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ABSTRACT 

 

ADVANCES IN CONCURRENT MOTION AND FIELD-
INHOMOGENEITY CORRECTION IN FUNCTIONAL MRI 

 

by 

Teck Beng Desmond Yeo 

 

Co-Chairs:  Jeffrey A. Fessler and Boklye Kim 

 

 

Head motion and static magnetic field (B0) inhomogeneity are two important sources of image 

intensity variability in functional MRI (fMRI). Ideally, in MRI, any deviation in B0 homogeneity 

in an object occurs only by design. However, due to imperfections in the main magnet and 

gradient coils, and, magnetic susceptibility differences in the object, undesired B0 deviations may 

occur. This causes geometric distortion in Cartesian EPI images. In addition to spatial shifts and 

rotations of images, head motion during an fMRI experiment may induce time-varying field-

inhomogeneity changes in the brain. As a result, correcting for motion and field-inhomogeneity 

effects independently of each other with a static field map may be insufficient, especially in the 

presence of large out-of-plane rotations. Our primary concern is the correction of the combined 

effects of motion and field-inhomogeneity induced geometric distortion in Cartesian EPI fMRI 

images. We formulate a concurrent field-inhomogeneity with map-slice-to-volume motion 

correction, and develop a motion-robust dual-echo bipolar gradient echo static field map 

estimation method. We also propose and evaluate a penalized weighted least squares approach to



 xvii

dynamic field map estimation using the susceptibility voxel convolution method. This technique 

accounts for field changes due to out-of-plane rotations, and estimates dynamic field maps from a 

high resolution static field map without requiring accurate image segmentation, or the use of 

literature susceptibility values. Experiments with simulated data suggest that the technique is 

promising, and the method will be applied to real data in future work. 

 In a separate clinical fMRI project, which is independent of the above work, we also 

formulate a current density weighted index to quantify correspondence between electrocortical 

stimulation and fMRI maps for brain presurgical planning. The proposed index is formulated with 

the broader goal of defining safe limits for lesion resection, and is characterized extensively with 

simulated data. The index is also computed for real human datasets. 
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CHAPTER 1 

Introduction 

 
Functional magnetic resonance imaging (fMRI) is a dynamic imaging method that is widely used 

to map the function of the human brain non-invasively. In a typical fMRI experiment, the subject 

is scanned with a fast MR imaging protocol while subjected to a time-controlled set of stimuli. 

Image intensity differences over time, induced by local magnetic susceptibility changes due to 

cerebral blood flow (CBF) changes, are analyzed statistically to determine if a region of the brain 

is activated in response to the given stimuli. Since fMRI is essentially a dynamic study of this 

Blood Oxygenation Level Dependent (BOLD) contrast, fast MR imaging protocols must be used 

to achieve adequate temporal resolution. 

 Echo-planar imaging (EPI) [1] is a group of fast imaging protocols that is commonly used 

in fMRI studies. A popular protocol in this family is the single-shot Cartesian blipped EPI 

protocol that acquires almost uniformly spaced k-space samples in a Cartesian grid, which allows 

for efficient image reconstruction using the inverse fast Fourier transform (FFT). Unfortunately, 

in the presence of inhomogeneity in the main magnetic field B0, artifacts such as geometric 

distortion [2] and blurring are observed in blipped EPI and spiral EPI images respectively when 

an inverse FFT is applied directly to the re-gridded k-space samples for image reconstruction. 

This is due to the inadvertent field-inhomogeneity induced phase accrual in the MR signal during 

the long readout time following every radio frequency (RF) pulse. The main sources of field-

inhomogeneity include eddy currents induced by the switching gradient fields, imperfect gradient 

fields, main magnet imperfections and the interaction of B0 at the boundaries of tissues of 

different magnetic susceptibility values. The latter is particular significant because it is object-

specific and may change non-linearly with object motion. In addition to geometric distortion and 

blurring, field-inhomogeneity also causes signal loss due to in-plane and through-plane intra-

voxel dephasing. Another artifact that is often ignored is the susceptibility induced slice profile 

warp which, if severe enough, can map activated voxels onto incorrect slice locations in an 

anatomically correct structural scan and thus yield misleading results.  
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1.1 Thesis Outline 

Parts of this thesis focus on susceptibility-induced geometric distortion correction for a single 

shot blipped EPI protocol. To perform geometric distortion correction, some form of field-

inhomogeneity map is often assumed to be available [2-8]. A field map is said to be static if it is 

acquired at only one time point in the fMRI experiment and thus does not track the field-

inhomogeneity changes when the head moves. A dynamic field map is a set of temporal field 

maps that tracks the field-inhomogeneity changes with head motion and is usually acquired 

together with the EPI data [9,10]. A static field map may suffer from errors induced by motion 

between the acquisitions of the two gradient echo datasets required to estimate the field map. The 

dual-echo fast gradient recalled echo (DEFGRE) field map acquisition method [11] in Chapter 3 

attempts to reduce field map estimation errors due to such motion between the two echo signals.  

 Head motion is another source of image intensity variation that can severely curtail 

activation detection accuracy. Motion correction techniques generally use an affine 

transformation model, of which the rigid body model is a special case, or a non-linear 

transformation model, which is computationally more expensive. If geometric distortion 

correction for blipped EPI is not performed, rigid body registration techniques generally do not 

have sufficient degrees of freedom to accurately reposition all the EPI slices into a structural scan, 

and thus, non-linear registration techniques are required. In addition, head motion may change the 

angles between B0 and tissue interfaces which in turn can cause the field-inhomogeneity to vary 

non-linearly with head motion. Thus, correcting for head motion and field-inhomogeneity 

separately with only a static field map may yield significant errors. The concurrent field map and 

map-slice-to-volume motion correction (CFMMSV) method [13] in Chapter 4 attempts to 

estimate a pseudo-dynamic field map to perform geometric distortion correction and uses map-

slice-to-volume (MSV) motion correction parameters to compute an updated field map from a 

static field map. This correction method may have limitations for large out-of-plane rotations and 

thus, in Chapter 5, we propose a novel penalized weighted least squares approach to field map 

estimation to account for such motion. We present preliminary results of the proposed approach 

to estimating dynamic field maps from a measured high resolution 3D static field map using a 

statistical version of the deterministic susceptibility voxel convolution method. The proposed 

method does not require head image segmentation, or the associated assignment of literature 

magnetic susceptibility values to voxels of the brain. 

 In Chapter 6, we propose a current density weighted index to quantify the correspondence 

between fMRI and electrocortical stimulation (ECS) maps for brain lesion presurgical planning. 
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ECS is the current gold standard for brain functional mapping in presurgical planning, but it is 

highly invasive. The definition of a systematic and physiologically relevant correspondence index 

is a first step to evaluating fMRI as a non-invasive alternative to ECS for presurgical planning. In 

this work, various techniques, including non-linear registration, rigid body slice-to-volume 

registration, fMRI time series analysis, and subdural electrode current density computation, are 

employed to facilitate the definition of the proposed correspondence index. 

 In summary, Chapters 1 and 2 of this report provide the necessary background 

information for the remaining chapters. Chapters 3 and 4 describes work already done [11,13], 

while Chapters 5 and 6 present preliminary results with suggestions for future work. Fig. 1.1 

provides an organizational overview of this thesis. 

1.2 Contributions 

The main contributions of this work are: 

• The problem formulation and development of an affine phase error correction technique that 

facilitates motion robust static field map estimation using a dual-echo bipolar gradient 

recalled echo protocol [11]. Validation of the technique is performed using phantom and 

human data. 

• The development of a concurrent motion and field inhomogeneity correction framework for 

EPI time series images [13]. The concurrent field-map MSV (CFMMSV) method employs 

iterative field-corrected quadratic penalized least squares (QPLS) image reconstruction [5] 

followed by a field map approximation procedure to enhance the MSV rigid body motion-

correction scheme, therefore accounting for field inhomogeneity changes with inter-slice 

head motion. 

• The formulation of a novel regularized 3D image restoration approach to dynamic 

susceptibility map estimation by solving the inverse susceptibility voxel convolution problem 

[58]. Using realistically simulated noisy 3D field maps of a spherical air compartment in 

water, preliminary results suggest that the proposed method may yield more accurate 

dynamic field map estimates compared to simpler methods, while requiring less prior 

information. In fMRI, this may potentially improve dynamic field map estimates and hence, 

geometric distortion correction accuracy. 

• The definition and evaluation of a new set of current density weighted indices to quantify the 

correspondence between subdural electrocortical stimulation and fMRI maps [59]. Simulated 

datasets are used to characterize the indices in detail, after which, they were computed for 

several patient datasets. 



 4

 
Figure 1.1: Organizational overview of this thesis with respect to a field-inhomogeneity and 

motion correction framework for fMRI. Chapter 6 is independent of previous 
chapters. 
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CHAPTER 2 

Background 

 

2.1 MRI Physics and Data Acquisition 

An MR image is a map of an object’s spatially varying net transverse (x-y plane component) 

magnetization generated by atomic nuclei that exhibit the nuclear magnetic resonance (NMR) 

phenomenon. The hydrogen nucleus, which is abundant in human soft tissue, is the predominant 

NMR-active nucleus imaged in brain MR images. The NMR phenomenon occurs when the 

NMR-active nucleus is placed in an external magnetic field, B0, and excited by an applied RF 

pulse B1 that is orthogonal to B0. An NMR-active nucleus spins and behaves like a bar magnet 

with a small magnetic field referred to as the magnetic moment, μv . A nucleus-specific 

gyromagnetic ratio γ constant quantifies the ratio of the nucleus’ angular momentum to its 

magnetic moment. 

 A hydrogen nucleus (single proton) placed in a homogenous magnetic field, B0 is 

magnetized and will align itself either parallel (low energy state) or anti-parallel (high energy 

state) to B0. Besides spinning on its own axis, each proton will also precess or rotate about the B0 

axis like a spinning top at the Lamor frequency, ω, as shown in Fig. 2.1 and described by Eq. 

(2.1). 

ω = γB0 (2.1) 

Figure 2.1: Single proton precessing in a B0 magnetic field and spinning about its own axis. 

μvB0 
precession 

Spinning 
proton 
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The aggregate sum of the magnetic moments of the nuclei in a closed volume shown in 

Fig. 2.2 form the net magnetization, M
v

. At thermal equilibrium without the RF pulse, the spins 

do not precess in phase and thus cancel out each others transverse components. Thus M
v

 does not 

precess and is aligned with B0 as shown in Fig. 2.2. 

 
Figure 2.2: Distribution of proton energy states when a group of protons are placed in a 

magnetic field B0 

 
Figure 2.3: Net magnetization, M

v
is tipped 90º downwards and precesses after applying a 90º RF 

excitation pulse. (a) Spins begin to precess in phase when B1 is just applied. M
v

 starts 
to tip downwards and precesses. (b) M

v
tips 90º downwards and precesses after 90º 

RF pulse is removed. Receiver coil measures induced voltage (MR signal). 
 

When an RF pulse oscillating at the proton Lamor frequency is applied perpendicular to 

B0, all proton spins begin to precess in phase with each other. Some spins in the low energy state 

make a transition into the higher energy state by absorbing energy from the RF pulse and this 

causes the net magnetization to tip towards the transverse plane. This is the NMR phenomenon. 

An αº RF pulse is one that has sufficient energy to tip M
v

 by αº. Fig. 2.3 shows the net 

magnetization, M
v

, after applying a 90º RF pulse to a group of protons. The precessing net 

(a) (b) 
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transverse magnetization xyM
v

 is used to induce a voltage across a receiver coil according to 

Faraday’s Law of Induction as shown in Fig. 2.3(b). The induced voltage constitutes the 

measured MRI signal s(t). 

After the RF pulse is removed, three main processes cause the received signal s(t) to 

decay with time: spin-lattice energy loss caused by thermal perturbations (characterized by T1), 

dephasing due to spin-spin interactions (characterized by T2) and field-inhomogeneity induced 

dephasing (characterized by T2
*). Assuming the field-inhomogeneity has a Lorentzian 

distribution, the signal decays with a time-constant T2
* where T2

* = 1/ T2 + 1/ T∆B and T∆B ≈ 

(γ∆B)-1. T∆B is the time-constant for the decay that occurs due to magnetic field-inhomogeneity 

∆B. Field-inhomogeneity is often expressed in parts per million of the main magnetic field, i.e. 

∆Bppm=(∆B/B0)*106),  and usually varies spatially. 

 Spatial localization in MRI is typically achieved by applying magnetic field gradients in 

three orthogonal directions to encode spatial information about the object as shown in Fig. 2.4. 

 
Figure 2.4: (a) Slice selection gradient Gz, (b) phase encode gradient strength Gy(t) varies for 
different readout cycles, (c) readout gradient Gx constant for readout cycles. 

 
Figure 2.5: Basic gradient echo pulse sequence. 
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 As an example, a basic multi-slice gradient echo pulse sequence is shown in Fig. 2.5. A 

slice-selection gradient Gz(t) is first applied to set up a linear Lamor frequency variation in the z 

direction as shown in Fig. 2.5. A B1 pulse with a bandwidth that covers the Lamor frequency 

range of the slice of interest is then applied. All subsequent data measurements pertain only to 

this slice. After a slice has been selected, a phase encode field gradient Gy(t) is applied in the y 

direction for Tpe seconds. This causes a linearly varying spin phase accrual  ydG
peT

y ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
∫
0

)( ττγ  in 

the y direction. The term ∫
peT

y dG
0

)( ττγ  is also known as the y-direction spatial frequency, ky(t). 

The gradient strength of Gy(t) changes for each cycle of the pulse sequence so that data at 

different values of ky(t) can be measured. No signal is read during the application of the phase 

encode pulse Gy(t). For each readout cycle with a constant Gy(t)=Gy, ky is just γGyTpe cycles/ mm. 

Following the phase encode pulse, a readout pulse Gx(t) is applied during which the 

signal s(t) is read off the receiver coil. A constant Gx(t) pulse causes the Lamor frequency to vary 

linearly with x. As time passes, the phase accrual per unit length in the x direction 

∫=
t

xx dGtk
0

)()( ττγ  gets larger. Physically, the net magnetization gets rotated by xtjkxe )(−  for 

each value of x at time t The MR signal s(t), which is the sum of all the rotated spins’ 

magnetization at time t, is sampled for various values of kx(t) as t increases. After the signal is 

acquired, the spins are allowed to relax for TR seconds before the next RF pulse is applied. Recall 

that the Fourier transform F(ω) of a one dimensional function f(x) can be viewed as a weighted 

integral of f(x) where the weights are spatially linear phase terms xje ω− . In other words, the 

Fourier transform at a specific frequency ωi is the integral over x of f(x) rotated by a spatially 

linear phase term xj ie ω− . Since this is what happens physically to the magnetization when linear 

localization gradients are applied, the MR signal s(t) or s(kx(t),ky(t)) of an infinitely thin slice in 

the z direction can be expressed as the Fourier transform of the imaged object f(x,y) with spatial 

frequencies kx(t) and ky(t), 

∫ ∫
∞

∞

∞

∞

+−== dxdyeyxftktksts ytkxtkj
yx

yx  ),(    ))(),((   )( ))()((2π . (2.2) 

The map of kx and ky (and kz for 3D imaging) is known as k-space in MRI literature. The 

relationship between t, kx(t) and ky(t) is expressed in the k-space trajectory, which shows the 
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chronological order in which samples of k-space s(kx(t), ky(t)) are acquired. The k-space trajectory 

is determined by how the spatial localization gradients are applied. 

2.2 Cartesian Blipped EPI in Functional MRI 

Fig. 2.6 shows the k-space trajectory of the basic gradient echo pulse sequence of Fig. 2.5 and the 

blipped gradient echo EPI pulse sequence. Gradient echo EPI yields images that are sensitive to 

local susceptibility changes due to blood oxygenation level variations in fMRI experiments. 

However, in the presence of macroscopic field-inhomogeneity, especially that induced by 

magnetic susceptibility differences at tissue boundaries, the longer readout time Treadout in EPI 

(typically about 30-100 ms) induces significant levels of undesirable phase accrual. If 

uncorrected, the extra phase accrued leads to geometric distortion in the reconstructed EPI images 

which will yield incorrect fMRI activation detection results. 

 
Figure 2.6: Single slice k-space trajectories for (a) basic gradient echo and (b) single-shot blipped 

GRE echo-planar imaging protocols. 
 

2.3 B0 Field-Inhomogeneity Map Estimation 

The field-inhomogeneity map or off-resonance map, represented by the symbols ΔB( rv ) and 

Δω( rv )=2πγΔB( rv ) respectively, quantifies the deviation of the magnetic field in the MR scanner 

from the applied magnetic field. Some authors refer to the two maps simply as the field map. 

Field-inhomogeneity in MRI may be induced by object-specific causes such as tissue 
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susceptibility differences or by scanner-specific causes such as main B0 or gradient field 

variations. The use of shimming techniques can reduce the field-inhomogeneity over a human 

head to smaller than 1 ppm everywhere except the anterior frontal lobe and the inferior temporal 

lobes. These regions have significant susceptibility-induced field-inhomogeneities due to the 

presence of air-tissue and bone-tissue interfaces. Ideally, the magnetic field in an object in a 

homogenous B0 field should be B0. However, due to magnetic susceptibility χ, the actual field is 

B=(1+χ)B0 instead. At a boundary of two tissues with significant susceptibility difference, there is 

a local change in the magnetic field and thus the spins’ Lamor frequencies are no longer 

homogeneous. 

 Many proposed field map estimation methods revolve around taking the phase difference 

between two gradient recall echo (GRE) scans of the same object, each acquired at a different 

echo time [14-17]. These methods assume that all the phase accrual occurs at the respective echo 

times. The echo time difference is typically chosen to be small to prevent phase wrapping. In the 

context of fMRI time-series imaging, a field map acquired at a single time point in the course of 

the experiment is known as a static field map. Section 3.1.2 describes a conventional static field 

map estimation method in greater detail. Field maps acquired at multiple time points during the 

fMRI experiment form a set of dynamic field maps that tracks some of the the field-

inhomogeneity changes for the duration of the experiment [9,18]. A static field map is generally 

higher in spatial resolution but prone to motion-induced errors. These errors may arise due to 

motion in-between the two echoes acquired for field map estimation and to motion in–between 

field map acquisition and time-series data acquisition. Dynamic field maps are more impervious 

to motion-induced field map errors but generally suffer from lower field map resolution [9], 

increased complexity in the estimation process [10,12] or the need for pulse sequence 

modification [9]. 

2.4 B0 Field-Inhomogeneity in Cartesian Blipped EPI 

2.4.1 Overview of Field-Inhomogeneity Artifacts 

This magnetic field variation can cause four artifacts [19] of which the first is the main topic of 

interest in this report: 

i) in-plane 2D geometric distortion, 

ii) signal loss due to in-plane (i.e. echo-shifting effect) intra-voxel dephasing,  

iii) signal loss due to through-plane intra-voxel dephasing, 

iv) slice selection profile warp. 
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2.4.2 Two-Dimensional Geometric Distortion 

Geometric distortion is readily observed at locations where the magnetic susceptibility varies 

significantly across material boundaries. Table 2.1 shows the three main types of materials 

present in a human head – water or soft tissue, bone and air. The largest susceptibility difference 

occurs at the boundary of soft tissue and air (-9.05 ppm/cm3) followed by the boundary of bone 

and air (-8.86 ppm/cm3). As such, in brain imaging, susceptibility-induced field-inhomogeneities 

often occur around the petrous bone where the ear structures are located, and the region 

surrounding the sinuses (air/ tissue interface) which lead to distortion in the temporal lobes and 

anterior frontal regions respectively [2]. Changing the orientation of the susceptibility interface 

with B0 (out-of-plane rotations) will change the field map. Translations and in-plane rotation are 

less likely to change the susceptibility-induced component of the field map since the tissue 

interface-B0 orientation remains the same. 

 

Table 2.1: Magnetic susceptibility values with respect to air [19]. 
B0=1.5T, FOV=240mm, 32 kHz, Gz = 3.13 mT/m, 256 pixels 

Material χ  (ppm / cm3) 

H2O (soft tissue) -9.05 

Bone -8.86 

Air 0.0 

 

 It is useful to quantify how geometric distortion arises in EPI images in the presence of 

field-inhomogeneity. To do that, the point spread function (PSF) of the EPI imaging process in 

the presence of field-inhomogeneity can be derived [3]. Ignoring relaxation effects, the signal 

equation for a 2D MRI slice with field-inhomogeneity is 

∫ ∫
∞

∞−

∞

∞−

+−Δ−== dxdyeeyxftktksts ytkxtkjkktyxBj
yx

yxyx  ),(    ))(),((   )( ))()((2)],(),([2 ππγ , (2.3) 

where ΔB(x,y) is the field-inhomogeneity at location (x,y), t(kx,ky) is the acquisition time-point for 

k-space sample at (kx,ky) and f(x,y) is the imaged object. Note that in the presence of the field-

inhomogeneity term, s(t) is no longer the Fourier transform of f(x,y). This is because the field-

inhomogeneity term varies with time. The data acquisition time in EPI is negligible in the kx 

direction and thus an approximation t(kx, ky) ≈ t(ky) can be made as suggested in [3]. The first 

exponential term in Eq. (2.3) is now independent of kx and thus the 1D inverse Fourier transform 

of s(t) can be evaluated with respect to kx as in  
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∫
∞

∞−

−Δ−= dyeeyxftkxs ytkjktyxBj
iyi

yyi  ),(    ))(,(ˆ ))((2)](),([2 ππγ , (2.4) 

where ŝ  is an approximation of s, and xi is a specific value of x. The problem of finding f(x,y) is 

now broken down into a set of 1D problems as shown in Fig. 2.7. Each 1D equation ))(,(ˆ tkxs yi  

is the true object profile along xi deformed by a 1D linear transformation 

operator ∫
∞

∞−

−Δ− dyee ytkjktyxBj yy  ))((2)](),([2 ππγ . 

 
Figure 2.7: 2D signal equation reduced to a set of 1D problems. 

 

 The impulse response of the EPI imaging process can be derived by passing an impulse 
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The 1D impulse response can now be evaluated by taking the inverse Fourier transform of 

))(,( tkxh y  with respect to ky(t) using the Fourier frequency shift property 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
−−−=

)(
),(

,    ),(
tG
yxB

yyxxyxh
y

ji
jiδ . (2.5) 

Eq. (2.5) indicates that a point object with a point field-inhomogeneity located at (xi,yj) will cause 

that point object to shift in the y direction. The amount of shift is proportional to the point field-

x 

ky 

x1 x2 x3 
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inhomogeneity and inversely proportional to the phase encode gradient strength. It is more useful 

to see Eq. (2.5) in terms of pixel shifts. 

