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IV. Relative Néron-Severi group of a sequence of blowups . . . . . . . . . . . . 28

V. Relative real Nakai’s criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Relative amplitude for Q-divisors . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Relative amplitude for R-divisors . . . . . . . . . . . . . . . . . . . . . . . . 45

VI. Relative Campana-Peternell theorem . . . . . . . . . . . . . . . . . . . . . . . 57

VII. Non-polyhedral relative nef cone for a sequence of blowups . . . . . . . . . 61

7.1 Main theorem: construction and notation . . . . . . . . . . . . . . . . . . . . 61
7.2 Q-twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Proof of Proposition VII.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Proof of main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

iv



LIST OF FIGURES

Figure

1.1 Blowup of the two curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Section of the relative nef cone Nef(Y/A4) . . . . . . . . . . . . . . . . . . . . . . . 6

5.1 Section of Nef(X/Y ) for p1, p2, p3 collinear . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Section of Nef(X/Y ) for p1, p2, p3 non-collinear . . . . . . . . . . . . . . . . . . . . 56

7.1 Blowup of the curves C1 and C2 on E0 . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Section of Nef(Y/A4) and the 5 conditions . . . . . . . . . . . . . . . . . . . . . . . 82

v



CHAPTER I

Introduction

The main goal of this thesis is to study the geometric structure of relative ample

cones for a projective morphism. On the one hand, we work out in detail some

foundational results about relative cones that are difficult to find in the literature.

We also give some new results and examples.

The seminal paper of Kleiman [9] introduced a systematic way of dealing with

invertible sheaves numerically, providing an elegant framing for analyzing their prop-

erties by using the language of cones. The duality between curves and divisors given

by the intersection pairing has been deeply explored by consideration of several dif-

ferent cones. This approach has proved to be essential for the development of modern

algebraic geometry, specially through the work started by Mori on the Cone Theo-

rem [13] that paved the way for the Minimal Model Program. While there has been

much emphasis on cones of curves, in this thesis we take a preferential view from the

perspective of cones of divisors.

After a brief summary of intersection theory on curves against divisors on pro-

jective schemes (Chapter II), we review in detail its counterpart relative to proper

maps between quasi-projective schemes (Chapter III).

In order to present what consists new material in the subsequent chapters, we
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now state theorems that gather the main results from each one, using notation that

with will later be introduced in detail.

The first theorem concerns the Néron-Severi group relative to a sequence of

blowups with smooth centers. Let Y be a smooth variety of dimension m ≥ 2.

Let π : X = Xn
πn−→ Xn−1

πn−1
−→ . . .

π2−→ X1
π1−→ X0 = Y be a sequence of blowups

of smooth irreducible subvarieties of codimension ≥ 2. Let E1, . . . , En be the strict

transforms on X of the exceptional locus of each map π1, . . . , πn respectively.

Theorem A (Chapter IV). There are rational curves C1, . . . , Cn in X being mapped

to points in Y such that:

1. The n × n matrix A = ((Ci · Ej)ij) has determinant (−1)n and its inverse

A−1 = (dij) has non-positive integer coefficients;

2. The numerical classes ([E1], . . . , [En]) form a basis of N1(X/Y )Z with dual ba-

sis (d1j[C1] + . . . + dnj[Cn])1≤j≤n of N1(X/Y )Z with respect to the intersection

pairing.

The motivation for Theorem A was an observation in an article by Lipman and

Watanabe [12] that states this result in the case Y is a surface.

The second theorem is the generalization of three possible ways of characterizing

ampleness in the case of R-divisors in the relative setting. Let f : X −→ S be

a projective morphism of quasi-projective schemes. Let NE(X/S) be the closed

relative cone of curves.

Theorem B (Chapter V). An R-divisor D ∈ Div(X)R is f -ample if and only if any

of the following conditions hold:

1. (Fibre-wise amplitude) Ds is ample for all s ∈ S;
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2. (Nakai’s criterion) (Ddim V ·V ) > 0 for every irreducible variety V ⊆ X mapped

to a point;

3. (Kleiman’s criterion) (D · C) > 0 for all C ∈ NE(X/S)\{0}.

The corresponding statement for Z or Q-divisors is very standard. While this exten-

sion for R-divisors was probably understood as a “folk theorem”, it does not seem

to have been worked out in detail in the literature.

The third theorem is another extension to the relative setting of a known result

but requiring a different approach than the previous. It is a theorem by Campana-

Peternell [1] stating that the boundary of the nef cone of a projective scheme is

locally cut out by polynomials in a dense open subset. We show that the same

happens when considering the boundary BX/S of the relative nef cone Nef(X/S).

