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ABSTRACT

Data assimilation is the process of merging measurement data with a model to

estimate the states of a system that are not directly measured. By means of data

assimilation, we can expand the effectiveness of limited measurements by using the

model and, at the same time, increase the accuracy of model estimates using the

measurements.

In this dissertation, we survey and develop data assimilation algorithms that

are applicable to large-scale nonlinear systems. Very high order dynamics, nonlin-

earity, and input uncertainties are addressed since they characterize the problems

associated with large-scale data assimilation. Specifically, we focus on developing

the data assimilation algorithms for the ionosphere-thermosphere using the Global

Ionosphere-Thermosphere Model (GITM).

For developing computationally tractable algorithms, we obtain finite-horizon op-

timal reduced-order estimators for time-varying linear systems, and, subsequently,

develop linear suboptimal reduced-complexity estimators. The suboptimal estima-

tors are based on localization and the reduced-rank square root of the error covari-

ance.

To deal with nonlinearity, we use the unscented Kalman filter and ensemble

Kalman filter. We apply suboptimal reduced-complexity algorithms developed for

linear systems based on the unscented Kalman filter. Also, we develop the ensemble-

on-demand Kalman filter, which can be used for the special case of a single global

xi



disturbance, and which avoids propagating the ensemble members for all of the time

steps. Furthermore, we show that the ensemble size of the ensemble Kalman filter

does not have to be unnecessarily large if the statistics of the disturbance sources

are identified.

Finally, we apply the ensemble-on-demand Kalman filter and ensemble Kalman

filter to data assimilation based on GITM for uncertain solar EUV flux and geomag-

netic storm conditions, respectively. We present data assimilation results, through

extensive numerical investigations using simulated measurements. While performing

simulations, we observe that poor correlations between states should be set to zero to

avoid filter instability. In addition, ionosphere and thermosphere measurements can

be used together with an appropriate region of data injection to guarantee overall

good estimation performance. With those constraints, we show that good estimation

results can be obtained using a small ensemble size for each ensemble filter.
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CHAPTER I

Introduction

There is always a need to know the states of a system of interest to make an

important decision, control the system, or predict reliably the states of the system

in the future. A simple but sure method for knowing the states of a system is to

measure them directly. However, in a general complex system, it is not feasible

or even possible to directly measure all of the states of the system. For example,

imagine that we need to know the air temperature of the Earth’s atmosphere all

over the world with 1 meter by 1 meter by 1 meter resolution and suppose that only

available measuring device is a thermometer. Then, we need 5 × 1014 thermometers

even for one fixed height level. Moreover, we need to install thermometers above all

oceans in the world.

An alternative method for knowing the states of the system instead of measuring

them all is to create and use a model for the system. If the model is perfect, we can

accurately estimate the states of the system when the drivers (external disturbances)

and the initial condition of the system are known exactly. However, the initial

conditions are never known and there are always uncertainties in the drivers. Hence,

the estimation by a model is effective only when the model error is not large, the

effects of initial conditions are not significant, and the input uncertainties are small.
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Data assimilation is a process of merging available measurement data with a model

to estimate the states of a system other than the measurements. By means of data

assimilation, we can expand the effectiveness of the limited measurements using the

model and, at the same time, reduce inaccuracies of the model estimates using the

measurements. Amongst various estimators for data assimilation, we consider the

estimators based on the Kalman filter which is optimal in the presence of process

and measurement noises [1].

In this dissertation, the system of interest is the ionosphere-thermosphere. The

ionosphere is in the altitude range from 100 km to 1000 km where ionized particles

are rich. The ionosphere is coupled with the thermosphere, which is in the same range

of altitudes. Perturbations to the states of the ionosphere-thermosphere, or space

weather, can have dramatic effects on both space- and ground-based technology. For

instance, satellites in low-Earth orbit can experience significant changes in velocity

when the thermospheric drag on the spacecraft changes due to expansion of the

thermosphere. Furthermore, abrupt changes in the total electron content (TEC)

of the ionosphere can lead to substantial errors in ground-based Global Positioning

System (GPS) measurements. Most dramatically, on March 13, 1989, the blackout

of the entire Quebec power grid was caused by huge ionospheric current fluctuations

which induced abnormal currents in power lines, thus destroyed transformers and

electrical networks [2]. The practical importance of the ionosphere-thermosphere is

the fundamental motivation of this research.

The available ionosphere-thermosphere measurement data are obtained mainly

from three sources: (1) ion measurements by incoherent scatter radars (ISRs), (2)

air density measurements by satellites, and (3) total electron content measurements

from GPS stations. ISRs typically measure electron number density Ne, electron
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temperature Te, ion velocity Vion and ion temperature Tion, which are all ion prop-

erties on the line of sight of the radar. Therefore, ISR provides ion properties at a

series of points along the line of sight. In addition, available data are air density mea-

surements along the flight path of geo-scientific satellites that operate at altitudes

of the ionosphere-thermosphere. Finally, the total electron content (TEC) measure-

ments can be obtained from GPS stations that are globally distributed. TEC is the

integral of electron number density along the line connecting the GPS satellites and

the ground GPS receivers.

Various studies have performed ionospheric data assimilation based on measure-

ments of TEC [3–5] and bottom side electron density profiles [6]. More recently,

with the availability of precise thermospheric density data from the Champ [7] and

Grace [8] experiments, interest has arisen in assimilating thermospheric variables.

Thermospheric data assimilation using simulated measurements of thermospheric

composition is investigated in [9]. In all previous works, either the ionosphere or

the thermosphere data assimilations have been studied separately. For example, to

estimate electron density distribution, [4] uses the simple Gauss-Markov model based

on the physics-based ionosphere model that uses the neutral densities and winds as

some of drivers. To assimilate neutral composition data of the thermosphere, [9]

uses a simple Gauss-Markov model whose states are two-dimensional thermospheric

neutral compositions, specifically, the ratio of the height integrated atomic oxygen

and molecular nitrogen concentrations.

In this dissertation, we incorporate the Global Ionosphere-Thermosphere Model

(GITM) [10] into the data assimilation for the ionosphere and the thermosphere

together, using the available ionosphere and thermosphere measurements. GITM

is a physics-based fully parallel three-dimensional (3D) Computational Fluid Dy-
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namics (CFD) model of the coupled ionosphere-thermosphere system in spherical

coordinates. The model solves the conservation equations in altitude coordinates

as opposed to pressure coordinates and does not assume hydrostatic equilibrium.

Therefore, the vertical momentum equation can be solved self-consistently, and sub-

stantial vertical flows can develop [11]. GITM uses a block-based uniform domain

decomposition in the horizontal direction, along with a non-uniform altitude grid,

with a resolution of 1/3 scale height. The grid is entirely flexible, so the user is free to

change the horizontal resolution from run to run by specifying the number of blocks

to use in a given simulation. A consequence of this flexibility is that GITM can be

run in 1-dimension (1D) where only a single latitude and longitude are simulated,

and horizontal transport and gradients are ignored. Since 1D GITM can be run

quickly on a personal computer, this feature renders long-term studies of the upper

atmosphere feasible, while facilitating quick debugging of the code.

There are 14 states per each cell of GITM. The number of states in vertical one-

dimensional GITM with 50 cells is as large as 700. For 3 dimensional global GITM

when typical longitude-latitude resolution is 5 degree by 5 degree, the total number

of states is around 2 million. That is, GITM has extremely high order dynamics.

Moreover, GITM solves hydrodynamic equations with more than 6 species coupled

with chemistry equations, which means that GITM is highly nonlinear. Finally,

exact drivers for the ionosphere-thermosphere are not known, and thus the inputs

are uncertain.

Data assimilation using a high order dynamic system model such as GITM is

commonly called large scale data assimilation, which often involves high nonlinearity

of the model as in the case of GITM.

As a method for data assimilation, the Kalman filter is considered to be a powerful
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tool since it provides optimal estimates with error covariance information. However,

the Kalman filter is not computationally tractable when the system has high order

dynamics. Moreover, the Kalman filter is an optimal estimator for linear systems

with linear measurement mapping. Hence, the Kalman filter cannot be directly used

for nonlinear system estimation.

To overcome high order dynamics problem, the reduced-order state estimators

has been developed for several decades; representative work includes [12–26]. Most

of these techniques involve data injection with an estimator whose order is less than

the order of the plant. The estimator dynamics are typically obtained from the

full-order dynamics by a truncation or projection process, while the estimator gain

is obtained from a steady-state or updated error-covariance matrix based on the

full-order dynamics.

For large-scale systems, however, reduced-order filters based on a full-order error

covariance may not be feasible. In particular, the effort needed to compute the

steady-state error covariance or to update the time-dependent error covariance is

significant, namely, O(n3) for a system of order n. To relieve the O(n3)-computational

burden of full-order-error-covariance-based estimation, a reduced-order filters based

on a reduced-order error covariance is developed in [27], where balancing is used

to obtain a reduced-order model that provides the basis for the error-covariance

update. Although the estimator with reduced-order error covariance is suboptimal,

the benefit from the reduction is greater than the loss of accuracy.

To deal with nonlinearity, extended Kalman filter [28] and SDRE filter [29–31]

are most popular and used in many areas. These filters require linearization and fac-

torization, respectively, to formulated a linear system matrix to apply the Kalman

filter. However, it is not feasible to extract a linear system matrix from a nonlinear
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large scale system. In contrast to extended Kalman filter and SDRE filter, ensem-

ble Kalman filter (EnKF) [32] and unscented Kalman filter (UKF) [33] propagates

ensemble of models, which eliminate the need to extract a linear system matrix.

Even though EnKF and UKF can be applied to general nonlinear systems, both of

them propagate an ensemble of members for every step of simulation. In particular,

UKF in its original formulation, requires an ensemble of 2n + 1 members, where n

is the number of states, which is prohibitively large for a large-scale system. There-

fore, EnKF and UKF are not feasible methods for large data assimilation without

appropriate reductions.

Now the goal of this research is to develop and apply Kalman filter-based suit-

able large scale data assimilation algorithms to GITM with available ionosphere-

thermosphere measurements. The algorithms must yield physically meaningful esti-

mates, and at the same time, must be able to run at a feasible speed, eventually in

real time, using available computing resources such as general public grid-computers

like NYX at the University of Michigan.

This dissertation addresses the problems of developing large scale data assimi-

lation algorithms that are directly applicable to the ionosphere-thermosphere and

shows results of the data assimilation based on GITM. That is, we put high priority

on the practical algorithms so that we can obtain useful results by applying devel-

oped algorithms to the ionosphere-thermosphere. However, since GITM-based data

assimilation has characteristics that are common to general large scale data assimila-

tion, the results of this dissertation provide useful contributions to the general large

scale data assimilation community.

The contents of each chapter are as follows. In Chapter II, we consider optimal

reduced-order estimators for time-varying linear discrete-time systems. The reduced-
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order estimators are obtained using a finite-horizon minimization approach and thus

do not require the solution of algebraic Lyapunov or Riccati equations. Even though

the optimal-reduced order estimators reduce computational complexity in data injec-

tion, they still require full-order error-covariance propagation in order to be optimal.

Next, in Chapter III, we compare several suboptimal reduced-order Kalman filters

for discrete-time LTI systems based on reduced-order error-covariance propagation.

These filters use combinations of balanced model truncation and complementary

steady-state covariance compensation. After describing each method, we compare

their performance through numerical studies using a compartmental model example.

These methods are aimed at large-scale data-assimilation problems where reducing

computational complexity is critical.

In Chapter IV, we consider the unscented Kalman filter (UKF) as a large scale

data assimilation method because it has deterministic UKF ensemble size and it does

not require a Jacobian that is almost impossible to obtain from nonlinear large-scale

system. However, UKF propagates 2n+1 ensemble members, where n is the number

of states, which is prohibitively large for a large-scale system. In this chapter, we

discuss an extension of the UKF that propagates a surrogate reduced-order covari-

ance and also uses a complementary static estimator gain based on the steady-state

correlation between the error in the estimates of the state and measurements to ob-

tain estimates of the entire state, which are introduced in Chapter III using linear

system.

In Chapter V, we consider a reduced-rank square-root Kalman filter based on

the Cholesky decomposition of the state-error covariance, where the reduced-rank

square-root of the error covariance corresponds to the ensemble size reduction of

UKF. We compare the performance of this filter with the reduced-rank square-root
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filter based on the singular value decomposition. The Cholesky-based square root

Kalman filter is computationally more efficient, and, in many cases, more accurate

than the SVD-based.

In Chapter VI, we apply the unscented Kalman filter (UKF) to data assimila-

tion based on vertical one-dimensional GITM with approximate disturbance covari-

ance. To reduce the computational complexity of UKF, we introduce a localized,

sampled-data update scheme with frozen-intersample error covariance, and examine

its performance through numerical simulation.

Next, when the localized UKF with approximate disturbance covariance is applied

to 3-dimensional GITM, we are not able to obtain effective data assimilation results

because the UKF turns out to be sensitive to the disturbance covariance. Hence, in

Chapter VII, we examine the ensemble Kalman filter and its variants, which do not

use explicit disturbance covariance. The ensemble Kalman filter for data assimilation

involves the propagation of a collection of ensemble members. Under the assumption

of time-sparse measurements, we avoid propagating the ensemble members for all

of the time steps by creating an ensemble of models only when a new measurement

is made available. We call this algorithm the ensemble-on-demand Kalman filter

(EnODKF). We use guidelines for ensemble size within the context of EnODKF, and

demonstrate the performance of EnODKF for representative examples, specifically,

a lumped vibration problem and a heat flow problem.

In Chapter VIII, we apply EnODKF and EnKF to 3-dimensional GITM-based

data assimilation. Specifically, EnODKF is used for the case of solar EUV flux

disturbance, with a single global disturbance, whereas EnKF is used for geomagnetic

storm conditions where the effects of geomagnetic storm drivers are propagated from

near the Earth’s poles to the equator. We inject data into a local region using
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combinations of simulated ISR measurements of electron number density and ion

temperature, satellite measurements of air density, and TEC measurements. We

numerically investigate the effects of data assimilation for various regions of data

injection and combinations of measurements. The results are promising since the

algorithms achieve good estimation accuracy with feasible running speed.



CHAPTER II

Reduced-Order Kalman Filtering for Time-Varying Systems

2.1 Introduction

Because the classical Kalman filter provides optimal least-squares estimates of

all of the states of a linear time-varying system, there is longstanding interest in

obtaining simpler filters that estimate only a subset of states. This objective is of

particular interest when the system order is extremely large, which occurs for systems

arising from discretized partial differential equations [34].

One approach to this problem is to consider reduced-order Kalman filters, which

provide state estimates that are suboptimal [35–37]. Variants of the classical Kalman

filter have been developed for computationally demanding applications such as weather

forecasting [38–40], where the filter gain is modified so as to reduce the computational

requirements. A comparison of various techniques is given in [41]. An alternative

approach to reducing complexity is to restrict the data-injection subspace to obtain

a spatially localized Kalman filter [42].

In the present paper we revisit the approach of [35, 43], which considers the prob-

lem of fixed-order steady-state reduced-order estimation. For a linear time-invariant

system, the optimal steady-state fixed-order filter is characterized in [35, 43] by cou-

pled Riccati and Lyapunov equations, whose solution requires iterative techniques.

10
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This paper extends the results of [35, 43] by adopting the finite-horizon optimiza-

tion technique used in [42] to obtain reduced-order filters that are applicable to

time-varying systems. This technique also avoids the periodicity constraint associ-

ated with the multirate filter derived in [44]. Related techniques are used in [45].

In addition to the reduced-order filter considered in [35, 43], we also consider a

fixed-structure subspace observer constrained to estimate a specified collection of

states. This problem is considered in [37, 46]. The difference between the reduced-

order filter and subspace observer is apparent in the the distinct oblique projectors

τ and µ, which characterize the filter and observer gains, respectively.

2.2 Optimal Finite-Horizon Reduced-Order Estimator

Consider the system

xk+1 = Akxk + D1,kwk, (2.1)

yk = Ckxk + D2,kwk, (2.2)

where xk ∈ R
nk , yk ∈ R

pk , and wk ∈ R
dk is a white noise process with zero mean

and unit covariance. Note that Ak ∈ R
nk×nk+1 need not be square and may have

time-varying dimension.

We consider a reduced-order estimator with dynamics

xe,k+1 = Ae,kxe,k + Be,kyk, (2.3)

where xe,k ∈ R
ne,k . Define the augmented state covariance Q̃k by

Q̃k , E[x̃kx̃
T
k ], (2.4)

where x̃k ∈ R
ñk , ñk , nk + ne,k, is defined by

x̃k ,

[

xT
k xT

e,k

]T

. (2.5)
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Consider the cost function

Jk(Ae,k, Be,k) , E

[

(

Lkxk+1 − xe,k+1

)T(

Lkxk+1 − xe,k+1

)

]

, (2.6)

where Lk ∈ R
ne,k×nk determines the subspace of the state x that is weighted. It

follows from (2.4) and (2.5) that Jk is given by

Jk(Ae,k, Be,k) = tr
(

Q̃k+1R̃k

)

, (2.7)

where R̃k ∈ R
n+ne is defined by

R̃k ,







LT
k Lk −LT

k

−Lk I






. (2.8)

Note that (2.1) and (2.3) imply that

x̃k+1 = Ãkx̃k + D̃1,kwk, (2.9)

where

Ãk ,







Ak 0

Be,kCk Ae,k






, D̃1,k ,







D1,k

Be,kD2,k






. (2.10)

Therefore,

Q̃k+1 = ÃkQ̃kÃ
T
k + Ṽ1,k, (2.11)

where

Ṽ1,k ,







V1,k V12,kB
T
e

BeV
T
12,k Be,kV2,kB

T
e,k






(2.12)

and

V1,k , D1,kD
T
1,k, V12,k , D1,kD

T
2,k, V2,k , D2,kD

T
2,k. (2.13)
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Partitioning Q̃k as

Q̃k =







Q̃1,k Q̃12,k

Q̃T
12,k Q̃2,k






, (2.14)

it follows from (2.11) that

Q̃1,k+1 = AkQ̃1,kA
T
k + V1,k, (2.15)

Q̃12,k+1 = AkQ̃1,kC
T
k BT

e,k + AkQ̃12,kA
T
e,k + V12,kB

T
e , (2.16)

Q̃2,k+1 = Be,k

(

CkQ̃1,kC
T
k + V2,k

)

BT
e,k (2.17)

+ Ae,kQ̃
T
12,kC

T
k BT

e,k + Be,kCkQ̃12,kA
T
e,k + Ae,kQ̃2,kAe,k.

Therefore, (2.7) and (2.8) imply that Jk can be expressed as

Jk (Ae,k, Be,k) = tr
[

Lk

(

AkQ̃1,kA
T
k + V1,k

)

LT
k

]

− 2tr
[

Be,k(CkQ̃1,kA
T
k + V T

12,k)L
T
k

]

− 2tr
[

Ae,kQ̃
T
12,kA

T
k LT

k

]

+ tr
[

Be,k

(

CkQ̃1,kC
T
k + V2,k

)

BT
e,k

]

+ tr
[

Ae,kQ̃2,kA
T
e,k

]

+ 2tr
[

Ae,kQ̃
T
12,kC

T
k BT

e,k

]

. (2.18)

Next, assuming that Q̃2,k is invertible, we define Qk, Q̂k ∈ R
nk×nk , Ṽ2,k ∈ R

pk×pk ,

and Gk ∈ R
ne,k×nk by

Qk , Q̃1,k − Q̃12,kQ̃
−1
2,kQ̃

T
12,k, Q̂k , Q̃12,kQ̃

−1
2,kQ̃

T
12,k, (2.19)

Ṽ2,k , CkQkC
T
k + V2,k, (2.20)

Gk , Q̃−1
2,kQ̃

T
12,k. (2.21)

Proposition 2.2.1. Assume that Q̃2,k is positive definite and Ae,k and Be,k min-

imize Jk. Then, Ae,k and Be,k satisfy

Ae,k = Lk

(

Ak − Qs,kṼ
−1
2,k Ck

)

GT
k , (2.22)

Be,k = LkQs,kṼ
−1
2,k , (2.23)

where Qs,k , AkQkC
T
k + V12,k.
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Proof. Setting ∂Jk

∂Ae,k
= 0, ∂Jk

∂Be,k
= 0 and using (2.19)-(2.21) yields the result.

Proposition 2.2.2. Assume that Ae,k and Be,k satisfy Proposition 2.2.1. Then,

LkQ̃12,k+1 = Q̃2,k+1, (2.24)

Q̃12,k+1 = Q̂k+1L
T
k , (2.25)

Q̃2,k+1 = LkQ̂k+1L
T
k . (2.26)

Proof. Substituting (2.22) and (2.23) into (2.16) and (2.17) yields

Q̃12,k+1 =
[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

LT
k , (2.27)

Q̃2,k+1 = Lk

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

LT
k . (2.28)

Pre-multiplying (2.27) by Lk yields LkQ̃12,k+1 = Q̃2,k+1. Using (2.19) and LkQ̃12,k+1 =

Q̃2,k+1 yields Q̃12,k+1 = Q̂k+1L
T
k and Q̃2,k+1 = LkQ̂k+1L

T
k .

Next, define Mk ∈ R
nk×nk by

Mk , AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k, (2.29)

and define τk, τk⊥ ∈ R
nk×nk by

τk , GT
k Lk−1, τk⊥ , I − τk. (2.30)

Proposition 2.2.3. Assume that Ae,k and Be,k satisfy Proposition 2.2.1. Then,

τ 2
k+1 = τk+1, that is, τk+1 is an oblique projector.

Proof. It follows from (2.29) that (2.27) and (2.28) can be expressed as

Q̃12,k+1 = MkL
T
k , Q̃2,k+1 = LkMkL

T
k . (2.31)

Hence, (2.30) implies that

τk+1 = MkL
T
k

(

LkMkL
T
k

)−1
Lk. (2.32)
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Therefore, τ 2
k+1 = τk+1.

Proposition 2.2.4. Assume that Ae,k and Be,k satisfy Proposition 2.2.1. Then,

τk+1Q̂k+1 = Q̂k+1. (2.33)

Proof. It follows from (2.19) that

Q̂k+1 = Q̃12,k+1Q̃
−1
2,k+1Q̃

T
12,k+1. (2.34)

Substituting (2.31) into (2.34) yields

Q̂k+1 = MkL
T
k

(

LkMkL
T
k

)−1
LkMk. (2.35)

Hence, pre-multiplying (2.35) by τk+1 and substituting (2.32) into the resulting ex-

pression yields (2.33).

Proposition 2.2.5. Assume that Ae,k and Be,k satisfy Proposition 2.2.1. Then,

Qk+1 = AkQkA
T
k − Qs,kṼ

−1
2,k QT

s,k + V1,k + τk+1⊥

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

τT
k+1⊥,

(2.36)

Q̂k+1 = τk+1

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

τT
k+1, (2.37)

τk+1 = MkL
T
k

(

LkMkL
T
k

)−1
Lk. (2.38)

Proof. It follows from (2.24) and (2.28) that

LkQ̂k+1L
T
k = Lk

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

LT
k . (2.39)

Pre-multiplying and post-multiplying (2.39) by GT
k+1 and Gk+1, respectively, yields

τk+1Q̂k+1τ
T
k+1 = τk+1

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

τT
k+1. (2.40)

Hence, (2.37) follows from Proposition 2.2.4.
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Since Q̃12,k+1 = Q̂k+1Lk, (2.27) and (2.30) imply that

τk+1Q̂k+1 = τk+1

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

. (2.41)

Therefore, (2.37) imply that

τk+1

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

= τk+1

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

τT
k+1. (2.42)

Hence, Q̂k+1 can be expressed as

Q̂k+1 = AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k − τk+1⊥

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

τT
k+1⊥. (2.43)

Furthermore, it follows from (2.15) and (2.19) that

Qk+1 = AkQkA
T
k + V1,k + AkQ̂kA

T
k − Q̂k+1. (2.44)

Therefore, substituting (2.43) into (2.44) yields (2.36).

Note that although Ae,k and Be,k depend on Q̃12,k and Q̃2,k, it follows from Propo-

sition 2.2.2 that Q̃2,k and Q̃12,k can be obtained from Qk and Q̂k. Hence, it suffices

to propagate Qk and Q̂k using (2.36) and (2.37), respectively.

Finally, we summarize the one-step reduced-order Kalman filter.

State update:

Gk = (LkQ̂kLk)
−1LkQ̂k, (2.45)

xe,k+1 = Lk

(

Ak − Qs,kṼ
−1
2,k Ck

)

GT
k xe,k + LkQs,kṼ

−1
2,k yk. (2.46)

Covariance update:

Qk+1 = AkQkA
T
k − Qs,kṼ

−1
2,k QT

s + V1,k + τk+1⊥

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k

]

τT
k+1⊥,(2.47)

Q̂k+1 = τk+1

[

AkQ̂kA
T
k + Qs,kṼ

−1
2,k Qs,k

]

τT
k+1, (2.48)

Mk = AkQ̂kA
T
k + Qs,kṼ

−1
2,k QT

s,k, (2.49)

τk+1 = MkL
T
k (LkMkLk)

−1 Lk. (2.50)
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2.3 Two-Step Reduced-Order Estimator

We now consider a two-step estimator. The data assimilation step is given by

xda
e,k = C f

e,kx
f
e,k + Df

e,kyk, (2.51)

where xda
e,k ∈ R

ne,k is the reduced-order data assimilation estimate of Lxk, and xf
e,k ∈

R
ne,k is the reduced-order forecast estimate of xk. The forecast step or physics update

of the estimator is given by

xf
e,k+1 = Ada

e,kx
da
e,k. (2.52)

Now, define the combined state and forecast estimate covariance Q̃f
k ∈ R

ñk×ñk

and the combined state and data assimilation estimate covariance Q̃da
k ∈ R

ñk×ñk by

Q̃f
k , E

[

x̃f
k(x̃

f
k)

T
]

, Q̃da
k , E

[

x̃da
k (x̃da

k )T
]

, (2.53)

where x̃f
k, x̃

da
k ∈ R

n+ne are defined by

x̃f
k ,







xk

xf
e,k






, x̃da

k ,







xk

xda
e,k






. (2.54)

Defining the data assimilation cost

Jda
k

(

C f
e,k, D

f
e,k

)

, E

[

(

Lkxk − xda
e,k

)T (

Lkxk − xda
e,k

)

]

, (2.55)

(2.53) implies that

Jda
k

(

C f
e,k, D

f
e,k

)

= tr(Q̃da
k R̃k), (2.56)

where R̃k is defined by (2.8).

Next, it follows from (2.1), (2.51), and (2.54) that

x̃da
k = Ãf

kx̃
f
k + D̃f

1,kwk, (2.57)
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where Ãf
k ∈ R

ñk×ñk and D̃f
1,k ∈ R

ñk×d are defined by

Ãf
k ,







I 0

Df
e,kCk C f

e,k






, D̃f

1,k ,







0

Df
e,kD2,k






. (2.58)

Therefore,

Q̃da
k = Ãf

kQ̃
f
k(Ã

f
k)

T + D̃f
1,k(D̃

f
1,k)

T. (2.59)

Hence, Jda
k can be expressed as

Jda
k

(

C f
e,k, D

f
e,k

)

= tr
[(

Ãf
kQ̃

f
k(Ã

f
k)

T + D̃f
1,k(D̃

f
1,k)

T
)

R̃k

]

. (2.60)

Finally, partition Q̃f
k as

Q̃f
k =







Q̃f
1,k Q̃f

12,k

(Q̃f
12,k)

T Q̃f
2,k






. (2.61)

so that substituting (2.58) into (2.60) yields

Jda
k = tr

[

LkQ̃
f
1,kL

T
k

]

− 2tr
[

Df
e,kCkQ̃

f
1,kL

T
k

]

− 2tr
[

LkQ̃
f
12,k(C

f
e,k)

T
]

+ tr
[

C f
e,kQ̃

f
2,k(C

f
e,k)

T
]

+ 2tr
[

Df
e,kCkQ̃

f
12,k(C

f
e,k)

T
]

+ tr
[

Df
e,k

(

CkQ̃
f
1,kC

T
k + V2,k

)

(Df
e,k)

T
]

.

(2.62)

Assuming that Q̃f
2,k is invertible, define Qf

k, Q̂
f
k ∈ R

nk×nk by

Qf
k , Q̃f

1,k − Q̃f
12,k(Q̃

f
2,k)

−1(Q̃f
12,k)

T,

Q̂f
k , Q̃f

12,k(Q̃
f
2,k)

−1(Q̃f
12,k)

T.

(2.63)

Finally, define V f
2,k ∈ R

pk×pk by

V f
2,k , CkQ

f
kC

T
k + V2,k (2.64)

and Gf
k ∈ R

ne,k×nk by

Gf
k , (Q̃f

2,k)
−1(Q̃f

12,k)
T. (2.65)

The following result characterizes C f
e,k and Df

e,k that minimize Jda
k .
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Proposition 2.3.1. Assume that C f
e,k and Df

e,k minimize Jda
k , and assume that

Q̃f
2,k is positive definite. Then,

C f
e,k = Lk

(

I − Qf
kC

T
k (V f

2,k)
−1Ck

)

(Gf
k)

T, (2.66)

Df
e,k = LkQ

f
kC

T
k (V f

2,k)
−1. (2.67)

Proof. Setting
∂Jda

k

∂Cf
e,k

= 0,
∂Jda

k

∂Df
e,k

= 0 and using (2.63)-(2.65) yields the result.

Next, partition Q̃da
k as

Q̃da
k =







Q̃da
1,k Q̃da

12,k

(Q̃da
12,k)

T Q̃da
2,k






. (2.68)

Proposition 2.3.2. Assume that xda
e,k is given by (2.51), and let C f

e,k and Df
e,k

satisfy (2.66), (2.67). Then,

Q̃da
1,k = Q̃f

1,k, (2.69)

Q̃da
12,k =

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

LT
k , (2.70)

Q̃da
2,k = Lk

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

LT
k . (2.71)

Proof. It follows from (2.59) that Q̃da
1,k = Q̃f

1,k and

Q̃da
12,k = Q̃f

12,k(C
f
e,k)

T + Q̃f
1,kC

T
k (Df

e,k)
T. (2.72)

Substituting (2.66) and (2.67) into (2.72) yields (2.70). Similarly, it follows from

(2.59) and (2.68) that

Q̃da
2,k = C f

e,kQ̃
f
1,k(C

f
e,k)

T + C f
e,k(Q̃

f
12,k)

TCT
k (Df

e,k)
T (2.73)

+ Df
e,kCkQ̃

f
12,k(C

f
e,k)

T + Df
e,k

(

CkQ̃
f
1,kC

T
k + V2,k

)

(Df
e,k)

T.