From Nyquist sampling theorem, the sampling interval Δy of a 1D bandlimited signal 

must be at least 1/2ky(max) to prevent aliasing. If the time duration in which s(t) is acquired is 

Treadout and if rectangular phase encode gradient pulses are used in the blipped EPI sequence, then 

the y-direction spatial resolution Δy can be expressed as 

yTT
d

k
y

readoutreadouty Δ
=⇒===Δ

∫
γγ

ττγ

1G  
G

1      

)(G

1      
2

1           y
y

T

0
y

(max)
readout

. 
(2.6) 

Substituting Eq. (2.6) into Eq. (2.5), we obtain 

)),(,(),( yTyxByyxxyxh readoutjiji ΔΔ−−−≈ γδ . (2.7) 

Since Δy is the y-direction pixel size, Eq. (2.7) shows that the point object at (xi,yj) with point 

field-inhomogeneity shifts in the y-direction by γΔB(xi,yj)Treadout pixels. The term 1/Treadout is also 

known as the pixel bandwidth in the phase encoded direction. The bandlimited k-space is actually 

a truncated Fourier space and thus s(kx(t), ky(t)) is actually multiplied by a window function 

rect(kx(t)/2kx(max), ky(t)/2ky(max)). Thus, the final impulse response is Eq. (2.7) convolved with a 

sinc(2kx(max)x, 2ky(max)y) function. In other words, the final impulse response is a space variant 

shift-and-blur operation. The space-variant pixel shift in the phase encode direction causes 

geometric distortion, intensity accumulation and/ or intensity spread, which adversely affect 

fMRI activation detection. 

2.4.3 Two-Dimensional Geometric Distortion Correction 

Most field-correction methods that undo the geometric distortion due to field-inhomogeneity use 

field maps [2-8]. The field maps have been used to directly shift pixels in the distorted images 

back to its estimated original positions based on Eq. (2.7) [2], and also to perform field-

compensated reconstructions from the MRI measured data to obtain the geometrically correct 

images [3,5,7,8]. Pixel shift methods are simple to implement and useful for quick evaluations but 

sub-optimal in distortion-correction performance because it cannot separate the individual 

contribution of several pixels that map into the same pixel during the distortion process. A 

popular field-corrected reconstruction method, the conjugate phase technique, tries to compensate 

for the off-resonance phase accrual at each time point. It should perform better than the pixel-shift 

method but its performance degrades when the field map is spatially not smooth. This is 

unfortunate since susceptibility-induced field-inhomogeneities are typically not smoothly 
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varying. An iterative model-based field-corrected reconstruction method [5] that does not require 

a smooth field map will be discussed in this section. 

 The process of estimating the true unknown object )(rf v  from the sampled k-space data 

s(ti) constitutes the MRI image reconstruction problem. The first step in formulating the problem 

is to parameterize the image into pixels and treat each pixel value as an unknown. Then a system 

of linear equations can be set up according to the parameterized MR signal equation with additive 

Gaussian noise. Finally, the system of equations is solved by non-iterative or iterative algorithms. 

The system of linear equations can be represented in the matrix form. In the notation used here, 

matrices are printed as upper-case bold characters (e.g. A) and column vectors are labeled with an 

arrow above the variables (e.g. rk vv, ). 

Ignoring spin relaxation and assuming spatially invariant receiver coil sensitivity, the 

non-parameterized MR signal equation for a selected slice in the presence of field-

inhomogeneities is  

∫
∞

∞

⋅−Δ−= rdeerfts rtkjtrj
i

ii
vv vvv

 )(   )( ))((2)( πω , (2.8) 

where s(ti) is the baseband signal sample at time ti during the readout, Δω( rv ) is the spatially 

variant field-inhomogeneity and f( rv ) is a continuous-space function of the net transverse 

magnetization of the object. Eq. (2.8) can be represented as the result of a linear operator A 

applied to the true object f. This is a continuous-to-discrete mapping which is inherently ill-posed 

and under-constrained. There are many potential solutions to f( rv ) for any single set of s(ti) values 

due to the smoothing effect of the integral operator. 

The dominant noise in MRI is from the thermal vibrations of ions and electrons and is 

conventionally modeled as a white Gaussian noise [20]. Thus, the sampled signal yi includes s(ti) 

and an additive complex independent and identically distributed (i.i.d.) white Gaussian noise ε 

that can be expressed [5] as  

εfy
nitsy iii

  +=
=+=

A 
or          1.....       )( dε

. (2.9) 

To limit the number of parameters to be estimated, the continuous object f and field map is 

parameterized into a sum of np weighted rect basis functions )( nrrb vv −  as follows. 
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Eq. (2.8) can now be written as a summation over space 

∑
−

=

⋅−Δ−≈
1

0

))((2))((  )(
p

niin

n

n

rtkjtj
nii eeftkBts

vvv πω . (2.11) 

where ))(( itkB
v

 is the Fourier transform of )(rb v  (a sinc) and  fn is the object intensity at location 

nr
v . The continuous-discrete model of Eq. (2.9) can now be written as a discrete-discrete model 

εfy += A . (2.12) 

where f is the column-wise stacked vector of the parameterized object, y is the k-space data vector 

and A is the possibly ill-conditioned nd-by-np system-object matrix with elements 
))((2

, ))(( nmmn rtkjtj
mnm eetkBa

vvv ⋅−Δ−= πω . The image reconstruction problem is now to estimate f 

given y and the system-object matrix A (which requires knowledge of Δω). 

There are three main considerations in choosing the cost function and an algorithm to 

solve Eq. (2.12). First, A may be ill-conditioned and thus some form of regularization must be 

integrated into the cost function. Secondly, A is a huge matrix even for small image sizes. Thus 

computing the pseudo-inverse of A to find a solution for f will require extensive storage resources 

and computation time. Thus, an iterative approach is taken to solve for f. Thirdly, the solution 

must take into account MR Gaussian noise in y. 

 Most field-corrected reconstruction methods involve two steps: measuring a field map 

and using it to reconstruct a field-corrected image. Many non-iterative methods like the conjugate 

phase reconstruction technique [8] work better with a spatially smooth field map. This 

requirement may hold for field-inhomogeneities due to hardware imperfections but not for 

susceptibility-induced field-inhomogeneities which have higher order spatial variations. Model-

based iterative reconstruction methods do not require a smooth field map and models the problem 

with noise more accurately. It has been reported [7] that iterative conjugate gradient methods 

outperform the conjugate phase method for EPI images. The conjugate phase estimator attempts 

to reconstruct the image by compensating for the phase accrual at each time point in Eq. (2.11). A 

weighting matrix is often included for non-uniformly sampled k-space data. Since the EPI k-space 

data is assumed to be uniformly sampled for simplicity, this weighting matrix is the identity 

matrix and the conjugate phase estimator becomes  

)(  )(ˆ **1
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⋅Δd ii
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rtkjtrj
iCP eeyrf

vvvv πω . (2.13) 

In [5], f is estimated directly from the k-space data y by minimizing a quadratic penalized least 

squares cost function using the conjugate gradient optimization algorithm. The reconstruction 

obtained from the density compensated non-iterative conjugate phase algorithm is used as the 
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initial guess of f in the conjugate gradient algorithm. In EPI, since the measured samples are 

assumed to be uniformly spaced, we can assign an identity matrix to the weighting matrix in [5]. 

The cost function and estimator can thus be written as  

fffyf CCA TTβψ
2
1

2
1)( 2

1 +−= . (2.14) 

[ ]εAfARAAff ++== ∗−∗ 1][  )( min arg            ˆ
1

βψ
f

QPLS . (2.15) 

where C is a np-1×np differencing matrix and R=
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 Since the dominant noise in MRI measurements is i.i.d. Gaussian, the least squares-based 

estimator is appropriate. Without regularization, the least squares estimator LSf̂  given i.i.d. 

Gaussian measurements is also the maximum likelihood estimator. To lower the condition 

number of the matrix A, some form of regularization must be added. This adds bias to the 

estimator. The first term in Eq. (2.14) is the least squares data-consistency criteria in that it 

encourages a solution QPLSf̂  that, when forward projected by A, is closest in the least squares 

sense to the measured data y. The second term ff CCTT  is a regularization function R(f) which 

penalizes the roughness of the estimate and reduces the condition number of the potentially ill-

conditioned matrix A. This regularization function has the effect of constraining the candidate 

solutions to those that are spatially smooth and acts like a low-pass filter. The regularization 

parameter β controls how smooth these candidate solutions are. A larger value of β will reduce 

the spatial resolution of the reconstructed image and introduce a greater bias to the estimate QPLSf̂ . 

β is chosen small enough such that the resultant point spread function of the reconstructed image 

is not too much greater than the natural resolution associated with the EPI k-space trajectory.  

The iterative conjugate gradient (CG) method is an efficient way to minimize Eq. (2.14) 

especially when A is large and sparse. The conjugate gradient algorithm operates exactly like the 

iterative steepest descent algorithm except that instead of searching in the direction of the steepest 

gradient, the nth search direction is A-orthogonal to all previous search directions. Theoretically, 

the CG algorithm converges in at most m iterations where m is the number of eigenvalues of A. In 

the implementation, the CG algorithm uses the conjugate phase reconstructed image as the initial 

guess of f.  
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As stated previously, the signal equation with field-inhomogeneity is no longer the 

Fourier transform of the object because the off-resonance term tj ne ωΔ−  depends on t. Otherwise, 

the term can be treated as a constant and be absorbed into the object )(rf v and Eq. (2.3) becomes 

a Fourier transform expression again. This problem is handled in [5] by dividing the acquisition 

window into L+1 time segments of width τ such that ∑
=

Δ−Δ− ≈
L

l

lj
l

trj netae
0

)( )( τωω v

. Substituting this 

expression of trje )( vωΔ−  into Eq. (2.11), the time-segmented approximation to the signal equation 

is 
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where )(tal  is the interpolation coefficient for the lth time-segmented point and is chosen such that 

the error in approximating )( its  with )(ˆ its  is minimized. This is done using the min-max 

criterion described in [5]. Eq. (2.16) shows a weighted sum of DFTs for EPI data where the 

frequency samples are assumed to be uniformly spaced. 

 One of the greatest limitations of EPI occurs when a local field gradient causes a phase 

change of about 2π or more across a voxel. In this case the signal from that voxel is not displaced 

but lost all together due to signal dephasing. It was reported previously that it is not possible to 

correct for susceptibility induced signal loss using field mapping techniques [21]. 

2.4.4 Field-Inhomogeneity Induced In-Plane Signal Loss Correction 

Field-inhomogeneity gradients in the phase encoded and frequency encoded directions give rise 

to echo shifts in k-space. The displacement of the echoes diminishes the image contrast 

information found in the lower frequency regions. If the field-inhomogeneity gradients are strong 

enough, the echoes may be shifted outside the MR signal acquisition window and thus lead to 

complete signal loss. Local field-inhomogeneity gradients will lead to decreased image intensity 

in the locality of the field-inhomogeneity gradients. To correct for such signal loss in the iterative 

reconstruction framework [5], the field map should be modeled with piece-wise linear or 

triangular basis functions to account for field gradients [48]. 
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2.5 Retrospective Motion Correction Methods 

2.5.1 Rigid Body Registration 

Image registration involves determining a transformation T that relates the position of features in 

one image or coordinate space to another. Image registration can be done from 2D to 2D space, 

3D to 3D space or 3D to 2D space. If the images to be registered generally differ only in their 

relative global positions, then we can describe the required transformation in terms of just 

rotations and translations. This is known as a rigid body transformation. This assumption works 

very well for brain images since the skull restricts the brain movement to less than 1 mm [22]. 

For this project, only 3D to 3D slice-to-volume rigid body registration is used.  

For 3D to 3D rotate-translate rigid body registration, there are six degrees of freedom or 

six unknown transformation parameters shown in Fig. 2.8. They include the translation 

parameters tx, ty, tz in the x, y and z directions and the rotation angles θx ,θy ,θz about the x, y, z 

axes respectively. This transformation can be represented in matrix form as a series of rotation 

operations R followed by translations t. 
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Figure 2.8: Rigid body rotate translate transformation parameters. 
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For registration algorithms that use voxel intensities directly, the transformation T can be 

found by iteratively optimizing a similarity measure derived from the comparison of the 

intensities in the overlapping regions of the two images. 

2.5.2 Mutual Information 

 Mutual information (MI) is a concept from information theory that measures the 

statistical dependence between two random variables. In other words, it measures the information 

that one random variable contains about the other. In the image registration problem, the random 

variables are the image intensities A and B of the two images to be registered with marginal 

probability density functions pA(a) and pB(b) and joint probability density function pAB(a,b) . A 

and B are statistically independent if pAB(a,b) = pA(a)pB(b). They are maximally dependent if they 

are related by a one-to-one mapping T: pA(a) = pB(T(a)) = pAB(a,T(a)). In image registration, MI 

is maximal when the images are registered.  MI measures the statistical dependence between A 

and B by measuring the Kullback-Leibler distance [23] between the actual joint distribution 

pAB(a,b) and the joint distribution for which A and B are independent, i.e. pA(a)pB(b). MI can be 

expressed as  

∑=
ba BA

AB
AB bpap

bapbapBAI
, )()(

),(log),(),( . (2.18) 

 If the intensities of the two datasets to be registered are linearly correlated, similarity 

measures such as absolute difference, cross-correlation or sum-of-squared differences of 

intensities within overlapping regions can be used. This is usually true for intra-modality 

registration or registration between images acquired by the same imaging technique. However, 

this is generally not true for inter-modality registration. For MI, the nature of the dependence 

(linear, non-linear) of A and B is not assumed which makes it highly data independent. In fMRI, 

motion correction is typically performed between T2
*-weighted EPI slices or between T2

*-

weighted EPI slices and a T1-weighted 3D anatomical volume. Since T2
*-weighted and T1-

weighted images are not linearly correlated with each other, MI is a good choice for the motion 

correction similarity measure. 

MI is closely related to the entropies of the random variables A and B. The entropy H(A) 

and H(B) is known as the amount of uncertainty associated with the respective random variables. 

H(A,B) is the joint entropy of A and B. H(A|B) be the conditional entropy of A given B or the 

uncertainty left in A upon knowing B. MI is related to entropy by the following equations 
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)|()()|()(),()()(),( ABHBHBAHAHBAHBHAHBAI −=−=−+= . (2.19) 

The Shannon entropy equations of interest are defined as follows. 
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An optimization method is required to search for the transformation that gives the highest MI 

value. Unlike quadratic cost functions, the MI metric does not have a tractable analytical form to 

its gradient with respect to the motion parameters. The MI metric as a function of motion 

parameters also consists of many local minima, unlike the concave quadratic cost function. Thus 

common gradient-based optimization techniques like steepest descent or conjugate gradient 

cannot be used directly. A direct search method known as the Nelder Mead simplex optimization 

method implemented in the MIAMI Fuse software [24] by the University of Michigan Radiology 

Department’s Digital Image Processing Laboratory is used for this project. The Nelder-Mead 

simplex algorithm used is robust and computationally simple but may be sub-optimal in that the 

number of iterations required to reach a solution is not the minimum possible. 

2.5.3 Map Slice-to-Volume Motion Correction 

Conventionally, in fMRI, motion correction is done by performing rigid body slice-to-slice 

registration of the EPI slices to a designated ‘typical’ EPI slice in the time-series. This form of 

registration ignores out-of-plane motion which is not realistic since the head can move in any of 

the six degrees of freedom. Volume-to-volume rigid body registration between each time-series 

volume to a reference or an anatomically accurate 3D volume is also sometimes done for motion 

correction. This model is inaccurate for multi-slice EPI since it does not account for inter-slice 

head motion. A more accurate motion correction model allows each slice to have its own six DOF 

motion parameters. Motion correction is then done by registering each EPI slice to a 3D 

anatomical volume as shown in Fig. 2.9.  

Automated 3D registration of a slice into an anatomical volume is accomplished in [25] 

by optimizing the mutual information metric calculated from the gray values of the overlapping 

region of the image pair. For rigid body registration, three control points are placed in the 

reference anatomical volume as well as the EPI slice in a 3D space. The Nelder-Mead simplex 

algorithm generates an ordered set of search positions for the control points within a user-
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specified radial bound. Each new set of control point positions have a rigid body transformation 

that will align the reference and homologous control points. The homologous volume is re-

mapped using this transformation and the MI metric is computed. The transformation that gives 

the lowest MI metric in the iterative optimization scheme is the final estimated motion parameters 

that will bring the homologous and reference data into alignment. Previous results in [25] have 

shown that the MSV method outperforms the slice-stack method which registers stacks of slices 

to the anatomical volume. The slice-stack registration method allows out of plane motion but 

does not model motion in individual slices. Additional results in [26] on simulated EPI data with 

known ground truths for motion, activation and geometric distortion suggests that MSV-corrected 

datasets yield better activation detection performance compared to SPM-generated results. 

 
Figure 2.9: Overview of MSV registration scheme. 

 

 

2.6 Joint Two-Dimensional Motion and Geometric Distortion Problem 

Conventionally, motion effects and field-inhomogeneity induced geometric distortion in EPI are 

corrected separately in fMRI, if at all. Motion-correction is conventionally done by registering 

time-series volumes/slices to a ‘typical’ volume/ slice selected from the time-series or to a higher 

resolution anatomically accurate reference volume. Geometric distortion in EPI is typically 

corrected with a field map. However, accurate distortion correction requires an accurate field 

3D anatomical T1 
(reference) 

EPI slice in 3D space 
(homologous) 

Motion parameters 
estimate 

EPI slice mapped to 
reference 

Move 
homologous 
control points 

Re-map EPI 
slice to 3D T1 

Compute MI 

}]{(),([)(
2

rTfrgMI vv
αα homref−=ψ

Direct Search 
Optimizer

)(min argˆ 2 αα
α

Ψ=

α̂



 22

map. Unfortunately, the two problems are inter-related in that the field map changes as the head 

moves. Ideally, in order to do accurate geometric distortion correction, multiple field maps should 

be acquired during the fMRI scan to track the temporal changes in the field-inhomogeneity. 

However, for a variety of reasons, only one field map is usually acquired prior to, or, after the 

fMRI experiment. Some of these reasons include the additional effort required to modify pulse 

sequences for dynamic field map acquisition [9], increased computational complexity [10] and 

the need to balance the tradeoffs between obtaining acceptable field map spatial resolution and 

good image time series temporal resolution [9]. 
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CHAPTER 3 

Motion-Robust Field-Inhomogeneity Estimation Using Dual-

Echo Fast GRE   

 
In this section, a dual-echo fast gradient echo (DEFGRE) pulse sequence using two back-to-back 

readout gradients, each at a different echo time and of opposing polarity to the other, is 

investigated for static field map estimation [11]. This pulse sequence can yield field maps with 

reduced motion-induced errors compared to the conventional static field map acquisition method 

using two different echo times. This is due to the greatly reduced time elapsed between data 

acquisition of the two different echoes. However, there is an inherent phase error in the dual-echo 

method due to the opposite polarity of the two readout pulses. Results from three phantoms and 

three patients scanned over a period of two years by the same GE Signa 1.5T scanner show that 

the first order phase error inherent in the dual-echo field map is relatively constant at 0.1 rad/ 

pixel and hence may be applied to different data acquired over time. The zero order phase error 

changes with time but can be approximated empirically. 

3.1 Introduction 

The static magnetic field passing through an object in an MRI scanner is perturbed by disjoint 

object regions with different magnetic susceptibilities that augment the magnetic field-

inhomogeneity caused by imperfections in the gradients and main magnet. Field-inhomogeneity 

causes image artifacts that increase in severity as the static magnetic field strength, B0, increases. 

Such artifacts are especially apparent in high-speed MRI techniques like echo-planar imaging and 

spiral imaging where geometric distortion and blurring are observed, respectively, because of the 
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longer readout time. Most correction methods for field-inhomogeneity effects require an accurate 

estimate of the field map [2,4]. These methods assume that the data from two different echo times 

acquired for field map estimation are free of acquisition dependant errors, i.e., position changes 

due to motion. 

 A static field map can be estimated by taking the phase difference of a pair of gradient-

echo images acquired at two different echo times [14-16]. The echo time difference is typically 

constrained to be small to prevent phase wrapping. With a few exceptions, field maps are 

generated using two separate image acquisitions with different echo times. However, this method 

is prone to motion-induced and position dependent errors that degrade the field map. Using two 

separate RF excitations with different echo times would produce accurate field maps only in the 

absence of motion, i.e., phantom studies. Ideally, B0 field maps may be computed from the phase 

changes between two time points of the same images. In human data sets, a common problem of 

computing field maps from two different images, acquired at two different echo times, is the 

change in B0 during the time delay due to the motion, either bulk head motion or physiological 

brain motion, which cause the error in field map measurement. Typical acquisition times for 3D 

SPGR volumes used for the field map computations are approximately three to four minutes. 

With a normal subject, the mean translation and rotation of the head were observed to be 2.25 

mm and 0.71º, respectively, in a three minute scan time [25]. Even if the head is restrained, brain 

tissue velocity for normal subject could be 0.94±0.26 mm/s due to the physiological motion [27]. 

The corresponding images from the two separate volumes with typical three minute acquisition 

time will then be misregistered resulting in the field map estimation error. There is a clear 

advantage in measuring a field map from the same images acquired at two different echo times, 

i.e., using a dual-echo sequence. 

 Partial k-space techniques for dynamic field map estimation can greatly reduce motion-

induced errors but may suffer from decreased field map resolution [9]. Some EPI-based dynamic 

field map estimation methods acquire the field maps in distorted space, obviating the need for 

registration between the field maps and the geometrically distorted EPI images [9,18]. Other 

field-inhomogeneity correction methods assume that the field map is available in undistorted 

space [5,7]. In some dynamic field mapping techniques, dual-echo images are acquired by using 

the same positive polarity in the read out gradient, but that would require pulse sequence 

modifications, an option that may not be available on all clinical scanners. 

 This work presents a zero and first order phase shift correction technique used in 

conjunction with a simple dual-echo fast gradient echo (DEFGRE) pulse sequence employing two 

back-to-back readout gradients, continuous but of opposite polarity, for static field map 
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estimation. This work describes a relatively straightforward technique that allows computation of 

field maps without the need to modify a commonly available sequence in a clinical set up where 

the sequence modification is not accessible. The pulse sequence, DEFGRE, acquires two echoes 

efficiently with one RF pulse and the image data can be used to compute field maps without inter-

echo motion-induced position errors. It is to be noted that inter-phase encode motion is not 

addressed with this technique. A caveat in using this sequence is that, due to the asymmetry of the 

readout gradients, artifactual phase shifts causing phase wraps are evident in the phase difference 

map. This study focuses on correcting this residual phase error to remove the phase wraps without 

using elaborate phase unwrapping algorithms [28,29]. We formulate a hypothesis of how the 

asymmetric readout pulses cause the artifactual phase shift and then model the phase error as an 

affine term in the readout direction. The unknown affine model parameters are then estimated 

using motionless phantom data. Results from several sets of phantom and patient data acquired on 

the same scanner with the same scan parameters over a period of two years suggest that the first 

order phase correction term does not change for a given scanner over time and hence can be 

applied to the field map estimation of different data sets. The zero order phase correction term 

may change with time but can be estimated empirically from the dual-echo data for each new 

scan. 