Theorem C (Chapter VI). There is a dense open set U ⊆ BX/S with the following

property:

For all D ∈ U , there is a proper irreducible variety V ⊆ X mapping to a point in

S and an open neighborhood W of D in N1(X/S)R such that

W ∩ BX/S = W ∩NV ,

where NV denotes the null locus defined by V .

The fourth theorem shows that the relative nef cone can be non-polyhedral.

Theorem D (Chapter VII). There exists a morphism f : X −→ A4, obtained as

sequence of blowups of smooth centers, such that Nef(X/A4) is non-polyhedral.

The example we found is constructed by relating the geometry of the relative nef

cone with that of the nef cone of a surface. The construction is as follows.
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We start by blowing-up a point in A4 obtaining an exceptional divisor E0 isomor-

phic to P3 in that first step. We then consider a smooth surface S ⊆ E0 together with

two irreducible smooth curves C1, C2 ⊆ S meeting transversally which are also ample

divisors on S. In practice, the surface S we will have in mind is a particular K3

surface with round ample cone. The second step is to blowup the curve C1 followed

by the blowup of the strict transform of C2. Figure 1.1 describes what happens on

E0 at this stage.

S ⊆ E0

C1

C2

S′ ⊆ E′

0

C ′

1

C ′

2

E1 ∩ E′

0

S′ ⊆ E′

0

C ′

1

C ′

2

E′

1
∩ E′

0

E2 ∩ E′

0

Figure 1.1: Blowup of the two curves

Using the notation introduced in Chapter VII, let e1 = dd1 − δ1 and e2 = dd2 −

δ2−δ. Assuming that e1, e2 ≤ 0 we show that a numerical class D = H−xE1−yE2 ∈
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N1(Y/A4)R is nef if and only if,

δ1x + δy ≤ d1, 0 ≤ y ≤ x, δx + δ2y ≤ d2

and

π∗D|S = h − xC1 − yC2 ∈ Nef(S).

For the purpose of finding such a morphism where the relative nef cone fails to be

polyhedral we use a quartic surface S ⊆ P3 analyzed by Cutkosky in [2]. The surface

S is a K3 surface whose Picard group is isomorphic to Z3 with intersection form,

q = 4a2 − 4b2 − 4c2.

It has a circular nef cone given by,

Nef(S) = {(a, b, c) ∈ R3 | q(a, b, c) ≥ 0, a ≥ 0}.

It turns out that one can choose curves C1 and C2 representatives of the numerical

classes (5, 1, 0) and (2, 0, 1), satisfying the assumptions of Theorem D. In this specific

case, the section of the relative nef cone we obtain, is defined by the conditions,

0 ≤ y ≤ x, 1 − 5x − 2y ≥
√

x2 + y2

and its shape is described in Figure 1.2.

This is the example given in the proof of Theorem VII.1, yielding the promised

case of a non-polyhedral relative nef cone for a sequence of blowups.
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Nef(Y/A4)

Figure 1.2: Section of the relative nef cone Nef(Y/A4)



CHAPTER II

Intersection theory on projective schemes

We will work over the field of complex numbers C.

In this chapter we will recall and develop the basic facts we need from intersection

theory on projective schemes.

Let f : X −→ Y be a morphism of schemes where X is quasi-projective. Through-

out this work, f ∗D will denote the divisor class associated to the pullback f ∗OY (D) ∈

Pic(X) (see Lemma III.1 for a proof that such a divisor class actually exists). In

particular, if X is a subscheme of Y we will use the notation D|X referring to the

divisor class defined by OX(D).

Throughout this chapter we let X be a projective scheme of dimension n. We

denote by Div(X) the group of Cartier divisors on X.

2.1 Intersection numbers

Definition II.1. Let D1, . . . , Dn be Cartier divisors on X. The intersection number

(D1 · . . . · Dn)

is the coefficient of m1 · · ·mn in the polynomial

χ(X,m1D1 + · · · + mnDn)

where χ denotes the Euler characteristic.

7



8

We list the main properties of this intersection number in the next proposition.

For proofs we refer to [3] and [9].