Finally, substituting (2.66) and (2.67) into (2.73) yields (2.71).
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Next, define Qda
k ∈ R

nk×nk and Q̂da
k ∈ R

nk×nk by

Qda
k , Q̃da

1,k − Q̃da
12,k(Q̃

da
2,k)

−1(Q̃da
12,k)

T,

Q̂da
k , Q̃da

12,k(Q̃
da
2,k)

−1(Q̃da
12,k)

T.

(2.74)

Corollary 2.3.1. Assume that C f
e,k and Df

e,k satisfy Proposition 2.3.1. Then,

LkQ̃
da
12,k = Q̃da

2,k, Q̃da
12,k = Q̂da

k LT
k , Q̃da

2,k = LkQ̂
da
k LT

k . (2.75)

Next, define Gda
k ∈ R

ne,k×nk by

Gda
k , (Q̃da

2,k)
−1(Q̃da

12,k)
T. (2.76)

Also, define Mda
k ∈ R

nk×nk by

Mda
k , Q̂f

k + Qf
kC

T
k (V f

2,k)
−1CkQ

f
k (2.77)

and τda
k and τda

k⊥ by

τda
k , (Gda

k )TLk, τda
k⊥ , I − τda

k . (2.78)

Proposition 2.3.3. Assume that C f
e,k and Df

e,k satisfy Proposition 2.3.1. Then,

τda
k is an oblique projector.

Proof. The proof is similar to the proof of Proposition 2.4.

Proposition 2.3.4. Assume that C f
e,k and Df

e,k satisfy Proposition 2.3.1. Then,

τda
k Q̂da

k = Q̂da
k . (2.79)

Proof. The proof is similar to the proof of Proposition 2.5.

Proposition 2.3.5. Assume that xda
e,k is given by (2.51), and C f

e,k and Df
e,k satisfy

Proposition 2.3.1. Then,

Q̂da
k = τda

k

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k )T, (2.80)

Qda
k = Qf

k − Qf
kC

T
k (V f

2,k)
−1CkQ

f
k + τda

k⊥

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k⊥)T. (2.81)
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Proof. It follows from (2.71) and (2.75) that

LkQ̂
da
k LT

k = Lk

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

LT
k . (2.82)

Pre-multiplying and post-multiplying (2.82) by (Gda
k )T and Gda

k , respectively, yields

(2.80).

Next, it follows from (2.70), (2.75), and (2.78) that

τda
k Q̂da

k = τda
k

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

. (2.83)

Therefore, Proposition 2.3.3 and (2.80) imply that

τda
k

[

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

]

= τda
k

[

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

]

(τda
k )T. (2.84)

Hence, Q̂da
k can be expressed as

Q̂da
k = Q̂f

k + Qf
kC

T
k (V f

2,k)
−1CkQ

f
k − τda

k⊥

[

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

]

(τda
k⊥)T. (2.85)

Finally, note that (2.69) implies that Qda
k = Q̃f

1,k − Q̂da
k . Hence, (2.85) yields (2.81).

Next, we define the forecast cost J f
k by

J f
k

(

Ada
e,k

)

, E

[

(

Lkxk+1 − xf
e,k+1

) (

Lkxk+1 − xf
e,k+1

)T
]

. (2.86)

Hence, it follows from (2.53) that

J f
k

(

Ada
e,k

)

= tr
(

Q̃f
k+1R̃k

)

. (2.87)

It follows from (2.1) and (2.52) that

x̃f
k+1 = Ãda

k x̃da
k + D̃da

1,kwk, (2.88)

where Ãda
k ∈ R

ñk×ñk and D̃da
1,k ∈ R

ñk×d are defined by

Ãda
k ,







Ak 0

0 Ada
e,k






, D̃da

1,k ,







D1,k

0






. (2.89)
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Therefore,

Q̃f
k+1 = Ãda

k Q̃da
k (Ãda

k )T + D̃da
1,k(D̃

da
1,k)

T. (2.90)

Proposition 2.3.6. Assume that Ada
e,k minimizes J f

k, and assume that Q̃da
2,k is

positive definite. Then

Ada
e,k = LkAk(G

da
k )T. (2.91)

Proof. Setting
∂J f

k

∂Ada
e,k

= 0 yields the result.

Proposition 2.3.7. Assume that Ada
e,k satisfies (2.91). Then,

LkQ̃
f
12,k+1 = Q̃f

2,k+1, (2.92)

Q̃f
12,k+1 = Q̂f

k+1L
T
k , (2.93)

Q̃f
2,k+1 = LkQ̂

f
k+1L

T
k . (2.94)

Proof. The proof is similar to the proof of Proposition 2.3.

Next, define M f
k by

M f
k , AkQ̂

da
k AT

k (2.95)

and define τ f
k and τ f

k⊥ by

τ f
k , (Gf

k)
TLk−1, τ f

k⊥ , I − τ f
k. (2.96)

Proposition 2.3.8. Assume that Ada
e,k satisfies (2.91). Then, τ f

k+1 is an oblique

projector.

Proof. The proof is similar to the proof of Proposition 2.4.

Proposition 2.3.9. Assume that Ada
e,k satisfies (2.91). Then,

τ f
k+1Q̂

f
k+1 = Q̂f

k+1. (2.97)
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Proof. The proof is similar to the proof of Proposition 2.5.

Proposition 2.3.10. Assume that Ada
e,k satisfies (2.91). Then,

Q̂f
k+1 = τ f

k+1AkQ̂
da
k AT

k (τ f
k+1)

T, (2.98)

Qf
k+1 = AkQ

da
k AT

k + V1,k + τ f
k+1⊥

(

AkQ̂
da
k AT

k

)

(τ f
k+1⊥)T. (2.99)

Proof. The proof is similar to the proof of Proposition 2.6.

The two-step reduced order filter can be summarized as follows.

Data assimilation step:

xda
e,k = Lk

(

I − Qf
kC

T
k (V f

2,k)
−1Ck

)

(Gf
k)

Txf
e,k + LkQ

f
kC

T
k (V f

2,k)
−1yk, (2.100)

Qda
k = Qf

k − Qf
kC

T
k (V f

2,k)
−1CkQ

f
k + τda

k⊥

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k⊥)T,(2.101)

Q̂da
k = τda

k

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k )T, (2.102)

τda
k = Mda

k LT
k

(

LkM
da
k LT

k

)−1
Lk, (2.103)

Mda
k = Q̂f

k + Qf
kC

T
k (V f

2,k)
−1CkQ

f
k. (2.104)

Forecast step:

xf
e,k+1 = LkAk(G

da
k )Txda

e,k, (2.105)

Q̂f
k+1 = τ f

k+1AkQ̂
da
k AT

k (τ f
k+1)

T, (2.106)

Qf
k+1 = AkQ

da
k AT

k + V1,k + τ f
k+1⊥

(

AkQ̂
da
k AT

k

)

(τ f
k+1⊥)T, (2.107)

τ f
k+1 = M f

kL
T
k

(

LkM
f
kL

T
k

)−1
Lk, (2.108)

M f
k = AkQ̂

da
k AT

k . (2.109)

2.4 Optimal Infinite-Horizon Reduced-Order Estimator Revisited

Consider the LTI system

xk+1 = Axk + D1wk, (2.110)

yk = Cxk + D2wk, (2.111)
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where xk ∈ R
n, yk ∈ R

p, and wk ∈ R
d is a white noise process with zero mean and

unit covariance. We consider a reduced-order estimator

xe,k+1 = Aexe,k + Beyk, (2.112)

where xe,k ∈ R
ne , and the cost

J(Ae, Be) , lim
k→∞

E

[

(

Lxk − xe,k

)T(

Lxk − xe,k

)

]

. (2.113)

If Ã is asymptotically stable, then

Q̃ , lim
k→∞

E[x̃kx̃
T
k ]. (2.114)

exists. Moreover, Q̃ and its nonnegative-definite dual P̃ are the unique solutions of

the Lyapunov equations

Q̃ = ÃQ̃ÃT + Ṽ , (2.115)

P̃ = ÃTP̃ Ã + R̃, (2.116)

where

Ṽ ,







V1 V12B
T
e

BeV
T
12 BeV2B

T
e






, R̃ ,







LTL −LT

−L Ine






, (2.117)

and

V1 , D1D
T
1 , V12 , D1D

T
2 , V2 , D2D

T
2 . (2.118)

Proposition 2.4.1. Assume that Q̃2 is positive definite and Ae and Be minimize

J(Ae, Be) with constraint (2.115). Then, there exist nonnegative-definite matrices

Q, Q̂, P̂ ∈ R
n×n such that Ae and Be are given by

Ae = Γ
[

A − QsṼ2
−1

C
]

GT, (2.119)

Be = ΓQsṼ
−1
2 , (2.120)
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and Q, Q̂, P̂ satisfy

Q = AQAT − QsṼ
−1
2 QT

s + V1 + τ⊥

(

AQ̂AT + QsṼ
−1
2 QT

s

)

τT
⊥
, (2.121)

Q̂ = τ
(

AQ̂AT + QsṼ
−1
2 QT

s

)

τT, (2.122)

P̂ = τT

[

(

A − QsṼ
−1
2 C

)T

P̂
(

A − QsṼ
−1
2 C

)

+ LTL

]

τ, (2.123)

τ , GTΓ = (Q̂P̂ )(Q̂P̂ )#, (2.124)

ΓGT = Ine , (2.125)

rank(Q̂) = rank(P̂ ) = rank(Q̂P̂ ) = ne, (2.126)

where Qs , AQCT + V12, Ṽ2 , CQCT + V2, and τ⊥ , I − τ .

Since ΓGT = Ine , it follows that τ is an oblique projector. The notation ( )#

indicates the group generalized inverse [47].

2.5 Optimal Finite-Horizon Subspace Estimator

We now consider reduced-order estimator that focuses on a specific subspace

of the state. Without loss of generality, we partition the system (2.1), (2.2) as






xr,k+1

xs,k+1






=







Ar,k Aus,k

0 As,k













xr,k

xs,k






+







D1r,k

D1s,k






wk, (2.127)

yk =

[

Cr,k Cs,k

]







xr,k

xs,k






+ D2,kwk, (2.128)

and we seek a reduced-order subspace estimator

xe,k+1 = Ae,kxe,k + Be,kyk, (2.129)

ye,k = Ce,kxe,k, (2.130)

that minimizes

Jk(Ae,k, Be,k, Ce,k+1) , E

(

[Lk+1xk+1 − ye,k+1]
T Rk [Lk+1xk+1 − ye,k+1]

)

. (2.131)
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In this formulation the plant state xk is partitioned into subsystems for xr,k and

xs,k of dimension nr,k and ns,k, respectively. The state xr,k may contain the compo-

nents of xk of interest. Furthermore, the state weighting matrix Lk is partitioned as

Lk , [Lr,k Ls,k], where Lr,k and Ls,k have dimensions qk × nr,k and qk × ns,k, respec-

tively. The order ne,k of the estimator state xe,k is chosen to be nr,k. Thus, the goal

of the optimal reduced-order subspace estimator problem is to design an estimator

of order nr,k that yields least-squares estimates of specified linear combinations of

the states of the system.

We define the error state zk , xr,k − xe,k, which satisfies

zk+1 = (Ar,k − Be,kCr,k)xr,k − Ae,kxe,k + (Aus,k − Be,kCs,k)xs,k + (D1u,k − Be,kD2,k)wk.

(2.132)

By constraining Ae,k = Ar,k − Be,kCr,k, (2.132) becomes

zk+1 = (Ar,k − Be,kCr,k)zk + (Aus,k − Be,kCs,k)xs,k + (D1u,k − Be,kD2,k)wk.

Furthermore, the explicit dependence of the estimation error in (2.131) on the xr,k

subsystem can be eliminated by constraining Ce,k = Lr,k. Now, from (2.127)-(2.130)

it follows that

x̃k+1 = Ãkx̃k + D̃kwk, (2.133)

where

x̃k ,







zk

xs,k






, Ãk ,







Ar,k − Be,kCr,k Aus,k − Be,kCs,k

0 As,k






, D̃k ,







D1r,k − Be,kD2,k

D1s,k






.

(2.134)

Then, the problem can be restated as finding Be,k that minimizes

Jk(Be,k) = tr
(

Qk+1R̃k+1

)

, (2.135)
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where R̃k+1 , LT
k+1RkLk+1 and Qk is the nk × nk state-error covariance Qk ,

E
[

x̃kx̃
T
k

]

.

Following the procedure in Section 2, we obtain the optimal finite-horizon reduced-

order subspace estimator given by

xe,k+1 = ΦkAk(I − QkC
T
k V̂ −1

k Ck)F
T
k xe,k + ΦkAkQkC

T
k V̂ −1

k yk, (2.136)

Qk+1 = AkQkA
T − AkQkC

TV̂ −1
k CkQkA

T
k + V1,k + µk+1⊥AkQkC

TV̂ −1
k CkQkA

T
k µT

k+1⊥,

(2.137)

where µk⊥ , I − µk, V̂k , CkQkC
T
k + V2,k, Fk ,

[

Inr,k
0nr,k×ns,k

]

,

Φk , [Inr (LT
r,kRkLr,k)

−1(LT
r,kRkLs,k)], (2.138)

µk , FT
k Φk =







Inr (LT
r,kRkLr,k)

−1(LT
r,kRkLs,k)

0 0






. (2.139)

Next, we consider two-step estimator. The data assimilation step is given by

xda
e,k = Af

e,kx
f
e,k + Be,kyk, (2.140)

yda
e,k = Ce,kx

da
e,k (2.141)

where xda
e,k ∈ R

ne is the reduced-order data assimilation estimate of the subspace

xu,k, and xf
e,k ∈ R

ne is the reduced-order forecast estimate of subspace xu,k, while the

forecast step is given by

xf
e,k+1 = Ada

e,kx
da
e,k, (2.142)

yf
e,k+1 = Ce,k+1x

f
e,k+1. (2.143)

Defining the data-assimilation cost Jda
k and the forecast cost J f

k as

Jda
k (He,k, Be,k, Ce,k) , E

(

[

Lkxk − yda
e,k

]T
Rk

[

Lkxk − yda
e,k

]

)

, (2.144)

J f
k+1 (Ae,k, Ce,k+1) , E

(

[

Lk+1xk+1 − yf
e,k+1

]T
Rk

[

Lk+1xk+1 − yf
e,k+1

]

)

, (2.145)
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we obtain the following two-step optimal finite-horizon subspace estimator:

Data assimilation step:

xda
e,k = Φk(I − Qf

kC
T
k V̂ −1

2,k Ck)F
T
k xda

k + ΦkQ
f
kC

T
k V̂ −1

2,k yk, (2.146)

Qda
k = Qf

k − Qf
kC

TV̂ −1
2,k CkQ

f
k + µk⊥Qf

kC
TV̂ −1

2,k CkQ
f
kµ

T
k⊥, (2.147)

V̂2,k = CkQ
f
kC

T
k + V2,k, µk = ΦkF

T
k . (2.148)

Forecast step:

xf
e,k+1 = ΦkAkF

T
k xda

e,k, (2.149)

Qf
k+1 = AkQ

da
k AT

k + V1,k. (2.150)

2.6 Optimal Infinite-Horizon Subspace Estimator

For the LTI system, the optimal infinite-horizon subspace estimator can be

obtained by reformulating the cost

J(Be) , lim
k→∞

E

(

[Lxk − ye,k]
T R [Lxk − ye,k]

)

, (2.151)

where we constrain

Ae , Ar − BeCr, (2.152)

Ce , Lr. (2.153)

If Ã is asymptotically stable, then Q , limk→∞ E[x̃kx̃
T
k ] exists.

Proposition 2.6.1. Assume that Be minimizes J (Be) with constraints (2.152)

and (2.153). Then there exist nonnegative-definite matrices Q,P ∈ R
n×n such that

Ae and Be are given by

Ae = ΦA(I − QCTV̂ −1C)FT, (2.154)

Be = ΦAQCTV̂ −1, (2.155)
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and Q and P satisfy

Q = AQAT − AQCTV̂ −1CQAT + µ⊥AQCTV̂ −1CQATµT
⊥

+ V1, (2.156)

P = ATPA − Qaµ
TPA − ATPµQT

a + Qaµ
TPµQT

a + LTRL, (2.157)

where µ⊥ , I − µ, V̂ , CQCT + V2, Qa , CTV̂ −1Q, F ,

[

Inr 0nr×ns

]

,

Φ , [Inr P−1
1 P12], (2.158)

µ , FTΦ =







Inr P−1
1 P12

0 0






. (2.159)

2.7 Application to Periodically Time-Varying Multirate Estimation

Consider the transverse deflection v(x, t) of a simply supported Euler-Bernoulli

beam. The modal decomposition of v(x, t) has the form

v(x, t) =
∞

∑

r=1

Vr(x)qr(t),

∫ l

0

mV 2
r (x)dx = 1, Vr(x) =

√

2

ml
sin

rπx

l
, (2.160)

where the modal coordinates qr satisfy

q̈r(t) = 2ζωrq̇r(t) + ω2
rqr(t) =

∫ l

0

f(x, t)Vr(x)dx, r = 1, 2, . . . . (2.161)

For simplicity we assume l = π and m = 2/π so that
√

2
ml

=1. We assume that

displacement sensors located at x = 0.55π and x = 0.65π are sampled at 50 Hz and 30

Hz, respectively. Also, it is assumed that a white noise disturbance of unit intensity

acts on the beam at x = 0.45π. For estimator design, we weight the performance

of the beam displacement at x = 0.65π. Finally, retaining the first five modes and

defining the plant states as x = [q1, q̇1, . . . , q5, q̇5]
T, the resulting continuous-time
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state-space model is

A = block − diag
i=1,...,5







0 1

−ω2
i −2ζωi






, ωi = i2, , i = 1, . . . , 5, ζ = 0.005,

C =







0.9877 0 −0.3090 0 −0.8910 0 0.5878 0 0.7071 0

0.8910 0 −0.8090 0 −0.1564 0 0.9511 0 −0.7071 0






,

L =

[

0.8910 0 −0.8090 0 −0.1564 0 0.9511 0 −0.7071 0

]

,

D1 =

[

0 0.9877 0 0.3090 0 −0.8900 0 −0.5878 0 −0.7071

]

,

V2 =







0.01 0

0 0.01






.

The continuous-time model is discretized according to the given sample rates,

which yields a time-varying system. Then the periodic sequence of sensor information

is

{s1, s2}, {s1}, {s2}, {s1}, {s1}, {s2}, {s1}, {s1, s2}, . . . (2.162)

where s1 and s2 denote the signals from sensor 1 and sensor 2, respectively. The

system is thus discretized according to the above sampling sequence as a periodically

time-varying system.

Figure 2.1 shows the evolution of the costs of the one-step and two-step finite-

horizon reduced-order estimators with n = 10, ne = 1. The performance of the

finite-horizon reduced-order estimators for the multirate system is compatible with

the performance of the same estimator applied to single rate system where both

signals are sampled at 50 Hz.
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Figure 2.1: Performance comparisons of reduced-order estimators when applied to the periodically
time-varying multirate sampling system and fixed sample-rate systems. (a) is for the
one-step reduced order estimator and (b) is for the two-step reduced-order estimator.

2.8 Asymptotically Stable Mass-Spring-Dashpot Example

We consider a zero-order hold discretized model of the mass-spring-dashpot

structure consisting of 10 masses shown in Figure 2.2 so that n = 20. For i =

1, . . . , 10, mi = 1.0 kg, while, for j = 1, . . . , 11, kj = 1.0 N/m and cj = 0.05 N-s/m.

We set the initial error covariance P0 = 100I, and we assume that V1,k = I, V2,k = I

for all k > 0.

Figure 2.2: Mass-spring-dashpot system.

Let xi denote the position of the ith mass so that

x ,

[

x1 ẋ1 · · · x10 ẋ10

]

. (2.163)

We assume that measurements of position and velocities of m1, . . . ,m4 are available

so that Ck = [I8 08×12] for all k > 0. Next, we obtain state estimates from the
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reduced-order estimator with ne = 8. Meanwhile, for the subspace estimator, we

consider a change of basis so that the system has the block upper triangular structure

shown in (2.127). The costs for the estimators are defined in (2.6) and (2.131) with

Rk = I. The ratio of the cost Jk to the best achievable cost when a full-order

Kalman filter is used is shown in Figure 2.3. As indicated by ratios greater than 1,

the performance of the reduced-order filter is never better than the full-order Kalman

filter.

Next, we assume that measurements of positions and velocities of m1, . . . ,m8 are

available so that Ck = [I16 016×4] for all k > 0. The performance of the reduced-

order estimator with ne = 16 is shown in Figure 2.3. The objective in both cases is

to obtain estimates of Lxk, where for i = 1, . . . , ne, j = 1, . . . , n, the (i, j)th entry of

L ∈ R
ne×n is given by

L(i,j) =



















1, if i = j,

0.05, else.

(2.164)

The plots also demonstrate that the one-step and two-step estimators are not equiv-

alent.

2.9 Mass-Spring-Dashpot Example with Rigid-Body Mode

Finally, we consider the case in which both ends of the mass-spring-dashpot

structure are free, that is, k1 = k11 = 0.0 and c1 = c11 = 0.0, and thus the structure

has an unstable rigid-body mode. Let qi denote the position of ith mode in modal

coordinates so that

x ,

[

q1 q̇1 · · · q10 q̇10

]

. (2.165)
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Figure 2.3: Cost ratios for the (a) reduced-order and (b) subspace estimators for the asymptotically
stable mass-spring-dashpot system. Jred is the estimation cost for the reduced-order
estimator and Jfull is for the full-order system. The plots also demonstrate that the
one-step and two-step estimators are not equivalent.



34

0 100 200 300 400 500
1

1.1

1.2

1.3

1.4

1.5

k (time index)

 J
re

d/ J
fu

ll

µ proj. (one−step),  n
e
=4

µ proj. (two−step),  n
e
=4

µ proj. (one−step),  n
e
=8

µ proj. (two−step),  n
e
=8

Figure 2.4: Cost ratios of J for the subspace estimator applied to the unstable mass-spring-dashpot
system. The subspace estimator is able to handle the unstable modes in its filter
structure.

We consider only the subspace estimator with xr =

[

q1 q̇1

]

. We assume that

measurements of the position and velocity of m1 are available and L is given by

(2.164) in modal coordinates with ne = 4, 8. The performance of the subspace

estimator with ne = 4, 8 is shown in Figure 2.4. The plots show that the subspace

estimator is able to capture the unstable modes in the system.

2.10 Conclusion

Using finite-horizon optimization, an optimal reduced-order estimator and op-

timal fixed-structure subspace estimator were obtained in the form of recursive up-

date equations for time-varying systems. These estimators are characterized by the

oblique projectors τ and µ. Moreover, we derived one-step and two-step update

equations for each estimator. When the order of each estimator is equal to the order

of the system, the oblique projectors become the identity and the estimators are
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equivalent to the classical optimal recursive full-order filter. We demonstrated the

performance of the reduced-order and the subspace estimators for lumped structures.



CHAPTER III

State Estimation for Large-Scale Systems Based on
Reduced-Order Error-Covariance Propagation

3.1 Introduction

The development of reduced-order state estimators has been of interest for several

decades; representative work includes [12–26]. Most of these techniques involve data

injection with an estimator whose order is less than the order of the plant. The esti-

mator dynamics are typically obtained from the full-order dynamics by a truncation

or projection process, while the estimator gain is obtained from a steady-state or

updated error-covariance matrix based on the full-order dynamics.

For large-scale systems, however, reduced-order filters based on a full-order er-

ror covariance may not be feasible. In particular, the effort needed to compute the

steady-state error covariance or to update the time-dependent error covariance is

significant, namely, O(n3) for a system of order n. Relevant applications include sys-

tems modeled by discretized partial differential equations such as weather forecasting

[27, 48–52], where state estimation is generally referred to as data assimilation [53].

To overcome the O(n3)-computational burden of full-order-error-covariance-based

estimation, we are interested in reduced-order filters based on a reduced-order error

covariance. One such technique is developed in [27], where balancing is used to obtain

a reduced-order model that provides the basis for the error-covariance update. By

36
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using the reverse transformation to convert the reduced-order error covariance to a

full-order error covariance in the original basis, data injection is performed on the

full-order model so that estimates of all states are obtained in the original, physically

meaningful basis. Although performance bounds are not available for this technique,

the approach is consistent with the use of balancing in model reduction [54] while

reducing the computational burden of the error-covariance update.

In the present chapter we compare the performance of the algorithm developed in

[27] with several alternative algorithms. These alternative algorithms use balancing

or truncation in various combinations to achieve a reduced-order-error-covariance for

data injection with either the full-order model or a reduced-order model. Some of

these algorithms use an initial balancing transformation, while others use an initial

model truncation along with a steady-state error covariance. Algorithms that avoid

the need for a balancing step are desirable when the system order is sufficiently

high that balancing and transformation are prohibitive. For example, in weather

applications, a state dimension greater than 106 is commonplace [27, 48–52].

As in [27], our study is primarily numerical, although we provide analytical per-

formance bounds for the complementary steady-state error-covariance filters. Our

goals in the present paper are thus to 1) clarify the nature of the reduced-order-

error-covariance estimation problem, 2) present a collection of reduced-order-error-

covariance estimators that are potentially useful in practice, and 3) numerically com-

pare the performance of these filters on representative examples. This study is a

precursor to the development of estimators for large-scale systems with nonlinear

dynamics; preliminary results are described in [55].

In the classical Kalman filter, the full-order error covariance is propagated to

obtain the estimator gain by which measurements are injected into the full state to
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obtain optimal state estimates under uncertain disturbances and measurement noises.

However, for large scale systems, propagation of the full-order error covariance is

computationally infeasible. Hence, we consider reduced-order error-covariance filters.

In the following subsections, we describe these filters. To fix notation, we begin with

a brief review of the full-order Kalman filter.

3.2 Full-Order Kalman Filter (FOKF)

Consider the discrete-time LTI system

xk+1 = Axk + Gwk, (3.1)

yk = Cxk + vk, (3.2)

where xk ∈ R
n, wk ∈ R

d, yk, vk ∈ R
p and A,G,C are known real matrices of

appropriate size. The plant disturbance Gwk has the covariance Qk , E[Gwkw
T
k GT],

while the sensor noise vk has the covariance Rk , E[vkv
T
k ]. The objective is to obtain

an estimate xf
k of the state xk using measurements yk to minimize trP f

k, where ef
k ∈ R

n

is defined by

ef
k , xk − xf

k (3.3)

and the state-error covariance P f
k ∈ R

n×n is defined by

P f
k , E[ef

ke
fT
k ]. (3.4)

The full-order Kalman filter is expressed in two steps, namely, the forecast step,

which uses the model, and the data assimilation step, where the measurement is used

to update the states. These steps can be summarized as follows:
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Forecast Step

xf
k+1 = Axda

k , (3.5)

P f
k+1 = AP da

k AT + Qf
k. (3.6)

Data Assimilation Step

Kk = P f
kC

T(CP f
kC

T + Rk)
−1, (3.7)

P da
k = (I − KkC)P f

k, (3.8)

xda
k = xf

k + Kk(yk − Cxf
k). (3.9)

3.3 Kalman Filter with Error-Propagation in Balanced-Reduction Model
(KFEBRM)

Applying the similarity transformation xk = T x̂k, the system (3.1), (3.2) becomes

x̂k+1 = Âx̂k + Ĝwk, (3.10)

yk = Ĉx̂k + vk, (3.11)

where Â , T−1AT, Ĝ , T−1G, and Ĉ , CT .

We choose the transformation T such that the controllability and observability

gramians of the transformed system (3.10), (3.11) are diagonal and equal, that is, the

system (3.10), (3.11) is a balanced realization of the system (3.1), (3.2). Then, we

reduce the transformed system by retaining the dominant subspace as determined by

the Hankel singular values σ1, . . . , σn, which describe the relative importance of each

transformed state. The Hankel singular values σ1, . . . , σn are the diagonal entries of

the diagonal matrix Σ given by

Σ , Ŵc = Ŵo, (3.12)
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where Ŵc,Ŵo ∈ R
n×n are the controllability and observability gramians of the trans-

formed system, respectively. The reduced model of order nr is given by

x̂r,k+1 = Ârx̂r,k + Ĝrwk, (3.13)

yr,k = Ĉrx̂r,k + vk, (3.14)

where Âr , (T−1)rATr, Ĝr , (T−1)rG, Ĉr , CTr, Tr , T
[

Inr 0nr×(n−nr)

]T
, and

(T−1)r ,
[

Inr 0nr×(n−nr)

]

T−1.

The method used in [27] propagates the error covariance for a model of order

nr < n truncated according to the Hankel singular values. Furthermore, at each

time step k, the full-order error covariance is approximated using the reduced-order

model-error covariance by means of

P̂ f
k = TrP

f
r,kT

T
r , (3.15)

where P f
r,k is the nr × nr reduced-order error-covariance matrix propagated for the

reduced-order model (3.13), (3.14), and P̂ f
k is the n× n approximate full-order error

covariance matrix. The resulting forecast and data assimilation steps are given as

follows:

Forecast Step

xf
k+1 = Axda

k , (3.16)

P f
r,k+1 = ÂrP

da
r,kÂ

T
r + Q̂f

r,k. (3.17)

Data Assimilation Step

Kr,k , P f
r,kĈ

T
r (ĈrP

f
r,kĈ

T
r + Rk)

−1, (3.18)

Kk = TrKr,k = P̂ f
kC

T(CP̂ f
kC

T + Rk)
−1, (3.19)

P da
r,k = (I − Kr,kĈr)P

f
r,k, (3.20)

xda
k = xf

k + Kk(yk − Cxf
k). (3.21)
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3.4 Localized Kalman Filter (LKF)

We now assume that the system (3.1), (3.2) can be partitioned as






x1,k+1

x2,k+1






=







A11 A12

A21 A22













x1,k

x2,k






+







G1wk

G2wk






, (3.22)

yk =

[

C1 0

]







x1,k

x2,k






+ vk, (3.23)

where x1,k ∈ R
n1 and x2,k ∈ R

n2 . Note that yk depends only on x1,k, which means

physically that yk is a local measurement. Truncating (3.22), (3.23) yields

x1,k+1 = A11x1,k + G1wk, (3.24)

yk = C1x1,k + vk, (3.25)

which is used for error-covariance propagation and data injection as follows:

Forecast Step

xf
k+1 = Axda

k , (3.26)

P f
1,k+1 = A11P

da
1,k + Qf

1,k. (3.27)

Data Assimilation Step

K1,k = P f
1,kC

T
1 (C1P

f
1,kC

T
1 + Rk)

−1, (3.28)

P da
1,k = (I − K1,kC1)P

f
1,k, (3.29)

xda
1,k = xf

1,k + K1,k(yk − C1x
f
1,k), (3.30)

xda
2,k = xf

2,k. (3.31)

In (3.27)-(3.29), P1,k is defined as the state-error covariance of the truncated system

(3.24), (3.25), that is,

P f
1,k , E[ef

1,ke
fT
1,k], (3.32)
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where ef
1,k , x1,k − xf

1,k.

