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CHAPTER 1

Introduction

For many products such as cars, electronic appliances and furniture, the price

that a customer pays is negotiated from the posted price. In such transactions,

negotiation plays an important role in determining whether a customer purchases,

and if so, at what price. We know all too well how common negotiation is when

buying a car or other “big-ticket” items such as furniture and home appliances.

Perhaps surprisingly, negotiation is becoming a more acceptable practice even at

retailers selling small-ticket items. For example, two reporters from The Wall Street

Journal who negotiated at 50 retail stores during the holiday season of 2001, were

successful in getting a discount off the posted price at 18 of these stores for products

ranging from a personal digital assistant ($20) to a fitness machine ($50) (Agins and

Collins, 2001). The stores at which they got discounts range from Eddie Bauer to

Sunglass Hut, from Kenneth Cole to Salvatore Ferragamo.

A retailer may want to adopt negotiation because negotiation allows retailers to

price discriminate among customers with heterogenous willingness-to-pay, compared

to traditional posted pricing strategy. However, negotiating the price with customers

often comes at a cost, which possibly offsets the benefit generated from price discrim-

ination. This becomes the key trade-off for retailers when considering whether to use

1



2

negotiation as a sales format or not. We have seen in many cases, different retailers

use different sales formats when they sell the same product. In September 2007,

Lithia Automotive Group, the eighth-largest dealer chain in the U.S., selling vehicles

from all major manufacturers and brands (ranging from Porsche to GM to Toyota),

announced that it would convert all of its 108 stores to haggle-free pricing within

the next three years (Welch, 2007). Of course, many competing dealers will stick

to the time-honored tradition of bargaining. Different sales format co-exist in other

retail settings as well. For example, a store like Costco will sell home appliances or

electronics at the posted prices without any room for a haggle, while consumers can

successfully negotiate for such items at smaller discount stores such as Big George’s

in southeast Michigan. Furthermore, it has been recently reported that major re-

tailers (including BestBuy, Home Depot, and Circuit City) are allowing their sales

people to negotiate with customers. In fact, the cash registers at BestBuy are set up

so that the final price can be reset at the time of check out (Richtel, 2008). All of

these examples suggest that retailers actively decide whether to use negotiation or

posted pricing.

In cases where a retailer has chosen to use negotiation, the starting point for ne-

gotiation will be the product’s posted price or the sticker price chosen by the retailer.

In many cases, retailers adjust the posted price during the selling season. For exam-

ple, electronics stores such as Best Buy or Circuit City change the posted price of

high-tech products since these products are outdated quickly. Likewise, department

stores and “style goods” apparel retailers (such as Kenneth Cole and Sunglass Hut)

frequently change the posted price during the course of the season. One reason these

retailers turn to dynamic price adjustments is the difficulty of inventory replenish-

ment during the selling season coupled with the drastic depreciation of product value
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once the season is over. For example, it is well known that many apparel retailers

face long replenishment lead times since most items are produced off-shore, which

precludes the possibility of further replenishment during the short selling season of

fashion items. (See, for example, Gallego and van Ryzin, 1994.) Therefore, adjust-

ing price in response to sales helps these retailers improve their revenue from the

limited inventory available. Such “dynamic pricing” practices may push the price

up or down depending on the inventory level of the product and the remaining time

in the selling season. Negotiation, on the other hand, tends to drive the price up,

so that the retailer has more room to negotiate the price. Thus, when determining

the price, the effects of dynamic pricing and negotiation may combine together or

oppose one another. In Chapter 2 of this dissertation, we investigate the interaction

between dynamic pricing and negotiation. We analyze if negotiation is more or less

beneficial to the retailer in the presence of dynamic pricing, and how such benefits

are influenced by inventory level and the length of the selling season.

Chapter 2 focuses on the effect of negotiation on the retailer, using a dynamic

model of pricing decisions. However, the sales format that a retailer chooses not only

determines the retailer’s profits, but also influences the profits of the parties in a sup-

ply chain, in particular, the manufacturers who provide the goods sold by the retailer.

In Chapter 3, we focus on the supply chain implications of the retailer’s sales format

choice. A retailer’s decision to negotiate or not is driven by its self-interest, and the

effect of this decision on a manufacturer’s profit is unclear. In particular, the sales

quantity, and therefore the quantity that the retailer orders from the manufacturer,

are likely to be different between the two sales formats. Hence, the manufacturer

would like to influence the retailer’s sales format choice through the terms of trade.

There are many ways in which the manufacturer can influence the retailer’s deci-
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sion, and even for a simple contract like the wholesale-price-only contract, it is not

clear how the manufacturer’s decision drives the retailer’s choice. For example, as

wholesale price increases, thereby increasing the manufacturer’s unit profit margin,

does the retailer come closer to using negotiation or posted pricing? In Chapter 3

of this dissertation, we answer such questions and highlight how the manufacturer’s

wholesale price promotes (or discourages) one sales format over another and what

sales format and price choices may arise in equilibrium. The sales format choice –

negotiation or posted pricing – may be even more critical in the presence of tight

capacity constraints in the supply chain. Hence, Chapter 3 pays special attention

to the effect of supply chain capacity on the equilibrium sales format, pricing and

quantity decisions.

1.1 Overview of Chapter 2

Chapter 2 of the dissertation discusses how negotiation and revenue management

interact so as to influence the retailer’s revenue. A stochastic dynamic programming

formulation is employed to embed a negotiation model in a more traditional dynamic

pricing model. We consider a retailer who has limited inventories at the beginning of

a relatively short selling season. In our model, the outcome of negotiation between

the retailer and the customer depends on the retailer’s inventory, the remaining time

in the selling season and the price posted by the retailer.

This model produces a number of interesting analytical and numerical results. As

one would expect, the optimal posted price of a negotiating seller includes a premium

over that of the seller using take-it-or-leave-it pricing strategy. This price premium

helps the seller extract more revenues from a bargainer with a high reservation price,

and, surprisingly, peaks at moderate inventory levels. As the negotiating seller adds
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a price premium, some customers will be worse off when buying from the negoti-

ating seller (compared to buying from the seller using take-it-or-leave-it pricing).

Nonetheless, we show that a group of bargainers with low reservation prices benefit

from negotiation, in particular when the price premium is high. As expected, ne-

gotiation helps improve the seller’s revenue, especially when inventory level is high.

More surprisingly, we find that negotiation can act as a substitute or complement

to dynamic pricing. For example, at moderate inventory levels, the benefit from

dynamic pricing increases further when the seller can negotiate.

1.2 Overview of Chapter 3

In Chapter 3, we consider a supply chain has limited capacity and the retailer in

the supply chain chooses one of two pricing regimes, posting a fixed price or negotiat-

ing, when selling to customers who are heterogeneous in their willingness-to-pay. The

generalized Nash bargaining solution is employed to further explore the bargaining

power of both the customer and the retailer, and determine the negotiation outcome

where the customer and the retailer reach an agreement. We analyze the retailer’s

quantity and pricing regime decisions as well as the manufacturer’s inducement of

a pricing regime via the wholesale price. We pay special attention to the effect of

capacity and negotiation cost on the equilibrium outcome. In addition, we analyze

how the retailer’s discretion to pick the sales format influences the manufacturer’s

profit.

We find that three types of equilibria may arise, depending on the cost of negotia-

tion and the capacity of the supply chain: When the cost of negotiation is sufficiently

low and the manufacturer’s capacity is sufficiently high, the supply chain ends up at

a negotiation equilibrium, which is the same as the equilibrium that would arise if
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negotiation is the exogenous sales format. When the cost of negotiation is sufficiently

high and the manufacturer’s capacity is sufficiently low, the supply chain ends up at

a posted pricing equilibrium, which again coincides with the equilibrium that would

arise if posted pricing is the exogenous sales format. In between these two, at mod-

erately high negotiation costs and capacity levels, the supply chain may settle at a

different equilibrium. In this region, the manufacturer would prefer the retailer to

use negotiation, but must offer the retailer a discounted wholesale price to induce

such an outcome. This leads to a number of interesting observations: A retailer with

a higher cost of negotiation may earn more in equilibrium than a retailer with a

lower cost of negotiation, because the manufacturer concedes some profit margin to

the high-cost retailer in order to induce it to use negotiation, when such a sacrifice

is not needed when working with a low-cost retailer.



CHAPTER 2

Interaction between Negotiation and Revenue

Management

2.1 Introduction

As discussed in Chapter 1, many retailers adjust posted prices dynamically, and

some customers are able to negotiate discounts from these posted prices. Both dy-

namic adjustment of posted prices (hereafter, dynamic pricing) and negotiation are

used by many retailers to increase the revenue, particularly when the inventory is

limited. Although both strategies are used to improve the retailer’s revenue, there

are differences in how each one achieves this goal. Dynamic pricing adjusts the mar-

gin based on the inventory level relative to the remaining selling season: The posted

price will increase when inventory is low, and will decrease when inventory is high.

On the other hand, negotiation enables the retailer to extract more revenue from in-

dividual customers: The firm can set a high posted price, and those customers with

high willingness-to-pay may buy the product after little or no negotiation, while oth-

ers with low willingness-to-pay will buy at discounted prices after negotiating with

the retailer. Therefore, the retailer chooses a high posted price in order to improve

the range of price discrimination enabled by negotiation.

Depending on the inventory level, negotiation and dynamic pricing can drive the

7
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posted price in the same or opposite direction. When there is little inventory of the

product, the retailer’s tendency to set high posted prices under negotiation will be

reinforced by dynamic pricing. On the other hand, if the risk of excess inventory at

the end of the season is significant, then dynamic pricing drives the posted price down

to move the product faster, but such low posted prices reduce the retailer’s ability

to price discriminate via negotiation. These interactions among dynamic pricing,

negotiation, and inventory motivate our research, which fills a gap in the literature

by considering the joint use of dynamic pricing and negotiation.

In this chapter, we propose a model where negotiation and dynamic pricing take

place together. We consider a seller who has limited inventory at the beginning of

a relatively short selling season. We divide the season into periods, each of them

short enough so that at most one customer can arrive in a period. The customer

population is comprised of two types of consumers — price-takers and bargainers.

Price-takers either buy at the posted price or quit without purchasing. On the other

hand, bargainers initiate a negotiation in the hope of getting a discount from the

seller. We assume that (as in most retail settings) negotiation typically happens over

a short time span (sometimes a matter of minutes) within which the seller and the

bargainer exchange a limited number of offers and counter-offers. At the end of the

negotiation, one would expect to see many different outcomes: The bargainer may

successfully negotiate a discount (the size of which may vary), end up buying at the

posted price, or quit without purchasing.

We develop a negotiation model that assumes a limited number of exchanges

while capturing the negotiation outcomes mentioned above: the bargainer makes an

offer that is countered by the seller, which the bargainer either accepts or rejects. The

bargainer’s offer depends on the posted price (which affects the bargainer’s beliefs
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about the seller’s valuation of the product). On the other hand, the seller’s counter-

offer depends on the bargainer’s offer, the inventory, and time until the end of the

selling season.

The remainder of the chapter is organized as follows. Section 2.2 provides a survey

of the relevant literature. Section 2.3 outlines our model where a negotiation model

is embedded into a dynamic pricing problem. In this section, we characterize the

outcome of negotiation as a function of posted price, inventory level, and remaining

time. In Section 2.4, under certain distributional assumptions on reservation prices,

we derive analytical results regarding the optimal posted price. We then describe

the results of our numerical study in Section 2.5. We conclude in Section 2.6. All

proofs are provided in Appendix A.

2.2 Literature Review

There has been a significant volume of research in dynamic pricing of limited

inventories in the last decade. Starting with Gallego and van Ryzin (1994), and

Bitran and Mondschein (1997), this research focuses on products whose inventory

cannot be replenished during their relatively short selling season, and the key ques-

tion is how the seller should adjust the price of the product based on remaining time

and inventory in order to maximize the total revenue over the selling season. For

recent reviews of the literature, see Bitran and Caldentey (2003), and Elmaghraby

and Keskinocak (2003). As the use of dynamic pricing has spread from airline and

travel industries to the retail industry, researchers have studied many different dy-

namic pricing problems that correspond to specific business applications, such as

dynamic pricing for multiple products (e.g., Zhang and Cooper, 2005, and Maglaras

and Meissner, 2006), dynamic pricing in the presence of strategic consumers (e.g.,
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Aviv and Pazgal, 2005, Elmaghraby, Gulcu and Keskinocak, 2006, Su, 2007, and

Zhou, Fan and Cho, 2006), the use of dynamic pricing and discounting when mak-

ing product offers to customers (e.g., Netessine, Savin and Xiao, 2006, and Aydin

and Ziya, 2006) and dynamic pricing when the demand in each period is affected

by prices over multiple periods (e.g., Popescu and Wu, 2006, and Ahn, Gumus and

Kaminsky, 2007). However, the existing work on dynamic pricing has not considered

retail situations where the customer can initiate a negotiation on the price of the

product. Our contribution is to investigate the interaction between dynamic pric-

ing and negotiation, and to analyze the effect of negotiation on the seller and the

consumers in a setting where prices are adjusted dynamically.

In the majority of the existing work on dynamic pricing, a common assumption

is that a customer, upon arrival, will observe the current price chosen by the seller,

and if the customer purchases the product, she will buy at the posted price. Some

of the more recent work on dynamic pricing makes alternative assumptions in this

regard. For example, in most of the work regarding dynamic pricing in the presence

of strategic consumers, the customer decides when and/or at what price to purchase.

Nevertheless, while customers purchase at a price/time of their choice, the customer’s

choice is still limited to the prices posted by the seller in the course of the season.

In contrast, in our model, the customer observes the posted price chosen by the

seller and may make an offer to start the negotiation process. The posted price,

inventory level of the seller and the time remaining in the selling season all influence

the eventual outcome of the negotiation, i.e., whether the customer will buy and at

what price.

Another research topic closely related to our model is bargaining, which has

been studied extensively in economics. For a detailed review of the theory and
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applications of bargaining, see Muthoo (1999). Two classic bargaining models in

economics are the Nash bargaining solution and the Rubinstein model. Under the

Nash bargaining solution, two parties bargaining over a surplus split the difference

between the total surplus and the sum of their reservation utilities (also known as

disagreement payoffs). The Nash bargaining solution does not specify an explicit

bargaining procedure leading to this outcome. One interpretation is that two fully

rational parties make simultaneous offers. The Rubinstein model, on the other hand,

views bargaining as a series of alternating offers between two parties bargaining over

a surplus. In its most basic form, the Rubinstein model assumes that the two parties

have full information regarding each other’s utilities and they make alternating offers

with a fixed time interval between two successive offers to maximize discounted

utility. This bargaining process leads to a unique subgame perfect equilibrium where

the parties immediately settle at the very beginning of the bargaining process. The

equilibrium of the Rubinstein model yields the Nash bargaining solution when the

time interval between two offers approaches zero (or discount factor approaches one).

There has been a wealth of further research in economics focusing on the bargaining

between buyers and sellers. Among them, Chatterjee and Samuelson (1983) analyze a

bargaining model where the buyer and seller have incomplete information about each

other’s valuations of the product and make simultaneous offers. Farrell and Gibbons

(1989) consider the same model as Chatterjee and Samuelson with one difference:

A party can use cheap talk prior to bargaining, which influences the other party’s

belief regarding the first party’s valuation of the product.

While the bargaining models in economics are attractive and have many applica-

tions, they do not provide an appropriate framework for the retail environment we

seek to model since they primarily concentrate on the outcome of one buyer and one
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seller negotiating over one unit of an item. In our dynamic pricing problem, however,

the seller with limited inventory will sell to multiple buyers who arrive at different

times in the course of selling season. Thus, the seller’s valuation changes over time as

the remaining time, and inventory fluctuate during the selling season. In our model,

the seller reacts to this fluctuation by adjusting the posted price, which precedes

the bargaining between the seller and buyers. Furthermore, the posted price influ-

ences the buyer’s belief on the seller’s valuation of the product and the surplus over

which the buyer and the seller are negotiating. Thus, existing bargaining models

are not well-suited to articulate the effects of inventory, time and the posted price

on bargaining. In this chapter, we propose an alternative bargaining model that is

well-suited to our purpose of modeling negotiation in the presence of inventory con-

siderations. This model is simple enough to be embedded into the dynamic pricing

problem, but sophisticated enough to capture a spectrum of bargaining outcomes we

observe in practice.

There are a few papers in economics that compare posted-price strategy with

bargaining. One such paper is by Riley and Zeckhauser (1983) who show that posted-

price strategy is superior to haggling if the seller incurs a cost for bringing a new

potential buyer. Wang (1995), on the other hand, uses the Nash bargaining solution

to model the outcome of bargaining, and finds that bargaining is always preferable to

take-it-or-leave-it pricing if the cost of implementing bargaining is not too high. Both

papers ignore the effect of limited inventory and finite selling season, thus the risk

of excess inventory as well as the risk of shortage are ignored. Our model explicitly

considers a seller with limited inventory and a finite selling season, thus capturing

these important risks that the seller needs to bear.

There is some recent work that incorporates negotiation among supply chain
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partners. For example, Wu (2004) uses the Rubinstein model to search for coordi-

nating contracts in a supply chain with demand uncertainty. Gurnani and Shi (2006)

use the Nash bargaining solution in order to model a contract design problem in a

supply chain where the supplier’s reliability is private information. Iyer and Villas-

Boas (2003) consider bargaining issues in distribution channels. Dukes and Gal-Or

(2003) consider the relationship between advertisers and media outlets, using the

Nash bargaining solution to model the negotiation outcome. Nagarajan and Sosic

(2008) review and extend the research in cooperative bargaining in supply chains.

There are also papers that examine bargaining as a pricing strategy. Desai and

Purohit (2004) analyze how two competing retailers choose whether to use take-it-

or-leave-it pricing or negotiation and analyze equilibrium outcome. Terwiesch, Savin

and Hann (2005) analyze an online retailer that uses a negotiation process where

customers name their own prices, and derive the retailer’s optimal threshold price

above which the retailer accepts all offers. None of this work models supply-side

constraints, which we do through our focus on the limited inventory of the product.

2.3 Model Description and Negotiation Results

We consider a firm selling a limited inventory of a product over a predetermined

selling season. We assume that the selling season is divided into T periods, each of

which is short enough that at most one customer arrives in a given period, and we

denote the probability that a customer arrives in a period by λ ∈ [0, 1]. A customer

can be one of two types - a price-taker or a bargainer. Let q be the proportion of

bargainers in the customer population. Facing two types of customers, the seller

sets the posted price and negotiates with bargainers in each period to maximize his

expected total revenue over the selling season.
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2.3.1 Customer’s Problem

Let r denote the reservation price of the customer (the maximum price that the

customer is willing to pay for the product), unobservable to the firm. From the

firm’s perspective, an arriving customer’s reservation price is a non-negative random

variable Rc with a cumulative distribution function (cdf) F (·) and a probability

density function (pdf) f(·). We assume that F is defined over the domain [0,b] for

some 0 < b ≤ ∞. Define F (·) := 1 − F (·). Throughout the chapter, we define

x+ := max{0, x}.

Upon arrival, all customers observe the posted price, but their subsequent be-

havior depends on their type. A price-taker buys the product if the posted price, p,

is less than or equal to her reservation price, r, and quits otherwise. On the other

hand, a bargainer observes the posted price and decides whether to negotiate or quit.

We assume that the bargainer’s offer is restricted to be within θ of the posted price,

where θ > 0 can be interpreted as the largest discount a customer will demand.

Therefore, only bargainers with reservation price of p − θ or higher will proceed to

negotiate; others will quit without making an offer. If θ is sufficiently large, most

bargainers will choose to negotiate whether or not the posted price is high (e.g.,

Oriental rug store). On the other hand, if θ is small, many bargainers will choose

to quit since they will not be able to negotiate the price down to the level they can

afford (e.g., home appliances). If the bargainer decides to negotiate, she will make

an offer, po, and the seller will respond with a counter-offer, pc, that depends on the

seller’s inventory and time as well as the bargainer’s offer as we will discuss later.

Then, the customer either accepts the counter-offer (if r ≥ pc) or rejects (if r < pc).

The inclusion of θ in our model reflects the fact that bargainers will not make

unrealistically low offers. Although we assume that all bargainers have the same
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θ > 0, note that the price-takers in our model can be seen as customers with θ = 0.

Therefore, in effect, our model allows two heterogeneous types of customers with

different bargaining skills. One could extend the model to allow for n types of

bargainers, each with a different θi, i = 1, . . . , n, but many of our insights will remain

the same.

How does a bargainer decide what offer to make? One could model this decision

in different ways, depending on how much the bargainer knows about the seller’s

problem. If the bargainer knows all the relevant information about the seller’s prob-

lem, which includes the seller’s inventory and remaining time as we will see later,

then the bargaining problem reduces to a sequential game between the buyer and the

seller. In such a game, a subgame perfect equilibrium would be the bargainer making

the minimum possible offer that will be acceptable to the seller. In fact, any sub-

game perfect equilibrium for such a sequential game will result in a final settlement

price equal to the seller’s marginal value of one unit of inventory. In most practical

cases, however, the bargainer is not likely to know all the information pertinent to

the seller’s marginal value of one unit of inventory, such as the seller’s inventory,

the arrival rate of customers, the seller’s belief on the customers’ reservation prices,

etc. In the absence of such information, the best signal that bargainers have about

the seller’s valuation of the product is the posted price; at the very least, bargainers

know that the seller is willing to sell the product at the posted price, p. Thus, we

assume that the bargainer believes that her probability of acquiring the product is

a function of the posted price p and the offer po, and is given by cdf G(po|p) with a

corresponding pdf g(po|p).

Ideally, the bargainer would make an offer po to maximize the expected surplus

she will obtain as a result of the counter-offer from the seller. However, the bargainer
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cannot perfectly predict how the seller will choose its counter-offer, since the counter-

offer is a function of the seller’s private information such as inventory level, arrival

rate of customers, etc. Therefore, we assume that the bargainer maximizes her

maximum expected surplus, which is the surplus the bargainer draws if the seller

is willing to sell the product at the bargainer’s offer. In other words, the objective

function of a bargainer with reservation price r is

S(po, r) = (r − po)G(po|p). (2.1)

Thus, the bargainer’s maximization problem is

max
{po|p−θ≤po≤p}

S(po, r) (2.2)

The trade-off that the bargainer faces is as follows: The larger the offer, the larger

the bargainer’s probability of acquiring the product, but the smaller the maximum

surplus she can obtain from the acquisition. The problem is further complicated

by the lower bound of p − θ on the offer. To provide regularity to the bargainer’s

objective function, we will need the following assumption:

Assumption 1. G(·|p) is strictly increasing and log-concave over the domain [0, p].1

In addition, G(x|p) = 0 for x ≤ 0 and G(x|p) = 1 for x ≥ p.

The following lemma states that S(po, r) is a well-behaved function of the offer,

po. The proofs of this and all other results are relegated to the appendix.

Lemma 2.3.1. The objective function of a bargainer with reservation price r, S(po, r),

has the following properties:

(a) S(po, r) is unimodal in the customer’s offer, po, for po ∈ [0, p].

(b) S(po, r) = 0 for po ≤ 0 and S(po, r) is strictly decreasing in po for po ≥ p.

1In fact, the lower bound of the domain, 0, can be replaced by some a > 0 as long as a ≤
arg max pF̄ (p), the myopic optimal price.
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Given a posted price p, let p∗o(p, r) denote the optimal offer of a bargainer with

reservation price r, i.e., p∗o(p, r) is the solution to the optimization problem given by

(2.2). For a given posted price p, denote the unconstrained optimizer of the function

S(po, r) by

po(r) := sup{x : S(x, r) ≥ S(po, r),∀po}

Define function ρ(·) implicitly as

ρ(x) = min{r ∈ [0, b] : S(x, r) ≥ S(po, r),∀po}, (2.3)

i.e., ρ(x) is the reservation price of the bargainer for whom po = x is an optimizer of

S(po, r), the bargainer’s unconstrained objective function. (We use min operator in

case there exist a group of bargainers with different reservation prices for all of whom

x is an optimizer.) Note that, with this definition, ρ(x) = 0 for any x ≤ 0 (since

G(x|p) = 0 for all x ≤ 0, any bargainer with r > 0 could do better by making a

strictly positive offer). With the help of the definitions made so far, we characterize

the optimal offer of a bargainer in the following lemma.

Lemma 2.3.2. Given a posted price p, the optimal offer of a bargainer with reser-

vation price r is

p∗o(p, r) =



(p− θ)+ if p− θ ≤ r ≤ ρ(p− θ);

po(r) ∈ (p− θ, p) if ρ(p− θ) < r ≤ ρ(p);

po(r) = p if r > ρ(p).

(2.4)

In essence, customers with low reservation prices will ask for the largest discount,

θ, and customers with higher reservation prices will make offers that depend on their

reservation prices, those with the highest reservation prices offering to pay the posted
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price p. One may wonder if a bargainer will ever offer to pay the posted price, p,

in practice. Under Assumption 1, such a possibility exists if the arbitrarily chosen

posted price is small but the reservation price of the bargainer is very high. To avoid

this possibility, one could impose a reasonable technical assumption on g(·|p) such

as g(p|p) = 0, which guarantees that all bargainers will make an offer strictly below

p. Furthermore, in Section 2.4, we work with a uniformly distributed G(·|p), and we

find that a bargainer never offers to pay the posted price when the posted price is

chosen optimally.

2.3.2 The Firm’s Revenue Maximization Problem

At the beginning of period t, t = 1, . . . , T , the firm, given y units in inventory,

sets the posted price, p. Since only price-takers with reservation prices greater than

or equal to the posted price p will purchase the product, it follows that the expected

revenue accrued from the price-taker in the current period is simply pF (p). On the

other hand, the revenue accrued from the bargainer and the chance that the bargainer

buys the product in the current period are determined by the outcome of negotiation.

Let Kt(p, y) denote the firm’s expected revenue in period t, given that a bargainer

has arrived and the firm has y units in inventory. In addition, let Bt(p, y) denote

the probability that a bargainer will buy the product at the end of the negotiation.

The firm’s problem of setting the posted price is given by the following optimality
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equations:

Vt(y) = max
p



λq [Kt(p, y) + Bt(p, y)Vt−1(y − 1)]

+λ(1− q)
[
pF (p) + F (p)Vt−1(y − 1)

]

+
[
1− λ(qBt(p, y) + (1− q)F (p))

]
Vt−1(y)


for y > 0, t = 1, . . . , T (2.5)

V0(y) = 0 for y ≥ 0, and Vt(0) = 0 for t = 1, . . . , T

For y ≥ 1 and t = 1, . . . , T , the optimality equation described in (2.5) can be

rewritten as follows,

Vt(y) = max
p

Jt(p, y)

where Jt(p, y)

= Vt−1(y) + λq [Kt(p, y)−Bt(p, y)(Vt−1(y)− Vt−1(y − 1))]

+λ(1− q)F (p) [p− (Vt−1(y)− Vt−1(y − 1))] (2.6)

Let p∗t (y) denote the optimal solution to the maximization problem in (2.6), i.e.,

p∗t (y) is the optimal posted price in period t with y units of inventory. Notice that

Vt−1(y)− Vt−1(y − 1) represents the benefit from keeping an extra unit of inventory

for period t − 1 (i.e., the marginal value of inventory). Throughout the chapter,

we let ∆t−1(y) = Vt−1(y) − Vt−1(y − 1) and we refer to it as the marginal value of

inventory. To determine p∗t (y) and the resultant outcome of negotiation, it suffices

to consider the case p ≥ ∆t−1(y) as stated in the following lemma.

Lemma 2.3.3. The optimal posted price of the seller with y units of inventory and

t periods to go must be greater than or equal to ∆t−1(y).
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2.3.3 Seller’s Counter-offer Problem

After seeing the customer’s offer, the seller makes a counter-offer. Suppose in

period t, with y units in inventory, a customer arrives and offers to pay po. By virtue

of Lemma 2.3.2, there are two cases to consider: po = p− θ or po > p− θ.

Case 1. po = p−θ: In this case, the seller knows that the customer’s reservation

price is between p−θ and ρ(p−θ) and updates its belief on the bargainer’s reservation

price accordingly. Note that any counter-offer greater than ρ(p− θ) will be rejected

by the bargainer. If the bargainer buys, the seller’s revenue-to-go from next period

onward is Vt−1(y−1). On the other hand, if the negotiation breaks down, the seller’s

revenue-to-go is simply Vt−1(y). Therefore, the expected profit of the seller charging

counter-offer price pc in period t with y units of inventory when facing the bargainer’s

offer po = p− θ is

Zt(pc, y) =



F (ρ(p−θ))−F (pc)
F (ρ(p−θ))−F (p−θ)(pc + Vt−1(y − 1))

+
(

F (pc)−F (p−θ)
F (ρ(p−θ))−F (p−θ)

)
Vt−1(y) if p− θ ≤ pc ≤ ρ(p− θ);

0 if pc > ρ(p− θ).

(2.7)

Obviously, the seller will never choose a counter-offer below the bargainer’s offer

po = p− θ, i.e., pc ≥ p− θ. Likewise, the seller is not allowed to make a counter-offer

that exceeds the posted price since such a business practice would be unacceptable.

Thus, the seller’s optimization problem is given by

max
{pc|p−θ≤pc≤min[p,ρ(p−θ)]}

Zt(pc, y) (2.8)

We make the following assumption to guarantee that the function Zt(pc, y) is well-

behaved.
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Assumption 2. The cdf of Rc, F (·), is a strictly increasing function with an in-

creasing failure rate.

Under Assumption 2, the following result holds:

Lemma 2.3.4. The seller’s objective function, Zt(pc, y), is unimodal in the counter-

offer, pc, for pc ∈ [p− θ, ρ(p− θ)].

Let pct(y) be the solution to the optimization problem in (2.8), i.e.,

pct(y) = arg max
{pc|p−θ≤pc≤min[p,ρ(p−θ)]}

Zt(pc, y).

Hence, if a customer offers po = p − θ, the seller will set its counter-offer to pct(y),

provided that selling to the bargainer at that price is better than keeping an ex-

tra unit of inventory for the next period, i.e., if pct(y) > ∆t−1(y). Otherwise, if

pct(y) ≤ ∆t−1(y), then the seller would set its counter-offer equal to the marginal

value of inventory, ∆t−1(y). Thus, the seller’s counter-offer is max[pct(y), ∆t−1(y)].

Case 2. po > p − θ: In this case, it must be that po = po(r) by Lemma 2.3.2.

Therefore, the seller deduces that the bargainer’s reservation price is at least ρ(po),

and will set its counter-offer equal to min{ρ(po), p}, provided that selling to the

bargainer is better than keeping an extra unit of inventory, i.e., min{ρ(po), p} >

∆t−1(y). Thus, the seller’s counter-offer is equal to max{min{ρ(po), p}, ∆t−1(y)}.

The following lemma summarizes the optimal solution to the firm’s counter-offer

problem.

Lemma 2.3.5. Let p∗ct(p, po, y) denote the optimal counter-offer that the firm will

make in period t with y units in inventory, provided that a customer offers to pay po
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and the posted price is p. Then:

p∗ct(p, po, y) =


max{pct(y), ∆t−1(y)} if po = p− θ;

max{min{ρ(po), p}, ∆t−1(y)} if po > p− θ.

(2.9)

2.3.4 The Outcome of the Negotiation

Using the results established in previous subsections, we are able to characterize

the behavior of a bargainer with reservation price r arriving in period t, i.e., whether

the bargainer will buy and, if so, at what price, given that the seller has y units

of inventory and its posted price is p. It suffices to consider only the cases where

p ≥ ∆t−1(y) (by Lemma 2.3.3). When a bargainer arrives, the interactions of a

bargainer and the seller follow one of four cases, shown in Figure 2.1. (The results

summarized in Figure 2.1 are proven in Lemma 2.3.6.)

In all four cases, a bargainer whose reservation price is below p− θ quits without

making an offer. All other bargainers make an offer; an individual bargainer’s offer

depends on her reservation price, r. In the first of four cases, after receiving an

offer from the bargainer, the seller is unwilling to negotiate further and sets the

counter-offer equal to the posted price. Thus, only bargainers with r ≥ p purchase

and they do so at the posted price, p. In the second case, in response to an offer

from the bargainer, the seller chooses one of two counter-offers, pct(y) or p. As a

result, bargainers with high reservation prices end up buying at the posted price p,

whereas bargainers with r ∈ [p − θ, ρ(p − θ)] are split into two; some drop out of

the negotiation and others purchase at pct(y). In the third case, again in response

to the bargainer’s offer, the seller may choose one of three counter-offers, pct(y),

p or the bargainer’s reservation price, r. As in the second case, bargainers with
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If

If :

Quit
Receive a counter-offer equal to posted price, 

which exceeds their reservation price
Purchase at
posted price

Purchase at
posted price

If

Quit

Receive a counter-offer
that exceeds their
reservation price

Purchase at
counter-offer Purchase at

reservation price

If

Quit

Receive a counter-offer
that exceeds their
reservation price

Purchase at
counter-offer Purchase at

posted price

Quit

Receive a counter-offer
that exceeds their
reservation price

Purchase at
reservation price

Purchase at
posted price

Figure 2.1: Four possible cases of negotiation outcome, shown as a function of the
buyer’s reservation price, r.

sufficiently high reservation prices end up buying at the posted price p. This time,

only bargainers with r ∈ [pct(y), ρ(p − θ)] purchase at pct(y) whereas bargainers

with r ∈ (ρ(p − θ), p] pay their reservation price, r. As before, bargainers with r ∈

[p−θ, pct(y)) drop out of negotiation. In the fourth case, the seller’s counter-offer will

be the posted price p or the marginal value of inventory ∆t−1(y), or the bargainer’s

reservation price. Once again, customers with sufficiently large reservation prices

end up paying the posted price, p. Others either pay their reservation price or drop

out of the negotiation.

