and we have reached a contradiction.

Proposition 4.3.18. Let L be a 3-separating (φ,N) quasi-line in the Cayley graph,

CG, of a finitely presented group G, and suppose that L satisfies iness(m1) for some

m1. Then there is some subgroup H ∼= Z of G such that dHaus(L,H) <∞.

Proof. Let L be as in the statement of the proposition, and recall from Lemma 4.3.12

that there is some m0 such that L satisfies ess(m0). Then case 1 of section 6 of [21]

shows that either L is a finite Hausdorff distance from an infinite cyclic subgroup of

G, or there is a different (φ,N) quasi-line L1 such that CG − L1 has more essential

components than CG − L.
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Furthermore, L1 is a limit of translates of L, in the following sense. Fix some

y ∈ L, and choose a sequence {yi} ⊂ L such that d(y, yi)→∞. Let gi be such that

giyi = y, and, by passing to a subsequence, we may assume that, for all i > j,

gjL ∩Bj(y) = giL ∩Bj(y),

where Bj(y) denotes the ball of radius j about y. Then we can define L1 to equal

the set of points p for which there is some i0 = i0(p) such that, for all i > i0, p ∈ giL.

As is argued in [21], in this manner, we may get a sequence of (φ,N) quasi-lines

L = L0, L1, L2, . . ., all satisfying ess(m0) and iness(m1), such that no quasi-line is

a finite Hausdorff distance from an infinite cyclic subgroup of G, and the number of

essential components of their complements is strictly increasing. However, since the

constants of these quasi-lines are not changing, andG is finitely presented and has one

end, by Lemma 4.3.12, there is an upper bound to how many essential components

can be in the complement of each of these quasi-lines. Thus, this sequence must

terminate, and, for some k, Lk is a finite Hausdorff distance from a copy of Z.

We will show now that this is not possible unless k = 0, i.e. that L must be a

finite Hausdorff distance from a copy of Z. Assume instead that k > 0, so that Lk is

a limit of translates of Lk−1, and Lk−1 is not a bounded distance from any copy of Z

in CG. Without loss of generality, we may assume that k = 1.

Recall the sequence {gi} from above. If there is some i such that dHaus(giL, gjL)

is less than or equal to any fixed constant for infinitely many gj, then it is shown in

[21] that there is some g contained in the subgroup generated by these gj such that

〈g〉 ∼= Z, and giL is a finite Hausdorff distance from 〈g〉. Thus dHaus(L, g
−1
i 〈g〉) <∞.

Since dHaus(g
−1
i 〈g〉, g−1

i 〈g〉gi) is bounded by the word length of gi, it follows that L

is a finite Hausdorff distance from g−1
i 〈g〉gi ∼= Z.

So, by passing to a subsequence, we may assume that, for each i and j, giL is not
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in the x-neighborhood of gjL, and gjL is not in the x-neighborhood of giL, for any

fixed x. It follows that there exists an infinite subsequence of {giL} that satisfies the

hypotheses of Lemma 4.3.17, which is a contradiction.

Recall from Definition 4.3.6 that a component C of the complement of a quasi-line

L is said to be essential if e(C ∪ L) = 1, and is said to be nearly essential if C is

contained in no finite neighborhood of L.

Lemma 4.3.19. Let G be a one-ended, finitely generated group, let H be a two-ended

subgroup with R such that NR(H) is a quasi-line, and assume that C is a component

of CG −NR(H). Then C is essential if and only if C is nearly essential.

Proof. As NR(H) has two ends, if C is essential, then C is nearly essential. Thus

our efforts here will be to prove the converse.

Note that if C is a nearly essential component of the complement of NR(H), then,

for any g ∈ H, g ·C is also a nearly essential component of the complement of NR(H).

Suppose that C is not essential. Then C ∪ NR(H) has more than one end, so

there is a compact K ⊂ (C ∪ NR(H)) such that (C ∪ NR(H)) − K has more than

one infinite component.