3.5 Localized Kalman Filter with Balanced Reduction (LKFBR)

To apply LKF to the balanced system (3.10), (3.11), we first partition the trans-

formed system (3.10), (3.11) such that







x̂1,k+1

x̂2,k+1






=







Â11 Â12

Â21 Â22













x̂1,k

x̂2,k






+







Ĝ1wk

Ĝ2wk






, (3.33)

yk =

[

Ĉ1 Ĉ2

]







x̂1,k

x̂2,k






+ vk, (3.34)

where the dimension of x̂1,k is determined according to the Hankel singular values.

Truncating (3.33), (3.34) yields

x̂1,k+1 = Â11x1,k + Ĝ1wk, (3.35)

yr,k = Ĉ1x1,k + vk, (3.36)

which is used for error-covariance propagation and data injection using the LKF

procedures (3.26) - (3.31). Finally, in order to compare the estimates to those of

LKF without balanced model reduction given in (3.26), we transform the estimates

back to the original coordinates using xf
k = T x̂f

k.

3.6 Localized Kalman Filter with Residual-Subspace Balanced Trunca-
tion (LKFRBT)

We can account for the x2,k subsystem in the LKF algorithm by reducing the x2,k

subsystem and then augmenting the x1,k subsystem with the reduced x2,k subsystem.
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To do this, the dynamics of x2,k ∈ R
n2 in (3.22) are expressed as

x2,k+1 = A22x2,k + [A21 G2]







x1,k

wk






, (3.37)

zk = A12x2,k, (3.38)

to which we apply balanced realization and reduction. The resulting reduced-order

model is

x̂2,r,k+1 = (T̂−1)rA22T̂rx̂2,r,k + (T̂−1)r [A21 G2]







x1,k

wk






, (3.39)

zr,k = A12T̂rx2,r,k, (3.40)

where T̂ is the balanced transformation for x2,k subsystem (3.37), (3.38), x̂2,r,k ∈ R
nr ,

where nr < n2 is the reduced approximation of x̂2,k , T̂−1x2,k, T̂r , T̂
[

Inr 0nr×(n2−nr)

]T
,

and (T̂−1)r ,
[

Inr 0nr×(n2−nr)

]

T̂−1.

By replacing the corresponding terms of (3.22), (3.23) with terms of (3.39), (3.40),

we obtain






x1,k+1

x̂2,r,k+1






=







A11 A12T̂r

(T̂−1)rA21 (T̂−1)rA22T̂r













x1,k

x̂2,r,k







+







G1

(T̂−1)rG2






wk, (3.41)

yk =

[

C1 0

]







x1,k

x̂2,r,k






+ vk. (3.42)

The error covariance is propagated by the reduced system (3.41), (3.42) whose di-

mension is n1 +nr. The forecast and data assimilation steps are the same as those of
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KFEBRM (3.16)-(3.21), replacing the reduced-order system (3.13), (3.14) with the

system (3.41), (3.42), where Tr ∈ R
n×(n1+nr) is defined by

Tr ,







In1×n1 0

0 T̂r






. (3.43)

3.7 Complementary Static Open-Loop Steady-State (OLSS) Error-Covariance-
Based Gain

KFEBRM, LKFBR, and LKFRBT account for interactions with the truncated

subsystem by means of balanced reduction. Rather than using balanced reduction,

we now compensate the reduced-order error-covariance of LKF with a complemen-

tary open-loop or closed-loop steady-state error-covariance. We begin by proving that

the performance of an estimator that uses a steady-state open-loop error-covariance-

based static gain is better than or equal to the open-loop performance. The proofs

provide a justification for the complementary steady-state error-covariance approach.

Consider the system (3.1), (3.2), where A is asymptotically stable, the plant

disturbance Gwk and the measurement noise vk are mutually independent, stationary

random so that Q is positive semidefinite and R is positive definite.

Consider the corresponding open-loop estimator

x̂OL,k+1 = Ax̂OL,k, (3.44)

and define the open-loop state-estimation error

eOL,k , xk − x̂OL,k (3.45)

and the open-loop error covariance

POL,k , E
[

eOL,ke
T
OL,k

]

. (3.46)
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Note that

POL,k+1 = APOL,kA
T + Q. (3.47)

Since A is asymptotically stable, the steady-state open-loop error covariance

POL , lim
k→∞

POL,k (3.48)

exists and satisfies

POL = APOLAT + Q. (3.49)

Next, using the steady-state open-loop error covariance, we define the estimator

gain

KOL , APOLCTR̂−1
OL, (3.50)

where R̂OL , CPOLCT + R.

Consider the estimator

x̂k+1 = Ax̂k + KOL(yk − Cx̂k) (3.51)

and define the state-estimation error

ek , xk − x̂k, (3.52)

and the error covariance

Pk , E
[

eke
T
k

]

. (3.53)

Note that we use the one-step estimator (3.51), which is equivalent to the two-

step estimator composed of the forecast step and the data assimilation step. Next,

subtracting (3.51) from (3.1) yields

ek+1 = (A − KOLC)ek + Gwk − KOLvk. (3.54)
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Hence, (3.53) implies that error covariance Pk satisfies

Pk+1 = (A − KOLC)Pk(A − KOLC)T + Q

+ KOLRKT
OL.

(3.55)

The following result guarantees that the performance of the estimator based on the

open-loop error covariance is better than the performance of the open-loop estimator.

Proposition 3.7.1. Assume that Pk 6 POL. Then Pk+1 6 POL.

Proof. Subtracting (3.55) from (3.49) yields

POL − Pk+1 = APOLAT − (A − KOLC)Pk(A − KOLC)T

− KOLRKT
OL. (3.56)

Adding and subtracting (A−KOLC)POL(A−KOLC)T to the right hand side of (3.56)

yields

POL − Pk+1 =(A − KOLC)(POL − Pk)(A − KOLC)T

+ APOLCTKT
OL + KOLCPOLAT

− KOLR̂OLKT
OL.

(3.57)

Substituting (3.50) into (3.57) yields

POL − Pk+1 =(A − KOLC)(POL − Pk)(A − KOLC)T

+ APOLCTR̂−1
OLCPOLAT.

(3.58)

Hence, it follows from (3.50) that

POL − Pk+1 =(A − KOLC)(POL − Pk)(A − KOLC)T

+ KOLR̂OLKT
OL.

(3.59)

Therefore, Pk+1 6 POL.
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Hence, if P0 6 POL, then, for all k > 0, Pk 6 POL, which implies that the

performance of the estimator based on the open-loop error covariance is never worse

than the performance of the open-loop estimator. Next, we present a related result

in which the estimator gain is based not on the open-loop error covariance but on a

closed-loop error covariance obtained by using initial arbitrary gain K ∈ R
n×p.

3.8 Complementary Static Closed-Loop Steady-State (CLSS) Error-Covariance-
Based Gain

Consider the closed-loop estimator

x̂CL,k+1 = Ax̂CL,k + K(yk − Cx̂CL,k), (3.60)

where K is an estimator gain chosen so that A−KC is asymptotically stable. Define

the closed-loop state-estimation error

eCL,k , xk − x̂k, (3.61)

and the closed-loop error covariance

PCL,k , E
[

eCL,ke
T
CL,k

]

. (3.62)

Subtracting (3.60) from (3.1) yields

eCL,k+1 = (A − KC)eCL,k + Gwk − Kvk (3.63)

so that

PCL,k+1 = (A − KC)PCL,k(A − KC)T + Q

+ KRKT.

(3.64)

Since A−KC is asymptotically stable, the steady-state closed-loop error covariance

defined by

PCL , lim
k→∞

PCL,k (3.65)



48

exists and satisfies the Lyapunov equation

PCL = (A − KC)PCL(A − KC)T + Q + KRKT. (3.66)

Next, using steady-state closed-loop error covariance we define the estimator gain

KCL , APCLCTR̂−1
CL, (3.67)

where

R̂CL , CPCLCT + R. (3.68)

Consider an estimator based on the estimator gain in (3.67), that is,

x̂k+1 = Ax̂k + KCL(yk − Cx̂k). (3.69)

Subtracting (3.69) from (3.1) yields the error dynamics

ek+1 = (A − KCLC)ek + Gwk − KCLvk. (3.70)

Then the error covariance defined in (3.53) is propagated using

Pk+1 = (A − KCLC)Pk(A − KCLC)T + Q

+ KCLRKT
CL.

(3.71)

The following result shows that the performance of the estimator based on the closed-

loop error covariance PCL is better than the performance of the estimator in (3.60).

Proposition 3.8.1. Assume that Pk 6 PCL. Then, Pk+1 6 PCL.

Proof. Subtracting (3.71) from (3.66) yields

PCL − Pk+1 = (A − KC)PCL(A − KC)T

− (A − KCLC)Pk(A − KCLC)T

+ KRKT − KCLRKT
CL.

(3.72)
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Adding and subtracting (A−KCLC)PCL(A−KCLC)T to the right hand side of (3.72)

yields

PCL − Pk+1 = (A − KCLC)(PCL − Pk)(A − KCLC)T

+ KRKT − KCLRKT
CL − KCPCLAT

− APCLCTKT + KCPCLCTKT

+ KCLCPCLAT + APCLCTKT
CL

− KCLCPCLCTKT
CL.

(3.73)

Using (3.67) and (3.68) in (3.73) yields

PCL − Pk+1 = (A − KCLC)(PCL − Pk)(A − KCLC)T

+ KR̂CLKT + KCLR̂CLKT
CL

− KR̂CLKT
CL − KCLR̂CLKT.

(3.74)

Hence, PCL−Pk+1 = (A−KCLC)(PCL−Pk)(A−KCLC)T+(KCL−K)R̂CL(KCL−K)T.

Hence, if P0 6 PCL, then for all k > 0, Pk 6 PCL. Furthermore, note that

substituting K = 0 in (3.60) yields the open-loop estimator (3.44), and hence Propo-

sition 3.7.1 follows from Proposition 3.8.1 when K = 0.

Based on Proposition 3.7.1 and 3.8.1, we combine LKF gain with the steady-state

error-covariance-based gain to inject data into all of the states for potentially better

performance than that of LKF alone.
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3.9 LKF with Complementary Open-Loop Steady-State Error Covari-
ance (LKFCOLC)

At each time step, the local-system error-covariance P f
1,k is propagated by (3.27),

(3.28), and (3.29), whereas the open-loop steady-state error covariance is given by

POL =







POL,11 POL,12

POL,12 POL,22






, (3.75)

where POL is the steady-state error covariance that satisfies

APOLAT − POL + Q = 0. (3.76)

Note that POL is partitioned in 3.75 according to (3.22), (3.23).

Next, we inject data into the forecast state xf
2,k of LKF using the open-loop

steady-state covariance. That is, (3.31) is modified as

xda
2,k = xf

2,k + K2(yk − C1x
f
1,k), (3.77)

where

K2 , POL,12C
T
1 (C1POL,11C

T
1 + Rk)

−1. (3.78)

Finally, the estimator gain Kk for full-state data injection composed of (3.30),

(3.77) is given by

Kk ,







K1,k

K2






=







P f
1,kC

T
1 (C1P

f
1,kC

T
1 + Rk)

−1

POL,12C
T
1 (C1POL,11C

T
1 + Rk)

−1






. (3.79)

3.10 LKF with Complementary Closed-Loop Steady-State Error Covari-
ance (LKFCCLC)

The LKFCOLC technique may not have good performance when the comple-

mentary open-loop steady-state error covariance and optimal error covariance are
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significantly different. In this case, we use the complementary closed-loop steady-

state covariance when LKF is applied. Hence, let KLKF = [KT
1 0]T, where K1 is the

steady-state Kalman gain of LKF given by (3.28), and let PCL satisfy

(A − KLKFC)PCL(A − KLKFC)T − PCL

+ KLKFRKT
LKF + Q = 0.

(3.80)

Now partition PCL as

PCL =







PCL,11 PCL,12

PCL,12 PCL,22






, (3.81)

We obtain the estimator gain Kk by means of (3.79) replacing POL,11, POL,12 with

PCL,11, PCL,12, respectively.

3.11 Simulation Example

We apply the methods introduced in sections 3.2-3.10 to a compartmental model

[56], which involves states whose values are nonnegative quantities. This compart-

mental model is based on the physics of the processes by which material or energy

is exchanged among coupled subsystems. In addition, conservation laws account for

the flow of such quantities among subsystems.

A schematic diagram of the compartmental model is shown at Figure 3.1. The

total number of cells n is 25 for simulations with one state per cell. We assume that

the states of the first five cells are measured. Hence, the size of the localized system

n1 is set to 5. All σii ’s are set to 0.1 and all σij (i 6= j) are set to 0.44.

We simulate two cases. Case 1 involves a single-input disturbance in which the

input matrix G is the n × 1 ones matrix. Hence, Figure 3.2(a) shows one dominant

Hankel singular value. In Case 2, n mutually independent disturbances are spread
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Figure 3.1: Compartmental model involving interconnected subsystems.

out over all of the cells, and thus the disturbance input matrix G of (3.1) is the

n×n identity matrix. In Case 2, as can be seen in Figure 3.2(b), the Hankel singular

values decrease gradually and thus there is no definite model-truncation threshold.

Simulation results for KFEBRM, LKF, LKFBR, LKFRBT, LKFCOLC, and LK-

FCCLC are shown in Figure 3.3 and 3.4. LKFCCLC shows the best performance in

Case 2. In Case 1, KFEBRM and LKFBR show the best performance. Balanced-

model-based methods perform well for Case 1 because of the rapidly decreasing

Hankel singular values. However, the performance of LKFCOLC and LKFCCLC are

comparable to that of the balanced-model-based methods. Moreover, KFCLC con-

verges rapidly to the optimal Kalman filter with higher model order whereas KFOLC

does not. We summarize the properties and performance ranks of each method in

Table 3.1.

Estimators with an OLSS covariance-based static gain and CLSS covariance-based

static gain consistently perform better than without the static gain as shown in Figure

3.5. Moreover, Figure 3.6 shows that LKF compensated by either OLSS or CLSS

covariance show improved performance than LKF alone even when an erroneous Q

is used to obtain the OLSS and CLSS covariances.
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Table 3.1: Comparisons of reduced-order error-covariance Kalman filters.

Properties of number of model order requires requires performance performance
Methods states for for covariance balancing local rank for rank for

Method data injection propagation transform? measurements? Case 1 Case 2

KFEBRM 25 5 yes no 1 3
LKF 5 5 no yes 5 5
LKFBR 5 5 yes yes 1 3
LKFRBT 25 5 yes yes 5 5
LKFCOLC 25 5 no yes 3 2
LKFCCLC 25 5 no yes 4 1
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Figure 3.2: Case 1 Hankel singular values (left) and Case 2 Hankel singular values (right).
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Figure 3.3: Total RMS errors when the order of the reduced model for error-covariance propagation
is increased. Note that the number of measurements is fixed at 5. It can be seen
that LKFCCLC shows the best performance in Case 2. In Case 1, KFEBRM and
LKFBR show the best performance. Balanced-model-based methods perform well for
Case 1 because of the rapidly decreasing Hankel singular values. However, note that
the performance of LKFCOLC and LKFCCLC are comparable to that of the balanced-
model-based methods. Moreover, LKFCCLC converges rapidly to the optimal Kalman
filter with higher model order, whereas LKFCOLC has a small initial error but slowly
converges to the optimal Kalman filter.
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Figure 3.4: RMS error of each cell (spatial distribution of errors) with respect to each method when
the order of the reduced model is n1 = 5, 10. (a) and (b) are for Case 1 while (c) and
(d) are for Case 2. Note that LKF and LKFRBT are identical when n1 = 5.
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Figure 3.5: Total RMS errors of estimators with open-loop steady-state (OLSS) covariance-based
gain, closed-loop steady-state (CLSS) covariance-based gain, LKFCOLC and LKFC-
CLC when the order of the reduced model for error-covariance propagation is increased.
LKF compensated by OLSS and CLSS covariance show significantly improved perfor-
mance over LKF alone.
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Figure 3.6: Total RMS errors of estimators with open-loop steady-state (OLSS) covariance-based
gain, closed-loop steady-state (CLSS) covariance-based gain, LKFCOLC and LKFC-
CLC when the order of the reduced model for error-covariance propagation is increased
and 0.01Q is taken as an erroneous disturbance covariance to obtain OLSS and CLSS
covariances. LKF compensated by OLSS and CLSS covariance show improved per-
formance over LKF alone although the erroneous disturbance covariance is used in
obtaining the OLSS and CLSS covariances.

3.12 Conclusions

We presented several Kalman filters for reduced-order error-covariance propaga-

tion and compared them through numerical studies. We conducted numerical studies

for two extreme cases of Hankel singular values. In both cases, LKFCOLC and LK-

FCCLC show good performance. When there are a few dominant Hankel singular

values, LKFCCLC can be applied efficiently without the need for a similarity trans-

formation that may be prohibitive in large-scale systems.



CHAPTER IV

Reduced-Order Covariance-Based Unscented Kalman
Filtering with Complementary Steady-State Correlation

4.1 Introduction

State estimation for very large scale systems remains an area of interest re-

search. These systems arise in applications based on spatially distributed models or

spatially discretized partial differential equations. Weather forecasting and related

atmospheric applications are the main driver for this line of research [57, 58]. Al-

though the literature on reduced-order filtering extends back several decades [36, 59],

the challenge in addressing very large scale systems is to propagate the covariance

efficiently, especially in view of the fact that covariance propagation is O(n3) in

computational complexity, where n is the number of states.

To address the problem of computational complexity, a reduced-order error-covariance

propagation algorithm is developed in [60] based on balanced reduction, and this algo-

rithm is compared to several alternative reduced-order error-covariance propagation

algorithms in [61]. Some of these algorithms use an initial balancing transformation,

while others use an initial model truncation along with a steady-state covariance.

Algorithms that avoid the need for a balancing step are desirable when the system

order is sufficiently high that balancing and transformation are prohibitive.

In the present paper we extend the approaches considered in [61] to nonlinear

56
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systems by using the unscented Kalman filter [62]. This extension is necessitated

by the fact that large-scale applications are also typically nonlinear. Since balanc-

ing is usually not feasible for systems of very large order, we consider nonlinear

extensions of only the algorithms studied in [61] that avoid the need for balancing.

These algorithms include the localized unscented Kalman filter (LUKF), which is

essentially an unscented Kalman filter applied to a truncated model that includes all

states that affect the measurements, as well as LUKF augmented by complementary

steady-state error correlations. This augmentation can be performed either without

LUKF present or with LUKF present. The former case is referred to as the local-

ized unscented Kalman filter with complementary open-loop steady-state correlations

(LUKFCOLC), while the latter case is referred to as the localized unscented Kalman

filter with complementary closed-loop steady-state correlation (LUKFCCLC). The

paper describes the LUKF, LUKFCOLC, and LUKFCCLC algorithms in detail.

To compare the performance of the LUKF, LUKFCOLC, and LUKFCCLC al-

gorithms, we consider three examples that are computationally tractable on single-

processor machines. First, we consider a finite-volume compressible hydrodynamic

simulation for one-dimensional. Next, we consider a two-dimensional finite-volume

magnetohydrodynamic (MHD) simulation using the BATSRUS MHD code developed

in [63]. Extended Kalman filter and state-dependent Riccati equation techniques

were applied to these problems in [30, 64]. Finally, we consider a one-dimensional

model of the Global Ionosphere-Thermosphere Model (GITM), which considers the

effect of solar flux on the dynamics of the atmosphere. A state-dependent Riccati

equation technique for data assimilation was applied to this problem in [31].
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4.2 The Unscented Kalman Filter

Consider the discrete-time nonlinear system with dynamics

xk+1 = f(xk, uk, k) + wk (4.1)

and measurements

yk = h(xk, k) + vk, (4.2)

where xk ∈ R
n, uk ∈ R

m, and yk ∈ R
p. The input uk and output yk are assumed

to be measured, and wk ∈ R
n and vk ∈ R

p are uncorrelated zero-mean white noise

processes with covariances Qk and Rk, respectively. We assume that Rk is positive

definite. If the dynamics and the measurement map are linear, the Kalman filter

yields the optimal (minimum variance) estimates of the state xk. The Kalman filter

depends on the error covariance which is propagated using the Riccati equation [65].

In this paper, we consider the unscented Kalman filter (UKF) [62]. Unlike the

extended Kalman filter [64] and SDRE estimator [30], UKF does not use the Jacobian

of the dynamics or a factorization of the dynamics to propagate a pseudo-error

covariance. The starting point for UKF is a set of sample points, that is, a collection

of state estimates that capture the initial probability distribution of the state. First,

we describe the unscented transformation procedure used to obtain sample points

with a specified mean and variance.

Assume that x ∈ R
n, P ∈ R

n×n is positive semidefinite and λ > 0. The unscented

transformation is used to obtain 2n + 1 sample points Xi ∈ R
n and corresponding

weights γx,i and γP,i, for i = 1, . . . , 2n+1, so that the weighted mean and the weighted

variance of the sample points is x and P , respectively. The unscented transformation
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X = Ψ(x, P , λ) of x with covariance P is defined by

Xi =



































x, if i = 0,

x + P̃i, if i = 1, . . . , n,

x − P̃i−n, if i = n + 1, . . . , 2n,

(4.3)

where P̃ ,
(

λP
)1/2

, P̃i is the ith column of P̃ ∈ R
n×n, X ∈ R

n×2n+1 has entries

X =

[

X0 · · · X2n

]

(4.4)

and λ > 0 determines the spread of the sample points around x. Note that

2n
∑

i=0

γx,iXi = x,

2n
∑

i=0

γP,i(Xi − x)(Xi − x)T = P , (4.5)

where the weights defined by

γx,1 , 1 − n

λ
, γP,1 , 1 − n

λ
+ (1 − λ

n
+ β), (4.6)

γx,i = γP,i ,
1

2λ
, i = 2, . . . , 2n + 1, (4.7)

depend on λ and β > 0.

UKF uses the unscented transformation to capture the mean and covariance of

the error dynamics. UKF involves simulating 2n + 1 copies of the model and using

these ensembles to approximate the mean and error covariance. We assume that an

initial estimate xf
0 of the state x0 is given, and the covariance of error in the initial

condition is P f
0 ∈ R

n×n.

For all k > 0, the analysis step of UKF is given by

xda
k = xf

k + Kk(yk − yf
k), (4.8)

yf
k = h(xf

k, k), (4.9)

Xda
k = Ψ(xda

k , P da
k , λ), (4.10)

P da
k = P f

k − KkPyy,kK
T
k , (4.11)
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where

Kk = Pxy,kP
−1
yy,k, (4.12)

Pxy,k =
2n
∑

i=0

γP,i(X
f
i,k − xf

k)(Y
f
i,k − yf

k)
T, (4.13)

Pyy,k =
2n
∑

i=0

γP,i(Y
f
i,k − yf

k)(Y
f
i,k − yf

k)
T + Rk, (4.14)

X f
k = Ψ(xf

k, P
f
k, λ), (4.15)

Y f
i,k = h(X f

i,k, k), (4.16)

and the forecast step of UKF is given by

X̃ f
i,k+1 = f(Xda

i,k, uk, k), (4.17)

xf
k+1 =

2n
∑

i=0

γx,iX̃
f
i,k+1, (4.18)

P f
k+1=

2n
∑

i=0

γP,i(X̃
f
i,k+1−xf

k+1)(X̃
f
i,k+1−xf

k+1)
T+Qk. (4.19)

If the dynamics in (4.1) and (4.2) are linear, then UKF is equivalent to the Kalman

filter [62].Since UKF involves 2n+1 model updates given by (4.17), the computational

burden of UKF is of the order (2n + 1)n2 = 2n3 + n2. If n is large, for example, in

finite volume discretization of partial differential equations, then the computational

burden of implementing UKF is enormous.

In many data assimilation applications involving finite volume models, the dy-

namics involve nearest neighbor interactions (banded dynamics), and hence mea-

surements available in a certain spatial region seem to influence the estimates in

only a certain neighborhood around the measurement location. Next, we consider

an extension of UKF that approximates the error covariance corresponding to only a

specific subspace of the state and not the entire state, thereby reducing the number

of ensembles needed.
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4.3 Localized Unscented Kalman Filter (LUKF)

Assume that the state xk ∈ R
n has components

xk =

[

xT
L,k xT

E,k

]T

, (4.20)

where xL,k ∈ R
nL and xE,k ∈ R

nE , and nL + nE = n. Also, assume that the measure-

ments depend on the state xL so that yk can be expressed as

yk = h(xL,k, k) + vk. (4.21)

Finally, let Qk and P f
0 have entries

Qk=







QL,k QLE,k

QT
LE,k QE,k






, P f

0=







P f
L,0 P f

LE,0

(P f
LE,0)

T P f
E,0






. (4.22)

The objective is to directly inject the measurement data yk into only the states corre-

sponding to the estimate of xL,k by using a reduced-order surrogate error covariance.

For example, in weather prediction models involving spatial dimensions, xL,k may

represent the states corresponding to a small region surrounding the location where

measurements are available, and xE,k may represent the states that are outside this

localized region.

Assume that for all k > 0, the error covariance P f
k of UKF has the structure

P f
k =







P f
L,k 0

0 0






, (4.23)

where P f
L,k ∈ R

nL×nL represents the covariance of error corresponding to the state

xL,k. Hence, it follows from (4.3) and (4.23) that if X f
k = Ψ(xf

k, P
f
k, λ) then for

i = nL + 1, . . . , n, n + nL + 1, . . . , 2n,

X f
i,k = X f

1,k = xf
k. (4.24)
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Since 2nE + 1 ensembles are exactly the same, it suffices to retain only one such

ensemble. Therefore, the number of ensembles required is reduced from 2n + 1 to

(2n+1)− 2nE = 2nL +1. Furthermore, it follows from (4.23) that instead of a n×n

error covariance only a nL × nL reduced-order error covariance has to be estimated

using the 2nL + 1 ensembles. Applying these simplifying assumptions to UKF yields

the localized unscented Kalman filter (LUKF).

The data assimilation step of LUKF is given by

xda
L,k = xf

L,k + KL,k(yk − yf
k), (4.25)

xda
E,k = xf

E,k (4.26)

yf
k = h(xf

L,k, k), (4.27)

Xda
L,k = Ψ(xda

L,k, P
da
L,k, λ), (4.28)

P da
L,k = P f

L,k − KL,kPyy,kK
T
L,k, (4.29)

where

KL,k = PxLy,kP
−1
yy,k, (4.30)

PxLy,k =

2nL
∑

i=0

γP,i(X
f
L,i,k − xf

L,k)(Y
f
i,k − yf

k)
T, (4.31)

Pyy,k =

2nL
∑

i=0

γP,i(Y
f
i,k − yf

k)(Y
f
i,k − yf

k)
T + Rk, (4.32)

X f
L,k = Ψ(xf

L,k, P
f
L,k, λ), (4.33)

Y f
i,k = h(X f

L,i,k, k), (4.34)

and for i = 0, . . . , 2nL, X f
L,i,k ∈ R

nL is the (i + 1)th column of X f
L,k. Note that

only 2nL + 1 ensembles are used compared to the 2n + 1 ensembles in the UKF,

and (4.25)-(4.26) imply that the measurement data is injected directly into only the

estimates of the state corresponding to the subspace xL,k.
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Next, for all i = 0, . . . , 2nL, define Xda
i,k ∈ R

n by

Xda
i,k ,







Xda
L,i,k

xda
E,k






, (4.35)

where Xda
L,i,k ∈ R

nL is the (i + 1)th column of Xda
L,k. It follows from (4.23) that the

correlations corresponding to the error in the state xE,k are assumed to be zero, and

therefore, the estimate xda
E,k of the state xE,k in all the ensembles of LUKF in (4.35)

is the same. However, the estimate of the state xL,k is different in each ensemble.

The forecast step of LUKF is given by

X̃ f
i,k+1 = f(Xda

i,k, uk, k). (4.36)

The forecast estimate of the state xk is obtained by

xf
k+1 =

2nL
∑

i=0

γx,iX̃
f
i,k+1. (4.37)

Next, for i = 0, . . . , 2nL, let X f
i,k+1 ∈ R

n have entries

X̃ f
i,k+1 =







X̃ f
L,i,k+1

X̃ f
E,i,k+1






(4.38)

with X̃ f
L,i,k+1 ∈ R

nL and X̃ f
E,i,k+1 ∈ R

nE . Finally, to account for the increase in

the error covariance due to the process noise, represented by QL,k, the surrogate

covariance of the error in the estimate of xL,k is given by

P f
L,k+1=

2n
∑

i=0

γP,i(X̃
f
L,i,k+1−xf

L,k+1)(X̃
f
L,i,k+1−xf

L,k+1)
T+QL,k. (4.39)

Although (4.26) implies that data is not directly injected into the state estimates

corresponding to the subspace xE,k, it follows from (4.35)-(4.37) that the measure-

ment data affect the estimates of the state xE,k through the dynamic coupling between

xL,k and xE,k. LUKF involves 2nL + 1 model updates and therefore the number of

computations involved is of the order (2nL + 1)n. Hence, if nL ≪ n, then LUKF is

computationally efficient compared to UKF.
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4.4 Complementary Steady-State Correlation

Although LUKF provides estimates of all of the states, (4.26) implies that

LUKF injects data directly into only that states corresponding to the estimate of

xL,k. On the other hand, UKF injects data directly into the all of states of the

estimator. Since ignoring the correlation between the error in the estimates of the

states xL,k and xE,k in LUKF may result in poor estimates, we consider a modification

of LUKF that uses a constant correlation between the error in the estimates of the

states xL,k and xE,k . In the following sections, we assume that Qk = Q and Rk = R

for all k > 0.