Figure 2.2 shows, for a numerical example, the spectrum of bargainer behavior
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Reservation Price

Quit without 
making an offer

Make an offer, 
reject counter-
offer

Make an offer, buy 
at the counter-offer

Make an offer
and buy at 

Make an offer 
and buy at

)(ypct

r p

offer
reject counter-

Make an offer,

)( ypct

)(1 yt−∆

Figure 2.2: Different bargaining outcomes arise depending on posted price p and
reservation price r. For this example, we use F ∼ Exp(0.02), G(x|p) =
1−e−0.025x
1−e−0.025p

, λ = 0.7, q = 0.8, t = 2, y = 1, and θ = 20.

as a function of the posted price p and the bargainer’s reservation price r. As the

example shows, our negotiation model captures many different kinds of outcomes

that we would expect to see in practice.

Once we characterize the outcome of the negotiation as a function of p, r, t, and

y, we can derive the seller’s expected revenue from a bargainer, Kt(p, y), and the

probability that a bargainer will buy the product, Bt(p, y), both of which are used

in the optimality equation (2.5).

Lemma 2.3.6. Suppose a bargainer arrives in period t when the seller with y units
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of inventory charges the posted price p.

(a) If ∆t−1(y) ≤ p ≤ pct(y) ≤ ρ(p− θ), then

Kt(p, y) = pF (p)

Bt(p, y) = F (p)

(b) If ∆t−1(y) ≤ pct(y) < p ≤ ρ(p− θ), then

Kt(p, y) = pct(y) (F (ρ(p− θ))− F (pct(y))) + pF (ρ(p− θ))

Bt(p, y) = F (pct(y))

(c) If ∆t−1(y) ≤ pct(y) ≤ ρ(p− θ) < p, then

Kt(p, y) = pct(y) (F (ρ(p− θ))− F (pct(y))) +

∫ p

ρ(p−θ)

xf(x)dx + pF (p)

Bt(p, y) = F (pct(y))

(d) If ρ(p− θ) ≤ ∆t−1(y) ≤ p, then

Kt(p, y) =

∫ p

∆t−1(y)

xf(x)dx + pF (p)

Bt(p, y) = F (∆t−1(y))

Lemma 2.3.6 enables us to embed the results of negotiation, Kt(p, y) and Bt(p, y),

into the optimality equation and solve for the seller’s optimal posted price at each

period and inventory level. It is easy to construct numerical examples to demonstrate

that the optimal posted price can lie in any one of the four cases of Lemma 2.3.6,

depending on the marginal value of inventory and parameter values. Hence, none of

the four cases can be ruled out as a potential optimal solution to the posted price

problem. Since the revenue-to-go function Vt(y) follows one of four cases depending

on which case the optimal posted price lies in, it is difficult to prove additional struc-

tural results about the dynamic program to gain further managerial insights into the
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problem. To this end, we impose additional assumptions on the customers’ reser-

vation price distribution and the seller’s valuation distribution in the next section.

Our numerical study in Section 2.5 demonstrates that the results of the next section

hold under less-restrictive assumptions on the distributions as well.

2.4 Analysis

In this section we explore the seller’s optimal pricing strategy as a function of

inventory and remaining time and examine the effect of negotiation on the seller and

customers (both price-takers and bargainers). We impose the following additional

assumption to simplify the problem.

Assumption 3. We assume that F (·) is uniform between (0, b) and G(·|p) is uniform

between (0, p).

One could pick non-zero lower bounds for the distributions F and G; such

generalization only changes algebra without changing insights. In particular, if

F (·) ∼ U(a, b) and G(·|p) ∼ U(a, p), then the lower-bound a imposes additional

constraints on the seller’s posted price and counter-offer. The remainder of the anal-

ysis follows the same reasoning. Likewise, if F (·) ∼ U(a, b) and G(·|p) ∼ U(c, p)

with a < c, then one could simply ignore the bargainers whose reservation prices are

between a and c (since those bargainers will not even make an offer), and the same

insights will hold. On the other hand, the case with a > c could be dealt with, but it

is not a reasonable assumption in that it implies there are bargainers who believe the

seller’s valuation is less than the smallest reservation price among all customers. Fur-

thermore, our numerical study, to be discussed in the next section, provides evidence

that the insights remain the same when F and G follow non-uniform distributions.
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Even with Assumption 3, the revenue-to-go function is still complex as discussed

in the previous section (i.e., all four cases may arise). However, under this assump-

tion, we find a closed form expression for the optimal posted price (and the resulting

bargainer’s offer and seller’s counter-offer), which renders the problem analytically

tractable.

The following lemma states the optimal posted price of the seller, p∗t (y). As the

lemma shows, the optimal posted price depends critically on how the largest discount

a customer will demand, θ, compares to the marginal value of inventory, ∆t−1(y), in

addition to the fraction of bargainers, q, and the range of reservation prices, [0, b].

Lemma 2.4.1. Suppose the seller has y units of inventory with t periods to go until

the end of the season. Then:

(a) If θ ≤ b+∆t−1(y)
4

, then p∗t (y) = b+∆t−1(y)
2

.

(b) If b+∆t−1(y)
4

< θ ≤ 2b−q∆t−1(y)
2(2−q)

, then p∗t (y) = b+2qθ+∆t−1(y)
2+q

.

(c) If θ > 2b−q∆t−1(y)
2(2−q)

, then p∗t (y) = b+(1−q)∆t−1(y)
2−q

.

Given the optimal posted price stated in Lemma 2.4.1, the bargainer’s optimal

offer will be as shown in the following lemma.

Lemma 2.4.2. Suppose the seller has y units of inventory with t periods to go until

the end of the season. Given the optimal posted price p∗t (y), all bargainers who do not

quit will make an offer p∗o(p
∗
t (y), r) strictly less than the posted price. In particular:

(a) If p∗t (y)− θ ≤ r ≤ 2(p∗t (y)− θ), then the optimal offer is p∗o(p
∗
t (y), r) = p∗t (y)− θ.

(b) If 2(p∗t (y)− θ) ≤ r ≤ b, then the optimal offer p∗o(p
∗
t (y), r) =

r

2
.

Note from Lemma 2.4.2 that the bargainer’s offer will be either the smallest

possible offer she can make, p∗t (y)− θ or half of her reservation price, r/2. One can

verify from Lemmas 2.4.1 and 2.4.2 that, for any given r, the bargainer’s optimal
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offer, p∗o(p
∗
t (y), r), is strictly less than the optimal posted price, p∗t (y). Following the

optimal posted price and optimal bargainer’s offer, we present the seller’s optimal

counter-offer p∗ct(p
∗
t (y), p∗o(p

∗
t (y), r), y) in the following lemma. For brevity, we will

use short-hand notation p∗ct(p
∗
t , p

∗
o, y) instead of p∗ct(p

∗
t (y), p∗o(p

∗
t (y), r), y).

Lemma 2.4.3. Suppose the seller has y units of inventory with t periods to go until

the end of the season. Then:

(a) If θ ≤ ∆t−1(y)
2

, then p∗ct(p
∗
t , p

∗
o, y) = p∗t (y) regardless of the bargainer’s offer.

(b) If ∆t−1(y)
2

< θ ≤ b+∆t−1(y)
4

, then

p∗ct(p
∗
t , p

∗
o, y) =

 p∗t (y)− θ + ∆t−1(y)
2 if p∗o(p

∗
t (y), r) = p∗t (y)− θ;

p∗t (y) if p∗o(p
∗
t (y), r) > p∗t (y)− θ.

(c) If b+∆t−1(y)
4

< θ ≤ 2b−q∆t−1(y)
2(2−q)

, then

p∗ct(p
∗
t , p

∗
o, y) =


p∗t (y)− θ + ∆t−1(y)

2 if p∗o(p
∗
t (y), r) = p∗t (y)− θ;

r if p∗o(p
∗
t (y), r) > p∗t (y)− θ and p∗o(p

∗
t (y), r) <

p∗t (y)
2 ;

p∗t (y) if p∗o(p
∗
t (y), r) > p∗t (y)− θ and p∗o(p

∗
t (y), r) ≥ p∗t (y)

2 .

(d) If θ > 2b−q∆t−1(y)
2(2−q)

, then

p∗ct(p
∗
t , p

∗
o, y) =


∆t−1(y) if p∗t (y)− θ ≤ p∗o(p

∗
t (y), r) < ∆t−1(y)

2 ;

r if ∆t−1(y)
2 ≤ p∗o(p

∗
t (y), r) <

p∗t (y)
2 ;

p∗t (y) if p∗o(p
∗
t (y), r) ≥ p∗t (y)

2 .

The closed-form expressions stated in Lemmas 2.4.1 through 2.4.3 help us obtain

a number of results regarding the effect of negotiation on the optimal posted price,

the seller’s expected revenue and the customer’s surplus. Before we discuss these

results, we first define the following auxiliary optimization problem of a seller with

y units of inventory and t periods to go. This optimization problem represents the

pricing problem faced by a seller using take-it-or-leave-it pricing in the current period
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(i.e., forcing all customers to act as price-takers), and allowing negotiation from next

period onward (i.e., the revenue-to-go from period t− 1 onward is Vt−1(·) as defined

by (2.5)):

V TL
t (y)

= max
p

{
λF (p)p + λF (p)Vt−1(y − 1) + (1− λF (p))Vt−1(y)

}
, y > 0, t = 1, . . . , T

(2.10)

Let pTL
t (y) denote the optimal solution to the optimization problem given by (2.10).

It is not difficult to check that, under Assumption 3, we have pTL
t (y) =

b + ∆t−1(y)

2
.

The following proposition compares the optimal posted price, p∗t (y), with the take-

it-or-leave-it price, pTL
t (y).

Proposition 2.4.1. Suppose the seller has y units of inventory with t periods to go

until the end of the season. Then the seller’s optimal posted price, p∗t (y), is between

pTL
t (y) and pTL

t (y) + θ.

The proposition highlights the effect of negotiation on the posted price. If nego-

tiation were not allowed in period t, the seller would charge the price pTL
t (y). Under

negotiation, however, the seller adds a premium on top of pTL
t (y) with the intention

of selling at a lower price to some customers. In other words, the premium allows the

seller to price discriminate based on customers’ willingness to pay. It is interesting to

note that the premium is less than the largest discount a bargainer would demand,

θ.

We now focus on how negotiation affects the seller’s revenue. As stated in Propo-

sition 2.4.1, the seller raises the posted price to price-discriminate among bargainers.

The increased posted price results in loss of revenue from price-takers. Furthermore,
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under negotiation, some bargainers may be able to negotiate down to a price be-

low the take-it-or-leave-it price. Even so, one would expect that negotiation would

improve the seller’s expected revenue, given that the seller can always walk out of

negotiation by repeating the posted price as its counter-offer. Indeed, the following

proposition states that negotiation improves the seller’s expected revenue.

Proposition 2.4.2. Suppose the seller has y units in inventory and t periods to

go and will use negotiation from period t − 1 onward. The seller is better off by

negotiating with posted price p∗t (y) in period t than using take-it-or-leave-it pricing

with posted price pTL
t (y) in period t.

It is not difficult to extend the result of Proposition 2.4.2 to the case where one

seller uses negotiation throughout the selling season and the other uses take-it-or-

leave-it pricing.

Corollary 2.4.1. Suppose the seller has y units in inventory and t periods to go.

The revenue of the seller across the t-period horizon is larger under negotiation than

under take-it-or-leave-it pricing.

In some cases, the posted price decision might be dictated by an outside party

(e.g., manufacturer). We note that Corollary 2.4.1 extends to the case where the

posted price p is determined exogenously, that is, the revenue of the seller across

the selling horizon is larger when the seller is negotiating with the exogenous posted

price p than using take-it-or-leave-it pricing at the same price. The result is not too

surprising since the negotiating seller will settle for a price below p only if it improves

the expected revenue-to-go (otherwise, the seller sticks to p as its counter-offer.)

We next turn our attention to the effect of negotiation on the customers. Since

the seller is charging a premium under negotiation, it is clear that certain price-
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takers who were able to afford the product under take-it-or-leave-it pricing will not

be able to afford it under negotiation. However, it is not clear how the bargainers

are affected. The following proposition characterizes which bargainers are better off

due to negotiation.

Proposition 2.4.3. No price-taker is better off under negotiation compared to take-

it-or-leave-it pricing. As for a bargainer who purchases:

(a) If θ ≤ ∆t−1(y)
2

, the bargainer ends up buying at pTL
t (y), thus she is neither worse

nor better off under negotiation.

(b) If ∆t−1(y)
2

< θ ≤ 2b−q∆t−1(y)
2(2−q)

, there exists a threshold reservation price such that

the bargainer is better off if her reservation price is below the threshold and worse off

otherwise.

(c) If θ > 2b−q∆t−1(y)
2(2−q)

, then the bargainer is worse off under negotiation.

Proposition 2.4.3(a) states that, if θ is too small, the seller reverts to take-it-or-

leave-it pricing by setting both the posted price and counter-offer to pTL
t (y). In this

case, the negotiation has no effect on the consumers. When θ is moderately large

(as in Proposition 2.4.3(b)), some bargainers will be better off under negotiation

compared to take-it-or-leave-it pricing while others are worse off. In this case, the

seller takes advantage of price-takers or bargainers with high reservation prices, but

yields to the bargainers with low reservation prices. The proof of the proposition

reveals what is common across the bargainers who benefit from negotiation: Their

reservation prices are large enough that they end up buying, but small enough that

they successfully negotiate for the largest possible discount, θ. On the other hand, if

θ is very large (as in proposition 2.4.3(c)), the seller charges a large premium on top

of pTL
t (y) and sells only to customers with high reservation price. In this case, the

seller does not sell to the bargainers who demand the largest possible discount, θ. For
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the bargainer who purchases, her final purchase price is either her own reservation

price or the posted price itself. Thus, no customer is better off.

We now investigate how the optimal posted price, p∗t (y), depends on the largest

discount a customer would demand, θ, and the proportion of the bargainers in the

customer population, q. To investigate the effect of θ and q, we check the comparative

statics when θ or q changes in the current period only, while θ and q values for all

other periods remain the same. The following proposition states our result:

Proposition 2.4.4. The optimal posted price p∗t (y) is non-decreasing in the largest

discount a customer would demand, θ, and in the proportion of the bargainers in the

customer population, q, in the current period.

From Lemma 2.4.1, we observe that when θ is very small (which is the case

in Lemma 2.4.1(a)), the optimal posted price p∗t (y) is equal to pTL
t (y) = b+∆t−1(y)

2
.

Once θ is sufficiently high, the seller starts to charge a premium on top of pTL
t (y).

Proposition 2.4.4 shows that the size of the premium depends not only on θ but

also on the fraction of bargainers, q. If (i) θ is very small or (ii) θ is larger but the

fraction of bargainers is small, then the seller needs to take into account the large

revenue stream from price-takers and charges little or no premium in order not to

turn away too many price-takers. As the fraction of bargainers increases, the seller

puts less emphasis on the price-takers and starts to increase the premium to better

price-discriminate among bargainers.

Of course, one would wonder what happens to the posted price when θ and q

change across the entire planning horizon. As noted earlier, the seller’s revenue in

a period is the price collected from a purchaser, which is determined through the

posted price, the corresponding buyer’s offer, and the resulting seller’s counter-offer,

all of which are complicated functions of θ and q. Consequently, it is not easy to
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extend Proposition 2.4.4 to the case where q or θ change across the entire horizon.

We investigate this question through a numerical study in the next section.

At the heart of benefits from negotiation is the seller’s ability to price-discriminate

through a premium. As Proposition 2.4.4 indicates, the larger θ in the current period,

the higher the price in the current period and, therefore, the larger the premium due

to negotiation. This larger premium enables the seller to do a finer price discrimina-

tion. Therefore, one would expect the seller’s revenue to increase in θ. Likewise, the

more likely it is that the seller will encounter a bargainer in the current period, the

higher the chances that the seller will be able to price-discriminate through negotia-

tion. Thus, we expect that the seller’s revenue increases in the fraction of bargainers,

q. To investigate the effect of θ and q on the seller’s expected revenue, we check the

comparative statics when θ or q changes in the current period only. The following

proposition states our result:

Proposition 2.4.5. The optimal expected total revenue of the seller increases if the

largest discount that a bargainer may demand, θ or the fraction of the bargainers, q

increases in the current period.

Our numerical results in the next section verify this result when q or θ changes

across the entire horizon. Finally, we investigate how the optimal posted price is

influenced by the stock level and time-to-go until the end of the horizon.

Proposition 2.4.6. The optimal posted price p∗t (y) is non-increasing in the stock

level, y, and non-decreasing in the number of remaining periods, t.

Gallego and van Ryzin (1994) and Bitran and Mondschein (1997) show that the

same behavior occurs in the case of take-it-or-leave-it pricing. In our model, where

the seller charges a premium on top of the take-it-or-leave-it price, the same key
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drivers (e.g., the risk of stock-out, the risk of having excess inventory) influence the

optimal posted price, which leads to the same behavior.

2.5 Numerical Study

We conduct a numerical study to gain further managerial insights into the use

of negotiation along with dynamic pricing. We identify the scenarios under which

negotiation benefits the seller the most, and we investigate if and when dynamic

pricing and negotiation reinforce each other. In addition, we explore the effect of

negotiation on the posted price and we analyze how the gap between the posted price

and the take-it-or-leave-it price depends on the inventory level and other problem

parameters.

In our numerical study we consider several different combinations of parameter

values. We use three different values for each of: probability that a customer arrives

in a given period (λ ∈ {0.2, 0.5, 0.7}), the largest discount that a bargainer would

demand (θ ∈ {5, 20, 70}), and the proportion of bargainers (q ∈ {0.2, 0.5, 0.8}). We

also consider three different pairs of F (·) and G(·|p) distributions:

i) F (·) ∼ uniform over [0, 200] and G(·|p) ∼ uniform over [0, p]

ii) F (·) ∼ exponential with mean 50 and G(·|p) = P (X|X ≤ p) where X ∼ expo-

nential with mean 40

iii) F (·) ∼ Weibull with shape parameter 2 and scale parameter 50 and G(·|p) =

P (X|X ≤ p) where X is Weibull with shape parameter 2 and scale parameter 40.

For numerical convenience, we use F (·) and G(·|p) that come from the same

family of distributions; our general model and results presented in Section 3.3 do

not require such an assumption. Note that this parameter set results in 81 different

combinations of λ, θ, q and F (·), G(·|P ) distributions.
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We first compare two sellers, one using negotiation and the other using take-it-

or-leave-it pricing throughout the selling season. This comparison allows us to gain

insights into the benefits of negotiation. We consider a 15-period selling season and

we vary the starting inventory level from 1 to 15. For each starting inventory level

and under all 81 combinations of λ, θ, q, and F (·), G(·|P ) distributions described

above, we solve the dynamic program associated with each seller and determine

the seller’s optimal expected revenue, resulting in 1,215 different problem instances.

For each problem instance, we measure the percentage revenue improvement from

negotiation and summarize the results in Table 2.1.

F, G Uniform F, G Exponential F, G Weibull

θ q Mean (Std) Max Min Mean (Std) Max Min Mean (Std) Max Min

5 0.2 0.03 (0.02) 0.05 0.00 0.25 (0.1) 0.31 0.01 0.93 (0.43) 1.24 0.04

5 0.5 0.08 (0.05) 0.13 0.00 0.63 (0.25) 0.79 0.04 2.31 (1.09) 3.11 0.11

5 0.8 0.13 (0.08) 0.20 0.00 1.02 (0.4) 1.27 0.06 3.7 (1.75) 4.99 0.18

20 0.2 0.58 (0.3) 0.80 0.02 2.23 (0.88) 2.77 0.14 4.52 (1.36) 5.34 0.56

20 0.5 1.44 (0.75) 2.00 0.04 5.53 (2.22) 6.93 0.35 13.28 (4.57) 16.11 1.35

20 0.8 2.3 (1.21) 3.20 0.07 8.78 (3.58) 11.09 0.56 23.39 (9.02) 29.68 2.10

70 0.2 6.93 (2.27) 8.35 0.72 15.12 (2.99) 16.67 4.25 8.41 (1.51) 9.37 4.06

70 0.5 17.35 (6.04) 21.30 1.65 43.3 (10.82) 49.67 9.49 26.25 (5.53) 29.95 11.41

70 0.8 27.64 (10.18) 34.63 2.43 71.19 (20.3) 84.37 13.47 56.03 (14.67) 66.86 20.59

Table 2.1: Summary Statistics for Percentage Revenue Improvement from Negotia-
tion

We observe from Table 2.1 that the larger the largest discount asked by the cus-

tomers, θ, the larger the revenue improvement due to negotiation. Likewise, the

larger the proportion of bargainers, q, the larger the revenue improvement due to

negotiation. Furthermore, we observe that the seller’s benefit from negotiation tends

to be larger under exponential and Weibull distributions for F and G, compared to

uniform. Weibull and exponential reservation prices have heavier tails compared to
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uniform, indicating a larger portion of customers with high reservation prices. The

seller can extract more revenue out of those customers through negotiation, which

results in the benefits from negotiation being higher under Weibull and exponential

distributions. We observe in our numerical study that the percentage revenue im-

provement is larger when starting inventory level is higher. We will further explore

the effect of starting inventory later in this section.

Table 2.2 summarizes the magnitude of percentage improvement for all 1,215

problem instances tested. In more than 70% of instances, the percentage revenue

improvement is greater than 1%. In about 33% of instances, the revenue improve-

ment is greater than 10%. These numbers suggest that, even when there is cost for

implementing negotiation, the seller can realize significant benefit from negotiation.

% Improvement < 1% 1− 3% 3− 5% 5− 10% 10− 20% 20− 30% > 30% Total

Number of cases 355 183 109 166 139 114 149 1215

Table 2.2: Frequency Table for Percentage Revenue Improvement

The effect of inventory level on the benefit of negotiation: Figure 2.3 illus-

trates the effect of inventory level on the negotiation outcome. As illustrated in the

figure, the seller is able to do a finer price discrimination when inventory level is high.

When the inventory level is low relative to the remaining selling horizon, the seller

is not worried about leftover inventory, hence the optimal posted price is likely to be

very high. In this case, a substantial portion of bargainers will quit (some will quit

without even making an offer and others cannot afford the seller’s counter-offer, thus

drop out of negotiation) since the seller will not settle for a low price. On the other
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Figure 2.3: Negotiation outcomes with respect to the starting inventory level when
λ = 0.7, θ = 70, q = 0.8, F (·) ∼ U [0, 200] and G(·|p) ∼ U [0, p].

hand, when the inventory level is high, the negotiating seller can still charge a high

posted price, but is willing to settle for less. Thus, fewer bargainers will quit and

those who buy the product will pay a wide range of prices. For example, in Figure

2.3, when y = 10, some buy at the posted price (43.3% of bargainers), others buy

at the reservation price (13.3%), and still others make the lowest possible offer and

buy at the corresponding counter-offer (20.3%). In other words, when the inventory

level is high, the seller is able to do a finer price discrimination, while at the same

time increasing the chance of making a sale. Therefore, one would expect that the

benefits from negotiation (i.e., the additional revenue a seller can realize by combin-

ing dynamic pricing with negotiation instead of using dynamic pricing only) will be

higher when inventory level is high. In fact, Figure 2.4 shows that the percentage

revenue improvement from negotiation increases in the inventory level. Furthermore,

the larger the fraction of bargainers, the larger the revenue improvement is.
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Figure 2.4: Percentage revenue improvement with respect to the starting inventory
level when λ = 0.7, θ = 70, F (·) ∼ U [0, 200] and G(·|p) ∼ U [0, p].

The effect of inventory level on the price premium: In Section 2.4, under

Assumption 3, we proved that the posted price of a negotiating seller with y units of

inventory in period t, p∗t (y) includes a premium on top of the price the same seller

would choose if it did not use negotiation in period t, pTL
t (y). We now compare the

posted price of the negotiating seller (p∗t (y)) to the price that the seller would choose

if the seller were using dynamically adjusted take-it-or-leave-it prices throughout the

horizon. Figure 2.5 illustrates how the inventory level affects the price premium for

the negotiating seller.

When inventory level is very low (compared to remaining selling horizon), the

seller has many opportunities to sell. Thus, dynamic pricing dictates a high posted

price regardless of whether negotiation is used or not, which overshadows the price

premium that the negotiating seller would charge. On the other hand, if inventory

level is very high, the seller is concerned about the possibility of excess inventory
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Figure 2.5: Percentage price premium under negotiation when λ = 0.7, θ = 5, and
F (·) exponential with mean 50, G(·|p) = P (X|X ≤ p) where X is expo-
nential with mean 40.

at the end of the selling season. In other words, the marginal value of inventory

approaches zero and the premium caused by negotiation more or less stabilizes.

At moderate inventory levels, the price premium caused by negotiation is at its

largest. At such inventory levels, the seller is neither pressured to move inventory

quickly nor tempted to sell only to customers with very high reservation prices.

Therefore, in the absence of negotiation, the seller would charge a moderate price.

However, with negotiation, the seller can use a high price premium and start with a

high posted price, with the intention to settle for lower prices that a bargainer may

accept during negotiation.

Dynamic pricing or negotiation: Which one is better? Note that both ne-

gotiation and dynamic pricing are tools that a seller can use to improve its revenue.

We next compare the benefits from each of these two strategies from the perspec-

tive of the seller who is using neither dynamic pricing nor negotiation in status quo.
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Consider a seller who picks the the optimal static take-it-or-leave it price at the

beginning of the selling season (i.e., the seller uses the same price throughout the

selling season). Figure 2.6 illustrates, as a function of the seller’s initial inventory,

the revenue improvement the seller would realize by switching to dynamic pricing

(without negotiation) or negotiation (without dynamic pricing). When inventory

level is low, the seller would like to start with a very high price with the intention

of reducing the price later in the season if the product is not selling well. Thus, the

benefit from dynamic pricing exceeds the benefit from negotiation at low inventory

levels. On the other hand, when inventory level is high, the seller’s primary concern

is to move inventory before the end of the season, in which case negotiation proves

to be an effective tool, since the seller can still price discriminate without reduc-

ing the chances of making a sale. Hence, at high inventory levels, the benefit from

negotiation exceeds the benefit from dynamic pricing.

Interaction between dynamic pricing and negotiation: We now examine

how the benefit of negotiation depends on the seller’s pricing strategy (dynamic

vs. static.) To this end, consider two take-it-or-leave-it-pricing sellers: one using

static pricing throughout the season and the other seller using dynamic pricing. We

compare the revenue improvement (in percentage) from negotiation for these two sell-

ers. This will enable us to identify whether or not dynamic pricing and negotiation

reinforce each other.

We observe from Figure 2.7 that, when initial inventory is low, the static-pricing

seller will realize larger benefits from negotiation than the dynamic-pricing seller. At

low inventory levels, the seller caters only to customers with high reservation prices.

Thus, both negotiation and dynamic pricing are used to raise the the price at which

the product is sold, and if the seller is already using dynamic pricing, the additional
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Figure 2.6: Consider the seller who currently uses static pricing with no negotiation.
The figure shows the percentage revenue improvement when switching to
dynamic pricing only and switching to negotiation only. Here, λ = 0.7,
θ = 20, q = 0.8, and F (·) exponential with mean 50, G(·|p) = P (X|X ≤
p) where X is exponential with mean 40.

benefit from negotiation is small. In other words, dynamic pricing and negotiation

act as substitutes at low inventory levels.

Interestingly, however, this is reversed at moderate inventory levels, that is, the

benefit of adding negotiation is larger for the dynamic-pricing seller than the static-

pricing seller. As we discussed before, at moderate inventory levels, the negotiating

seller charges a high posted price under dynamic pricing with the intention to settle

for lower prices during negotiation. The dynamic-pricing seller can do this, because

if the product is not sold in the current period, the seller can always reduce the price

in the next period. Under static pricing, however, if the seller started with a high

posted price to take advantage of negotiation, then the seller would be stuck with

that high price throughout the horizon, which curbs the seller’s ability to exploit

negotiation through the use of high list prices. Hence, at moderate inventory levels,
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Figure 2.7: Consider the two take-it-or-leave-it pricing sellers, one using static pric-
ing and one using dynamic pricing strategies. The figure illustrates the
percentage revenue improvement that each seller can realize by adding
negotiation. Here, λ = 0.7, θ = 20, q = 0.8, and F (·) exponential with
mean 50, G(·|p) = P (X|X ≤ p) where X is exponential with mean 40.

negotiation is not as beneficial under static pricing as it is under dynamic pricing.

2.6 Summary

In this chapter we investigate the effect of negotiation on the dynamic pricing

of a seller with limited inventory. We have presented a negotiation model for the

seller with limited inventory, and embedded the outcome of the negotiation into the

corresponding dynamic pricing problem. Our negotiation model allows us to capture

interactions among key drivers of the seller and the buyer’s decisions: the seller’s

marginal value of inventory and the buyer’s reservation price and type. We have

demonstrated that our proposed model captures a spectrum of outcomes that may

arise in practice while maintaining analytical tractability to draw insightful results.

Our results suggest that negotiation is an effective tool that eases the tension between

revenue per sale and the risk of excess inventory at the end of the selling season, which
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is a key trade-off in dynamic pricing.

We show that a negotiating seller increases the posted price. The high posted

price increases the revenue per sale without compromising the chance of making a

sale as some customers can purchase at discounted prices. This is particularly helpful

when the inventory level is moderate or high relative to the remaining selling season.

In such cases, as negotiation mitigates the risk of excess inventory, the seller can

raise the posted price substantially higher than the seller who does not negotiate,

and the benefit of using negotiation increases in the inventory level. On the other

hand, when inventory level is low, the risk of excess inventory is already low, thus

the seller is primarily interested in selling at high prices. As a result, the additional

benefit from negotiation is not as significant.



CHAPTER 3

The Effect of Negotiation on the Supply Chain

3.1 Introduction

As discussed in Chapter 1, retailers actively decide whether to use negotiation or

posted pricing when selling to the end customers, and different retailers use different

sales formats to sell the same product. Negotiation enables the retailer to extract

larger revenue from the customers who are willing to pay more, but this enhanced

ability to price discriminate often comes at a cost: The negotiation takes time and

effort on the parts of the retailer and customers. For example, eliminating negotia-

tion and selling at a fixed, posted price tends to reduce the need for additional sales

managers at a dealership, which could result in significant savings given that sales

managers make about $150,000 per year. In addition, it is reported that dealers who

adopt haggle-free pricing experience a reduction of about $300 in per-car advertise-

ment costs. Posted pricing could bring similar benefits for customers. Customers of

Scion, the only division of Toyota that does not allow dealers to bargain, spend 45

minutes to close a deal, as opposed to the national average of four and a half hours

(Welch, 2007). When choosing the sales format, the retailer has to weigh the cost

of negotiation against the benefit from price discrimination enabled by negotiation.

Of course, the retailer’s sales format choice affects the profit of the manufacturer
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who provides the goods sold by the retailer. The manufacturer can influence the re-

tailer’s decision, for example, through a simple contract like the wholesale-price-only

contract. This chapter aims to highlight what sales format and price choices may

arise in equilibrium, given that the manufacturer’s power to set the wholesale price

is pitched against the retailer’s power to determine the sales format.

When analyzing the equilibrium sales format, we place particular emphasis on

the effect of capacity available in the supply chain. The availability of a product

tends to have significant effect on the discounts that retailers concede to bargainers.

For example, according to Edmunds.com, customers who purchase Camry XLE in

southeast Michigan are able to negotiate, on average, a discount of 6% from MSRP,

while the Prius, which is in short supply, is sold at an average discount of only

1.3%. Since the availability of a product has a significant effect on the transaction

prices, one expects it to have some influence over the equilibrium sales format. In

this chapter, we model availability in the form of a capacity constraint on the supply

chain, and we analyze the effect of supply chain capacity on the equilibrium.

The remainder of the chapter is organized as follows. Section 3.2 provides a

survey of the relevant literature. Section 3.3 outlines our model. In Section 3.4, we

analyze the problem without capacity constraints, which sets the stage for Section

3.5 where we analyze the supply chain with capacity constraints. We conclude in

Section 3.6 with a summary. All proofs are provided in Appendix B.

3.2 Literature Review

Bargaining has been studied extensively in economics and there is a wealth of

research about predicting the bargaining outcome under several different bargaining

processes and information structures. See Muthoo (1999) for a review of bargaining
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theory and applications in economics. One classic approach to modeling the outcome

of bargaining is to use the Nash bargaining solution. The Nash bargaining solution is

the outcome of a cooperative game where two parties maximize the product of their

surpluses net of their disagreement utilities. As such, the Nash bargaining solution

is a mutually beneficial agreement that splits the total surplus (net of disagreement

payoffs) equally. This classic Nash bargaining solution can be extended to the case

where the two parties have different bargaining powers, in which case the more

powerful party grabs a larger portion of the total surplus. This generalized Nash

bargaining solution is what we use to model the outcome of the negotiation between

the retailer and the customer.

There is another stream of research that focuses on the comparison of bargaining

and posted pricing. A subset of this research stream uses generalized Nash bar-

gaining to model the outcome of negotiation. Among these are Wang (1995) who

considers a seller offering an indivisible object, Bester (1993) who considers a group

of competing sellers all of whom collectively use either posted pricing or negotiation,

Roth, Woratschek, and Pastowski (2006) who consider a seller offering a customiz-

able product. In addition, other researchers have addressed the question of posted

pricing versus bargaining using embellished models of negotiation, such as alternat-

ing offers by the seller and the customer, or incomplete information. These include

Riley and Zeckhauser (1983), Arnold and Lippman (1998), Adachi (1999), Desai and

Purohit (2004). Terwiesch, Savin and Hann (2005) considers the effect of negotiation

in online haggling. Unlike all of this earlier work where the seller(s) decide whether

to use negotiation or posted pricing, we focus on a two-stage supply chain problem,

in which the retailer’s sales format choice is influenced by the manufacturer’s whole-

sale price. In addition, we explicitly account for the effect of supply chain capacity,
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which may distort the retailer and the manufacturer’s profits.