3. 2 Dual-Echo Fast Gradient Echo Pulse Sequence  

In the generally used static field map estimation method, two complex images, ITE1,sep and ITE2,sep, 

are acquired separately at two different echo-times, TE1 and TE2 where TE2>TE1. Assuming all 

scan parameters, excluding the echo-time, are identical for the two sets of images, ITE2,sep will 

approximately be equal to the complex magnetization Msep of ITE1,sep multiplied by a complex 

phase term dependent on the field-inhomogeneity. The two sets of images can be written as 

  

)()()( 1sepTE1,sep rrr ε+= MI  , (3.1)

 

)()()( 2
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where the spatial variable is r = [x y z]T, the true off-resonance map is denoted by ∆ωsep, 

∆TE=TE2-TE1, and the images have complex noise denoted by ε1 and ε2. The off-resonance map 

can be estimated as  
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Where I*
TE1,sep denotes the complex conjugate of ITE1,sep. Fig. 3.1(a) shows an example of an off-

resonance map estimated with Eq. (3.3). 

 

 
Figure 3.1: Off-resonance maps of phantom estimated by (a) standard off-resonance method, (b) 

uncorrected dual-echo method showing linear phase wrapping in readout direction (x 
direction downwards). 

 
In the proposed dual-echo field map method, two complex images ITE1,dual and ITE2,dual are 

acquired with back-to-back readout gradients. There is no delay between the pulses, which have 

opposite polarity, as shown in Fig. 3.2.  

 
 
 
 
 
 
 
 
 
 
 
 

a b
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Figure 3.2: Simplified dual-echo pulse sequence with back-to-back Greadout pulses with opposite 

polarity. Readout data from TE1 may be off-center relative to data from TE2. The first 
order phase shift correction term α is proportional to the time delay τ. 

 
Due to imperfect gradient balancing along the readout direction, as in most scanners, the 

two sampled echoes for each readout line may not be centered relative to each other in the 

readout direction in k-space. Assuming that the gradient imbalance is relatively constant for every 

scan, we model this non-ideal behavior as a net shift of one of the k-space echo data relative to 

the other in the readout direction as shown in Fig. 3.3. This frequency shift induces a spatially 

linear, first order phase shift term, ejαx, in the readout direction in the image domain. This term 

would cause massive phase wrapping in the readout direction if the general field map estimation 

procedure in Eq. (3.3) were applied to the dual-echo data under the unrealistic assumption that the 

gradient pulses are symmetric. 

 
Figure 3.3: Frequency shifted k-space data is transformed via inverse Fourier transform to an 

image with an affine phase error term in the readout direction x. 
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Ignoring T2 relaxation effects, we model ITE2,dual as the complex magnetization of ITE1,dual, 

denoted by Mdual, multiplied by several complex terms as follows: 

 

)()()( 3dualdualTE1, rrr ε+= MI  (3.4)
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where the field-inhomogeneity induced complex term is denoted by )TE)(( dualsep ΔΔ rωje  and the 

first order phase shift is modeled by ejαx where x is the readout direction. The complex term ejβ 

attempts to model any residual zero order phase shift left over after the first order phase 

component has been removed. Multiplying Eq. (3.4) by the complex conjugate of Eq. (3.5) and 

dividing by its magnitude, we obtain  
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where the phase of the complex magnetization Mdual cancels out. The off-resonance map can be 

estimated by taking the ratio of the phase of Idual and ∆TEdual, 
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However, for the DEFGRE acquisitions, this estimate of the field map is highly inaccurate unless 

the massive phase wrapping caused by the first order phase term ejαx, as shown in Fig. 3.1(b), is 

removed. 

3. 3 Residual Phase Error Correction 

To obtain field maps with DEFGRE, we assume that the affine phase parameters α and β are 

independent of the object being scanned, in which case they need to be calibrated only once for 

all the data acquired in the same scanner with a given set of imaging parameters, i.e., imaging 

sequence and field-of-view. A phantom filled with doped water, which has a well-defined 

homogeneous region, was scanned for the purpose of computing the calibration term, first, using 

2D fast SPGR sequence, twice, at different echo times followed by a dual-echo aquisition using 
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DEFGRE sequence. The off-resonance map estimates sepω̂Δ  and dualω̂Δ  were then computed 

using Eqs. (3.3) and (3.7) respectively. Since the spherical phantom is motionless, it is reasonable 

to consider sepω̂Δ  to be the ground truth of the phantom field map. We estimate the correction 

parameters α and β by minimizing the following cost function with phantom data: 
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where y0 is a column of N pixels for which |Mdual| is significantly large, i.e. |Mdual| exceeds 10% of 

the maximum image intensity of dual-echo data, dualφ̂Δ  is the estimate of the dual-echo phase 

difference map or [ ]dualI∠ , ∆TEdual is the time difference between the two echoes in the DEFGRE 

sequence, y is the phase encoding direction, x is the readout direction and sepω̂Δ  is the estimate of 

the off-resonance map obtained with Eq. (3.3). The first order phase error α is solely dependent 

on the gradient imbalance, and should not change considerably with different ∆TEdual. The 

estimation of α will serve to unwrap the linear component of the phase error. Data from a single 

column y0 is used in Eq. (3.8) since the first order phase shift is modeled in the readout or x 

direction. The values of α and β estimated via the Nelder-Mead simplex method are used to 

correct the dual-echo field map acquired for subsequent studies. All phase correction 

computational work was performed on an Intel Pentium 4 3.6 GHz CPU using MATLAB (The 

Mathworks Inc., Natick, MA). 

 The cost function in Eq. (3.8) is periodic with respect to β and has many local minimum 

points with respect to α in the vicinity of the global minimum. This may cause the Nelder-Mead 

algorithm to yield a local minimum point as the optimum solution. An alternative optimization 

method is to perform a line search with respect to α, and then use the solution of α in a derived 

maximum likelihood analytical solution for β assuming a white Gaussian observation model. A 

maximum likelihood estimator can be derived for β while α can be estimated via a line search. 

Let the observation model be  

 

NmeZ j += θ , (3.9)
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where m is an unknown magnitude, θ is the unknown phase of interest and N is complex, zero-

mean Gaussian noise with variance σ2, i.e., ( )NNNN
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likelihood function can be written as follows: 
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where ][ZEN =μ . Taking the logarithm of Eq. (3.10) and removing the terms that are 

independent of θ, the log-likelihood can be written as 
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(3.11)

 

where ‘≡’ denotes equality after removing terms that are independent of θ. For the dual-echo field 

map estimation problem, let 
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Since the true magnitude of Idual is approximately equal to the observed noisy magnitude of z, we 

assume m≈|z|. The magnitude and angle of z can be stated as )(dual rMz ≈  and 

sepsepdual TE)(ˆ)( ΔΔ−∠≈∠ rr ωIz . In reality, )(dual rM  is also unknown and is approximated by 

)(dual rI . By having βαθ += x  where x is the frequency encoded readout direction, Eq. (3.11) 

can be written as follows: 
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where xTExxIx sepsepdual αωϕ −ΔΔ−∠= )(ˆ)()( .  

 Using the identity ),(sinsin)(coscos))(cos( xxx ϕβϕββϕ +=−  Eq. (3.13) can be 

expressed as  
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where N is the number of pixels used in a readout line. Assuming α can be found via a line 

search, the maximum likelihood estimator of β can be obtained by taking the derivative of Eq. 

(3.14) with respect to β as follows: 
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 In summary, the ML estimator for β in Eq. (3.15) can be substituted into Eq. (3.13) and a 

line search performed with respect to α to maximize Eq.(3.13). The resultant solution for α is then 

substituted into Eq. (3.15) to yield a solution for β. 

3. 4 Empirical Approximation of β  

Table 3.1 reports that while α remained constant over different scans of phantoms on the same 

scanner, β varied with different scan sessions. This indicates that α has to be estimated only once 

for a given scanner. As the goal of this study is to be able to compute a field map from the 



 32

DEFGRE data directly without the need to acquire additional data for human studies, an 

empirical method to estimate β was implemented. As the study progressed, β was determined for 

a new human subject scan by computing the difference between the mean of two-single-echo 

SPGR off-resonance values, over several homogeneous regions in several previously scanned 

images from different human subjects, and the corresponding mean DEFGRE off-resonance value 

of the new subject after linear phase correction with α. This difference is computed in Hz, and β 

is then estimated by multiplying the off-resonance difference by 2π∆TEdual. The two single-echo 

SPGR off-resonance values of the homogeneous regions across the scanned subjects used to 

calculate the mean value show little variation (standard deviation of 2.22 Hz). 

 

Table 3.1: Estimated phase correction parameters for phantom data acquired on same scanner 
using i) DEFGRE and 2D SPGR data with Eq. (3.8) (first two rows), and ii) DEFGRE 
data and mean 2D SPGR off-resonance value with empirical method. 

Estimated parameters for phantom data  

 Scan 1 

(susceptibility) 

 Scan 2 (4 months later) 

(susceptibility)  

Scan 2 (4 months later) 

 (sphere) 

α (rad/ unit distance) -0.10 -0.10 -0.10 

β (rad) using Eq.(3.8) 2.26 0.27 0.11 

β (rad) empirical 2.15 0.31 0.12 

3. 5 Phantom and Human Subject Data 

Along with the homogeneous sphere phantom (17 cm in diameter) filled with Gadolinium-doped 

water, an air-water phantom (i.e., susceptibility phantom) representing susceptibility changes in a 

typical human head was imaged. The susceptibility phantom was constructed with a cylinder (13 

cm in diameter and 20 cm in height) filled with doped water and a lateral air-column suspended 

in the middle, which induces inhomogeneity in the static magnetic field. Each phantom was 

scanned with two pulse sequence protocols: (i) 2D dual-echo fast gradient echo (with readout 

gradients in opposite polarities) (TR=200 ms, TE1=2.6 ms, TE2=5.3 ms, ∆TE=2.7 ms, image 

matrix=256x256x68); (ii) twice with single-echo 2D SPGR (TR=200 ms, image 

matrix=256x256x68) at TE1=2.7 ms and TE2=4.2 ms, where ∆TE=1.5 ms. The slice locations 

were kept consistent with the dual-echo data. All the above scans were performed twice on each 

phantom in an interval of four months on the same 1.5 T GE SIGNA MR scanner (GE Medical 

Systems, Milwaukee, WI). 

In addition, data from three different human subjects were acquired over a period of two 

years after the first phantom scan. The studies were conducted in accordance with the guidelines 
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set by the University of Michigan Medical School Internal Review Board. Informed consent was 

obtained from all three subjects. The data were acquired with two pulse sequence protocols: (i) 

2D dual-echo fast gradient echo (TE1=2.7 ms, TE2=5.3 ms, ∆TE=2.6 ms, image 

matrix=256x256x54); (ii) Two single-echo 3D SPGR (TE1=2.4 ms, TE2=4.2 ms, ∆TE=1.8 ms, 

image matrix=256x256x128). All phantom and human scans were performed on the same 

scanner. 

The first order phase correction terms are useful if they are constant over time for a given 

scanner and can be applied to yield corrected field maps from dual-echo acquisitions. For 

phantom data, the corrected field map can be validated with the truth map, i.e., a field map 

calculated from two separate single echo acquisitions. The constant first order phase correction 

terms can then be routinely applied to calculate the initial field map from a dual-echo acquisition 

for the correction of the B0 inhomogeneity that induces image distortions in clinical human data. 

The values from the homogeneous phantom regions were used to compute the first order phase 

correction terms without the effect of the field-inhomogeneity of the sample. 

3. 6 Results 

Table 3.1 shows that α was consistently estimated to be -0.10 radians/ pixel for all the phantom 

data from the same scanner. The value of β estimated with Eq. (3.8) however changes for 

different scans. A surface plot of the cost function in the range -1.0 ≤ α ≤ 1.0 and -4.0 ≤ β ≤ 4.0 

was computed to verify that the estimated values correspond to global minimum points. Fig. 3.4 

shows the true, dual-echo and corrected dual-echo field map profiles of a single column of the 

sphere phantom in the readout direction. The first order phase error in Fig. 3.4(b) is corrected as 

observed in Fig. 3.4(c). The third row of Table 3.1 shows the respective values of β computed 

using the empirical method. It is noted that they closely approximate the β values computed with 

Eq. 3.8 shown in the second row of Table 3.1. The values of α and β (non-empirical) in Table 3.1 

were then used to correct the respective dual-echo field maps of phantoms in each scan session. 
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Figure 3.4: A column of the spherical phantom off-resonance map samples in the readout 

direction for (a) standard off-resonance method, (b) dual-echo off-resonance 
method, (c) corrected dual-echo off-resonance method. 

 
 Figs. 3.5(a-c) show sample slices from the susceptibility phantom from (a) scan time 1 

and (b) scan time 2 and (c) sphere phantom from scan time 2. In each sub-figure, the off-

resonance maps are shown in rows of sample slices selected from (top) the dual-echo data 

without correction, (middle) after applying the affine phase correction terms and (bottom) two 

separate single-echo acquisitions. It is evident that massive phase wrapping in the corrected 

DEFGRE off-resonance maps in the middle row due to the first order phase shift has been 

removed.   

 

(a) 

(b) 

(c) 
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Figure 3.5: Two slices of off-resonance maps in Hz from (top) DEFGRE without correction, 

(middle) DEFGRE after correction with affine phase term and (bottom) two separate 
single-echo acquisitions for (a) susceptibility phantom in scan 1, (b) susceptibility 
phantom in scan 2  (acquired 4 months after scan 1), (c) sphere phantom in scan 2. 
Quantitative results for entire volumes are shown in Table 3.2. 

 
The root-mean-square error (RMSE) values between the dual-echo and corrected dual-

echo field maps, and the ground truth field maps over all 68 slices in each phantom scan are 

shown in Table 3.2. The relatively low RMSE values (ranging from 0.17 ppm to 0.43 ppm) for 

the corrected dual-echo off-resonance maps strongly suggest that the affine phase error model is 

suitable for field map estimation with the dual-echo pulse sequence in Fig. 3.2. 

 

Table 3.2: Off-resonance RMSE values in Hz and ppm (B0=1.5 T) between each phantom’s 
corrected dual-echo field map (using parameters computed in Table 3.1) and 
corresponding field maps computed with the standard field map method (using 2D 
SPGR data). Only pixels with MR image intensity values above 10% of the maximum 
image intensity of the respective datasets are used in the computation of the RMSE 
values. 

RMSE (Hz, ppm) 

Scan 1 

(susceptibility) 

Scan 2 (4 months later) 

(susceptibility) 

Scan 2 (4 months later) 

(sphere ) 

27.26 Hz, 0.43 ppm 23.43 Hz, 0.37 ppm  11.16 Hz, 0.17 ppm 

 

 Results from the three human subject scans confirm that the same value of α obtained in 

Table 3.1 gives good correction results for the same scanner over a period of two years. Prior to 

obtaining empirical approximations of β, the mean off-resonance value of homogeneous regions 

(a) (b) (c) 
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of three human subject brains over 10 slices each, fsep,mean, was computed to be 18.89 Hz. The 

DEFGRE off-resonance map for each subject was corrected with the first order phase term α, and 

the mean off-resonance values, fdual,mean,1, fdual,mean,2 and fdual,mean,3, of corresponding homogeneous 

regions over 10 slices of the resultant data were computed to be 165.54 Hz, -130.30 Hz and 

188.84 Hz, respectively. The corresponding value of β (radians) for the ith subject is obtained by 

βi=2π(fsep,mean- fdual,mean,i)∆TEdual, which yield β1=-2.40 rad, β2=2.44 rad and β3=-2.78 rad for the 

three subjects, respectively. Table 3.3 shows that the RMSE values for the corrected DEFGRE 

using the empirically determined values of β, compared to the reference 3D SPGR off-resonance 

maps, are relatively low (ranging from 0.44 ppm to 0.53 ppm ), indicating that the corrected off-

resonance maps are close to the 3D SPGR off-resonance maps. This RMSE comparison is 

performed to determine if the empirically computed values of β have corrected most of the zero 

order phase shift. Only pixels having significant MR signal (i.e., image intensity values above 

10% of the maximum image intensity value)) were used in computing the RMSE. 

 
 
Table 3.3: Off-resonance RMSE values in Hz and ppm (B0=1.5 T) between each human subject’s 

corrected dual-echo field map (using α=-0.10 with β computed empirically for each 
scan) and corresponding field maps computed with the standard field map method 
(using 3D SPGR data). Only pixels with intensity values above 10% of the maximum 
image intensity of the respective datasets are used in the computation of the RMSE 
values. 

RMSE (Hz, ppm) 

Subject 1 Subject 2 Subject 3 

33.88 Hz, 0.53 ppm 27.98 Hz, 0.44 ppm 32.03 Hz, 0.50 ppm 

 
 
 Fig. 3.6 shows DEFGRE off-resonance map slices for three of the subjects before and 

after the affine phase correction with empirically determined values of β. It is observed that the 

zero and first order phase errors have been largely removed after the phase correction procedure. 
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Figure 3.6: Subject 1 (first column), subject 2 (second column) and subject 3 (third column) off-

resonance slices from (a) uncorrected DEFGRE data (direct application of Eq. (3.7)), 
(b) DEFGRE field map corrected with affine phase term (empirically determined β), 
(c) standard 2 single-echo 3D SPGR data. Note that the linearly varying phase error in 
(a) has been removed in (b). Part (a) is displayed on a scale from -1500 Hz to 1500 
Hz while (b) and (c) are both displayed on a scale from -100 Hz to 200 Hz. 

 

3. 7 Discussion 

The first order phase correction term α was computed with field maps generated from phantom 

data acquired with a single echo SPGR at two different echo times and a dual-echo sequence, and 

was used to remove the linearly varying phase error in field maps acquired using the same dual-

echo protocol on the same scanner. The correction was tested on multiple sets of human brain 

data as well as phantom data that exhibit susceptibility artifacts. The results show that α was 

observed to be constant on the same scanner over a period of two years. The computation process 

is straightforward and no elaborate phase unwrapping is required to correct for the first order 

component of the phase error. The estimation of α on each scanner needs to be done only once 

(a) 

(b) 

(c) 
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and can be used to perform field map estimation with dual-echo data thereafter. In the event that 

the scanning environment changes, the recalibration can be done by following the simple protocol 

set up to acquire data with the two single-echo GRE and DEFGRE sequences using a 

homogeneous spherical phantom. 

 Although the zero order phase term β varies with different scan sessions, we have 

proposed an empirical method to approximate it using only DEFGRE data and an average off-

resonance value computed from suitable homogeneous regions of objects previously scanned 

with the two single-echo SPGR protocol on the same scanner. This empirical method yielded 

corrected DEFGRE off-resonance maps that had relatively low off-resonance RMSE values 

(≤0.53 ppm for human subjects at B0=1.5 T). As stated previously, the off-resonance maps 

computed with the two single-echo acquisitions are prone to motion artifacts since the data are 

acquired from two separate echoes. Thus, the RMSE values for the human subject data are meant 

to be approximations of how close the corrected DEFGRE off-resonance maps are to the standard 

off-resonance maps, but not measures of accuracy in the corrected DEFGRE field maps. This is 

useful information only because, in the absence of a ground truth field map without motion, it 

shows that the corrected DEFGRE estimates do not deviate significantly from the standard field 

map. For the phantom data, the field maps computed using the standard method is a closer 

approximation to the ground truth field map since the phantoms do not move during the scans. 

Thus, using the standard field maps as ground truth field maps, the RMSE values of phantom 

dual-echo data after phase shift correction are better measures of the accuracy of the corrected 

DEFGRE method.  

 Other factors like the different field map SNR values obtained with different ∆TE values 

used in the 3D SPGR and DEFGRE protocols may influence the accuracy of the RMSE values. It 

is observed that the field maps computed using the two separate single echo acquisition method 

are noisier than the corrected DEFGRE field maps. This is true for both phantom and human data. 

For the phantom experiments, the standard deviation values of homogeneous field map regions, 

which approximate the field map noise levels, were 4.9, 6.0, 6.9 Hz for single echo while the 

values for the corresponding regions in the respective dual-echo datasets were 3.15, 0.4, 4.3 Hz. 

Similarly, the human field map measurements were 20.6, 24.2, 19.7 Hz for single echo and 15.6, 

12.5, 11.6 Hz for dual-echo experiments. Among other reasons, this phenomenon may be due to 

∆TEdual>∆TEsep combined with motion-induced noise. The human subjects’ noise standard 

deviation values are larger than phantom noise standard deviation values which may be attributed 

to additional noise sources in humans, i.e., motion, body thermal noise, etc. Performing a future 

field map SNR study of phantom (with and without motion) and human data with ∆TEdual=∆TEsep 
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may aid in quantifying any motion-related SNR gain in using the DEFGRE field map estimation 

method compared to the standard field map method. 

It is ideal to keep the ∆TE values equal in order to be able to compare SNRs in field maps 

fairly. For field map measurements, ∆TE was kept as close as possible for the standard and dual-

echo sequences while avoiding spontaneous changes in other acquisition parameters due the 

scanner’s built-in timing restrictions in choosing values for TE. Our key motive was to use the 

DEFGRE sequence for field map estimation as it was with the limitations in sequence timing 

included, and results strongly suggest that the affine phase error model holds over time (two 

years).  

3. 8 Conclusions 

The dual-echo bipolar readout gradient technique offers an efficient way of collecting data and 

computing static field maps with reduced motion-induced errors compared to the widely used, 

two separate single echo acquisition method. The affine parameters modeling the phase error 

inherent in the dual-echo bipolar readout gradient technique is estimated with data from a 

phantom of homogeneous medium where the field-inhomogeneity is mainly system-induced. The 

estimated phase correction parameters are then applied to DEFGRE data of an air-tissue 

susceptibility phantom. Results have shown that the first order phase error term stays constant 

with time as expected with the same scanner using the same DEFGRE protocol parameters, 

allowing the technique to be used for human subject field map estimation once the first order 

phase error term has been characterized. The first order term is due to the readout imbalance 

which is scanner dependent and yields similar k-space shifts in each readout line acquired with 

the dual-echo acquisition. The zeroth order term has off-resonance contributions from other 

sources such as heating effects of coils depending on the object being scanned. The phase error 

from the zeroth order term changes with different scan sessions but can be estimated empirically 

using the previously scanned two-single echo field maps. The proposed method has been tested 

on three human subjects and the results strongly suggest that the DEFGRE pulse sequence can 

yield good field map estimates. The relatively low RMSE values (ranging from 0.17 ppm to 0.43 

ppm) for the corrected dual-echo off-resonance maps at 1.5 T suggest that the affine phase error 

model is suitable for field map estimation with the dual-echo pulse sequence. Since the first order 

correction term depends largely on how the readout gradient switches and not on how strong the 

B0 field is, an affine phase error model is expected to hold for images from different field 

strengths. The value of the linear phase term may be different for different scanners but should be 

constant for any one scanner. Future work includes an evaluation of the proposed field map 
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estimation method at 3 T and the investigation of methods to improve the reliability of the zero 

order phase error estimate. 
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CHAPTER 4 

Concurrent Field Map and Map-Slice-to-Volume (CFMMSV) 
Motion Correction for EPI 

  
A popular method of estimating field-inhomogeneity involves scanning the sample at two 

different echo times with a T2*-weighted pulse sequence (e.g. GRE) and computing the phase 

difference divided by the echo time difference. This is typically done once in the beginning or the 

end of an fMRI experiment. This method may be insufficient for two reasons. First, the acquired 

field map is spatially inaccurate in the presence of motion between the two echoes. Secondly, the 

acquired static field map does not account for head motion during the acquisition of the fMRI 

time-series. Dynamic field map estimation methods such as partial k-space methods are robust to 

subject motion but may either reduce the temporal resolution of fMRI images or the spatial 

resolution of the field maps [9]. 