Let m denote the number of infinite components of (C∪NR(H))−K, and suppose

that m > 2. Since e(G) = 1, each of these components must meet NR(H), and as

e(NR(H)) = 2, the intersection of NR(H) with at least (m− 2) of these components

must be finite. Let M be the union of K with these finite regions of NR(H), and

note that at least (m−2) components of the complement of M in C ∪NR(H) do not

intersect NR(H). Thus CG−M has at least m−1 infinite components, i.e. e(G) > 1,

a contradiction.

It follows that e(C ∪ NR(H)) = 2. We shall show next that we can find a finite
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index subgroup of H that fixes C. Let 〈h〉 be a finite index subgroup of H, and

suppose that the 〈h〉-orbit of C contains infinitely many nearly essential components

of the complement of NR(H).

Suppose, in addition, that C does not meet NR(H) along its entire length, i.e.

that there is some compact region K ′ ⊂ NR(H) and an infinite component L+ of

NR(H) − K ′ such that C does not meet L+. As e(CG) = 1, the intersection of C

with NR(H) must be infinite, so NR(H)−K ′ must have another infinite component,

call it L−, and C must meet L−. Moreover, for any point q ∈ NR(H) and any r > 0,

C must meet L− outside of Br(q).

Let φ and N be constants for NR(H) and let m0 = m0(S,R, φ,N) be as in Lemma

4.3.12. Then, by Corollary 4.3.13, there is some s > 0 such that, for any point p ∈ L−

that is of distance more than s from K ′, C must meet Bm0(p) in a vertex. Fix such

a point p.

As we have assumed that 〈h〉 · C consists of infinitely many components, choose

{ni} such that {hni · C} are distinct. We can moreover choose the {ni} such that

L− ⊂ hni · L−, for all i.

But then each hni · C must meet Bm0(p) in a vertex. CG is finitely generated,

hence there are only finitely many vertices in Bm0(p), but the translates hni · C are

disjoint, thus we have reached a contradiction.

It follows that either the 〈h〉-orbit of C is finite, or that, for any compact subset K ′

of NR(H), C meets both infinite components of NR(H)−K ′. If the latter condition

holds, then Corollary 4.3.13 shows that, although C need not a priori be essential, if

p is any point in NR(H), then Bm0(p) must meet C in a vertex.

Similarly Bm0(p) must meet any translate of C by an element of H in a vertex.

But Bm0(p) has only finitely many vertices, so we have reached a contradiction. Thus
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the H-orbit of C must be a finite collection of nearly essential components, and in

particular the 〈h〉-orbit of C must also be a finite collection.

We have now seen that it will always be the case that the 〈h〉-orbit of C is a

finite collection of components. Thus, by passing to a finite index subgroup of 〈h〉 if

necessary, we can assume that 〈h〉 fixes C.

Recall that we showed above that C ∪ NR(H) has two ends. The subgroup 〈h〉

acts on this union by isometries, so the quotient of C ∪NR(H) by this action must

be compact. It follows that C is contained in the r-neighborhood of NR(H) for some

r > 0, hence is not nearly essential.

Thus C is essential if and only C is nearly essential.

Lemma 4.3.20. Let f : CG → CG′ be a quasi-isometry between the Cayley graphs

of one-ended, finitely presented groups G and G′, and let L ⊂ CG be a quasi-line

such that, for any R ≥ 0, NR(L) satisfies iness(m1) for some m1 = m1(R). Suppose

further that, if C is any component of CG − NR(L), then C is essential if and only

if C is nearly essential.

If R′ ≥ 0 is such that L′ = NR′(f(L)) is a quasi-line, and C ′ is a component of

CG′ − L′, then C ′ is essential if and only if C ′ is nearly essential.

Proof. Fix R′ so that L′ = NR′(f(L)) is a quasi-line. Let f−1 be a quasi-inverse to

f , and note that, for any R > 0, each component of CG′ − L′ gets mapped by f−1

either into NR(L) or into the union of NR(L) with components of its complement.

We claim that we may choose R large enough that, if C ′ is a component of CG′ −L′

such that f−1(C ′) meets a component C of CG − NR(L), then the preimage of no

other component of CG′ − L′ will meet C.