There are several recent papers that analyze negotiation in the context of supply

chain management. These include Nagarajan and Bassok (2002), Wu (2004), Iyer

and Villas-Boas (2003), Gurnani and Shi (2006), and Lovejoy (2007). For a review

on cooperative bargaining in supply chains, see Nagarajan and Sosic (2008). Most of

this work models negotiation between a supplier(s) and a buyer(s) who then meets

the end customer demand by selling at a posted price. In contrast, we examine the

sales format choice of the retailer, who may use posted pricing or negotiation when

selling to the end customers, and we analyze how this choice can be influenced by

the manufacturer whose profit also depends on the retailer’s sales format.

3.3 Model Description

We consider a supply chain comprised of one manufacturer and one retailer where

the manufacturer produces an item at a unit cost of c and sells at a unit wholesale

price, w ≥ c. After the manufacturer determines the wholesale price, the retailer

decides which of the two sales formats to adopt when selling to the end customers:

posted pricing or negotiation. If the retailer decides to adopt posted pricing, the

retailer must choose the take-it-or-leave-it price to be used. If the retailer decides

to adopt negotiation, the retailer must choose the minimum price that the retailer

is willing to accept. These specific pricing decisions determine the rules of transac-

tion between the retailer and consumers, and drive aggregate demand. The retailer

then orders from the manufacturer up to the supply chain capacity, Q. The supply

chain capacity, Q, admits multiple interpretations: It could arise from the manufac-

turer’s limited production capacity or the retailer’s storage space or working capital

constraints. We assume that the capacity, Q, is exogenously given.
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We consider an infinitesimally-divisible consumer population in which the con-

sumers are heterogeneous in their valuation of the item. Let a be the size of the

consumer population and F (x) := 1 − F (x) represent the fraction of the consumer

population who values the product at x or more. Then, aF (x) can be interpreted as

the portion of the consumer population with valuation x or higher. In the remain-

der of the chapter, we refer to F (x) as the valuation distribution and we denote its

density by f(x).

3.3.1 Posted Pricing

If the retailer decides to adopt posted pricing and picks posted price p, then only

consumers with valuations p or higher will buy the product. Thus, the aggregate

demand at price p is given by D(p) := aF (p). Many commonly-used demand func-

tions are covered by this model. If the valuation distribution is uniform, then the

aggregate demand is linear in price. If the valuation distribution is exponential, then

the aggregate demand is log-linear. In addition, by picking an appropriate valuation

distribution F (·), one can model the case where the aggregate demand is given by the

logit demand function, which represents the aggregate demand of utility-maximizing

consumers, choosing between two options – ‘buy’ and ‘no buy,’ where the utility

of each option is drawn from a Gumbel distribution (for more on this, see Chapter

7.3 in Talluri and van Ryzin, 2005). Table 3.1 lists several specific examples of the

valuation distributions, and corresponding aggregate demand functions, covered by

our model.

Since the supply chain capacity is limited to Q, given posted price p and wholesale
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Valuation distribution F (p) Aggregate Demand D(p)

Uniform[0, a
b ]: F (p) = pb

a a− bp (linear demand)

Exponential(λ): F (p) = 1− e−λp ae−λp (log-linear demand)

Weibull(α,β): F (p) = 1− e
−( p

β
)α

ae
−( p

β
)α

Difference of two Gumbel r.v.’s with scale parameter 1

and means α and 0: F (p) = 1
1+eα−p

aeα−p

1+eα−p (logit demand)

Table 3.1: Examples of valuation distributions and corresponding aggregate demand
functions.

price w, the retailer’s and manufacturer’s profits are given by

ΠRP(p, w, Q) = (p− w) min{D(p), Q} = (p− w) min{aF (p), Q}, and (3.1)

ΠMP(w, p, Q) = (w − c) min{D(p), Q} = (w − c) min{aF (p), Q}. (3.2)

If capacity level Q is low enough, the quantity sold could be bounded by the

capacity level when the posted price is low. Let p̄(Q) be the market-clearing price

at which the demand equals the capacity: D(p̄(Q)) = Q (if it exists). Note that the

retailer will not set the price below p̄(Q). Had the retailer set a price below p̄(Q),

the retailer could increase the per-unit profit margin without changing the quantity

sold.

3.3.2 Negotiation

If the retailer decides to adopt negotiation, the retailer must determine the cut-off

price, i.e., the minimum price at which it is willing to sell, denoted by pmin. Observe

that it is not necessarily in the retailer’s best interest to sell to customers with low

valuations. Hence, the retailer may price some customers out of the market by setting

pmin high enough, and doing so could increase its profit.

Negotiation takes time and effort on the parts of both the retailer and the cus-
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tomer, which are captured by negotiation costs in our model. Let cr and cb denote the

cost of negotiation incurred by the retailer and consumer, respectively. Effectively,

the retailer’s cost, cr, reduces the retailer’s profit margin while the customer’s cost,

cb, reduces the customer’s willingness-to-pay. In addition, one of the two parties may

have more say in shaping the outcome of the negotiation, for example, the retailer

could gain more if the customer has few outside options and in a weak bargaining

position. Our model allows such asymmetry in bargaining power.

We model the outcome of negotiation between a customer and the retailer through

generalized Nash bargaining, under which the total surplus is split between the two

parties according to their relative bargaining power. The outcome of negotiation

is determined by the retailer’s cut-off price, pmin, the customer’s valuation of the

item, denoted by r and drawn from F (·), costs of negotiation, and each party’s

relative bargaining power. Generalized Nash bargaining solution models the relative

bargaining power in the form of the parameter, β ∈ (0, 1). Let β be the customer’s

relative bargaining power and 1− β the retailer’s bargaining power.

The retailer must choose the cut-off price, pmin, so that it covers at least the

wholesale price plus the retailer’s cost of negotiation: pmin ≥ w + cr. In our model, a

customer also incurs cost to negotiate, given by cb. Thus, only the consumers with

valuation pmin + cb and above will engage in negotiation and buy the item; the rest

will choose not to buy. If the final price agreed by both parties is pN, a consumer

with valuation r will obtain a surplus of r − pN − cb. For the same final price, the

retailer’s (extra) surplus beyond pmin is pN − pmin. Following the generalized Nash

bargaining solution (Muthoo 1999), a consumer with valuation r ≥ pmin + cb and a

retailer with the cut-off price pmin ≥ w + cr will agree on a final price p∗
N
(pmin, r) that
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maximizes the following objective function.

max
pN∈[pmin,r]

(r − pN − cb)
β (pN − pmin)

1−β. (3.3)

Note the significance of β, which represents the relative bargaining power of the

consumers. If β → 1, any consumer with valuation pmin + cb and above has all

the bargaining power and extracts the entire surplus after paying the final price of

p∗
N
(pmin, r) = pmin. On the other hand, if β → 0, the retailer extracts the entire

surplus by charging p∗
N
(pmin, r) = r − cb to a consumer with valuation r. For any

β ∈ (0, 1), the final price p∗
N
(pmin, r) is a convex combination of r−cb and pmin, which

splits the surplus:

p∗
N
(pmin, r) = arg max

pN

[r − pN − cb]
β × [pN − pmin]

1−β

= (1− β)(r − cb) + βpmin. (3.4)

Given the cut-off price pmin, the lowest valuation among the customers who buy

is pmin + cb, which we will denote by qmin and refer to as the cut-off valuation,

qmin := pmin + cb. (3.5)

Thus, choosing pmin is equivalent to choosing qmin, and (3.4) can be re-written as a

function of qmin:

p∗
N
(qmin − cb, r) = (1− β)r + βqmin − cb (3.6)

If the capacity level Q is low enough and the retailer chooses the cut-off valuation

qmin so low that qmin < p̄(Q), then the demand aF (qmin) will exceed the capacity Q.

If qmin were so low, the retailer could always increase the cut-off valuation slightly,

which would increase the transaction price p∗
N
(qmin − cb, r) without decreasing the

quantity sold, thereby improving the retailer’s total profit. Hence, the retailer will
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never choose qmin < p̄(Q). By setting qmin = p̄(Q), the retailer could set demand

equal to the capacity, Q.

For any qmin ≥ max[w + cr + cb, p̄(Q)], the retailer’s and manufacturer’s profits

are given by

ΠRN(qmin, w,Q) = aEr

[
(p∗

N
(qmin − cb, r)− w − cr)1{r≥qmin}

]
= aEr

[
((1− β)r + βqmin − w − cr − cb)1{r≥qmin}

]
= a

∫ ∞

qmin

[(1− β)x + βqmin − w − cr − cb] f(x)dx, and (3.7)

ΠMN(w, qmin, Q) = (w − c) min{D(qmin), Q} = (w − c)aF (qmin). (3.8)

Note that the retailer’s choice of qmin (equivalently, pmin) affects not only the profit

margin per unit sold, but also the portion of consumers who negotiate successfully

and buy: The larger qmin is, the higher the price paid by consumers, but the smaller

the fraction of consumers who buy. This trade-off plays a critical role when choosing

the optimal cut-off valuation.

3.3.3 Sales Format and Pricing Decisions in the Supply Chain

We first describe the problem that the retailer faces. Given capacity Q, the

retailer’s best response to the manufacturer’s wholesale price w consists of the sales

format choice and an associated pricing decision. Let IR be an indicator variable that

represents the retailer’s decision on the sales format: IR = 1 if the retailer chooses

the posted pricing strategy and IR = 0 otherwise. Let p∗(w, Q) be the maximizer

of ΠRP(p, w, Q) and q∗min(w, Q) the maximizer of ΠRN(qmin, w,Q) for given wholesale

price w and capacity Q. Note that p∗(w, Q) is the price that the retailer will use under

posted pricing and q∗min(w,Q) is the cut-off valuation that the retailer will use under

negotiation. Then, the retailer’s best response will be either (IR = 1, p∗(w, Q)) or
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(IR = 0, q∗min(w,Q)). Thus, for given wholesale price w and capacity Q, the retailer

solves the following problem:

max
IR∈{0,1}

[IRΠRP(p∗(w, Q), w,Q) + (1− IR)ΠRN(q∗min(w, Q), w, Q)] (3.9)

We next turn to the manufacturer’s problem. The manufacturer chooses its

wholesale price anticipating the retailer’s best response. Let I∗R(w,Q) denote the

retailer’s optimal sales format choice for a given w and Q. The manufacturer is then

solving the following problem:

max
w≥c

[I∗R(w,Q)ΠMP(w, p∗(w,Q), Q) + (1− I∗R(w, Q))ΠMN(w, q∗min(w, Q), Q)] (3.10)

Notice that in our model the retailer actively chooses one of two sales formats, posted

pricing or negotiation. As we will demonstrate, the retailer’s discretion to choose the

sales format has a crucial effect on the equilibrium outcome.

3.4 No Capacity Constraint

As a benchmark, we first analyze the case when the supply chain has sufficient

capacity to meet any demand. For example, if capacity Q is greater than or equal to

the size of consumer population, a, then the capacity plays no role. In this section,

we drop Q from the notation.

Throughout the chapter, we make the following technical assumptions on the

valuation distribution, F (·) and its density f(·). The first assumption ensures that

the retailer’s profit functions are well-behaved while the second assumption does the

same for the manufacturer’s profit functions.

(A1) The valuation distribution, F (·), is strictly increasing over the domain of non-

negative real numbers, and has an increasing failure rate.
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(A2) The density f(·) is twice differentiable and satisfies the following condition:

f ′(x)(2f ′(x)F (x) + f 2(x))− f ′′(x)f(x)F (x) ≥ 0 (3.11)

Note that these assumptions are satisfied by many valuation distributions includ-

ing those listed in Table 3.1 except for uniform. Our assumption that F (·) has an

unbounded domain is what rules out the uniform distribution. The end point of a

bounded domain causes expositional complications in the proofs, which is why we

make the assumption of unbounded domains. We should note that we have ana-

lyzed the uniform case separately, taking advantage of closed-form expressions for

the optimal solutions and profit functions. All the results stated as Proposition and

Corollary throughout the chapter continue to hold for the uniform case. Through-

out the chapter, we use increasing/decreasing and positive/negative in the weak sense

unless otherwise specified as being strict.

In preparation for characterizing the equilibrium of the game, we first analyze the

structure of the profit functions for the manufacturer and retailer under each sales

format.

3.4.1 Posted Pricing

Consider a supply chain with unlimited capacity where posted pricing is imposed

exogenously. Let Πu
RP

(p, w) and Πu
MP

(w, p) denote the retailer’s and the manufac-

turer’s profit functions under posted pricing. (Formally, Πu
RP

(p, w) and Πu
MP

(w, p)

are defined by equations (3.1) and (3.2) with Q = ∞, respectively.) The following

lemma establishes the structural properties of the manufacturer’s and retailer’s profit

functions under posted pricing.

Lemma 3.4.1. [Profit functions under posted pricing]

(a) The retailer’s profit, Πu
RP

(p, w), is strictly unimodal in the posted price, p.
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(b) Let pu(w) denote the optimal posted price, that is, the maximizer of Πu
RP

(p, w).

Then, pu(w) is convex and strictly increasing in the wholesale price, w.

(c) Given that the retailer chooses the posted price optimally, the manufacturer’s

profit, Πu
MP

(w, pu(w)), is strictly unimodal in w.

We should point out that Assumption (A1) is needed for Lemma 3.4.1(a) while

Assumption (A2) is needed for Lemma 3.4.1(b), which enables us to show that the

manufacturer’s profit function is well-behaved as described in Lemma 3.4.1(c). Let

wu
P

be the maximizer of Πu
MP

(w, pu(w)). Note that wu
P

is the wholesale price that

the manufacturer will use in a supply chain where posted pricing is the exogenously

chosen sales format.

3.4.2 Negotiation

Consider a supply chain with unlimited capacity where negotiation is imposed ex-

ogenously. The next lemma establishes the structural properties of the retailer’s and

the manufacturer’s profit functions under negotiation, Πu
RN

(qmin, w) and Πu
MN

(w, qmin),

which are defined by equations (3.7) and (3.8) with capacity Q sufficiently large.

Lemma 3.4.2. [Profit functions under negotiation]

(a) The retailer’s profit, Πu
RN

(qmin, w), is strictly unimodal in the retailer’s cut-off

valuation, qmin.

(b) Let qu
min(w) denote the optimal cut-off valuation, that is, the maximizer of Πu

RP
(p, w).

Then qu
min(w) is convex and strictly increasing in w.

(c) Given that the retailer chooses the cut-off valuation optimally, the manufacturer’s

profit, Πu
MN

(w, qu
min(w)), is strictly unimodal in w.

Let wu
N

be the maximizer of Πu
MN

(w, qu
min(w)). Note that wu

N
is the wholesale price

that the manufacturer should use in a supply chain where negotiation is the exoge-
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nously chosen sales format. Consequently, qu
min(w

u
N
) would be the cut-off valuation

chosen by the retailer in such a supply chain. The next lemma states a useful prop-

erty about how wu
N

and qu
min(w

u
N
) depend on the cost of negotiation for the retailer,

cr and cost of negotiation for the customer, cb.

Lemma 3.4.3. For all (cr, cb) such that cr + cb = cT, for some cT ≥ 0, wu
N

and

qu
min(w

u
N
) remain the same.

Lemma 3.4.3 implies that in a supply chain where negotiation is exogenously

chosen as the sales format, both the manufacturer wholesale price and the retailer’s

cut-off valuation depend only on the total negotiation cost, cr + cb. To see why, first

observe that the retailer’s margin per unit sold is the transaction price, p∗
N
, minus

the wholesale price, w, and the retailer’s cost of negotiation, cr. In addition, notice

from equation (3.6) that the transaction price, p∗
N
, is reduced by the customer’s cost

of negotiation, cb, which implies that the retailer absorbs the customer’s cost of

negotiation as well. Thus, for every unit sold, the retailer’s margin depends only on

the total cost of negotiation, but not on how that cost is allocated between cb and cr,

which explains the above lemma. In the remainder of this chapter, let cT := cr + cb

denote the total cost of negotiation.

3.4.3 Equilibrium Analysis

Recall that, in our model, the sales format is not exogenously chosen, but the

retailer chooses the sales format to maximize its profit given the manufacturer’s

wholesale price. To characterize the equilibrium behavior in our model, we first

characterize the retailer’s best response, represented by the sales format choice and

the corresponding pricing decision, as a function of the manufacturer’s wholesale

price w.
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Proposition 3.4.1. [Retailer’s best response]

(a) If the retailer (weakly) prefers posted pricing at w = c, then the retailer strictly

prefers posted pricing for all w > c.

Otherwise (i.e., if the retailer strictly prefers negotiation at w = c):

(b) either the retailer strictly prefers negotiation at all w > c,

(c) or there exists a unique threshold ŵu
R

> c such that the retailer is indifferent

between negotiation and posted pricing if w = ŵu
R
, strictly prefers negotiation if

w < ŵu
R
, and strictly prefers posted pricing if w > ŵu

R
.

Proposition 3.4.1 implies that once the retailer prefers posted pricing at a given

wholesale price, then the retailer continues to prefer posted pricing at all higher

wholesale prices. To understand why, we first rewrite the retailer’s profit function

given by equation (3.7):

Πu
RN

(qu
min(w), w) = a

∫ ∞

qu
min(w)

[qu
min(w) + (1− β)(x− qu

min(w))− w − cT] f(x)dx

= aF (qu
min(w))(qu

min(w)−w −cT) + a(1−β)Er[(r− qu
min(w))+]

(3.12)

The first term in the equation above is equivalent to the expected profit under posted

pricing when the posted price is qu
min(w) and the wholesale price is w + cT, leaving

the retailer a unit margin of qu
min(w) − w − cT. This term is always less than the

profit that the retailer could obtain if it used posted pricing at the wholesale price w.

Therefore, had this been the only revenue obtained by the negotiating retailer, the

retailer would always be better off using posted pricing. Under negotiation, however,

only the marginal customer (with valuation qmin) yields a margin precisely equal to

qu
min(w) − w − cT, and customers with higher valuations yield higher margins (see

equation (3.6)). In fact, a customer with valuation r > qu
min(w) leaves an additional
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(1 − β)(r − qu
min(w)) on top of what the marginal customer yields. We refer to this

difference as the price premium. The second term represents the expected price

premium the retailer collects under negotiation. If this term is sufficiently large,

then the retailer would be better off under negotiation. Now, note that the second

term in (3.12), which represents the expected premium, could be rewritten as

a(1− β)F (qu
min(w))Er[r − qu

min(w)|r ≥ qu
min(w)].

As the wholesale price w and, hence, the cut-off valuation qu
min(w) increase, the ex-

pected premium decreases under our assumption that the valuation distribution has

IFR.1 Therefore, as w increases, the benefit from negotiation decreases, which makes

negotiation less attractive at higher wholesale prices, as indicated by Proposition

3.4.1.

It is interesting to note that Proposition 3.4.1 will not hold if the valuation

distribution has decreasing failure rate (DFR). In such a case, the mean residual

valuation could increase in w, which would make negotiation more attractive at

higher wholesale prices. In fact, the following figure shows a counter-example to

Proposition 3.4.1 for a DFR valuation distribution. Nonetheless, many commonly

used aggregate demand functions, including those listed in Table 3.1, are based on

valuation distributions with IFR.

Observe from Proposition 3.4.1 that there may exist a wholesale price ŵu
R

that

makes the retailer indifferent between the two sales formats. The following proposi-

tion states that at such a wholesale price, the manufacturer prefers negotiation.

Proposition 3.4.2. Suppose there exists ŵu
R

> c that makes the retailer indifferent

between negotiation and posted pricing, as described in Proposition 3.4.1(c). At the

1The technical property that allows this result is that a random variable with IFR distribution
has a decreasing mean residual lifetime.
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Retailer's profit under posted pricing minus 
profit under negotiation
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Figure 3.1: The figure illustrates the counter-example to Proposition 3.4.1. In this
example, the retailer prefers posted pricing at lower wholesale prices
and negotiation at higher wholesale prices. Here, a = 200, 000, β = 0.8,
cT = 200, and F (·) Weibull with shape parameter 0.5 and scale parameter
50.

wholesale price ŵu
R
, the manufacturer prefers negotiation. In other words,

Πu
MN

(ŵu
R
, qu

min(ŵ
u
R
)) ≥ Πu

MP
(ŵu

R
, pu(ŵu

R
)).

Hence, negotiation is the Pareto-optimal sales format when the wholesale price is

ŵu
R
, and applying the Pareto-dominance criterion, we assume that the retailer chooses

negotiation whenever w = ŵu
R
.2

Based on the structure of the best response established in Propositions 3.4.1 and

3.4.2, the manufacturer’s problem of selecting the wholesale price, stated in equation

(3.10), can now be expressed as follows:

Manufacturer’s Problem:

If the retailer prefers posted pricing for all w ≥ c, then:

max
w≥c

Πu
MP

(w, pu(w)) (3.13)

2Such tie-breaking behavior on the part of the retailer can be easily induced by choosing the
wholesale price ŵu

R − ε for arbitrarily small ε > 0.
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If the retailer prefers negotiation for all w ≥ c, then:

max
w≥c

Πu
MN

(w, qu
min(w)) (3.14)

If the retailer prefers negotiation for c ≤ w ≤ ŵu
R

and posted pricing for w > ŵu
R

then:

max

[
max

c≤w≤ŵu
R

Πu
MN

(w, qu
min(w)) , sup

w>ŵu
R

Πu
MP

(w, pu(w))

]
(3.15)

The manufacturer’s problems in (3.13) and (3.14) correspond to Proposition

3.4.1(a) and (b), where the retailer’s sales format choice cannot be influenced by

the manufacturer’s wholesale price. On the other hand, if Proposition 3.4.1(c) holds,

with the retailer’s discretion in mind, the manufacturer chooses the wholesale price

to induce either negotiation (i.e., c ≤ w ≤ ŵu
R
) or posted pricing (i.e., w > ŵu

R
),

whichever yields a larger profit for the manufacturer. The next proposition shows

that the manufacturer will choose one of three wholesale prices, leading to one of

three forms of equilibria:

Proposition 3.4.3. The manufacturer chooses one of the following wholesale prices:

(a) wu
N
, the maximizer of Πu

MN
(w, qu

min(w)), which leads the retailer to use negotiation

with cut-off valuation qu
min(w

u
N
) in equilibrium, or

(b) ŵu
R
, the threshold wholesale price, which leads the retailer to use negotiation with

cut-off valuation qu
min(ŵ

u
R
) in equilibrium, or

(c) wu
P
, the maximizer of Πu

MP
(w, pu(w)), which leads the retailer to use posted pricing

with price pu(wu
P
) in equilibrium.

The equilibrium outcome described in Proposition 3.4.3(a) is the same outcome

that would arise if the supply chain were exogenously restricted to use negotiation.

Likewise, the equilibrium outcome in Proposition 3.4.3(c) is the one that would arise
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if the supply chain were exogenously restricted to use posted pricing. Proposition

3.4.3(b), on the other hand, shows that there is a different type of negotiation equi-

librium that gives rise to a different wholesale price. This type of equilibrium is a

consequence of the retailer’s discretion over the sales format. It arises when the man-

ufacturer would like to induce the retailer to choose negotiation, but cannot do so at

the wholesale price wu
N
. In such cases, the manufacturer offers a discounted wholesale

price, ŵu
R
, thereby sacrificing some of its profit margin in order to induce its preferred

sales format. We refer to this form of equilibrium as reconciliatory negotiation.

The total cost of negotiation, cT, influences which of the three candidates arises as

an equilibrium. The following proposition characterizes how the equilibrium changes

with respect to cT.

Proposition 3.4.4. There exist two thresholds, cT and cT, cT ≤ cT, such that

(a) [Negotiation] if cT < cT, then the equilibrium sales format is negotiation with

the wholesale price wu
N
, resulting in the retailer’s cut-off valuation qu

min(w
u
N
),

(b) [Reconciliatory Negotiation] if cT ≤ cT < cT, then the equilibrium sales format

is negotiation with the wholesale price ŵu
R
, resulting in the retailer’s cut-off valuation

qu
min(ŵ

u
R
), and

(c) [Posted Pricing] if cT ≥ cT, then the equilibrium sales format is posted price

with the wholesale price wu
P
, resulting in the posted price pu(wu

P
).

The behavior described in Proposition 3.4.4 is illustrated in Figure 3.2. When

the total cost of negotiation is sufficiently low (i.e., cT < cT, with cT ≈ 1.3 in the

figure), negotiation is preferred by both the retailer and the manufacturer. In such

cases, the manufacturer can induce negotiation without giving up any of its profit

margin. In contrast, as cT increases, it becomes harder for the manufacturer to

induce the retailer to adopt negotiation. Hence, in the middle region (cT ≤ cT < cT,
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from approximately 1.3 to 1.575 in the figure), the manufacturer finds it necessary

to offer a reduced wholesale price to induce negotiation, resulting in a reconciliatory

negotiation equilibrium. Finally, when cT becomes sufficiently large (i.e., cT ≥ cT,

beyond 1.575 in the figure), neither party is interested in negotiation, resulting in a

posted pricing equilibrium.
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Figure 3.2: The figure illustrates the equilibrium sales quantity (left), the equilibrium
wholesale price and equilibrium posted price or cut-off valuation (cen-
tral), and the equilibrium manufacturer’s and retailer’s profits (right).
Here, a = 500, β = 0.3, c = 4 and logit demand with F (x) = 1

1+e20−x .

It is rather surprising to note that the retailer’s equilibrium profit and quantity

sold may actually increase in the total cost of negotiation, cT. In the region where

negotiation is used, we observe from Figure 3.2 that the wholesale price continues

to decrease as cT increases, implying that the manufacturer is absorbing some of

the increased cost of negotiation. This reduction in wholesale price becomes more

pronounced in the reconciliatory negotiation region. In fact, our analysis shows that,

in this region where the equilibrium wholesale price is ŵu
R
, a unit increase in the

total cost of negotiation triggers a wholesale price reduction of more than one unit

(see Lemma B.1.2(b) in Appendix A). In other words, the manufacturer more than

compensates the retailer for the increase in cT so that negotiation remains to be the

equilibrium sales format. This explains why the retailer’s profit and quantity sold
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increase in cT under the reconciliatory negotiation regime.

3.5 Capacity Constraint

Building on our analysis of the unlimited capacity case, we now return to the

original problem where the supply chain has a finite capacity, Q. In particular, we

assume Q is smaller than the size of the consumer population, a. As in the previous

section, we first characterize the retailer’s and manufacturer’s profit functions under

each sales format.

3.5.1 Posted Pricing

Consider a supply chain with capacity Q, where posted pricing is imposed. If

capacity Q is sufficiently low, the retailer will set the posted price to the market-

clearing price, p̄(Q), (as described in Section 3.3.1) at which the demand equals the

capacity Q: aF (p̄(Q)) = Q. Define the market-clearing wholesale price under posted

pricing, wP(Q), as follows:

pu(wP(Q)) = p̄(Q). (3.16)

Observe that if the wholesale price is wP(Q), the retailer in a supply chain with

unlimited capacity finds it optimal to sell Q units under posted pricing. Notice the

significance of wP(Q). In the supply chain with capacity Q, if the wholesale price w

is less than wP(Q), then the retailer’s optimal posted price, p∗(w, Q), is the market-

clearing price, p̄(Q) (since lowering the posted price any further will not increase sales

quantity). On the other hand, if the wholesale price w exceeds the market-clearing

wholesale price, wP(Q), then the capacity is no longer binding, and the retailer’s

optimal posted price, p∗(w, Q), is simply the price that is optimal in the supply

chain with unlimited capacity, pu(w). Note that if Q is sufficiently large, there may



64

not exist wP(Q) > c. In other words, it may not be possible to induce the retailer to

sell Q units. In such cases, we follow the convention of setting wP(Q) = −∞. Based

on these observations, when the capacity of the supply chain is Q, the retailer’s

optimal profit under posted pricing is

ΠRP(p∗(w, Q), w, Q) =



(p̄(Q)− w)Q = ΠRP(p̄(Q), w,Q) for c ≤ w ≤ wP(Q),

a(pu(w)− w)F (pu(w))

= Πu
RP

(pu(w), w) for w ≥ max{c, wP(Q)}.

(3.17)

Consequently, the manufacturer’s profit under posted pricing is

ΠMP(w, p∗(w, Q), Q) =



(w − c)Q for c ≤ w ≤ wP(Q),

a(w − c)F (pu(w))

= Πu
MP

(w, pu(w)) for w ≥ max{c, wP(Q)}.

(3.18)

Notice from (3.18) that the manufacturer would never set the wholesale price

below wP(Q), since a lower wholesale price would only decrease the unit profit margin,

but the sales quantity would remain steady at Q. If the optimal wholesale price under

posted pricing in a supply chain with unlimited capacity, wu
P
, is greater than wP(Q),

then wu
P

will result in a sales quantity less than the supply chain’s capacity Q. In such

a case, the manufacturer’s optimal wholesale price is simply wu
P
. On the other hand,

if wu
P
≤ wP(Q), then the manufacturer should set the wholesale price to wP(Q). The

following lemma formalizes this discussion on the manufacturer’s optimal wholesale

price under posted pricing in a supply chain with capacity Q, w∗
P
(Q).

Lemma 3.5.1. For a given Q, w∗
P
(Q) = max{wP(Q), wu

P
}.
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3.5.2 Negotiation

Now consider a supply chain with capacity Q, where negotiation is imposed. If

capacity Q is sufficiently low, the retailer will find it optimal to sell all Q units by

setting the cut-off valuation exactly equal to p̄(Q) (as described in Section 3.3.2)

at which the demand equals the capacity Q. Following the same line of logic used

above, we define the market-clearing wholesale price under negotiation, wN(Q) as

follows:

qu
min(wN(Q)) = p̄(Q) (3.19)

When there does not exist wN(Q) > c for a given Q, we follow the convention of

setting wN(Q) = −∞. Utilizing the definition of wN(Q), the retailer’s optimal profit

under negotiation is

ΠRN(q∗min(w, Q), w,Q) =


ΠRN(p̄(Q), w, Q) for c ≤ w ≤ wN(Q),

Πu
RN

(qu
min(w), w) for w ≥ max{c, wN(Q)}.

(3.20)

Consequently, the manufacturer’s profit under negotiation is

ΠMN(w, q∗min(w, Q), Q) =


(w − c)Q for c ≤ w ≤ wN(Q),

Πu
MN

(w, qu
min(w)) for w ≥ max{c, wN(Q)}.

(3.21)

The following lemma describes the manufacturer’s optimal wholesale price under

negotiation in a supply chain with capacity Q, w∗
N
(Q).

Lemma 3.5.2. For a given Q, w∗
N
(Q) = max{wN(Q), wu

N
}.

3.5.3 Equilibrium Analysis

Recall that the retailer in our model chooses the sales format to maximize its

profit given the manufacturer’s wholesale price. In the previous section, we showed
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that the retailer will prefer negotiation at low wholesale prices, and posted pricing at

high wholesale prices. However, it is not obvious that this behavior will remain true

in the presence of finite capacity. When the capacity is finite, there will be a range of

wholesale prices over which the quantity sold hits the capacity ceiling under one sales

format, but not the other. In fact, one can easily find examples where negotiation is

bounded by capacity when posted pricing is not, and vice versa. At such wholesale

prices, the retailer’s preference is distorted by the capacity effect, which may tip the

scales in favor of one or the other sales format. Despite such complications, we show

that the same best response behavior holds true in the presence of finite capacity.

That is, as stated in Proposition 3.4.1, three possibilities exist: (a) either the retailer

prefers posted pricing at all wholesale prices, or (b) the retailer prefers negotiation

at all wholesale prices, or (c) there exists a threshold wholesale price ŵR(Q) > c

below which the retailer strictly prefers negotiation and above which the retailer

strictly prefers posted pricing. The proof is more involved due to the complications

arising from the capacity constraint. We state and prove this result formally as

Proposition B.2.1 in Appendix B. Furthermore, an equivalent of Proposition 3.4.2

holds for the limited capacity problem: If there exists ŵR(Q) > c below which

the retailer strictly prefers negotiation and above which it prefers posted pricing

(while being indifferent at ŵR(Q)), then the manufacturer prefers negotiation at the

wholesale price ŵR(Q). Therefore, applying the Pareto-dominance criterion, we again

assume that the retailer chooses to negotiate at the threshold wholesale price ŵR(Q).

This result is stated and proven formally as Proposition B.2.2 in Appendix B.

Given the three possible patterns of the retailer’s preference as a function of the

wholesale price, the manufacturer’s problem to determine the wholesale price can

now be expressed as follows:
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Manufacturer’s Problem:

If the retailer prefers posted pricing for all w ≥ c, then:

max
w≥c

ΠMP(w, p∗(w, Q), Q) (3.22)

If the retailer prefers negotiation for all w ≥ c, then:

max
w≥c

ΠMN(w, q∗min(w,Q), Q) (3.23)

If the retailer prefers negotiation for c ≤ w ≤ ŵR(Q) and posted pricing for

w > ŵR(Q) then:

max

[
max

c≤w≤ŵR(Q)
ΠMN(w, q∗min(w, Q), Q) , sup

w>ŵR(Q)

ΠMP(w, p∗(w, Q), Q)

]
(3.24)

The next proposition describes the candidates for the manufacturer’s optimal

wholesale price and the resulting equilibria:

Proposition 3.5.1. The manufacturer chooses one of the following wholesale prices:

(a) w∗
N
(Q) = max{wN(Q), wu

N
}, the maximizer of ΠMN(w, q∗min(w, Q), Q), which leads

the retailer to use negotiation with cut-off valuation q∗min(w
∗
N
(Q), Q) in equilibrium

(b) ŵR(Q), the threshold wholesale price, which leads the retailer to use negotiation

with cut-off valuation q∗min(ŵR(Q), Q) in equilibrium, or

(c) w∗
P
(Q) = max{wP(Q), wu

P
}, the maximizer of ΠMP(w, p∗(w,Q), Q), which leads

the retailer to use posted pricing with price p∗(w∗
P
(Q), Q) in equilibrium.