If the dynamics and the measurement map in (4.1) and (4.2) are linear and time-

invariant, then, the error covariance is propagated using the Riccati equation, and

under certain detectability and stabilizability assumptions, the error covariance con-

verges to a steady-state value that is the solution of an algebraic Riccati equation. If

the dynamics are nonlinear, then there is no guarantee that UKF or LUKF will reach

a statistical steady-state. However, simulations may indicate that after a certain pe-

riod of time, the performance of the estimators do not vary significantly, and in that

case, we assume that the estimator has almost reached statistical steady-state.

4.4.1 LUKF with Complementary Open-Loop Correlation (LUKFCOLC)

First, we determine a static estimator gain that is based on the steady-state

correlation between the measurements yk and the state xk. If the dynamics are linear

and time-invariant, that is f(x, u, k) = Ax + Bu and h(x, k) = Cx for all k > 0,

and (A,Q) is stabilizable, then the steady-state state covariance Pxx is the solution

of the Lyapunov equation

Pxx = APxxA
T + Q. (4.40)
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Furthermore, the steady state correlation Pxy between the measurement yk and the

state xk is given by Pxy = PxxC
T.

However, since the dynamics are nonlinear, we approximate the steady-state state

covariance by using Monte Carlo simulations. Consider N copies of the open-loop

model of the system (4.1)-(4.2) so that for i = 1, . . . , N ,

x̃i,k+1 = f(x̃i,k, uk, k) + w̃i,k,

ỹi,k = h(x̃i,k, k) + ṽi,k,

(4.41)

where x̃i,0 is a random variable with the specified mean x0 and variance P f
0 , and

w̃i,k and ṽi,k are sampled from zero-mean white processes with variances Q and

R, respectively. Next, we define an approximation of the steady state open-loop

correlation POL,xy and POL,yy by

POL,xy, lim
k→∞

1

N − 1

N
∑

i=1

(x̃i,k − xk)(ỹi,k − yk)
T, (4.42)

POL,yy, lim
k→∞

1

N − 1

N
∑

i=1

(ỹi,k − yk)(ỹi,k − yk)
T, (4.43)

where

xk ,
1

N

N
∑

i=1

x̃i,k, yk ,
1

N

N
∑

i=1

ỹi,k. (4.44)

Alternatively, the unscented transformation can also be used to approximate the

steady state open-loop state covariance. Note that the state covariance of (4.1) is

the same as the open-loop error covariance, that is the covariance of error of an

estimator when the estimator gain is zero. Hence, we use (4.8)-(4.19) with Kk = 0

for all k > 0, and define POL,xy and POL,yy by

POL,xx , lim
k→∞

Pxy,k, POL,yy , lim
k→∞

Pyy,k. (4.45)

If n is small, then the computational burden of using the open-loop unscented Kalman

filter to estimate the open-loop error correlation is small. However, when n is large,



66

approximating the error covariance by using Monte Carlo simulations with a small

N is computationally more efficient.

Finally, we define the static estimator gain KOL ∈ R
n×p based on the steady-state

open-loop correlations by

KOL , POL,xyP
−1
OL,yy. (4.46)

and let KOL have entries

KOL =







KOL,L

KOL,E






, (4.47)

where KOL,L ∈ R
nL×p and KOL,E ∈ R

nE×p. The forecast step of LUKFCOLC is given

by (4.35) - (4.39). The analysis step of the LUKFCOLC is given by

xda
L,k = xf

L,k + KL,k(yk − yf
k), (4.48)

xda
E,k = xf

E,k + KOL,E(yk − yf
k), (4.49)

yf
k = h(xf

L,k, k), (4.50)

Xda
L,k = Ψ(xda

L,k, P
da
L,k, λ), (4.51)

P da
L,k = P f

L,k − KL,kPyy,kK
T
L,k, (4.52)

where KL,k and Pyy,k are defined in (4.30)-(4.34).

Note that injecting measurement data yk in an estimator affects the error covari-

ances and hence, the actual closed-loop error correlation between yk and the error in

estimates xf
k−xk will be different from the open-loop error correlation POL,xy with no

data injection. However, (4.49) implies that the estimator gain corresponding to the

estimate xda
E,k is based on only the open-loop error correlation and is not aware of the

change in correlation due to data injection. On the other hand, UKF always updates

the closed-loop error covariances, thus accounting for the change in the correlation

due to data injection.
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4.4.2 LUKF with Complementary Closed-Loop Correlation (LUKFCCLC)

Next, instead of using a static estimator gain that is based on the open-loop

steady-state correlations, we use a static estimator gain that is based on the closed-

loop steady-state correlations. Specifically, we estimate the steady-state correlations

between the error in the estimates when LUKF is used for state estimation. We

assume that LUKF has reached a statistical steady-state when the performance of

LUKF does not change significantly.

The Monte-Carlo procedure to determine the steady-state closed-loop correlation

is as follows. First, we simulate N copies of the open-loop model of the system

as shown in (4.41) and obtain outputs ỹi,k. Next, for i = 1, . . . , N , we perform

state estimation using LUKF with the outputs ỹi,k. Let x̃f
i,k be the estimate of x̃i,k

provided by the ith simulation of LUKF. We approximate the steady-state closed-

loop correlations by

PCL,xy, lim
k→∞

1

N − 1

N
∑

i=1

[

x̃i,k− x̃f
i,k

][

ỹi,k− h(x̃f
i,k)

]T
, (4.53)

PCL,yy, lim
k→∞

1

N − 1

N
∑

i=1

[

ỹi,k− h(x̃f
i,k)

][

ỹi,k− h(x̃f
i,k)

]T
. (4.54)

Note that x̃i,k and x̃f
i,k are all simulation outputs and hence PCL,xy and PCL,yy in

(4.53) and (4.54), respectively, can be evaluated.

Alternatively, the unscented transformation can also be used to obtain an estimate

of the closed-loop error correlations. To do this, we first use LUKF with the simulated

measurement data ỹ1,k to obtain estimates x̃f
1,k of the state x̃1,k for k > 0. Assuming

KL,k does not vary significantly after a sufficiently long time interval, we define the

steady-state LUKF estimator gain KL by

KL , lim
k→∞

KL,k, (4.55)
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where KL,k is the estimator gain given by (4.30) when obtaining the estimate x̃f
1,k.

Note that LUKF ignores correlations between certain states and hence cannot be

used to estimate the closed-loop error correlation. Instead, we use the unscented

transformation to estimate the closed-loop steady-state error correlations. Specifi-

cally, we use (4.8)-(4.19) with

Kk =







KL

0






, (4.56)

for all k > 0, and view the correlations Pxy,k and Pyy,k in (4.13) and (4.14) as an

estimate of the closed-loop error correlations of LUKF. We then estimate the closed-

loop steady-state error correlations PCL,xy and PCL,yy by

PCL,xy = lim
k→∞

Pxy,k, PCL,yy = lim
k→∞

Pyy,k. (4.57)

Finally, the static estimator gain that is based on the steady-state closed-loop error

correlations is given by

KCL = PCL,xyP
−1
CL,yy (4.58)

with entries

KCL =







KCL,L

KCL,E






, (4.59)

where KCL,L ∈ R
nL×p and KCL,E ∈ R

nE×p.

The forecast step of LUKFCCLC is given by (4.35) - (4.39), and the analysis step

of LUKFCCLC is given by (4.48)-(4.52) with KOL,E replaced by KCL,E in (4.49).

Next, we compare the performance of UKF, LUKF, LUKFCOLC, and LUKFC-

CLC on the one dimensional global ionosphere-thermosphere model.
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4.5 One dimensional Global Ionosphere-Thermosphere Model

The Global Ionosphere-Thermosphere Model (GITM) is a 3-dimensional, par-

allel, spherical code that models the Earth’s thermosphere and ionosphere system,

which has an altitude range from about 100 km to 1000 km, using a stretched altitude

grid [10]. This framework allows the model to have nonhydrostatic solutions, resolv-

ing sound and gravity waves in both the vertical and horizontal directions. Inputs

to GITM include solar ultraviolet (UV) photons, auroral energetic particles, electric

fields, and electric currents. The code explicitly solves for the neutral-particle den-

sities of O, O2, N(2D), N(2P), N(4S), N2, NO, H, and He (rather than mass-mixing

ratios); ion species O+(4S), O+(2D), O+(2P), O+
2 , N+, N+

2 , NO+, H+, and He+; and

neutral-particle, ion, and electron temperatures. The bulk horizontal neutral-particle

winds are solved for. In the vertical direction, individual winds are solved for with

a bulk vertical wind given by the mass-density-weighted average of the individual

vertical velocities. The ion velocity is determined by balancing the drag between ion

and neutral particles, gravity, pressure gradients, and external electric fields. The

electron velocity is considered to be the E × B drift. At the core, GITM separates

vertical and horizontal advection to faciliate numerical solution of the exponential

fall-off of the atmosphere. Many of these details are discussed in the classic reference

[66].

Most parameters and physical effects can be turned on or off in GITM. We can use

this capability to simplify GITM when necessary or to experiment with the physics

that constitute GITM. For example, solar EUV heating, Joule heating, and auroral

heating can be turned on or off to study thermal sources. Likewise, ion drag, viscosity,

Coriolis force, gravity, electromagnetic force, ion pressure, and neutral drag can be
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switched on or off to examine their effect on neutral and ion motion. In addition, ion

chemistry, ion advection and neutral chemistry can be switched on or off to study the

effect of specific chemical reactions. In particular, individual neutral and ion species

can be turned on or off to determine the effects of less-dominant species.

GITM can run in 1D as well as 3D. One-dimensional simulations can be carried out

efficiently on a personal computer. This ability allows us to quickly and inexpensively

investigate long time periods to determine the stability of the code, and to test new

physics or data assimilation algorithms. When run in 1D, horizontal transport is

ignored, and only the vertical advection is taken into account. Since source terms are

included, processes such as ion drag are taken into account. Other external driving

terms, such as the electric potential, are specified on a 1◦-by-1◦ grid surrounding

the 1D domain. An electric field can then be derived at the cell center, driving the

horizontal ion velocities. The horizontal ion flows cause horizontal neutral flows to

develop and Joule heating to occur. The data assimilation algorithms verified for 1D

GITM will be extended to 3D GITM, which is significantly more computationally

intensive.

We apply LUKF compensated by complementary open-loop and closed-loop steady-

state covariance to data assimilation for vertical 1D GITM with 50 cells defined

along the vertical direction, dominant neutrals O, O2, N2, N(4S), and dominant ions

O+(4S), O+
2 , NO+. We consider only the solar irradiation represented by F10.7 as

an input to GITM. We summarize the features of 1D GITM for data assimilation

in Table 4.1. In addition, the 1D GITM cell structure for UKF, LUKF, and LUKF

with open-loop or closed-loop steady-state covariance compensation is shown in Fig-

ure 4.1. Table 4.2 summarizes the conditions for the truth model from which the

measurement data are taken as well as the data-assimilation model.



71

Table 4.1: Summary of one-dimensional GITM for data assimilation.

items description

location Millstone Hill, MA USA
grid 50 grid cells stretched in vertical direction from 100 km to 750 km altitude
input daily F10.7

states natural logarithm of number density of O, O2, N2, N(4S)
vertical velocities of O, O2, N2, N(4S)
eastward horizontal velocity of neutrals
northward horizontal velocity of neutrals
normalized temperature of neutrals Tn

natural logarithm of number density of O+(4S), O+
2 , NO+

electron temperature Te

15 states per cell and 15 × 50 = 750 states in the model
outputs electron temperature Te

number density of electron Ne

vertical velocity of ions Vi

ions temperature Ti

in measurement cells 10, 20, 30, and 40

Table 4.2: Conditions for the truth model and assimilation model. Here, MSIS is an empirical model
that relates the neutral-particle densities and temperature to the integrated solar flux approximation
F10.7 and activity level Ap. IRI models the ionospheric density and temperatures for all latitudes
and local times. F10.7 is the flux at 2800 MHz or 10.7-cm wavelength over the entire solar disk.
F10.7 is a measure of solar irradiation strength and one of the inputs to GITM.

model the truth model the model to be assimilated
conditions

F10.7 daily random F10.7 F10.7 = 210 constant
with average 210

initial condition determined by MSIS, IRI determined by MSIS, IRI
with F10.7 = 210 with F10.7 = 100

The open-loop and closed-loop steady-state covariance of the data assimilation

model are obtained by using the unscented transformation (UT). That is, open-loop

and closed-loop steady-state covariances are obtained from 2n + 1 (where n is the

total number of states in 1D GITM) ensembles of the 1D model while the model

is propagated open-loop and closed-loop, respectively. In particular, the closed-loop

steady-state covariance is obtained in two steps as follows:

1. Run LUKF GITM and store local estimator gains over the entire time interval.

2. Run GITM with the unscented transformation while local states are updated
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Figure 4.1: 1D GITM cell structure for UKF, LUKF, and LUKFOLCC or LUKFCLCC. In all 3
cases, measurements of number density of electrons, electron temperature, ion-particle
temperature, and ion velocity are taken in cells 10, 20, 30, and 40. UKF performs
the unscented transformation (UT) and data injection on all 50 cells whereas LUKF
performs UT and data injection only on the local groups comprised of 12 cells that
include measurement cells. For LUKFOLCC and LUKFCLCC, LUKF is implemented
along with an update of the remaining cells using the constant gain determined from
an estimate of the open-loop and closed-loop complementary steady-state covariance,
respectively.
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Figure 4.2: Comparisons of the normalized neutral-particle temperature in cell 40. Left plot is for
the LUKF with open-loop steady-state covariance compensation (LUKFOLCC), while
the right plot is for the LUKF with closed-loop steady-state covariance compensation
(LUKFCLCC). The LUKFCLCC is closer to the truth model than the LUKFOLCC.

using the stored local gain and obtain the resulting steady-state covariance.

4.5.1 Comparison of Performance and Computation Time for UKF, LUKF, LUK-
FOLCC, and LUKFCLCC

We compare the performance and computation time of UKF, LUKF, LUK-

FOLCC, and LUKFCLCC for 1D GITM. We choose the normalized neutral-particle

temperature Tn for performance evaluation. In particular, for a given cell, Tn , p/ρ,

where p is the total neutral pressure, ρ =
∑

s MsNs is the neutral-particle mass den-

sity, Ms is the molecular mass of neutral species s, and Ns is the number density of

the neutral species s.

Figure 4.2 compares normalized neutral-particle temperature profiles in cell 40.

It can be seen that LUKF with either open-loop or closed-loop steady-state covari-

ance compensation performs better than LUKF alone. Furthermore, LUKFCLCC

is closer to the truth model than LUKFOLCC. The errors are more directly com-

pared in Figure 4.3. Computation times (excluding offline covariance estimation) of

LUKFOLCC and LUKFCLCC are close to that of LUKF.
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Figure 4.3: RMS errors for the normalized neutral-particle temperatures (a) and ratio of total RMS
errors for data assimilation to errors without data assimilation versus computation time
plot (b). The right plot is for normalized neutral-particle temperatures. The error for
LUKFCLCC is less than for LUKFOLCC. Moreover, note that the LUKFOLCC and
LUKFCLCC show better performance than LUKF while computation times are close
to that of LUKF.

4.6 Conclusion

We present extensions of the the unscented Kalman filter that propagate a

reduced-order pseudo error covariance. To compensate for the neglected correlation

between certain states and the measurement, we present two methods that use a com-

plementary static estimator gain based on correlations between the measurements

and the neglected states. The use of a static estimator gain based on the open-

loop and closed-loop correlations helps improve estimation performance without a

significant increase in the online computational burden.



CHAPTER V

Cholesky-Based Reduced-Rank Square-Root Kalman
Filtering

5.1 Introduction

The problem of state estimation for large-scale systems has gained increasing

attention due to computationally intensive applications such as weather forecasting

[34], where state estimation is commonly referred to as data assimilation. For these

problems, there is a need for algorithms that are computationally tractable despite

the enormous dimension of the state. These problems also typically entail nonlinear

dynamics and model uncertainty [67], although these issues are outside the scope of

this paper.

One approach to obtaining more tractable algorithms is to consider reduced-order

Kalman filters. These reduced-complexity filters provide state estimates that are sub-

optimal relative to the classical Kalman filter [35–37, 43, 68]. Alternative reduced-

order variants of the classical Kalman filter have been developed for computationally

demanding applications [38–40, 69], where the classical Kalman filter gain and co-

variance are modified so as to reduce the computational requirements. A comparison

of several techniques is given in [41].

A widely studied technique for reducing the computational requirements of the

Kalman filter for large scale systems is the reduced-rank filter [70–73]. In this method,

75
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the error-covariance matrix is factored to obtain a square root, whose rank is then

reduced through truncation. This factorization-and-truncation method has direct

application to the problem of generating a reduced ensemble for use in particle filter

methods [74, 75].

Reduced-rank filters are closely related to the classical factorization techniques

[76, 77], which provide numerical stability and computational efficiency, as well as a

starting point for reduced-rank approximation.

The primary technique for truncating the error-covariance matrix is the singular

value decomposition (SVD) [70–75], wherein the singular values provide guidance

as to which components of the error covariance are most relevant to the accuracy

of the state estimates. Approximation based on the SVD is largely motivated by

the fact that error-covariance truncation is optimal with respect to approximation

in unitarily invariant norms, such as the Frobenius norm. Despite this theoretical

grounding, there appear to be no theoretical criteria to support the optimality of

approximation based on the SVD within the context of recursive state estimation.

The difficult is due to the fact that optimal approximation depends on the dynamics

and measurement maps in addition to the components of the error covariance.

In the present paper we begin by observing that the Kalman filter update depends

on the combination of terms CkPk, where Ck is the measurement map and Pk is the

error covariance. This observation suggests that approximation of CkPk may be more

suitable than approximation based on Pk alone.

To develop this idea, we show that approximation of CkPk leads directly to trun-

cation based on the Cholesky decomposition. Unlike the SVD, however, the Cholesky

decomposition does not possess a natural measure of magnitude that is analogous

to the singular values arising in the SVD. Nevertheless, filter reduction based on the
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Cholesky decomposition provides state-estimation accuracy that is competitive with,

and in many cases superior to, that of the SVD. In particular, we show that, in spe-

cial cases, the accuracy of the Cholesky-decomposition-based reduced-rank filter is

equal to the accuracy of the full-rank filter, and we demonstrate examples for which

the Cholesky-decomposition-based reduced-rank filter provides acceptable accuracy,

whereas the SVD-based reduced-rank filter provides arbitrarily poor accuracy.

A fortuitous advantage of using the Cholesky decomposition in place of the SVD is

the fact that the Cholesky decomposition is computationally less expensive than the

SVD, specifically, O(n3/6) [78], and thus an asymptotic computational advantage

over SVD by a factor of 12. An additional advantage is that the entire matrix

need not be factored; instead, by arranging the states so that those states that

contribute directly to the measurement correspond to the initial columns of the

lower triangular square root, then only the leading submatrix of the error covariance

must be factored, yielding yet further savings over the SVD. Once the factorization

is performed, the algorithm effectively retains only the initial “tall” columns of the

full Cholesky factorization and truncates the “short” columns.

5.2 The Kalman filter

Consider the time-varying discrete-time system

xk+1 = Akxk + Gkwk, (5.1)

yk = Ckxk + Hkvk, (5.2)

where xk ∈ R
nk , wk ∈ R

dw , yk ∈ R
pk , vk ∈ R

dv , and Ak, Gk, Ck, and Hk are known

real matrices of appropriate sizes. We assume that wk and vk are zero-mean white

processes with unit covariances. Define Qk , GkG
T
k and Rk , HkH

T
k , and assume

that Rk is positive definite for all k > 0. Furthermore, we assume that wk and vk
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are uncorrelated for all k > 0. The objective is to obtain an estimate of the state xk

using the measurements yk.

The Kalman filter provides the optimal minimum-variance estimate of the state

xk. The Kalman filter can be expressed in two steps, namely, the data assimilation

step, where the measurements are used to update the states, and the forecast step,

which uses the model. These steps can be summarized as follows:

Data Assimilation Step

Kk = P f
kC

T
k (CkP

f
kC

T
k + Rk)

−1, (5.3)

P da
k = P f

k − P f
kC

T
k (CkP

f
kC

T
k + Rk)

−1CkP
f
k, (5.4)

xda
k = xf

k + Kk(yk − Ckx
f
k). (5.5)

Forecast Step

xf
k+1 = Akx

da
k , (5.6)

P f
k+1 = AkP

da
k AT

k + Qk. (5.7)

The matrices P f
k ∈ R

n×n and P da
k ∈ R

n×n are the state-error covariances, that is,

P f
k = E[ef

k(e
f
k)

T], P da
k = E[eda

k (eda
k )T], (5.8)

where

ef
k , xk − xf

k, eda
k , xk − xda

k . (5.9)

In the following sections, we consider reduced-rank square-root filters that prop-

agate approximations of a square-root of the error covariance instead of the actual

error covariance.
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5.3 SVD-Based Reduced-Rank Square-Root Filter

Note that the Kalman filter uses the error covariances P da
k and P f

k, which are

updated using (5.4) and (5.7). For computational efficiency, we construct a subop-

timal filter that uses reduced-rank approximations of the error covariances P da
k and

P f
k. Specifically, we consider reduced-rank approximations P̂ da

k and P̂ f
k of the error

covariances P da
k and P f

k such that ‖P da
k −P̂ da

k ‖F and ‖P f
k−P̂ f

k‖F are minimized, where

‖ · ‖F is the Frobenius norm. To achieve this approximation, we compute singular

value decompositions of the error covariances at each time step.

Let P ∈ R
n×n be positive semidefinite, let σ1 > · · · > σn be the singular values of

P , and let u1, . . . , un ∈ R
n be corresponding orthonormal eigenvectors. Next, define

Uq ∈ R
n×q and Σq ∈ R

q×q by

Uq ,

[

u1 · · · uq

]

, Σq ,















σ1

. . .

σq















. (5.10)

With this notation, the singular value decomposition of P is given by

P = UnΣnU
T
n , (5.11)

where Un is orthogonal. For q 6 n, let ΦSVD(P, q) ∈ R
n×q denote the SVD-based

rank-q approximation of the square root Σ
1/2
q of P given by

ΦSVD(P, q) , UqΣ
1/2
q . (5.12)

The following standard result shows that SST, where S , ΦSVD(P, q), is the best

rank-q approximation of P in the Frobenius norm.

Lemma 5.3.1. Let P ∈ R
n×n be positive semidefinite, and let σ1 · · · > σn be the
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singular values of P . If S = ΦSVD(P, q), then

min
rank(P̂ )=q

‖P − P̂‖2
F = ‖P − SST‖2

F = σ2
q+1 + · · · + σ2

n. (5.13)

The data assimilation and forecast steps of the SVD-based rank-q square-root

filter are given by the following steps:

Data Assimilation step

Ks,k = P̂ f
s,kC

T
k

(

CkP̂
f
s,kC

T
k + Rk

)−1

, (5.14)

P̃ da
s,k = P̂ f

k − P̂ f
kC

T
k

(

CkP̂
f
s,kC

T
k + Rk

)−1

CkP̂
f
s,k, (5.15)

xda
s,k = xf

s,k + Ks,k(yk − Ckx
f
s,k), (5.16)

where

S̃f
s,k , ΦSVD(P̃ f

s,k, q), (5.17)

P̂ f
s,k , S̃f

s,k(S̃
f
s,k)

T. (5.18)

Forecast step

xf
s,k+1 = Akx

da
s,k, (5.19)

P̃ f
s,k+1 = AkP̂

da
s,kA

T
k + Qk, (5.20)

where

S̃da
s,k , ΦSVD(P̃ da

s,k , q), (5.21)

P̂ da
s,k , S̃da

s,k(S̃
da
s,k)

T, (5.22)

and P̃ f
s,0 is positive semidefinite.

Next, define the forecast and data assimilation error covariances P f
s,k and P da

s,k of

the SVD-based rank-q square-root filter by

P f
s,k , E

[

(xk − xf
s,k)(xk − xf

s,k)
T
]

, (5.23)

P da
s,k , E

[

(xk − xda
s,k)(xk − xda

s,k)
T
]

. (5.24)
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Using (5.1), (5.16) and (5.19), it can be shown that

P da
s,k = (I − Ks,kC)P f

s,k(I − Ks,kC)T + Ks,kRkK
T
s,k, (5.25)

P f
s,k+1 = AkP

da
s,kA

T
k + Qk. (5.26)

Note that S̃f
s,k

(

S̃f
s,k

)T

6 P̃ f
s,k and S̃da

s,k

(

S̃da
s,k

)T

6 P̃ da
s,k. Hence, even if P̃ f

s,0 = P f
s,0,

it does not necesarily follow that P̃ f
s,k = P f

s,k and P̃ da
s,k = P da

s,k for all k > 0. Therefore,

since Ks,k does not use the true error covariance P f
s,k, the SVD-based rank-q square-

root filter is generally not equivalent to the Kalman filter. However, under certain

conditions, the SVD-based rank-q square-root filter is equivalent to the Kalman filter.

Specifically, we have the following result.

Proposition 5.3.1. Assume that P̃ f
s,k = P f

s,k and rank(P f
s,k) 6 q. Then, P̃ da

s,k =

P da
s,k and P̃ f

s,k+1 = P f
s,k+1. If, in addition, P f

s,k = P f
k, then Ks,k = Kk and P f

s,k+1 =

P f
k+1.

Proof. Since rank(P̃ f
k) 6 q, it follows from Lemma 5.3.1 that

P̂ f
s,k = S̃f

s,k

(

S̃f
s,k

)T

= P̃ f
s,k. (5.27)

Hence, it follows from (5.14) that

Ks,k = P f
s,kC

T
k

(

CkP
f
s,kC

T
k + Rk

)−1
, (5.28)

while substituting (5.27) into (5.15) yields

P̃ da
s,k = P̃ f

s,k − P̃ f
s,kC

T
k (CkP̃

f
s,kC

T
k + Rk)

−1CkP̃
f
s,k. (5.29)

Next, substituting (5.28) into (5.25) and using P̃ f
s,k = P f

s,k in the resulting expression

yields

P̃ da
s,k = P da

s,k. (5.30)
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Since rank(P̃ f
s,k) 6 q, it follows from (5.29) that rank(P̃ da

s,k) 6 q, and therefore

Lemma 5.3.1 implies that

P̂ da
s,k = S̃da

s,k

(

S̃da
s,k

)T

= P̃ da
s,k . (5.31)

Hence, it follows from (5.20), (5.26), and (5.30) that

P̃ f
s,k+1 = P f

s,k+1. (5.32)

Finally, it follows from (5.3) and (5.28) that

Ks,k = Kk. (5.33)

Therefore, (5.4) and (5.25) imply that

P da
s,k = P da

k . (5.34)

Hence, it follows from (5.7), (5.26) and (5.34) that

P f
s,k+1 = P f

k+1.

Corollary 5.3.1. Assume that xf
s,0 = xf

0, P̃ f
s,0 = P f

s,0, and rank(P f
0) 6 q. Further-

more, assume that, for all k > 0, rank(Ak) + rank(Qk) 6 q. Then, for all k > 0,

Ks,k = Kk and xf
s,k = xf

k.

Proof. Since xf
s,0 = xf

0, (5.8) and (5.23) imply that P f
s,0 = P f

0 . It follows from

(5.25) that if rank(P f
s,k) 6 q, then rank(P da

s,k) 6 q, and hence (5.26) implies that

rank(P f
s,k+1) 6 q. Therefore, using Proposition 5.3.1 and induction, it follows that

Ks,k = Kk for all k > 0. Therefore, (5.5), (5.6), (5.16) and (5.19) imply that xf
s,k = xf

k

for all k > 0.
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5.4 Cholesky-Decomposition-Based Reduced-Rank Square-Root Filter

The Kalman filter gain Kk depends on a particular subspace of the range of the

error covariance. Specifically, Kk depends only on CkP
f
k and not on the entire error

covariance. We thus consider a filter that uses reduced-rank approximations P̂ da
k and

P̂ f
k of the error covariances P da

k and P f
k such that ‖Ck(P

da
k −P̂ da

k )‖F and ‖Ck(P
f
k−P̂ f

k)‖F

are minimized. To achieve this minimization, we compute a Cholesky decomposition

of both error covariances at each time step.

Since P ∈ R
n×n is positive semidefinite, the Cholesky decomposition yields a lower

triangular Cholesky factor L ∈ R
n×n of P that satisfies

LLT = P. (5.35)

Partition L as

L =

[

L1 · · · Ln

]

, (5.36)

where, for i = 1, . . . , n, Li ∈ R
n has real entries

Li =

[

01×(i−1) Li,1 · · · Li,n−i+1

]T

. (5.37)

Truncating the last n − q columns of L yields the reduced-rank Cholesky factor

ΦCHOL(P, q) ,

[

L1 · · · Lq

]

∈ R
n×q. (5.38)

Lemma 5.4.1. Let P ∈ R
n×n be positive definite, define S , ΦCHOL(P, q) and

P̂ , SST, and partition P and P̂ as

P =







P1 P12

(P12)
T P2






, P̂ =







P̂1 P̂12

(P̂12) P̂2






, (5.39)

where P1, P̂1 ∈ R
q×q and P2, P̂2 ∈ R

r×r. Then, P̂1 = P1 and P̂12 = P12.
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Proof. Let L be the Cholesky factor of P . It follows from (5.37) that LiL
T
i ∈ R

n

has the structure

LiL
T
i =







0i−1 0(i−1)×(n−i+1)

0(n−i+1)×(i−1) Xi






, (5.40)

where Xi ∈ R
(n−i+1)×(n−i+1). Therefore,

n
∑

i=q+1

LiL
T
i =







0q×q 0q×r

0r×q Yr






, (5.41)

where Yr ∈ R
r×r. Since

P =
n

∑

i=1

LiL
T
i , (5.42)

it follows from (5.38) that

P = P̂ +
n

∑

i=q+1

LiL
T
i . (5.43)

Substituting (5.41) into (5.43) yields P̂1 = P1 and P̂12 = P12.

Lemma 5.4.1 implies that, if S = ΦCHOL(P, q), then the first q rows and columns

of SST and P are equal.