To see this, let Λ, κ, δ be such that f−1 is a (Λ, κ) quasi-isometry, with f−1(L′) ⊂

Nδ(L). Let {C ′α} be the components of CG′−L′, and let R1 > Λκ. Note that, if α 6= β,
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and C ′α−NR1(L
′) and C ′β−NR1(L

′) are nonempty, then any points pα ∈ C ′α−NR1(L
′),

pβ ∈ C ′β −NR1(L
′) are at least a distance of 2Λκ apart.

Let R > (δ + ΛR1 + κ), and note that f−1(NR1(L
′)) ⊂ NR(L). Recall that f−1 is

coarsely surjective, with Nκ(f
−1(CG′)) = CG. Suppose that there is some component

of CG − NR(L) that is met by more than one image f−1(C ′α). Then there are two

such, call them f−1(C ′α) and f−1(C ′β), such that, for some pα ∈ C ′α − NR1(L
′), pβ ∈

C ′β −NR1(L
′), d(f−1(pα), f−1(pβ)) < κ. But this means that 1

Λ
d(pα, pβ)− κ < κ, i.e.

that d(pα, pβ) < 2Λκ, which is a contradiction.

Thus, with R chosen as above, we have that the images under f−1 of different

components of the complement of L′ shall not meet the same component of the

complement of NR(L).

Suppose now that C ′ is a component of CG′−L′ that is nearly essential. Let C0 be

the union of the components of CG −NR(L) that are met by f−1(C ′). Since NR(L)

satisfies iness(m1(R)), C0 must contain an essential component of the complement

of NR(L). Let Ce
0 denote the essential components in the complement of NR(L) that

are met by f−1(C ′), and now we have that Ce
0 is nonempty.

Observe that C ′ ∪ L′ is quasi-isometric to C0 ∪ f−1(L′), which is quasi-isometric

to C0 ∪ L. Certainly this is quasi-isometric to C0 ∪ NR(L), which in turn must be

quasi-isometric to Ce
0 ∪NR(L), since NR(L) satisfies iness(m1(R)).

But NR(L) satisfies ess(m0) for some m0, so the union of NR(L) with any non-

empty collection of essential complementary components must be one-ended. Thus

1 = e(Ce
0 ∪NR(L)) = e(C ′ ∪ L′), so C ′ is essential.

Using Lemma 4.3.19, we note next that quasi-lines associated with two-ended

groups satisfy iness(m1) for some m1.
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Lemma 4.3.21. Let G be a one-ended finitely generated group, and let H be a two-

ended subgroup of G. For any R > 0 such that NR(H) is an (φ,N) quasi-line, NR(H)

satisfies iness(m1), for some m1 depending only on φ,N , and R.

Proof. Let C be an inessential component of CG −NR(H). Then, by Lemma 4.3.19,

C projects onto a bounded component of H\CG − H\NR(H). As H\NR(H) is

compact and H\CG is locally finite, there are only finitely many components of

H\CG − H\NR(H), thus there is some R′ > 0 such that each bounded component

is contained in the R′-neighborhood of the image of H in H\CG. It follows that C

is contained in the R′-neighborhood of H, and hence NR(H) satisfies iness(m1), for

m1 = R′ −R.

We show below that the conclusion of Lemma 4.3.21 is invariant under quasi-

isometries:

Lemma 4.3.22. Let f : CG → CG′ be a (Λ, K) quasi-isometry between the Cayley

graphs of one-ended, finitely presented groups G and G′, and let L ⊂ CG be a quasi-

line such that, for each R ≥ 0, there is some m1 = m1(R) such that NR(L) satisfies

iness(m1). Suppose also that, for each NR(L), a component C of the complement of

NR(L) is essential if and only if C is nearly essential.

If R′ ≥ 0 is such that L′ = NR′(f(L)) is a quasi-line in CG′, then L′ must satisfy

iness(m′1), for some m′1 depending on Λ, K, the values m1(R), and R′.

Proof. Let f−1 denote a quasi-inverse to f , and note that, as we saw in the proof of

Lemma 4.3.20, we may choose R large enough that, if C ′ is a component of CG′ −L′

such that f−1(C ′) meets a component C of CG −NR(L), then the image under f−1

of no other component of CG′ − L′ will meet C.