The equilibrium wholesale price ŵR(Q) arises in cases where the manufacturer

would like the retailer to use negotiation, but cannot induce that choice at the whole-

sale price w∗
N
(Q) that maximizes the profit function ΠMN(w, q∗min(w, Q), Q). Hence,

in such cases, the manufacturer offers the lower wholesale price ŵR(Q) in order to

persuade the retailer to use negotiation, which gives rise to what we termed rec-

onciliatory negotiation in Section 3.4. An analog of Proposition 3.4.4 holds in the
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capacitated case as well: As the total cost of negotiation, cT, increases, the supply

chain moves from the negotiation equilibrium with wholesale price w∗
N
(Q) to the

reconciliatory negotiation equilibrium with wholesale price ŵR(Q) and eventually to

the posted pricing equilibrium with wholesale price w∗
P
(Q). The result is stated and

proven formally in Appendix B (see Proposition B.2.3).

Figure 3.3 illustrates the same example shown in Figure 3.2, but in a capacity-

constrained supply chain with Q = 406. As in the case with unlimited capacity, the

equilibrium moves from negotiation (cT up to approximately 1.29) to reconciliatory

negotiation (cT between 1.29 and 1.42 approximately) to posted pricing (cT above

approximately 1.42). Observe that the quantity sold in equilibrium is bounded by

capacity in two disjoint regions. The first region (cT between 0.5 to 0.72) is when the

total cost of negotiation is very low, in which the manufacturer prefers to exhaust

the capacity and it induces this outcome by charging the market-clearing wholesale

price, wN(Q). The second region (cT between 1.31 to 1.42) spans a part of the region

where the equilibrium is reconciliatory negotiation with wholesale price ŵR(Q). As

previously discussed, a unit increase in cT decreases ŵR(Q) by more than one unit,

so it eventually becomes smaller than the market-clearing wholesale price, wN(Q).

Notice if negotiation were exogenously imposed, the manufacturer would never pick

a wholesale price below wN(Q). However, facing a retailer who has the discretion

to choose the sales format, the manufacturer has to sacrifice some of its margin and

offer ŵR(Q) to induce negotiation.

Figure 3.4 illustrates an example where capacity is more severely constrained

with Q = 350. In this case, regardless of cT the capacity is exhausted. Even though

the equilibrium is moving from negotiation to reconciliatory negotiation to posted

pricing, the quantity sold remains at capacity.



69

Reconciliatory 
Negotiation

Reconciliatory 
Negotiation 

Reconciliatory 
Negotiation

340

406

0.5 1 1.5 2
Total cost of negotiation

Sa
le

s q
ua

nt
ity

14

20

0.5 1 1.5 2
Total cost of negotiation

Pr
ic

e Posted price or
cut-off valuation
Wholesale price

0

6000

0.5 1 1.5 2
Total cost of negotiation

Pr
of

it Manufacturer's
profit
Retailer's profit

 
 
 
 
 
 

Figure 3.3: The figure illustrates the equilibrium sales quantity (left), the equilibrium
wholesale price and equilibrium posted price or cut-off valuation (cen-
tral), and the equilibrium manufacturer’s and retailer’s profits (right).
Here, a = 500, β = 0.3, c = 4, Q = 406 and logit demand with
F (x) = 1

1+e20−x .
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Figure 3.4: The figure illustrates the equilibrium sales quantity (left), the equilibrium
wholesale price and equilibrium posted price or cut-off valuation (cen-
tral), and the equilibrium manufacturer’s and retailer’s profits (right).
Here, a = 500, β = 0.3, c = 4, Q = 350 and logit demand with
F (x) = 1

1+e20−x .

Observe from Figures 3.2, 3.3, and 3.4 where the capacity progressively becomes

tighter, different types of equilibria may arise at the same total cost of negotiation, cT

as capacity is changing. For example, the range of cT values in which posted pricing is

the equilibrium expands as the capacity becomes tighter: above 1.575 in Figure 3.2,

above 1.42 in Figure 3.3, and above 1.215 in Figure 3.4. As the following proposition

shows, the equilibrium sales format evolves from posted pricing to negotiation as the

capacity becomes larger, giving rise to the reconciliatory negotiation equilibrium at
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moderate capacity levels.

Proposition 3.5.2. There exist two thresholds, Q and Q, 0 ≤ Q ≤ Q ≤ ∞, such

that

(a) [Posted Pricing] if Q < Q, then the equilibrium sales format is posted pric-

ing with the wholesale price w∗
P
(Q) = max{wP(Q), wu

P
}, resulting in the posted price

p∗(w∗
P
(Q), Q),

(b) [Reconciliatory Negotiation] if Q ≤ Q < Q, then the equilibrium sales for-

mat is negotiation with the wholesale price ŵR(Q), resulting in the retailer’s cut-off

valuation q∗min(ŵR(Q), Q), and

(c) [Negotiation] if Q ≥ Q, then the equilibrium sales format is negotiation with

the wholesale price w∗
N
(Q) = max{wN(Q), wu

N
}, resulting in the retailer’s cut-off val-

uation q∗min(w
∗
N
(Q), Q).

As the proposition shows, when capacity is tight, the equilibrium is posted pric-

ing. To understand this behavior, first recall that the additional revenue from using

negotiation (instead of posted pricing) arises from the premium collected from cus-

tomers with high valuations. We have seen earlier that this additional revenue gets

smaller as the cut-off valuation increases. In a setting with tight capacity, no matter

what sales format is used, the retailer will sell only to customers with high valu-

ations, resulting in a high posted price (if posted pricing is used) or high cut-off

valuation (if negotiation is used). Hence, in such a setting, the additional revenue

from negotiation will be small and may not cover the cost of negotiation. This is why

posted pricing is preferred when capacity is tight. As capacity increases, the manu-

facturer would prefer if the supply chain used negotiation, but cannot induce it at

the wholesale price w∗
N
(Q), which is the wholesale price the manufacturer would use

if it could simply dictate the retailer to use negotiation. Hence, at moderate capac-
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ity levels, the manufacturer induces reconciliatory negotiation through a discounted

wholesale price. Finally, once the capacity is large enough, the retailer becomes in-

creasingly willing to use negotiation, and the equilibrium becomes negotiation, where

the wholesale price is w∗
N
(Q).

The monotonic behavior of the equilibrium sales format with respect to capac-

ity Q and total cost of negotiation cT gives rise to the following corollary, which

characterizes switching curves that separate different types of equilibria. Figure 3.5

illustrates three equilibrium regimes separated by two switching curves, stated in the

corollary.

Corollary 3.5.1. There exist two increasing switching curves, Q(cT) and Q(cT),

Q(cT) ≤ Q(cT), such that the equilibrium is posted pricing if Q < Q(cT), reconcilia-

tory negotiation if Q(cT) ≤ Q < Q(cT), and negotiation if Q ≥ Q(cT).
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Figure 3.5: The figure illustrates three types of equilibria: Negotiation, Reconcilia-
tory Negotiation and Posted Pricing. Here, a = 500, β = 0.6, c = 4, and
logit demand with F (x) = 1

1+e20−x .

We now examine the effect of disparity in bargaining powers of the retailer and



72

customers. Figure 3.6 shows how the equilibrium outcome changes as the customer’s

relative bargaining power, β, increases. The behavior of equilibrium is similar to

the behavior with respect to the total cost of negotiation, cT: As β increases, the

equilibrium sales format changes from negotiation to reconciliatory negotiation to

posted pricing. At lower values of β, the retailer is able to extract much of the

customer surplus, and the supply chain ends up using negotiation. As β increases,

the retailer’s ability to extract customer surplus is hampered, making the retailer

more reluctant to choose negotiation. The manufacturer is willing to reduce the

wholesale price to keep negotiation alive, and the discount is especially sharp at

moderate values of β, resulting in reconciliatory negotiation. Once the depth of the

discount needed to induce negotiation becomes too large, the manufacturer gives

up on negotiation. The wholesale price increases and posted pricing becomes the

equilibrium. Although this behavior can be intuitively explained, an analytical proof

is difficult because of the highly non-linear dependence of the transaction price (and

profit functions) on β.
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Figure 3.6: The figure illustrates the equilibrium wholesale price and equilibrium
posted price or cut-off valuation (left) and the equilibrium manufacturer’s
and the retailer’s profits (right). Here, a = 500, c = 4, cT = 0.75, Q = 400
and logit demand with F (x) = 1

1+e20−x .
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3.6 Summary

In this chapter, we consider how the supply chain capacity influences the pricing

and sales format decisions of the manufacturer and the retailer. We propose a model

in which the supply chain has a limited supply and the retailer can choose either

of two pricing regimes – negotiating or posting a fixed price when selling a product

to heterogeneous customers with different willingness-to-pay. The generalized Nash

bargaining solution is employed to characterize the outcome of negotiation between

customers and the retailer. Costs of negotiation are incurred when customers and

the retailer have reached an equilibrium transaction price. We consider unlimited

capacity and limited capacity cases, and show how the capacity and the negotia-

tion cost affect the retailer’s pricing regime decisions as well as the manufacturer’s

inducement of a pricing regime through the wholesale price.

Our result shows there exist three types of equilibria depending on the negotia-

tion cost and the capacity of the supply chain. When the negotiation cost is very

low and the capacity of the manufacturer is very high, the supply chain ends up at a

negotiation equilibrium, which is as same as that if negotiation were the exogenous

sales format. When the negotiation cost is very high and the capacity of the manu-

facturer is very low, the supply chain ends up at a posted price equilibrium, which

is again the same as that if posted pricing were the exogenous sales format. The

third equilibrium, where the negotiation cost and the capacity level are sufficiently

high, exists when the manufacturer prefers the retailer to use negotiation but it has

to offer a lower wholesale price to benefit the retailer such that the retailer is willing

to negotiate.



CHAPTER 4

Conclusions

One of the strategic decisions available to a retailer is the choice of sales format –

whether to adopt negotiation or posted pricing. Much of operations management lit-

erature makes the implicit assumption that the retailer’s sales format is exogenously

fixed as posted pricing. This is a perfectly acceptable starting point as posted pric-

ing is very common in practice. Nonetheless, many retailers actively choose between

posted pricing and negotiation. This dissertation revisits two problem domains in

operations management, assuming that a retailer can make an active choice about

sales formats. Namely, we first consider a retailer’s revenue management problem

in the presence of inventory considerations, assuming that the retailer can negoti-

ate. Second, we consider a capacity-constrained manufacturer’s wholesale pricing

problem, assuming that the retailer is free to choose between posted pricing and

negotiation.

The traditional revenue management paradigm suggests that if a retailer has a

limited supply of a product that can be sold only over a short selling season, then

the retailer must adjust its prices over time (i.e., use dynamic pricing) in order to

maximize the revenue to be collected over the selling season. Negotiation can be seen

as yet another revenue management tool, in that negotiation allows a retailer to price

74
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discriminate among customers. In this dissertation, a stochastic dynamic program-

ming formulation is employed to embed a negotiation model in a more traditional

dynamic pricing model. This model produces a number of interesting analytical and

numerical results. As one would expect, the optimal posted price of a negotiating

retailer includes a premium over that of a retailer using take-it-or-leave-it pricing

strategy. This price premium helps the retailer extract more revenues from cus-

tomers with high willingness-to-pay, and, surprisingly, peaks at moderate inventory

levels (as opposed to low inventory levels). In addition, the results show that nego-

tiation can act as a substitute or complement to dynamic pricing. For example, at

moderate inventory levels, the benefit from dynamic pricing increases further when

the seller can negotiate.

If negotiation is a viable sales format choice for the retailer, the manufacturer

must take such retailer discretion into account. In our analysis, we find that the

supply chain may settle in one of the three different types of equilibria. Two of

these three are cases where the supply chain ends up doing what it would do even

if the retailer had no discretion and the sales format were exogenously determined.

The third equilibrium type, however, arises when the manufacturer wants to impose

negotiation, but cannot induce the retailer to do so without sacrificing some of its

profit margin. This is an equilibrium where the retailer benefits from its discretion

over the sales format. We establish how the type of equilibrium outcome depends

on the supply chain capacity and retailer’s cost of negotiation. We find that the

retailer benefits from its power to choose the sales format when negotiation costs

and capacity levels are moderately high.

In our negotiation models, be it in the context of revenue management problem

or the wholesale pricing problem, the retailer sets a minimum acceptable price and
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serves only those customers who are willing to pay more. In this setting, customers

pay different prices depending on their willingness-to-pay, and such price discrimi-

nation is exactly the reason why the retailer benefits from negotiation. With regard

to the benefits from negotiation, a common theme emerges across the revenue man-

agement and wholesale pricing problems. In the revenue management problem, we

find that the benefit of negotiation is larger when the retailer has more inventory at

the beginning of the horizon. In the wholesale pricing problem, we find that benefit

from negotiation is larger when the manufacturer has larger capacity. These results

suggest that negotiation is a particularly viable tool when product availability is not

constrained.
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APPENDIX A

A.1 Proofs of Lemmas in Section 2.3

Proof of Lemma 2.3.1

Proof of (a): We prove the unimodality of S(po, r) in po ∈ [0, p] by showing (i)

∂S(po,r)
∂po

∣∣∣
po=0

≥ 0, (ii) ∂2S(po,r)
∂p2

o
< 0 whenever ∂S(po,r)

∂po
= 0, and (iii) S(po, r) → (r − p)

as po → p.

First note that the first and second partial derivatives of S(po, r) in po are

∂S(po, r)

∂po

= −G(po|p) + (r − po)g(po|p) and (A.1)

∂2S(po, r)

∂p2
o

= (r − po)g
′(po|p)− 2g(po|p). (A.2)

Claim (i) follows from (A.1) and G(0|p) = 0 while claim (iii) follows from G(p|p) = 1.

To show claim (ii), note from (A.1) and (A.2)

∂2S(po, r)

∂p2
o

∣∣∣∣
∂S(po,r)

∂po
=0

=
1

g(po|p)
(G(po|p)g′(po|p)− 2g2(po|p)). (A.3)

Since G(po|p) is log-concave, G(po|p)g′(po|p) − g2(po|p) < 0 at any po in [0, p] and

claim (ii) follows, concluding the proof of unimodality of S(po, r) in po ∈ [0, p].

Proof of (b): Note that S(po, r) = 0 for all po ≤ 0 since G(po|p) = 0 for all po ≤ 0.

Furthermore, for all po ≥ p, we have S(po, r) = r − po (since G(po|p) = 1 for all
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po ≥ p) and S(po, r) is strictly decreasing in po for po ≥ p.

Proof of Lemma 2.3.2

We divide into two cases: p ≥ θ and p < θ.

First, consider the case with p ≥ θ. For bargainers with ρ(p− θ) < r ≤ ρ(p), we

have p − θ < p̄o(r) ≤ p, thus p∗o(p, r) = p̄o(r) is the optimal solution to (2.2). On

the other hand, for bargainers with r ∈ [p− θ, ρ(p− θ)], we have p̄o(r) < p− θ, thus

the optimal offer should lie on the boundary p∗o(p, r) = p− θ (by the unimodality of

S(po, r) for po ∈ [0, p]). Likewise, for bargainers with r > ρ(p), we have p̄o(r) = p,

thus the optimal offer should lie on the boundary, that is, p∗o(p, r) = p.

Next, consider the case p < θ. Notice that ρ(p−θ) = 0 in this case. Therefore, the

only r that satisfies p−θ ≤ r ≤ ρ(p−θ) is r = 0, at which the optimal offer is trivially

p∗o(p, r) = 0. For any bargainer with 0 < r ≤ ρ(p), we have p − θ < 0 < p̄o(r) ≤ p,

and p∗o(p, r) = p̄o(r) is the optimal solution to (2.2). If r > ρ(p), we have p̄o(r) = p,

and the optimal offer is on the boundary p∗o(p, r) = p.

Proof of Lemma 2.3.3

Suppose that p < ∆t−1(y). Note that any bargainer who purchases the product will

pay p or less. Therefore, Kt(p, y) ≤ pBt(p, y) and

Jt(p, y) = λq [Kt(p, y)−Bt(p, y)∆t−1(y)] + λ(1− q)F (p) [p−∆t−1(y)] + Vt−1(y)

≤ λ[qBt(p, y) + (1− q)F (p)](p−∆t−1(y)) + Vt−1(y) < Vt−1(y).

The seller would have been strictly better off by charging p = ∆t−1(y) and setting

the counter-offer to ∆t−1(y) to all bargainers, since we would have Jt(p, y) = Vt−1(y)

in that case. Hence, setting p < ∆t−1(y) cannot be optimal.
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Proof of Lemma 2.3.4

We prove the unimodality of Zt(pc, y) in pc by showing (i) ∂Zt(pc,y)
∂pc

∣∣∣
pc=0

≥ 0, (ii)

∂2Zt(pc,y)
∂p2

c
< 0 whenever ∂Zt(pc,y)

∂pc
= 0, and (iii) Zt(pc, y) → Vt−1(y) as pc → ρ(p− θ).

Using ∆t−1(y) = Vt−1(y)−Vt−1(y− 1), y = 0, 1, . . ., we write the first and second

derivatives of Zt(pc, y) with respect to pc as follows:

∂Zt(pc, y)

∂pc

=
1

F (ρ(p− θ))− F (p− θ)
(F (ρ(p− θ))− F (pc) + f(pc)(∆t−1(y)− pc)),

(A.4)

∂2Zt(pc, y)

∂p2
c

=
1

F (ρ(p− θ))− F (p− θ)
(f ′(pc)(∆t−1(y)− pc)− 2f(pc)). (A.5)

Claims (i) and (iii) easily follow from simple algebra. For claim (ii), we note from

(A.4) and (A.5) that

∂2Zt(pc, y)

∂p2
c

∣∣∣∣
∂Zt(pc,y)

∂pc
=0

=
1

f(pc)(F (ρ(p− θ))− F (p− θ))
(−2f 2(pc)− (F (ρ(p− θ))− F (pc))f

′(pc)).

(A.6)

Now consider two cases - f ′(pc) ≥ 0 and f ′(pc) < 0. If f ′(pc) ≥ 0, then (A.6)

is negative, which is the desired result. Next, consider the case where f ′(pc) <

0. Note that, from Assumption 2 (i.e., F is strictly increasing and IFR), we have

f 2(pc) + (1− F (pc))f
′(pc) > 0. Then,

∂2Zt(pc, y)

∂p2
c

∣∣∣∣
∂Zt(pc,y)

∂pc
=0

=
−2f 2(pc)− (1− F (pc))f

′(pc) + (1− F (ρ(p− θ)))f ′(pc)

f(pc)(F (ρ(p− θ))− F (p− θ))

<
−f 2(pc)− (1− F (pc))f

′(pc) + (1− F (ρ(p− θ)))f ′(pc)

f(pc)(F (ρ(p− θ))− F (p− θ))

< 0.
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Proof of Lemma 2.3.5

It is not hard to see that the counter-offer will never be less than ∆t−1(y). If po = p−θ,

then the optimal solution to the optimization problem in (2.8) is pct(y), since Zt(pc, y)

is unimodal in pc. Likewise, if po > p − θ, then the seller will set its counter-offer

to the smaller of p or ρ(po), provided that min{ρ(po), p} is larger than or equal to

∆t−1(y).

Proof of Lemma 2.3.6

Throughout the proof, recall that a bargainer with reservation price r such that

r < p− θ will quit without making an offer. We first deal with the case where p > θ.

(a) Suppose p ≤ pct(y) ≤ ρ(p− θ). We divide the remaining bargainers into two

groups with respect to reservation price: (i) r ∈ [p − θ, ρ(p − θ)], (ii) r > ρ(p − θ).

In case (i), p∗o(p, r) = p− θ by Lemma 2.3.2 and p∗ct(p, p− θ, y) = p by Lemma 2.3.5,

as a result of which the bargainer accepts the counter-offer only if r ≥ p. In case

(ii), p∗o(p, r) > p− θ by Lemma 2.3.2 and p∗ct(p, p
∗
o(p, r), y) = p by Lemma 2.3.5, as a

result of which the bargainer will accept the offer. Thus, only bargainers with r ≥ p

will purchase, and Kt(p, y) = pF (p) and Bt(p, y) = F (p).

(b) Suppose ∆t−1(y) ≤ pct(y) < p ≤ ρ(p − θ). Again, consider two cases: (i)

r ∈ [p−θ, ρ(p−θ)], (ii) r > ρ(p−θ). In case (i), p∗o(p, r) = p−θ by Lemma 2.3.2 and

p∗ct(p, p − θ, y) = pct(y) by Lemma 2.3.5, as a result of which the bargainer accepts

the counter-offer only if r ≥ pct(y). In case (ii), p∗o(p, r) > p− θ by Lemma 2.3.2 and

p∗ct(p, p
∗
o(p, r), y) = p by Lemma 2.3.5, as a result of which the bargainer will accept

the offer. Thus, bargainers with pct(y) ≤ r ≤ ρ(p − θ) will purchase at pct(y), and
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bargainers with r > ρ(p− θ) will end up buying at p. The result follows.

(c) Suppose ∆t−1(y) ≤ pct(y) ≤ ρ(p − θ) < p. We divide remaining bargainers

into three groups: (i) r ∈ [p − θ, ρ(p − θ)], (ii) ρ(p − θ) < r ≤ p, and (iii) r > p.

By Lemma 2.3.2, the bargainers in group (i) offer p∗o(p, r) = p − θ, to which the

seller responds with the counter-offer p∗ct(p, p − θ, y) = pct(y) (by Lemma 2.3.5), as

a result of which the bargainer accepts the counter-offer only if r ≥ pct(y). For the

bargainers in group (ii), p∗o(p, r) > p − θ by Lemma 2.3.2 and p∗ct(p, p
∗
o(p, r), y) = r

by Lemma 2.3.5, as a result of which the bargainer will accept the seller’s offer.

For the bargainers in group (iii), the seller responds with p∗ct(p, p
∗
o(p, r), y) = p by

Lemma 2.3.5, thus the bargainer will buy at the posted price p. Thus, bargainers

with pct(y) ≤ r ≤ ρ(p− θ) will purchase at pct(y), and bargainers with r > ρ(p− θ)

will end up buying at min[p, r]. The result follows.

(d) Suppose ρ(p− θ) ≤ ∆t−1(y) ≤ p. As in part (c), we consider three cases: (i)

r ∈ [p − θ, ρ(p − θ)], (ii) ρ(p − θ) < r ≤ p, and (iii) r > p. By Lemma 2.3.2, the

bargainers in group (i) offer p∗o(p, r) = p − θ, to which the seller responds with the

counter-offer p∗ct(p, p− θ, y) = ∆t−1(y) (Lemma 2.3.5). Since ρ(p− θ) ≤ ∆t−1(y), no

bargainers in this group will purchase the product. Bargainers with r ∈ (ρ(p− θ), p]

make an offer greater than p− θ, to which the seller responds with the counter-offer

max[∆t−1(y), r]. Thus, only those with r ∈ [∆t−1(y), p] purchase the product and

they do so at their own reservation price. For the bargainers in group (iii), the seller

responds with p∗ct(p, p
∗
o(p, r), y) = p by Lemma 2.3.5, thus the bargainer will buy at

the posted price p. The result follows.

As for the case where p ≤ θ, cases (a) and (b) of the lemma do not even arise.

The proof of cases (c) and (d) are the same as before.
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A.2 Proofs of Lemmas in Section 2.4

In this appendix, we prove Lemmas 2.4.1 through 2.4.3 stated in Section 2.4.

The proofs utilize Lemmas A.2.1 through A.2.3, stated and proven at the end of

Appendix A.2.

Proof of Lemma 2.4.1

By Lemma A.2.3, ∆t−1(y) ≤ b. Therefore, we have

∆t−1(y)

2
≤ b + ∆t−1(y)

4
≤ 2b− q∆t−1(y)

2(2− q)
.

Hence, we divide the proof into four different cases: 1) θ ≤ ∆t−1(y)
2

, 2) ∆t−1(y)
2

< θ ≤
b+∆t−1(y)

4
, 3) b+∆t−1(y)

4
< θ ≤ 2b−q∆t−1(y)

2(2−q)
, 4) θ > 2b−q∆t−1(y)

2(2−q)
. For each of four cases, we

apply the results of Lemmas A.2.1 and A.2.2, write the expected revenue-to-go as a

function of the posted price and determine the optimal posted price for each case.

Case 1: θ ≤ ∆t−1(y)
2

We divide into sub-cases depending on the value of p: 1a) ∆t−1(y) ≤ p ≤ b+∆t−1(y)
2

,

1b) b+∆t−1(y)
2

< p ≤ b+∆t−1(y)
2

+ θ, and 1c) b+∆t−1(y)
2

+ θ < p ≤ b.

• Case 1a: ∆t−1(y) ≤ p ≤ b+∆t−1(y)
2

From Lemma A.2.1, bargainers with r ∈ [p−θ, 2(p−θ)] choose p∗o(p, r) = p−θ

and bargainers with even higher reservation price (i.e., 2(p−θ) < r < b) choose

po(p, r) = min[p, r
2
]. From Lemma A.2.2, the seller responds with a unilateral

counter-offer p∗ct(p, p
∗
o(p, r), y) = p regardless of the bargainer’s offer. As a

result, only bargainers with reservation price greater than p will buy and they

will buy at the original posted price p. Thus, we have

Kt(p, y) = p
b− p

b
and Bt(p, y) =

b− p

b
.
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Substituting these into equation (2.6), the expected revenue-to-go function for

a given posted price p, Jt(p, y) is

Jt(p, y) = Vt−1(y) + λq

[
b− p

b
p− b− p

b
∆t−1(y)

]
+ λ(1− q)

b− p

b
[p−∆t−1(y)]

= Vt−1(y) + λ
b− p

b
(p−∆t−1(y)).

Taking the derivative with respect to p, we observe

J ′
t(p, y) = λ

b− 2p + ∆t−1(y)

b
≥ 0 for all p ≤ b+∆t−1(y)

2
.

Thus Jt(p, y) is increasing in p up to p = b+∆t−1(y)
2

.

• Case 1b: b+∆t−1(y)
2

< p ≤ b+∆t−1(y)
2

+ θ

First, note that 2(p − θ) ≥ b + ∆t−1(y) − 2θ ≥ b ≥ b+∆t−1(y)
2

> 0. Applying

this to Lemma A.2.1, we notice that all bargainers with r ∈ [p − θ, b] choose

p∗o(p, r) = p − θ. From Lemma A.2.2, the seller responds with a counter-offer

p∗ct(p, p
∗
o(p, r), y) = b+∆t−1(y)

2
. As a result, bargainers with reservation price

greater than b+∆t−1(y)
2

will buy at price b+∆t−1(y)
2

. Thus, we have

Kt(p, y) =
b−∆t−1(y)

2b

b + ∆t−1(y)

2
and Bt(p, y) =

b−∆t−1(y)

2b
.

Substituting these into equation (2.6), we have

Jt(p, y) = Vt−1(y) + λq
[

b−∆t−1(y)
2b

b+∆t−1(y)
2

− b−∆t−1(y)
2b

∆t−1(y)
]

+λ(1− q)
b− p

b
[p−∆t−1(y)]

= Vt−1(y) + λq
(b−∆t−1(y))2

4b
+ λ(1− q)

b− p

b
[p−∆t−1(y)] .

Taking the derivative with respect to p, we observe

J ′
t(p, y) = λ(1− q)

b− 2p + ∆t−1(y)

b
< 0 for all p > b+∆t−1(y)

2
.

Thus Jt(p, y) is decreasing in p from p = b+∆t−1(y)
2

to p = b+∆t−1(y)
2

+ θ.
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• Case 1c: b+∆t−1(y)
2

+ θ < p ≤ b

Here the posted price is even larger than Case 1b and, once again from Lemma

A.2.1, all bargainers with r ∈ [p − θ, b] choose p∗o(p, r) = p − θ. From Lemma

A.2.2, the seller responds with a counter-offer p∗ct(p, p
∗
o(p, r), y) = p − θ. As a

result, bargainers with reservation price greater than p − θ will buy at price

p− θ. Thus, we have

Kt(p, y) =
b− p + θ

b
(p− θ) and Bt(p, y) =

b− p + θ

b
.

Substituting these into equation (2.6), we have

Jt(p, y) = Vt−1(y) + λq

[
b− p + θ

b
(p− θ)− b− p + θ

b
∆t−1(y)

]
+λ(1− q)

b− p

b
[p−∆t−1(y)] .

Taking the derivative with respect to p, we observe for all p > b+∆t−1(y)
2

+ θ

J ′
t(p, y) = λq

b− 2(p− θ) + ∆t−1(y)

b
+ λ(1− q)

b− 2p + ∆t−1(y)

b
< 0.

Thus Jt(p, y) is decreasing in p, p > b+∆t−1(y)
2

+ θ.

Combining three cases, it is easy to see that Jt(p, y) is increasing in p up to p =

b+∆t−1(y)
2

, then decreasing afterward. Thus, p∗t (y) = b+∆t−1(y)
2

.

Case 2: ∆t−1(y)
2

< θ ≤ b+∆t−1(y)
4

Similar to the previous case, we consider five different ranges of p: 2a) ∆t−1(y) ≤ p <

θ+ ∆t−1(y)
2

, 2b) θ+ ∆t−1(y)
2

≤ p < 2θ, 2c) 2θ ≤ p < b
2
+θ, 2d) b

2
+θ ≤ p ≤ b+∆t−1(y)

2
+θ,

and 2e) b+∆t−1(y)
2

+ θ < p ≤ b.

• Case 2a: ∆t−1(y) ≤ p < θ + ∆t−1(y)
2
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From Lemma A.2.1 and Lemma A.2.2, bargainers with r ∈ [p − θ, 2(p − θ)]

choose p∗o(p, r) = p − θ to which the seller responds with the counter-offer

p∗ct(p, p − θ, y) = ∆t−1(y). Bargainers with even higher reservation price (i.e.,

2(p − θ) < r < b) choose p∗o(p, r) = min[p, r
2
] to which the seller responds

with the counter-offer p∗ct(p, p
∗
o(p, r), y) = max[min[r, p], ∆t−1(y)]. As a result,

bargainers with reservation prices between ∆t−1(y) and p end up buying at their

reservation price and bargainers with r > p will buy at the original posted price

p. Thus, we have

Kt(p, y) =
p2 −∆2

t−1(y)

2b
+

b− p

b
p and Bt(p, y) =

b−∆t−1(y)

b
.

Substituting these into equation (2.6), the expected revenue-to-go function for

a given posted price p, Jt(p, y) is

Jt(p, y) = Vt−1(y) + λq

[
p2 −∆2

t−1(y)

2b
+ (

b− p

b
)p− b−∆t−1(y)

b
∆t−1(y)

]
+λ(1− q)

b− p

b
[p−∆t−1(y)] .

Taking the derivative with respect to p, we observe

J ′
t(p, y) = λq

b− p

b
+ λ(1− q)

b− 2p + ∆t−1(y)

b
.

Note that both terms are positive for p < θ + ∆t−1(y)
2

, thus Jt(p, y) is increasing

in p between [∆t−1(y), θ + ∆t−1(y)
2

).

• Case 2b: θ + ∆t−1(y)
2

≤ p < 2θ

Similar to Case 2a, bargainers with r ∈ [p− θ, 2(p− θ)] choose p∗o(p, r) = p− θ

and bargainers with 2(p − θ) < r < b choose p∗o(p, r) = min[p, r
2
]. Applying

Lemma A.2.2, the seller’s counter-offers are p∗ct(p, p − θ, y) = p − θ + ∆t−1(y)
2

to those with p∗o(p, r) = p − θ and p∗ct(p, p
∗
o(p, r), y) = min[r, p] to those with

p∗o(p, r) > p− θ.
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As a result, bargainers with r ∈ [p− θ + ∆t−1(y)
2

, 2(p− θ)] buy at p− θ + ∆t−1(y)
2

,

bargainers with r ∈ (2(p− θ), p] buy at their reservation price, and bargainers

with even higher reservation price buy at the original posted price p. Thus:

Kt(p, y) =
p− θ − ∆t−1(y)

2

b
(p− θ +

∆t−1(y)

2
) +

p2 − 4(p− θ)2

2b
+ (

b− p

b
)p

Bt(p, y) =
b− p + θ − ∆t−1(y)

2

b
.

Substituting these into equation (2.6), Jt(p, y) and J ′
t(p, y) are

Jt(p, y) = Vt−1(y)

+λq

[
p−θ−∆t−1(y)

2

b
(p− θ + ∆t−1(y)

2
) + p2−4(p−θ)2

2b

+ (
b− p

b
)p−

b− p + θ − ∆t−1(y)
2

b
∆t−1(y)

]
+λ(1− q)

b− p

b
[p−∆t−1(y)] and

J ′
t(p, y) = λq

b− 3p + 2θ + ∆t−1(y)

b
+ λ(1− q)

b− 2p + ∆t−1(y)

b
.

Note that both terms of J ′
t(p, y) are decreasing in p and positive at p = 2θ

(since b − 4θ + ∆t−1(y) > 0 by assumption.) Thus, Jt(p, y) is increasing in p

between [θ + ∆t−1(y)
2

, 2θ).