 The objective of this section is to propose a concurrent motion and field-inhomogeneity 

correction framework in which the effects of head motion on the field map (and hence geometric 

distortion) are accounted for. The slice-profile warp is ignored in this section. The concurrent 

field map and MSV (CFMMSV) correction framework uses iterative reconstruction and MSV 

registration. The key difference in the following methods within this framework revolves around 

the dynamic field map update method. 

 Our previously reported CFMMSV method [13] attempted to estimate dynamic field 

maps from an initially collected field map using the MSV rigid body motion parameters obtained 

by registering the EPI time-series to a 3D anatomical dataset. This method does concurrent field-

inhomogeneity and slice motion correction using only one field map but is unable handle larger 

out-of-plane rotations. This is because rigid body transformation of a field map does not 

accurately describe the true field map changes with out-of-plane motion. Preliminary results on 

simulated data show that the final reconstructed image quality and estimated motion parameters 

improve in accuracy compared to a conventional non-concurrent correction scheme. 
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4.1 Introduction 

In functional MRI (fMRI) studies, activation maps are generated after statistical analyses of voxel 

intensity changes between stimulus and rest images of echo-planar imaging (EPI) time series 

data. The accuracy of measuring these intensity changes, which are typically in the range of 1% 

to 4%, is severely degraded in the presence of head motion. To compensate for the voxel shifts 

with head motion, some studies employ in-plane and volumetric image registration techniques on 

EPI time series data [30-33]. Besides image alignment errors caused by head motion, single-shot 

EPI data acquired in a Cartesian k-space grid is also sensitive to magnetic susceptibility(χ)-

induced geometric distortions, especially for the mid to lower brain regions with air-tissue and 

bone-tissue interfaces. Subject motion causes image shifts as well as field-map changes which 

result in time-varying local changes in geometric distortion [34,35]. Consequently, 

inconsistencies in voxel positions across the time series images result in inaccurate statistical 

testing of the signal changes in response to the given tasks in activation studies.  

 In fMRI, geometric distortion correction is typically performed with a static field-map 

independently of motion correction [4,35], thus ignoring field-map changes caused by head 

motion. A prospective approach to this problem is to acquire field-maps simultaneously with EPI 

data during an fMRI experiment to track temporal field-inhomogeneity changes by collecting 

additional k-space data [9,10].  However, acquisition of extra k-space data within reasonable time 

may pose some limitations in field-map resolution since, to reduce scan time, the extra data 

acquired is typically constrained to a low-pass filtered or truncated version of a full set of EPI 

image k-space data. Also, modifying pulse sequences may not be an available option in many 

clinical scanners. In addition, some of the algorithms for image reconstruction and post-

processing are computationally intensive [10]. A correction strategy [36] based on the work done 

by Chang and Fitzpatrick [37] is of notable interest since no field-maps are required a priori. 

Instead, pairs of EPI images are acquired with opposing blipped phase encode (PE) gradient 

polarity, thus yielding image pairs with identical geometric distortion but in opposite directions 

along the PE axis. The deformation field between each pair of images, from which the dynamic 

field-map is computed, is estimated from the images’ intensity values. However, to acquire the 

pairs of EPI images, pulse sequence modification is required, and motion-induced field-map 

changes may occur between the acquisitions. This may lead to local differences in geometric 

distortion in each pair of images, especially in regions with susceptibility-induced field-

inhomogeneity, which may yield inaccurate field-map estimates. Another retrospective correction 

method [34] adopts a least squares approach and models the temporal change in B0 using a Taylor 
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series expansion with respect to motion parameters. Qualitative results indicate good correlation 

between estimated and measured parameters. This model was designed for registration and 

geometric distortion correction of mono-modality EPI time series images with a pre-selected EPI 

volume as a reference volume. An anatomically correct structural volume was not used for 

registration. 

 Previously, in our group, a realistic motion-correction approach by mapping a slice-to-

volume (MSV) for multi-slice EPI time series was developed [25]. This technique, which uses 

negated mutual information as the similarity cost metric, allows individual slices in the time 

series to be mapped to an anatomically correct reference volume, and has demonstrated a 

capability to accurately correct image shifts due to 3D rigid head motion. Compared to the widely 

used volumetric registration of EPI volumes, which assume no inter-slice motion, the MSV 

approach improved sensitivity and specificity in localizing activated regions [25]. While the 

rigid-body transformation function may be sufficient for activation localization in the 

sensorimotor cortex, geometric distortions in EPI slices acquired from the mid to lower brain 

regions cause difficulty in localizing activations, which makes language studies with fMRI 

difficult.  Consequently, MSV was expanded to include a non-linear warping function for the 

studies involving activations in mid brain regions [38,39]. This improvement comes with 

increased computational cost due to the longer optimization process associated with higher 

degrees of freedom (DOF) in registration. 

 In this work, we developed a concurrent MSV and field inhomogeneity correction 

framework for EPI time series images [13]. The concurrent field-map MSV (CFMMSV) method 

employs iterative field-corrected quadratic penalized least squares (QPLS) image reconstruction 

[25] followed by a field-map update to enhance the MSV rigid body motion-correction scheme, 

therefore accounting for field-inhomogeneity changes with inter-slice head motion [5]. The 

proposed method consists of iterative correction cycles, each with a pair of QPLS image 

reconstruction and MSV motion correction stages. In each cycle, dynamic field-map slices are re-

sampled from a high resolution 3D static field-map that has been spatially transformed by a rigid 

body transformation function determined by MSV for the respective EPI slices. Since geometric 

distortion is incrementally corrected in the QPLS stage after each field-map update, a rigid body 

MSV motion model is expected to be sufficient and computationally less expensive than non-

linear MSV registration. Results from two sets of realistically simulated EPI time series with 

different ground truths for rigid body motion, image intensities and activation regions show that 

the CFMMSV method improves the accuracy of the estimated motion parameters and 

reconstructed images when compared to a strategy that performs geometric distortion and motion 



 44

correction independently using just a static field-map. Non-parametric random permutation tests 

were also performed on all datasets at various stages in the CFMMSV correction process to 

compute activation detection receiver operating characteristic (ROC) curves. The areas under 

these ROC curves show that the CFMMSV method improves the activation detection accuracy.  

4.2 Background 

4.2.1 EPI Geometric Distortion  

In brain EPI data that is reconstructed without field-inhomogeneity correction, geometric 

distortion is observed in regions where the local magnetic field is inhomogeneous, especially at 

the boundaries of tissues with significant magnetic susceptibility differences. Head motion that 

changes the orientation of the inter-tissue boundary with B0 (out-of-plane rotations) may induce 

significant field-inhomogeneity changes in the region around the boundary. Translations and in-

plane rotation are less likely to cause such changes in the susceptibility-induced component of the 

field-map. Such motion mainly induces shifts and in-plane rotation of the entire field-map. In 

blipped EPI, due to the long readout time, field-inhomogeneity causes pixel shifts mainly in the 

phase encode direction [2] as shown in Eq. (2.7). These space-variant pixel shifts depend on the 

EPI slice readout time Treadout and the field-inhomogeneity map. The resultant geometric distortion 

and image intensity errors can adversely affect fMRI activation detection performance. 

4.2.2 Iterative Field-Corrected Reconstruction 

To perform geometric distortion correction, we use the iterative field-corrected reconstruction 

method [5] described in Chapter 2.  The continuous object f and field-map Δω are parameterized 

into a sum of weighted rect functions )( nrr −φ  where r is the vector of spatial coordinates. Some 

of the equations from Chapter 2 are reproduced here to specifically denote the correction of EPI 

time series image slices. Ignoring spin relaxation and assuming uniform receiver coil sensitivity, 

the parameterized MR signal equation of slice frame l in an EPI time series is  
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where sl(tm) is the baseband MR signal sample at time tm during readout, εl(tm) denotes white 

Gaussian noise [20], Φ(k(tm)) denotes the Fourier transform of )(rφ , N is the number of pixels in 

a slice, L is the total number of slice frames in the EPI time series and l
nf  and l

nωΔ  are the object 
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intensity and field-inhomogeneity values, respectively, at rn. The matrix-vector form of Eq. (4.2) 

can be written as follows: 

 
llll εfAu +=  (4.3)

 

where ),..,( 10
l

N
ll ff −=f  and elements of the M × N system-object matrix Al are 
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To estimate the unknown object slice f l from the observed k-space data, the iterative conjugate 

gradient algorithm is used to minimize the QPLS cost function 
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where C is a first-order difference matrix, and β is a parameter that controls the tradeoff between 

obtaining a data-consistent estimate and a smoothed, regularized estimate. The QPLS estimate of 

f l is 
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however, we minimize Eq. (4.5) using the conjugate gradient algorithm instead of evaluating Eq. 

(4.6) directly. 

 To accurately perform field-corrected reconstruction in the presence of head motion, 

every slice of observed data ul should be paired with a dynamic field-map slice ∆ωl that describes 

the field-inhomogeneity at frame l of the fMRI experiment. Typically, however, only a static 

field-map ∆ωstatic is available. This field-map is usually acquired before or after the experiment 

and does not track field-inhomogeneity changes during the acquisition of the fMRI time series 

images. Each volume in the EPI time series typically has a lower spatial resolution and larger 

slice thickness than ∆ωstatic. A simple approach to obtain field-corrected fMRI images is to 

register each time series volume to the image intensity volume acquired in the same coordinate 

space as the static field-map volume, and then use re-sampled slices of ∆ωstatic in place of ∆ωl in 
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minimizing Eq. (4.5). This correction method ignores inter-slice motion and field-inhomogeneity 

changes due to head motion and thus yields potentially significant image reconstruction errors. 

4.2.3 Map Slice-To-Volume (MSV) Registration in fMRI 

The MSV motion correction technique [25] models the 3D motion of multislice EPI data by 

allowing each slice to have its own six DOF motion. To perform MSV motion correction for 

fMRI time series images, each reconstructed EPI slice f l is registered with a 3D reference volume 

gref using the six DOF rigid body transform denoted by lTα . The vector αl consists of the six MSV 

motion parameters tx, ty, tz, θx, θy, θz for slice l. This is performed by minimizing a function Ψ2(αl) 

that measures the dissimilarity between f l and gref. In the implementation of MSV, the negated 

mutual information (MI) is used, which performs well for multi-modality datasets, i.e. T2
*-

weighted EPI slices registered with a T1-weighted reference volume. The motion parameters αl 

are estimated by minimizing the following cost function over αl using the Nelder-Mead downhill 

simplex optimization algorithm  
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ref
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 Each set of optimized motion parameters is then used to transform and interpolate 

(trilinear) its respective slice f l into a volume with the same spatial coordinates as the reference 

volume. In the original MSV method, the motion of each slice is computed independent of other 

slices and allows six DOF between each slice acquisition.  For single shot acquisition, intra-slice 

motion is negligible.  Given that head motion is typically correlated in time and that MSV may 

generate outlier estimates, especially for top slices where the information content is reduced, we 

apply temporal median filtering on the recovered MSV motion parameters before use. A median 

filter was chosen because the MSV motion estimates obtained from data with simulated smooth 

motion were observed to track the ground truth except for intermittent outlier estimates. Fig. 4.1 

shows a motion parameter recovered from a 120-volume simulated EPI time series using MSV 

alone and MSV with a nine point median filter. The ground truth is also plotted. The RMSE 

values of the raw and median filtered MSV results in Fig. 4.1 are 1.10mm and 0.19mm, 

respectively.  
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Figure 4.1: Recovered raw MSV motion estimates, median filtered MSV motion estimates and 

ground truth of a subset of simulated dataset A with applied translation in the z 
direction. The RMSE values of raw MSV and median filtered MSV results are 
1.10mm and 0.19mm respectively. The standard deviation values of the estimation 
error for raw MSV and median filtered MSV are 1.06mm and 0.13mm respectively. 

 

4.3 Concurrent Field-inhomogeneity Correction with MSV 

To design a concurrent correction technique that involves Eqs. (4.5) and (4.7) with a rigid body 

transformation function, the main challenge is the approximation of the dynamic field-map from 

the initial static field-map. To partially account for field-map changes due to 3D head motion 

during the fMRI experiment, we propose and evaluate the following “concurrent” correction 

approach. The concurrent field-map and MSV motion correction framework (CFMMSV) loops 

through several correction cycles, each of which consists of a field-corrected reconstruction stage 

followed by MSV registration.  The changing field-map is approximated using the recovered 

MSV motion estimates and the static field-map. As the number of correction cycles increases, the 

geometric distortion is incrementally corrected in the image reconstruction stage. Thus, a rigid 

body transformation function in MSV is expected to be sufficient to correct for head motion. This 

leads to a faster image registration process compared to the use of 3D non-linear warping 

functions. 

 Since the true dynamic field-map ∆ωl in Eq. (4.4) is unavailable, the EPI time series 

image reconstruction in the initial cycle (κ = 0) of the concurrent correction algorithm is 

performed with the static field-map volume ∆ωstatic. The elements of the system matrix Al,κ=0 can 

be written as 
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where κ denotes the correction cycle number. The first field-corrected estimate of slice frame l, 
0,ˆ =κlf , is then obtained by minimizing Eq. (4.5) with Al

P= Al,κ=0. The reconstructed slices are then 

registered via MSV to the reference volume gref by minimizing Eq. (4.7). Each set of median 

filtered motion parameters κ,ˆ l
filtα , l = 0,..,L-1, is applied to the original static field-map volume and 

the respective slice within the transformed field-map volume is re-sampled and stacked into a 

new field-map volume 
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where Hl{U} denotes an operator which re-samples slice l from a volume U. This updated field-

map is then used in the next cycle to reconstruct field-corrected images again from the original k-

space data.  

Since geometric distortion in EPI is predominantly in the PE direction, the recovered 

MSV motion parameters in the phase encoding direction are not used to transform the static field-

map in the initial field-map update when κ = 0. This is because the EPI image shifts in the PE 

direction may be largely influenced by field-inhomogeneity induced geometric distortion rather 

than object motion. In addition, the field-map may change significantly with out-of-plane 

rotations which would render these motion parameters unreliable for the initial field-map update. 

Thus, for κ = 0, the motion parameters ty (translation in PE direction), θx and θy (out-of-plane 

rotations) are omitted when applying the transformation 0,ˆ =κlTα  to the static field-map. For the 

following cycles, κ ≥ 1, all six DOF are used when applying κ,ˆ lTα  to update the field-map. The 

original raw data u and static field-map ∆ωstatic are used in each cycle to approximate the dynamic 

field-map and field-corrected EPI images to avoid error propagation due to intermediate 

processing steps as the number of cycles increases. The CFMMSV method is summarized as 

follows: 

 
Algorithm. Concurrent QPLS-MSV for EPI Motion and Field-Inhomogeneity Correction 
Initial data: 0,ˆ =Δ κω l (slice l of static field-map staticωΔ ), u P

l
P (k-space data), l=0...L-1 

for κ=0…K        (correction cycles) 
  Step 1: 22,, )ˆ(Δminargˆ CffAuf

f
βω κκ +−= lll   do for l=0…L-1  (QPLS) 
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  Step 2: { }))((ˆ),((minargˆ ,
ref

, rrα α
α

TfgMI ll κκ −=      do for l=0…L-1  (MSV) 

  Step 3: Median filter κα̂ to obtain κ
filtα̂ .  

  Step 4: 
⎭
⎬
⎫

⎩
⎨
⎧Δ=Δ + ))((ˆ ,ˆstatic

1, rα κωω κ
l
filt

TH ll          do for l=0…L-1  (resample slice l) 

end 

4.4 Motion, Functional Activation and Geometric Distortion Simulation 

in EPI Time Series 

To evaluate the effectiveness of the CFMMSV method in recovering accurate motion parameters, 

forming accurate field-corrected intensity images and detecting functional activation regions, two 

time series datasets, labeled A and B, were simulated with different applied motion. The ground 

truths available for head motion, activation regions and non-distorted image intensities allow for a 

precise evaluation of the correction method. To simulate the datasets, we start with two perfectly 

registered T1- and T2-weighted image datasets (matrix size: 256×256×124, voxel size: 

0.8mm×0.8mm×1.5mm) derived from International Consortium of Brain Mapping (ICBM) data. 

The T1 volume is used as the anatomical reference for MSV registration and the T2 volume forms 

the “baseline” volume from which the time series datasets are simulated. To simulate functional 

activation, an “activated” T2 volume was created by increasing the T2 ICBM dataset intensity by 

5% in pre-defined ellipsoidal regions as shown in Figs. 4.8(e) and 4.8(j). Six baseline-activation 

cycles, each of which was formed by concatenating ten baseline and ten activated T2 volumes, 

were assembled to form a 120-volume time series. In addition, a simulated brain static field-map 

was created by adding three 3D Gaussian blobs located at the inferior frontal and temporal lobes 

to a 3D third-order polynomial (Fig. 4.2). This field-map was scaled such that the off-resonance 

values range from -64 Hz to +320 Hz to simulate a maximum field-inhomogeneity of 5 ppm at 

1.5 T. 
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Figure 4.2: Simulated field-map slices from a single volume with significant field-inhomogeneity 

near frontal lobe and inferior temporal lobe regions. Field-map values range from -64 
Hz to +320 Hz to simulate a maximum field-inhomogeneity of 5 ppm at 1.5 T. 

 

 Dataset A is a geometrically distorted EPI time series with simulated motion in tx, ty, tz 

and θz (translations and in-plane rotation) while dataset B is a geometrically distorted EPI time 

series with simulated motion in θx, θy and θz (rotations). To generate dataset A, temporally smooth 

translational and in-plane rotational motion (tx, ty, tz and θz) were applied to both the T2-weighted 

baseline-activation time series and simulated field-map volumes. Sequential 5.6 mm thick slices 

were then re-sampled to form 120-volume intensity and field-map time series datasets (volume 

matrix size: 128×128×14). Each re-sampled slice has its own set of motion parameters. The 

applied motion has maximum values of 7.20 mm, 8.00 mm, 3.51 mm and 4.70° for tx, ty, tz and θz, 

respectively. The T2-weighted volumes obtained are henceforth referred to as the time series 

image intensity ground truth without geometric distortion. These are used to compute the image 

normalized root mean square error (NRMSE) values at various correction cycles to measure the 

accuracy of the field-corrected reconstructed images. The applied motion does not change the 

orientation of the air-tissue interface with respect to B0 and thus is unlikely to change the field-

map significantly except for the respective translation or in-plane rotation. Thus, forward 

distorting the T2 volume with the rotated-translated field-map is reasonable as long as out-of-

plane rotations θx and θy are not applied. However, to test the effectiveness of the CFMMSV 

framework in the presence of out-of-plane motion while assuming the field-map moves with a 
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rigid body transformation function together with the head, a second pair of 120-volume time 

series intensity and field-map datasets (dataset B) were simulated with temporally smooth motion 

in three rotation parameters θx, θy and θz. This assumption, while simplistic in the presence of 

large out-of-plane motion, provides a way to generate an otherwise realistic time series dataset 

with out-of-plane motion and subsequent field-inhomogeneity induced geometric distortion. The 

simulated rotational motion has maximum values of 5.0°, 8.6° and 8.1° for θx, θy and θz 

respectively. Slice acquisition interleaving was incorporated when generating both time series 

datasets. 

 To forward distort the T2 time series images from both datasets, simulated blipped EPI 

Cartesian k-space data of the distorted images were generated in conjunction with the respective 

field-map time series with motion using Eq. (4.2). The distorted images (Fig. 4.3(b)) were then 

reconstructed from this k-space data using a system-object matrix with a field-map set to zero 

[13]. The simulated readout time was 43.8 ms and the pixel bandwidth in the PE direction was 

22.8 Hz. In subsequent sections, datasets A and B will refer to the final geometrically distorted 

time series with the respective applied motion. 

 

 
Figure 4.3: (a) T2 ICBM slice before simulated geometric distortion. (b) T2 ICBM slice after 

simulated geometric distortion with a peak field-inhomogeneity of 5 ppm at 1.5 T. 
 

4.5 Activation Detection with Random Permutation Test 

After re-positioning all the EPI time series slices into volumes, MSV yields time series volumes 

that may have empty voxels. This results in variable sample sizes for different voxels for 

statistical analysis. The non-parametric statistical method of voxel-wise random permutation, 

using the averaged difference between activation and rest images as the test statistic, was used for 
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significance testing of differences in voxel intensities in the simulated datasets [25,40]. This 

statistical technique is simple, robust and independent of sample size variability [41]. Random 

draws of 2000 permutations of activated and rest periods were used to form a permutation 

distribution for each voxel from which activated regions are identified by testing the null 

hypothesis of no activation at a fixed threshold of α = 0.001. To obtain ROC curves, we vary the 

threshold P values from 10-4 to 1.0 to obtain a set of activation maps and, together with the 

ground truth activation map, compute the true positive and false alarm rates. The area under each 

ROC curve (AUC) is used to measure how accurately the activation regions have been detected. 

4.6 Results 

In our experiments, the concurrent correction scheme was evaluated on simulated EPI time series 

datasets A (with simulated motion in tx, ty, tz and θz) and B (with simulated motion in θx, θy and 

θz). Both datasets have known ground truths for the applied slice-wise motion parameters which 

allow for precise evaluation of MSV registration performance. In addition, the non-distorted time 

series intensity images  with applied motion is available to serve as image intensity ground truths 

to evaluate the performance of the field-corrected image reconstruction process. Tables 4.1 and 

4.2 list the RMSE and MSV error standard deviation values of the estimated MSV motion 

parameters. With median filtering of the estimated MSV parameters, the errors decrease as κ 

increases and empirically converge to relatively small values. This implies that registration 

accuracy has improved with the concurrent correction method compared to a single-cycle 

correction method where a static field-map is used for geometric distortion correction prior to 

MSV (cycle 0). The observed empirical convergence strongly suggests that the algorithm is 

relatively stable as κ increases. 
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Figure 4.4: Median filtered MSV motion parameter ty recovered at various correction cycles for 

dataset A. Field-inhomogeneity induced geometric distortion in the PE direction y 
cause significant MSV errors for the distorted EPI data as well as the corrected data 
in cycle 0 (κ=0). Correction cycles 1 to 3 yield estimates of ty that are close to the 
ground truth as shown in Tables 4.1 and 4.2. 