As f−1 is coarsely surjective, we have that a finite neighborhood of the image
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under f−1 of any component of the complement of L′ is equal to a subset of NR(L),

together with a collection of components of the complement of NR(L). As NR(L)

satisfies iness(m1(R)), it follows that there is some m′1 > 0 such that any component

C ′ of the complement of L′ is either contained in the m′1-neighborhood of L′, or is

contained in no finite neighborhood of L′. Thus, by Lemma 4.3.20, C ′ must be

contained in Nm′1
(L′) or else is essential, i.e. L′ satisfies iness(m′1).

Remark 4.3.23. We note in this remark that the conclusions of the last four lemmas

hold for all the quasi-lines with which we are concerned. If NR(H) is a quasi-line,

then, by Lemma 4.3.19, its complementary components are essential if and only if

they are nearly essential. Thus any of its translates g · NR(H) = NR(gH) shall

also satisfy this statement. It is then an immediate consequence of Lemma 4.3.20

that quasi-lines that are finite neighborhoods of images of such translates, under a

quasi-isometry, will also satisfy the statement.

Similarly, any such NR(H) satisfies iness(m1) for some m1, and hence any trans-

late NR(gH) also satisfies iness(m1). As for the images of such translates under a

quasi-isometry, the constant m′1 in Lemma 4.3.22 depends only on the constants of L,

L′, the values m1(R) such that NR(L) satisfies iness(m1(R)), and the quasi-isometry

f . Recalling Remark 4.3.4, it follows that all of the quasi-lines that are derived from

the images of the quasi-lines NR(gH) satisfy iness(m′1) for some m′1.

4.4 Quasi-isometry invariance of the existence of vertices of commensu-
rizer type

We shall prove in this section that, if G and G′ are one-ended, finitely presented,

quasi-isometric groups, then Γ1(G) has a vertex of commensurizer type if and only

if Γ1(G′) does. We will need the following lemmas.
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Lemma 4.4.1. Let G be a finitely generated group with two-ended subgroup H, and

let n < ∞. Then ẽ(G,H) ≥ n if and only if there is some R > 0 so that NR(H) is

a quasi-line in CG that is n-separating.

Proof. By Lemma 4.3.2, there is some R0 > 0 such that, for any R ≥ R0, NR(H) is

a quasi-line.

Recall that a subset X of G represents an element in the Z/2Z-vector space

(PG/FHG)G if and only if X is an H-KR almost invariant set, i.e. δX is an H-finite

set of edges in CG, i.e. δX is contained in a finite neighborhood of H in CG.

Essential components of the complement of any quasi-line of the form NR(H)

naturally correspond to elements of (PG/FHG)G: let Ŷ be an essential component

of the complement of NR(H), and let Y denote the vertex set of Ŷ . Then clearly

for any ε > 0, ∂Ŷ ⊂ NR+ε(H), hence δY ⊂ NR+1(H), thus Y is an H-KR almost

invariant set. Lemma 4.3.19 tells us that Y must be nontrivial in (PG/FHG)G.

Let NR(H) be n-separating, and let Y1, . . . , Yn be essential components of the

complement of NR(H). They are disjoint, hence represent independent elements of

(PG/FHG)G, and thus ẽ(G,H) ≥ n.

If ẽ(G,H) ≥ n, then we can find representatives X1, . . . , Xn of elements of a basis

for (PG/FHG)G. Thus there is some R > 0 such that, in CG, δXi ⊂ NR(H), for all

i. Then note that each Xi is equivalent in (PG/FHG)G to a union of components

of CG −NR(H). Recall from Lemma 4.3.21 that, for some m1 > 0, NR(H) satisfies

iness(m1), hence each Xi is equivalent to a union of essential components of CG −

NR(H). Since the Xi’s are independent, n of these essential components must be

disjoint, so the complement of NR(H) has at least n distinct essential components,

i.e. NR(H) is n-separating.