• Case 2c: 2θ ≤ p < b
2

+ θ

From Lemma A.2.1, bargainers with r ∈ [p−θ, 2(p−θ)] choose p∗o(p, r) = p−θ

and bargainers with even higher reservation price (i.e., p ≤ 2(p − θ) < r < b)

choose p∗o(p, r) = min[p, r
2
]. Facing these offers, the seller responds with the

counter-offer p∗ct(p, p − θ, y) = p − θ + ∆t−1(y)
2

to those with p∗o(p, r) = p − θ

and p∗ct(p, p
∗
o(p, r), y) = p to those with p∗o(p, r) > p− θ. As a result, bargainers

with r ∈ [p − θ + ∆t−1(y)
2

, 2(p − θ)] buy at p − θ + ∆t−1(y)
2

and bargainers with
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r > 2(p− θ) will buy at the original posted price p. Thus:

Kt(p, y) =
p− θ − ∆t−1(y)

2

b
(p− θ +

∆t−1(y)

2
) + (

b− 2(p− θ)

b
)p and

Bt(p, y) =
b− p + θ − ∆t−1(y)

2

b
.

Substituting these into equation (2.6), the expected revenue-to-go function for

a given posted price p, Jt(p, y) is

Jt(p, y) = Vt−1(y)

+λq

[
p−θ−∆t−1(y)

2

b
(p− θ + ∆t−1(y)

2
) + ( b−2(p−θ)

b
)p

−
b− p + θ − ∆t−1(y)

2

b
∆t−1(y)

]
+λ(1− q)

b− p

b
[p−∆t−1(y)] .

Since J ′′
t (p, y) = −(2λ/b) < 0, Jt(p, y) is concave. Furthermore, Taking the

derivative with respect to p, we observe

J ′
t(p, y)|p=2θ = λ

b− 4θ + ∆t−1(y)

b
≥ 0, and

J ′
t(p, y)|p= b

2
+θ = λ

−2θ + ∆t−1(y)

b
< 0.

Thus, Jt(p, y) is maximized at the solution of the first order condition, p =

b+∆t−1(y)
2

.

• Case 2d: b
2

+ θ ≤ p ≤ b+∆t−1(y)
2

+ θ

From the fact that 2(p − θ) ≥ b and Lemma A.2.1, all bargainers with r ∈

[p − θ, b] choose p∗o(p, r) = p − θ, to which the seller responds with a uni-

lateral counter-offer p∗ct(p, p
∗
o(p, r), y) = b+∆t−1(y)

2
(from Lemma A.2.2). Thus,

bargainers with r ≥ b+∆t−1(y)
2

buy at price b+∆t−1(y)
2

. Thus, we have

Kt(p, y) =
b−∆t−1(y)

2b

b + ∆t−1(y)

2
and Bt(p, y) =

b−∆t−1(y)

2b
.
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Substituting these into equation (2.6), Jt(p, y) and J ′(p, y) are

Jt(p, y) = Vt−1(y) + λq
[

b−∆t−1(y)
2b

b+∆t−1(y)
2

− b−∆t−1(y)
2b

∆t−1(y)
]

+λ(1− q)
b− p

b
[p−∆t−1(y)]

= Vt−1(y) + λq
(b−∆t−1(y))2

4b
+ λ(1− q)

b− p

b
[p−∆t−1(y)]

J ′
t(p, y) = λ(1− q)

b− 2p + ∆t−1(y)

b
< 0 for all p ≥ b

2
+ θ.

Thus Jt(p, y) is decreasing in p from p = b
2

+ θ to p = b+∆t−1(y)
2

+ θ.

• Case 2e: b+∆t−1(y)
2

+ θ < p ≤ b

If the posted price increases even further, all bargainers with r ∈ [p − θ, b]

choose p∗o(p, r) = p − θ by Lemma A.2.1. Applying Lemma A.2.2, the seller

accepts the buyer’s offer (i.e., p∗ct(p, p− θ, y) = p− θ). As a result, bargainers

with reservation price greater than p− θ will buy at price p− θ. Thus, we have

Kt(p, y) =
b− p + θ

b
(p− θ) and Bt(p, y) =

b− p + θ

b
.

Substituting these into equation (2.6), we have

Jt(p, y) = Vt−1(y) + λq

[
b− p + θ

b
(p− θ)− b− p + θ

b
∆t−1(y)

]
+λ(1− q)

b− p

b
[p−∆t−1(y)] .

Taking the derivative with respect to p, we observe for all p > b+∆t−1(y)
2

+ θ

J ′
t(p, y) = λq

b− 2(p− θ) + ∆t−1(y)

b
+ λ(1− q)

b− 2p + ∆t−1(y)

b
< 0.

Thus Jt(p, y) is decreasing in p for p > b+∆t−1(y)
2

+ θ.

Combining five cases, it is easy to see that Jt(p, y) is increasing in p upto p = b+∆t−1(y)
2

,

then decreasing afterward. Hence, p∗t (y) = b+∆t−1(y)
2

.
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Case 3: b+∆t−1(y)
4

< θ ≤ 2b−q∆t−1(y)
2(2−q)

Once again, we consider five sub-cases depending on the value of p: 3a) ∆t−1(y) ≤ p <

θ+ ∆t−1(y)
2

, 3b) θ+ ∆t−1(y)
2

≤ p < 2θ, 3c) 2θ ≤ p < b
2
+θ, 3d) b

2
+θ ≤ p ≤ b+∆t−1(y)

2
+θ,

and 3e) b+∆t−1(y)
2

+ θ < p ≤ b.

• Case 3a: ∆t−1(y) ≤ p < θ + ∆t−1(y)
2

This case is identical to Case 2a, thus Jt(p, y) is increasing in p between p ∈

[∆t−1(y), θ + ∆t−1(y)
2

).

• Case 3b: θ + ∆t−1(y)
2

≤ p < 2θ

For a given p, the bargainers’s offer and the seller’s counter-offer are identical

to those in Case 2b. Thus, we have

Kt(p, y) =
p− θ − ∆t−1(y)

2

b
(p− θ +

∆t−1(y)

2
) +

p2 − 4(p− θ)2

2b
+ (

b− p

b
)p

Bt(p, y) =
b− p + θ − ∆t−1(y)

2

b
.

Substituting these into equation (2.6), the expected revenue-to-go function for

a given posted price p, Jt(p, y) is

Jt(p, y) = Vt−1(y)

+λq

[
p−θ−∆t−1(y)

2

b
(p− θ + ∆t−1(y)

2
) + p2−4(p−θ)2

2b

+(
b− p

b
)p−

b− p + θ − ∆t−1(y)
2

b
∆t−1(y)

]
+λ(1− q)

b− p

b
[p−∆t−1(y)] .

Taking the derivative with respect to p, we observe

J ′
t(p, y) = λq

b− 3p + 2θ + ∆t−1(y)

b
+ λ(1− q)

b− 2p + ∆t−1(y)

b
.
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Note that Jt(p, y) is concave in p and the solution to the first order condition

is p∗ = b+2qθ+∆t−1(y)
2+q

. The feasibility of p∗ comes from the facts

p∗ − θ − ∆t−1(y)

2
=

2b− q∆t−1(y)− 2θ(2− q)

2(2 + q)
≥ 0 since θ ≤ 2b−q∆t−1(y)

2(2−q)
,

p∗ − 2θ =
b + ∆t−1(y)− 4θ

2 + q
< 0 since θ > b+∆t−1(y)

4
.

Thus, Jt(p, y) is maximized at p∗ = b+2qθ+∆t−1(y)
2+q

.

• Case 3c: 2θ ≤ p < b
2

+ θ

For a given p, the bargainers’s offer and the seller’s counter-offer are identical

to those in Case 2c. Thus, we have

Kt(p, y) =
p−θ−∆t−1(y)

2

b
(p−θ+ ∆t−1(y)

2
)+( b−2(p−θ)

b
)p and Bt(p, y) =

b−p+θ−∆t−1(y)

2

b
.

Substituting these into equation (2.6), the expected revenue-to-go function for

a given posted price p, Jt(p, y) is

Jt(p, y) = Vt−1(y)

+λq

[
p−θ−∆t−1(y)

2

b
(p− θ + ∆t−1(y)

2
)

+(
b− 2(p− θ)

b
)p−

b− p + θ − ∆t−1(y)
2

b
∆t−1(y)

]
+λ(1− q) b−p

b
[p−∆t−1(y)] .

Taking the derivative with respect to p, we observe

J ′
t(p, y) = λ

b− 2p + ∆t−1(y)

b
.

If p ≥ 2θ, then p > b+∆t−1(y)
2

, then J ′
t(p, y) < 0. Hence, Jt(p, y) is decreasing in

p between [2θ, b
2

+ θ).

• Case 3d: b
2

+ θ ≤ p ≤ b+∆t−1(y)
2

+ θ
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This case is identical to Case 2d. Applying identical algebra, it is easy to see

that Jt(p, y) is decreasing in p ∈ [ b
2

+ θ, b+∆t−1(y)
2

+ θ].

• Case 3e: b+∆t−1(y)
2

+ θ < p ≤ b

This case is identical to Case 2e, thus Jt(p, y) is decreasing in p ∈ ( b+∆t−1(y)
2

, b].

Combining all five cases, we note that Jt(p, y) is increasing in p up to p = b+2qθ+∆t−1(y)
2+q

,

then decreasing afterward. Thus, p∗t (y) = b+2qθ+∆t−1(y)
2+q

.

Case 4: θ > 2b−q∆t−1(y)
2(2−q)

We divide into sub-cases depending on the value of p: 4a) ∆t−1(y) ≤ p < θ + ∆t−1(y)
2

and 4b) θ + ∆t−1(y)
2

≤ p ≤ b.

• Case 4a: ∆t−1(y) ≤ p < θ + ∆t−1(y)
2

From Lemma A.2.1, bargainers with r ∈ [p − θ, 2(p − θ)] choose p∗o(p, r) =

p − θ to which the seller responds with the counter-offer p∗ct(p, p − θ, y) =

∆t−1(y). Bargainers with even higher reservation price (i.e., 2(p − θ) < r <

b) choose p∗o(p, r) = min[p, r
2
] to which the seller responds with the counter-

offer p∗ct(p, p
∗
o(p, r), y) = max[min[r, p], ∆t−1(y)]. As a result, bargainers with

reservation price between ∆t−1(y) and p end up buying at their reservation

price and bargainers with r > p will buy at the original posted price p. This

case is identical to Case 2a. Thus, we have

Jt(p, y) = Vt−1(y) + λq

[
p2 −∆2

t−1(y)

2b
+ (

b− p

b
)p− b−∆t−1(y)

b
∆t−1(y)

]
+λ(1− q)

b− p

b
[p−∆t−1(y)] and

J ′
t(p, y) = λq

b− p

b
+ λ(1− q)

b− 2p + ∆t−1(y)

b
.
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Note that Jt(p, y) is concave in p and the solution to the first order condition

is p∗ = b+(1−q)∆t−1(y)
2−q

. The feasibility of p∗ comes from the facts

p∗ −∆t−1(y) =
b−∆t−1(y)

2− q
≥ 0

p∗ − θ − ∆t−1(y)

2
=

2b− q∆t−1(y)

2(2− q)
− θ < 0.

Thus, Jt(p, y) is maximized at p∗ = b+(1−q)∆t−1(y)
2−q

.

• Case 4b: θ+ ∆t−1(y)
2

≤ p ≤ b For a given p, the bargainers’s offer and the seller’s

counter-offer are identical to those in Case 2b. Thus, we have

Jt(y, p) = Vt−1(y)

+λq

[
p−θ−∆t−1(y)

2

b
(p− θ + ∆t−1(y)

2
) + p2−4(p−θ)2

2b

+(
b− p

b
)p−

b− p + θ − ∆t−1(y)
2

b
∆t−1(y)

]
+λ(1− q) b−p

b
[p−∆t−1(y)] , and

J ′
t(y, p) = λq

b− 3p + 2θ + ∆t−1(y)

b
+ λ(1− q)

b− 2p + ∆t−1(y)

b
.

Note that J ′
t(y, p) evaluated at p = θ + ∆t−1(y)

2
is given by

J ′
t(y, p)|

p=θ+
∆t−1(y)

2

= λq
b− θ − ∆t−1(y)

2

b
+ λ(1− q)

b− 2θ

b

=
λ

b

(
qθ + b− 2θ − q∆t−1(y)

2

)
< 0,

where the inequality comes from θ > 2b−q∆t−1(y)
2(2−q)

. Since J ′
t(y, p) is decreasing p,

we conclude that Jt(y, p) is decreasing in p for p ≥ θ + ∆t−1(y)
2

.

Combining two cases, it is easy to see that Jt(y, p) is increasing in p up to p =

b+(1−q)∆t−1(y)
2−q

, then decreasing afterward. Thus, p∗t (y) = b+(1−q)∆t−1(y)
2−q

.
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Proof of Lemma 2.4.2

Note that, the optimal posted price described in Lemma 2.4.1, p∗t (y) is always greater

than or equal to b
2
. It is easy to see that p∗t (y) ≥ b

2
for the first and third cases of

Lemma 2.4.1. For the second case, note that

p∗t (t)−
b

2
=

b + 2qθ + ∆t−1(y)

2 + q
− b

2
=

4qθ + 2∆t−1(y)− bq

2(2 + q)
.

Since θ > b+∆t−1(y)
4

, it follows that p∗t (y) ≥ b
2
. Therefore, for any r ∈ [0, b], we have

r ≤ 2p∗t (y). The result now follows by letting p = p∗t (y) in Lemma A.2.1.

Proof of Lemma 2.4.3

We consider four cases as in the proof of Lemma 2.4.1.

Case 1: θ ≤ ∆t−1(y)
2

In this case, the optimal posted price p∗t (y) = b+∆t−1(y)
2

by Lemma 2.4.1(a). Using

simple algebra, it is easy to check 2(p∗t (y) − θ) ≥ b. Thus, from Lemma 2.4.2,

all bargainers with r ≥ p∗t (y) − θ offer p∗o(p
∗
t (y), r) = p∗t (y) − θ. To this offer,

the seller responds with the counter-offer p∗ct(p
∗
t (y), p∗t (y) − θ, y) = p∗t (y) by letting

p = p∗t (y) = b+∆t−1(y)
2

from Lemma A.2.2.

Case 2: ∆t−1(y)
2

< θ ≤ b+∆t−1(y)
4

:

The optimal posted price is again p∗t (y) = b+∆t−1(y)
2

by Lemma 2.4.1(a). We first note

that p∗t (y) ≤ 2(p∗t (y) − θ) < b where the first inequality comes from θ ≤ b+∆t−1(y)
4

and the second inequality from ∆t−1(y)
2

< θ. Hence, by Lemma 2.4.2, bargainers

with r ∈ [p∗t (y) − θ, 2(p∗t (y) − θ)] offer p∗o(p
∗
t (y), r) = p∗t (y) − θ and bargainers with

r ∈ (2(p∗t (y)− θ), b] offer p∗o(p
∗
t (y), r) = r

2
.

To determine the seller’s optimal counter-offer to bargainers with p∗o(p
∗
t (y), r) =

p∗t (y) − θ, we let p∗t (y) = b+∆t−1(y)
2

in Lemma A.2.2 and note that ∆t−1(y)
2

< θ ≤
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b+∆t−1(y)
4

≤ b
2

implies that

∆t−1(y) ≤ p∗t (y)− θ + ∆t−1(y)
2

= b+∆t−1(y)
2

− θ + ∆t−1(y)
2

< p∗t (y) = b+∆t−1(y)
2

.

Thus,

p∗ct(p
∗
t (y), p∗t (y)− θ, y)

= max
{

min{p∗t (y), 2(p∗t (y)− θ), p∗t (y)− θ + ∆t−1(y)
2

}, ∆t−1(y)
}

= p∗t (y)− θ +
∆t−1(y)

2
.

To determine the seller’s optimal counter-offer to bargainers with p∗o(p
∗
t (y), r) = r

2
,

note that these offers are made by bargainers with r ≥ 2(p∗t (y)− θ). Also note that,

in this case, 2(p∗t (y)− θ) ≥ p∗t (y). Thus, from Lemma A.2.2

p∗ct(p
∗
t (y), r/2, y) = max {min{r, p∗t (y)}, ∆t−1(y)} = p∗t (y).

Case 3: b+∆t−1(y)
4

< θ ≤ 2b−q∆t−1(y)
2(2−q)

:

The optimal posted price is p∗t (y) = b+2qθ+∆t−1(y)
2+q

by Lemma 2.4.1(b). We first

note that 2(p∗t (y)−θ) < p∗t (y) < b where the first inequality comes from θ > b+∆t−1(y)
4

and the second inequality from Lemma A.2.3. Hence, by Lemma 2.4.2, bargainers

with r ∈ [p∗t (y) − θ, 2(p∗t (y) − θ)] offer p∗o(p
∗
t (y), r) = p∗t (y) − θ and bargainers with

r ∈ (2(p∗t (y)− θ), b] offer p∗o(p
∗
t (y), r) = r

2
.

To determine the seller’s optimal counter-offer to bargainers with p∗o(p
∗
t (y), r) =

p∗t (y)− θ, we let p∗t (y) = b+2qθ+∆t−1(y)
2+q

in Lemma A.2.2 and note that θ ≤ 2b−q∆t−1(y)
2(2−q)

implies that

∆t−1(y) ≤ p∗t (y)− θ + ∆t−1(y)
2

≤ 2(p∗t (y)− θ).
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Thus,

p∗ct(p
∗
t (y), p∗t (y)− θ, y)

= max
{

min{p∗t (y), 2(p∗t (y)− θ), p∗t (y)− θ + ∆t−1(y)
2

}, ∆t−1(y)
}

= p∗t (y)− θ +
∆t−1(y)

2
.

To determine the seller’s optimal counter-offer to bargainers with p∗o(p
∗
t (y), r) = r

2
,

we first note that these offers are from bargainers with r such that r ≥ 2(p∗t (y)− θ).

Furthermore, in this case, ∆t−1(y) ≤ 2(p∗t (y) − θ) as shown above. Hence, from

Lemma A.2.2, we have

p∗ct(p
∗
t (y), r/2, y) = max {min{r, p∗t (y)}, ∆t−1(y)} =


r if r < p∗t (y);

p∗t (y) if r ≥ p∗t (y).

Case 4: θ > 2b−q∆t−1(y)
2(2−q)

:

The optimal posted price is p∗t (y) = b+(1−q)∆t−1(y)
2−q

by Lemma 2.4.1(c). We first

note that 2(p∗t (y) − θ) < p∗t (y) < b where the first inequality comes from θ >

2b−q∆t−1(y)
2(2−q)

> ∆t−1(y)
2

and the second inequality from Lemma A.2.3. Hence, by Lemma

2.4.2, bargainers with r ∈ [p∗t (y)− θ, 2(p∗t (y)− θ)] offer p∗o(p
∗
t (y), r) = p∗t (y)− θ and

bargainers with r ∈ (2(p∗t (y)− θ), b] offer p∗o(p
∗
t (y), r) = r

2
.

To determine the seller’s optimal counter-offer to bargainers with p∗o(p
∗
t (y), r) =

p∗t (y)− θ, we let p∗t (y) = b+(1−q)∆t−1(y)
2−q

in Lemma A.2.2 and note that θ > 2b−q∆t−1(y)
2(2−q)

implies that

2(p∗t (y)− θ) < p∗t (y)− θ + ∆t−1(y)
2

< ∆t−1(y).
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Thus,

p∗ct(p
∗
t (y), p∗t (y)− θ, y)

= max
{

min{p∗t (y), 2(p∗t (y)− θ), p∗t (y)− θ + ∆t−1(y)
2

}, ∆t−1(y)
}

= ∆t−1(y).

To determine the seller’s optimal counter-offer to bargainers with p∗o(p
∗
t (y), r) = r

2
,

we first note that these offers are from bargainers with r such that r ≥ 2(p∗t (y)− θ).

However, in this case, 2(p∗t (y) − θ) < ∆t−1(y) as shown above. As a result, the

seller responds with the counter-offer p∗ct(p
∗
t (y), r/2, y) = ∆t−1(y) if r < ∆t−1(y), and

p∗ct(p
∗
t (y), r/2, y) = min[r, p∗t (y)] if r ≥ ∆t−1(y). Hence, from Lemma A.2.2, we have

p∗ct(p
∗
t (y), r/2, y)

= max {min{r, p∗t (y)}, ∆t−1(y)} =



∆t−1(y) if r < ∆t−1(y);

r if ∆t−1(y) ≤ r < p∗t (y);

p∗t (y) if r ≥ p∗t (y).

Lemma A.2.1. Under Assumption 3, given arbitrary posted price p, the optimal

offer of a bargainer with reservation price r given is

p∗o(p, r) =



p− θ if p− θ ≤ r ≤ 2(p− θ);

r
2

if 2(p− θ) < r ≤ 2p;

p if r > 2p.

(A.7)

Proof of Lemma A.2.1

Note that under Assumption 3, S(po, r) = (r − po)
po

p
, thus the unconstrained opti-

mizer p̄o(r) is r
2
. Applying this to equation (2.3), we obtain ρ(x) = 2x. The result
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now follows from Lemma 2.3.2.

Lemma A.2.2. Let p∗ct(p, po, y) denote the optimal counter-offer when the seller has

y units of inventory in period t given a customer offer po in response to an arbitrary

posted price p ≥ ∆t−1(y). Then:

p∗ct(p, po, y) =


max

{
min{p, max{p− θ,

b + ∆t−1(y)

2
}}, ∆t−1(y)

}
if po = p− θ and 2(p− θ) > b;

max

{
min{p, 2(p− θ), p− θ +

∆t−1(y)

2
}, ∆t−1(y)

}
if po = p− θ and 2(p− θ) ≤ b;

max {min{2po, p}, ∆t−1(y)} if po > p− θ.

Proof of Lemma A.2.2

Throughout the proof, recall that ρ(x) = 2x under Assumption 3. If po > p− θ, the

result follows from Lemma 2.3.5. Consider the case where po = p − θ. Then, under

Assumption 3, Zt(pc, y) given by (2.7) reduces to

Zt(pc, y) =



min{b,2(p−θ)}−pc

min{b,2(p−θ)}−(p−θ)
(pc + Vt−1(y − 1))

+
(

pc−(p−θ)
min{b,2(p−θ)}−(p−θ)

)
Vt−1(y) if pc ≤ 2(p− θ);

0 if pc > 2(p− θ).

We divide into two cases, (i) 2(p− θ) > b, and (ii) 2(p− θ) ≤ b.

(i)If 2(p−θ) > b, then we have arg maxpc{Zt(pc, y)} = b+∆t−1(y)
2

. Therefore, pct(y),

defined as arg max{Zt(pc, y)|p−θ ≤ pc ≤ min[p, ρ(p−θ)]}, is given by min{p, max{p−

θ, b+∆t−1(y)
2

}}. (To verify this claim, recall that Zt(pc, y) is unimodal in pc by Lemma

2.3.4 and note that b ≥ ∆t−1(y) by Lemma A.2.3(b).) This observation along with

Lemma 2.3.5 yields

p∗ct(p, po, y) = max

{
min{p, max{p− θ,

b + ∆t−1(y)

2
}}, ∆t−1(y)

}
.
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(ii)If 2(p−θ) ≤ b, then we have arg maxpc{Zt(pc, y)} = p−θ+ ∆t−1(y)
2

. Therefore,

pct(y) = min{p, 2(p− θ), p− θ + ∆t−1(y)
2

}. This along with Lemma 2.3.5 yields

p∗ct(p, po, y) = max

{
min{p, 2(p− θ), p− θ +

∆t−1(y)

2
}, ∆t−1(y)

}
.

Lemma A.2.3. Let p∗t (y) denote the optimal posted price when the firm has y units

of inventory in period t and F (·) is uniform over [0, b]. Then:

(a) p∗t (y) ≤ b.

(b) ∆t−1(y) ≤ b for any t and y.

Proof of Lemma A.2.3

Suppose p > b in period t with y units in inventory. We will show that setting the

posted price to b will not worsen the seller’s expected revenue-to-go, which allows us

to conclude that p∗t (y) ≤ b.

Consider first the case where p ∈ (b, b + θ]. When p ∈ (b, b + θ], no price-taker

will buy and, thus, the seller’s expected revenue in period t from a price-taker is

zero. From Lemmas A.2.1 and A.2.2, bargainers with r ∈ [p − θ, min[2(p − θ), b]]

make an offer of p− θ and receive a counter-offer equal to some p̂c where p̂c ≥ p− θ;

bargainers with r ∈ [min[2(p − θ), b], b] (if such an interval exists) make an offer of

r/2 and receive a counter-offer of r. Therefore, Jt(p, y) is given by

Jt(p, y) = Vt−1(y) + λq [Kt(p, y)−Bt(p, y)(Vt−1(y)− Vt−1(y − 1))]

= Vt−1(y) + λq
[

min[2(p−θ),b]−p̂c

b
p̂c +

∫ b

min[2(p−θ),b]
x1

b
dx

−F (p̂c)(Vt−1(y)− Vt−1(y − 1))
]
.

Suppose now we set the posted price to b. No price-taker will buy and, thus,

the seller’s expected revenue in period t from a price-taker is zero. Once again,

from Lemma A.2.1, bargainers with r ∈ [b − θ, min[2(b − θ), b]] make an offer of
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b − θ and bargainers with r ∈ [min[2(b − θ), b], b] (if such an interval exists) make

an offer of r/2. Suppose the seller is using the following counter-offer strategy,

which is not necessarily optimal: All bargainers who offer b − θ receive a counter-

offer of p̂c; all bargainers with r ∈ [min[2(b − θ), b], min[2(p − θ), b]] also receive

a counter-offer of p̂c; bargainers with r ∈ [min[2(p − θ), b], b] (if such an interval

exists) receive a counter-offer of r. Note that under this counter-offer strategy, no

bargainers with r ∈ [b− θ, p− θ) will buy as p̂c ≥ p− θ. As a result, bargainers with

r ∈ [p̂c, min[2(p−θ), b]] will buy at p̂c and bargainers with r ∈ [min[2(p−θ), b], b] buy

at r. Let J̃t(b, y) denote the expected revenue-to-go of a seller using this counter-offer

strategy under posted price b. Then,

J̃t(b, y) = Vt−1(y)

+λq

[
min[2(p− θ), b]− p̂c

b
p̂c +

∫ b

min[2(p−θ),b]

x
1

b
dx

−F (p̂c)(Vt−1(y)− Vt−1(y − 1))
]

= Jt(p, y).

Since the counter-offer strategy resulting in J̃t(b, y) is not necessarily optimal, we

have Jt(b, y) ≥ J̃t(b, y) = Jt(p, y). Thus, the seller can do at least as well with the

posted price b as it does with the posted price p.

Now consider the case when p > b + θ. In this case, neither a bargainer nor a

price-taker will buy the product in period t. Thus, Jt(p, y) = Vt−1(y). Using a logic

similar to the previous case, it can be shown that Jt(b, y) ≥ Jt(p, y); the seller can

do at least as well with posted price b as it does with posted price b..

Finally, part (b) follows from Lemma 2.3.3 and part (a) of the lemma; ∆t−1(y) ≤

p∗t (y) ≤ b.
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A.3 Proofs of Propositions 2.4.1 through 2.4.3, and Corol-
lary 2.4.1 in Section 2.4

Here, we prove Propositions 2.4.1 through 2.4.3 and Corollary 2.4.1 in Section

2.4.

Proof of Proposition 2.4.1

One can check from equation (2.10) that pTL
t (y) = b+∆t−1(y)

2
under Assumption 3.

We next compare pTL
t (y) with p∗t (y) given by Lemma 2.4.1.

(i)If θ ≤ b+∆t−1(y)
4

, then p∗t (y) = pTL
t (y) by Lemma 2.4.1(a).

(ii)If b+∆t−1(y)
4

< θ ≤ 2b−q∆t−1(y)
2(2−q)

, then, from Lemma 2.4.1(b), we have

p∗t (y)− pTL
t (y) =

b + 2qθ + ∆t−1(y)

2 + q
− b + ∆t−1(y)

2
=

q(4θ − b−∆t−1(y))

2(2 + q)
> 0

where the inequality follows from the condition θ > b+∆t−1(y)
4

. Furthermore,

p∗t (y)− pTL
t (y)− θ =

2qθ − bq − q∆t−1(y)− 4θ

2(2 + q)
≤ 0.

Hence, pTL
t (y) < p∗t (y) ≤ pTL

t (y) + θ.

(iii)If θ > 2b−q∆t−1(y)
2(2−q)

, then, from Lemma 2.4.1(c), we have

p∗t (y)− pTL
t (y) =

b + (1− q)∆t−1(y)

2− q
− b + ∆t−1(y)

2
=
−q∆t−1(y) + bq

2(2− q)
≥ 0

where the inequality follows from the fact that b ≥ ∆t−1(y). Furthermore,

p∗t (y)− pTL
t (y)− θ =

−q∆t−1(y) + bq

2(2− q)
− θ ≤ 0

where the inequality follows from the condition that θ > 2b−q∆t−1(y)
2(2−q)

. Hence, pTL
t (y) <

p∗t (y) ≤ pTL
t (y) + θ.

Proof of Proposition 2.4.2

Consider a policy where the seller uses a take-it-or-leave-it price p in period t with



102

y units of inventory and follows the optimal negotiation policy from period t − 1

onward. We define the expected revenue of the seller using such policy as follows:

J̃t(p, y) = λF (p)p + λF (p)Vt−1(y − 1) + (1− λF (p))Vt−1(y).

Note that V TL
t (y) = maxp J̃t(p, y). Notice that J̃t(p, y) can be rewritten as

J̃t(p, y) = Vt−1(y) + λq[pF̄ (p)− F̄ (p)(Vt−1(y)− Vt−1(y − 1))]

+λ(1− q)[pF̄ (p)− F̄ (p)(Vt−1(y)− Vt−1(y − 1))]

Thus, J̃t(p, y) is also the expected revenue of a seller who sets a posted price p in

period t with y units of inventory and whose counter-offer to any bargainer’s offer

in period t is simply the posted price p itself. This counter-offer is one of many

counter-offers that the seller can choose whereas Kt(p, y) and Bt(p, y) correspond to

the optimal counter-offer strategy for a given posted price p, thus

Jt(p, y)− J̃t(p, y) = λq[Kt(p, y)−Bt(p, y)(Vt−1(y)− Vt−1(y − 1))]

−λq[pF̄ (p)− F̄ (p)(Vt−1(y)− Vt−1(y − 1))] ≥ 0.

Therefore, from the definitions of p∗t (y) (the optimal posted price under negotiation)

and pTL
t (y) (the optimal posted price when negotiation is not allowed only in period

t), we have

Vt(y) = Jt(p
∗
t (y), y) ≥ Jt(p

TL
t (y), y) ≥ J̃t(p

TL
t (y), y) = V TL

t (y).

Proof of Corollary 2.4.1

For the purposes of this proof, define V R
t (y), the optimal expected revenue of the

seller using take-it-or-leave-it pricing throughout the remaining t periods, i.e.,

V R
t (y) = max

p

{
λF (p)p + λF (p)V R

t−1(y − 1) + (1− λF (p))V R
t−1(y)

}
,

y > 0, t = 1, . . . , T

V R
0 (y) = 0 for y ≥ 0, and V R

t (0) = 0 for t = 1, . . . , T
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We would like to prove that Vt(y) ≥ V R
t (y). The proof is by induction on t. The

result holds trivially when t = 0. Suppose Vk(y) ≥ V R
k (y), k ≤ t for some t ≥ 0. We

will prove that Vt+1(y) ≥ V R
t+1(y). We first rearrange terms in Vt+1(y):

Vt+1(y) = Vt(y) + max
p


λq [Kt+1(p, y)−Bt+1(p, y)(Vt(y)− Vt(y − 1))]

+λ(1− q)F (p) [p− (Vt(y)− Vt(y − 1))]



= max
p



λ
(
qKt+1(p, y) + (1− q)F (p)p

)
+λVt(y − 1)

[
qBt+1(p, y) + (1− q)F (p)

]

+Vt(y)
[
1− λ(qBt+1(p, y) + (1− q)F (p))

]


.

From the induction hypothesis Vt(y) ≥ V R
t (y), we have

Vt+1(y) ≥ max
p



λ
(
qKt+1(p, y) + (1− q)F (p)p

)
+λV R

t (y − 1)
[
qBt+1(p, y) + (1− q)F (p)

]

+V R
t (y)

[
1− λ(qBt+1(p, y) + (1− q)F (p))

]



= V R
t (y) + max

p


λq

[
Kt+1(p, y)−Bt+1(p, y)(V R

t (y)− V R
t (y − 1))

]

+λ(1− q)F (p)
[
p− (V R

t (y)− V R
t (y − 1))

]


Note that Kt(p, y) and Bt(p, y) correspond to the optimal counter-offer strategy for

given posted price p, thus the resultant expected revenue to go function is greater

than or equal to the revenue under the policy where the seller’s counter-offer is set
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to the posted price p regardless of the bargainer’s offer. Hence,

Vt+1(y) ≥ V R
t (y) + max

p


λqF (p)

[
p− (V R

t (y)− V R
t (y − 1))

]

+λ(1− q)F (p)
[
p− (V R

t (y)− V R
t (y − 1))

]


= V R

t+1(y)

Proof of Proposition 2.4.3

Note that price-takers are not better-off since pTL
t (y) ≤ p∗t (y) ≤ pTL

t (y) + θ by

Proposition 2.4.1. Hence, we focus on the bargainers and compare the price that a

bargainer pays with pTL
t (y) = b+∆t−1(y)

2
.

(i) If θ ≤ ∆t−1(y)
2

, then p∗t (y) = pTL
t (y). Note that by Lemmas 2.4.2 and 2.4.3,

bargainers with r ∈ [p∗t (y), b] pay p∗t (y) = pTL
t (y) . Hence, bargainers are not better

off.