The data assimilation and forecast steps of the Cholesky-based rank-q square-root

filter are given by the following steps:

Data Assimilation step

Kc,k = P̂ f
c,kC

T
k

(

CkP̂
f
c,kC

T
k + Rk

)−1

, (5.44)

P̃ da
c,k = P̂ f

c,k − P̂ f
c,kC

T
k

(

CkP̂
f
c,kC

T
k + Rk

)−1

CkP̂
f
c,k, (5.45)

xda
c,k = xf

c,k + Kc,k(yk − Ckx
f
c,k), (5.46)

where

S̃f
c,k , ΦSVD(P̃ f

c,k, q), (5.47)

P̂ f
c,k , S̃f

c,k(S̃
f
s,k)

T. (5.48)
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Forecast step

xf
c,k+1 = Akx

da
c,k, (5.49)

P̃ f
c,k+1 = AkP̂

da
c,kA

T
k + Qk, (5.50)

where

S̃da
c,k , ΦSVD(P̃ da

c,k, q), (5.51)

P̂ da
c,k , S̃da

c,k(S̃
da
c,k)

T, (5.52)

and P̃ f
c,0 is positive semidefinite.

Next, define the forecast and data assimilation error covariances P f
c,k and P da

c,k,

respectively, of the Cholesky-based rank-q square-root filter by

P f
c,k , E

[

(xk − xf
c,k)(xk − xf

c,k)
T
]

, (5.53)

P da
s,k , E

[

(xk − xda
c,k)(xk − xda

c,k)
T
]

, (5.54)

that is, P f
c,k and P da

c,k are the error covariances when the Cholesky-based rank-q square-

root filter is used. Using (5.1), (5.46) and (5.49), it can be shown that

P da
c,k = (I − Kc,kC)P f

c,k(I − Kc,kC)T + Kc,kRkK
T
c,k, (5.55)

P f
c,k = AkP

da
c,kA

T
k + Qk. (5.56)

Note that S̃f
c,k

(

S̃f
c,k

)T

6 P̃ f
k and S̃da

c,k

(

S̃da
c,k

)T

6 P̃ da
k . Hence, even if P̃ f

c,0 = P f
c,0, the

Cholesky-based rank-q square-root filter is generally not equivalent to the Kalman

filter. However, in certain cases, the Cholesky-based rank-q square root filter is

equivalent to the Kalman filter.

Proposition 5.4.1. Let Ak and Ck have the structure

Ak =







A1,k 0

A21,k A2,k






, Ck =

[

Ip 0

]

, (5.57)
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where A1,k ∈ R
p×p and A2,k ∈ R

r×r, partition P f
k and P̃ f

c,k as

P f
k =







P f
1,k (P f

21,k)
T

P f
21,k P f

2,k






, P̃ f

c,k =







P̃ f
c,1,k (P̃ f

c,21,k)
T

P̃ f
c,21,k P̃ f

c,2,k






, (5.58)

where P f
1,k, P̃

f
c,1,k ∈ R

p×p and P f
2,k, P̃

f
c,2,k ∈ R

r×r, and assume that q = p, P̃ f
c,1,k = P f

1,k,

and P̃ f
c,21,k = P f

21,k. Then, Kc,k = Kk, P̃ f
c,1,k+1 = P f

1,k+1, and P̃ f
c,21,k+1 = P f

21,k+1.

Proof. Let P da
k have entries

P da
k =







P da
1,k (P da

21,k)
T

P da
21,k P da

2,k






, (5.59)

where P da
1,k ∈ R

p×p is positive semidefinite and P da
2,k ∈ R

r×r. It follows from (5.4) that

P da
1,k = P f

1,k − P f
1,k(P

f
1,k + Rk)

−1P f
1,k, (5.60)

P da
21,k = P f

21,k − P f
21,k(P

f
1,k + Rk)

−1P f
1,k. (5.61)

Substituting (5.57) into (5.3) yields

Kk =







P f
1,k

P f
21,k






(P f

1,k + Rk)
−1. (5.62)

Furthermore, (5.7) and (5.57) imply that

P f
1,k+1 = A1,kP

da
1,kA

T
1,k + Q1,k, (5.63)

P f
21,k+1 = A2,kP

da
21,kA

T
1,k + A21,kP

da
1,kA

T
1,k + Q21,k, (5.64)

where Qk has entries

Qk =







Q1,k (Q21,k)
T

Q21,k Q2,k






. (5.65)

Define P̂ f
c,k and P̂ da

c,k by (5.48) and (5.52), and let P̂ f
c,k and P̂ da

c,k have entries

P̂ f
c,k =







P̂ f
c,1,k (P̂ f

c,21,k)
T

P̂ f
c,21,k P̂ f

c,2,k






, P̂ da

c,k =







P̂ da
c,1,k (P̂ da

c,21,k)
T

P̂ da
c,21,k P̂ da

c,2,k






, (5.66)
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where P̂ da
1,k, P̂

f
1,k ∈ R

p×p are positive semidefinite and P̂ da
2,k, P̂

f
2,k ∈ R

r×r. Substituting

(5.66) into (5.44) yields

Kc,k =







P̂ f
1,k

P̂ f
21,k






(P̂ f

1,k + Rk)
−1. (5.67)

Since Sf
c,k = ΦCHOL(P̃ f

c,k, q) and we assume that q = p, P̃ f
c,1,k = P f

1,k, and P̃ f
c,21,k =

P f
21,k, it follows from Lemma 5.4.1 that

P̂ f
c,1,k = P f

c,1,k, P̂ f
c,21,k = P f

c,21,k. (5.68)

Hence, Kc,k = Kk.

Next, substituting (5.48) into (5.45) yields

P̃ da
c,k = P̂ f

c,k − P̂ f
c,kC

T
k (CkP̂

f
c,kC

T
k + Rk)

−1CkP̂
f
c,k. (5.69)

Let P̃ da
c,k have entries

P̃ da
c,k =







P̃ da
c,1,k (P̃ da

c,21,k)
T

P̃ da
c,21,k P̃ da

c,2,k






, (5.70)

where P̃ da
c,1,k ∈ R

p×p is positive semidefinite and P̃ da
c,2,k ∈ R

r×r. Therefore, it follows

from (5.57) and (5.66) that

P̃ da
c,1,k = P̂ f

c,1,k − P̂ f
c,1,k(P̂

f
c,1,k + Rk)

−1P̂ f
c,1,k, (5.71)

P̃ da
c,21,k = P̂ f

c,21,k − P̂ f
c,21,k(P̂

f
c,1,k + Rk)

−1P̂ f
c,1,k. (5.72)

Substituting (5.68) into (5.71) and using (5.59) and (5.60) yields

P̃ da
c,1,k = P da

1,k, P̃ da
c,21,k = P da

21,k. (5.73)

Moreover, since S̃da
c,k = ΦCHOL(P̃ da

c,k, q), it follows from Lemma 5.4.1 that

P̂ da
c,1,k = P̃ da

c,1,k, P̂ da
c,21,k = P̃ da

c,21,k. (5.74)
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It follows from (5.50) and (5.57) that

P̃ f
c,1,k+1 = A1,kP̂

da
1,kA

T
1,k + Q1,k, (5.75)

P̃ f
c,21,k+1 = A2,kP̂

da
21,kA

T
1,k + A21,kP̂

da
1,kA

T
1,k + Q21,k. (5.76)

Therefore, (5.63), (5.73), and (5.74) imply that

P̃ f
c,1,k+1 = P f

1,k+1, P̃ f
c,21,k+1 = P f

21,k+1.

Corollary 5.4.1. Assume that Ak and Ck have the structure in (5.57). Let q = p,

P̃ f
c,1,0 = P f

1,0, P̃ f
c,21,0 = P f

21,0, and xf
c,0 = xf

0. Then for all k > 0, Kc,k = Kk, and hence

xf
c,k = xf

k.

Proof. Using induction and Proposition 5.4.1 yields Kc,k = Kk for all k > 0.

Hence, it follows from (5.5), (5.6), (5.46), and (5.49) that xf
c,k = xf

k for all k > 0.

5.5 Examples

We compare performance of the SVD-based and Cholesky-based reduced-rank

square-root Kalman filters using a compartmental model [56] and 10-DOF mass-

spring-damper system.

A schematic diagram of the compartmental model is shown in Fig 5.1. The number

n of cells is 20 with one state per cell. All ηii and all ηij (i 6= j) are set to 0.1. We

assume that the state of the 9th cell is measured, and disturbances enter all cells so

that the disturbance covariance Q has full rank.

We simulate three cases of disturbance covariance and compare costs J , E(eT
k ek)

in Figure 5.3 where (a) shows the cost when Q = I, (b) shows the cost when Q = I is
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Figure 5.1: Compartmental model involving interconnected subsystems.

changed so that only Q(9,9) is 4.0, and (c) shows cost when Q = I is changed so that

only Q(9,9) is 0.25. We reduce the rank of the square-root covariance to 2 in all three

cases. In (a) and (b) of Figure 5.3, the Cholesky-based reduced-rank square-root

Kalman filter exhibits almost the same performance as the optimal filter whereas

the SVD-based reduced-rank square-root Kalman filter shows degraded performance

in (a). Meanwhile, in (c), the SVD-based has a large transient and large steady-

state offset from the optimal, whereas the Cholesky-based reduced-rank square-root

Kalman filter behaves close to the full-order filter.

The mass-spring-damper model is shown in Figure 5.2. The total number of

masses is 10 with two states (displacement and velocity) per mass. For i = 1, . . . , 10,

mi = 1, and kj = 1, cj = 0.01, j = 1, . . . , 11. We assume that the displacement

of the 5th mass is measured and disturbances enter all states so that disturbance

covariance Q has full rank.

Figure 5.2: Mass-spring-damper system.

We simulate three cases of disturbance covariance and compare costs J in (a),(b)

and (c) of Figure 5.4. (a) shows costs when Q = I, (b) shows costs when Q = I is
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changed so that only Q(9,9) is 4.0 and (c) shows costs when Q = I is changed so that

only Q(9,9) is 0.25. We reduce the rank of square-root covariance to 2 in all three

cases. In (d) and (e), the costs for the Cholesky-based and SVD-based reduced-

rank square-root Kalman filters are close to each other but larger than the optimal.

Meanwhile, in (f), the SVD-based shows unstable behavior, while the Cholesky-based

filter remains stable and nearly optimal.

5.6 Conclusions

We developed a Cholesky decomposition method to obtain reduced-rank square-

root Kalman filters. We showed that the SVD-based reduced-rank square-root

Kalman filter is equivalent to the optimal filter when the reduced-rank is equal to

or greater than the rank of error-covariance, while the Cholesky-based is equivalent

to the optimal when the system is lower triangular block-diagonal according to the

observation matrix C which has the form [Ip×p 0] and p is equal to the reduced-

rank q. Furthermore, the Cholesky-based rank-q square root filter is equivalent to

the optimal Kalman filter for a specific number of time steps. In general cases, the

Cholesky-based does not always perform better than the SVD-based and vice versa.

Finally, using simulation examples, we showed that the Cholesky-based exhibits more

stable performance than the SVD-based filter, which can become unstable when the

strong disturbances enter the system states that are not measured.
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Figure 5.3: Time evolutions of the cost J , E(eT
k ek) for the compartmental system. For this ex-

ample, R = 10−4, P0 = 102I, the rank of reduced rank filters is fixed at 2 and energy
measurement is taken at compartment 9. Disturbances enter compartments 1,2,. . .,20. In
(a), the cost J is when disturbance covariance is Q = I20×20, (b) is for the case when
Q(9,9) is changed to 4.0 and (c) is for the case when Q(9,9) is changed to 0.25.
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Figure 5.4: Time evolutions of the cost J = E(eT
k ek) of the mass-spring-damper system. Here

R = 10−4, P0 = 1002I, the rank of reduced rank filters is fixed at 2, and a displacement
measurement of m5 is available. Velocity and force disturbances enter mass 1,2,. . .,10.
(a) shows the cost J when disturbance covariance is Q = I20×20 while (b) is for the case
when Q(9,9) is changed to 4.0 and (c) is for the case when Q(9,9) is changed to 0.25.



CHAPTER VI

Localized Data Assimilation in the
Ionosphere-Thermosphere Using a Sampled-Data Unscented

Kalman Filter

6.1 Introduction

For nonlinear estimation and data assimilation, the terrestrial weather fore-

casting community has largely adopted the ensemble Kalman filter (EnKF) [79–84].

This technique retains the data injection form of the Kalman filter but does not

propagate the error covariance in the classical manner. Instead, EnKF propagates

an ensemble of systems under random forcing and initial states to estimate the error

covariance. This technique is applicable in principle to highly nonlinear systems.

Although the size of the ensemble affects the accuracy of the estimates, there are no

theoretical guidelines for determining the size of the ensemble.

For applications involving nonlinear and non-Gaussian systems [85], particle filters

are used. A particle filter obtains estimates through Monte Carlo simulation at each

step using an assumed probability density function and resampling technique [86].

Although particle filters can estimate the state of a nonlinear system with a non-

Gaussian probability density, there is no definitive guideline for determining the

number of sample points for achieving good accuracy.

In contrast with the ensemble Kalman filter and particle filters, the unscented

93
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Kalman filter (UKF) uses a deterministic number of ensemble members (specifically,

2n+1 ensemble members, where n is the number of states of the system) to estimate

the error covariance and obtain the data-injection gain [33, 87]. The fundamental

component of UKF is the unscented transformation, which uses a minimal set of

specially chosen weighted points to parameterize the mean and covariance of the

state probability distribution. These sample points, which capture the mean and

covariance of a Gaussian random variable, are propagated through the model to

capture the posterior mean and covariance to second order for smooth but arbitrary

nonlinearities. Furthermore, UKF treats the model and its software implementation

as a black box, which eliminates the need to construct a Jacobian as required by the

extended Kalman filter (XKF) [88].

In view of these advantages, the goal of the present paper is to apply UKF to data

assimilation for space weather applications. In particular, we focus on the Earth’s

atmosphere between 100 km and 1000 km altitude, a region known as the ionosphere-

thermosphere. For this objective we use the parallel global ionosphere-thermosphere

model (GITM) code as the basis of data assimilation. Using UKF, we eliminate the

need for either the Jacobian required by XKF or a dynamics factorization required

by the state-dependent Riccati equation (SDRE) filter [89]. In addition, for flow

problems, UKF is significantly more accurate than XKF under highly nonlinear

conditions [88].

For large-scale systems, however, the 2n + 1 ensemble size of UKF presents a sig-

nificant computational burden. For example, in vertical (altitude-only) 1D GITM,

with n = 700, the total number of states in the UKF ensemble for GITM can reach

900,000, while, for the 3D case with 5◦ resolution in longitude and latitude, with

n = 1, 814, 400, the total number of states exceeds 1013 (10 trillion). The result-
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ing computational requirement necessitates localized UKF, wherein data injection is

confined to a specified region, with coupling to data-free simulation in the exterior

region [90, 91]. With this approach, data assimilation based on 3D GITM is feasible

through parallel implementation on a multiprocessor cluster.

Data for GITM are provided by ground-based or space-based sensors. Since mea-

surements are not available at every integration time step, we perform the unscented

transformation to update the covariance and state only when measurement data are

available. Between measurement update times, GITM runs in data-free simulation

mode. Another relevant issue in data assimilation based on GITM is that data as-

similation performance depends on the accuracy of the disturbance and measurement

noise covariances. Due to the high nonlinearity of GITM, UKF is sensitive to the

disturbance covariance and may become unstable or yield poor performance. Al-

though the measurement noise covariance is known, a disturbance covariance must

be constructed to capture the effect of external drivers. For the case of solar irradia-

tion, we approximate the disturbance covariance by means of a Monte Carlo method.

Alternative techniques are discussed in [92]

6.2 Sampled-Data UKF

Consider the discrete-time nonlinear system

xk+1 = f(xk, uk, k) + wk (6.1)

and measurements

yk = h(xk, k) + vk, (6.2)

where xk ∈ R
n, uk ∈ R

m, and yk ∈ R
p. The input uk and output yk are assumed to be

measured, and wk ∈ R
n and vk ∈ R

p are uncorrelated zero-mean white noise processes
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with covariances Qk and Rk, respectively. We assume that Rk is positive definite.

The inputs uk and wk represent known and unknown physics drivers, respectively.

The starting point for UKF is a collection of state estimates or sample points that

capture the initial probability distribution of the state. The unscented transforma-

tion is used to construct these sample points with a specified mean and variance.

To define this procedure, let x ∈ R
n, let P ∈ R

n×n be positive semidefinite, and

let λ > 0. The unscented transformation provides 2n + 1 sample points Xi ∈ R
n

and corresponding weights γs,i and γP,i so that x and P are the weighted mean and

weighted variance of the sample points, respectively. The unscented transformation

X = Ψ(x, P , λ) ∈ R
n×(2n+1) (6.3)

of x with covariance P is defined by

Xi =



































x, if i = 0,

x +
√

λP̃i, if i = 1, . . . , n,

x −
√

λP̃i−n, if i = n + 1, . . . , 2n,

(6.4)

where P̃i is the ith column of P̃ ∈ R
n×n, which satisfies P̃TP̃ = P , and Xi is the

ith column of X. The parameter λ > 0 determines the spread of the sample points

around x but can otherwise be chosen arbitrarily. Note that

2n
∑

i=0

γs,iXi = x,

2n
∑

i=0

γP,i(Xi − x)(Xi − x)T = P , (6.5)

where the weights γs,i and γP,i are defined by

γs,0 , 1 − n

λ
, γP,0 , 1 − n

λ
+ (1 − λ

n
+ β), (6.6)

γs,i = γP,i ,
1

2λ
, i = 1, . . . , 2n. (6.7)

The parameter β ≥ 0 can be chosen arbitrarily; it is customary to set β = 2.
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UKF uses the unscented transformation to update the state estimate by simulating

2n + 1 copies of the model with the initial conditions X0, . . . , X2n, and by using the

propagated states to approximate the mean and covariance of the state error. We

assume that an initial estimate xf
0 of the state x0 is given along with an initial error

covariance P f
0 ∈ R

n×n.

For data assimilation based on GITM, we consider simulated data that are repre-

sentative of an incoherent scatter radar (ISR). The ISR data update rate is typically

much slower than the GITM integration time step. For the present study, we im-

plement UKF for GITM with state and error-covariance measurement updates oc-

curring every 60 seconds, whereas the integration time step for the GITM advection

equations (see (6.39)-(6.41)) is 1 second.

Between measurement updates, the standard approach is to propagate the error-

covariance in open loop. However, since the major dynamics of GITM are slow

compared to the measurement update rate, we freeze the error covariance between

measurement updates. A similar technique is used in [93, 94].

The sampled-data UKF with data available every N steps and with frozen inter-

sample error covariance is illustrated in Figure 6.1. We assume that measurements

are available at the sample instants k = N, 2N, 3N, . . ..

The UKF data assimilation step for k = iN given xf
k, P

f
k, λ, yk, and Rk is given

by
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X f
k , Ψ(xf

k, P
f
k, λ), (6.8)

Y f
i,k , h(X f

i,k, k), (6.9)

yf
k ,

2n
∑

i=0

γs,iY
f
i,k, (6.10)

Pxy,k ,

2n
∑

i=0

γP,i(X
f
i,k − xf

k)(Y
f
i,k − yf

k)
T, (6.11)

Pyy,k ,

2n
∑

i=0

γP,i(Y
f
i,k − yf

k)(Y
f
i,k − yf

k)
T + Rk, (6.12)

Kk , Pxy,kP
−1
yy,k, (6.13)

xda
k = xf

k + Kk(yk − yf
k), (6.14)

P da
k = P f

k − KkPyy,kK
T
k . (6.15)

The UKF forecast step for k = iN given xda
k , P da

k , λ, uk, and Qk is given by

Xda
k , Ψ(xda

k , P da
k , λ), (6.16)

X̃ f
i,k+1 = f(Xda

i,k, uk, k), (6.17)

xf
k+1 ,

2n
∑

i=0

γs,iX̃
f
i,k+1, (6.18)

P f
k+1 =

2n
∑

i=0

γP,i(X̃
f
i,k+1 − xf

k+1)(X̃
f
i,k+1x

f
k+1)

T + Qk. (6.19)

The UKF forecast step for k = iN + 1, . . . , (i + 1)N − 1 given xf
k, uk, and P f

k

is given by

xf
k+1 = f(xf

k, uk, k), (6.20)

P f
k+1 = P f

k (frozen). (6.21)
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xf
k+1 = f(xf

k, uk, k)
P f

k+1 = P f
k (frozen)

Evaluate KiN , yf
iN , Pyy,iN

through Ψ(·), h(·)
Update xf

iN+1, P f
iN+1

through Ψ(·), f(·)

Evaluate xda
iN , P da

iN

Data
yiN

. . .
iN iN + 1

. . .

. . .

(i + 1)N − 1 (i + 1)N
. . .

?

?
-

6

6

Data Assimilation Forecast

Forecast

Figure 6.1: Timing diagram of sampled-data UKF with frozen intersample error covariance.

6.3 Localized UKF

UKF estimates all states through data injection. In particular, for a system

with n states, UKF requires 2n + 1 simulation model updates, which are used to

update the n × n covariance. If n is large, as in the case of GITM, then the com-

putational burden of implementing UKF is enormous. We address this problem by

performing UKF updates of both the states and the error covariance locally while

treating the subsystem coupling terms as known inputs. The benefit of data assim-

ilation thus reaches the entire system through coupling between the localized and

exterior regions.

Assume that the state xk ∈ R
n has the components

xk =







xL,k

xE,k






, (6.22)
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where xL,k ∈ R
nL and xE,k ∈ R

nE denote the states of the localized and exterior

regions, respectively, and nL + nE = n. We, assume that the measurements depend

entirely on the state xL,k so that yk can be expressed as

yk = h(xL,k, k) + vk. (6.23)

Finally, partition Qk and Pk as

Qk =







QL,k QLE,k

QT
LE,k QE,k






, Pk =







PL,k PLE,k

(PLE,k)
T PE,k






. (6.24)

The objective is to directly inject the measurement data yk into only the states

corresponding to the estimate of xL,k by using a reduced-order error covariance.

In the data assimilation step of UKF, we inject data into the xL,k subsystem and

update P f
L,k as if only the xL,k subsystem were present. However, in the forecast step

(6.17)-(6.19), we update the full state vector Xi,k ∈ R
n through the dynamics f(·)

in (6.17) but with the number of ensembles reduced from 2n + 1 to 2nL + 1 since

the ensembles are determined from P da
L,k ∈ R

nL×nL . This technique is the localized

unscented Kalman filter (LUKF) [90, 91].

LUKF data assimilation step for k = N, 2N, 3N, . . . is given by

X f
L,k , Ψ(xf

L,k, P
f
L,k, λ), (6.25)

Y f
i,k , h(X f

L,i,k, k), (6.26)

yf
k ,

2nL
∑

i=0

γs,iY
f
i,k, (6.27)

PxLy,k ,

2nL
∑

i=0

γP,i(X
f
L,i,k − xf

L,k)(Y
f
i,k − yf

k)
T, (6.28)

Pyy,k ,

2nL
∑

i=0

γP,i(Y
f
i,k − yf

k)(Y
f
i,k − yf

k)
T + Rk, (6.29)
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KL,k , PxLy,kP
−1
yy,k, (6.30)

xda
L,k = xf

L,k + KL,k(yk − yf
k), (6.31)

xda
E,k = xf

E,k (6.32)

P da
L,k = P f

L,k − KL,kPyy,kK
T
L,k, (6.33)

where, for i = 0, . . . , 2nL, X f
L,i,k ∈ R

nL is the (i+1)th column of X f
L,k. Note that only

2nL + 1 ensembles are used rather than 2n + 1 ensembles as in UKF, while (6.31)-

(6.32) indicate that measurement data are injected directly into only the estimates

of the state xL,k corresponding to the localized region.

The LUKF forecast step is given by

Xda
L,k , Ψ(xda

L,k, P
da
L,k, λ), (6.34)

X̃ f
i,k+1 = f(Xda

i,k, uk, k), (6.35)

xf
k+1 ,

2nL
∑

i=0

γs,iX̃
f
i,k+1, (6.36)

P f
L,k+1 =

2nL
∑

i=0

γP,i(X̃
f
L,i,k+1 − xf

L,k+1)(X̃
f
L,i,k+1 − xf

L,k+1)
T

+ QL,k. (6.37)

where, for all i = 0, . . . , 2nL, Xda
i,k ∈ R

n, X̃ f
i,k+1 ∈ R

n have the form

Xda
i,k ,







Xda
L,i,k

xda
E,k






, X̃ f

i,k+1 =







X̃ f
L,i,k+1

X̃ f
E,i,k+1






, (6.38)

where Xda
L,i,k ∈ R

nL is the (i + 1)th column of Xda
L,k, and X̃ f

i,k+1 has components

X̃ f
L,i,k+1 ∈ R

nL and X̃ f
E,i,k+1 ∈ R

nE . Notice that the estimate xda
E,k of the state xE,k in

all of the ensembles of LUKF in (6.38) is the same, whereas the estimate Xda
L,i,k of

the state xL,k is different in each ensemble.
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Although (6.32) implies that data are not directly injected into the state esti-

mates corresponding to xE,k, it follows from Xda
L,i,k in (6.38), (6.34), and (6.36) that

the measurement data affect the estimates of the state xE,k through the dynamic

coupling between xL,k and xE,k. Since LUKF involves 2nL + 1 model updates, the

number of states involved is of the order (2nL + 1)n. Hence, when nL ≪ n, LUKF is

computationally less demanding than UKF.

6.4 GITM Model

The GITM is a fully parallel three-dimensional finite-volume model that sim-

ulates the coupled ionosphere-thermosphere system over the entire surface of the

Earth in spherical coordinates. GITM for data assimilation is based on 14 state vari-

ables per cell, namely, the number densities of the neutral species O, O2, N2, N, the

vertical velocities of each neutral species, the eastward and northward bulk neutral

velocities uφ, uθ, respectively, the normalized neutral mean temperature Tn, and the

number densities of the ions O+, O+
2 , and NO+. Here, number density denotes the

number of neutral molecules or ions per cubic meter. These state variables, which

are updated by solving the equations of continuity, momentum, and energy, are used

to compute the number density of electrons Ne, the ion velocity vion, and the ion

temperature Tion, which correspond to ISR data. Some of the major features of the

model are described here. For a detailed description of the physics, dynamics, and

numerical schemes, see [95].

GITM uses a block-based, two-dimensional uniform domain decomposition in lati-

tude and longitude as well as a nonuniform grid in altitude, where cell height increases

with altitude. This approach facilitates parallel computation over the entire domain,

with information passed among cells after each iteration. The horizontal (longitude
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and latitude) grid resolution is set at run time, which thus specifies the number of

blocks used in the simulation. The grid is fixed for each simulation. GITM can be

run in one-dimensional 1D vertical mode by using one block in both latitude and lon-

gitude. In this case, the horizontal dynamics are not taken into account. The ability

to run in 1D renders long-term studies of the upper atmosphere feasible, while facil-

itating quick debugging of the code, since 1D GITM can also be run inexpensively

on a personal computer. However 3D GITM, which is necessarily global, requires

parallel implementation on a multiprocessor platform.

The altitude grid size is based on the scale height, which is the exponential rate

at which the density decays. The code is initialized using the mass spectrometer

incoherent scatter (MSIS) [96] and international reference ionosphere (IRI) models

[97] to specify the neutral and ion densities and temperatures. The lower boundary of

the simulated region is specified by the user, as is the number of vertical grid points.

The scale height is calculated during initialization, and the vertical grid spacing is

set to 1/3 of the scale height. The upper boundary then depends on the number of

grid points requested.

The model can use a variety of externally imposed magnetic field configurations,

including a dipole field, a tilted dipole, or the internal geomagnetic reference field

(IGRF) with apex coordinates [98].

GITM is programmed so that it can be restarted from a previously saved state.

This feature allows long time periods to be simulated in disconnected segments of

time without any break in the physics.

Several features render GITM distinct from alternative models of the ionosphere-

thermosphere system. First, GITM does not assume that gravity is constant over the

domain. Next, GITM uses an altitude-based coordinate system rather than pressure-
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based coordinates. Also, GITM does not assume hydrostatic equilibrium, where the

gradient of pressure in the vertical direction is assumed to equal gravity. Instead,

GITM uses a more realistic pressure model that includes terms due to Coriolis,

centrifugal acceleration, and ion drag in the vertical momentum equation.

The ionosphere-thermosphere system is highly coupled to the surrounding regions.

The incident solar radiation acts to heat the dayside atmosphere, while, at high

latitudes, the magnetosphere deposits energy into the atmosphere. GITM can use

various high-latitude and solar radiation drivers. Typically, the high latitudes are

driven by the Weimer potential model [99] or using results from the assimilative

mapping of ionospheric electrodynamics technique (AMIE) [100]. In order to specify

the solar flux in the extreme ultraviolet (EUV) range of the spectrum, GITM uses

either an empirical model based on the daily measure of the 10.7-cm solar flux F10.7,

or data from the solar EUV experiment (SEE) [101].

GITM solves two major sources of dynamics, namely, advection and chemistry.

Advection of neutral and ion species is modeled by

∂N

∂t
+ N∇ · u + u · ∇N = S, (6.39)

∂u

∂t
+ u · ∇u + ∇T +

T

ρ
∇ρ = F, (6.40)

∂T

∂t
+ u · ∇T + (γ − 1)T∇ · u = Q, (6.41)

where (6.39), (6.40), and (6.41) are the continuity, momentum, and energy equations,

respectively, N is the number density of a neutral or an ion; u is the wind velocity

vector; S is the corresponding source term; T = p/ρ is the normalized temperature,

where p is pressure, ρ is mass density; F is the forcing input due to gravity, pressure

gradients, Coriolis and centrifugal forces, and ion-neutral and neutral-neutral friction;

γ is the ratio of specific heats, and Q is the thermal energy input rate.
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For chemistry, the ionization of the neutral species due to solar EUV, which is

the primary source of ions on the dayside, is expressed as

O + hν −→ O+ + e, (6.42)

O2 + hν −→ O+
2 + e, (6.43)

N2 + hν −→ N+
2 + e, (6.44)

N + hν −→ N+ + e, (6.45)

where h is the Planck constant, ν is the frequency of the radiation, and e is an

electron. Note that hν represents the quantized energy of the photons of radiation

having frequency ν.

In GITM, the advection equations are discretized using the second-order Lax-

Friedrichs scheme [102], while the stoichiometric equations are solved by a subcy-

cling technique [95, 103], which reduces the chemistry time step within the one-step

advection when the change in any species exceeds 25% in the advective time step.