Lemma 4.4.2. Let f : CG → CG′ be a quasi-isometry between the Cayley graphs of
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one-ended, finitely presented groups G and G′, and let L be a quasi-line in CG such

that, for each R ≥ 0, there is some m1 = m1(R) such that NR(L) satisfies iness(m1).

Suppose also that, for each NR(L), a component C of the complement of NR(L) is

essential if and only if C is nearly essential.

Then there is some R′0 > 0 such that, for all R′ ≥ R′0, NR′(f(L)) is a quasi-line

in CG′ that has at least as many essential complementary components as L does. In

other words, if L is n-separating, then NR′(f(L)) is also n-separating.

Proof. Lemma 4.3.3 shows that we can find some R′′0 > 0 so that, for all R′ ≥ R′′0,

NR′(f(L)) is a quasi-line. By Lemma 4.3.22, we also have that NR′(f(L)) satisfies

iness(m′1) for some m′1 (depending on R′). For any such R′, the images of compo-

nents of CG − L will be contained in the union of NR′(f(L)) and components of its

complement. As in the proof of Lemma 4.3.20, there is some R′0 ≥ R′′0 such that, for

any R′ ≥ R′0, the images of distinct components of CG − L do not meet the same

components of CG′ −NR′(f(L)). For such an R′, let L′ = NR′(f(L)).

Recall that, if C denotes an essential component of CG − L, then C is nearly

essential, so is not contained in the R1-neighborhood of L, for any R1. By Lemma

4.3.20, the same statement is true for L′. Thus, as f is coarsely surjective, the image

of any essential component in the complement of L meets an essential component in

the complement of L′. As no two components of the complement of L meet the same

components of the complement of L′, it follows that the complement of L′ contains

at least as many essential components as the complement of L.

We now can prove the following:

Proposition 4.4.3. Let f : CG → CG′ be a quasi-isometry between the Cayley graphs

of one-ended, finitely presented groups G and G′, and assume that Γ1(G) has a
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commensurizer vertex group CommG(H), for some two-ended subgroup H of G. Then

Γ1(G′) has a commensurizer vertex group CommG′(H
′) for some two-ended subgroup

H ′ of G′ such that dHaus(f(H), H ′) <∞.

Proof. We recall from [25] and [26] that for any one-ended, finitely presented group

G0, Γ1(G0) has a commensurizer vertex group if and only if G0 contains a two-

ended subgroup H0 such that ẽ(G0, H0) ≥ 4. Moreover, this vertex group is equal to

CommG0(H0).

So assume that H is as in the hypothesis of this proposition. By Lemmas 4.3.2,

4.3.12 and 4.3.21, there is some R0 > 0 such that, for any R ≥ R0, NR(H) is a (φ,N)

quasi-line that satisfies ess(m0) and iness(m1), where φ,N,m0, and m1 all depend

on R. As ẽ(G,H) ≥ 4, it follows from Lemma 4.4.1 that we can further choose R so

that NR(H) is 4-separating. Let L = NR(H) for some such R.

Then, by Lemmas 4.3.3, 4.3.12, 4.3.19, 4.3.22, and 4.4.2, there is some R′ such

that NR′(f(L)) is a quasi-line satisfying ess(m′0) and iness(m′1), and NR′(f(L)) is

4-separating. Let L′ denote NR′(f(L)) for some such R′.

Proposition 4.3.18 implies that there is some H ′ ∼= Z that is a finite Hausdorff

distance from L′. Let L′′ = NR′′(H
′), with R′′ > 0 such that L′′ contains L′. Then L′′

is 4-separating. By Lemma 4.4.1, ẽ(G′, H ′) ≥ 4. Hence Γ1(G′) has a commensurizer

vertex group equal to CommG′(H
′), with dHaus(f(H), H ′) <∞ as required.

4.5 Quasi-isometry invariance of the commensurizer vertex stabilizers

We have seen in the last section that the existence of commensurizer vertex groups

in Γ1 is a quasi-isometry invariant. Moreover, if f : CG → CG′ is a quasi-isometry

between the Cayley graphs of one-ended, finitely presented groups G and G′ with

commensurizer vertex groups in their JSJ decompositions, and one such subgroup
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of G is CommG(H), then one such subgroup of G′ is CommG′(H
′), with H ′ a finite

Hausdorff distance from the image of H in the Cayley graph CG′ .