 

 In fMRI, the accuracy of the reconstructed images’ intensity values is of key importance 

since brain activation maps are computed from the change in image intensity values in the time-

series. To measure image quality, the normalized root mean square error (NRMSE) values 

between corrected EPI slices and their corresponding T2-weighted ground truth images are 

computed and averaged over the 120 volumes. Fig. 4.5 shows that the average NRMSE of each 
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slice in the 14-slice T2-weighted volume decreases as κ increases. Empirical truth images were 

computed by correcting the simulated EPI time series images with the exact same dynamic field-

map that was used to distort them. The empirical truth images contain errors inherent to the image 

reconstruction and MSV processes and represent the best images that can be obtained using these 

correction methods if the simulated dynamic field-map were known exactly. It is observed that 

when κ ≥ 2, the corresponding NRMSE values converge to the NRMSE values of the empirical 

truth images which implies that the CFMMSV method yielded updated field-maps that are very 

close to the ground truth dynamic field-maps. Fig. 4.6 shows reconstructed EPI slices from the 

same position in the head and their corresponding absolute error images when compared to 

corresponding T2-weighted ground truth images as κ increases. It is observed that the field-

corrected image errors are greatly reduced when κ ≥ 3. 

 

 
Figure 4.5: Normalized RMSE (NRMSE) values for each EPI slice in the same position in the 

head averaged over 120 volumes for various correction cycles for (a) dataset A with 
applied tx, ty, tz and θz motion, and (b) dataset B with applied θx, θy, θzBB motion. 
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Figure 4.6: (a-e, k-o) Intensity and (f-j, p-t) absolute difference images with respect to ground 

truth images for two sample slices from dataset A at various stages in the CFMMSV 
correction process. (Top row) Geometrically distorted dataset, (second row) cycle 0, 
(third row) cycle 1, (fourth row) cycle 2, (fifth row) cycle 3. All images are displayed 
on the same normalized intensity scale ranging from 0 to 1. 

 

 As κ increases from zero, the field-corrected EPI images become more similar to the 

ground truth T2 images. It is possible to obtain improved image NRMSE values without a 

corresponding improvement in activation detection performance since the simulated intensity 

increase is only 5% and applied to a relatively small subset of activated voxels. Thus, we applied 

the statistical random permutation test on datasets A and B at all stages of the CFMMSV 

correction process and computed ROC curves and respective AUC values to verify that activation 

detection performance improves as κ increases. Figs. 4.7(a-b) show the ROC curves for both 

datasets at several stages of the CFMMSV correction process and Table 4.3 shows the 
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corresponding AUC values. It is observed for both datasets that the AUC values increase 

significantly between cycle 0, which are the results one would obtain if the same static field-map 

was used to correct all the time series data, and cycle 3, which are the final results after applying 

the CFMMSV method. The improvement in activation detection is even more significant upon 

considering that fMRI studies are often performed directly on EPI datasets without any form of 

geometric distortion correction i.e. compare the AUC values between the distorted dataset and 

cycle 3. Fig. 4.8 shows the activation maps obtained (α = 0.001) for two slices from datasets A 

and B at several stages in the CFMMSV correction process. Comparing the activation maps for 

cycle 0 (second row) and cycle 3 datasets (third row), it is readily observed that the latter has 

more true positives and fewer false positives. The ground truth activation regions for the two 

slices are shown in Figs. 4.8(e) and 4.8(j). Activation maps obtained by applying the random 

permutation test on the ground truth time series images for both datasets are also shown (fourth 

row) to illustrate the best performance obtainable with the statistical analysis method used. 

 All experiments were performed on Intel Pentium 4 Xeon 3.0GHz CPUs using MATLAB 

(The Mathworks Inc., Natick, MA, USA) and Advanced Visual Systems (Advanced Visual 

Systems Inc., Waltham, MA, USA). 
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Figure 4.7: ROC curves showing activation detection performance for (a) dataset A and (b) 

dataset B at several stages in the CFMMSV correction process. 
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Figure 4.8: Activation detection maps (P=0.001) overlaid on anatomical data of two sample slices 

from (a-d,f-i) dataset A and (k-r) dataset B at several stages in the CFMMSV 
correction process. Each row of activation maps corresponds to a specific correction 
stage consisting of (top row) geometrically distorted, (second row) cycle 0, (third 
row) cycle 3 and (fourth row) ground truth time series images. The simulated 
activation maps applied to the two slices are shown in (e) and (j). 

 

4.7 Discussion 

The proposed CMFMSV framework is a retrospective correction framework that incorporates 

slice-to-volume registration, field-map updating and geometric distortion correction for the 

purpose of improving activation detection performance in fMRI. In this work, we have chosen to 

perform iterative field-corrected reconstruction to correct the geometric distortion and employ a 
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field-map updating scheme that applies rigid body MSV motion parameters to a high resolution 

static field-map of the object. Our results on two simulated EPI time series datasets show that as 

the number of correction cycles increases, the field-corrected image quality and the accuracy of 

recovered MSV motion parameters improve and empirically converge to the ground truths. This 

is evident in the decreasing MSV RMSE, MSV error standard deviation and image NRMSE 

values as κ increases (Tables 4.1 and 4.2 and Fig. 4.2). Improved activation detection 

performance, as inferred from the increasing AUC values in Table 4.3, is also observed as κ 

increases.  

 

Table 4.1: RMS error of median filtered MSV estimates for simulated EPI datasets A and B. 
RMSE (mm and °) 

Dataset A (motion applied tx, ty, tz and θz)  Dataset B (motion applied θx, θy, θz) 
Correction 

cycle 
tx ty tz θx θy θz 

 tx ty tz θx θy θz 

Distorted 1.07 7.81 0.17 0.31 0.31 0.35  1.37 7.79 1.01 0.97 0.51 0.35 

Cycle 0 (κ=0) 0.62 3.11 0.19 0.13 0.12 0.26  1.12 3.24 0.53 0.19 0.22 0.21 

Cycle 1 (κ=1) 0.76 0.38 0.22 0.03 0.04 0.13  1.20 1.05 0.66 0.18 0.18 0.14 

Cycle 2 (κ=2) 0.76 0.36 0.19 0.03 0.04 0.11  1.22 1.06 0.70 0.17 0.17 0.12 

Cycle 3 (κ=3) 0.77 0.37 0.20 0.03 0.04 0.11  1.22 1.06 0.70 0.18 0.18 0.13 
 

Table 4.2: Standard deviation of the error of median filtered MSV estimates for simulated EPI 
datasets A and B. 

Standard deviation of error of median filtered MSV (mm and °) 

Dataset A (motion applied tx, ty, tz and θz)  Dataset B (motion applied θx, θy, θz) 
Correction 

cycle 
tx ty tz θx θy θz 

 tx ty tz θx θy θz 

Distorted 0.95 0.16 0.16 0.30 0.18 0.35  1.34 0.98 0.98 0.89 0.37 0.35 

Cycle 0 (κ=0) 0.50 0.15 0.14 0.10 0.10 0.21  1.10 0.92 0.48 0.19 0.21 0.14 

Cycle 1 (κ=1) 0.62 0.07 0.15 0.03 0.04 0.11  1.16 0.96 0.63 0.18 0.18 0.14 

Cycle 2 (κ=2) 0.62 0.07 0.14 0.03 0.04 0.10  1.18 0.98 0.66 0.17 0.17 0.12 

Cycle 3 (κ=3) 0.62 0.06 0.14 0.03 0.04 0.10  1.18 0.98 0.66 0.18 0.18 0.12 
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Table 4.3: Area under ROC curve (AUC) values for activation detection of datasets A and B at 
various stages in CFMMSV correction. 

Area under ROC Curve (AUC) Correction 

cycle Dataset A   Dataset B  

Distorted 0.8880  0.9043 

Cycle 0 (κ=0) 0.8664  0.9295 

Cycle 1 (κ=1) 0.8990  0.9382 

Cycle 2 (κ=2) 0.9053  0.9519 

Cycle 3 (κ=3) 0.9208  0.9521 

Ground truth T2 0.9209  0.9659 
 

 These results demonstrate that, under the simulated conditions, the CFMMSV method 

can provide effective correction of motion artifacts that are complicated by the field effects 

induced by rigid head motion. It is interesting to note that for dataset A, the AUC value for cycle 

0 actually decreased when compared to the AUC value for the distorted dataset. The AUC values 

increased subsequently in cycles 1 through 3. This illustrates that in the presence of significant 

motion, using a static field-map to correct an entire time series can lead to degraded activation 

detection performance, even after applying motion correction to the time series data. This is 

because the field-map changes due to motion were not accounted for. 

 Dataset A was simulated with relatively realistic assumptions of how the susceptibility-

induced field-map changes with translations and in-plane rotation. Thus, the results obtained from 

that dataset are a reasonable indication of the performance of the concurrent correction method on 

well-shimmed real MR data with such motion. For real MR data, the field-map may include other 

contributions like post-shim system-induced field-inhomogeneity that remain stationary with 

respect to the head. Since the focus of the simulation study is on susceptibility-induced artifacts, 

we have assumed that these additional field-map contributions are less dominant and can be 

characterized separately, if necessary. This is a reasonable assumption for data collected from a 

well-shimmed magnet. Dataset B was simulated with similar assumptions as dataset A except that 

local field-map changes that may arise due to out-of-plane rotations are not modeled exactly. 

Thus, the results from dataset B are less indicative of the CFMMSV method’s performance on 

real MR data in the presence of larger out-of-plane rotation. However, for small out-of-plane 

motion, the local field-map changes may be small enough [35] to justify the assumption that the 

dynamic field-map can be approximated with a rigid-body transformation of the static field-map.

 For time series datasets that do not have ground truths, an appropriate stopping criterion 

is necessary to terminate the CFMMSV correction process automatically. In Table 4.1 and Fig. 
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4.2, respectively, the MSV RMSE and image NRMSE values remain relatively constant for κ ≥ 2 

for both datasets A and B which suggests that the procedure could be terminated earlier, thus 

reducing computation time. However, the increasing AUC values in Table 4.3 indicate that 

activation detection performance continues to improve for κ ≥ 2. Thus, there is a computation 

time versus activation detection performance tradeoff that may influence the choice for the 

stopping criterion. To obtain minimal computation time at the expense of activation detection 

performance, the CFMMSV process can be tasked to automatically terminate when the time 

series’ average NRMSE difference for the previous two cycles are below a threshold value. For 

maximal activation detection performance, the number of non-overlapping activated voxels for 

the previous two cycles can be used as a dissimilarity measure to automatically stop the 

CFMMSV process. 

 The CFMMSV framework was formulated to jointly correct for motion and geometric 

distortions arising from susceptibility-induced field-inhomogeneity without the explicit 

acquisition of dynamic field-maps. The framework can be further improved by using field-map 

update techniques that account for susceptibility-induced field-map changes with out-of-plane 

rotation. For example, a conceivable modification would be to apply MSV motion parameters to a 

high resolution 3D volume of a brain that has been pre-segmented into air, bone and soft tissue 

regions. The susceptibility-induced component of the dynamic field-map can then be re-estimated 

from the transformed 3D structural volume using numerical techniques to approximate solutions 

to the magnetostatic scalar potential based on Maxwell’s equations [42,43]. This will increase the 

computational cost but may yield improved performance.  

4.8 Conclusions 

A proposed technique to perform concurrent susceptibility-induced geometric distortion 

correction with slice-to-volume motion correction for EPI fMRI data has been evaluated on two 

120-volume simulated time series with different applied motion. Under the simulated conditions, 

the CFMMSV method improved the accuracy in recovering both the MSV motion parameters and 

the field-corrected reconstructed images compared to the simpler method of performing motion 

and geometric distortion correction independently. Activation detection performance, quantified 

using the AUC values at various stages in the CFMMSV correction process, also improved with 

the CFMMSV method. Although the CFMMSV method may currently be limited to small out-of-

plane rotations, it presents a correction framework that addresses geometric distortion and slice-

wise head motion as a joint problem and has the potential to perform better than methods that do 

not account for the relationship between these two problems. 
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CHAPTER 5 

Motion-Induced Magnetic Susceptibility and Field 
Inhomogeneity Estimation using Regularized Image 

Restoration Techniques for fMRI 

 

5.1   Introduction 

In functional MRI (fMRI), times series images are acquired with high speed pulse sequences that 

are typically adversely affected by magnetic field-inhomogeneities. As a result, these images may 

be geometrically distorted or blurred depending on the pulse sequence used. A static field-

inhomogeneity map may be measured before or after a fMRI session to correct for such 

distortions [4,35], but it does not account for magnetic field changes due to head motion during 

the times series acquisition. To address this, several prospective dynamic field mapping 

techniques have been proposed [9,10]. However, they require pulse sequence modifications or 

high computational cost. This work focuses on regularized image restoration methods to 

approximate dynamic field maps retrospectively without pulse sequence modifications. 

In Chapter 4, the concurrent field map and MSV (CFMMSV) correction method [13] 

applies rigid body transformations directly to a static field map, which may be inaccurate in the 

presence of significant out-of-plane rotations. In the presence of such rotations, that method may 

not be suitable since field-inhomogeneities may change nonlinearly [43]. Our approach is to 

retrospectively estimate the object’s magnetic susceptibility (χ) map from an observed 

susceptibility induced static field map using regularized image restoration principles. To compute 

the dynamic field maps, we apply rigid body motion to the χ-map estimate, and apply 3D 

susceptibility voxel convolution (SVC) [44] to the resultant spatially translated/ rotated χ-map. 

SVC is a deterministic, physics-based discrete convolution model for computing susceptibility 

induced field-inhomogeneity given a 3D χ-map. A simpler way to approximate the object’s χ-map 

would be to segment a T1-weighted anatomical reference volume into air, bone and soft tissue, 

and apply literature susceptibility values to different voxels. However, this may introduce
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segmentation errors and the use of incorrect susceptibility values, which may lead to inaccurate 

field map estimates. Our approach obviates the burden of ensuring good accuracy in both the 

segmentation process, and the susceptibility values used. We estimate the χ-map from a measured 

high resolution 3D static field map using 3D regularized image restoration techniques, i.e., 

solving the inverse problem of the noisy forward SVC model. The approach is demonstrated with 

realistically simulated noisy 3D field maps of a spherical air compartment in water. 

5.2   Theory 

5.2.1  Susceptibility Voxel Convolution for Field Map Computation 

Previous work [42] has shown that given an object with K independent closed compartments of 

constant χ values, a Lorentz-corrected boundary element approach to computing the z-component 

of the χ-induced magnetic field map, Bp(r), yields 
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where ẑ  is a unit vector parallel to the scanner’s main magnetic field B0, +
kχ  and −

kχ  denote the 

susceptibilities outside and inside the kth compartment, respectively, Sk is the kth surface, r′ is a 

surface point, dS′ is perpendicular to the surface at r′. In the presence of out-of-plane rotations, 

the orientation of the surfaces with B0, i.e., B0·dS′, changes, thus resulting in nonlinear field map 

changes.  

 Susceptibility voxel convolution (SVC) [44] applies Eq. (5.1) directly to voxels of an 

object. Each voxel is defined as a closed six-sided compartment of uniform susceptibility. The dot 

product, B0·dS′, is non-zero only for the top and bottom surfaces of a voxel. Only the upper 

surface is used since the superposition principle allows each surface to be used only once in 

computing Bp(x). The values of χk
- and χk

+  are obtained from the kth voxel, and the voxel above it 

in the z direction, respectively. The χ-induced field equation now becomes 
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where (xk, yk, zk) is the center of voxel k, and lx, ly, lz are the x, y, and z lengths of a voxel. After 

discretisation in r, Eq. (5.2) becomes a 3D discrete convolution in space domain. The convolution 

kernel can be written as
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and the SVC impulse response is 
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where (l,m,n) denotes the voxel where Bp is to be calculated, and (l′,m′,n′) denotes voxels in the 

field of view. The discrete convolution of Eq. (5.2) becomes 
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which can be computed with 
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where *** denotes 3D convolution and D3ℑ  denotes 3D Fourier transform. The discrete 

convolution can also be written in matrix-vector notation as  

DχB =p , (5.7)

where D denotes the SVC “system” matrix and χ is the column-stacked χ-map vector. The χ-

induced field map in Hz is Δωp=γBp, where γ is the gyromagnetic ratio of hydrogen. 

 The SVC impulse response is linear shift invariant and depends only on the voxel size 

and orientation with respect to B0. The impulse response remains unchanged when a 3D 

susceptibility map undergoes rigid body transformation. 

5.2.2  Dynamic Field Map Estimation with Penalized Weighted Least Squares 

Estimation of Magnetic Susceptibility Map – A 3D Image Restoration 

Approach 

A static field map, Δωstatic, is typically approximated by taking the phase difference of a pair of 

gradient-echo images acquired at two different echo times [14], and may be composed of 

susceptibility and non-susceptibility induced field inhomogeneity sources. The two complex-

valued images may be denoted by  

TE1TE1
jjj fI ε+= , (5.8)

TE2TTE2 ,static
j

Ei
jj

jefI εω += ΔΔ− , (5.9)

where f is the complex transverse magnetization of the object, j is the voxel number, ΔTE is the 

echo time difference, and ε is independent identically distributed MR Gaussian noise. The echo 
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time difference is typically small to prevent phase wrapping. In previous work [17], the maximum 

likelihood estimator for Δωstatic was shown to be 
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Ignoring phase wrapping, and decomposing Δωstatic,j into susceptibility and system induced parts, 

i.e., Δωstatic,j = γ[Dχ]j + Δωsys,j, and since a minimum exists when the cosine term equals one, the 

maximum likelihood estimator for χ is 
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For simplicity, we assume that Δωsys is negligible, or can be measured empirically. Since the 

SVC frequency response has very small values at some frequencies, the inverse SVC problem is 

ill-posed, and thus 3D smoothness regularization is desirable when solving for χ. We propose to 

use a quadratic penalized weighted least squares (QPWLS) image restoration approach to 

estimate χ by minimizing the cost function 

22

2
1)( CχDχgχ W βγ +−=Ψ , (5.12)

where g is the observed static field map (∠ ITE2- ∠ ITE1)/ΔTE, W is a weighting matrix that 

assigns higher weights to voxels where MR image intensity, i.e., |Ij
TE2Ij

TE1|, is higher, β is a 

regularization parameter that determines the amount of smoothing, and C is a first order finite-

differencing matrix. We minimize the cost function using the conjugate gradient algorithm. Any 

available motion estimates for each slice/ volume in the fMRI time series can then be used to 

rotate/ translate the χ-map estimate. Since the SVC impulse response is linear shift invariant and 

depends only on the voxel size and orientation with respect to B0, it remains unchanged when a χ-

map undergoes rigid body transformation. Thus, the same SVC matrix used in estimating the χ-

map can be used to compute the dynamic field map after the desired motion has been applied. 

 The proposed QPWLS method was compared to three other methods of approximating 

the dynamic field map from an observed field map: thresholded inverse filtering, Wiener filtering 

[45], and direct rotation of the observed field map to the tilted positions [13]. The thresholded 

inverse filter ignores noise statistics and amplifies noise in frequency bands where the SVC 

frequency response has small values. To mitigate the latter, while preserving as much spatial 

information as possible, the threshold parameter needs to be chosen carefully, usually in an 

empirical manner. The Wiener filter assumes that χ and the additive field map noise are stationary 
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processes, and assumes that their power spectra may be estimated accurately, which is often not 

true in the χ estimation problem. 

5.3   Methods 

5.3.1   Data Simulation 

To measure the algorithms’ performances, we generated 91 pairs of ground truth χ-maps of a 

simulated, off-centered spherical air (χair=0.04 ppm [44]) pocket in water (χwater=-9.05 ppm [44]) 

that was rotated counterclockwise about the x-axis by angles from 0° to 180° in increments of 2°. 

The dataset with 0° rotation was defined to be in the non-tilted position. In addition, an observed 

field map in the 0° position was generated. Each 256×256×256 dataset had a voxel size of 

1mm×1mm×1mm. 

 A SVC impulse response was formed (Eq. (5.4)) and applied to all the ground truth χ-

maps (Eq. (5.6)) with B0=1.5 T. The resultant ground truth field maps were then cropped to 

128×128×128 voxel volumes. To form the weighting matrix W in Eq. (5.12), we simulated an 

image intensity map, f, with zeros in the air pocket region (no MR signal), and 100 in the water 

region. Using the non-tilted ground truth field map (Δωstatic), an arbitrary value for ∆TE, and f, 

Eqs. (5.8) and (5.9) were used to generate two independent, complex Gaussian distributed 

images, each with an SNR of 100.0. An observed non-tilted field map, g, shown in Fig. 5.2(a), 

was then computed as described in the Theory section. 

5.3.2   Experiments 

The main goal of this work was to accurately estimate rotated χ-maps and field maps given an 

originally observed non-tilted susceptibility induced field map and the respective rotation angles 

about the x-axis. We compared the field map estimation accuracy of our proposed method with 

those of thresholded inverse filtering, Wiener filtering [45] and direct rotation of the original 

observed field map to tilted positions. A constant object power spectrum and the true power 

spectrum were used in the Wiener filter method to obtain two sets of Wiener filter results. Figs. 

5.1 to 5.3 show results when a constant object power spectra was used, while Figs. 5.4 to 5.6 

show results when the true object power spectra was used for the Wiener filter. The Wiener filter 

is the optimal stationary linear filter, in the MSE sense, for images degraded by additive noise and 

blurring. To use the Wiener filter in practice, we assumed an additive phase noise model, and 

chose a white Gaussian noise spectrum with a constant value that is identical to the variance of 
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the simulated noise. In reality, noise in a complex MRI image is additive Gaussian while phase 

noise is not. 

The first part of the experiment involved the estimation of the original, non-tilted χ-map 

using the various methods. All estimates of χ were shown in Figs. 5.1 and 5.4. We applied the 

SVC matrix to these χ-map estimates to compute field map estimates from which a slice is shown 

in the top rows of Figs. 5.2 and 5.5. Root mean-square-error (RMSE) values were then computed 

with reference to the 3D ground truth non-tilted field map, Δωstatic. In the second part of the 

experiment, the χ-map estimates from the first part were all rotated about the x-axis by the same 

range of values used to create the 91 pairs of ground truth maps, i.e., 0° to 180° in increments of 

2°. The SVC matrix was again applied to these rotated χ-map estimates to compute the dynamic 

field map estimates. Root mean-square-error (RMSE) values were then computed with reference 

to the 3D ground truth tilted field maps. The second rows in Figs. 5.2 and 5.5 show a field map 

slice of the object rotated by 45° about the x axis. The field map RMSE values for all positions 

and methods were plotted in Figs. 5.3 and 5.6.  