6.5 Incoherent Scatter Radar Measurements

While ISRs provide several data products [104], we consider the number den-

sity Ne of electron, the line-of-sight component of ion velocity vion, and the ion

temperature Tion. All ions are assumed to move in same velocity vion, while Tion is

the average value over the ion species. For 1D GITM, we assume that the radar is

pointed vertically to measure the vertical component of ion velocity.

The number density Ne of electrons is given by

Ne = NO+ + NO+
2

+ NNO+ , (6.46)

where NO+ , NO+
2
, and NNO+ are the number densities of O+, O+

2 , and NO+, respec-

tively. For data assimilation we use the logarithm of the number densities, which are
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typically 1012 particles/m3.

Next, the ion velocity vion is given by

vion =
A · b

ρionνion/n

+
ρ2

ionνion/nA⊥ + eNeA⊥ × B

ρ2
ionν

2
ion/n + e2N2

e B2
, (6.47)

where

A = ρiong + eNeE −∇(Pion + Pe) + ρionνion/nu, (6.48)

ρion is the ion mass density, g is the Earth’s gravity vector, e is the electron charge,

E is the externally generated (magnetospheric) electric field, Pion and Pe are the ion

and electron pressures, respectively, νion/n is the ion-neutral collision frequency, u

is the bulk neutral velocity, B is the magnetic field, B , |B| is the magnitude of

the magnetic field, b , B/B is the direction of the magnetic field, and A⊥ is the

component of A perpendicular to B. Finally, the ion temperature Tion is given by

Tion =
aTe + bTn + 3

2
ρn

Mn

Mion
QJh

a + b
, (6.49)

where a and b are weighted sums of densities given by

a = 15 × 3.2e(-8)
Ne

T 1.5
e

(NO+ + 0.5NO+
2

+ 0.53NNO+), (6.50)

b =
{

6.6e(-14)NN2 + 5.8e(-14)NO2 + 0.21e(-14)NO(2Tn)
1
2

}

NO+

+ {5.9e(-14)NN2 + 5.45e(-14)NO2 + 4.5e(-14)NO}NNO+

+
{

5.8e(-14)NN2 + 0.14e(-14)NO2T
1
2
n + 4.4e(-14)NO

}

N+
O2

, (6.51)

Te is the electron temperature, Tn is the neutral temperature, ρn is the mass density

of the neutral species given by

ρn = MONO + MO2NO2 + MN2NN2 + MNNN, (6.52)

where MS is the mass of the species S, Mn is the mean mass of the neutral species,

Mion is the mean mass of the ions, and QJh is the Joule heating [105].



107

6.6 Approximating the Process Noise Covariance Q

The disturbance covariance Q, which determines the range of UKF pertur-

bations, is a critical parameter for strongly nonlinear systems such as GITM. An

inappropriate value of Q yields poor data assimilation performance including insta-

bility. Filter performance can be improved by taking Q to be proportional to the

error covariance, a technique known as covariance inflation [106–108].

For GITM, we approximate Q based on the measurement update time step, which

is much longer than the GITM integration time step. Basically, we assume that

error-covariance propagation is dominated by the disturbance rather than the system

dynamics during the measurement-update time interval, which implies that the error-

covariance can be frozen between measurement updates.

We estimate Q based on the solar EUV irradiation F10.7, which is one of several

inputs to GITM. F10.7 is a main GITM driver during calm periods, that is, when

there are few geomagnetic storms. Since F10.7 is largely unknown in the sense that

only its daily average is known [109, 110], its variation is appropriately represented

by wk. Consequently, the process noise or disturbance input of GITM is assumed to

come from the random variation of F10.7.

6.6.1 Estimating the Covariance Q

At time step k, consider GITM with mean input µk, which represents mean value

of F10.7. The resulting state xk propagates according to

xk+N = f (N)(xk, µk), (6.53)

where N is the number of steps in a sample period and f (N)(·) is the mapping from

time k to k + N .
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Now consider GITM with inputs µk,i = µk + ∆µk,i, i = 1, . . . ,m, where m is

number of samples for Monte Carlo simulation, µk,i is F10.7, µk is the mean F10.7,

and ∆µk,i is the deviation from the mean. The mean of ∆µk,i is zero, and the

corresponding standard deviation is chosen to be 3 times larger than the standard

deviation of the daily F10.7 variations. Hence

xk+N,i = f (N)(xk, µk + ∆µk,i) (6.54)

≈ f (N)(xk, µk) + ∆µk,iηk, (6.55)

where ηk , ∂f (N)

∂µk
(xk, µk) ∈ R

n. In (6.55), the term ∆µk,iηk serves as the disturbance

input. Using (6.53) and (6.55), we obtain

∆µk,iηk ≈ xk+N,i − f (N)(xk, µk) (6.56)

= xk+N,i − xk+N . (6.57)

Then, the process noise covariance Q̃k can be approximated as

Q̃k ≈ 1

m

m
∑

i=1

(ηk∆µk,i)(ηk∆µk,i)
T. (6.58)

To obtain a constant value of Q, we take Q to be the diagonal part of Q̃k, where k

is chosen such that trQ̃k achieves its maximum value over the simulation interval.

6.7 Observability of GITM for Data Assimilation

We assess the observability of GITM by changing the measurement locations

and quantities used in data assimilation performed by UKF. We can thus select

measurement locations and quantities to optimize estimation accuracy. For this

study, we use a 1D vertical GITM model with 50 grid cells covering 100 km to

750 km in altitude at the location of Millstone Hill, MA, USA, where the Haystack

Observatory is located [http://www.haystack.mit.edu/].
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Figure 6.2: Effects of measurement locations on the observability. (a) Cell number versus RMS
errors. (b) Ratio of sum of data assimilation RMS errors to the sum of data-free
simulation errors. The errors are shown with respect to the measurement locations
(cell 10, 20, 29, and 40)

6.7.1 Effect of Measurement Locations on Observability

To determine the effects of various measurement locations, we change the mea-

surement cell from the lower altitudes to the higher altitudes with three measurement

quantities, that is, the logarithm log(Ne) of the number density of electrons, the ver-

tical ion velocity vion,vert, and the ion temperature Tion.

The problem objective is to estimate log(Ne), vion,vert, and Tion in all 50 cells using

measurements of log(Ne), vion,vert, and Tion in either of the cells 10, 20, 29, or 40, which

correspond to 118 km, 187 km, 315 km, and 512 km in altitude, respectively. We

assess the observability of each case by comparing the time-averaged RMS estimation

errors.

Figure 6.2(a) shows the spatial distribution of the RMS errors with respect to

various measurement locations, while, for each measurement location, 6.2(b) shows

the ratio of the sum of data assimilation RMS errors to the sum of RMS errors of
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Figure 6.3: Effects of measurement quantity combinations on the observability. (a) Cell number
versus RMS errors. (b) Ratio of sum of data assimilation RMS errors to the sum of
data-free simulation errors. The errors are shown with respect to various combinations
of measurements obtained from cell 29.

data-free simulation with mean value of F10.7. By equally weighting the errors of

the estimated quantities, we can see from the lowest plot of Figure 6.2(b) that the

overall errors are the smallest for measurements taken in cell 29.

6.7.2 Effect of Measurement Quantities on Observability

We now consider all 7 combinations of the available measurement quantities

log(Ne), vion,vert, and Tion while fixing the measurement location at cell 29. We can

thus assess the contribution of each measurement or combination of measurements

to estimation accuracy.

Figure 6.3(a) shows the spatial distribution of the RMS errors for various com-

binations of the measurements, while Figure 6.3(b) shows for each case the ratio of

the sum of data assimilation RMS errors to the sum of no-data-assimilation errors,

that is, when data are not used and the mean value of F10.7 is assumed.
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Figure 6.4: [LUKF performance. (a) Cell number versus RMS errors. (b) Ratio of sum of data
assimilation RMS errors to the sum of no-data-assimilation errors. The LUKF per-
formance for regions of various sizes are compared with the performance of UKF. All
cases use measurements of log number density of electron and ion temperature of cell
29. Spatial regions of LUKF’s are, LUKF 1 : cell 28 - 30 (3 cells), LUKF 2 : cell 24 -
34 (11 cells), LUKF 3 : cell 24 - 42 (19 cells), LUKF 4 : cell 24 - 50 (27 cells), LUKF 5
: cell 16 - 50 (35 cells), LUKF 6 : cell 8 - 50(43 cells), Full UKF : cell 1 - 50 (50 cells).

Figure 6.3 shows that the measurements of the vertical component of the ion

velocity vion,vert have a negligible effect on the data assimilation accuracy. Therefore,

we can exclude vion,vert from measurements for data assimilation without a noticeable

loss of accuracy. The cases of Ne, vion,vert and vion,vert, Tion are similar to the the cases

of Ne measurement and Tion measurement, respectively.

Finally, we perform data assimilation using all 14 states in cell 29, which provides

the best accuracy at all altitudes.

6.8 LUKF Performance

From the previous section, it is shown that the measurements of Ne, Tion in cell

29 are effective for data assimilation. Therefore, it is expected that we can obtain

the most effective LUKF performance when we choose the LUKF region to include
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cell 29 and use measurements from cell 29.

Figure 6.4 compares the UKF and LUKF for localized region of various sizes.

The estimation error decreases while the size of the LUKF region increases. Figure

6.4(b) shows that the errors of LUKF with the number of cells greater than 11 do

not change appreciably, whereas the computation time increases rapidly.

The accuracy of the LUKF estimators with the lower number of LUKF cells is

quite close to the accuracy of UKF because of the highly coupled upper cells of

vertical 1D GITM. In other words, the ionosphere-thermosphere is highly observable

at higher altitudes. Consequently, LUKF can be effectively applied to this kind of

example.

6.9 Conclusion

We used a localized, sampled-data update scheme with frozen-intersample error

covariance to reduce the computational complexity of the vertical 1D GITM data

assimilation based on the unscented Kalman filter. We performed the numerical

studies to obtain effective measurement locations and quantities for the sampled-data

UKF, and then applied the sampled-data LUKF. The sampled-data LUKF with a

small local region showed good estimation accuracy in much shorter computation

time for data assimilation on the highly coupled vertical 1D GITM.



CHAPTER VII

Ensemble-On-Demand Kalman Filter for Large-Scale
Systems with Time-Sparse Measurements

7.1 Introduction

State estimation for spatially distributed systems typically entails nonlinear,

high-dimensional dynamics. For these applications, state estimation is known in

practice as data assimilation. Applications range from weather forecasting, to oceanog-

raphy, to structural dynamics [111–113].

Data assimilation methods use variations of the basic formalism of the classi-

cal Kalman filter. The most popular methods replace Riccati-equation-based error

covariance propagation of the classical filter with an ensemble of models that ap-

proximate the second moment of the error covariance, which is subsequently used to

determine a data injection gain. Two such methods are the ensemble Kalman filter

(EnKF) [32], which is based on stochastically sampled drivers, and the unscented

Kalman filter (UKF) [33], which is based on deterministically determined drivers for

an ensemble of 2n+1 members, where n is the number of states. In the case of linear

systems, UKF exactly reproduces the results of the classical Kalman filter.

EnKF and UKF have three main advantages over classical techniques. First,

they are often effective for nonlinear systems when the extended Kalman filter is not

effective. Second, even when the extended Kalman filter is effective, EnKF and UKF

113



114

obviate the need to linearize the system; in fact, EnKF and UKF can be based on

a computer program without requiring an explicit mathematical description of the

system dynamics. Finally, EnKF and UKF are parallelizable since each ensemble

member can be updated independently.

Many of the EnKF or UKF applications of interest arise from extremely high-order

dynamics. In particular, we are interested in the global ionosphere-thermosphere

model (GITM) [95], whose 106 states require a several-hundred-node computing clus-

ter for real-time simulation. Real-time data assimilation based on UKF would require

several million nodes, which is not feasible in the foreseeable future.

For very large scale systems, EnKF is distinct from UKF in that the number of

ensemble members is not specified. However, useful guidance for the appropriate size

of the EnKF ensemble based on linearized analysis is given in [114]. This analysis

plays a key role in the present paper, as explained below.

In the present paper we are motivated by the need to perform data assimilation

on a system such as GITM, where propagation of an ensemble throughout the data

assimilation process is computationally prohibitive. In particular, as is often the

case in practice, we assume that the available measurements are time sparse, that

is, occur infrequently. When measurements are available at every time step, UKF

methods for systems with underlying continuous-time dynamics are given in [115].

However, these methods are prohibitive for large scale systems, and are not needed

for systems in which the underlying dynamics are given in time-discretized form.

Under the assumption of time-sparse measurements, we avoid propagating the

ensemble members for all of the time steps by creating an ensemble of models only

when a new measurement is made available. We then propagate this ensemble into

the future, thereby generating an error-covariance matrix, which, in turn, is used to



115

create a data injection gain, which, finally, is used to assimilate the measurements at

the time step at which the measurements became available. Once the measurements

are assimilated, only a single simulated model is updated until new measurements

become available. We call this algorithm the ensemble-on-demand Kalman filter

(EnODKF).

EnODKF is suboptimal since the past history of the error covariance is lost each

time the ensemble is collapsed and thus disbanded. However, the computational ad-

vantages of not updating the complete ensemble throughout the process can facilitate

data assimilation in applications that would otherwise be prohibitive.

The goal of the present paper is to present EnODKF and numerically investigate

its properties within the context of linear systems. Nonlinear applications are readily

addressed, but are deferred to future work. A key element of our investigations

is the analysis of ensemble size based on the work of [114]. We provide a self-

contained proof of a result given in [114] that provides guidance on the size of the

ensemble needed to accurately estimate the error covariance. We use this guidance

within the context of EnODKF, and demonstrate the performance of EnODKF for

representative examples, specifically, a lumped vibration problem and a heat flow

problem.

7.2 Ensemble Kalman Filter (EnKF)

Consider the discrete-time nonlinear system with dynamics

xk+1 = f(xk, uk, k) + wk, k = 0, 1, 2, . . . , (7.1)

and measurements

yk = h(xk, k) + vk, k ∈ Kd, (7.2)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p, and Kd denotes the set of time steps at which
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measurements yk are available. The input uk is assumed to be known, and wk ∈ R
n

and vk ∈ R
p are uncorrelated zero-mean white noise processes with covariances Qk

and Rk, respectively. We assume that Rk is positive definite.

Equation (7.2) denotes that measurements are not available at every time step.

When data are not available, the ensemble members are updated by means of a

forecast step only. However, when data are available, the ensemble members are

updated by both a data assimilation step and a forecast step. We now summarize

the steps of the ensemble Kalman filter. For an ensemble consisting of q members at

the kth step, EnKF is given by the following procedure:

For k /∈ Kd:

Forecast Step

xf,i
k+1 = f(xf,i

k , uk, k) + wi
k, i = 1, . . . , q, (7.3)

xf
k+1 =

1

q

q
∑

i=1

xf,i
k+1. (7.4)

For k ∈ Kd:

Data Assimilation Step

Ef
x,k ,

[

xf,1
k − xf

k · · · xf,q
k − xf

k

]

, (7.5)

Ef
y,k ,

[

yf,1
k − yf

k · · · yf,q
k − yf

k

]

, (7.6)

P f
xy,k =

1

q − 1
Ef

x,k(E
f
y,k)

T, (7.7)

P f
yy,k =

1

q − 1
Ef

y,k(E
f
y,k)

T (7.8)

Kk = P f
xy,k(P

f
yy,k)

−1, (7.9)

xda,i
k = xf,i

k + Kk

(

yk − h(xf,i
k , k) + vi

k

)

, i = 1, . . . , q, (7.10)

xda
k =

1

q

q
∑

i=1

xda,i
k . (7.11)
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Forecast Step

xf,i
k+1 = f(xda,i

k , uk, k) + wi
k, i = 1, . . . , q, (7.12)

xf
k+1 =

1

q

q
∑

i=1

xf,i
k+1. (7.13)

To reproduce the process noise statistics, the noise term wi
k, which drives the

ith ensemble member, is generated deterministically or is sampled from a normal

distribution with mean zero and covariance Qk. Likewise, vi
k is sampled from a

normal distribution with mean zero and covariance Rk and added to the residual

yk − h(xf,i
k ) in order to reproduce the measurement noise statistics.

Figure 7.1 illustrates EnKF. Each ensemble member is updated by time-sparse

measurement data, and is propagated independently when data are not available.

datatime

Step
Data AssimilationForecast Step

Kk = P f
xy,k(P f

yy,k)−1

Ef
x,k ,

[

xf,1

k
− xf

k · · · xf,q

k
− xf

k

]

Ef
y,k ,

[

yf,1

k
− yf

k · · · yf,q

k
− yf

k

]

P f
xy,k = 1

q−1
Ef

x,k(Ef
y,k)T

P f
yy,k = 1

q−1
Ef

y,k(Ef
y,k)T

xf,i

k+1
= f( xda,i

k
, uk, k) + wi

k, i = 1, . . . , q, k ∈ Kd,

xf,i

k+1
= f(xf,i

k
, uk, k) + wi

k, i = 1, . . . , q, k /∈ Kd

xda,i

k
= xf,i

k
+ Kk

(

yk − h(xf,i

k
) + vi

k

)

, i = 1, . . . , q.

Figure 7.1: Diagram of the ensemble Kalman filter.
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7.3 Ensemble Size for Linear Systems

The accuracy of EnKF generally improves as the number of ensemble mem-

bers is increased. However, a large number of ensembles may be computationally

intractable in terms of computation time and memory. Therefore, it is necessary to

determine the minimum ensemble size that can adequately approximate the mean

of the states and the error covariance. We now examine the required number of en-

semble members for the case of linear dynamics. Specifically, we consider the linear

system

xk+1 = Akxk + wk, (7.14)

where xk ∈ R
n, Ak ∈ R

n×n, and wk ∈ R
n is a random disturbance with mean zero

and covariance Qk. The following lemma is needed.

Lemma 7.3.1. Let S1 ⊆ R
l and S2 ⊆ R

l be subspaces, and assume that

dim S1 + dim S2 ≤ l, (7.15)

where dim denotes dimension. Then there exists an orthogonal matrix S ∈ R
l×l such

that

SS2 ⊆ S
⊥

1 . (7.16)

Proof. Let n1 = dim S1 and n2 = dim S2. Let M1 ∈ R
l×n1 , M2 ∈ R

l×n2 be

matrices whose columns are an orthonormal basis for S1 and S2, respectively. Next,

let M c
1 ∈ R

l×(l−n1) be a matrix composed of l − n1 orthonormal vectors that are also

orthogonal to each column vector of M1, and let M c
2 ∈ R

l×(l−n2) be defined similarly.

Now define S , [ M c
1 M1] [ M2 M c

2 ]
−1 ∈ R

l×l . Hence [ SM2 SM c
2 ] = [ M c

1 M1].

Since l − n1 ≥ n2, it follows that SS1 = R(SM2) ⊆ R(M c
1) = S⊥

1 , where R denotes

range.
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The following result is stated without proof in [114].

Fact 7.3.1. Let xf,i
k , . . . , xf,q

k ∈ R
n, and define

Hk , [Akx
f,i
k − Akx

f
k, . . . , Akx

f,q
k − Akx

f
k] ∈ R

n×q, (7.17)

where xf
k , 1

q

∑q
i=1 xf,i

k . Then there exist w1
k, . . . , w

q
k ∈ R

n such that

q
∑

i=1

wi
k = 0, (7.18)

q
∑

i=1

wi
k

(

Akx
f,i
k − Akx

f
k

)T

= 0, (7.19)

1

q − 1

q
∑

i=1

wi
kw

iT
k = Qk, (7.20)

if and only if

rank(Hk) + rank(Qk) + 1 ≤ q. (7.21)

Now, let

xf,i
k+1 = Akx

f,i
k + wi

k, i = 1, . . . , q. (7.22)

Then

xf
k+1 = Akx

f
k, (7.23)

P f
xx,k+1 = AkP

f
xx,kA

T
k + Qk, (7.24)

where xf
k+1 , 1

q

∑q
i=1 xf,i

k+1, P f
xx,k , 1

q−1

∑q
i=1

(

xf,i
k − xf

k

) (

xf,i
k − xf

k

)T

, and P f
xx,k+1 ,

1
q−1

∑q
i=1

(

xf,i
k+1 − xf

k+1

) (

xf,i
k+1 − xf

k+1

)T

.

Proof. Defining

Wk , [w1
k · · · wq

k] ∈ R
n×q, (7.25)
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(7.18)-(7.20) can be written as















11×q

Hk

Wk















WT
k =















0

0

(q − 1)Qk















, (7.26)

where 11×q is the 1 × q ones matrix. Letting colj(M) denote the jth column of M ,

(7.26) can be written as















11×q

Hk

Wk















colj(W
T
k ) =















0

0

(q − 1) colj(Qk)















, j = 1, . . . , n. (7.27)

To prove necessity, note that, using (7.27), Theorem 2.6.3 in [47] implies that, for

all j = 1, . . . , n,

rank















11×q

Hk

Wk















= rank















11×q 0

Hk 0

Wk (q − 1)colj(Qk)















≤ q. (7.28)

Since Hk1q×1 = 0, it follows that 11×q is orthogonal to every row of Hk. Therefore,

rank







11×q

Hk






= rank(Hk) + 1. (7.29)

Furthermore, it follows from (7.27) that every row of Wk is orthogonal to every row

of [1T
1×q HT

k ]T. Finally, since rank(Wk) = rank(WkW
T
k ) = rank(Qk), it follows that

rank















11×q

Hk

Wk















= rank(Hk) + rank(Qk) + 1 ≤ q. (7.30)
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To prove sufficiency, let Ŵk ∈ R
n×q be such that ŴkŴ

T
k = (q − 1)Qk, and define

the matrix

Hk ,







11×q

Hk






∈ R

(n+1)×q. (7.31)

Let S1 , R(H
T

k ) ⊆ R
q and S2 , R(WT

k ) ⊆ R
q. Since dim S1+dim S2 = 1+rank(Hk)+

rank(Qk) ≤ q, Lemma 7.3.1 implies that there exists an orthogonal matrix S ∈ R
q×q

such that

WT
k = SŴk, (7.32)

HkW
T
k = 0, (7.33)

WkW
T
k = ŴkS

TSŴT
k = ŴkŴ

T
k = (q − 1)Qk. (7.34)

Hence (7.26) follows. Finally, (7.23) and (7.24) follow from (7.26).

Let

Q , {q : (7.21) is satisfied}. (7.35)

Then, Fact 7.3.1 shows that the minimum number of ensemble members needed to

achieve (7.23), (7.24) is

qmin , min Q. (7.36)

Furthermore, the maximum value of qmin given by (7.36) is 2n + 1, where n is the

number of states of the system. This value is the number of ensemble members used

by UKF [33]. However, in many cases, Hk and the disturbance covariance Qk have

low rank, which means that the required ensemble size q may be substantially less

than 2n + 1.
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We now summarize the numerical algorithm given in [114] for generating w1
k, . . . , w

q
k

that satisfy (7.18)-(7.20). This algorithm is used for the numerical examples in sec-

tions 7.7 and 7.8. For zj = [zj,1 · · · zj,j]
T ∈ R

j, define the Householder matrix

H(zj) ∈ R
j×j by

H(zj) , I − 1

1 + |zj,j|





















zj,1

...

zj,j−1

zj,j + sign(zj,j)





















[

zj,1 · · · zj,j−1 zj,j + sign(zj,j)

]

,

(7.37)

and let Ĥ(zj) ∈ R
j×(j−1) denote H(zj) with its last column deleted. Next, define

Γ ∈ R
q×(n+1) by

Γ , H
T

k , (7.38)

and let hk , rank(Hk) and qk , rank(Qk).

Fact 7.3.2. Let q ≥ hk +qk +1 be an integer, and let Ŵk ∈ R
n×q satisfy ŴkŴ

T
k =

(q − 1)Qk. Let γ be a nonzero column of Γ, and define zq , γ/‖γ‖2. Form Γ0 by

removing γ from Γ. For i = 0, . . . , hk − 1, let γi ∈ R
q−i−1 be a nonzero column

of ĤT(zq−i)Γi ∈ R
(q−i−1)×(n−i−1), and define zq−i−1 , γi/‖γi‖2. Remove γi from

ĤT(zq−i)Γi and denote the resulting matrix by Γi+1. Finally, let Ω ∈ R
(q−1−hk)×qk

satisfy ΩTΩ = I. Then

Wk = [w1
k · · ·wq

k] , ŴkĤ(zq) · · · Ĥ(zq−hk
)Ω (7.39)

satisfies (7.18)-(7.20).
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7.4 Ensemble Reduction for Linear System Data Assimilation

Consider the linear system

xk+1 = Akxk + wk (7.40)

with measurements

yk = Ckxk + vk, k ∈ Kd, (7.41)

where xk ∈ R
n, yk ∈ R

p, and Kd denotes the set of time steps at which measurements

yk are available. As in Section 7.2, wk ∈ R
n and vk ∈ R

p are uncorrelated zero-mean

white noise processes with covariances Qk and Rk, respectively. We assume that Rk

is positive definite. For this linear system, the Kalman filter is given by the following

procedure:

For k /∈ Kd:

xf
k+1 = Akx

f
k, (7.42)

P f
k+1 = AkP

f
kA

T
k + Qk. (7.43)

For k ∈ Kd:

Data Assimilation Step

Kk = P f
kC

T
k (CkP

f
kC

T
k + Rk)

−1, (7.44)

xda
k = xf

k + Kk(yk − yf
k ), (7.45)

P da
k = P f

k − P f
kC

T
k (CkP

f
kC

T
k + Rk)

−1CkP
f
k. (7.46)

Forecast Step

xf
k+1 = Akx

da
k , (7.47)

P f
k+1 = AkP

da
k AT

k + Qk. (7.48)
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The following result shows that disturbances that do not affect the observable

subspace can be ignored by the data assimilation procedure.

Proposition 7.4.1. Consider the linear system







x1,k+1

x2,k+1






=







A1,k 0

A21,k A2,k













x1,k

x2,k






+







w1,k

w2,k






, (7.49)

yk =

[

C1,k 0

]







x1,k

x2,k






+ vk, (7.50)

where A2,k is asymptotically stable. Let wk ,
[

wT
1,k wT

2,k

]T
, assume wk and vk are

uncorrelated, and define

Qk , E(wkw
T
k ) =







Q1,k Q12,k

QT
12,k Q2,k






, Q̂k ,







Q1,k 0

0 0






. (7.51)

Now, let x̂k,Qk
be the state estimate of the Kalman filter that uses Qk, and let x̂k,Q̂k

be the state estimate of the suboptimal estimator whose gain is obtained by replacing

Qk by Q̂k in (7.43), (7.48). Define Pk , E[(xk − x̂k,Qk
)(xk − x̂k,Qk

)T] and P̂k ,

E[(xk − x̂k,Q̂k
)(xk − x̂k,Q̂k

)T], and let the corresponding costs JQk
of the Kalman filter

and JQ̂k
of the suboptimal estimator be

JQk
, trPk, JQ̂k

, trP̂k. (7.52)

Assume that the Kalman filter and the suboptimal estimator have same initial con-

ditions and initial error covariance. Then, for all k,

JQk
≤ JQ̂k

. (7.53)

Furthermore, if Q12,k = 0, then, for all k,

JQk
= JQ̂k

. (7.54)
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Proof. We denote the gains of the Kalman filter with Qk and the suboptimal

estimator with Q̂k by Kk and K̂k, respectively, where Kk is given by (7.44) and K̂k

is given by

K̂k = P̂ f
kC

T
k (CkP̂

f
kC

T
k + Rk)

−1, (7.55)

P̂ da
k = P̂ f

k − P̂ f
kC

T
k (CkP̂

f
kC

T
k + Rk)

−1CkP̂
f
k, (7.56)

P̂ f
k+1 = AkP̂

da
k AT

k + Q̂k. (7.57)

Then the error covariance Pk of the Kalman filter and the pseudo-error covariance

P̂k of the suboptimal estimator satisfy

Pk+1 = Ak(I − KkCk)Pk(I − KkCk)
TAT

k + AkKkRkK
T
k AT

k + Qk, (7.58)

P̂k+1 = Ak(I − K̂kCk)P̂k(I − K̂kCk)
TAT

k + AkK̂kRkK̂
T
k AT

k + Qk. (7.59)

Subtracting (7.58) from (7.59), adding and subtracting Ak(I−K̂kCk)Pk(I−K̂kCk)
TAT

k ,

and using Kk = PkC
T
k R̃−1

k , where R̃k , CkPkC
T
k + Rk, yields

P̂k+1 − Pk+1 (7.60)

= Ak(I − K̂kCk)(P̂k − Pk)(I − K̂kCk)
TAT

k

+ AkK̂kR̃kK̂
T
k AT

k + AkKkR̃kK
T
k AT

k − AT
k KkR̃kK̂

T
k AT

k − AkK̂kR̃kK
T
k AT

k

= Ak(I − K̂kCk)(P̂k − Pk)(I − K̂kCk)
TAT

k + Ak(K̂k − Kk)R̃k(K̂k − Kk)
TAT

k

≥ 0,

which implies (7.53).

Now, assume Q12,k = 0. Let P f
k and P̂ f

k denote the forecast-step error covariance

and pseudo-error covariance of the Kalman filter with Qk and the suboptimal esti-

mator with Qk replaced by Q̂k, respectively. Next, partition P f
k and P̂ f

k according to



126

(7.49) as

P f
k =







P f
1,k P f

12,k

P fT
12,k P f

2,k






, P̂ f

k =







P̂ f
1,k P̂ f

12,k

P̂ fT
12,k P̂ f

2,k






. (7.61)

Similarly, define and partition P da
k and P̂ da

k . Let P0 denote the initial error covariance,

and define the initial forecast step error covariances P f
0 , P̂ f

0 by

P f
0 = P̂ f

0 = P0. (7.62)

Now, the gains Kk and K̂k are given by

Kk =







P f
1,kC

T
1,k

P f
12,kC

T
1,k






V −1

k , K̂k =







P̂ f
1,kC

T
1,k

P̂ f
12,kC

T
1,k






V̂ −1

k , (7.63)

where Vk , C1,kP
f
1,kC

T
1,k + Rk and V̂k , C1,kP̂

f
1,kC

T
1,k + Rk. Using the gains Kk and

K̂k, P da
1,k, P daT

12,k and P̂ da
1,k, P̂ daT

12,k are given by

P da
1,k = P f

1,k − P f
1,kC

T
1,kV

−1
k C1,kP

f
1,k, P daT

12,k = P fT
12,k − P fT

12,kC
T
1,kV

−1
k C1,kP

f
1,k, (7.64)

P̂ da
1,k = P̂ f

1,k − P̂ f
1,kC

T
1,kV

−1
k C1,kP̂

f
1,k, P̂ daT

12,k = P̂ fT
12,k − P̂ fT

12,kC
T
1,kV

−1
k C1,kP̂

f
1,k. (7.65)

Consequently, P f
k+1 and P̂ f

k+1 are given by

P f
1,k+1 = A1,kP

da
1,kA

T
1,k + Q1,k, P fT

12,k+1 = A21,kP
da
1,kA

T
1,k + A2,kP

daT
12,k AT

1,k, (7.66)

P̂ f
1,k+1 = A1,kP̂

da
1,kA

T
1,k + Q1,k, P̂ fT

12,k+1 = A21,kP̂
da
1,kA

T
1,k + A2,kP̂

daT
12,k AT

1,k. (7.67)

Hence, P f
1,k = P̂ f

1,k, P fT
12,k = P̂ fT

12,k, and Kk = K̂k for all k, which implies x̂k,Qk
= x̂k,Q̂k

and thus (7.54).