In this section, we shall see that in fact CommG′(H
′) is a finite Hausdorff distance

from the image under f of CommG(H). From this, we will see that it follows that

CommG′(H
′) is “small” if and only if CommG(H) is, and CommG′(H

′) is finitely

generated if and only if CommG(H) is.

We shall first observe the geometric structure of commensurizers:

Lemma 4.5.1. If G is a finitely generated group with subgroup H, then

CommG(H) = {g ∈ G : dHaus(H, gH) <∞}.

Proof. Let l(g) be the minimal word length of representatives for g ∈ G, with respect

to the given finite generating set for G. Then note that, for all points x ∈ CG and

all g ∈ G, d(x, xg) = d(e, g) = l(g). Thus dHaus(gH, gHg
−1) ≤ l(g−1), so it suffices

to show that g ∈ CommG(H) if and only if dHaus(H, gHg
−1) <∞.

Let Hg denote gHg−1. If dHaus(H,H
g) = M < ∞, then, for any x ∈ H, there

is some y ∈ Hg such that d(x, y) ≤ M , i.e. d(y−1x, e) = l(y−1x) ≤ M . Let

L(M) = {k ∈ G : l(k) ≤M}. It follows that

(4.1) H ⊂ ∪k∈L(M)H
gk.

and similarly that

(4.2) Hg ⊂ ∪k∈L(M)Hk.

Observe that in fact (4.1) and (4.2) are equivalent to having dHaus(H,H
g) ≤M .

G is finitely generated, so L(M) is finite, and it follows that there are finitely

many elements h1, . . . , hn in H such that

H ⊂ ∪ni=1H
ghi.
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Thus H = ∪ni=1(H ∩Hg)hi, i.e. (H ∩Hg) is of finite index in H. Similarly (H ∩Hg)

is of finite index in Hg, so H and Hg are commensurable, hence g ∈ CommG(H).

Conversely, if g ∈ CommG(H), then there are elements h1, . . . , hn in H such that

H = ∪ni=1(H∩Hg)hi, and elements h′1, . . . , h
′
n in Hg such that Hg = ∪n′i=1(H∩Hg)h′i.

In particular, (4.1) and (4.2) hold if we take M to be the maximal word length of

the hi’s and (h′i)’s. Thus dHaus(H,H
g) ≤M , so we have shown the lemma.

Remark 4.5.2. As we saw in the proof of Proposition 4.4.3, if CommG(H) is a ver-

tex group of Γ1(G) of commensurizer type, then there is some R such that NR(H)

is a 3-separating (actually, 4-separating) (φ,N) quasi-line satisfying ess(m0) and

iness(m1), for some φ,N,m0, and m1. Thus, by Lemma 4.5.1 and since G acts on

its Cayley graph by isometries on the left,

NR(CommG(H)) = ∪g∈CommG(H)NR(gH) = ∪g∈CommG(H)g ·NR(H)

is a union of isometric copies of NR(H) that are pairwise of finite Hausdorff distance

from one another. Hence we may think of CommG(H) as a collection of “parallel”

3-separating (φ,N) quasi-lines that satisfy ess(m0) and iness(m1).

We can now prove the following, which is the main result of this section:

Proposition 4.5.3. Let G be a finitely presented, one-ended group with Γ1(G) con-

taining a commensurizer vertex with vertex group equal to C = CommG(H) =∐
i giH, where H ⊂ G has two ends. If L is a 3-separating (φ,N) quasi-line in

CG satisfying ess(m0) and iness(m1), and such that dHaus(L,H) <∞, then there is

some constant x = x(φ,N,m0,m1, H) such that, for some i, dHaus(L, giH) < x.