(ii) If ∆t−1(y)
2

< θ ≤ b+∆t−1(y)
4

, then p∗t (y) = pTL
t (y). By Lemmas 2.4.2 and 2.4.3,

bargainers with r > 2(p∗t (y) − θ) pay p∗t (y) ≥ pTL
t (y) and thus are not better off;

bargainers with r ∈ [p∗t (y) − θ + ∆t−1(y)
2

, 2(p∗t (y) − θ)] pay p∗t (y) − θ + ∆t−1(y)
2

=

pTL
t (y) − θ + ∆t−1(y)

2
< pTL

t (y) since θ > ∆t−1(y)
2

. Therefore, bargainers with r ∈

[p∗t (y)− θ + ∆t−1(y)
2

, 2(p∗t (y)− θ)] are better off.

(iii) If b+∆t−1(y)
4

< θ ≤ 2b−q∆t−1(y)
2(2−q)

, then p∗t (y) = b+2qθ+∆t−1(y)
2+q

. By Lemmas 2.4.2

and 2.4.3, bargainers with r > p∗t (y) pay p∗t (y) ≥ pTL
t (y) and thus are not better off;

bargainers with r ∈ (2(p∗t (y) − θ), p∗t (y)] pay r, and are not better off; bargainers

with r ∈ [p∗t (y)− θ + ∆t−1(y)
2

, 2(p∗t (y)− θ)] pay p∗t (y)− θ + ∆t−1(y)
2

. We observe

p∗t (y)− θ +
∆t−1(y)

2
− pTL

t (y) =
2qθ + 2∆t−1(y)− 4θ − bq

2(2 + q)
< 0

where the inequality follows from θ > b+∆t−1(y)
4

> ∆t−1(y)
2

. Hence, bargainers with

r ∈ [p∗t (y)− θ + ∆t−1(y)
2

, 2(p∗t (y)− θ)] are better off.
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(iv) If θ > 2b−q∆t−1(y)
2(2−q)

, then p∗t (y) = b+(1−q)∆t−1(y)
2−q

. By Lemmas 2.4.2 and 2.4.3,

bargainers with r > p∗t (y) pay p∗t (y) ≥ pTL
t (y), and thus are not better off; bargainers

with r ∈ [∆t−1(y), p∗t (y)] pay r, and thus are not better off.
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A.4 Proofs of Propositions 2.4.4 through 2.4.6 in Section 2.4

Here, we prove Propositions 2.4.4 through 2.4.6 in Section 2.4. The proof of

Proposition 2.4.6 utilizes Lemma A.4.1, which is stated and proven at the end of

Appendix A.4.

Proof of Proposition 2.4.4

In order to prove that p∗t (y) is non-decreasing in θ, we first use Lemma 2.4.1 and the

following equalities to note that p∗t (y) is continuous in θ.

b + 2qθ + ∆t−1(y)

2 + q

∣∣∣∣
θ=

b+∆t−1(y)

4

=
b + ∆t−1(y)

2
, and

b + (1− q)∆t−1(y)

2− q

∣∣∣∣
θ=

2b−q∆t−1(y)

2(2−q)

=
b + 2qθ + ∆t−1(y)

2 + q
.

Now, note from Lemma 2.4.1 that p∗t (y) is constant with respect to θ when θ ≤
b+∆t−1(y)

4
, increasing in θ when θ ∈ ( b+∆t−1(y)

4
, 2b−q∆t−1(y)

2(2−q)
] and constant with respect

to θ when θ > 2b−q∆t−1(y)
2(2−q)

. Hence, p∗t (y) is non-decreasing in θ.

In order to prove that p∗t (y) is non-decreasing in q, we consider two cases:

Case 1: θ ≤ b+∆t−1(y)
4

: Note from Lemma 2.4.1 that if θ ≤ b+∆t−1(y)
4

, then p∗t (y) is

constant with respect to q and the result holds trivially.

Case 2: θ > b+∆t−1(y)
4

: First, note that θ < 2b−q∆t−1(y)
2(2−q)

if and only if q > 4θ−2b
2θ−∆t−1(y)

.

Hence, from Lemma 2.4.1, we can write:

p∗t (y) =


b+(1−q)∆t−1(y)

2−q
if q ≤ 4θ−2b

2θ−∆t−1(y)
;

b+2qθ+∆t−1(y)
2+q

if q > 4θ−2b
2θ−∆t−1(y)

.

We note from the above equality that p∗t (y) is continuous in q (the fact comes

from b+2qθ+∆t−1(y)
2+q

∣∣∣
q= 4θ−2b

2θ−∆t−1(y)

= b+(1−q)∆t−1(y)
2−q

). Furthermore, it is easy to check

that b+(1−q)∆t−1(y)
2−q

is non-decreasing in q (by taking the derivative with respect to
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q and noting that b ≥ ∆t−1(y) by Lemma A.2.3(b)). Similarly, one can check

that b+2qθ+∆t−1(y)
2+q

is non-decreasing in q (by taking the derivative and noting that

θ > b+∆t−1(y)
4

). Hence, p∗t (y) is non-decreasing in q.

Proof of Proposition 2.4.5

We first prove the result for θ. From the proof of Lemma 2.4.1, it can be verified

that the optimal expected revenue-to-go Vt(y) = Jt(p
∗
t (y), y) depends on θ and takes

one of the following four forms.

(i) 0 ≤ θ ≤ ∆t−1(y)
2

:

Jt(p
∗
t (y), y) = Vt−1(y) + λq

[
b− p∗t (y)

b
p∗t (y)− b− p∗t (y)

b
∆t−1(y)

]
+λ(1− q)

b− p∗t (y)

b
[p∗t (y)−∆t−1(y)]

(ii) ∆t−1(y)
2

< θ ≤ b+∆t−1(y)
4

:

Jt(p
∗
t (y), y) = Vt−1(y) + λ(1− q)

b−p∗t (y)

b
[p∗t (y)−∆t−1(y)]

+λq

[
p∗t (y)−θ−∆t−1(y)

2

b
(p∗t (y)− θ + ∆t−1(y)

2
)

+ (
b−2(p∗t (y)−θ)

b
)p∗t (y)− b−p∗t (y)+θ−∆t−1(y)

2

b
∆t−1(y)

]
(iii) b+∆t−1(y)

4
< θ ≤ 2b−q∆t−1(y)

2(2−q)
:

Jt(p
∗
t (y), y) = Vt−1(y) + λ(1− q)

b−p∗t (y)

b
[p∗t (y)−∆t−1(y)]

+λq


p∗t (y)−θ−∆t−1(y)

2

b
(p∗t (y)− θ + ∆t−1(y)

2
) +

(p∗t (y))2−4(p∗t (y)−θ)2

2b

+(
b−p∗t (y)

b
)p∗t (y)− b−p∗t (y)+θ−∆t−1(y)

2

b
∆t−1(y)


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(iv) θ > 2b−q∆t−1(y)
2(2−q)

Jt(p
∗
t (y), y) = Vt−1(y) + λ(1− q)

b−p∗t (y)

b
[p∗t (y)−∆t−1(y)]

+λq
[

(p∗t (y))2−∆2
t−1(y)

2b
+ (

b−p∗t (y)

b
)p∗t (y)− b−∆t−1(y)

b
∆t−1(y)

]
For each of the four cases, we substitute the corresponding p∗t (y) from Lemma

2.4.1 and take the derivative with respect to θ:

dJt(p
∗
t (y), y)

dθ
=



0 for 0 ≤ θ ≤ ∆t−1(y)
2

;

λq
b
(2θ −∆t−1(y)) > 0 for ∆t−1(y)

2
< θ ≤ b+∆t−1(y)

4
;

λq
b
(2b+2qθ−4θ−q∆t−1(y)

2+q
) ≥ 0 for b+∆t−1(y)

4
< θ ≤ 2b−q∆t−1(y)

2(2−q)
;

0 for θ > 2b−q∆t−1(y)
2(2−q)

.

(A.8)

where the first and second inequalities follow from ∆t−1(y)
2

< θ and θ ≤ 2b−q∆t−1(y)
2(2−q)

,

respectively. Therefore, Jt(p
∗
t (y), y) is non-decreasing in each of the four regions

above. Finally, by substituting the values of θ at the boundaries of the four cases

above, it can be shown that Jt(p
∗
t (y), y) is continuous in θ. Hence, Jt(p

∗
t (y), y) is

non-decreasing in θ.

The result that Jt(p
∗
t (y), y) is non-decreasing in q can be shown following a similar

logic, thus omitted.

Proof of Proposition 2.4.6

We first prove that p∗t (y) is non-decreasing in ∆t−1(y). We then use this fact and

Lemma A.4.1 to conclude the proof. Throughout the proof, recall that ∆t−1(y) ∈

[0, b]. Consider three cases: θ ≤ b
4
, b

4
< θ ≤ b

2−q
and θ > b

2−q
.
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Case 1: θ ≤ b
4
: In this case, for all ∆t−1(y) ∈ [0, b], we have θ ≤ b+∆t−1(y)

4
. Hence,

p∗t (y) = b+∆t−1(y)
2

for all ∆t−1(y) ∈ [0, b] by Lemma 2.4.1(a). It now follows that p∗t (y)

is non-decreasing in ∆t−1(y).

Case 2: θ > b
2−q

: In this case, for all ∆t−1(y) ∈ [0, b], we have θ > 2b−q∆t−1(y)
2(2−q)

.

Hence, p∗t (y) = b+(1−q)∆t−1(y)
2−q

for all ∆t−1(y) ∈ [0, b] by Lemma 2.4.1(c). It follows

that p∗t (y) is non-decreasing in ∆t−1(y).

Case 3: b
4

< θ ≤ b
2−q

: Note that if ∆t−1(y) = b, then b+∆t−1(y)
4

= 2b−q∆t−1(y)
2(2−q)

= b
2
.

This, along with the facts that b+∆t−1(y)
4

is increasing in ∆t−1(y) and 2b−q∆t−1(y)
2(2−q)

is

decreasing in ∆t−1(y), implies that b+∆t−1(y)
4

≤ 2b−q∆t−1(y)
2(2−q)

for all ∆t−1(y) ∈ [0, b].

Now, consider two cases:

Case 3(a) θ ≥ b
2
: In this case, for all ∆t−1(y) ∈ [0, 2b−2(2−q)θ

q
], we have b+∆t−1(y)

4
<

θ ≤ 2b−q∆t−1(y)
2(2−q)

. Hence, for all ∆t−1(y) ∈ [0, 2b−2(2−q)θ
q

], p∗t (y) = b+2qθ+∆t−1(y)
2+q

by

Lemma 2.4.1(b), and non-decreasing in ∆t−1(y) over that interval. In addition,

for all ∆t−1(y) ∈ (2b−2(2−q)θ
q

, b], we have θ > 2b−q∆t−1(y)
2(2−q)

, which implies, by Lemma

2.4.1(c), p∗t (y) = b+(1−q)∆t−1(y)
2−q

and p∗t (y) is non-decreasing in ∆t−1(y) over that inter-

val. Furthermore, one can check from Lemma 2.4.1(b), (c) that p∗t (y) is continuous

in ∆t−1(y) at ∆t−1(y) = 2b−2(2−q)θ
q

. Therefore, p∗t (y) is non-decreasing in ∆t−1(y)

over the interval ∆t−1(y) ∈ [0, b].

Case 3(b) θ < b
2
: In this case, for all ∆t−1(y) ∈ [0, 4θ − b), we have b+∆t−1(y)

4
<

θ ≤ 2b−q∆t−1(y)
2(2−q)

. Hence, for all ∆t−1(y) ∈ [0, 4θ − b), p∗t (y) = b+2qθ+∆t−1(y)
2+q

by

Lemma 2.4.1(b), and non-decreasing in ∆t−1(y) over that interval. In addition, for

all ∆t−1(y) ∈ [4θ − b, b], we have θ ≤ b+∆t−1(y)
4

, which implies, by Lemma 2.4.1(a),

p∗t (y) = b+∆t−1(y)
2

and p∗t (y) is non-decreasing in ∆t−1(y) over that interval. Further-

more, one can check from Lemma 2.4.1(a), (b) that p∗t (y) is continuous in ∆t−1(y)

at ∆t−1(y) = 4θ − b. Therefore, p∗t (y) is non-decreasing in ∆t−1(y) over the interval
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∆t−1(y) ∈ [0, b].

Now that we have proven that p∗t (y) is non-decreasing in ∆t−1(y), we conclude

the proof by noting that ∆t−1(y) is non-increasing in y and non-decreasing in t by

Lemma A.4.1.

Lemma A.4.1. The function Vt(y) has the following three properties:

H1(t, y) : Vt+1(y + 1)− Vt+1(y) ≥ Vt(y + 1)− Vt(y), y ≥ 0, t = 1, . . . , T.

H2(t, y) : Vt+1(y)− Vt(y) ≥ Vt+2(y)− Vt+1(y), y ≥ 0, t = 1, . . . , T.

H3(t, y) : Vt(y + 1)− Vt(y) ≥ Vt(y + 2)− Vt(y + 1), y ≥ 0, t = 1, . . . , T.

Proof of Lemma A.4.1

Following Bitran and Mondschein (1993), we prove the result by induction on t + y.

The three inequalities hold when t + y = 0. Suppose they hold for t + y = m − 1.

We prove they hold when t + y = m to complete the induction.

(i) H1(t, y) : Vt+1(y + 1)− Vt+1(y) ≥ Vt(y + 1)− Vt(y).

It is easy to show that the result holds at y = 0 for all t = 1, . . . , T . Suppose y > 0.

Note that

Vt+1(y) = λq
[
Kt+1(p

∗
t+1(y), y) + Bt+1(p

∗
t+1(y), y)Vt(y − 1)

]
+λ(1− q)

[
p∗t+1(y)F (p∗t+1(y)) + F (p∗t+1(y))Vt(y − 1)

]
+

[
1− λqBt+1(p

∗
t+1(y), y)− λ(1− q)F (p∗t+1(y))

]
Vt(y)

Subtracting Vt(y) from both sides, we get

Vt+1(y)− Vt(y)

= λqKt+1(p
∗
t+1(y), y) + λ(1− q)p∗t+1(y)F (p∗t+1(y))

+
[
λqBt+1(p

∗
t+1(y), y) + λ(1− q)F (p∗t+1(y))

]
(Vt(y − 1)− Vt(y)) . (A.9)
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Similarly,

Vt+1(y + 1)

= λq
[
Kt+1(p

∗
t+1(y + 1), y + 1) + Bt+1(p

∗
t+1(y + 1), y + 1)Vt(y)

]
+λ(1− q)

[
p∗t+1(y + 1)F (p∗t+1(y + 1)) + F (p∗t+1(y + 1))Vt(y)

]
+

[
1− λqBt+1(p

∗
t+1(y + 1), y + 1)− λ(1− q)F (p∗t+1(y + 1))

]
Vt(y + 1).

Now, we note that a seller with y + 1 units in inventory at period t + 1 could set

its posted price to the optimal posted price of a seller with y units in inventory at

period t + 1, i.e., p∗t+1(y), which is suboptimal. Also, note that a bargainer’s offer

remains the same as long as the posted price remains the same. Therefore, if a seller

with y +1 units in inventory at period t+1 is using posted price p∗t+1(y), then it can

also mimic the counter-offer strategy of a seller with y units in inventory at period

t + 1. Of course, doing so is suboptimal for the seller with y + 1 units in inventory

at period t + 1. Therefore:

Vt+1(y + 1) ≥ λq
[
Kt+1(p

∗
t+1(y), y) + Bt+1(p

∗
t+1(y), y)Vt(y)

]
+λ(1− q)

[
p∗t+1(y)F (p∗t+1(y)) + F (p∗t+1(y))Vt(y)

]
+

[
1− λqBt+1(p

∗
t+1(y), y)− λ(1− q)F (p∗t+1(y))

]
Vt(y + 1)

Subtracting Vt(y + 1) from both sides of the above inequality, we obtain

Vt+1(y + 1)− Vt(y + 1)

≥ λqKt+1(p
∗
t+1(y), y) + λ(1− q)p∗t+1(y)F (p∗t+1(y))

+
[
λqBt+1(p

∗
t+1(y), y) + λ(1− q)F (p∗t+1(y))

]
(Vt(y)− Vt(y + 1)) .

(A.10)

From induction hypothesis H3(t, y − 1), we have

Vt(y)− Vt(y + 1) ≥ Vt(y − 1)− Vt(y). (A.11)
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Thus, from equations (A.9)– (A.11), we have

H1(t, y) : Vt+1(y + 1)− Vt(y + 1) ≥ Vt+1(y)− Vt(y).

(ii) H2(t, y) : Vt+1(y)− Vt(y) ≥ Vt+2(y)− Vt+1(y).

The case of y = 0 is trivial. Suppose y > 0. Note that

Vt+2(y) = λq
[
Kt+2(p

∗
t+2(y), y) + Bt+2(p

∗
t+2(y), y)Vt+1(y − 1)

]
+λ(1− q)

[
p∗t+2(y)F (p∗t+2(y)) + F (p∗t+2(y))Vt+1(y − 1)

]
+

[
1− λqBt+2(p

∗
t+2(y), y)− λ(1− q)F (p∗t+2(y))

]
Vt+1(y)

Subtracting Vt+1(y) from both sides, we get

Vt+2(y)− Vt+1(y)

= λqKt+2(p
∗
t+2(y), y) + λ(1− q)p∗t+2(y)F (p∗t+2(y))

+
[
λqBt+2(p

∗
t+2(y), y) + λ(1− q)F (p∗t+2(y))

]
(Vt+1(y − 1)− Vt+1(y)) .

(A.12)

Now, we note that a seller with y units in inventory at period t + 1 could mimic the

optimal posted price and counter-offer strategy of the seller with y units in inventory

at period t + 2. Of course, doing so is suboptimal for the seller with with y units in

inventory at period t + 1. Therefore:

Vt+1(y) ≥ λq
[
Kt+2(p

∗
t+2(y), y) + Bt+2(p

∗
t+2(y), y)Vt(y − 1)

]
+λ(1− q)

[
p∗t+2(y)F (p∗t+2(y)) + F (p∗t+2(y))Vt(y − 1)

]
+

[
1− λqBt+2(p

∗
t+2(y), y)− λ(1− q)F (p∗t+2(y))

]
Vt(y)
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Subtracting Vt(y) from both sides, we get

Vt+1(y)− Vt(y)

≥ λqKt+2(p
∗
t+2(y), y) + λ(1− q)p∗t+2(y)F (p∗t+2(y))

+
[
λqBt+2(p

∗
t+2(y), y) + λ(1− q)F (p∗t+2(y))

]
(Vt(y − 1)− Vt(y)) .

(A.13)

From induction hypothesis H1(t, y − 1), we have

Vt(y − 1)− Vt(y) ≥ Vt+1(y − 1)− Vt+1(y). (A.14)

Thus, from equations (A.12)– (A.14), we have

H2(t, y) : Vt+1(y)− Vt(y) ≥ Vt+2(y)− Vt+1(y).

(iii) H3(t, y) : Vt(y + 1)− Vt(y) ≥ Vt(y + 2)− Vt(y + 1).

Using arguments similar to those in parts (i) and (ii), we obtain

Vt(y + 2)− Vt−1(y + 1)

= λqKt(p
∗
t (y + 2), y + 2) + λ(1− q)p∗t (y + 2)F (p∗t (y + 2))

+
[
1− λqBt(p

∗
t (y + 2), y + 2)− λ(1− q)F (p∗t (y + 2))

]
×

(Vt−1(y + 2)− Vt−1(y + 1)) . (A.15)

and

Vt+1(y + 1)− Vt(y)

≥ λqKt(p
∗
t (y + 2), y + 2) + λ(1− q)p∗t (y + 2)F (p∗t (y + 2))

+
[
1−λqBt(p

∗
t (y + 2), y + 2)−λ(1− q)F (p∗t (y + 2))

]
×

(Vt(y + 1)− Vt(y)) . (A.16)
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From H1(t− 1, y) and H3(t− 1, y), we have

Vt(y + 1)− Vt(y) ≥ Vt−1(y + 1)− Vt−1(y) ≥ Vt−1(y + 2)− Vt−1(y + 1). (A.17)

Therefore, from equations (A.15) – (A.17), we obtain

Vt+1(y + 1)− Vt(y) ≥ Vt(y + 2)− Vt−1(y + 1). (A.18)

From H2(t− 1, y + 1), we have

Vt(y + 1)− Vt−1(y + 1) ≥ Vt+1(y + 1)− Vt(y + 1). (A.19)

Finally, adding (A.18) and (A.19), we obtain

H3(t, y) : Vt(y + 1)− Vt(y) ≥ Vt(y + 2)− Vt(y + 1).
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APPENDIX B

B.1 Proofs of Lemmas and Propositions in Section 3.4

In this appendix, we prove the results stated in Section 3.4. The proofs utilize

Lemmas B.1.1 and B.1.2, stated and proven at the end of Appendix B.1.

Proof of Lemma 3.4.1

Proof of (a): We prove the unimodality of Πu
RP

(p, w) = a(p − w)F (p) in p by

showing (1) ∂Πu
RP(p,w)
∂p

∣∣∣
p=w

≥ 0, (2) ∂2Πu
RP(p,w)
∂p2 < 0 whenever ∂Πu

RP(p,w)
∂p

= 0, and (3)

Πu
RP

(p, w) → 0 as p →∞.

First note that the first and second partial derivatives of Πu
RP

(p, w) in p are

∂Πu
RP

(p, w)

∂p
= aF (p)− a(p− w)f(p) and (B.1)

∂2Πu
RP

(p, w)

∂p2
= −2af(p)− a(p− w)f ′(p). (B.2)

Claim (1) follows from (B.1) while claim (3) follows from F (p) → 0 as p → ∞. To

show claim (2), note from (B.1) and (B.2)

∂2Πu
RP

(p, w)

∂p2

∣∣∣∣ ∂Πu
RP

(p,w)

∂p
=0

= −a
2f(p)2 + f ′(p)F (p)

f(p)
. (B.3)
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Since F is IFR, f ′(·)F (·)+f 2(·) ≥ 0. Hence, claim (2) follows from (B.3), concluding

the proof of unimodality of Πu
RP

(p, w) in p.

Proof of (b): From part (a), pu(w) satisfies F (pu(w))− (pu(w)− w)f(pu(w)) = 0.

Implicit differentiation of this equality with respect to w yields

(2f(pu(w)) + (pu(w)− w)f ′(pu(w)))
dpu(w)

dw
− f(pu(w)) = 0. (B.4)

Substituting pu(w)− w = F (w)
f(w)

from (B.1) in (B.4), we obtain

dpu(w)

dw
=

f 2(pu(w))

2f 2(pu(w)) + f ′(pu(w))F (pu(w))
. (B.5)

Since F is IFR, we have f ′(·)F (·) + f 2(·) ≥ 0, which implies dpu(w)
dw

> 0. Thus, pu(w)

strictly increases in w.

To prove pu(w) is convex in w, we show d2pu(w)
dw2 ≥ 0. Take the second derivative

of (B.5) with respect to w, we obtain

d2pu(w)

dw2
=

f(pu(w))dpu(w)
dw

[2f 2(pu(w)) + f ′(pu(w))F (pu(w))]2

[
f ′(pu(w))

(
2f ′(pu(w))F (pu(w)) + f2(pu(w))

)
−f ′′(pu(w))f

(
pu(w)

)
F (pu(w))

]
.

Since the term in the bracket is positive under Assumption (A2), we have d2pu(w)
dw2 ≥ 0.

Proof of (c): We prove the unimodality of Πu
MP

(w, pu(w)) = a(w− c)F (pu(w)) in w

by showing (1) dΠu
MP(w,pu(w))

dw

∣∣∣
w=c

≥ 0, (2)d2Πu
MP(w,pu(w))

dw2 < 0 whenever dΠu
MP(w,pu(w))

dw
=

0, and (3) Πu
MP

(w, pu(w)) → 0 as w →∞.

First note that the first and second partial derivatives of Πu
MP

(w, pu(w)) in w are

dΠu
MP

(w, pu(w))

dw
= aF (pu(w))− a(w − c)f(pu(w))

dpu(w)

dw
and (B.6)

d2Πu
MP

(w, pu(w))

dw2
= −2af(pu(w))

dpu(w)

dw

−a(w − c)

[
f(pu(w))

d2pu(w)

dw2
+ f ′(pu(w))

(
dpu(w)

dw

)2
]

.

(B.7)
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Claim (1) follows from (B.6) while claim (3) follows from F (pu(w)) → 0 as w and

hence, pu(w) approach infinity. To show claim (2), note from (B.6) and (B.7)

d2Πu
MP

(w, pu(w))

dw2

∣∣∣∣ dΠu
MP

(w,pu(w))

dw
=0

= −2af(pu(w))
dpu(w)

dw

−a
F (pu(w))

f(pu(w))dpu(w)
dw

[
f(pu(w))

d2pu(w)

dw2
+ f ′(pu(w))

(
dpu(w)

dw

)2
]

= −a
dpu(w)

dw

[
f(pu(w)) +

f ′(pu(w))F (pu(w))

f(pu(w))

]
−af(pu(w))

dpu(w)

dw
− a

F (pu(w))
dpu(w)

dw

d2pu(w)

dw2
. (B.8)

Since F is IFR, we have f ′(·)F (·)+ f 2(·) ≥ 0 and the term in the bracket is positive.

Since pu(w) increases in w and d2pu(w)
dw2 ≥ 0 from part (b), all three terms are negative

with the second term being strictly negative and ,thus, claim (2) follows, concluding

the proof of unimodality of Πu
MP

(w, pu(w)) in w.

Proof of Lemma 3.4.2

Proof of (a): We prove the unimodality of Πu
RN

(qmin, w) = a
∫ ∞

qmin
[(1 − β)x +

βqmin − w − cr − cb]f(x)dx in qmin by showing (1) ∂Πu
RN(qmin,w)

∂qmin

∣∣∣
qmin=w+cr+cb

≥ 0, (2)

∂2Πu
RN(qmin,w)

∂q2
min

< 0 whenever ∂Πu
RN(qmin,w)

∂qmin
= 0, and (3) Πu

RN
(qmin, w) → 0 as qmin →∞.

First note that the first and second partial derivatives of Πu
RN

(qmin, w) in qmin are

∂Πu
RN

(qmin, w)

∂qmin

= a(−qmin + w + cr + cb)f(qmin) + aβF (qmin) and (B.9)

∂2Πu
RN

(qmin, w)

∂q2
min

= −a(1 + β)f(qmin) + a(−qmin + w + cr + cb)f
′(qmin).(B.10)

Claim (1) follows from (B.9) while claim (3) follows from F (qmin) → 0 as qmin →∞.

To show claim (2), note from (B.9) and (B.10)

∂2Πu
RN

(qmin, w)

∂q2
min

∣∣∣∣ ∂Πu
RN

(qmin,w)

∂qmin
=0

= −a
(1 + β)f 2(qmin) + βf ′(qmin)F (qmin)

f(qmin)
. (B.11)
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Since F is IFR, f ′(·)F (·)+f 2(·) ≥ 0. Hence claim (2) follows from (B.11), concluding

the proof of unimodality of Πu
RN

(qmin, w) in qmin.

Proof of (b): From part (a), qu
min(w) satisfies (−qu

min(w) + w + cr + cb)f(qu
min(w)) +

βF (qu
min(w)) = 0. Implicit differentiation of this equality with respect to w yields

[(1 + β)f(qu
min(w))− (−qu

min(w) + w + cr + cb) f ′(qu
min(w))]

dqu
min(w)

dw
= f(qu

min(w)).

Substituting (−qu
min(w) + w + cr + cb) =

−βF (qu
min(w))

f(qu
min(w))

from (B.9) in above, we obtain

dqu
min(w)

dw
=

f 2(qu
min(w))

(1 + β)f 2(qu
min(w)) + βf ′(qu

min(w))F (qu
min(w))

, (B.12)

Since F is IFR, we have f ′(·)F (·) + f 2(·) ≥ 0, which implies
dqu

min(w)

dw
> 0. Thus,

qu
min(w) strictly increases in w.

To prove qu
min(w) is convex in w, we show

d2qu
min(w)

dw2 ≥ 0. Take the second derivative

of (B.12) with respect to w, we obtain

d2qu
min(w)

dw2
=

βf(qu
min(w))

dqu
min(w)

dw

[(1 + β)f 2(qu
min(w)) + βf ′(qu

min(w))F (qu
min(w))]2

×
f ′(qu

min(w))
(
2f ′(qu

min(w))F (qu
min(w)) + f 2(qu

min(w))
)

−f ′′(qu
min(w))f(qu

min(w))F (qu
min(w))

 .

Since the term in the bracket is positive under Assumption (A2), we have
d2qu

min(w)

dw2 ≥

0.

Proof of (c): We prove the unimodality of Πu
MN

(w, qu
min(w)) = a(w − c)F (qu

min(w))

in w by showing (1)
dΠu

MN(w,qu
min(w))

dw

∣∣∣
w=c

≥ 0, (2)
d2Πu

MN(w,qu
min(w))

dw2 < 0 whenever

dΠu
MN(w,qu

min(w))

dw
= 0, and (3) Πu

MN
(w, qu

min(w)) → 0 as w →∞.
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First note that the first and second partial derivatives of Πu
MN

(w, qu
min(w)) in w are

dΠu
MN

(w, qu
min(w))

dw
= aF (qu

min(w))− a(w − c)f(qu
min(w))

dqu
min(w)

dw
and(B.13)

d2Πu
MN

(w, qu
min(w))

dw2
= −2af(qu

min(w))
dqu

min(w)

dw
− a(w − c)×[

f(qu
min(w))

d2qu
min(w)

dw2
+ f ′(qu

min(w))

(
dqu

min(w)

dw

)2
]

.

(B.14)

Claim (1) follows from (B.13) while claim (3) follows from F (qu
min(w)) → 0 as w, and

hence qu
min(w) approach infinity. To show claim (2), note from (B.13) and (B.14)

d2Πu
MN

(w, qu
min(w))

dw2

∣∣∣∣ dΠu
MN

(w,qu
min

(w))

dw
=0

= −2af(qu
min(w))

dqu
min(w)

dw

−a
F (qu

min(w))

f(qu
min(w))

dqu
min(w)

dw

[
f(qu

min(w))
d2qu

min(w)

dw2
+ f ′(qu

min(w))

(
dqu

min(w)

dw

)2
]

= −a
dqu

min(w)

dw

[
f(qu

min(w)) +
f ′(qu

min(w))F (qu
min(w))

f(qu
min(w))

]
−af(qu

min(w))
dqu

min(w)

dw
− a

F (qu
min(w))

dqu
min(w)

dw

d2qu
min(w)

dw2
. (B.15)

Since F is IFR, f ′(·)F (·) + f 2(·) ≥ 0 and the term in the bracket is positive. Since

qu
min(w) increases in w and

d2qu
min(w)

dw2 > 0 from part (b), all three terms are negative

with the second term being strictly negative and, thus, claim (2) follows, concluding

the proof of unimodality of Πu
MN

(w, qu
min(w)) in w.

Proof of Lemma 3.4.3

Let qu
min(w, cr, cb) and wu

N
(cr, cb) be the optimal cut-off valuation and the optimal

wholesale price at a given w, cr, cb. Consider two pairs (c′r, c
′
b) and (co

r, c
o
b) such that

c′r + c′b = co
r + co

b = cT for some cT. From (B.9), for a given w, qu
min(w, c′r, c

′
b) =

qu
min(w, co

r, c
o
b). Also by substituting (B.12) into (B.13), we notice that the optimal
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wholesale prices are the same for (c′r, c
′
b) and (co

r, c
o
b), i.e., wu

N
(c′r, c

′
b) = wu

N
(co

r, c
o
b).

Proof of Proposition 3.4.1

Define ∆u
R
(w) = Πu

RP
(pu(w), w) − Πu

RN
(qu

min(w), w). We apply Lemma B.1.1 to

prove the proposition. From Lemma B.1.1(a)(b), if ∆u
R
(w) does not change sign,

then one of two cases must be true:

(1) ∆u
R
(w) < 0 for all w ≥ c and the retailer prefers negotiation and chooses

qu
min(w) regardless of w (corresponding to part (b) of the proposition), or

(2) ∆u
R
(w) ≥ 0 for all w ≥ c and the retailer (weakly) prefers posted pricing and

chooses pu(w) regardless of w (corresponding to part (a) of the proposition).

On the other hand, if ∆u
R
(w) changes sign, there exists a unique ŵu

R
, ∆u

R
(ŵu

R
) = 0,

such that ∆u
R
(w) < 0 for w < ŵu

R
(retailer uses negotiation and chooses qu

min(w)),

and ∆u
R
(w) > 0 for w > ŵu

R
(retailer uses posted pricing and chooses pu(w)), which

corresponds to part (c) of the proposition.

Proof of Proposition 3.4.2

Define ∆u
M
(w) = Πu

MP
(w, pu(w))−Πu

MN
(w, qu

min(w)) and ∆u
R
(w) = Πu

RP
(pu(w), w)−

Πu
RN

(qu
min(w), w). From the definition of ŵu

R
, ∆u

R
(w) < 0 for w < ŵu

R
and ∆u

R
(w) > 0

for w > ŵu
R
. Thus, ∆u

R
(w) changes sign at w = ŵu

R
. Then, from Lemma B.1.1(c), there

exists a unique ŵu
M
≥ ŵu

R
such that ∆u

M
(w) ≤ 0 for w ≤ ŵu

M
and ∆u

M
(w) ≥ 0 for w ≥

ŵu
M
. That is, Πu

MN
(w, qu

min(w)) ≥ Πu
MP

(w, pu(w)) for w ≤ ŵu
M

and Πu
MN

(w, qu
min(w)) ≤

Πu
MP

(w, pu(w)) for w ≥ ŵu
M
. Thus, the result directly follows from ŵu

R
≤ ŵu

M
.