 The QPWLS implementation was built upon previous work [46], and 50 iterations of the 

algorithm were performed for each dataset with β=0.7. The initial guess for the conjugate gradient 

algorithm was a volume filled with zeros. For the thresholded inverse filter, a threshold value of 

10 (0.2 % of the maximum absolute value of the inverse of the SVC frequency response) was 

used. All algorithms in this work were implemented in MATLAB (The Mathworks Inc., Natick, 

MA, USA) and C++, and were executed on Intel Pentium 4 Xeon 3.0GHz CPUs. 

5.4   Results 

The RMSE values over entire 3D field map estimates for all rotated positions using the various 

field map estimation methods are shown in Figs. 5.2 and 5.5. In Fig. 5.2, when the object power 

spectra for the Wiener filter was constant, it was observed that the QPWLS method had the 

lowest (best performing) RMSE values, and RMSE variability, across all rotated positions. In Fig. 

5.5, when the true object power spectra was used for the Wiener filter, the RMSE values for the 

QPWLS method were comparable to the Wiener filter method. Compared to the QPWLS method, 

the Wiener filter’s dependence on prior knowledge of the object’s power spectra is a key 

disadvantage. 

 Fig. 5.1 shows slices in the y-z plane at the same spatial location of χ-map estimates of 

the object in the 45° rotated position, i.e., slices from a snapshot of Fig. 5.3. The x-axis points into 

the plane of the page. It was observed that the associated field map estimates in the spherical air 

region were invariably noisy for the inverse filter and Wiener filter (using a constant object power 
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spectra) in Figs. 5.2(b), 5.2(f), and Figs. 5.2(c), 5.2(g), respectively. The noise in this region was 

greatly reduced in the QPWLS estimates in Figs. 5.2(d) and 5.2(h) because the weighting matrix 

suppressed the data fidelity requirement in the air region, which allows for smoother χ-map 

estimates in this region. Since there were less abrupt susceptibility changes in the regularized χ-

map estimates, the resultant field inhomogeneity estimate in the air region was small and smooth. 

For an EPI pulse sequence with a typical phase encode pixel bandwidth of about 20 Hz, the 

QPWLS RMSE values (<20 Hz) in Fig. 5.3 represent errors of less than one pixel shift. In 

contrast, the RMSE values for the other methods (>20 Hz) translate to errors of more than one 

pixel shift, which may reduce the accuracy of geometric distortion algorithms that depend on 

field maps. The SVC field map computation time was 1.5 secs for a 128×128×128 voxel χ-map. 

The computation times for χ-map estimation using the thresholded inverse filter, Wiener filter and 

QPWLS method were 4.1 secs, 5.8 secs, and 5.6 secs (per iteration), respectively. 

 

Figure 5.1: (Top row) Non-tilted χ map slice (y-z plane) from (a) true χ map, (b) thresholded 
inverse filter estimate, (c) Wiener filter estimate (using constant object power 
spectrum), (d) QPWLS estimate with β=0.7. (Second row) χ map slice rotated 45° 
using non-tilted (e) true χ map, (f) thresholded inverse filter estimate, (g) Wiener 
filter estimate (using constant object power spectrum), (h) QPWLS estimate with 
β=0.7. All images are displayed on the same intensity scale. 

 

(a) (b) (c)

(e) (f) (g)

(d) 

(h) 
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Figure 5.2: (Top row) Non-tilted field map slice (y-z plane) from (a) originally observed field 
map, (b) thresholded inverse filter estimate, (c) Wiener filter estimate (using constant 
object power spectrum), (d) QPWLS estimate with β=0.7. (Second row) 45° rotated 
field map slice from (e) rotation of original observed field map, (f) application of 
SVC on rotated estimate of χ from thresholded inverse filter, (g) application of SVC 
on rotated estimate of χ from Wiener filter (using constant object power spectrum), 
(h) application of SVC on rotated estimate of χ from QPWLS. (Bottom row) Ground 
truth field maps for (i) non-tilted, and (j) 45° tilted positions. All images are 
displayed on the same intensity scale. 

 

RMSE: 32.1 Hz (a) RMSE: 43.0 Hz (b) RMSE: 32.2 Hz (c)

RMSE: 28.2 Hz (e) RMSE: 39.9 Hz (f) RMSE: 188.6 Hz (g)

(i) (j) 
z, B0 

y 

RMSE:18.1 Hz (d) 

RMSE: 13.4 Hz (h) 
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Figure 5.3: Dynamic field map RMSE values versus rotation angles for different estimation 
methods when object was rotated about the x-axis from 0° to 180°. An arbitrary 
constant object power spectrum was used in the Wiener filter. 

 
Figure 5.4: (Top row) Non-tilted χ map slice (y-z plane) from (a) true χ map, (b) thresholded 

inverse filter estimate, (c) Wiener filter estimate (using true object power spectrum), 
(d) QPWLS estimate with β=0.7. (Second row) χ map slice rotated 45° using non-
tilted (e) true χ map, (f) thresholded inverse filter estimate, (g) Wiener filter estimate 
(using true object power spectrum), (h) QPWLS estimate with β=0.7. All images are 
displayed on the same intensity scale. 

(a) (b) (c)

(e) (f) (g)

(d) 

(h) 
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Figure 5.5: (Top row) Non-tilted field map slice (y-z plane) from (a) originally observed field 
map, (b) thresholded inverse filter estimate, (c) Wiener filter estimate (using true 
object power spectrum), (d) QPWLS estimate with β=0.7. (Second row) 45° rotated 
field map slice from (e) rotation of original observed field map, (f) application of 
SVC on rotated estimate of χ from thresholded inverse filter, (g) application of SVC 
on rotated estimate of χ from Wiener filter (using true object power spectrum), (h) 
application of SVC on rotated estimate of χ from QPWLS. (Bottom row) Ground 
truth field maps for (i) non-tilted, and (j) 45° tilted positions. All images are 
displayed on the same intensity scale. 

 

RMSE: 32.1 Hz (a) RMSE: 43.0 Hz (b) RMSE: 4.8 Hz (c)

RMSE: 28.2 Hz (e) RMSE: 39.9 Hz (f) RMSE: 12.8 Hz (g)

(i) (j) 
z, B0 

y 

RMSE:18.1 Hz (d) 

RMSE: 13.4 Hz (h) 
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Figure 5.6: Dynamic field map RMSE values versus rotation angles for different estimation 

methods when object was rotated about the x-axis from 0° to 180°. The true object 
power spectrum was used in the Wiener filter. 

 

5.5   Discussion and Conclusions 

The proposed method estimates dynamic susceptibility induced field maps from an observed 

static susceptibility induced field map, while accounting for the proper MR noise model. It does 

not require segmentation or pulse sequence modifications, and may yield higher resolution 

dynamic field maps that address nonlinear changes due to out-of-plane rotations. Fig. 5.3 shows 

quantitatively that the QPWLS RMSE values were the lowest (best performing) among all the 

other methods. Figs. 5.2(d) and 5.2(h) show qualitatively that the field map estimates were close 

to the ground truths. For our spherical air pocket in water, nonlinear field map changes would 

typically be worst at the 90° position, hence a peak is observed at that position in Fig. 5.3 for the 

method that simply rotates the observed field map. In contrast, the low QPWLS RMSE variability 

across rotation angles in Fig. 5.3 suggests that the method performs reasonably well regardless of 

rotation angles. Further improvements in the proposed method may be possible upon optimizing 

the choice for the regularization parameter, coupled with the implementation of regularization 

functions that utilizes prior spatial information that is specific to a brain’s χ-map. Since the χ-map 

of the brain is smooth, with the exception of air-tissue, bone-air and bone-tissue interfaces, an 



 73

edge preserving regularization function, e.g., Huber function, may be used instead. Coarse 

segmentation of a T1 weighted map of the brain into air, tissue and bone regions may still be 

helpful to identify voxels around susceptibility interfaces where edge preserving regularization 

can be selectively applied, while quadratic regularization is used for non-interface regions where 

the susceptibility map is expected to be smooth. This regularization scheme favors smoothly 

varying susceptibility map estimates within soft tissue, air and bone regions while allowing for 

abrupt susceptibility changes at the susceptibility interfaces. It is noted that segmentation is used 

here as an aid to choose the type of regularization for different brain regions and not for direct 

computation of the field map. A wrongly chosen regularization function will only lead to more, or 

less, blurring of the susceptibility map but should not change the locations of the susceptibility 

interfaces significantly.  

 The initial guess for the conjugate gradient algorithm was a volume filled with zeros. The 

use of the static field map as an initial guess for the algorithm may improve the rate of 

convergence since the static field map resembles the true field map more than a zero volume. 

A potential limitation of the proposed method may arise because Δωsys was ignored in 

Eq. (5.11) for simplicity. In our future work, we will investigate methods to reliably measure non-

χ induced field inhomogeneities, and characterize their effects on the various approaches in this 

work. 

 A novel regularized image restoration approach to estimate field maps of a moving object 

was proposed and shown, with simulated data, to be more effective than non-regularized methods 

or simple transformations of an observed field map. In fMRI, this may potentially improve 

dynamic field map estimates and hence, geometric distortion correction accuracy. 
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CHAPTER 6 

Formulation of Current Density Weighted Indices for 
Correspondence between fMRI and Electrocortical Stimulation 

Maps 
 

6.1 Introduction 

Epilepsy surgery to remove identifiable epileptogenic regions of the brain is often achieved in 

conjunction with an electrocortical stimulation (ECS) [47] map obtained either before or during 

the resection surgery. The goal of this mapping is to identify brain regions that are essential for 

language and sensorimotor functions prior to frontal or temporal lobe resection. Defining 

hemispheric language and sensorimotor localization in patients with intractable epilepsy is 

important for avoiding complications of epilepsy surgery involving eloquent cortex. Currently, 

intraoperative or extraoperative electrocortical stimulation mapping of sensory, motor, and 

language are used to define the safe limits of resection. The intraoperative ECS procedure 

performed during an awake craniotomy, followed by resection, subjects the patient to additional 

strain during surgery. In extraoperative ECS, the placement of subdural electrode arrays for 

functional mapping places the patient at risk for complications.  

 Functional magnetic resonance imaging (fMRI) techniques show strong potential for 

presurgical evaluation of patients with brain tumors or epileptic lesions and may provide a non-

invasive alternative to the ECS method to define eloquent cortex at risk during epilepsy surgery. 

In constant current bipolar ECS, each pair of adjacent electrodes on an electrode grid is 

stimulated with alternating polarity square wave current pulses. The stimulus current intensity is 

increased gradually until either the patient’s response changes, or an afterdischarge, is observed.  

In fMRI, an increase in cerebral blood flow induced by local neuronal activity modulates the 

proportion of oxyhemoglobin to deoxyhemoglobin in nearby vasculature. This results in a 

magnetic susceptibility difference between the blood vessel and surrounding tissue which can be 

imaged with a T2
*-weighted MRI protocol.  Because fMRI’s stimulation mechanism differs from 

ECS as the standard technique for presurgical functional mapping, the accuracy of fMRI
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functional mapping must be validated for spatial consistency with ECS maps. In this work, 

stimulated electrode pairs are classified into two categories: ON pairs yielded response 

changes while OFF pairs did not. 

 For ECS-fMRI validation, a correspondence index that incorporates contextual 

information provided by a given set of ON/ OFF stimulated electrode pairs would be useful when 

comparing mapping data. A reliable performance index would be statistical in nature and yet 

based on a phenomenon that is physically related to the likely regions of neuronal stimulation 

around the electrodes. To date, it is not known exactly how different neural tissues respond to 

ECS and at what current threshold levels functional deficits may occur. However, it is known that 

for electrical stimulation of nerve fibers, an increase in the injected current intensity level 

increases the number of axons that are depolarized [48]. Also, the effectiveness of stimulating a 

nerve fiber decreases with increasing distance from the stimulating electrode [48]. An increase in 

injected current intensity increases both the electric field magnitude and current density 

distributions in the tissue for any given anatomical geometry and electrode impedance. These 

electrostatic quantities decrease in magnitude with increasing distance from the stimulating 

electrodes and can be numerically approximated by modeling the brain as a chargeless volume 

conductor and solving the Laplace equation with appropriate Dirichlet and Neumann boundary 

conditions [49]. As such, we propose incorporating information from the current density map in 

the brain during electrical stimulation to define ECS-fMRI correspondence indices. 

 Previous studies in clinical ECS-fMRI correspondence have utilized 3D Euclidean 

distance based measures [50-53] and statistical indices [54] to quantify how close the fMRI 

activation maps were to ECS functional maps. For the former, the minimum, maximum and mean 

Euclidean distances from ON/ OFF electrodes to the local maxima and edge of the nearest fMRI 

cluster [50,53] have been used. The distance from the tested electrodes to the centroid of the 

nearest fMRI cluster has also been used as a performance index [52]. These measures are easy to 

evaluate and provide an intuitive feel of how close the tested electrodes are to surrounding fMRI 

activation clusters. However, these measures do not utilize much of the clusters’ spatial 

information, i.e., shape, spread, number of voxels etc. This may yield overly optimistic 

correspondence values for an activation cluster that may be small and artifactual in nature, but is 

close to a tested electrode. The reliability of these Euclidean distance measures may also be 

dependent on the accuracy of the clustering algorithms used, either in the process of, or after 

fMRI statistical analysis.  
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Figure 6.1: In the voxel-based fixed radii method (left), fMRI activation voxels (represented by 

vertical bars with values of 1) within a user-specified radius around ON (solid shaded 
discs/ circles) and OFF (diagonal shaded discs/ circles) electrodes are true positives 
and false positives respectively. In the Euclidean distance method (right), the mean 
Euclidean distances from ON electrodes to the edges and centroids of all fMRI 
activation clusters are computed. 

 

 Statistical indices like sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV) and geometric mean (gmean) are widely used classification performance 

indices. Unlike Euclidean based measures, these indices have a fixed range from 0 to 1.0. To 

compute these indices for an fMRI activation map, the number of fMRI voxels that are true 

positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) must first be 

calculated. To do that, some assumptions regarding the voxel-wise locations and “likelihood” of 

ground truth functional activation given an ECS functional map are required. The ground truth 

activation voxels can be contained within a user-defined radius around each ON task tag [54] 

such that any fMRI activated voxels found within the radius causes the tag to be counted as a true 

positive tag. The sensitivity was defined as the percentage of language tags that exhibited ECS-

fMRI matches and the specificity as the percentage of non-language tags that did not exhibit 

ECS-fMRI matches. Non-language tags were defined as stimulation sites which yielded non-

language related responses. No clustering of fMRI activation data is required or assumed. It is, 

however, not clear how large the radii around the tags should be under different stimulation 

current levels. Also, a lone fMRI activated voxel found within the specified radius of a language 

tag would yield the same ECS- fMRI match as a large and dense activation cluster within the 

same radius. Since there are typically only small numbers of task and non-task tags, the tag-wise 

sensitivity and specificity values can be significantly altered by stimulus-correlated motion or 
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noise-induced fMRI activation voxels that happen to fall within the specified radii of the task or 

non-task tags. Thus, it may be more desirable to consider the actual number of voxels that fall 

within the radii of the tags as well.  

 In the above fixed radii method, all activated voxels within the radii are given the same 

level of influence in determining the indices, irrespective of their relative distances from the 

electrodes. Activated voxels located outside these radii are not counted. These fixed windows of 

ground truth voxels make it difficult to measure incremental improvements in ECS-fMRI 

correspondence when fMRI activated voxels consistently fall outside the windows but are 

nevertheless inching towards the ON electrodes, e.g., as a result of improved data processing 

techniques. The true positive count will still be zero. A Euclidean distance measure would be 

useful in these cases but the previously mentioned limitations would then arise.  

 There are indications that the level of elicited neuronal activation is influenced by applied 

stimulus levels [48]. Since a higher stimulus current intensity would likely exceed a wider range 

of neuronal activation threshold levels, an ECS-fMRI correspondence index may be physically 

more meaningful and reliable if information from the electric field or current density map was 

incorporated into its definition. We propose a current density weighted method that combines the 

advantages of distance-based measures with voxel-wise statistical indices to quantify ECS-fMRI 

correspondence. We do not calculate Euclidean distances between reference points explicitly and 

do not assume that the fMRI maps consist of clusters. Information of the Euclidean distance 

between each activated voxel with respect to ON or OFF electrodes is embedded in numerically 

computed current density maps by solving the Laplace equation for a quasistatic volume 

conductor using the finite difference method. Each current density map is unique to each patient-

task combination and depends solely on the ECS functional map and current or voltage 

stimulation parameters. 

 The goals of this study are to (i) examine and evaluate the ECS-fMRI correspondence 

indices in various simulated test cases, and, (ii) to demonstrate the use of these indices in human 

data. We formulate a current density weighted scheme to assess the relative numbers of fMRI true 

positives, true negatives, false positives and false negatives [59], i.e., populate a contingency 

table or confusion matrix. These values are then used to compute five existing statistical measures 

for classification performance, i.e., sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV) and geometric mean (gmean) [55]. A 3D volume with a 

simulated electrode grid and simulated fMRI activation maps are used to investigate and compare 

the behaviors of the proposed current density weighted measures and modified versions of two 

previously reported correspondence indices [50,54]. The current density weighted indices are also 
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computed for three different patients who participated in fMRI studies for verbalized language 

tasks followed by language mapping with extraoperative ECS procedures prior to surgical 

treatment.  The patient studies demonstrate the feasibility of current density weighted statistical 

measures for evaluating fMRI activation localization with extraoperative ECS mapping. 

6.2 Methods 

All computational work was performed on Intel Pentium 4 Xeon 3.0 GHz CPUs using MATLAB 

(The Mathworks Inc., Natick, MA, USA) and Advanced Visual Systems (Advanced Visual 

Systems Inc., Waltham, MA, USA).  The patient studies were conducted in accordance with the 

guidelines set by the University of Michigan Medical School Institutional Review Board. 

Informed consent was obtained from all three subjects. 

 The post-grid CT datasets were acquired on GE MDCT LightSpeed machines, LS16, 

LS16pro, LSultra(8) and LS4slice scanners. The acquisition protocol was axial slices through 

electrodes, posterior fossa through vertex and slice thickness of 1.25 mm in a tilted mode so as 

not to include the lenses with a field of view of 23 cm. All MRI data were acquired on a 1.5 T GE 

SIGNA MR scanner (GE Medical Systems, Milwaukee, WI). All anatomical MR datasets were 

acquired with a 3D Spoiled GRASS (SPGR) protocol with the following parameters: TR=10 ms, 

TE=3.7 ms, flip angle=8 degrees, FOV=25 cm, voxel size=1.0 mm×1.0 mm×1.5 mm, image 

matrix = 256×256×120. Functional MRI datasets were acquired prior to the grid electrode 

implant. An echo-planar imaging (EPI) sequence with slice interleaving was used with the 

following parameters: TR=3000 ms, TE=30 ms, flip angle=90 degrees, FOV=24 cm, voxel 

size=1.95 mm×1.95 mm×6.0 mm, image matrix = 128×128×16. 

6.2.1 Activation Localization in fMRI 

Each set of fMRI time series for a test paradigm consists of six cycles of 30 s of stimuli 

presentation followed by 30 s of rest.  Language paradigms in fMRI sessions were designed to 

follow the equivalent tests in ECS language mapping, which include confrontation naming, 

responsive naming, and tongue rapid alternating lateral movement (tongue RAMs). For the visual 

confrontation naming (picture naming of line drawings of objects) task during fMRI, each patient 

was instructed to name aloud the objects projected on a screen. For responsive naming, the 

patient would respond verbally to a series of questions asked through intercom during the 

activation periods.  The tongue RAMs task was a self-paced tongue movement from one corner of 

the lips to the other for 30 s followed by 30 s rest for six cycles. 
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6.2.2 Euclidean Distance and Voxel-Based Fixed Radii ECS-fMRI 

Correspondence Indices 

To facilitate a fairer comparison of the afore-mentioned tag-wise fixed radii method with our 

voxel-based current density weighted correspondence indices, and to improve the former’s 

robustness to errors in the presence of lone fMRI activated voxels, we reconfigured the tag-wise 

fixed radii method by defining voxels within the radii of ON electrodes (task tags) as ground truth 

positives and OFF electrodes (non-task tags) as ground truth negatives. The values of TP and FP 

are computed by counting the total number of fMRI activation voxels within the fixed radii 

around the ON electrodes and OFF electrodes, respectively. The values of FN and TN are the total 

number of fMRI non-activation voxels within the fixed radii around the ON electrodes and OFF 

electrodes, respectively. The sensitivity, specificity, PPV, NPV and gmean indices are then 

computed using the voxel-based quantities TP, FP, FN and TN. The sensitivity is now the 

percentage of voxels (of all voxels within the radii of task tags) that have corresponding fMRI 

activation, i.e., true positive accuracy. The specificity is now the percentage of voxels (of all 

voxels within the radii of non-task tags) that do not have corresponding fMRI activation, i.e., true 

negative accuracy. The choice of the radius around the tags is still arbitrary. This voxel-based 

method of computing statistical performance indices will be referred to as the “voxel-based fixed 

radii” method (Fig. 6.1). 

6.2.3 Current Density Weighted ECS-fMRI Correspondence Indices 

For a current density weighted method for computing the ECS-fMRI correspondence indices, let 

an fMRI activation map, which is a 3D binary map of activated (‘1’) and non-activated (‘0’) 

voxels, be denoted by m(r) where r is the vector of 3D spatial variables (x, y, z). It is assumed that 

m(r) is spatially registered to a 3D T1-weighted anatomical reference volume gref(r). Let JON,k(r) 

denote the magnitude of the 3D current density vector field when the kth pair (out of K pairs) of 

ON electrodes is stimulated. To obtain good ECS-fMRI correspondence, it is expected that fMRI 

activation would occur near ON electrode pairs and not in the proximity of OFF electrode pairs. 

The weighted number of true positives is computed by multiplying each fMRI activated voxel, 

which has a value of 1, with the current density magnitude at that voxel for each ON electrode 

pair, and then summing all these weighted voxels as follows: 

∑ ∑
= ∈
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where ri is the spatial vector variable (xi, yi, zi) for the ith voxel and FOV denotes the imaging field 

of view. In other words, TP is the sum of all fMRI activated voxels weighted by corresponding 

current density map voxels for all ON electrode pairs. An activated voxel that is far away from 

any ON electrode pair is effectively ignored since the corresponding current density value will be 

negligible. In a similar manner, FP is computed by using JOFF,l(r), the current density map when 

the lth pair (out of L pairs) of OFF electrodes was stimulated 

∑ ∑
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i
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, )()(
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The number of true negative and false negatives are computed as  
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where 1-m(ri) is equal to 1 for non-activated voxels and 0 for activated voxels. Fig. 6.2 illustrates 

the above equations in one dimension. 