Assuming this proposition for the moment, we shall see how it implies the invari-

ance of the commensurizer type vertex groups under quasi-isometries.
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Suppose that f : CG1 → CG2 is a quasi-isometry between the Cayley graphs of

one-ended, finitely presented groups G1 and G2, and that C1 = CommG1(H1) is a

commensurizer type vertex group of Γ1(G1). Then, by Remark 4.5.2, we have that

some neighborhood NR(C1) of C1 is a union of pairwise finite Hausdorff distance,

3-separating (φ,N) quasi-lines {Li}, all of which satisfy ess(m0) and iness(m1), for

some m0,m1.

By Proposition 4.4.3, there is a two-ended subgroup H2 of G2 such that C2 =

CommG2(H2) is a vertex group of Γ1(G2) of commensurizer type, and dHaus(f(H1), H2)

is finite. By Lemma 4.3.3, there exists R′ such that the R′-neighborhood of each

f(Li) is a (φ′, N ′) quasi-line, for some φ′ and N ′ depending on R′. By Lemma

4.4.2, we can choose R′ so that each NR′(f(Li)) is also 3-separating. By Remarks

4.3.14 and 4.3.23 we can further suppose that each NR′(f(Li)) satisfies ess(m′0) and

iness(m′1), for some fixed constants m′0 and m′1. Thus we may apply Proposition

4.5.3 to get some x such that each NR′(f(Li)) is contained in Nx(C2). It follows that

NR′(f(NR(C1))) ⊂ Nx(C2), i.e. that f(C1) is contained in a finite neighborhood of

C2.

As was the case for C1, recall that a neighborhood of C2 is a union of quasi-lines

as above. Thus, by running the same argument on a quasi-inverse to f , it follows

that dHaus(f(C1), C2) <∞. Hence we have the following.

Theorem 4.5.4. If f : CG1 → CG2 is a (Λ, K)-quasi isometry between finitely pre-

sented, one-ended groups, and Γ1(G1) has a vertex group C1 = CommG1(H1) of

commensurizer type, then there is some constant y = y(G1, H1,Λ, K) such that G2

has a vertex group C2 of commensurizer type with dHaus(f(C1), C2) < y.

Proof of Proposition 4.5.3. Let L be the set of 3-separating (φ,N) quasi-lines in CG

that satisfy ess(m0) and iness(m1), and are a finite Hausdorff distance from H. If
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L is finite, then we are done, so assume that L is infinite, and that no such x exists.

Then we can find a sequence {Li} of elements of L such that

min
g∈C

dHaus(Li, gH)→∞,

as i→∞.

Let ci = g ∈ C realize the minimum above for Li, and fix any x > 0. Then we

can pass to a subsequence so that, for all j > i,

(4.3) dHaus(Lj, cjH) > dHaus(Li, ciH) + x.

Then, for all g, g′ ∈ G and i 6= j, we have

(4.4) dHaus(gLi, g
′Lj) > x,

by the following argument. Firstly, note that it suffices to show that dHaus(Li, gLj) >

x, for any g ∈ G and i < j. If g /∈ C, then dHaus(H, gH) = ∞. But dHaus(Li, H)

and dHaus(gLj, gH) are finite, so dHaus(Li, gLj) =∞.

Assume then that g ∈ C, and dHaus(Li, gLj) ≤ x. Then

dHaus(gLj, ciH) ≤ dHaus(gLj, Li) + dHaus(Li, ciH) ≤ x+ dHaus(Li, ciH).

Thus

dHaus(Lj, g
−1ciH) = dHaus(gLj, ciH) ≤ x+ dHaus(Li, ciH).

But note that dHaus(Lj, cjH) ≤ dHaus(Lj, g
−1ciH) by the definition of cj, so we have

that

dHaus(Lj, cjH) ≤ x+ dHaus(Li, ciH),

contradicting (4.3). Thus (4.4) holds for all g ∈ G.

By translating the Li’s, we can obtain a new set of quasi-lines that each contain

e ∈ G, and for which (4.4) holds for all g ∈ G, though the quasi-lines may no longer
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be a finite Hausdorff distance from H. This new sequence of quasi-lines satisfies the

hypotheses of Lemma 4.3.17. This leads to a contradiction, since we had assumed

L to be infinite.