Proof of Proposition 3.4.3

First, observe from (3.14) that when the retailer chooses negotiation at all whole-
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sale prices w ≥ c, the manufacturer’s optimal wholesale price is given by wu
N
, the

maximizer of Πu
MN

(w, qu
min(w)), and the retailer picks the cut-off valuation qu

min(w
u
N
).

Likewise, from (3.13), we observe that when the retailer chooses posted pricing at all

wholesale prices w ≥ c, the manufacturer’s optimal wholesale price is given by wu
P
,

the maximizer of Πu
MP

(w, pu(w)), and the retailer picks the price pu(wu
P
).

We now focus on the case where there exists ŵu
R

such that the retailer chooses

negotiation when w ≤ ŵu
R

and posted pricing when w > ŵu
R
. For the purposes of this

proof, temporarily define

GN := max
c≤w≤ŵu

R

Πu
MN

(w, qu
min(w)) and wo

N
= arg max

c≤w≤ŵu
R

Πu
MN

(w, qu
min(w))

GP := sup
w>ŵu

R,w≥c

Πu
MP

(w, pu(w)) and wo
P

= arg sup
w>ŵu

R,w≥c

Πu
MP

(w, pu(w))

With these definitions, observe that the manufacturer’s problem of choosing the

wholesale price, given by (3.15), reduces to picking the wholesale price wo
N

if GN ≥ GP

or the wholesale price wo
P

if GN < GP. Consider two cases: (1) GN ≥ GP and (2)

GN < GP.

(1) GN ≥ GP

The manufacturer’s optimal wholesale price is wo
N
. Lemma B.1.2(a) shows that the

maximizer wo
N

is given by min{ŵu
R
, wu

N
}. At wholesale price wo

N
, the retailer will

choose negotiation. This case corresponds to parts (a) and (b) of the proposition.

(2) GN < GP

We will first prove that wu
P

> ŵu
R
. The proof is by contradiction. Suppose GN < GP,

but wu
P
≤ ŵu

R
. In such a case, since Πu

MP
(w, pu(w)) is unimodal in w, wo

P
is given

by ŵu
R
, and hence, GP = Πu

MP
(ŵu

R
, pu(ŵu

R
)). We know that GP = Πu

MP
(ŵu

R
, pu(ŵu

R
)) ≤

Πu
MN

(ŵu
R
, qu

min(ŵ
u
R
)) ≤ GN, where the first inequality is by Proposition 3.4.2 and the

second comes from the definition of GN. Hence, GP ≤ GN, which is a contradiction
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to the assumption that GN < GP.

Now that we have shown wu
P

> ŵu
R
, it follows from the unimodality of Πu

MP
(w, pu(w))

in w that wo
P

= wu
P

(hence, sup can be replaced by max). At wholesale price wu
P
, the

retailer chooses posted pricing. This corresponds to part (c) of the proposition.

Proof of Proposition 3.4.4

We first show the existence of cT. If cT = 0, notice from (3.12) that negotiation

is better for the retailer regardless of the wholesale price. On the other hand, if

cT > Er[r] (the total cost of negotiation is larger than the expected valuation), it

can be shown from (3.12) that posted pricing is better for the retailer regardless of

the wholesale price. Thus, at any given wholesale price, the retailer’s sales format

choice switches from negotiation to posted pricing at least once as cT changes from

0 to Er[r], and cT exists.

Next, we will prove that if the equilibrium sales format is posted pricing at a

given cT, then the equilibrium sales format is still posted pricing at higher cT. If this

result holds, once the equilibrium sales format becomes posted pricing, it will never

switch back to negotiation as cT increases. We will then conclude that there exists

a unique cT such that the equilibrium sales format is negotiation for cT ∈ [0, cT) and

posted pricing for cT ≥ cT.

Suppose posted pricing is chosen in equilibrium at a given cT = co
T
. It must be

that the equilibrium wholesale price is wu
P

(from Proposition 3.4.3(c)). We will divide

the proof into two cases, depending on whether ŵu
R

exists at co
T
. The two cases are:

(1) there exists ŵu
R

> c, and (2) there does not exist ŵu
R

and the retailer chooses

posted pricing for any w ≥ c.

(1) ŵu
R

> c
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For the purposes of this proof, temporarily define, for a given cT:

GN(cT) = max
c≤w≤ŵu

R

Πu
MN

(w, qu
min(w)) and wo

N
(cT) = arg max

c≤w≤ŵu
R

Πu
MN

(w, qu
min(w))

GP(cT) = sup
w>ŵu

R,w≥c

Πu
MP

(w, pu(w)) and wo
P
(cT) = arg sup

w>ŵu
R,w≥c

Πu
MP

(w, pu(w))

With these definitions, the manufacturer’s problem, given by (3.15), results in the

optimal wholesale price wo
N
(cT) if GN(cT) ≥ GP(cT) or the optimal wholesale price

wo
P
(cT) if GN(cT) < GP(cT). Since the equilibrium sales format is posted pricing at

co
T
, it must be that GN(co

T
) < GP(co

T
). Suppose we increase cT marginally to co

T
+ δ

for some arbitrarily small δ > 0. First, note from Lemma B.1.2(b) that ŵu
R

decreases

in cT. Therefore, the feasible region of the optimization problem that determines

GP becomes larger when cT increases. Furthermore, at a given w, Πu
MP

(w, pu(w))

is constant with respect to cT. Therefore, GP is the optimal value of an objective

function that itself does not depend on cT. Combining these two observations, we

conclude that GP(co
T

+ δ) ≥ GP(co
T
).

On the other hand, when cT increases, Lemma B.1.2(e) shows that GN(cT) de-

creases. Hence, GN(co
T

+ δ) ≤ GN(co
T
). Therefore:

GN(co
T

+ δ) ≤ GN(co
T
) < GP(co

T
) ≤ GP(co

T
+ δ),

and the manufacturer will choose to induce posted pricing at co
T

+ δ.

(2) ŵu
R

does not exist

In this case, at co
T
, the retailer is choosing posted pricing for any w ≥ c, that is,

Πu
RP

(pu(w), w) ≥ Πu
RN

(qu
min(w), w) for w ≥ c. We observe that Πu

RP
(pu(w), w) is

constant with respect to cT and Πu
RN

(qu
min(w), w) decreases in cT. Hence, at cT > co

T
,

we continue to have Πu
RP

(pu(w), w) ≥ Πu
RN

(qu
min(w), w) for w ≥ c, and the retailer will

choose posted pricing no matter what the wholesale price is.
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Combining cases (1) and (2), we conclude that if the equilibrium sales format is

posted pricing at a given cT, then the equilibrium sales format is still posted pricing

at higher cT. Hence, there exists a unique cT such that the equilibrium sales format

is negotiation for cT ∈ [0, cT) and posted pricing for cT ≥ cT.

It remains to show that cT exists and separates the regions where the equilibrium

wholesale price is wu
N

versus ŵu
R
. We know from the preceding discussion that there

exists cT such that negotiation is the equilibrium for cT ∈ [0, cT) and posted pricing

is the equilibrium for cT ≥ cT. Let us now focus on the region cT ∈ [0, cT). For any cT

in this region, we know from Proposition 3.4.3 that the equilibrium wholesale price

must be either ŵu
R

or wu
N
. Consider two cases:

(1) There does not exist cT ∈ [0, cT) such that the equilibrium wholesale price is ŵu
R

In this case, it must be that the equilibrium wholesale price is wu
N

for any cT ∈ [0, cT),

in which case we have cT = cT.

(2)There exists c̃T ∈ [0, cT) such that the equilibrium wholesale price is ŵu
R

at c̃T

From Lemma B.1.2(d), for any cT ∈ [c̃T, cT), the manufacturer would choose ŵu
R
.

Hence, there exists cT, given by the lowest such c̃T, and the equilibrium wholesale

price is ŵu
R

for any cT ∈ [cT, cT).

Lemma B.1.1. Given the wholesale price w, let ∆u
R
(w) be the difference between

the retailer’s optimal profits under posted pricing and negotiation, that is, ∆u
R
(w) =

Πu
RP

(pu(w), w)−Πu
RN

(qu
min(w), w), and ∆u

M
(w) be the difference between the manufac-

turer’s profits under posted pricing and negotiation, that is, ∆u
M
(w) = Πu

MP
(w, pu(w))−

Πu
MN

(w, qu
min(w)). Then:

(a) If ∆u
R
(c) ≥ 0, then ∆u

R
(w) ≥ 0 for all w ≥ c
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(b) If ∆u
R
(c) < 0, then either:

(i) ∆u
R
(w) < 0 for all w ≥ c and ∆u

R
(w) is strictly increasing in w, or

(ii) ∆u
R
(w) is strictly unimodal and changes sign once. If ∆u

R
(w) changes sign,

it crosses zero at a unique w = ŵu
R

such that ∆u
R
(w) < 0 for w < ŵu

R
and

∆u
R
(w) ≥ 0 for w ≥ ŵu

R
.

(c) If ∆u
R
(w) changes sign at w = ŵu

R
, there must exist a unique ŵu

M
≥ ŵu

R
such that

∆u
M
(w) ≤ 0 for w ≤ ŵu

M
, and ∆u

M
(w) ≥ 0 for w ≥ ŵu

M
.

(d) Πu
RP

(pu(w), w) and Πu
RN

(qu
min(w), w) are convex decreasing in w.

Proof of Lemma B.1.1

Proofs of (a) and (b): We prove the result by showing (1) ∆u
R
(w) → 0 as w →∞,

and (2) d2∆u
R(w)

dw2 < 0 whenever d∆u
R(w)
dw

= 0. Claim (2) implies that if a stationary

point exists, it must be a maximum. The claim (2) thus implies that there exists

at most one maximizer. (otherwise, there must be a minimizer between two local

maxima, which contradicts the claim that all stationary points are local maxima.) If

claims (1) and (2) hold, the behavior of the function ∆u
R
(w) must follow either part

(a) or part (b) of this lemma. Any other behavior would contradict (1) and/or (2),

therefore cannot exist.

)(wu
R∆

wc

c

c

(i) (iii)

c

(ii) (iv)

)(wu
R∆ )(wu

R∆ )(wu
R∆

w

w

w

Figure B.1: The figure illustrates the possibilities discussed in parts (a) and (b) of
Lemma B.1.1.
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We now prove claims (1) and (2) hold. From the facts that pu(w) → ∞ and

qu
min(w) → ∞ as w → ∞, it can be shown that Πu

RP
(pu(w), w) and Πu

RN
(qu

min(w), w)

both approach zero as w → ∞. Hence, as w → ∞, ∆u
R
(w) approaches zero, which

proves (1).

To show (2), recall that pu(w) is a solution to ∂Πu
RP(p,w)
∂p

= 0 and qu
min(w) is a

solution to ∂Πu
RN(qmin,w)

∂qmin
= 0, respectively. Applying the envelope theorem, we have

dΠu
RP

(pu(w), w)

dw
=

∂Πu
RP

(p, w)

∂w

∣∣∣∣
p=pu(w)

= −aF (pu(w)), and (B.16)

dΠu
RN

(qu
min(w), w)

dw
=

∂Πu
RN

(qmin, w)

∂w

∣∣∣∣
qmin=qu

min(w)

= −aF (qu
min(w)) (B.17)

Therefore:

d∆u
R
(w)

dw
= −aF (pu(w)) + aF (qu

min(w)). (B.18)

Let w̃ be a wholesale price such that d∆u
R(w̃)
dw

= 0. Thus, at w̃, we have −aF (pu(w̃)) =

−aF (qu
min(w̃)) and, hence, pu(w̃) = qu

min(w̃). Using the expressions for dpu(w̃)
dw

and

dqu
min(w̃)

dw
, given by equations (B.5) and (B.12), we write:

dqu
min(w̃)

dw
=

f 2(qu
min(w̃))

(1 + β)f 2(qu
min(w̃)) + βf ′(qu

min(w̃))F (qu
min(w̃))

>
f 2(pu(w̃))

2f 2(pu(w̃)) + f ′(pu(w̃))F (pu(w̃))
=

dpu(w̃)

dw
, (B.19)

where the inequality follows from the facts that pu(w̃) = qu
min(w̃), F is IFR and

0 < β < 1.

Now, we can use (B.18) to write:

d2∆u
R
(w)

dw2

∣∣∣∣
w=w̃

=
d

dw

[
−aF (pu(w)) + aF (qu

min(w))
]∣∣∣∣

w=w̃

= a

(
f(pu(w̃))

dpu(w̃)

dw
− f(qu

min(w̃))
dqu

min(w̃)

dw

)
< 0,
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where the inequality is from pu(w̃) = qu
min(w̃) and (B.19). Hence, (2) is proven, which

concludes the proof of part (a) and (b).

Proof of (c): Our first goal is to prove that if ∆u
R
(w) changes sign, then ∆u

M
(w)

changes sign exactly once by crossing zero from below. First, note that

∆u
M
(w) = Πu

MP
(w, pu(w))−Πu

MN
(w, qu

min(w)) = a(w−c)F (pu(w))−a(w−c)F (qu
min(w)).

Hence, from (B.18), it follows that ∆u
M
(w) = −(w−c)d∆u

R(w)
dw

. Therefore, it suffices to

show that if ∆u
R
(w) changes sign, then d∆u

R(w)
dw

changes sign exactly once by crossing

zero from above. Suppose now ∆u
R
(w) changes sign. From the discussion in parts (a)

and (b), we know that we must be in case (ii) of part (b): ∆u
R
(w) crosses zero from

below and is unimodal with a peak at w = w̃ such that d∆u
R(w̃)
dw

= 0. Hence, d∆u
R(w)
dw

is positive for w ≤ w̃ and negative for w ≥ w̃. It now follows that ∆u
M
(w) changes

sign exactly once, and the point where it changes sign, ŵu
M
, is given by w̃ such that

d∆u
R(w̃)
dw

= 0. Furthermore, observe from Figure B.1 that, in case (ii) of part (b), the

point at which ∆u
R
(w) changes sign, ŵu

R
, must come before ŵu

M
= w̃.

Proof of (d): It immediately follows from (B.16) and (B.17) that both Πu
RP

(pu(w), w)

and Πu
RN

(qu
min(w), w) are decreasing in w. Furthermore, from (B.16) and (B.17), we

obtain:

d2Πu
RP

(pu(w), w)

dw2
= af(pu(w))

dpu(w)

dw
, and

d2Πu
RN

(qu
min(w), w)

dw2
= af(qu

min(w))
dqu

min(w)

dw

Since both pu(w) and qu
min(w) increase in w (by Lemma 3.4.1 and 3.4.2, respectively),

both Πu
RP

(pu(w), w) and Πu
RN

(qu
min(w), w) are convex in w.
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Lemma B.1.2. Let ∆u
R
(w) be the difference between the retailer’s optimal profits un-

der posted pricing and negotiation, that is, ∆u
R
(w) = Πu

RP
(pu(w), w)−Πu

RN
(qu

min(w), w).

Suppose there exists ŵu
R

such that ∆u
R
(w) < 0 for w < ŵu

R
and ∆u

R
(w) ≥ 0 for w ≥ ŵu

R
.

Consider the following optimization problem:

max
c≤w≤ŵu

R

Πu
MN

(w, qu
min(w)) (B.20)

Let wo
N
(cT) denote the optimal solution to (B.20) and GN(cT) be the optimal value of

the objective function for a given cT. Then:

(a) wo
N
(cT) = min{ŵu

R
, wu

N
}.

(b) ŵu
R

decreases in cT. Furthermore, dŵu
R(cT)
dcT

< −1.

(c) wu
N

decreases in cT. Furthermore, −1 ≤ dwu
N(cT)
dcT

≤ 0.

(d) If wo
N
(cT) = ŵu

R
for some cT = co

T
, then wo

N
(cT) = ŵu

R
for cT > co

T
.

(e) GN(cT) decreases in cT.

Proof of Lemma B.1.2

Proof of (a): Recall that wu
N

is the unconstrained maximizer of Πu
MN

(w, qu
min(w)).

Since w must be chosen in [c, ŵu
R
] and Πu

MN
(w, qu

min(w)) is unimodal in w (by Lemma

3.4.2), the optimal solution to (B.20) is the minimum of wu
N

and ŵu
R
.

Proof of (b): To express explicit dependence, we write qu
min(w), ŵu

R
, and Πu

RN
(qmin, w)

as qu
min(w, cT), ŵu

R
(cT), and Πu

RN
(qmin, w, cT), respectively. Recall that, by definition

of ŵu
R
(cT):

Πu
RN

(qu
min(ŵ

u
R
(cT), cT), ŵu

R
(cT), cT)− Πu

RP
(pu(ŵu

R
(cT)), ŵu

R
(cT)) = 0. (B.21)
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Implicit differentiation of (B.21) with respect to cT yields:

0 =
dΠu

RN
(qu

min(ŵ
u
R
(cT), cT), ŵu

R
(cT), cT)

dcT

− dΠu
RP

(pu(ŵu
R
(cT)), ŵu

R
(cT))

dcT

=
dqu

min(ŵu
R(cT),cT)

dcT

∂Πu
RN(qmin,w,cT)

∂qmin

∣∣∣
qu
min(ŵu

R(cT),cT),ŵu
R(cT)

+dŵu
R(cT)
dcT

∂Πu
RN(qmin,w,cT)

∂w

∣∣∣
qu
min(ŵu

R(cT),cT),ŵu
R(cT)

+ ∂Πu
RN(qmin,w,cT)

∂cT

∣∣∣
qu
min(ŵu

R(cT),cT),ŵu
R(cT)

−dpu(ŵu
R(cT),cT)
dcT

∂Πu
RP(p,w)
∂p

∣∣∣
pu(ŵu

R(cT)),ŵu
R(cT)

− dŵu
R(cT)
dcT

∂Πu
RP(p,w)
∂w

∣∣∣
pu(ŵu

R(cT)),ŵu
R(cT)

(B.22)

Note that the first and fourth terms of (B.22) are zero, since qu
min and pu satisfy the

first-order conditions of Πu
RN

(qmin, w, cT) and Πu
RP

(p, w), respectively. Also, recall that

Πu
RN

(qmin, w, cT) = a

∫ ∞

qmin

[(1− β)x + βqmin − w − cT] f(x)dx,

Πu
RP

(p, w) = a(p− w)F (p).

Taking the partial derivatives of these profit functions, we obtain:

∂Πu
RN

(qmin, w, cT)

∂w
= −aF (qmin),

∂Πu
RN

(qmin, w, cT)

∂cT

= −aF (qmin), and

∂Πu
RP

(p, w)

∂w
= −aF (p).

Substituting the above partial derivatives in (B.22) and rearranging the terms, we

obtain:

dŵu
R
(cT)

dcT

(F (qu
min(ŵ

u
R
(cT), cT))− F (pu(ŵu

R
(cT)))) + F (qu

min(ŵ
u
R
(cT), cT)) = 0.

Hence:

dŵu
R
(cT)

dcT

= − F (qu
min(ŵ

u
R
(cT), cT))

F (qu
min(ŵ

u
R
(cT), cT))− F (pu(ŵu

R
(cT)))

.

To show that dŵu
R(cT)
dcT

< −1, it suffices to show F (qu
min(ŵ

u
R
(cT), cT)) > F (pu(ŵu

R
(cT))).

Since ∆u
R
(w) is changing sign at w = ŵu

R
(cT), it follows from Lemma B.1.1(a) that

∆u
R
(w) must be strictly increasing in w at w = ŵu

R
(cT). (See (iv) of Figure B.1.)
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Using this fact, we obtain from (B.18) that F (qu
min(ŵ

u
R
(cT), cT)) > F (pu(ŵu

R
(cT))),

which concludes the proof of (b).

Proof of (c): In preparation for the proof, we will first derive a few useful ex-

pressions. First, substituting the expression for
dqu

min(w)

dw
, given by (B.12), into the

manufacturer’s first-order condition, (B.13), and recalling that wu
N

is the solution to

the manufacturer’s first-order condition, we get the following identity:

F (qu
min(w

u
N
))

f(qu
min(w

u
N
))
− (wu

N
− c)

f 2(qu
min(w

u
N
))

(1 + β)f 2(qu
min(w

u
N
)) + βf ′(qu

min(w
u
N
))F (qu

min(w
u
N
))

= 0.

(B.23)

Let φ(x) := f2(x)

(1+β)f2(x)+βf ′(x)F (x)
. As an aside, note that

dφ(x)

dx
=

βf(x)[f ′(x)(2f ′(x)F (x) + f 2(x))− f ′′(x)f(x)F (x)]

[(1 + β)f 2(x) + βf ′(x)F (x)]2
. (B.24)

We observe from (B.24) that φ(x) increases in x (since the numerator is non-negative

by Assumption (A2)). Using our definition of φ(x), we can rewrite (B.23) as

F (qu
min(w

u
N
))

f(qu
min(w

u
N
))
− (wu

N
− c)φ(qu

min(w
u
N
)) = 0. (B.25)

Now we are ready to prove the result. Here, to make explicit the dependence on

cT, we write wu
N
(cT) instead of wu

N
. In addition, for notational convenience, we write

qu
min(cT) to denote qu

min(w
u
N
(cT)). With these notational changes, (B.25) can be written

as:

F (qu
min(cT))

f(qu
min(cT))

− (wu
N
(cT)− c)φ(qu

min(cT)) = 0. (B.26)

We first show that
dqu

min(cT)

dcT
× dwu

N(cT)
dcT

≤ 0, that is, when cT increases, qu
min(cT) and

wu
N
(cT) cannot both strictly increase or strictly decrease. We prove this by contra-

diction.
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Suppose now both qu
min(cT) and wu

N
(cT) strictly increase in cT. In such a case, if

cT increases, then
F (qu

min(cT))

f(qu
min(cT))

decreases (because F is IFR). Furthermore, φ(qu
min(cT))

increases (because φ(x) is increasing in x, as observed earlier). Hence, the left-hand

side of (B.26) is strictly decreasing in cT, which yields a contradiction since (B.26)

must hold as an equality for any cT.

Next, suppose that both qu
min(cT) and wu

N
(cT) strictly decrease in cT. Once again,

we will obtain a contradiction under this supposition. In such a case, if cT increases,

then
F (qu

min(cT))

f(qu
min(cT))

increases (because F is IFR). Furthermore, φ(qu
min(cT)) decreases (be-

cause φ(x) is increasing in x, as observed earlier). Hence, the left-hand side of (B.26)

is strictly increasing in cT, which again yields a contradiction since (B.26) must hold

as an equality for any cT.

It is now proven that
dqu

min(cT)

dcT
× dwu

N(cT)
dcT

≤ 0. Next, we will utilize this result

to show that −1 ≤ dwu
N(cT)
dcT

≤ 0. Implicit differentiation of the retailer’s first-order

condition, given by (B.9), with respect to cT yields

dwu
N
(cT)

dcT

=

[
1 +

β
(
f ′(qu

min(cT))F (qu
min(cT)) + f 2(qu

min(cT))
)

f 2(qu
min(cT))

]
dqu

min(cT)

dcT

− 1, (B.27)

where the term in the brackets is positive, because F is IFR and, hence, f ′(·)F (·) +

f 2(·) ≥ 0. If
dqu

min(cT)

dcT
< 0, then it must be that dwu

N(cT)
dcT

< 0 and we get a contradiction

to
dqu

min(cT)

dcT
× dwu

N(cT)
dcT

≤ 0. Thus, it must be that
dqu

min(cT)

dcT
≥ 0. It now follows that

dwu
N(cT)
dcT

≤ 0 (since
dqu

min(cT)

dcT
× dwu

N(cT)
dcT

≤ 0). Furthermore, from (B.27), we observe

that dwu
N(cT)
dcT

≥ −1 (since the term in brackets is positive and
dqu

min(cT)

dcT
≥ 0). This

concludes the proof of part (c).

Proof of (d): From part (a), we have wo
N
(cT) = min{ŵu

R
, wu

N
}. Hence, if wo

N
(co

T
) = ŵu

R
,

it must be that ŵu
R
≤ wu

N
at co

T
. From parts (b) and (c), we know that dŵu

R(cT)
dcT

<
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dwu
N(cT)
dcT

. Hence, if cT increases, ŵu
R

continues to be less than or equal to wu
N
, and

wo
N
(cT) = ŵu

R
continues to hold for cT > co

T
.

Proof of (e): We will show that for co
T

< c′
T
, GN(co

T
) ≥ GN(c′

T
). In this proof, we

will write qu
min(w, cT), ŵu

R
(cT) and Πu

MN
(w, qmin, cT) instead of, respectively, qu

min(w),

ŵu
R

and Πu
MN

(w, qmin), to make the dependence on cT explicit. It is not difficult to

check that Πu
MN

(w, qu
min(w, cT), cT) is decreasing in cT. Hence:

GN(c′
T
) = Πu

MN
(wo

N
(c′

T
), qu

min(w
o
N
(c′

T
), c′

T
), c′

T
) ≤ Πu

MN
(wo

N
(c′

T
), qu

min(w
o
N
(c′

T
), co

T
), co

T
).

(B.28)

Furthermore, note that when cT = co
T
, w = wo

N
(c′

T
) is a feasible solution for the

optimization problem in (B.20). To see why, note that ŵu
R
(cT) decreases in cT. Hence,

ŵu
R
(co

T
) ≥ ŵu

R
(c′

T
). It then follows that wo

N
(c′

T
), which is feasible for the problem in

(B.20) when cT = c′
T
, is also feasible when cT = co

T
. Therefore:

GN(co
T
) = Πu

MN
(wo

N
(co

T
), qu

min(w
o
N
(co

T
), co

T
), co

T
) ≥ Πu

MN
(wo

N
(c′

T
), qu

min(w
o
N
(c′

T
), co

T
), co

T
).

(B.29)

Combining (B.28) and (B.29), we obtain GN(co
T
) ≥ GN(c′

T
).
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B.2 Proofs of Lemmas and Propositions in Section 3.5

In this appendix, we prove the results stated in Section 3.5. The proofs uti-

lize Lemmas B.2.1 through B.2.3 and Propositions B.2.1 through B.2.3, stated and

proven at the end of Appendix B.2.

Proofs of Lemmas 3.5.1 and 3.5.2

Notice from (3.18) that the maximizer of ΠMP(w, p∗(w, Q), Q), denoted by w∗
P
(Q),

cannot be strictly less than wP(Q) (since ΠMP(w, p∗(w, Q), Q) is linearly increasing

in w for w ∈ [c, wP(Q)]). Now, for w ≥ wP(Q), ΠMP(w, p∗(w,Q), Q) is equal to

Πu
MP

(w, pu(w)), which itself is unimodal and peaks at wu
P

by Lemma 3.4.1. There-

fore, w∗
P
(Q) is given by wu

P
or wP(Q), whichever is larger. The same line of arguments

proves Lemma 3.5.2 as well.

Proof of Proposition 3.5.1

We omit the proof of this proposition. The proof is almost identical to that of

Proposition 3.4.3, once we replace qu
min(w), pu(w), wu

N
and wu

P
in the earlier proof

with q∗min(w, Q) = max{qu
min(w), p̄(Q)}, p∗(w,Q) = max{pu(w), p̄(Q)}, w∗

N
(Q) =

max{wN(Q), wu
N
} and w∗

P
(Q) = max{wP(Q), wu

P
} here.

Proof of Proposition 3.5.2

The proof proceeds in two parts, the first part showing the existence of Q and

the second part showing the existence of Q.

Part 1: The existence of Q
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We first show that if the equilibrium sales format is negotiation at a given Q, then

the equilibrium sales format is still negotiation for a larger Q. This allows us to

conclude that if the equilibrium sales format is negotiation at some Q ≥ 0, then the

smallest such Q yields Q. Otherwise, if the equilibrium sales format is posted pricing

for all Q < ∞, then Q = ∞.

Suppose that negotiation is the equilibrium sales format at Qo. Necessarily, the

equilibrium wholesale price must be the solution to either problem (3.23) or problem

(3.24) defined in Section 3.5. We consider two cases separately.

Suppose that the equilibrium wholesale price is the solution to problem (3.23) at

capacity Qo. This is the case when the retailer prefers negotiation for all w ≥ c, in

other words,

∆R(w, Qo) = ΠRP(p∗(w, Qo), w,Qo)− ΠRN(q∗min(w,Qo), w,Qo) ≤ 0 for all w ≥ c.

For any Q > Qo, we show that the retailer will continue to prefer negotiation for all

w ≥ c, that is, ∆R(w,Q) ≤ 0 for all w ≥ c. If this is true, the equilibrium sales format

is also negotiation at Q > Qo. The proof is by contradiction. Suppose that there

exists Q > Qo and w′ ≥ c such that ∆R(w′, Q) > 0. Recall from Proposition B.2.1

that if the retailer prefers posted pricing at some wholesale price w′, it continues to

prefer posted pricing at a higher wholesale price. Furthermore, note that the sales

quantity under both formats decrease and converge to zero as w increases. Hence,

there must exist a w′′ ≥ w′ such that ∆R(w′′, Q) > 0 and both formats sell strictly less

than Qo. However, notice that at the wholesale price w′′, quantities sold under both

formats will be less than Qo for any Q ≥ Qo. Therefore, ∆R(w′′, Qo) = ∆R(w′′, Q) >

0. This contradicts the fact that ∆R(w,Qo) ≤ 0 for all w ≥ c.

Now suppose that the equilibrium wholesale price is the solution to problem
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(3.24) at capacity Qo. For the sake of exposition, we temporarily define the following

functions, which correspond to the optimal solutions to the sub-problems in problem

(3.24).

GN(Q) = max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w, Q), Q) and

GP(Q) = sup
w>ŵR(Q),w≥c

ΠMP(w, p∗(w, Q), Q).

Also define

wo
N
(Q) = arg max

c≤w≤ŵR(Q)
ΠMN(w, q∗min(w, Q), Q) and

wo
P
(Q) = arg sup

w>ŵR(Q),w≥c

ΠMP(w, p∗(w, Q), Q).

Since the equilibrium sales format is negotiation at Qo, it must be that GN(Qo) ≥

GP(Qo). We first note that, for a capacity Q′ such that Q′ > Qo, the equilibrium

wholesale price is the solution to problem (3.24) at capacity Q′. To see why this is

true, note from Lemma B.2.3(b) that ŵR(Q) is increasing in Q. Therefore, if there

exists a ŵR(Q) > c for Q = Qo (that is, if there exists a feasible wholesale price below

which the retailer strictly prefers negotiation and above which the retailer strictly

prefers posted pricing), then there must exist a ŵR(Q) > c for Q = Q′ as well. We

will conclude the proof by showing that for Q′ > Qo, we have GN(Q′) ≥ GP(Q′),

which implies that the equilibrium sales format will be negotiation at capacity Q′.

We next state and prove a claim that will help us complete the proof:

Claim: Whenever there exists ŵR(Q) > c:

wo
P
(Q) = max{w∗

P
(Q), ŵR(Q)} = max{wu

P
, ŵR(Q)}

We now prove this claim. Recall that w∗
P
(Q) = max{wu

P
, wP(Q)} is the maximizer

of ΠMP(w, p∗(w, Q), Q). Observe from (3.18) that ΠMP(w, p∗(w, Q), Q) is unimodal
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in w1. This establishes the first equality, i.e., wo
P
(Q) = max{w∗

P
(Q), ŵR(Q)}. The

second equality follows directly if there does not exist a wP(Q) ≥ c (i.e., there

does not exist a feasible wholesale price at which posted pricing is constrained by

the capacity), since w∗
P
(Q) = wu

P
in that case. If there exists a wP(Q) ≥ c, then

ŵR(Q) > wP(Q) by Lemma B.2.1(c) and (d) together, which allows us to conclude

wo
P
(Q) = max{wu

P
, ŵR(Q)}.

Based on the above claim, we consider two cases : (1) wo
P
(Q′) = wu

P
, and (2)

wo
P
(Q′) = ŵR(Q′).

(1) wo
P
(Q′) = wu

P

Since ŵR(Q) is increasing in Q (by Lemma B.2.3(b)) and wu
P

does not depend on

Q, the above claim implies that wo
P
(Qo) = wu

P
(because wo

P
(Q′) = wu

P
in the current

case). Hence, GP(Q′) = GP(Qo). On the other hand, GN(Q) increases in Q by

Lemma B.2.3(d). Therefore, given that GN(Qo) ≥ GP(Qo) (since negotiation is the

equilibrium at capacity Qo),

GN(Q′) ≥ GN(Qo) ≥ GP(Qo) = GP(Q′).

(2) wo
P
(Q′) = ŵR(Q′)

In this case,

GN(Q′) ≥ ΠMN(ŵR(Q′), q∗min(ŵR(Q′), Q′), Q′)

≥ ΠMP(ŵR(Q′), p∗(ŵR(Q′), Q′), Q′) = GP(Q′).

where the first inequality is by definition of GN(Q) and the second inequality is by

Proposition B.2.2.

1To see why, note from (3.18) that ΠMP(w, p∗(w,Q), Q) = (w − c)Q for w ≤ wP(Q) and
ΠMP(w, p∗(w,Q), Q) = Πu

MP(w, pu(w)) for w ≥ wP(Q), and Πu
MP(w, pu(w)) itself is unimodal as

shown in Lemma 3.4.1(c).
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Cases (1) and (2) together conclude that GN(Q′) ≥ GP(Q′), which concludes Part

1.