 
Figure 6.2: In the current density weighted method, fMRI activation voxels (vertical bars) 

weighted by the ON (solid shaded discs) and OFF electrodes’ (diagonally shaded 
discs) current density values (dotted line) at the voxels’ locations contribute to the 
true positive (TP) and false positive (FP) quantities respectively. The fMRI non-
activated voxels weighted by the ON and OFF current density values contribute to 
the false negative (FN) and true negative (TN) quantities respectively. 

 

 With the above quantities, the following ECS-fMRI correspondence indices, all of which 

are in the range of 0 to 1.0, can be evaluated: 

FNFPTNTP
TNTPaccuracy

+++
+

= , (6.5)

FNTP
TPysensitivit
+

=  , (6.6)

ON ON 

True positives False positives 

OFF OFF
y 



 81

FPTN
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yspecificitysensitivitgmeanmean geometric ⋅=)( . (6.10)

 The sensitivity and specificity indices can be used to measure the accuracies of detecting 

true positives and true negatives, respectively, for a given classification test, i.e., a given fMRI 

map. However, it is also desirable to have a single index to represent both types of accuracies. 

The accuracy and geometric mean (gmean) indices are possible candidates for such an index. It 

has been reported [55] that the accuracy index, which measures the proportion of voxels in the 

brain that were classified correctly (positives and negatives), can be misleading when there is a 

class imbalance situation, e.g., when the total number of possible negative cases (TN+FP) is 

much larger than the total possible positive cases (TP+FN). In ECS, this scenario may arise when 

there are many more OFF electrode pairs than ON electrode pairs, or when OFF electrodes are 

stimulated at much higher current levels than ON electrodes. A significant increase in true 

positives may yield a negligible increase in accuracy if the number of true negatives is large 

enough to dominate the ratio in Eqn. 5, making it difficult to compare relative fMRI activation 

detection performance for the same subject. Also, even when no fMRI activation is detected 

(TP=0), the accuracy can still be very high if TN is almost as large as the denominator 

(TN+FP+FN), i.e., more true negatives than false positives near OFF electrodes and false 

negatives near ON electrodes. Thus, the accuracy index is not used to quantify ECS-fMRI 

correspondence in subsequent sections. The gmean index was proposed [55] as an alternative 

single-valued index that quantifies true positive and true negative accuracies simultaneously 

without incurring the class imbalance problem. 

 The sensitivity, specificity and gmean are the main indices of interest while the positive 

predictive and negative predictive values are computed for completeness and may serve as useful 

reference for future work. 
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6.2.4 Dynamic Ranges of Current Density Weighted Correspondence Indices 

A physical interpretation of the upper and lower limits of the current density weighted sensitivity, 

specificity and gmean indices is useful to understand the scenarios that yield the worst and best 

case values. Assuming there is at least one pair of ON and one pair of OFF electrodes, the 

sensitivity will be 1.0 if every fMRI voxel in the field-of-view is activated (hence, specificity will 

be 0), and 0 if no fMRI activation is observed (hence, specificity will be 1.0). These extreme 

cases are easily detected. For practical fMRI maps with at least some fMRI activation voxels near 

the electrodes, a sensitivity value close to 1.0 indicates that fMRI activation occurred in regions 

where the combined current density distribution function of ON electrodes has the most energy 

(close to ON electrodes). A sensitivity value close to 0 indicates that either only a few fMRI 

activation voxels are present, or that fMRI activation occurred predominantly in low energy 

regions of the ON electrodes’ current density function (far from ON electrodes). Likewise, a 

specificity value close to 1.0 indicates that fMRI non-activation voxels occurred in regions where 

the combined current density distribution function of OFF electrodes has the most energy (close 

to OFF electrodes) while a specificity value close to 0 indicates either the presence of only a few 

fMRI non-activation voxels, or that fMRI non-activation voxels occurred predominantly in low 

energy regions (far away from OFF electrodes) of the OFF electrodes’ current density function. 

Since gmean depends on the product of sensitivity and specificity, a gmean value close to 1.0 

indicates that the sensitivity and specificity values are both close to 1.0. A gmean value close to 0 

indicates that either the sensitivity or specificity, or both indices, are close to zero.  

 Due to the possible overlapping of ON and OFF electrode current density distributions, 

the sensitivity and specificity values, and hence the associated gmean value, rarely attain their 

maximum values of 1.0 simultaneously. The maximum possible gmean depends on the how much 

the ON and OFF electrode current density distributions overlap and may vary from patient to 

patient. As such, it may be useful to approximate the maximum possible gmean value for each 

patient before computing the empirical gmean values. ECS-fMRI correspondence can then be 

evaluated using  

)_/(*100 gmeanmaxgmean(%) gmean = . (6.11)

Eq. (6.11) is especially relevant for clinical data because it provides a reference point to evaluate 

computed gmean values with respect to the best “score” that can be achieved for a specific ECS 

map. This may also be helpful for inter-patient comparisons. In our work, values of gmean(%) 

were computed only for clinical cases. 

 To approximate max_gmean, one would need to find an artificial fMRI map that yields 

the best gmean score. A simple strategy to find such an activation map is to create a series of 
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artificial fMRI maps that yield decreasing sensitivity values from a maximum of 1.0 (with 

associated increasing specificity values from a minimum of 0). Fig. 6.3 shows an example of 

finding max_gmean for a simulated test case with two ON electrode pairs and 28 OFF electrode 

pairs. To create each artificial fMRI map, each voxel location is designated as activated if the 

combined ON electrodes current density distribution at that location exceeds a threshold (Fig. 

6.3(b)). Each artificial fMRI map has a different threshold value, which starts from 0 where all 

voxels are designated as activated voxels (Fig. 6.3(c) – map 1), i.e., sensitivity of 1.0, specificity 

and gmean values of 0. As the threshold increases, the sensitivity decreases from 1.0 while the 

specificity, and hence gmean, increases from 0 as shown in Fig. 6.3(d). The increasing gmean 

will reach a maximum value and then start to decrease as the sensitivity tends to 0. The ordinate 

value in Fig. 6.3(d) at which the sensitivity, specificity and gmean plots intersect is the maximum 

gmean value.  
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Figure 6.3: (a) Sum of two ON electrode pairs’ current density maps (stimulated at 0.6 V) on a 

simulated 5-by-7 electrode grid. OFF electrode pairs’ current density maps are not 
shown. (b) 1D profile plot of dashed line in (a) showing artificially activated voxels 
(solid shaded blocks) obtained by thresholding profile plot at two different threshold 
levels (α and β). Image columns spanned by red (taller block) and purple regions are 
designated as activated voxels for threshold levels β and α, respectively. (c) Samples 
from series of images showing artificially activated voxels which yield decreasing 
current density weighted sensitivity values (white denotes activated locations). Each 
map is generated by designating voxels in (a) that are above a threshold as activated. 
(d) Plot of proposed current density weighted sensitivity, specificity and gmean 
values for series of artificial fMRI maps generated with increasing threshold values. 
The sensitivity decreases from 1.0 while specificity increases from 0. The maximum 
possible gmean value, denoted by max_gmean, serves as a reference “best score” 
value for computed gmean values. 
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6.2.5 Numerical Approximation of Current Density  

In ECS, the brain can be modeled as a volume conductor with no electrical charges within the 

conductor. A quasistatic condition is assumed where the temporal variations in the electrostatic 

quantities are ignored, i.e., only the steady-state scalar potential is of interest [49]. This condition 

corresponds to a snapshot in time when the maximum voltage magnitude is applied across the 

electrode pair and the electrostatic quantities are allowed to settle to an equilibrium state. For 

each stimulated electrode pair, the scalar potential field, Ф(r), is computed by solving the Laplace 

equation, 
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where σ is the electrical conductivity. For simplicity, we assume that the volume conductor has 

isotropic conductivity, i.e., equal conductivity in all directions and σ is a scalar. The boundary 

conditions required for a unique solution include the applied voltage levels at the electrode-brain 

interface (Dirichlet boundary condition) and knowledge that the first derivative of the scalar 

potential perpendicular to the brain surface is zero (Neumann boundary condition) 

0=⋅∇− nΦσ , (6.13)
where n is a vector normal to the brain surface. The scalar potential maps are numerically 

computed using the finite difference method with 3D 7-element centered approximation. The 

Gauss Seidel algorithm was used to solve the resultant finite difference equations. The current 

density maps are then evaluated from the scalar potential field with Ohm’s law  

Φ∇−= σJ . (6.14)
Fig. 6.4 shows top (a slice that is 6 mm below electrodes) and cross-sectional views of current 

density magnitude contour plots computed for a simulated 3D volume with two pairs of simulated 

electrodes stimulated at two different stimulus levels. The leftmost electrode pair has an input 

voltage magnitude of 0.6 V while the rightmost pair has an input voltage magnitude of 2.0 V. 

Assuming the electrode impedance is 60 Ω and ignoring all other impedances, this would be 

equivalent to injected current intensities of 10 mA and 33 mA, respectively. Fig. 6.4 illustrates 

that a higher electrical stimulus level induces a wider current density distribution spread. 
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Figure 6.4: Current density magnitude for different simulated electrical stimulus levels (leftmost 

pair: 0.6 V, rightmost pair: 2 V). (a) Top view contour plot (6 mm below simulated 
electrodes positions), and (b) cross-sectional view contour plot (sliced along dashed 
line in (a)), and (c) 1D profile plot of (a) along dashed line in (a). The display range 
for both electrode pairs in each contour plot is the same to facilitate the comparison of 
current density distribution spreads at different electrical stimulus levels.  

 

6.2.6 Data Simulation 

In this section, simulated datasets are used to compare the current density weighted statistical 

indices to the voxel-based fixed radii method indices and the Euclidean distances from ON 

electrodes to nearest fMRI clusters’ edges and centroids. A 115×115×100 voxel 

(115mm×115mm×100mm) 3D rectangular volume (MRI) with an overlaid electrode grid (CT) 

with known stimulation voltages was simulated. For simplicity, each voxel is assigned the 

electrical conductivity value of brain grey matter (0.004 Ω-1 cm-1). Each circular electrode has a 

radius of 2 mm and adjacent electrodes are spaced 10 mm in both vertical and horizontal 

directions. Each voxel is 1 mm×1 mm×1 mm in size. It is assumed that all simulated fMRI 
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activation maps are in the same coordinate space as, i.e., spatially aligned to, the simulated 3D 

rectangular MRI volume. Simulated datasets are useful in this phase of the study because the 

locations of activated voxels, shapes of activation clusters, ON and OFF electrode pair 

combinations as well as different current stimuli levels can be specified and thus allow precise 

characterization of the performance indices under different conditions. It also allows the 

evaluation of these indices against qualitative knowledge of what constitutes good ECS-fMRI 

correspondence in different cases. 

 The simulated test cases are labeled as combinations of three sub-categories of test cases: 

ECS, fMRI and electrical stimulation level test cases (Fig. 6.5). Each ECS test case has a specific 

ON and OFF electrode pair combination that is analogous to a specific patient-task ECS map. 

Each ECS test case, denoted by E1 to E6, can be combined with fMRI activation test cases F1 to 

F2 and stimulation level test cases S1 to S2 to simulate different ECS-fMRI map combinations. 

The activation clusters in fMRI test cases F1 to F2 are not static, i.e., the clusters are moved 

together across the whole image to simulate different fMRI activation maps for which 

correspondence indices are computed. The positions of each cluster relative to other clusters do 

not change but some clusters near the edge of the image may be shifted outside the field of view, 

i.e., outside the visible part of the image. A 2D map is thus obtained for each correspondence 

index for each test case from which 1D profile plots are extracted and shown in Figs. 6.7 to 6.15. 

These 1D plots serve to illustrate specific advantages of using the current density weighted 

correspondence indices and their behavior under different conditions. A specific ECS-fMRI-

stimulation level combination is denoted by the concatenation of their labels shown in Fig. 6.5, 

e.g., E1-F1-S1 denotes ECS test case E1 with fMRI test case F1 and electrical stimulation level 

test case S1. 
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Figure 6.5: Electrode grid overlaid on current density maps (6 mm below electrodes) for 

simulated ECS maps labeled E1 to E6. In E1 to E6, high current density regions 
(orange-red regions) indicate locations of ON electrode pairs. All other horizontally 
adjacent electrode pairs are either OFF electrode pairs (diamonds) or untested (dots 
on grid), e.g., ECS map E6. F1 to F3 denote simulated fMRI activation test cases 
where activated voxels are grouped into solid red ellipses (F1, F2) or circles (F3). S1 
uses an input peak voltage of 0.6 V for all ON and OFF electrodes. Test case S2 uses 
an input peak voltage of 0.2 V for the leftmost and 0.6 V for the rightmost ON 
electrode pairs. All OFF electrodes for all test cases have stimulus voltages of 0.6 V. 
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6.2.7 Clinical Data 

6.2.7.1 MR Imaging and Extraoperative ECS Functional Mapping Overview 

Fig. 6.6 shows an overview of the fMRI and ECS mapping procedure prior to surgery for lesion 

resection. An MRI T1-weighted pre-grid anatomical reference volume was acquired in the same 

scan session as T2
*-weighted fMRI time series images corresponding to various specified test 

paradigms. A fully automated 3D nonlinear registration process using our Mutual Information 

Automated Multimodality Image Fusion (MIAMI Fuse) software [24] was then used to register 

the T2
*-weighted fMRI time series to the T1-weighted anatomical reference volume. In addition, 

2D to 3D rigid body mapping of slice-to-volume (MSV) was performed to improve motion 

correction accuracy [25]. Statistical analysis was then performed on the resultant motion 

corrected datasets to compute fMRI activation maps that indicate the regions of the brain that 

have increased Blood Oxygenation Level Dependent (BOLD) response to the specified stimuli. 

With the MSV motion correction technique, slices are repositioned to account for inter-slice 

motion. In most data sets, out-of-slice motions are detected and unequal number of temporal 

samples per voxel may be observed.  A robust approach in statistical testing using random 

permutation was chosen to compute the fMRI activation maps [40]. This statistical technique is 

simple, non-parametric and independent of sample size variability [41].  

 Following the pre-grid MR scans, the patient undergoes the first craniotomy to implant a 

subdural electrode grid. Post-grid computed tomography (CT) and MRI scans are subsequently 

performed. The CT volume is then registered to the post-grid MR volume using the MIAMI Fuse 

software. To bring the post-grid registered CT volume in alignment with the pre-grid MR 

anatomical volume, the post-grid MR volume is non-linearly registered to the pre-grid MR 

volume and the resultant deformation field is applied to the pre-grid CT volume as shown in Fig. 

6.6. Consequently, both the fMRI activation and CT datasets are non-linearly registered to the 

pre-grid MR reference volume. The electrode positions are extracted semi-automatically via k-

means clustering [56] of the intensity-thresholded CT volume. 

 Just before the second craniotomy, three sets of information are available for each 

patient: a T1 pre-grid anatomical reference volume, several sets of fMRI activation maps for 

different paradigms (e.g., responsive naming and picture naming), and a post-grid CT volume 

which shows ON and OFF electrode pair locations along with maximum stimulation current 

levels applied. These datasets are all registered to the T1 pre-grid anatomical reference. The 

primary interest in our work is to quantify the “closeness” of the fMRI activation maps to their 

corresponding ECS functional maps. 
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Figure 6.6: Overview of fMRI and ECS mapping procedure for patients undergoing surgery for 

lesion removal.  
 

6.2.7.2 Electrocortical Stimulation Mapping 
Bipolar constant current electrocortical stimulation (ECS) is performed extraoperatively with the 

injection of constant current pulses across adjacent electrode pairs. For each electrode pair, the 

patient was asked to perform a task while the current intensity was gradually increased. If a 

stimulated region is essential to the task, an adequate stimulation current intensity may alter 

function [57] and inhibits performance of the task. Stimulated electrode pairs that yield a 

response (ON electrodes) during a specified task (activation or inhibition) are labeled with the 

injected current levels when the response is observed. The precise locations of the inhibited 
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neurons under the ON electrodes are not available from the ECS procedure. However, the 

location of each electrode and a map of ON and OFF electrode pairs are available.  

 During ECS mapping with the implanted subdural grid electrodes (Ad-Tech Medical 

Instrument Corp., Racine, WI, USA), stimulus biphasic current with a pulse duration of 300 μs 

and a pulse interval of 20 ms (frequency of 50 Hz) was applied across horizontally adjacent 

electrode pairs using a Grass Model S12 isolated biphasic stimulator (Astro-Med Inc., West 

Warwick, RI, USA). The pulse train duration used was 2 s. Each electrode has an exposed 

diameter of 2.3 mm and an approximate electrical resistance of 50 to 60 Ω. The spacing between 

the centers of adjacent electrodes is 10 mm. During ECS mapping, the current intensity is 

gradually increased from 1 mA for motor and sensory mapping, and 3mA for language mapping 

until either a response is detected or significant afterdischarges are observed. Responses are 

confirmed by observing consistent effects with repeated stimulation. The injected current 

intensity increases in steps of 1 mA for motor/ sensory and 3 mA for language mapping. The final 

applied voltages for each stimulated electrode pairs are approximated by multiplying the peak 

injected current intensity by the electrode impedance (Ohms’s law). The Grass S12 stimulator 

allows the peak voltages to be read during stimulation, which may yield more accurate 

approximations of the actual applied voltage levels for future patient studies. 

6.3 Results 

6.3.1 Simulation Data Results 

Figs. 6.7 to 6.15 show plots of correspondence indices for various combinations of ECS map, 

fMRI map and stimulus level test cases described in Fig. 6.5. In this section, the characteristics of 

the current density weighted indices are reported for each test case combination, and then 

compared to the voxel-based fixed radii and Euclidean distance methods where appropriate. The 

test cases presented are inter-related to each other in that subsequent test cases are often more 

complicated variations of previous test cases. Figs. 6.7 to 6.15 each consists of five parts. Part A 

shows the current density maps with overlaying electrode grids and fMRI cluster(s) moving from 

the left to right sides of the images. Part B shows the current density weighted counts of TP, FP 

and FN as the centroids of the leftmost fMRI cluster (if there are more than one cluster, i.e., F2 

and F3) move along the dashed line displayed in part A. Part C shows the current density 

weighted ECS-fMRI correspondence indices while parts D and E show the voxel-based fixed 

radii method and Euclidean distance method correspondence indices, respectively. 
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 The simplest test case, labeled E1-F1-S1 (Fig. 6.7(a)), has an elliptical fMRI activation 

cluster of radii 2 mm and 4 mm along the minor and major axes of the ellipse respectively. As the 

fMRI cluster moves across the dashed line in Fig. 6.7(a), the current density weighted true 

positives (TP) plot (Fig. 6.7(b)) peaks when the cluster is directly under each of the two ON 

electrodes. This leads to corresponding valleys in the FN plot since (TP+FN) is a constant for any 

ECS map, i.e., sum of Eqns. 1 and 4 is a constant. The resultant sensitivity plot (Fig. 6.7(c)) is 

bimodal or double-peak, which indicates higher ECS-fMRI correspondence for fMRI activated 

voxels (m(r)=1) that are nearer any ON electrode. Since there are 29 pairs of OFF electrodes in 

Fig. 6.7(a), the number of true negatives (TN) is much larger than FP, thus yielding a specificity 

plot (Fig. 6.7(c)) with all values close to 1.0. The gmean plot has a similar shape as the sensitivity 

plot (Fig. 6.7(c)) and summarizes classification accuracies for both true positives and true 

negatives. Local minima in the sensitivity and gmean plots, which become more pronounced as 

the inter-electrode spacing increases, are also observed in between the two ON electrodes. The 

sensitivity and gmean plots computed using the voxel-based fixed radii method (Fig. 6.7(d)) are 

zero outside the fixed windows and rises/ falls abruptly at the edges of the windows. Plateaus are 

also observed in the fixed radii sensitivity and gmean plots when the fMRI cluster is located 

within the fixed windows of the ON electrodes. As long as the fMRI cluster is completely within 

the fixed windows, the voxel-based fixed radii method reports constant sensitivity and gmean 

values, making it difficult to assess incremental improvements/ deterioration in fMRI 

performance. For example, an fMRI cluster located within the radii and moving closer to an ON 

electrode will still yield similar indices’ values. This limitation is exacerbated by the lack of a 

principled method to decide how large the stimulation radius should be, e.g., a larger radius will 

yield wider plateaus in the sensitivity and gmean plots making it even less effective in tracking 

incremental improvements in fMRI maps. The mean of the minimum electrode-edge and 

electrode-centroid Euclidean distances have global minima, indicating best ECS-fMRI 

correspondence, in between the ON electrodes (Fig. 6.7(e)). This implication that an fMRI cluster 

located in between ON electrodes would yield the best correspondence is not based on any 

electrostatic or physiological evidence, especially in light of computed current density maps that 

show maximum electrical stimulus levels directly under ON electrodes, rather than in–between 

them. 

Test case combination E1-F3-S1 (Fig. 6.8(a)) illustrates the improvement in ECS-fMRI 

correspondence when two larger fMRI activation clusters, each of radius 4 mm and spaced 10 

mm apart, are found in high energy regions of the ON electrode pair’s current density map.  As 

the number of fMRI activated voxels around ON electrodes increases at locations where current 
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density magnitude values are highest, the current density weighted sensitivity values will increase 

and tend to a maximum value of 1.0. The maximum current density weighted sensitivity value in 

Fig. 6.8(c) is much higher (0.69) than that of Fig. 6.7(c) (0.45) due to the larger number of true 

positives (TP) in the former. The maximum sensitivity and gmean values occur when the two 

fMRI clusters are simultaneously located under the two ON electrodes. 

In test case E1-F2-S1 (Fig. 6.9(a)), a second elliptical fMRI activation cluster, spaced 

five electrodes away from the leftmost cluster in Fig. 6.7, was added. The number of true 

positives (Fig. 6.9(b)), due largely to the leftmost cluster, is approximately the same as test case 

E1-F1-S1 in Fig. 6.7(b) but the number of false positives has increased because of the rightmost 

cluster. As such, the current density weighted sensitivity values in Fig. 6.9(c) does not change 

appreciably while a slight decrease in specificity values is observed. The decrease in specificity is 

not large because there are many OFF electrodes, i.e., TN is large. 

Test case E2-F1-S1 (Fig. 6.10(a)) uses the same elliptical fMRI activation cluster as in 

Fig. 6.7(a) but with two ON electrode pairs. The current density weighted sensitivity and gmean 

plots (Fig. 6.10(c)) have similar shapes to those in Fig. 6.7(c) (test case E1-F1-S1). The maximum 

sensitivity and gmean values in Fig. 6.10(c), however, are smaller (0.10, 0.31 respectively) 

because for every location that the fMRI cluster visits, FN has increased due to the presence of 

the additional ON electrode pair. This is desirable since the indices report poorer correspondence 

when there is an additional ON electrode pair, without any fMRI activation under it. This is 

unlike the current density weighted PPV which has same maximum values in both Figs. 6.7(c) 

and 6.10(c), which is an undesirable feature. The means of the Euclidean distances in Fig. 6.10(e) 

have minima in-between the two pairs of ON electrodes. This indicates that an fMRI cluster 

found directly under an ON electrode can have worst or equal ECS-fMRI correspondence than an 

identical cluster that is equidistant from all ON electrodes, but yet is not near any ON electrode. 