Proposition 7.4.1 implies that, for EnKF, it is not necessary to generate wi
2,k,

which does not affect the observable subspace of (Ak, Ck).

Now, for the disturbance
[

wT
1,k 0

]T
, let the corresponding matrices for Hk and Qk

be Ĥk and Q̂k. Then, assuming that rank(Ĥk) ≤ rank(Hk), the minimum ensemble

size needed by the ensemble Kalman filter to satisfy constraints (7.18)-(7.20) can be

reduced by rank(Qk) − rank(Q̂k).
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7.5 Ensemble-On-Demand Kalman Filter (EnODKF)

EnKF requires in (7.3) that q ensemble members be updated in parallel at every

time step whether or not data are available. When qmin given by (7.36) is large, real-

time estimation for acceptable accuracy is computationally expensive. To partially

overcome the excessive computational complexity of the ensemble Kalman filter, we

consider the ensemble on-demand Kalman filter (EnODKF), which propagates the

ensemble members over a small number Ns of steps only when data are available.

EnODKF is described by the following procedure:

For k /∈ Kd:

Forecast Step

xf
k+1 = f(xf

k, uk, k). (7.68)

For k ∈ Kd:
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Data Assimilation Step

xf,i
k = xf

k, i = 1, . . . , q,

xf,i
k+j = f(xf,i

k+j−1, uk+j−1, k) + wi
k+j−1, i = 1, . . . , q, j = 1, . . . , Ns, (7.69)

yf,i
k+Ns

= h(xf,i
k+Ns

, k + Ns), (7.70)

xf
k+Ns

=
1

q

q
∑

i=1

xf,i
k+Ns

, yf
k+Ns

=
1

q

q
∑

i=1

yf,i
k+Ns

, (7.71)

Ef
x,k+Ns

,
[

xf,1
k+Ns

− xf
k+Ns

· · · xf,q
k+Ns

− xf
k+Ns

]

, (7.72)

Ef
y,k+Ns

,
[

yf,1
k+Ns

− yf
k+Ns

· · · yf,q
k+Ns

− yf
k+Ns

]

, (7.73)

P f
xy,k =

1

q − 1
Ef

x,k+Ns
(Ef

y,k+Ns
)T, (7.74)

P f
yy,k =

1

q − 1
Ef

y,k+Ns
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f
yy,k)

−1, (7.76)

xda
k = xf

k + Kk

(

yk − h(xf
k)

)

. (7.77)

Forecast Step

xf
k+1 = f(xda

k , uk, k). (7.78)

Figure 7.2 illustrates EnODKF. Each ensemble member propagates for Ns steps

when data are available in order to generate an approximate error covariance matrices

and data assimilation gain. Then, the states are updated using the available data at

the measurement time.

The ensemble size q for EnODKF is ideally chosen such that q ≥ 1 + rank(Hk′) +

rank(Qk′), where k ≤ k′ < k + Ns and k ∈ Kd. Next, the choice of Ns is governed

by the tradeoff between computation time and accuracy. That is, larger Ns ensures

better accuracy but increased computation time.
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Figure 7.2: Diagram of the ensemble-on-demand Kalman filter.

7.6 Numerical Results

We consider EnKF and EnODKF for the linear system (7.40) with measure-

ments (7.41). As a baseline reference, we also compute estimates using the Kalman

filter (7.42)-(7.48). For all simulations, the truth model is the model with stochas-

tic drivers, the no data assimilation (NoDA) model is the model with each driver

replaced by its mean value, and the data assimilation (DA) model is the NoDA

model with data assimilation using simulated measurements from the truth model

simulation.
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7.7 Lumped Vibration Example

Consider the mass-spring-dashpot system consisting of 10 masses shown in Fig-

ure 7.3. For i = 1, . . . , 10, mi = 1.0, while, for j = 1, . . . , 11, kj = 1.0 and cj = 0.05.

We choose low damping coefficients so that each vibration mode is underdamped

with damping ratio less than 0.05. The order of the system is n = 20.

m1 m6 m10

Figure 7.3: Mass-spring-dashpot system.

We consider three kinds of disturbance inputs, specifically, several local distur-

bances in which an independent force is applied to each mass, one local disturbance

in which a single force is applied to the 6th mass, and one global disturbance applied

to all of the masses.

We consider two measurement cases involving the velocity of the 6th mass and the

velocity of the 5th mass. We assume that measurements are available every Nd = 4

steps, that is, Kd = {1, 5, 9, . . .}, and we apply EnODKF with several values of Ns

to assess EnODKF performance as a function of Ns.

First, we examine the minimum number of ensemble members required for EnKF

in light of (7.21). In Figure 7.5, we compare the performance of EnKF with stochastic

and deterministic disturbances, respectively. The left column of plots corresponds to

the case where the number of independent disturbance force inputs is 10. The plots

in the center row show the singular values of Qk in order of descending magnitude.

The top row of plots show the singular values of Hk. It can be seen that rank(Hk) for

this case is 20. The bottom row of plots show that the ratio J/Jopt of EnKF costs J

to the Kalman filter cost Jopt fluctuates but decreases with increasing ensemble size.
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Specifically, J/Jopt for EnKF with deterministic disturbance sampling remains near

1 beyond an ensemble size of about 1+rank(Hk)+rank(Qk). Although the profiles of

J/Jopt of EnKF using a stochastic disturbance fluctuate more than the EnKF with

deterministic disturbance sampling, we observe that the expected value of J/Jopt

with stochastic disturbance sampling converges when ensemble size is greater than

1 + rank(Hk) + rank(Qk).

The right column of plots corresponds to the case in which a single global distur-

bance force is applied to all 10 masses so that rank(Qk) = 1. In this case, rank(Hk) is

20 using a small singular-value tolerance for determining rank. However, the singular

values of Hk decrease rapidly, which indicates that the effective rank of Hk is less

than the first case. The plot of J/Jopt has the same trend as the singular value plot

of Hk, that is, the value of J/Jopt converges faster than the previous cases.

Next, we demonstrate EnODKF. Figure 7.7 shows the results of data assimilation

with measurement update period Nd = 4, and with Ns = 1, 2, 3, and 4. It can be

seen that EnODKF has poor performance in (a), (b) and (c), but the fluctuation of

J/Jopt with respect to ensemble size is less than EnKF. As illustrated by (a), (c), and

(d), the number Ns of propagation steps has a stronger impact on estimation when

the measurements are affected by disturbances from other locations. The EnODKF

performance is best for the case in which the system is subject to a single global

disturbance as shown in (d).

7.8 Two-Dimensional Heat Conduction Example

Consider the heat conduction in a two-dimensional plate, governed by

∂T (x, y, t)

∂t
= α

(

∂2T (x, y, t)

∂x2
+

∂2T (x, y, t)

∂y2

)

+ w(x, y, t), (7.79)
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where T (x, y, t) is the temperature at position (x, y) and time t, w(x, y, t) represents

disturbance heat sources or sinks acting on the plate, and α is the heat conduction

coefficient. We discretize (7.79) over a spatial grid of size nx × ny = 20 × 20, where

nx and ny denote the number of grid points in the horizontal and vertical directions,

respectively. The random initial conditions N(0, In) are given, and all boundary

conditions are free.

We consider five kinds of disturbance inputs, specifically, 1) ny-independent dis-

turbances to the left boundary edge, 2) a single disturbance to the center of the left

boundary edge, 3) a single disturbance to all cells at the left edge (A-type distur-

bance), 4) two independent sets of disturbances to each half of the left boundary

edge where all disturbances within a set are identical (AB-type disturbance), and, 5)

finally, two independent sets of disturbances to each half of the left boundary edge

and another two independent sets of disturbances to each half of the right boundary

edge (ABCD-type disturbance).

We consider five cases of measurements, where single, two, and four measurement

points are selected with different distances from the left and the right boundary

edges. We assume that measurements are available every Nd = 6 steps, and we

consider Ns = 1 and Ns = 4 for the EnODKF. The disturbances and measurements

are illustrated in Figure 7.4.

Proposition 7.4.1 shows that we do not need to include in the ensemble Kalman

filter the disturbance sources that do not affect the observable subspace of (Ak, Ck).

Consequently, the ensemble size needed to achieve acceptable accuracy is less than

1 + rank(Hk) + rank(Qk).

To illustrate Proposition 7.4.1, we consider estimation for two-dimensional heat

conduction in a square plate composed of two regions that have different heat con-
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Figure 7.4: Illustration of types of disturbances (upper row) and measurements (lower row) used
for 2D heat conduction estimation. The leftmost disturbance in the upper row indicates
that 20 independent disturbances act on all of the cells of the left boundary edge.

duction coefficients. We take αsmall = 0.2αlarge so that the system matrix can be

approximated by (7.49). The regions of the different heat conduction coefficients are

shown in Figure 7.6(a). Next, let the 2D plate be subject to ny = 20 independent

heat sources placed along the left edge of the system and use one point measurement

as shown in Figure 7.6(a) and Figure 7.6(b).

We assume that the states of the αlarge region are observable from the measure-

ment, and are reachable by the 10 independent disturbance sources that are in the

αlarge region, whereas the remaining 10 disturbance sources in the αsmall region do

not affect the αlarge region due to lower conductivity. Then, we perform EnKF data

assimilation with the 10 and 20 independent disturbance sources, respectively, while

increasing the number of ensemble members.

It can be seen from Figure 7.6(e) that the errors of EnKF with 20 disturbance

sources converge at around an ensemble size of 20, which is less than half of 1 +

rank(Hk)+rank(Qk) for the entire system. Next, the errors of EnKF with 10 distur-

bance sources that correspond to the Q̂k given by (7.51), have the same estimation

accuracy as EnKF with full 20 disturbance sources at an ensemble size of around

20, which means that there is no accuracy degradation with the reduced distur-
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bance sources since the reduced disturbance sources affect the αlarge region, while

the remaining 10 disturbances have minimal effect on the αlarge region.

Next, we compare EnKF and EnODKF. The 2D heat conduction system has slow

dynamics, and the disturbances are damped out rapidly while passing through the

cells. Therefore, EnODKF with Ns = 1 works poorly when the measurement point

and the disturbance location are different by as few as one cell. This characteristic

is illustrated in Figure 7.8, where all EnODKF results are identical to NoDA.

However, as shown in the 1st and the 3rd rows of plots of Figure 7.9, EnODKF

with Ns = 4 is effective for the cases where the measurement locations are distant

from the disturbances by 1.0 length unit, where each square cell is 0.5 length units

in width. However, EnODKF fails to work when the measurement location is placed

4.1 and 4.0 length units away from the disturbances as shown in the 2nd and the 4th

rows of plots of Figure 7.9, respectively.

7.9 Conclusion

In using EnKF, the main issues are how to perturb the system and how

many ensemble members are required for acceptable accuracy. We showed that

the ensemble size of EnKF for acceptable accuracy can be guided by the number

1 + rank(Hk) + rank(Qk), which is the lower limit for generating disturbance vectors

that are orthogonal to the propagated states while maintaining exact disturbance

covariance.

It is evident in the linear system examples that we can avoid errors due to sam-

pling errors by using a finite number of exact disturbances. However, the disturbance

covariances must be accurately known in order to generate those disturbances. How-

ever, in large scale data assimilation, for example, for terrestrial weather, space
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weather, and ocean currents, the disturbance covariance is difficult to construct even

when the disturbance sources are known. Moreover, when the disturbance sources

are not known, we cannot expect to obtain useful results from data assimilation.

Therefore, implementation of data assimilation by EnKF involves first identifying

disturbance sources and then exciting the system using the identified disturbance

sources with the ensemble size guided by the number 1 + rank(Hk) + rank(Qk).

For large scale systems, the number 1+rank(Hk)+rank(Qk) may be prohibitively

large for the available computing resources, and thus the reduction of computational

complexity is needed. However, before reducing computational complexity using, for

example, SVD, projection of disturbance, or model reduction, unnecessary distur-

bance sources should be removed. We showed the effectiveness of removing unnec-

essary disturbances in a 2D heat conduction example with decreased computational

burden and no degradation of accuracy.

Finally, we showed that EnODKF is computationally inexpensive but provides

acceptable performance for systems under a single global-type disturbance.
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Figure 7.5: Comparison of EnKF with stochastic and deterministic disturbance samplings, respec-
tively. The plots in the left column correspond to the case where the number of inde-
pendent disturbance force inputs is 10. The plots in the right column correspond to the
case in which a single global disturbance force is applied to all 10 masses. The plots in
the center row show the singular values of Qk in order of descending magnitude. The
top row of plots show the singular values of Hk. The bottom row of plots show that the
ratio J/Jopt of EnKF costs J to the Kalman filter cost Jopt. This ratio fluctuates but
decreases with increasing ensemble size. The plots of J/Jopt indicate the same trends as
the singular values of Hk. Although the profiles of J/Jopt of EnKF using a stochastic
disturbance fluctuate more than the EnKF with deterministic disturbance sampling,
we observe that the expected value of J/Jopt of stochastic-disturbance-EnKF converges
when ensemble size is greater than 1 + rank(Hk) + rank(Qk).
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Figure 7.6: Comparisons of EnKF estimators using full disturbances and reduced disturbances for
2D heat conduction on the square plate composed of regions of two different heat
conduction coefficients αsmall and αlarge. The αsmall and αlarge regions are shown in
(a) divided by thin dashed lines, with NoDA rms error distributions. We take αsmall =
0.2αlarge. 20 filled-circles in (a) indicate the 20 independent disturbances in the truth
model. (b) is the rms error distribution of the Kalman filter with the measurement at
the location marked by ∗. (c) and (d) are the rms error distribution of EnKF estimators
at ensemble size 30 with full 20 and 10 disturbances in the αlarge region, respectively. It
can be seen in (e) that the errors of EnKF with full disturbance converge at around the
ensemble size 20, which is far less than 1 + rank(Hk) + rank(Qk) for the entire system,
which is greater than 40. Furthermore, the errors of the EnKF with fewer disturbances
yields the same converged estimation accuracy as EnKF with full disturbances at around
the ensemble size 20.
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Figure 7.7: Data assimilation cost versus ensemble size for the lumped-vibration example. (a) 10
independent disturbances with measurements of x12, (b) single disturbance to x12 with
measurements of x12, (c) single disturbance to x12 with measurements of x10, (d) single
global disturbance to all states with measurements of x12.
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Figure 7.8: 2D heat conduction estimation rms error distribution with Nd = 6 and Ns = 1. We
assume uniform heat conductivity. 1st to 4th columns: rms error distribution of NoDA,
Kalman filter, ensemble Kalman filter, and ensemble on-demand Kalman filter, respec-
tively. 1st row: 20 independent disturbances to the left boundary edge, 2nd row: single
disturbance to the left boundary edge, 3rd row: AB-type disturbance, 4th row: ABCD-
type disturbance. Darker regions around measurement points indicate that the errors
are reduced by data assimilation relative to NoDA.

Figure 7.9: 2D heat conduction estimation rms error distribution with Nd = 6 and Ns = 4. We
assume uniform heat conductivity. 1st to 4th columns: rms error distribution of NoDA,
Kalman filter, ensemble Kalman filter, and ensemble on-demand Kalman filter, respec-
tively. 1st-2nd rows: single disturbance to the left boundary edge, 3rd-4th rows: A-type
disturbance.



CHAPTER VIII

A Numerical Investigation of Data Assimilation Using the
Global Ionosphere-Thermosphere Model

8.1 Introduction

Studies of the upper atmosphere have led to an in-depth understanding of

the dominant features of the global ionosphere and thermosphere. The incident

solar Extreme Ultraviolet (EUV) radiation, which is a highly variable part of the

solar spectrum, determines, to a large part, the amount of energy absorbed in the

atmosphere. The major neutral species O2, N2, and NO absorb this radiation, and

the energy is used either to heat the ambient gas or ionize the neutrals. Once ionized,

the resulting photoelectrons receive the remaining energy, and in turn pass the energy

on to the thermal electrons and ultimately the ions.

Due to the configuration of the Earth’s magnetic field, as well as the interaction

between the magnetic field and the solar wind, the upper atmosphere has a strong

latitudinal dependence. At lower latitudes, the atmosphere is not strongly influenced

by these features, and the solar photons are the dominant source of energy. At higher

latitudes, however, auroral heating and particle precipitation are often the primary

sources of energy to the atmosphere. Still, there exists a fundamental understanding

of these processes and their effect on the ionosphere-thermosphere system, especially

when transient features are ignored.

140
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Perturbations to this background state of the atmosphere, or space weather, can

have dramatic effects on both space- and ground-based technology. For instance,

satellites in low-Earth orbit can experience significant changes in velocity when the

thermospheric drag on the spacecraft changes. Furthermore, abrupt changes in the

total electron content (TEC) of the ionosphere can lead to substantial errors in

ground-based Global Positioning System (GPS) measurements. For these reasons,

finding methods to improve the accuracy in forecasting the state of the ionosphere-

thermosphere system has become an active area of research [116–118].

When attempting to accurately forecast the state of the upper atmosphere, it is

important to start with initial states that are as close as possible to the true initial

states. This is because preconditioning of the atmosphere has a large effect on the

future state of the system. For example, the electron profile in the thermosphere after

a solar flare is highly dependent on the O/N2 ratio before the flare, since this ratio

largely determines the production and loss rates for the electrons. Since the upper

atmosphere is an externally driven system, simulated results depend strongly on the

inputs used to drive the system. Therefore, even if the atmospheric model itself is

accurate, the correct solution cannot be obtained if the drivers are uncertain. The

best way to ensure, then, that the initial state of the system is as accurate as possible,

given uncertainty in the drivers as well as the model, is to use available measurements

of the system to correct the model. Data assimilation facilitates the use of point or

integral measurements of the upper atmosphere to adjust the approximate system

towards reality. By having an understanding of how different parts of the system

correlate with each other, this technique allows the simulation to be corrected on a

large scale, even if measurements are taken locally.

Various studies have performed ionospheric data assimilation based on measure-
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ments of TEC [3–5] and bottom side electron density profiles [6]. TEC measure-

ments are available both from GPS ground stations, as well as from GPS occultation

between LEO satellites and GPS receivers, which means that data coverage is con-

tinuous and global in nature. The immense amount of TEC data available from

these sources makes assimilating TEC measurements extremely practical and useful.

More recently, with the availability of precise thermospheric density data from the

Champ [7] and Grace [8] experiments, interest has arisen in assimilating thermo-

spheric variables. Thermospheric data assimilation using simulated measurements of

thermospheric composition is investigated in [9].

In the present study, data assimilation techniques are used with the Global Ionosphere-

Thermosphere Model (GITM) [119] to estimate the ionosphere-thermosphere system

under uncertain solar EUV conditions as well as during geomagnetic storm condi-

tions. Preliminary results are presented for uncertain solar EUV conditions using

simulated incoherent scatter radar (ISR) measurements of electron number density

and ion temperature, as well as simulated satellite measurements of neutral density.

In addition, the behavior of the GITM-based data assimilation under geomagnetic

storm conditions when using simulated ISR measurements of electron number den-

sity, ion temperature, and simulated satellite measurements of neutral density, or

using simulated vertical TEC measurements is presented.

8.2 Method

8.2.1 GITM

GITM is a fully parallel three-dimensional (3D) model of the coupled ionosphere-

thermosphere system in spherical coordinates. The model solves the conservation

equations in altitude coordinates as opposed to pressure coordinates and does not

assume hydrostatic equilibrium. Therefore, the vertical momentum equation can
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be solved self-consistently, and substantial vertical flows can develop [11]. GITM

uses a block-based uniform domain decomposition in the horizontal direction, along

with a non-uniform altitude grid, with a resolution of 1/3 scale height. The grid is

entirely flexible, so the user is free to change the horizontal resolution from run to

run by specifying the number of blocks to use in a given simulation. A consequence

of this flexibility is that GITM can be run in 1-dimension (1D) where only a sin-

gle latitude and longitude are simulated, and horizontal transport and gradients are

ignored. Since 1D GITM can be run quickly on a personal computer, this feature

renders long-term studies of the upper atmosphere feasible, while facilitating quick

debugging of the code.

GITM is initialized using the MSIS [120] and IRI [121] empirical models of the

thermosphere and ionosphere, respectively, to specify the neutral and ion densities

and temperatures. Various solar and high-latitude drivers can be used to specify the

relevant inputs from the surrounding regions. The EUVAC [122] and EUV91 [123]

empirical models of the EUV spectrum based on the F10.7 proxy are generally used to

drive the solar flux. The high latitudes are typically driven using Weimer potential

patterns [99] or the AMIE technique [124] as well as the particle precipitation model

[125].

8.2.2 Data Assimilation Algorithms

The data assimilation technique is based on 14 state variables per cell, specifi-

cally, the number densities and vertical velocities of the individual neutral species O,

O2, N, N2, the eastward and northward bulk velocities, the normalized thermospheric

temperature Tn, which is given by

Tn = P/ρ, (8.1)
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where P is the pressure and ρ is the neutral density, as well as the number densities

of the ion species O+, O+
2 , and NO+. These state variables, which are updated by

solving the equations of continuity, momentum, and energy, are used to compute

the number density of electrons, the ion velocity, and the ion temperature, which

correspond to data provided by an ISR.

In adapting GITM for data assimilation, variations of the basic formalism of the

classical Kalman filter can be used. The most popular methods replace the Ric-

cati equation error covariance propagation of the classical filter with an ensemble

of models that approximate the second moment of the error covariance, which is

subsequently used to determine the data injection gain. Two such methods are

the ensemble Kalman filter (EnKF) [126], which is based on stochastically sampled

drivers, and the unscented Kalman filter (UKF) [127], which is based on determinis-

tically determined drivers for an ensemble of 2n+1 members, where n is the number

of states.

EnKF and UKF have three main advantages over classical techniques. First, they

are often effective for nonlinear systems when the extended Kalman filter is not.

Second, even when the extended Kalman filter is effective, both filters obviate the

need to linearize the system. Finally, EnKF and UKF are eminently parallelizable

since each ensemble member can be updated independently.

Many of the EnKF or UKF applications of interest arise from extremely high-order

dynamics. In particular, GITM has a total of 106 states, and therefore significant

computational resources are required for real-time simulation. Real-time data assim-

ilation based on UKF would require several million processors, which is not feasible.

To reduce the computational complexity of UKF, localized UKF (LUKF) propagates

the error covariance of the local region with a local disturbance covariance matrix
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[90, 128]. However, in applying UKF or LUKF to a large scale nonlinear system,

we need to obtain an approximate disturbance covariance matrix, which requires

additional computations and causes another source of uncertainty through the ap-

proximation.

For very large scale systems, EnKF has a potential advantage over UKF in that

the number of ensemble members is not specified. However, useful guidance for

the appropriate size of the EnKF ensemble based on linearized analysis is given

by [129, 130]. Moreover, since EnKF perturbs the mean drivers, EnKF does not

need a disturbance covariance matrix, which inherently eliminates the error in the

approximated disturbance covariance matrix. Meanwhile, we need to propagate an

ensemble of the entire system when the disturbance is global or its effects propagate

throughout all regions of the system. In those cases, enforcing localization of the

disturbances violates the base-line physics.

The ensemble-on-demand Kalman filter (EnODKF) [130] avoids propagating en-

semble members for every time step by creating an ensemble of members only when

data are available. This ensemble is propagated into the future to generate an error-

covariance matrix, which, in turn, is used to create a data injection gain, which,

finally, is used to assimilate the measurements at the time step at which the measure-

ments became available. Once the measurements are assimilated, only a single sim-

ulated model is updated until new measurements become available. EnODKF with

the ensemble size guideline of [129, 130] is a computationally inexpensive method that

is applicable to the system perturbed by a single global disturbance. We thus apply

EnODKF to the data assimilation using GITM when the ionosphere-thermosphere

is driven by the solar EUV flux disturbance.

In contrast to the solar EUV flux, the geomagnetic storm drivers perturb the lo-



146

cal high-latitudinal regions of the ionosphere-thermosphere. Thus, the effects of the

geomagnetic storm drivers propagate toward the equator from the regions around

the north or the south pole. It takes 30 - 60 minutes for the geomagnetic storm

drivers to affect the regions from 45oS latitude to 45oN latitude. Hence, EnODKF is

not a suitable method for the geomagnetic storm case since it propagates ensemble

members for a limited number of steps only when data are available while discarding

previously propagated information. For this geomagnetic storm case, EnKF is effec-

tive since it continually propagates the system under disturbance drivers. Therefore,

we apply EnKF to the geomagnetic storm case with small a ensemble size deter-

mined by using the ensemble size guideline [129, 130]. We summarize the EnKF and

EnODKF algorithms in Section 7.2 and 7.5.

In applying EnODKF and EnKF to GITM-based data assimilation, we run GITM

over the global ionosphere-thermosphere since the solar EUV flux is a global driver

and the effects of geomagnetic storm propagate throughout the whole ionosphere-

thermosphere. However, we inject the data into the local region where the states of

the local region are well correlated with the measurements.

It is important to note in EnODKF and EnKF GITM-based data assimilations

is that there are poor correlations between some states in auto and cross covariance

matrices. Good correlations are guaranteed in the pairs of (neutral densities, neutral

densities) and (neutral densities, air densities); (neutral velocities, neutral veloci-

ties); (neutral temperatures, neutral temperatures) and (neutral temperatures, ion

temperatures); (ion densities, ion densities) and (ion densities, electron densities).

We observe that the respective states of poor correlations have far different speeds

of response or far different sensitivities to disturbances. Poor correlations result in

poor DA performance or crashes of DA simulations. Therefore, we set the poor cor-
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relations to zero, in the state-output cross covariance matrix and output-output auto

covariance matrix.

8.2.3 Ensemble size

The accuracy of EnKF improves as the number of ensemble members is in-

creased. However, a large number of ensemble members may be computationally

intractable in terms of time and memory. Therefore, it is necessary to determine

the minimum ensemble size that can adequately approximate the mean of the states

and the error covariance. In order to obtain insight into the minimum ensemble size,

consider the linear system

xk+1 = Akxk + wk, (8.2)

where xk ∈ R
n, Ak ∈ R

n×n, and wk ∈ R
n is a random disturbance with mean zero

and covariance Qk. Now, let xf,i
k , . . . , xf,q

k ∈ R
n denote the states of the ensemble

members for the linear system (8.2), and define

Hk , [Akx
f,i
k − Akx

f
k, . . . , Akx

f,q
k − Akx

f
k] ∈ R

n×q, (8.3)

where xf
k , 1

q

∑q
i=1 xf,i

k . Then, the ensemble size q for which sampled disturbances

can be generated to reproduce the Kalman filter statistics is constrained by the

inequality given by [129, 130]

rank(Hk) + rank(Qk) + 1 ≤ q. (8.4)

The minimum value of q given by (8.4) provides a guideline for the ensemble size for

the linear system.

In Section 7.2, (8.4) is applied to EnKF for the nonlinear system given by (7.1).
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8.2.4 Implementation of the Algorithms

The original GITM code is written in fortran95 using MPICH for paralleliza-

tion. The data assimilation code resides at a higher level than the GITM code and

controls runs of multiple GITM codes for its purposes. The data assimilation (DA)

code is also written in fortran95 using MPICH and uses LAPACK functions to per-

form matrix calculations. Although the original GITM code uses a variable time

step, we fix the time step as 1 s in data assimilation code, for time-consistency in all

ensemble members and simulated measurement data. The configuration of 3D CFD

cells and processors for the simulations of this dissertation is shown in Table 8.1.

Table 8.1: Configuration of 3D cells and processors in the GITM simulations.

longitude, latitude range 0◦ to 360◦ in longitude with 5◦ resolution,
and resolution 90◦S to 90◦N in latitude with 5◦ resolution
number altitudinal grid points 50 grid points

number of longitudinal blocks 8
number of latitudinal blocks 4
number of altitudinal blocks (fixed) 1

number of longitudinal cells per block 9
number of latitudinal cells per block 9
number of altitudinal cells per block 50

number of blocks per processor 1
total number of processors 32

The flowchart of the GITM-based DA is illustrated in Figure 8.1.

To increase the running-speed of ensemble filters, in particular, for the realtime

execution of EnKF-based GITM DA code, we need to propagate an ensemble of

GITM codes in parallel. To realize the parallel execution of an ensemble of GITM

codes with the configuration given in Table 8.1, the required number of processors

is 32 × ensemble size. However, in actual situations, the availability of computing

resources in public grid computers is limited by public rules. Actually, the 32 is the

largest number of processors that can be used for our GITM-based DA simulations
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Figure 8.1: Flowchart of GITM-based DA code.

without too much waiting time when we use the public gird computer NYX at the

University of Michigan. Under the environment of the limited computing resources,

Figure 8.2 and 8.3 show how current implementation propagates an ensemble of

members in EnODKF and EnKF, respectively.

The original GITM code runs 40% faster than realtime on the NYX grid computer.

Using the implementations shown in figures 8.2 and 8.3, the typical running-speeds

of EnODKF-based (measurements available every 4 minutes, 1 minute for ensemble-

on-demand propagation) and EnKF-based (7 ensemble members) GITM DA codes

are 0.9 × realtime and 7 × realtime, respectively.
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Figure 8.2: Propagation of an ensemble of GITM codes in series in EnODKF-based GITM DA.
t1 is start time and t2 is end time of an ensemble-on-demand propagation. GITM0

represents the main GITM code to which data are injected. GITMi, i = 1, . . . , Nens

represents the GITM code for the ith ensemble member.
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Figure 8.3: Propagation of an ensemble of GITM codes in series in EnKF-based GITM DA. t1 is the
start time and t2 is the end time of an ensemble propagation. t1 and t2 correspond to
times of two subsequent measurements. GITMi, i = 1, . . . , Nens represents the GITM
code for the ith ensemble member.