Part 2: The existence of Q

Suppose now Q < ∞ so that there exists a range of capacities at which nego-

tiation is the equilibrium. We now show that Q exists and separates the regions

where the equilibrium wholesale price is w∗
N
(Q) versus ŵR(Q). Let us now focus on

the region Q ≥ Q. For any Q in this region, we know from Proposition 3.5.1 that

the equilibrium wholesale price must be either ŵR(Q) or w∗
N
(Q). Note that if there

exists Q̃ ≥ Q such that the equilibrium wholesale price is w∗
N
(Q) at Q̃, then from

Lemma B.2.3(c), the manufacturer would choose w∗
N
(Q) for any Q > Q̃. Hence,

there exists Q, given by the smallest such Q̃, and the equilibrium wholesale price is

w∗
N
(Q) for any Q ≥ Q. We observe that it is possible that Q = Q, in which case

the equilibrium wholesale price is never ŵR(Q). On the other hand, if there does not

exist Q ≥ Q such that the equilibrium wholesale price is w∗
N
(Q), then it must be that

the equilibrium wholesale price is ŵR(Q) for any Q ≥ Q.

Lemma B.2.1. For a given wholesale price w and capacity Q, let ∆R(w, Q) be the

difference between the retailer’s optimal profits under posted pricing and negotiation,

that is, ∆R(w, Q) = ΠRP(p∗(w,Q), w,Q)− ΠRN(q∗min(w, Q), w, Q). Then,

(a) If ∆R(c, Q) ≥ 0, then ∆R(w, Q) ≥ 0 for all w ≥ c

(b) If ∆R(c, Q) < 0, then either:

(i) ∆R(w, Q) < 0 for all w ≥ c, or

(ii) There exists a unique ŵR(Q) such that ∆R(w, Q) < 0 for w < ŵR(Q)

and ∆R(w, Q) ≥ 0 for w ≥ ŵR(Q). In other words, ∆R(w, Q) crosses zero only
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once at ŵR(Q) > c.

(c) For a given Q, suppose that there exists wP(Q) ≥ c but there does not exists

wN(Q) ≥ c. Then, ∆R(w, Q) ≥ 0 for all w ≥ c.

(d) For a given Q, suppose that there exist wP(Q) ≥ c, wN(Q) ≥ c, ŵR(Q) > c. It

must be that wN(Q) > wP(Q) and ŵR(Q) > wP(Q).

Proof of Lemma B.2.1

In this proof, we omit Q whenever the dependence is obvious. For example, we

write p∗(w) instead of p∗(w, Q) and q∗min(w) instead of q∗min(w,Q).

Proofs of (a) and (b): We consider four cases depending on whether there exist

wN(Q) ≥ c and/or wP(Q) ≥ c, that is, whether there exists a feasible wholesale price

(i.e. greater than or equal to c) at which the quantity sold under negotiation and/or

posted pricing is not bounded by capacity. These four cases are: (1) neither wN(Q)

nor wP(Q) exists, (2) both wN(Q) and wP(Q) exist, (3) only wP(Q) exists, and (4)

only wN(Q) exists.

Case (1) In case (1), the retailer and manufacturer’s profits are never bounded by

capacity. Hence, the problem collapses to the uncapacitated one, for which

Lemma B.1.1(a)(b) shows the desired result.

Case (2) We will divide the proof of case (2) into three mutually exclusive subcases:

(2.a) wP ≥ wN, (2.b) wP < wN and ∆R(wP(Q), Q) ≥ 0, and (2.c) wP < wN and

∆R(wP(Q), Q) < 0. As we will prove next, in subcases (2.a) and (2.b), part (a)

of this lemma holds. In subcase (2.c), part (b) of this lemma holds.

(2.a) wP ≥ wN
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Since wP ≥ wN ≥ c, applying equations (3.17) and (3.20), we have

∆R(w, Q) = ΠRP(p∗(w), w)− ΠRN(q∗min(w), w)

=



ΠRP(p̄, w)− ΠRN(p̄, w) for w ∈ [c, wN],

ΠRP(p̄, w)− Πu
RN

(qu
min(w), w) for w ∈ [wN, wP],

Πu
RP

(pu(w), w)− Πu
RN

(qu
min(w), w) for w ≥ wP.

(B.30)

From the definitions of wN, wP and p̄, it can be shown that ∆R(w, Q) is contin-

uous and differentiable in w. To help with the proof, we substitute from (3.17)

and (3.20) into (B.30), and take the derivative to obtain

d∆R(w,Q)

dw
=



0 for w ∈ [c, wN],

−Q + aF (qu
min(w)) for w ∈ [wN, wP],

−aF (pu(w)) + aF (qu
min(w)) for w ≥ wP.

(B.31)

Notice that aF (qu
min(w)) ≤ Q for w ∈ [wN, wP] (since qu

min(w) ≥ qu
min(wN) =

p̄(Q) for w ≥ wN). Therefore, we observe from (B.31) that d∆R(w,Q)
dw

≤ 0 for

w ∈ [c, wP].

First, we show that ∆R(w, Q) ≥ 0 for any w ∈ [c, wP]. We prove this by

contradiction. Suppose there exists some wo ≤ wP such that ∆R(wo, Q) < 0.

Since d∆R(w,Q)
dw

≤ 0 for w ∈ [c, wP], it must be that ∆R(wP, Q) < 0. Notice from

(B.30) that, for w ≥ wP, capacity is no longer binding and the retailer’s profits

under both sales formats are given by the profits in the uncapacitated problem:

∆R(w, Q) = ∆u
R
(w) for w ≥ wP. Combining the facts above, we must have

∆u
R
(wP) = ∆R(wP, Q) < 0 and

d∆u
R
(w)

dw

∣∣∣∣
w=wP

=
d∆R(w,Q)

dw

∣∣∣∣
w=wP

≤ 0.
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However, this contradicts Lemma B.1.1(b) as the function ∆u
R
(w) cannot be

(weakly) decreasing at a w where it is strictly negative. Therefore, ∆R(w, Q) ≥

0 for any w ∈ [c, wP].

It remains to show that ∆R(w,Q) ≥ 0 for w > wP. Recall that for w ≥ wP,

∆R(w, Q) = ∆u
R
(w) and we have shown above that ∆u

R
(wP) ≥ 0. Lemma

B.1.1(a) and (b) together imply that once ∆u
R
(w) is positive for some w, ∆u

R
(w)

remains positive for any larger w. Therefore, ∆R(w, Q) = ∆u
R
(w) ≥ 0 for

w > wP.

(2.b) wP < wN and ∆R(wP, Q) ≥ 0

Since wP < wN, applying equations (3.17) and (3.20), we have

∆R(w, Q) = ΠRP(p∗(w), w)− ΠRN(q∗min(w), w)

=



ΠRP(p̄, w)− ΠRN(p̄, w) for w ∈ [c, wP],

Πu
RP

(pu(w), w)− ΠRN(p̄, w) for w ∈ [wP, wN],

Πu
RP

(pu(w), w)− Πu
RN

(qu
min(w), w) for w ≥ wN.

(B.32)

From the definitions of wN, wP and p̄, it can be shown that ∆R(w, Q) is dif-

ferentiable in w. To help with the proof, we substitute from (3.17) and (3.20)

into (B.32), and take the derivative to obtain

d∆R(w, Q)

dw
=



0 for w ∈ [c, wP],

−aF (pu(w)) + Q for w ∈ [wP, wN],

−aF (pu(w)) + aF (qu
min(w)) for w ≥ wN.

(B.33)
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First, observe from (B.33) that d∆R(w,Q)
dw

= 0 for w ∈ [c, wP]. Hence, given our

assumption that ∆R(wP, Q) ≥ 0, it follows that ∆R(w, Q) ≥ 0 for w ∈ [c, wP].

Second, notice that aF (pu(w)) ≤ Q for w ∈ [wP, wN] (since pu(w) ≥ pu(wP) =

p̄(Q) for w ≥ wP). Therefore, we observe from (B.33) that d∆R(w,Q)
dw

≥ 0 for

w ∈ [c, wN]. Since ∆R(wP, Q) ≥ 0 by assumption, it follows that ∆R(w, Q) ≥ 0

for all w ∈ [c, wN].

It remains to show that ∆R(w, Q) ≥ 0 for w > wN. Notice from (B.32) that

for w ≥ wN, ∆R(w, Q) = ∆u
R
(w). We have shown above that ∆u

R
(wN) ≥ 0.

Lemma B.1.1(a) and (b) together imply that once ∆u
R
(w) is positive for some

w, ∆u
R
(w) remains positive for any larger w. Therefore, ∆R(w, Q) = ∆u

R
(w) ≥ 0

for w > wN.

(2.c) wP < wN and ∆R(wP, Q) < 0

Since wP < wN, ∆R(w, Q) and d∆R(w,Q)
dw

are given by (B.32) and (B.33), respec-

tively. Observe that d∆R(w,Q)
dw

= 0 for w ∈ [c, wP]. Hence, given our assumption

that ∆R(wP, Q) < 0, it must be that ∆R(w,Q) < 0 for w ∈ [c, wP]. Next,

we consider the behavior of ∆R(w, Q) for w > wP by examining two subcases:

(2.c.i) ∆R(wN, Q) ≥ 0, and (2.c.ii) ∆R(wN, Q) < 0.

(2.c.i) ∆R(wN, Q) ≥ 0

For w ∈ (wP, wN], observe from (B.33) that d∆R(w,Q)
dw

> 0 (since pu(w) >

pu(wP) = p̄(Q) for w > wP). Combining this observation with the facts that

∆R(wP, Q) < 0 and ∆R(wN, Q) ≥ 0, it must be that ∆R(w, Q) crosses zero only

once for some w ∈ (wP, wN].

As for w ≥ wN, observe from (B.32) that ∆R(w,Q) = ∆u
R
(w) when w ≥ wN.
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By Lemma B.1.1(a) and (b) together, once ∆u
R
(w) crosses zero at some w,

it stays strictly positive for larger w. Therefore, given our assumption that

∆R(wN, Q) ≥ 0, it follows that ∆R(w,Q) = ∆u
R
(w) ≥ 0 for w ≥ wN.

(2.c.ii) ∆R(wN, Q) < 0

Recall that d∆R(w,Q)
dw

= 0 for w ∈ [c, wP] and d∆R(w,Q)
dw

≥ 0 for w ∈ [wP, wN] from

(B.33). Therefore, given the assumption that ∆R(wN, Q) < 0, it must be that

∆R(w, Q) < 0 for w ∈ [c, wN].

For w ≥ wN, recall that ∆R(w,Q) = ∆u
R
(w). Since ∆R(wN, Q) = ∆u

R
(wN) < 0,

the behavior of ∆R(w, Q) = ∆u
R
(w) must follow the case in Lemma B.1.1(b) for

w ≥ wN.

Case (3) Consider now the case where wP ≥ c exists, but wN ≥ c does not exist.

The quantity sold under negotiation is not bounded by capacity for any w ≥ c.

Hence, ΠRN(q∗min(w), w) = Πu
RN

(qu
min(w), w) for all w ≥ c. Given this fact and

applying equation (3.17), we have

∆R(w,Q) = ΠRP(p∗(w), w)− ΠRN(q∗min(w), w)

=


ΠRP(p̄, w)− Πu

RN
(qu

min(w), w) for w ∈ [c, wP],

Πu
RP

(pu(w), w)− Πu
RN

(qu
min(w), w) for w ≥ wP.

(B.34)

Notice that (B.34) is a special case of (B.30). Therefore, case (3) collapses to

case (2.a), and ∆R(w, Q) ≥ 0 for all w ≥ c.

Case (4) Consider now the case where wN ≥ c exists, but wP ≥ c does not exist.

The quantity sold under posted pricing is not bounded by capacity for any

w ≥ c. Hence, ΠRP(p∗(w), w) = Πu
RP

(pu(w), w) for all w ≥ c. Given this fact
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and applying equation (3.17), we have

∆R(w,Q) = ΠRP(p∗(w), w)− ΠRN(q∗min(w), w)

=


Πu

RP
(pu(w), w)− ΠRN(p̄, w) for w ∈ [c, wN],

Πu
RP

(pu(w), w)− Πu
RN

(qu
min(w), w) for w ≥ wN.

(B.35)

Depending on whether ∆R(wN, Q) ≥ 0 or ∆R(wN, Q) < 0, the result is the same

as in case (2.c.i) or (2.c.ii), respectively.

Proof of (c): The result follows immediately from the discussion of case (3) above,

as that discussion shows that ∆R(w, Q) ≥ 0 for all w ≥ c when only wP ≥ c exists.

Proof of (d): If wN ≥ c and wP ≥ c both exist, the only case where ŵR exists is

case (2.c) discussed in the proof of parts (a) and (b): wP < wN and ∆R(wP, Q) < 0.

In the proof of case (2.c), we have shown that ∆R(w, Q) < 0 for w ∈ [c, wP]. Hence,

the wholesale price at which ∆R(w, Q) = 0 must be strictly greater than wP, that is,

ŵR > wP.

Lemma B.2.2. Define ∆R(w,Q) = ΠRP(p∗(w, Q), w, Q) − ΠRN(q∗min(w, Q), w, Q).

Suppose there exists a unique ŵR(Q) such that ∆R(w,Q) < 0 for w < ŵR(Q) and

∆R(w, Q) ≥ 0 for w ≥ ŵR(Q). Consider the following optimization problem:

max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q) (B.36)

Let wo
N
(cT) denote the optimal solution to (B.36) and GN(cT) be the optimal value of

the objective function for a given cT. Then,

(a) wo
N
(cT) = min{ŵR(Q), w∗

N
(Q)}.

(b) wN(Q) decreases in cT. Furthermore, dwN(Q)
dcT

= −1.
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(c) ŵR(Q) decreases in cT. Furthermore, dŵR(Q)
dcT

< −1.

(d) If wo
N
(cT) = ŵR(Q) for some cT = co

T
, then wo

N
(cT) = ŵR(Q) for cT > co

T
.

(e) GN(cT) decreases in cT.

Proof of Lemma B.2.2

The proof of Lemma B.2.2 is similar to that of Lemma B.1.2 and mostly algebraic,

therefore omitted.

Lemma B.2.3.

(a) Suppose there exists a wN(Q) > c at a given Q. Then, dwN(Q)
dQ

≤ 0.

(b) Define ∆R(w,Q) = ΠRP(p∗(w, Q), w,Q) − ΠRN(q∗min(w, Q), w,Q). Suppose there

exists a unique ŵR(Q) such that ∆R(w, Q) < 0 for w < ŵR(Q) and ∆R(w, Q) ≥ 0 for

w ≥ ŵR(Q). Then, dŵR(Q)
dQ

≥ 0.

Consider now the following optimization problem:

max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q) (B.37)

Let wo
N
(Q) denote the optimal solution to (B.37) and GN(Q) be the optimal value of

the objective function for a given Q. Then,

(c) Suppose, for some Q = Qo, wo
N
(Qo) = w∗

N
(Qo). Then, wo

N
(Q) = w∗

N
(Q) for

Q > Qo.

(d) GN(Q) increases in Q.

Proof of Lemma B.2.3

Proof of (a): For a given capacity Q, the market-clearing wholesale price under

negotiation, wN(Q), is defined so that even a retailer with unlimited capacity will find

it optimal to sell exactly Q units. In other words, qu
min(wN(Q)) = p̄(Q) (see (3.19)

and the preceding discussion). Hence, qu
min(wN(Q)) and wN(Q) satisfy the first-order
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condition of the retailer’s profit function under negotiation, Πu
RN

(qmin, w). Using the

expression for ∂Πu
RN(qmin,w)

∂qmin
from (B.9) and the fact that qu

min(w) satisfies the first-order

condition for Πu
RN

(qmin, w):

∂Πu
RN

(qmin, w)

∂qmin

∣∣∣∣
qmin=qu

min(w)

= a(−qu
min(w) + w + cT)f(qu

min(w)) + aβF (qu
min(w)) = 0.

Substituting w = wN(Q) and qu
min(wN(Q)) = p̄(Q) in the above equation, we obtain

the following identity:

(
−p̄(Q) + wN(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q)) = 0, or,

−β
F (p̄(Q))

f(p̄(Q))
+ p̄(Q) = wN(Q) + cT. (B.38)

When Q increases, p̄(Q) decreases (since aF (p̄(Q)) = Q) and, thus, β F (p̄(Q))
f(p̄(Q))

increases

due to F being IFR. Therefore, the left-hand side of the above identity decreases in

Q. Hence, wN(Q) must decrease in Q.

Proof of (b): We consider four cases depending on whether there exist wN(Q) ≥ c

and/or wP(Q) ≥ c, that is whether there exists a feasible wholesale price (i.e. greater

than or equal to c) at which the quantity sold under negotiation and/or posted pricing

is not bounded by capacity. Four cases are: (1) both wN(Q) and wP(Q) exist, (2)

only wN(Q) exists, (3) only wP(Q) exists, and (4) neither of them exists.

(1) both wP(Q) and wN(Q) exist

Note from Lemma B.2.1(d) that if ŵR(Q) exists, it must be that wP(Q) <

min{ŵR(Q), wN(Q)}. Therefore, there are two possible subcases: (1.a) wP(Q) <

ŵR(Q) < wN(Q), and (1.b) wP(Q) < wN(Q) ≤ ŵR(Q).

Consider the first subcase (1.a). By definition, ŵR(Q) satisfies ∆R(ŵR(Q), Q) = 0.

Observe from (3.17) and (3.20) that
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ΠRP(p∗(ŵR(Q), Q), ŵR(Q), Q) = Πu
RP

(pu(ŵR(Q)), ŵR(Q)) (since wP(Q) < ŵR(Q)), and

ΠRN(q∗min(ŵR(Q), Q), ŵR(Q), Q) = ΠRN(p̄(Q), ŵR(Q), Q) (since ŵR(Q) < wN(Q)).

Therefore, at w = ŵR(Q), the following identity must be satisfied:

ΠRN(p̄(Q), ŵR(Q), Q)− Πu
RP

(pu(ŵR(Q)), ŵR(Q)) = 0.

Implicit differentiation of the above identity with respect to Q yields:

0 =
dΠRN(p̄(Q), ŵR(Q), Q)

dQ
− dΠu

RP
(pu(ŵR(Q)), ŵR(Q))

dQ

= dp̄(Q)
dQ

∂ΠRN(qmin,w,Q)
∂qmin

∣∣∣
qmin=p̄(Q),w=ŵR(Q)

+ dŵR(Q)
dQ

∂ΠRN(qmin,w,Q)
∂w

∣∣∣
qmin=p̄(Q),w=ŵR(Q)

−dpu(ŵR(Q))
dQ

∂Πu
RP(p,w)
∂p

∣∣∣
p=pu(ŵR(Q)),w=ŵR(Q)

− dŵR(Q)
dQ

∂Πu
RP(p,w)
∂w

∣∣∣
p=pu(ŵR(Q)),w=ŵR(Q)

(B.39)

Note that the third term on the right-hand side of (B.39) is zero since pu satisfies

the first-order condition of Πu
RP

(p, w). Recall that

ΠRN(qmin, w,Q) = a

∫ ∞

qmin

[(1− β)x + βqmin − w − cT]f(x)dx,

Πu
RP

(p, w) = a(p− w)F (p).

Take the partial derivatives of these functions, we obtain

∂ΠRN(qmin, w,Q)

∂qmin

= a(−qmin + w + cT)f(qmin) + aβF (qmin),

∂ΠRN(qmin, w,Q)

∂w
= −aF (qmin), and

∂Πu
RP

(p, w)

∂w
= −aF (p).

Substituting the partial derivatives above in (B.39) and rearranging the terms, we

obtain:

dŵR(Q)

dQ

(
F (p̄(Q))− F (pu(ŵR(Q)))

)
=

dp̄(Q)

dQ

[(
−p̄(Q) + ŵR(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q))

]
(B.40)
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Note from (B.38) that
(
−p̄(Q)+wN(Q)+cT

)
f(p̄(Q))+βF (p̄(Q)) = 0. Since ŵR(Q) <

wN(Q) in subcase (1.a), it follows that

(
−p̄(Q) + ŵR(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q)) < 0.

Furthermore, dp̄(Q)
dQ

< 0 since p̄(Q) is such that aF (p̄(Q)) = Q. Hence, the right-

hand side of (B.40) is positive. We then consider the left-hand side of (B.40). Note

that, since wP(Q) < ŵR(Q) in subcase (1.a), it follows that pu(ŵR(Q)) > pu(wP(Q)) =

p̄(Q), where the equality is by definition of wP(Q). Hence, F
(
p̄(Q)

)
> F

(
pu(ŵR(Q))

)
.

Since the right-hand side of (B.40) is positive, we now conclude dŵR(Q)
dQ

≥ 0.

Subcase (1.b) can be proven similarly by implicit differentiation of the same

identity.

(2) only wN(Q) exists

We consider two separate subcases: (2.a) ŵR(Q) < wN(Q) and (2.b) wN(Q) ≤

ŵR(Q). Note that the analysis of (2.a) is similar to case (1.a), and (2.b) is similar to

case (1.b).

(3) only wP(Q) exists

Note that if wP(Q) exists and wN(Q) does not exist, Lemma B.2.1(c) shows that

ŵR(Q) does not exist. Therefore, this case cannot occur when there exists ŵR(Q) at

given Q.

(4) both wP(Q) and wN(Q) do not exist

The analysis is similar to case (1.b).

Proof of (c): Pick two capacity levels Qo and Q′ such that Qo < Q′. We consider

three cases depending on whether there exists a feasible wholesale price at which the

quantity sold under negotiation will be capacity-constrained at each capacity level,
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Qo and Q′: (1) both wN(Qo) ≥ c and wN(Q′) ≥ c exist, (2) neither of them exists,

and (3) wN(Qo) ≥ c exists, but wN(Q′) ≥ c does not exist. (The case that wN(Qo) ≥ c

does not exist and wN(Q′) ≥ c exists cannot occur since wN(Q) decreases in Q, which

is proven in part (a) of this lemma.)

(1) wN(Qo) ≥ c and wN(Q′) ≥ c

Note from Lemma B.2.2(a) that wo
N
(Q) = min{ŵR(Q), w∗

N
(Q)} and from Lemma

3.5.2 that w∗
N
(Q) = max{wN(Q), wu

N
}. Therefore, given that wo

N
(Qo) = w∗

N
(Qo), it

must be that ŵR(Qo) ≥ max{wN(Qo), wu
N
}. Observe that wu

N
is constant with respect

to Q and, from part (a) of this lemma, wN(Q) decreases when Q increases. Also

observe from part (b) of this lemma, ŵR(Q) increases as Q increases. Therefore,

ŵR(Q′) ≥ ŵR(Qo) ≥ max{wN(Qo), wu
N
} ≥ max{wN(Q′), wu

N
},

and wo
N
(Q′) = w∗

N
(Q′).

(2) neither of them exists

In this case, there does not exist a feasible wholesale price at which the quantity

sold under negotiation is capacity-constrained at either Qo or Q′. Hence, w∗
N
(Qo) =

wu
N

and w∗
N
(Q′) = wu

N
. It follows that

wo
N
(Qo) = min{ŵR(Qo), wu

N
} and wo

N
(Q′) = min{ŵR(Q′), wu

N
}.

Then, the result follows from the facts that wu
N

is constant with respect to Q,

ŵR(Q′) ≥ ŵR(Qo) (from part (b) of this lemma) and wo
N
(Qo) = wu

N
.

(3) only wN(Qo) ≥ c exists

In this case, w∗
N
(Q′) = wu

N
. The result follows from the following set of inequalities:

ŵR(Q′) ≥ ŵR(Qo) ≥ max{wN(Qo), wu
N
} ≥ wu

N
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where the first inequality comes from part (b) of this lemma and the second inequal-

ity comes from the fact that wo
N
(Qo) = w∗

N
(Qo) = max{wN(Qo), wu

N
}.

Proof of (d): It is easy to check that ΠMN(w, q∗min(w,Q), Q) increases in Q. There-

fore, if Qo < Q′, then

GN(Qo) = ΠMN(wo
N
(Qo), q∗min(w

o
N
(Qo), Qo), Qo)

≤ ΠMN(wo
N
(Qo), q∗min(w

o
N
(Qo), Q′), Q′). (B.41)

Furthermore, since ŵR(Q) increases in Q, wo
N
(Qo) must be feasible for the optimiza-

tion problem (B.37) at Q = Q′ > Qo. Therefore,

GN(Q′) = ΠMN(wo
N
(Q′), q∗min(w

o
N
(Q′), Q′), Q′)

≥ ΠMN(wo
N
(Qo), q∗min(w

o
N
(Qo), Q′), Q′). (B.42)

Combining (B.41) and (B.42), we obtain GN(Q′) ≥ GN(Qo).

Proposition B.2.1. [Retailer’s best response]

(a) If the retailer (weakly) prefers posted pricing at w = c, then the retailer strictly

prefers posted pricing for all w > c.

Otherwise (i.e., if the retailer strictly prefers negotiation at w = c):

(b) either the retailer strictly prefers negotiation at all w > c,

(c) or there exists a unique threshold ŵR(Q) > c such that the retailer is indifferent

between negotiation and posted pricing if w = ŵR(Q), strictly prefers negotiation if

w < ŵR(Q), and strictly prefers posted pricing if w > ŵR(Q).

Proof of Proposition B.2.1



150

Define ∆R(w, Q) = ΠRP(p∗(w, Q), w, Q) − ΠRN(q∗min(w,Q), w,Q) to be the differ-

ence between the retailer’s optimal profits under the two sales formats at a given

wholesale price, w. Lemma B.2.1(a)(b) proves that either (1) ∆R(w, Q) ≥ 0 for all

w ≥ c, or (2) ∆R(w, Q) < 0 for all w ≥ c ,or (3) if ∆R(w,Q) crosses zero for some

w, it does so only once and from below. These three possibilities correspond to the

three possible best response patterns listed in the proposition.

Proposition B.2.2. Suppose there exists ŵR(Q) > c that makes the retailer indif-

ferent between negotiation and posted pricing, as described in Proposition B.2.1(c).

At the wholesale price ŵR(Q), the manufacturer prefers negotiation. In other words,

ΠMN(ŵR(Q), q∗min(ŵR(Q), Q), Q) ≥ ΠMP(ŵR(Q), p∗(ŵR(Q), Q), Q).

Proof of Proposition B.2.2

For ease of exposition, we prove the results when there exist market-clearing

wholesale prices, wP(Q) ≥ c and wN(Q) ≥ c for a given Q. Notice that if neither

wP(Q) ≥ c nor wN(Q) ≥ c exists, then there would be no feasible wholesale price

(w ≥ c) that makes the capacity binding under either sales format and, hence, the

problem reverts to the unlimited capacity version, for which the result has already

been established in Section 3.4. If only one of wP(Q) ≥ c or wN(Q) ≥ c exists, then

there would be no feasible wholesale price that makes capacity binding under one of

the sales formats, and the result would follow as a special case of the proof we are

providing here.

For this proof, we omit Q whenever the dependence is obvious. Define ∆M(w,Q) =

ΠMP(w, p∗(w)) − ΠMN(w, q∗min(w)) to be the difference between the manufacturer’s

profits under the two sales formats, and define ŵM be such that ∆M(w,Q) ≤ 0 for
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w ≤ ŵM and ∆M(w, Q) ≥ 0 for w ≥ ŵM. Lemma B.2.1(d) shows that, if ŵR exists, it

must be that wN > wP and ŵR > wP. Since wN > wP, applying equations (3.18) and

(3.21), we have

∆M(w,Q) = ΠMP(w, p∗(w))− ΠMN(w, q∗min(w))

=



0 for w ∈ [c, wP],

a(w − c)F (pu(w))− (w − c)Q ≤ 0 for w ∈ [wP, wN],

a(w − c)F (pu(w))− a(w − c)F (qu
min(w)) for w ≥ wN.

(B.43)

Notice from above that ∆M(w, Q) ≤ 0 for w ≤ wN. We next analyze the behavior

of ∆M(w, Q) for w > wN. Observe that the sales quantity under neither format will

be bounded by the capacity if w ≥ wN. Since capacity Q plays no role under both

sales formats when w ≥ wN, ∆M(w, Q) is equal to ∆u
M
(w) and ∆R(w, Q) is equal to

∆u
R
(w) for w ≥ wN.

From (B.43), ∆u
M
(w) = a(w − c)

(
F (pu(w))− F (qu

min(w))
)

and from (B.18) that

d∆u
R(w)
dw

= −aF (pu(w)) + aF (qu
min(w)). Then, we have

∆u
M
(w) = −(w − c)

d∆u
R
(w)

dw
for w ≥ wN (B.44)

Since ∆M(wN, Q) ≤ 0, it follows from (B.44) that d∆u
R(w)
dw

≥ 0 at w = wN.

To show that ŵM exists and that ŵM ≥ ŵR, we examine two cases: (1) ŵR ≤ wN

and (2) ŵR > wN separately. Note that, by the definition of ŵR, ŵR ≤ wN is equivalent

to ∆R(wN, Q) ≥ 0, and ŵR > wN to ∆R(wN, Q) < 0.

(1) ŵR ≤ wN (equivalently, ∆R(wN, Q) ≥ 0)

Since ∆u
R
(w) is positive and increasing at w = wN, it now follows from Lemma

B.1.1(b) that the function ∆u
R
(w) is unimodal and peaks at some wo ≥ wN. This
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implies that d∆u
R(w)
dw

changes sign from positive to negative at w = wo ≥ wN, which in

turn implies that ∆M(w,Q) changes sign from negative to positive at w = wo ≥ wN

(see (B.44)). Hence, ŵM = wo and ŵM ≥ ŵR.

(2) ŵR > wN (equivalently, ∆R(wN, Q) < 0)

Recall that ∆M(w, Q) is equal to ∆u
M
(w) and ∆R(w,Q) is equal to ∆u

R
(w) for

w ≥ wN. Since ŵR > wN, ∆u
R
(w) changes sign at w = ŵR. The result directly follows

from Lemma B.1.1(c).

Cases (1) and (2) together conclude that, if ŵR exists, then there must exist

ŵM ≥ ŵR and the result directly follows.

Proposition B.2.3. There exist two thresholds, cT and cT, cT ≤ cT, such that

(a) [Negotiation] if cT < cT, then the equilibrium sales format is negotiation with

the wholesale price w∗
N
(Q) = max{wN(Q), wu

N
}, resulting in the retailer’s cut-off val-

uation q∗min(w
∗
N
(Q), Q),

(b) [Reconciliatory Negotiation] if cT ≤ cT < cT, then the equilibrium sales for-

mat is negotiation with the wholesale price ŵR(Q), resulting in the retailer’s cut-off

valuation q∗min(ŵR(Q), Q), and

(c) [Posted Pricing] if cT ≥ cT, then the equilibrium sales format is posted price

with the wholesale price w∗
P
(Q) = max{wP(Q), wu

P
}, resulting in the posted price

p∗(w∗
P
(Q), Q).

Proof of Proposition B.2.3

We omit the proof of this proposition. The proof is almost identical to that of

Proposition 3.4.4, once we replace qu
min(w), pu(w), wu

N
and wu

P
in the earlier proof

with q∗min(w, Q), p∗(w,Q), w∗
N
(Q) and w∗

P
(Q) here. The proof utilizes Lemma B.2.2
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which is a counterpart for Lemma B.1.2 used in the proof of Proposition 3.4.4.
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B.3 Proof of Assumption A2 in Section 3.4

In this section of Appendix, we prove that Assumption A2 is satisfied for several

widely used reservation price distribution. Recall Assumption A2:

(A2) The density f(·) is twice differentiable and satisfies

f ′(x)
(
2f ′(x)F (x) + f 2(x)

)
− f ′′(x)f(x)F (x) ≥ 0 (B.45)

Uniform Distribution, U [0, a
b
]:

Note that F (x) = bx
a
, f(x) = b

a
and f ′(x) = f ′′(x) = 0 for x ∈ [0, a

b
]. Therefore,

f ′(x)(2f ′(x)F (x) + f 2(x))− f ′′(x)f(x)F (x) = 0 and Assumption A2 holds trivially.

Exponential (λ):

Note that F (x) = 1− e−λx, f(x) = λe−λx, f ′(x) = −λ2e−λx and f ′′(x) = λ3e−λx

for all x ≥ 0. Then,

f ′(x)
(
2f ′(x)F (x) + f 2(x)

)
− f ′′(x)f(x)F (x)

= −λ2e−λx[−2λ2(e−λx)2 + λ2(e−λx)2]− λ4(e−λx)3 = 0,

thus Assumption A2 holds.

Weibull (α, β) with α ≥ 1:

Note that F (x) = 1 − e−( x
β

)α

, f(x) = α
βα xα−1e−( x

β
)α

, f ′(x) = α
βα e−( x

β
)α

z, and

f ′′(x) = α
βα e−( x

β
)α

[− α
βα xα−1z + (α − 1)(α − 2)xα−3 − 2 α

βα (α − 1)x2α−3] where z =

(α− 1)xα−2 − x2α−2 α
βα . We have

f ′(x)(2f ′(x)F (x) + f 2(x))− f ′′(x)f(x)F (x)

= (e−( x
β

)α

)3

[
2

α2

β2α
z2 + 2

α3

β3α
x2α−2z − (α− 1)(α− 2)

α2

β2α
x2α−4 + 2(α− 1)

α3

β3α
x3α−4

]
= α(α− 1)

α2

β2α
x2α−4

(
e−( x

β
)α

)3

≥ 0,
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thus, Assumption A2 holds.

Gumbel

Note that F (x) = 1
1+eα−x , f(x) = eα−x

(1+eα−x)2
, f ′(x) = eα−x(eα−x−1)

(1+eα−x)3
, and f ′′(x) =

−4(eα−x)2+(eα−x)3+eα−x

(1+eα−x)4
for x ≥ 0. We have

f ′(x)(2f ′(x)F (x) + f 2(x))− f ′′(x)f(x)F (x)

=
(eα−x)3

(1 + eα−x)7

[
(eα−x − 1)(2eα−x − 1)− (−4eα−x + (eα−x)2 + 1)

]
=

(eα−x)4

(1 + eα−x)6
≥ 0,

thus, Assumption A2 holds.
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