We recall from [25] that a vertex group C = CommG(H) of Γ1(G) of commensur-

izer type is said to be small if H is of finite index in C, and otherwise, C is said to be

large. Thus C is small if and only if e(C) = 2. Hence the following is an immediate

corollary to Theorem 4.5.4.

Corollary 4.5.5. If f : CG1 → CG2 is a quasi-isometry between the Cayley graphs

of finitely presented, one-ended groups G1 and G2, then Γ1(G1) has a vertex group of

small commensurizer type if and only if Γ1(G2) does, and Γ1(G1) has a vertex group

of large commensurizer type if and only if Γ1(G2) does.

We shall next prove that the finite or infinite generation of commensurizer ver-

tex groups is also preserved under quasi-isometries. In order to do this, we shall

use the following lemma to prove Proposition 4.5.7, which gives a coarse geometric

characterization of finitely generated subgroups of finitely generated groups.

Lemma 4.5.6. Let C be a subgroup of a finitely generated group G. Then C is

finitely generated if and only if there exists some A0 > 0 such that, for any g, h ∈ C,

there is some sequence s0, s1, . . . sn ⊂ C so that g = s0, h = sn, and for all i,

d(si, si+1) < A0.

Proof. Call a sequence {si} as in the statement of the lemma an A0-chain from g

to h. If C is finitely generated, then fix a generating set SC for C, and note that

the generators of C have word length in CG less than some constant A0. For any

g, h ∈ C, we can represent g−1h by a word s1s2 · · · sm with each si in SC , and then

the sequence e, s1, s1s2, . . ., s1s2 · · · sm = g−1h is a A0-chain from e to g−1h, and
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hence g, gs1, gs1s2, . . . , gs1s2 · · · sm = h is a A0-chain in C from g to h.

Assume now that C contains a A0-chain between any two of its elements, for some

A0, and let SC = C ∩BA0(e). Since G is finitely generated, SC is finite, and we claim

that SC generates C. Fix any h ∈ C, and let e = s0, s1, . . . sn−1, sn = h be a A0-chain

in C from e to h. Then h = s0(s−1
0 s1)(s−1

1 s2) · · · (s−1
n−2sn−1)(s−1

n−1sn), with s0 = e and

(s−1
i si+1) in SC for each i. Thus SC generates C, so we are done.

Proposition 4.5.7. Let f : CG → CG′ be a quasi-isometry, and let C and C ′ be

subgroups of G and G′ respectively, with dHaus(f(C), C ′) < ∞. Then C is finitely

generated if and only if C ′ is.

Proof. Let f be a (Λ, κ)-quasi-isometry. Let n = dHaus(f(C), C ′), and assume that

C is finitely generated. Sincef has a quasi-inverse, it suffices to prove that C ′ must

also be finitely generated.

Fix g′, h′ ∈ C ′, and let s0, . . . sm be a sequence of vertices in C such that d(f(s0), g′)

< n, d(f(sm), h′) < n, and d(si, si+1) < A0 for all i. Let s′i = f(si), and let s′′i ∈ C ′

be such that d(s′i, s
′′
i ) < n. As d(s′i, s

′
i+1) < ΛA0 +κ, we must have that d(s′′i , s

′′
i+1) <

ΛA0 + κ + 2n. Then the consecutive terms of the sequence g′, s′′0, s
′′
1, . . . , s

′′
n, h

′ are

less than (ΛA0 +κ+ 2n) apart, thus by the lemma above, C ′ is finitely generated.

Theorem 4.5.4 and Proposition 4.5.7 combine to prove the following corollary,

showing the invariance under quasi-isometry of finitely generated, respectively in-

finitely generated, vertex groups of commensurizer type in Γ1. Note that if C is a

vertex group of small commensurizer type, then C must be finitely generated, so this

result distinguishes between different types of vertex groups of large commensurizer

type.

Corollary 4.5.8. If f : CG1 → CG2 is a quasi-isometry between the Cayley graphs of
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finitely presented, one-ended groups G1 and G2, then Γ1(G1) has a finitely generated

vertex group of commensurizer type if and only if Γ1(G2) does, and Γ1(G1) has an

infinitely generated vertex group of commensurizer type if and only if Γ1(G2) does.
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