8.3 Results

8.3.1 Solar flux disturbance simulation

The solar EUV flux is one of the main drivers of the ionosphere-thermosphere.

In practice, direct EUV flux measurements are not provided continually. Instead,
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only the daily average of the EUV flux parameter F10.7 expressed in solar flux unit

(sfu), where 1 sfu = 10−22 watt per square meter per Hertz, is available. Hence, the

EUV flux variation within a day is uncertain. We first consider data assimilation for

GITM (GITM-DA) in the presence of uncertain EUV drivers.

In [131], from measured data for a solar flare event, it is shown that the directly

measured EUV flux time profile is similar to the x-ray flux time profile. We can

obtain 1-minute- or 5-minute-resolution x-ray flux data continuously from

(http://www.swpc.noaa.gov/today.html), and we can see that the x-ray flux time

profile within a day is composed of intermittent wedge or triangular-shaped random

spikes with a time duration of 1 to 3 hours. Based on these observations, F10.7 within

a day is modeled by a triangular wave with 3-hour peak-to-peak variation as shown

in Figure 8.4, where the peak amplitudes are random.

To obtain simulated data, GITM is run with the F10.7 profile given in Figure 8.4

for 36 hours. The model results are then used as measurement data when performing

data assimilation. The solar flux is assumed to drive the entire dayside in a consistent

manner, and there are no secondary effects due to propagation. Therefore, the EUV

flux can be considered a single global driver for the dayside of the Earth, which allows

for use of EnODKF [130].

For the case of the EUV flux disturbance, rank(Qk), which is equivalent to the

number of independent disturbance drivers, is one. Since rank(Hk) ≥ 1 we need

at least three ensemble members in the EnODKF based on (8.4). Simulated point

measurements of the thermospheric density, electron number density Ne, and ion

temperature Tion are taken at 400 km altitude.

In GITM, the time constants associated with the modeled reactions vary signifi-

cantly. For example, the number density of O+ responds quickly to the variations in
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Figure 8.4: Assumed triangular true F10.7. Mean of F10.7 is 168.

the EUV flux, whereas the response of the neutral density is sluggish. Hence, in ap-

plying EnODKF, we constrain the auto- and cross-correlation so that the correlations

between quantities with different time constants are zero to avoid filter instabilities

induced by inaccurate correlations. However, since we ignore correlations between

different quantities such as densities and temperatures, we cannot achieve good es-

timation results for all states by using only one type of measurement quantity.

We start numerical investigation of data assimilation with 2 cases of simulated

measurement quantities at a single measurement location with local data injection.

For each measurement case, we inject data into a local region encompassing 5 cells

by 5 cells by 9 cells in longitude, latitude, and altitude, respectively, centered at the

measurement point. We summarize in Table 8.2 the conditions of data assimilation

for the two cases of measurement quantities.

Next, to quantify the DA accuracy, we define

ǫ ,
|XDA − Xtruth|
|XNoDA − Xtruth|

, (8.5)
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Table 8.2: Summary of GITM-DA for solar EUV flux disturbance.

GITM longitude, latitude range 0◦ to 360◦ in longitude with 5◦ resolution,
and resolution 90◦S to 90◦N in latitude with 5◦ resolution
GITM altitude range and grid points 100 km to 700 km, 50 grid points
region of data injection 280◦ to 305◦ in longitude (5 cells),

10◦ to 35◦ in latitude (5 cells),
324 km to 484 km in altitude (9 cells),

measurement point single point at
292.5◦ in longitude, 22.5◦ in latitude, 402 km in altitude

measurement quantities case 1 : neutral mass density ρn only,
case 2 : electron number density Ne, ion temperature Tion,
and neutral mass density ρn

where X is a simulated quantity, for example, density or temperature, DA indicates

results from GITM-DA, NoDA are results from GITM without data assimilation but

with F10.7 given by its mean value, and truth denotes results from the truth model.

0 < ǫ < 1 implies GITM-DA reduces errors from NoDA.

Figure 8.5 shows the results of data assimilation when only measurements of the

neutral density ρn are used. In Figure 8.5, the accuracy of the DA estimate of the

thermospheric temperature is worse than the accuracy of the NoDA estimate of the

thermospheric temperature. On the other hand, the DA estimate of thermospheric

density inside the injection region improves. Estimation of Ne is worse than NoDA

at the measurement point with slight error reduction below the measurement point.

Outside the data injection region, the data assimilation has little effect. However, as

shown in Figure 8.6, using measurements of Ne, Tion, and ρn yields better estimation

accuracy than data assimilation using only ρn measurements.

However, when the measurements of Ne, Tion, and ρn are used, a discontinuous

pressure change across the border of data-injection region is induced by data assimi-

lation. The pressure difference results in an unrealistic disturbance in the horizontal

velocities (Figure 8.7, right), which, in turn, disturbs the electron density (Figure
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8.7, left).

In Figure 8.8, we enlarge the data injection region to 270◦ to 315◦ in longitude (9

cells), 0◦N to 45◦N in latitude (9 cells), and 261 km to 559 km in altitude (17 cells)

when all measurement quantities (Ne, Tion, and ρn) are used. The plots show that

increasing the size of the injection region also increases the effective data assimilation

region, but with an increase in the size of the adversely affected region. However,

when the data injection region is extended to the full day-side of the Earth, the

induced pressure gradient disappears since the uncertainties of the EUV flux are

confined to the day-side of the Earth.

8.3.2 Geomagnetic disturbance simulation

Geomagnetic Storm Drivers

During storm conditions, the magnetospheric electric fields can become highly

dynamic. Since these fields map to ionospheric altitudes, they have a strong effect

on the motion of the ions, and as the fields change magnitude and direction, so do

the ions. These changing flows can cause substantial increases in the Joule heating

rate in the high-latitudes. Joule heating can be expressed as

Qj = σp(E + U × B), (8.6)

where σp is the Pedersen conductance, E is the electric field, U is the thermospheric

neutral wind velocity, and B is the magnetic field. Since the neutral winds can be

difficult to determine, this equation is often simplified to Qj = σpE
2.

The sudden addition of energy into the high-latitude ionosphere can affect the

atmosphere in various ways. First, the absorption of energy can cause the atmo-

sphere to expand, causing increases in neutral density at a given altitude as high

density air from below is pushed up. In addition, chemical reaction rates that are
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temperature dependent can be affected, resulting in compositional changes. Sud-

den increases in energy deposition can also launch large scale gravity waves that

propagate equatorward, resulting in compositional and dynamical perturbations on

a global scale.

In this study, the electrodynamic potential patterns [99] and the particle precip-

itation patterns [125] are used to drive GITM under geomagnetic storm conditions.

These inputs are determined by the By and Bz components of the interplanetary

magnetic field (IMF), solar wind speed, and hemispheric power index (HPI). The

hemispheric power is an estimate of the energy in gigawatts of all electrons precip-

itating into a hemisphere. The hemispheric power is obtained by comparing the

energy flux observed along an orbital track of a NOAA/TIROS spacecraft with the

climatology maps of the energy flux developed from the NOAA/TIROS database.

The maps are based on 10 levels of geomagnetic activity. The profile and magni-

tude of the energy flux of precipitating electrons observed along an orbital track is

matched to one of the 10 maps. The HPI is thus the number of the relevant map.

It is assumed that the uncertainties of high-latitude drivers are represented by

the uncertainties of the primary drivers, that is, By, Bz, and HPI. The solar wind is

assumed to be given.

Analysis of By, Bz and HPI, and Assumptions on Uncertainties

The IMF components By and Bz, shown in Figure 8.9, are measured by the

ACE satellite at the L1 point, sunward of the Earth, from 01:00UT, October 29th,

2003 for 71 hours. Since these measurements are used to calculate the potential based

on empirical relationships, and since there is ambiguity on how the measurements

are propagated to the magnetosphere, there is inherent uncertainty in these IMF

components and their effect on the electric potential. It is assumed that the low-
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frequency components of the IMF near the Earth do not change from the measured

IMF, although the high frequency components change randomly with zero mean.

The measurement of the solar wind velocity is assumed to be accurate, and we

assume that the solar wind speed is uniform between the ACE satellite and the

Earth. Therefore, the high-frequency components of By and Bz are the uncertain

drivers.

The remaining geomagnetic driver HPI is also shown in Figure 8.9 at the times

when By and Bz are measured. In addition to HPI data collected by TIROS, HPI

data are also obtained by the DMSP satellites. In Figure 8.10

(http://cedarweb.hao.ucar.edu/dmsp/dmspssj4 hp.html), a scatter plot of the NOAA-

12 (local time at the equator 18.5 hours) and DMSP F13 (local time at equator 17.5

hours) data for one year is provided. Each point shows the HP obtained simulta-

neously (+/- 10 minutes) by the two spacecraft. Any value of HP from NOAA-12

or DMSP F13 that is less than 5 GW is ignored because the data may be from a

pass that did not cut through the full auroral zone. A linear regression is performed

with all of the data shown and the solid line shown is the result of the regression

analysis. The resulting correlation coefficient of 0.817 indicates a reasonably good

correlation between the two data sets. However, the dispersion of the data points

around the regressed linear line implies that the HPI has a large degree of uncer-

tainty. Hence, it is assumed that the high frequency components of HPI are another

source of uncertainty during geomagnetic storm conditions.

As shown in Figure 8.12, the low and high frequency components of By, Bz, and

HPI are separated according to Figure 8.11. The statistics of the high frequency

components of By, Bz, and HPI are computed with respect to time, and are used to

generate the perturbing disturbances to each ensemble member. The high frequency
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signals of By, Bz, and HPI are are assumed to be stochastically independent.

EnKF for the Geomagnetic Storm Data Assimilation and Ensemble Size

EnKF is chosen for GITM-DA during geomagnetic storm conditions because

these conditions strongly involve disturbance propagation, for example, gravity waves.

EnODKF does not work well for this problem since it propagates the ensemble mem-

bers for only a limited number of steps after each measurement time and subsequently

discards the information from previous propagations.

For the ensemble size q, the sets of drivers By, Bz, and HPI are generated for the

ensemble members by using the analyzed statistics of the high frequency components

of the measured drivers. The ensemble size q is determined using (8.4). rank(Qk)

is 3 because the number of independent drivers is 3. Next, we take rank(Hk) of the

local data injection region, which includes measurement locations, and we assume

that rank(Hk) of the local region is 3, considering the first three dominant singular

values of the Hk. Finally, the ensemble size q is set to be 7.
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Data assimilation conditions for a simulated geomagnetic storm

We use GITM with same longitudinal and latitudinal resolution as the EUV

case, for data assimilation under geomagnetic storm condition. Throughout the

geomagnetic storm DA, we set constant F10.7 = 267 which is the three-day average

of daily average F10.7 data from October 29th, 2003 to October 31st, 2003. Then,

the altitude range is set to 100 km - 857 km with 50 altitudinal grid points using

the F10.7 value. For simulated measurements, we consider six measurement locations

distributed over two GITM blocks where one GITM block is composed of 9 cells by

9 cells by 50 cells. For point measurements, we consider grid points that are nearest

to 400 km in altitude. We name each measurement point as m1, . . . , m6. Next, 4

longitudinal by 2 latitudinal GITM blocks and 4 longitudinal by 1 latitudinal GITM

blocks are considered for the size of region of data injection. The latter is used

for the size of the default region of data injection for the geomagnetic storm DA.

Range of altitudes of the region of data injection is from 312 km to 668 km where 17

altitudinal grid points are defined. We summarize data assimilation conditions for

geomagnetic storm in Table 8.3.

Table 8.3: Data assimilation conditions for the simulated geomagnetic storm.

GITM longitude, latitude range 0◦ to 360◦ in longitude with 5◦ resolution,
and resolution 90◦S to 90◦N in latitude with 5◦ resolution
GITM altitude range and grid points 100 km to 857 km, 50 grid points
date and time of geomagnetic storm 01:00UT, Oct. 29, 2003 to 01:00UT, Nov. 1, 2003
default region of data injection 180◦ to 90◦ in longitude (36 cells),
(4 longitudinal by 1 latitudinal 0◦ to 45◦ in latitude (9 cells),
GITM blocks) 312 km to 668 km in altitude (17 cells),
measurement points 6 points defined by

name (longitude, latitude, altitude as follow :
m1 (282.5◦, 22.5◦, 395 km), m2 (287.5◦, 32.5◦, 395 km),
m3 (302.5◦, 27.5◦, 395 km), m4 (322.5◦, 27.5◦, 395 km),
m5 (327.5◦, 37.5◦, 395 km), m6 (337.5◦, 32.5◦, 395 km)
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Data Assimilation Results Using Simulated ISR Measurements and Neutral Mass Den-
sity

Electron number density Ne is a major ISR measurement quantity for ions. Ion

temperature Tion is another ion measurement quantity by ISR but its time profile is

similar to neutral temperature, hence, it can be regraded as neutral measurement.

Neutral mass density ρn can be obtained from geo-scientific satellites. We assess the

performance of geomagnetic storm DA using these available ion and neutral mea-

surement quantities Ne, Tion and ρn. We consider semi-ideal measurement conditions

for these available measurement quantities when we take simulated measurements

from 6 locations. That is, we assume that ISR and satellite measurements are taken

every one minute, all at the same time instant from fixed 6 measurement locations,

while, in reality, one ISR cannot measure 6 points at the same time although the

measurement points are within the range of ISR, and satellite at around 400 km al-

titude cannot stay fixed. However, the performance of geomagnetic storm DA using

these semi-ideal measurements is the baseline performance that can be referenced

when realistic simulated measurements or real measurements are used for the data

assimilation.

We start the data assimilation from 9:00UT, October 29, 2003 with the region of

data injection whose longitudinal-latitudinal size is 4 by 2 GITM blocks. However,

data assimilation is stopped by error at 10:56UT, October 29, 2003, due to excessive

ion generations within the region of data injection. Figure 8.13 shows the NoDA and

DA error contours at 10:50UT, just before the stop. In the lower plot, the excessively

increased errors are identified at the lower left and the lower right corners of the region

of data injection which are distant from the measurement locations. The areas of

large errors are the locations where the correlations with measurements are weak.
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Hence, the erroneous correlations with measurements are reasons for the stop of DA.

We start again the geomagnetic storm DA from 11:00UT using the states of NoDA

at 11:00UT for initial conditions for all 7 ensemble members. The region of data

injection is reduced to the default region describe by Table 8.3.

Using reduced region of data injection, geomagnetic storm DA shows good perfor-

mance for 14 simulated hours with feasible running speed. The geomagnetic storm

DA is setup to use 32 processors where each processor is assigned to each GITM

block. Currently, since the DA code runs on a public grid computer (NYX at the

University of Michigan), using more than 32 processors is actually difficult due to

too much waiting time before execution of DA code. Hence, each ensemble member

runs one by one from a measurement time to the next measurement time. With this

hardware and software setup, the running speed of geomagnetic storm DA is five

times slower than real time when we use 7 ensemble members in EnKF. Current run

speed can be reduced to real time if more than 32×5 = 170 processors are available.

Even though 170 is a large number, it is not an impossible number these days.

Estimation accuracy of states of GITM using measurements Ne, Tion and ρn at 6

points is demonstrated in Figure 8.14. In Figure 8.14, truth, NoDA and DA results

for states and measurement quantities at m2 location are compared. As shown

in bottom plots, DA shows good agreement with measurement quantities at m2.

Moreover, number densities of all neutral species , number densities of all ion species

and neutral temperature are estimated with acceptable accuracy. However, since

neutral velocity estimates are not directly estimated by data assimilation and are

sensitive to small changes of pressure or density, they are randomly fluctuating, but

stay around the truth results.

Now, we examine spatial estimation performance of geomagnetic storm DA. We
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show DA performance on longitudinal-latitudinal plane at the measurement altitude.

Results are similar at other altitudes. In Figure 8.15 - 8.17, we show geomagnetic

storm DA spatial estimation performance on Ne, Tion and ρn at two different times

16:00UT and 17:50UT, October 29, 2003. Notice that all states are well estimated

if Ne, Tion and ρn are estimated correctly.

In left plots of Figure 8.15, the NoDA error of Ne at 16:00UT that overlaps the

data injection region is almost completely removed by DA with slight spill-over region

near the region of data injection. Meanwhile, in the right plots, the NoDA error of

Ne at 17:50UT that overlaps the data injection region is also well removed by DA

but there occurs a large area of significant error below the region of data injection.

Similar phenomenon is observed in Figure 8.16.

We can see an interesting fact in Figure 8.17 where ρn estimation performance

is shown. In right plots for 17:50UT, the NoDA errors outside the region of data

injection are reduced as well as inside. The change of ρn outside the region of data

injection is induced by data assimilation. That is, the DA induces helpful effects for

ρn estimates whereas worse effect for Ne and Tion estimates. Hence, we observe that

the DA-induced effects may not be correct. To overcome this problem, we need to

enlarge the region of data injection with more measurement locations.

Data Assimilation Results Using Simulated TEC Measurements

TEC measurements are practically very useful measurements since they are

widely distributed measurements over the lands of the world. In this section, we use

TEC measurements at longitudinal-latitudinal locations of 6 measurement points

of Table 8.3 and investigate effectiveness and limitations of TEC measurements on

data assimilation for the ionosphere-thermosphere. The region of data injection is

the default region described by Table 8.3.
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We perform geomagnetic storm DA for 14 hours from 11:00UT using only TEC

measurements. We use the states of NoDA at 11:00UT for initial conditions of all

7 ensemble members. Figure 8.18 shows the comparison of results of truth, NoDA

and the geomagnetic storm DA using TEC measurements at m2 point. It is shown

that estimated Ne by DA reasonably keeps track of true Ne. However, estimated Tion

and ρn by DA do not change significantly from NoDA. Moreover, we observe that

Ne estimates by DA for 12:00UT - 16:00UT, Oct. 29th and 20:00UT Oct. 29th -

01:00UT Oct. 30th are not so accurate as the case where we use Ne, Tion and ρn

measurements.

In Figure 8.19, left plots show that the most NoDA error of Ne at 16:00UT reduced

by DA. However, there is significant error at the bottom-right corner of the region

of data injection. Moreover, there is a region of induced error left to the region of

data injection. In the right plots, similar DA performance is shown at 17:50UT.

From simulation results given by Figure 8.18 and 8.19, we observe that, within

the boundary of well-chosen region of data injection, for estimating Ne, using TEC

measurements is effective, but is not better than using Ne, Tion and ρn measurements.

8.4 Conclusion and Discussion

In this paper, we applied EnODKF and EnKF algorithms with small ensemble

size to data assimilation for the ionosphere-thermosphere using GITM. We used

simulated measurements for all numerical investigations. Two conditions of the

ionosphere-thermosphere are considered separately: uncertain EUV flux and geo-

magnetic storm conditions. EnODKF is used for DA of uncertain EUV flux case

where the EUV flux is a single global disturbance. EnKF is used for DA of ge-

omagnetic storm case where disturbance is propagated from high latitude regions.
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EnODKF is computationally inexpensive method and we could achieve realtime data

assimilation using GITM. EnKF was effectively applied to geomagnetic storm DA

because we could obtain good DA results using 7 ensemble members, which is deter-

mined by ensemble size guideline [129, 130]. The ensemble size 7 is reasonably small

ensemble size that is acceptable by our available computing resources.

DA results from both cases show good estimation accuracy when we use ion

measurements and neutral measurements together, while the poor correlations are

set to zero in calculating the estimator gain. However, DA results may be poor or

unstable when the region of data injection includes regions where correlation with

measurement data are weak. In addition, we should notice that DA results outside

the region of data injection may not be correct.
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Figure 8.5: Error ratio contour plot of electron number density (top), neutral mass density (center),
and error contour plot of normalized temperature (bottom), from the results of data
assimilation for solar EUV flux case where only ρn measurement is taken for data
assimilation. The data injection area is indicated by the dashed box whose size is 5
cells in longitude by 5 cells in latitude by 9 cells in altitude. The measurement location
is the center of the box, where only ρn measurement is taken for data assimilation.
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Figure 8.6: Error ratio contour plot of the electron number density (top), neutral mass density
(center), and error contour plot of normalized temperature (bottom), from the results
of data assimilation for solar EUV flux case where Ne, Tion, and ρn measurements
are taken for data assimilation. The data injection area is indicated by the dashed box
whose size is 5 cells in longitude by 5 cells in latitude by 9 cells in altitude. Measurement
location is the center of the box, where Ne, Tion, and ρn measurements are taken for
data assimilation.
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Figure 8.7: Electron number densities at 3 locations marked by dots (left), from top to bottom,
and error ratio contour of northward horizontal velocity (right), from the results of data
assimilation for solar EUV flux case where Ne, Tion, and ρn measurements are taken
for data assimilation. The data injection area is indicated by the dashed box whose
size is 5 cells in longitude by 5 cells in latitude by 9 cells in altitude. Measurement
location is the center of the box, where Ne, Tion, and ρn measurements are taken for
data assimilation.
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Figure 8.8: Electron number densities at 3 locations marked by dots(left), from top to bottom, and
error ratio contour of northward horizontal velocity for the enlarged local region (right).
The data injection area is indicated by the dashed box whose size is 9 cells in longitude
by 9 cells in latitude by 17 cells in altitude. The longitude-latitude size corresponds to
the one full GITM block. Measurement location is the center of the box, where Ne,
Tion, and ρn measurements are used for data assimilation.
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Figure 8.9: Measured values of interplanetary magnetic filed (IMF) components By, Bz in the
Geocentric Solar Ecliptic (GSE) coordinate system, hemispheric power index HPI, and,
magnitude of solar wind velocity |vsw|, respectively, which constitute geomagnetic storm
drivers for the ionosphere-thermosphere.
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Figure 8.10: A scatter plot of the NOAA-12 and DMSP F13 data for one year. Each point shows
the HP obtained simultaneously (+/- 10 minutes) from the two spacecraft. The solid
line shows the result of a regression analysis.
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Figure 8.11: By, Bz, and HPI signal power spectra with boundary frequencies. We assume that
signal components above the boundary frequencies are uncertain. The boundary fre-
quencies, which are indicated by dashed vertical lines, are 3.9 × 10−5 Hz, 3.3 × 10−5

Hz, and, 7.8 × 10−5 Hz, respectively.
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Figure 8.12: By, Bz, HPI and their separated low and high frequency signals, where the boundary
frequencies are 3.9 × 10−5 Hz, 3.3 × 10−5 Hz, and, 7.8 × 10−5 Hz, respectively. Plots
of leftmost column are the original signals overlapped with low-frequency signals.
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Figure 8.13: Absolute error contour plot of NoDA (top) and DA by EnKF (bottom) for geomag-
netic storm conditions at 10:50UT, October 29, 2003, just before the stop by error of
data assimilation. Ne, Tion, and ρn at 6 measurement points are used for data assim-
ilation. The region of data injection is indicated by dashed box whose longitudinal
and latitudinal size is 4 by 2 GITM blocks. Longitudinal and latitudinal size of one
GITM block is 9 cells by 9 cells. In the lower plot, the excessively increased errors are
identified at the lower left and lower right corners of the region of data injection that
are distant form the measurement locations.
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Figure 8.14: Comparison of states and outputs of truth, NoDA and DA by EnKF for geomagnetic
storm conditions at m2 measurement location. Ne, Tion, and ρn at 6 measurement
points are used for data assimilation. x-axis is time (hr) from 00:00UT, October 29,
2003. The size of region of data injection is 4 by 1 GITM blocks and given by Table
8.3. N(·) is number density of the species in parenthesis, Vup(·) is vertical velocity
of the species in parenthesis, Vn,east is bulk neutral eastward velocity, Vn,north is bulk
neutral northward velocity, and Tn is neutral temperature.
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Figure 8.15: Absolute error contour plot of NoDA (top), absolute error contour plot of DA by
EnKF (center), and error ratio ǫ contour plot (bottom) of electron number density Ne

for geomagnetic storm conditions at 16:00UT, October 29, 2003 (left) and 17:50UT,
October 29, 2003 (right). Ne, Tion, and ρn simulated measurements at 6 measurement
points are used for data assimilation. Each measurement point is indicated by a dot.
The region of data injection is indicated by dashed box which corresponds to 4 by 1
GITM blocks
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Figure 8.16: Absolute error contour plot of NoDA (top), absolute error contour plot of DA by EnKF
(center), and error ratio ǫ contour plot (bottom) of ion temperature Tion for geomag-
netic storm conditions at 16:00UT, October 29, 2003 (left) and 17:50UT, October 29,
2003 (right). Ne, Tion, and ρn simulated measurements at 6 measurement points are
used for data assimilation. Each measurement point is indicated by a dot. The region
of data injection is indicated by dashed box which corresponds to 4 by 1 GITM blocks
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Figure 8.17: Absolute error contour plot of NoDA (top), absolute error contour plot of DA by
EnKF (center), and error ratio ǫ contour plot (bottom) of neutral mass density ρn

for geomagnetic storm conditions at 16:00UT, October 29, 2003 (left) and 17:50UT,
October 29, 2003 (right). Ne, Tion, and ρn simulated measurements at 6 measurement
points are used for data assimilation. Each measurement point is indicated by a dot.
The region of data injection is indicated by dashed box which corresponds to 4 by 1
GITM blocks
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Figure 8.18: Comparison of states and outputs of truth, NoDA and DA by EnKF for geomag-
netic storm conditions at m2 measurement location. Simulated TEC measurements at
longitudinal-latitudinal locations of 6 measurement points are used. The size of region
of data injection is 4 by 1 GITM blocks and given by Table 8.3. Only electron number
density Ne is significantly affected by data assimilation.
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Figure 8.19: Absolute error contour plots of NoDA (top), absolute error contour plot of DA by
EnKF (center), and error ratio ǫ contour plots (bottom) of electron number density Ne

for geomagnetic storm conditions at 16:00UT, October 29, 2003 (left) and 17:50UT,
October 29, 2003 (right). Simulated TEC at longitudinal-latitudinal locations of 6
measurement points are used for data assimilation. Each measurement location is
indicated by a dot. The region of data injection is indicated by dashed box which
corresponds to 4 by 1 GITM blocks.



CHAPTER IX

Conclusions

In this dissertation, we surveyed and developed data assimilation algorithms that

are applicable to large scale nonlinear system. Specifically, we put high priority on

developing the data assimilation algorithms for the ionosphere-thermosphere using

the Global Ionosphere-Thermosphere Model (GITM).

In Chapter II, using finite-horizon optimization, we obtained the optimal reduced-

order estimators and optimal fixed-structure subspace estimator in the form of recur-

sive update equations for time-varying systems. These estimators are characterized

by the oblique projectors. Moreover, we derived one-step and two-step update equa-

tions for each estimator. Even though the estimators reduce computational com-

plexity in data injection, they still require full-order error-covariance propagation in

order to be optimal.

Next, in Chapter III, noticing that the main computational complexity in large

scale data assimilation is due to the propagation of the huge error covariance matrix,

we presented several suboptimal reduced-order Kalman filters for discrete-time LTI

systems based on reduced-order error-covariance propagation. These filters use com-

binations of balanced model truncation and complementary steady-state covariance

compensation. We conducted numerical studies using a compartmental model for
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two extreme cases of Hankel singular values. In both cases, localized Kalman filter

with open loop or closed loop complementary steady-state covariance compensation

showed good performance. When there are a few dominant Hankel singular values,

localized Kalman filter with closed loop complementary steady-state covariance com-

pensation can be applied efficiently without the need for a similarity transformation

that may be prohibitive in large-scale systems.

In Chapter IV, we considered the unscented Kalman filter (UKF) as a large scale

data assimilation method and presented extensions of the the unscented Kalman

filter that propagate a reduced-order pseudo error covariance. To compensate for

the neglected correlation between certain states and the measurement, we presented

two methods that use a complementary static estimator gain based on correlations

between the measurements and the neglected states, which are introduced in Chapter

III using linear system. The use of a static estimator gain based on the open-loop and

closed-loop correlations helps improve estimation performance without a significant

increase in the online computational burden.

In Chapter V, we developed a Cholesky decomposition method to obtain reduced-

rank square-root Kalman filters where the reduced-rank square-root of error covari-

ance corresponds to the ensemble size reduction of UKF. We compared the Cholesky-

based and the SVD-based reduced-rank square-root Kalman filters. In general cases,

the Cholesky-based does not always perform better for estimation accuracy than the

SVD-based and vice versa. However, using simulation examples, we showed that the

Cholesky-based exhibits more computationally efficient and stable performance than

the SVD-based filter, which can become unstable when the strong disturbances enter

the system states that are not measured.

In Chapter VI, we used a localized, sampled-data update scheme with frozen-
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intersample error covariance to reduce the computational complexity of the vertical

1D GITM data assimilation based on the unscented Kalman filter. We performed the

numerical studies to obtain effective measurement locations and quantities for the

sampled-data UKF, and then applied the sampled-data LUKF. The sampled-data

LUKF with a small local region showed good estimation accuracy in much shorter

computation time for data assimilation on the highly coupled vertical 1D GITM.

For the next step, we applied the localized UKF with approximate disturbance

covariance to the 3 dimensional GITM. However, we were not able to obtain effective

data assimilation results because the UKF turned out to be sensitive to the distur-

bance covariance. Hence, in Chapter VII, we examine ensemble Kalman filter and

ensemble-on-demand Kalman filter that do not use explicit disturbance covariance.

In this Chapter VII, we showed that ensemble-on-demand Kalman filter is computa-

tionally inexpensive but provides acceptable performance for systems under a single

global-type disturbance. Furthermore, we demonstrated that ensemble Kalman filter

is effective when we perturb the model using the well-identified disturbance statistics.

In Chapter VIII, we successfully applied EnODKF and EnKF with small ensemble

size to the 3 dimensional GITM-based data assimilation, which means that full 3

dimensional GITM-based data assimilation yielded acceptable estimation accuracy

with feasible computation speed. Specifically, EnODKF was used for solar EUV flux

disturbance case whereas EnKF was used for geomagnetic storm condition. We used

combinations of simulated measurements and injected data into a local region where

correlations with measurements are good, while the poor correlations are set to zero

in calculating the data-injection gain. We showed that the ion measurements and

neutral measurements should be used together to provide good estimation accuracy

over all states and outputs of the ionosphere-thermosphere in the region of interest.
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