This assignment of highest ECS-fMRI correspondence to potentially improbable occurrences of 

stimulation-induced neuronal activation runs contrary to evidence that bipolar ECS stimulation is 

localized around ON electrode pairs [49]. 

Test case E2-F1-S2 (Fig. 6.11(a)) is identical to Fig. 6.10(a) except that the leftmost ON 

electrode pair is stimulated at 0.2 V instead of 0.6 V as used in the rightmost ON electrode pair. 

The local maxima of the current density weighted sensitivity and gmean plots are higher under 

the leftmost ON electrode pair (0.05, 0.22 respectively) than the rightmost ON electrode pair 

(0.15, 0.38). This may be desirable because higher electrical stimulus levels increases both the 

magnitude and spread of the current density distribution (Fig. 6.4), thus increasing the spatial 

extent of the stimulated region, as well as the range of neuronal stimulation thresholds that the 
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stimuli may overcome. The voxel-based fixed radii method does not incorporate information on 

stimulus levels as illustrated in the plateaus of similar maximum values under both pairs of ON 

electrodes in the sensitivity and gmean plots of Fig. 6.11(d). 

In test case E3-F1-S1 (Fig. 6.12(a)), two overlapping pairs of horizontally adjacent 

electrodes are stimulated. The second ON electrode, where the summed current density map 

values are highest, is more likely to be near task-related neuronal regions than neighboring ON 

electrodes since it was stimulated twice and both its horizontally adjacent neighbors are also ON 

electrodes. Indeed, maximum current density weighted sensitivity and gmean values are observed 

when the fMRI cluster is located directly under the second ON electrode. The fixed radii 

sensitivity and gmean plots (Fig. 6.12(d)) have plateaus across the three ON electrodes and is not 

able to extract such contextual information. 

Test cases E4-F1-S1 (Fig. 6.13(a)) and E5-F1-S1 (Fig. 6.14(a)) are similar to Figs. 6.7(a) 

and 6.12(a), respectively, except that the ON electrode pairs in the former are now surrounded by 

OFF electrodes. There are no noticeable changes in the shape or maxima values (sensitivity: 0.19, 

specificity: 1.00, gmean: 0.44) in the current density weighted sensitivity, specificity and gmean 

plots. This implies that the presence or absence of OFF electrodes around ON electrodes does not 

significantly affect the ECS-fMRI correspondence when an fMRI cluster is found under an ON 

electrode. This is desirable if OFF electrodes are defined as stimulated electrodes that did not 

yield a task-related inhibitory response. In this case, it cannot be conclusively stated that regions 

under these electrodes do not have task-essential neuronal tissue, even though the likelihood of 

that should be higher compared to an untested electrode pair. It might be that the electrical 

stimulus level was just not high enough. Thus, it would be premature to penalize ECS-fMRI 

correspondence values when an fMRI cluster is located near ON electrodes surrounded by OFF 

electrodes. 

Test case E6-F1-S1 (Fig. 6.15(a)) is identical to E1-F1-S1 (Fig. 6.7(a)) except that 

several electrodes surrounding the ON electrode pair are not tested (neither ON nor OFF). The 

current density weighted sensitivity, specificity and gmean plots are similar in both Figs. 6.15(a) 

and 6.7(a) with similar maximum values as Figs. 6.13(c) and 6.14(c). This illustrates an example 

of how neighboring OFF and untested electrodes are similar in their effect on current density 

weighted indices. 
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Figure 6.7: Simulated dataset E1-F1-S1. (a) Current density map overlaying electrode grid with 

an fMRI cluster moving from left to right side of image. (b) Current density weighted 
TP, FP and FN as centroid of left fMRI cluster moves along dashed line in (a). (c) 
Current density weighted ECS-fMRI correspondence indices. (d) Fixed radii method 
correspondence indices. (e) Euclidean distance method. 

(a) 

(d) 

(e) 

(c) 

(b) 
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Figure 6.8: Simulated dataset E1-F3-S1. This test case has larger fMRI clusters compared to Fig. 

6.7 and illustrates that higher peak values of sensitivity and gmean are obtained 
(compared to Fig. 6.7) when more fMRI voxels occur in regions with high current 
density energy levels, i.e., near ON electrodes. Parts (a) to (e) denote images and 
plots as described in Fig. 6.7. 

(a) 

(d) 

(e) 

(c) 

(b) 
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Figure 6.9: Simulated dataset E1-F2-S1. In this test case, a second (rightmost) fMRI cluster, i.e., 

additional false positives, was added to the cluster (leftmost) in Fig. 6.7. Parts (a) to 
(e) denote images and plots as described in Fig. 6.7. 

 

(a) 

(d) 

(e) 

(c) 

(b) 
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Figure 6.10: Simulated dataset E2-F1-S1. This test case is similar to Fig. 6.7 except for an 

additional ON electrode pair (rightmost). It illustrates the effects of additional false 
negative voxels and highlights a limitation of Euclidean distance-based indices. Parts 
(a) to (e) denote images and plots as described in Fig. 6.7. 

 

(a) 

(d) 

(e) 

(c) 

(b) 
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Figure 6.11: Simulated dataset E2-F1-S2. This test case is similar to Fig. 6.10 except that the 

leftmost ON electrode pair was stimulated at 0.2 V while the rightmost ON pair was 
stimulated at 0.6 V. In Fig. 6.10, both ON electrode pairs were stimulated at 0.6 V. 
Parts (a) to (e) denote images and plots as described in Fig. 6.7. 

 

(a) 

(d) 

(e) 

(c) 

(b) 
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Figure 6.12: Simulated dataset E3-F1-S1. This test case is identical to Fig. 6.7 except for the 

addition of an adjacent ON electrode pair (rightmost). Parts (a) to (e) denote images 
and plots as described in Fig. 6.7. 

(a) 

(d) 

(e) 

(c) 

(b) 
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Figure 6.13: Simulated dataset E4-F1-S1. This test case is similar to Fig. 6.7 except that the ON 

electrode pair is now surrounded by OFF electrode pairs. Parts (a) to (e) denote 
images and plots as described in Fig. 6.7. 

 

 

(a) 

(d) 

(e) 

(c) 

(b) 
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Figure 6.14: Simulated dataset E5-F1-S1. This test case is similar to Fig. 6.12 except that the ON 

electrode pairs are now surrounded by OFF electrode pairs. Parts (a) to (e) denote 
images and plots as described in Fig. 6.7. 

 

(a) 

(d) 

(e) 

(c) 

(b) 
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Figure 6.15: Simulated dataset E6-F1-S1. This test case is similar to Fig. 6.7 except that several 

electrode pairs around the ON electrode are not tested (dotted locations). Parts (a) to 
(e) denote images and plots as described in Fig. 6.7. 

 

 

 

(a) 

(d) 

(e) 

(c) 

(b) 
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6.3.2 Clinical Human Data 

Fig. 6.16 shows a cross-sectional view of the ECS current density distributions for three patients 

overlaid on non-linearly registered post-grid CT images. The current density weighted 

correspondence indices for all three patients are shown in Tables 6.1 to 6.3. The maximum 

possible gmean values, with which gmean(%) values in Tables 6.1 to 6.3 were computed, are 

approximately the same for all three patients (0.78, 0.80 and 0.80, respectively) so it is reasonable 

to use either gmean or gmean(%) when comparing ECS-fMRI correspondence across these 

patients. Fig. 6.17 shows the picture and responsive naming fMRI activation maps, and electrode 

grids, overlaid on the anatomical MR datasets for all three patients. In Table 6.1, the gmean and 

sensitivity values (0.26 and 0.07, respectively) for the picture naming paradigm for patient 1 are 

the largest among all other datasets. Fig. 6.17(a) (patient 1 - picture naming) shows that a dense 

cluster of fMRI activation occurs in the proximity of at least two ON electrodes while Fig. 

6.17(b) (patient 1 - responsive naming) has a smaller fMRI cluster in close proximity to one ON 

electrode. Thus, recalling the results of the simulation test cases in Fig. 6.7 and Fig. 6.8 where the 

activation cluster in the latter was increased in size and covered more of the high energy regions 

of the current density distribution, it is expected that the sensitivity and gmean values for Fig. 

6.17(a) would be higher than those for Fig. 6.17(b). In Fig. 6.17(c) (patient 2 - picture naming) 

and Fig. 6.17(d) (patient 2 - responsive naming), hardly any fMRI activation was detected in the 

vicinity of ON electrodes. Also, Figs. 6.17(c) and 6.17(d) have five more ON electrode pairs than 

Figs. 6.17(a) and 6.17(b), i.e., the former would require more activated voxels than the latter to 

achieve the same sensitivity score. It is thus expected that the sensitivity and gmean values for 

patient 2 (Table 6.2) would be very much smaller than those for patient 1 (Table 6.1). For patient 

3, Fig. 6.17(e) (picture naming) shows hardly any activation near ON electrodes and thus the 

associated gmean value in Table 6.3 is small. Fig. 6.17(f) (patient 3-responsive naming) shows a 

fMRI cluster just under the top rightmost ON electrode, which, as expected, yielded a higher 

gmean value in Table 6.3 than for the fMRI map in Fig. 6.17(e).  

 

 
 
 
 
 
 
 
 



 105

Table 6.1: Current density weighted ECS-fMRI correspondence indices for picture naming, 
responsive naming and combined (OR operation) picture-responsive naming fMRI 
maps for patient 1. Approximate value of maximum possible gmean is 0.78. 

fMRI 

Task 
TP TN FP FN accuracy sensitivity specificity gmean 

gmean 

(%) 

picture 

naming 
0.41 14.95 0.27 5.56 0.73 0.07 0.98 0.26 33.33 

responsive 

naming 
0.07 15.18 0.04 5.89 0.72 0.01 1.00 0.11 14.10 

combined  0.47 14.91 0.31 5.49 0.73 0.08 0.98 0.28 35.90 

 

Table 6.2: Current density weighted ECS-fMRI correspondence indices for picture naming, 
responsive naming and combined (OR operation) picture-responsive naming fMRI 
maps for patient 2. Approximate value of maximum possible gmean is 0.80. 

fMRI 

Task 
TP TN FP FN accuracy sensitivity specificity gmean 

gmean 

(%) 

picture 

naming 
0 14.28 0 7.64 0.65 0 1.00 0.01 1.25 

responsive 

naming 
0.01 14.28 0.01 7.64 0.65 0 1.00 0.03 3.75 

combined  0.01 14.28 0.01 7.64 0.65 0 1.00 0.03 3.75 

 

Table 6.3: Current density weighted ECS-fMRI correspondence indices for picture naming, 
responsive naming and combined (OR operation) picture-responsive naming fMRI 
maps for patient 3. Approximate value of maximum possible gmean value is 0.80. 

fMRI 

Task 
TP TN FP FN accuracy sensitivity specificity gmean 

gmean 

(%) 

picture 

naming 
0.01 29.52 0.51 3.02 0.89 0 0.98 0.05 6.25 

responsive 

naming 
0.10 29.96 0.07 2.93 0.91 0.03 1.00 0.18 22.50 

combined  0.10 29.46 0.58 2.92 0.89 0.03 0.98 0.18 22.50 

 

 The preceding comparisons of correspondence indices for fMRI maps from separate 

picture and responsive naming paradigms showed that the indices behaved in a manner consistent 

with notions of what constitutes good and bad ECS-fMRI correspondence. As shown in the use of 
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identical ECS ON electrode configurations for different fMRI paradigms in each patient in Fig. 

6.17, the clinical ECS language maps show a combination of tasks, i.e., mapping of language tags 

using both picture and naming tasks. In these cases, it would be more accurate to first combine 

the picture naming and responsive naming fMRI maps using a logical OR operation, and then 

compute correspondence indices of the resultant combined fMRI map. This is computed for all 

three patients in the third rows of Tables 6.1 to 6.3. However, since our purpose was to 

demonstrate the application of the current density weighted indices on real data, and to compare 

different fMRI maps for the same patient and between different patients, it was more informative 

to analyze the correspondence indices for the separate fMRI maps (first and second rows of 

Tables 6.1 to 6.3) with the pictures in Fig. 6.17. 

 The class imbalance problem, discussed in the Methods section, is reflected in the 

relatively constant accuracy index values for each patient in Tables 6.1 to 6.3. For example, even 

though Fig. 6.17(a) exhibits better ECS-fMRI correspondence (qualitatively) than Fig. 6.17(b), 

the accuracy values are approximately the same in Table 6.3. This is because each patient’s ECS 

map had many OFF electrode pairs that gave rise to larger numbers of true negatives compared to 

true positives, especially when only a few fMRI activation voxels are detected. Thus, the 

numerator of the accuracy measure in Eqn. 5 is dominated by TN, as observed in the large TN 

values in Tables 6.1 to 6.3, which makes the accuracy index relatively insensitive to small 

changes in TP. This makes the accuracy index less reliable for intra-patient ECS-fMRI 

correspondence comparisons with different fMRI activation maps. 

 The purpose of computing the proposed correspondence indices for three human datasets 

is to illustrate that the method can be applied to real data. It is not our intention, at this time, to 

make any statistical conclusions about ECS-fMRI validation based on the limited patient data 

available in this report. A more comprehensive statistical analysis of the current density weighted 

indices with multiple patients and different fMRI data correction/ processing methods is planned 

for future work. 
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Figure 6.16: Coronal view of human CT datasets with overlaid current density maps (red 

indicates higher values) for (a) patient 1, (b) patient 2, and (c) patient 3. Each 
image shows the cross-sectional view of the current density distribution around 
one stimulated electrode (of a pair of them). The second electrodes of the 
stimulated pairs lie in different coronal slice planes and thus are not visible in 
these images. To calculate the current density weighted ECS-fMRI indices, the 3D 
current density distributions for each pair of stimulated ON and OFF electrodes 
were computed. 

 

 

 

(b)

(c) 

(a) 
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Figure 6.17: Composite 3D MR anatomical, CT electrode grid and fMRI activation datasets (red 

for positive fMRI activation) for (a) patient 1 picture naming task, (b) patient 1 
responsive naming task, (c) patient 2 picture naming task, (d) patient 2 responsive 
naming task, (e) patient 3 picture naming task, and (f) patient 3 responsive naming 
task. Solid shaded dark blue circular tags on electrode grid denote ON electrodes. 

 

 

(b)

(c) 

(a) 

(d)

(e) (f) 
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6.4 Discussion 

ECS, in itself, is a surface map of a limited area of the brain (under the electrode grid) and maps 

essential language regions while fMRI is a 3D functional map of the entire brain. Thus, it may not 

be accurate to compare an ECS surface map to 3D fMRI directly. The current density weighted 

method effectively extends the ECS surface map into a 3D map using electrostatic principles in 

electrical stimulation. It was shown with simulated data that the current density weighted 

sensitivity and gmean indices had higher values when fMRI activation voxels occur near ON 

electrodes, which is expected for good ECS-fMRI correspondence. Unlike the voxel-based fixed 

radii and Euclidean distance indices, the current density weighted indices were able to measure 

correspondence levels while taking into account contextual information such as the number of 

surrounding ON electrodes (Fig. 6.12(c)) as well as different electrode stimulus levels (Fig. 

6.11(c)). Also, unlike the voxel-based fixed radii method, the current density weighted indices 

can track incremental improvements in ECS-fMRI correspondence when fMRI activated voxels, 

which are already near ON electrodes, move even closer to these ON electrodes. All these 

advantages were achieved without direct computation of Euclidean distances while taking into 

account variations in electrode grid and brain tissue geometry in the computation of the current 

density maps. 

 Simulated data were used to characterize the correspondence indices because they consist 

of fixed ECS and fMRI maps. If a real patient-task ECS map was chosen and fMRI activation 

locations were artificially shifted, the behavior of the indices with respect to activation location 

may be unnecessarily difficult to interpret because of the additional complexity in the 3D 

electrode grid and brain geometries. The simulation results of the current density weighted 

indices depended primarily on the current density magnitudes at different voxel locations. Thus, 

if a patient’s current density map is computed accurately, the indices would exhibit similar 

characteristics as observed in the simulated data. 

 The proposed current density map indices can be used for intra-patient studies, and 

possibly for inter-patient comparisons as well, i.e., with gmean(%). In future work, the current 

density weighted correspondence indices will be used to evaluate fMRI correspondence in a study 

involving a larger number of patients. In addition to ECS-fMRI validation in general, an ECS-

fMRI correspondence index that incorporates contextual information provided by a given set of 

active/ inactive stimulated electrode pairs can be very useful when comparing data processing 

algorithms in fMRI, e.g., motion correction, activation detection. Functional MRI maps from 

different but relevant stimuli paradigms, or single paradigm fMRI datasets that are processed 
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differently, may be evaluated and compared for best ECS-fMRI correspondence. This can aid in 

the validation of fMRI data processing algorithms.  

 It is important to note that although fMRI and ECS are similar in function, they are not 

necessarily identical. This may explain why it is not likely that one would observe perfect ECS-

fMRI correspondence for human data. In our patient data, the highest (relative to three patient 

datasets) current density weighted gmean and gmean(%) values (Table 6.1) are 0.26 and 35.9%, 

respectively. These values are large compared to the other two patients (Tables 6.2 and 6.3), but 

small relative to the maximum values attainable, i.e., 1.00 and 100.0% for gmean and gmean(%), 

respectively. These relatively small values may have arisen from a combination of data 

processing errors, inconsistent patient response in fMRI tasks, and the inherent physiological 

differences in ECS and fMRI paradigms. The current density weighted indices may be used to 

investigate these individual issues in future work with more human data. 

 It should be noted that for true negative counts, the criteria with which OFF electrodes 

are defined may have an impact on computing the correspondence indices. In our simulations, the 

OFF electrodes were defined as stimulated electrodes that did not yield responses. Alternatively, 

OFF electrodes could be defined as stimulated electrodes that yielded non-function related 

responses [54]. For our validation purposes, the ECS stimulated electrode pairs that elicited motor 

or sensory responses have been classified as ON electrodes. Thus, verbalized language tasks, 

without further consideration of stimulus paradigm designs that activate only the language region, 

would show activations in motor, language or sensory areas. However, the definition of OFF 

electrodes does not affect the overall formulation of the current density weighted correspondence 

indices, which are of primary interest of this study. 

 The accuracy of numerically computed current density maps depends on the accuracy of 

electrodes and brain tissue geometries and the modeling of electrical conductivity within the 

brain. A more accurate way of modeling the complex brain geometry would be to use the finite 

element method (FEM) to compute the current density map, but at a much higher computational 

cost in terms of time and memory. Another approach to improving accuracy is to model the 

tensorial electrical conductivity of brain tissue using MR diffusion tensor imaging (DTI) data. 

6.5 Conclusions 

With simulated data, the current density weighted sensitivity, specificity and gmean indices were 

found to measure ECS-fMRI correspondence in a consistently predictable manner with expected 

notions of good and poor ECS-fMRI correspondence. These indices are more sensitive to 

incremental improvements in ECS-fMRI correspondence that were not detected by the voxel-
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based fixed radii method. In addition, the current density weighted indices were able to reflect 

certain contextual information provided by surrounding electrodes. While the correspondence 

results computed for three human datasets were not sufficient to make conclusions about ECS-

fMRI validation in general, they demonstrate the applicability of the current density 

correspondence method to analysis of human data. This work provides a systematic way to 

quantify 3D ECS-fMRI correspondence. 
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CHAPTER 7 

Summary and Future Work 
 

7.1 Summary 

We developed an affine phase correction technique that facilitated the use of a dual-echo bipolar 

readout gradient protocol for motion robust static field map estimation. The zeroth order phase 

error term was found to be constant for a given MR scanner. The first order phase term varies 

across scanners, but can be approximated empirically. We also developed a concurrent motion 

and B0 field inhomogeneity correction framework and evaluated it with simulated EPI time series 

data with known motion, geometric distortion and activation. Dynamic field maps were 

approximated by resampling a spatially transformed static field map. Empirical convergence of 

the algorithm was observed under the simulated conditions. However, the correction framework 

did not address field map changes due to large out-of-plane rotations. To address this challenge, 

we proposed a novel retrospective dynamic field map estimation technique by applying a 

quadratic penalized weighted least squares (QPWLS) approach to solve the inverse susceptibility 

voxel convolution problem. This is similar to regularized image restoration in image processing. 

In this work, our goal was to estimate a susceptibility map from a high resolution, noisy, 

susceptibility-induced field map. Rigid body motion was applied to the estimate and a new 

dynamic field map was computed using the forward susceptibility voxel convolution method. 

Compared with simpler image restoration algorithms such as thresholded inverse filtering and 

Wiener filtering, preliminary results with realistically simulated data suggest that the QPWLS 

method would yield the most accurate field map estimates, while requiring the least amount of 

object-specific prior information, e.g., object power spectra. In another separate project, we 

formulated a current density weighted approach to quantify the correspondence between subdural 

electrocortical stimulation (ECS) and fMRI maps for brain lesion presurgical planning. Detailed 

experiments were performed on simulated electrode grids and fMRI activation to characterize the
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behavior of the index before the technique was applied to three patient datasets. The proposed 

index may provide a more systematic and physiologically correct way to 

quantify ECS-fMRI correspondence, as opposed to the commonly used Euclidean distance based 

methods. 

7.2 Future Work 

The following are several suggestions for future work: 

• The SVC impulse response is similar to a finite difference operator in the z direction, i.e., it 

has a larger response to abrupt transitions of χ in the z direction than a constant χ. Thus, an 

edge preserving regularization function, e.g., Huber function, may be used in Chapter 5. This 

scheme favors smoothly varying susceptibility map estimates within soft tissue, air and bone 

regions while allowing for abrupt changes in χ at tissue interfaces. 

• A potential limitation of the proposed method in Chapter 5 may arise because Δωsys was 

ignored in Eq. (5.11). Methods to reliably measure this non-χ induced field inhomogeneity 

may be developed to facilitate the use of the proposed technique. 

• The segmentation-SVC approach for dynamic field map estimation, as described in Chapter 

5, should be implemented and its performance compared with the proposed QPWLS method. 

• Upon validation, the proposed technique in Chapter 5 may replace the field map update stage 

in the CFMMSV framework of Chapter 4. The performance of the improved CFMMSV 

algorithm can then be evaluated with data of an MR phantom in motion. 

• Having characterized the ECS-fMRI correspondence indices in Chapter 6 with simulated 

datasets, and having demonstrated clinical feasibility by applying them to three patient 

datasets, the indices should now be computed for a larger number of patients to assess clinical 

ECS-fMRI correspondence. 
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