Proposition II.2. Intersection numbers on X have the following properties:

a) The map defined by

(D1, . . . , Dn) −→ (D1 · . . . · Dn)

is multilinear, symmetric and takes integer values;

b) (D1 · . . . · Dn) only depends on the linear equivalence class of each divisor Di.

c) If D1, . . . , Dn are effective and meet transversally at a finite number of smooth

points, then (D1 · . . . · Dn) is the cardinality of D1 ∩ . . . ∩ Dn;

d) (Projection formula) Let π : Y −→ X be a generically finite surjective morphism

of projective varieties. Then,

(π∗D1 · . . . · π
∗Dn) = deg(π) · (D1 · . . . · Dn).

e) Given a closed subscheme V ⊆ X of dimension k, we denote

(D1 · . . . · Dk · V ) = (D1|V · . . . · Dk|V ).

If Dn is an integral effective divisor with associated subscheme V ⊆ X, then

(D1 · . . . · Dn) = (D1 · . . . · Dn−1 · V );

2.2 Numerical properties

Intersection theory leads to a natural equivalence relation on the group of Cartier

divisors Div(X).
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Definition II.3. Two Cartier divisors D1, D2 ∈ Div(X) are numerically equivalent,

and we write

D1 ≡num D2

if, (D1 ·C) = (D2 ·C) for every integral curve C ⊆ X. The Néron-Severi group of X

is the group

N1(X) = Div(X)/ ≡num

of numerical equivalence classes of X.

We now list some relevant facts related to numerical equivalence.

a) The Néron-Severi group N1(X) is a free abelian group of finite rank. Its rank

is called the Picard number of X, denoted by ρ(X);

b) Intersection numbers factor through numerical equivalence in the sense that if

we have Cartier divisors D1, D
′
1, . . . , Dn, D′

n ∈ Div(X) such that each Di ≡num D′
i,

then

(D1 · . . . · Dn) = (D′
1 · . . . · D

′
n);

c) If f : X −→ Y is a map of projective schemes there is an induced functorial

group homomorphism

f ∗ : N1(Y ) −→ N1(X).

A numerical property of a divisor is a property that holds for any divisor within

a numerical class. It is particularly remarkable the existence of such properties with

a pure geometric meaning.

As a first example we have ampleness.

Definition II.4. A divisor D is ample if some positive multiple mD defines an

embedding f : X −→ Pn such that f ∗OPN (1) ∼= OX(mD).

The numerical nature of ampleness results from Nakai’s criterion.
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Theorem II.5 (Nakai’s criterion). A divisor D is ample if and only if (Ddim(V ) ·V ) >

0 for any irreducible proper subvariety V ⊆ X.

A second example is bigness.

Definition II.6. A divisor D is big if there is a positive number C > 0 so that

h0(mD) ≥ C · mn for all m ≫ 0.

Its numerical nature comes from the following theorem.

Theorem II.7. The following conditions are equivalent:

i) D is big;

ii) There is an ample divisor A and an effective divisor N such that mD is linearly

equivalent to A + N for some positive integer m;

iii) There is an ample divisor A and an effective divisor N such that mD is

numerically equivalent to A + N for some positive integer m.

As an example of a numerical property by definition we have nefness.

Definition II.8. A Cartier divisor D ∈ Div(X) is nef if and only if (D · C) ≥ 0 for

all proper irreducible curves C ⊆ X.

It turns out to be rather useful to work with divisors having coefficients in a field.

We set,

Div(X)Q := Div(X) ⊗ Q

Div(X)R := Div(X) ⊗ R.

Elements in Div(X)Q are called Q-divisors and elements in Div(X)R are R-divisors.

We write them as formal linear combinations

D =
∑

riDi
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where the Di are Cartier divisors in X and the ri are either rational numbers if D is

a Q-divisor or real numbers if D is an R-divisor. There is an inclusion Div(X)Q ⊆

Div(X)R and there are maps Div(X) −→ Div(X)Q, Div(X) −→ Div(X)R whose

kernels are the torsion divisors.

In order to extend intersection theory to these divisors it is convenient to work

with a suitable more general notion of curve.

Definition II.9. Let Z1(X) be the free abelian group generated by the integral

proper curves of X. The elements of Z1(X) are called 1-cycles and we write them as

a finite formal sum

C =
∑

aiCi

where the Ci are integral proper curves of X and the ai are integers. Allowing the ai

to be rational (real) numbers we define the group of rational (real) 1-cycles Z1(X)Q

(Z1(X)R). There is an inclusion Z1(X) ⊆ Z1(X)Q ⊆ Z1(X)R.

In this thesis we will be particularly interested in working with real coefficients

and that is where we will focus our attention.

We extend the definition of intersection numbers to divisors and 1-cycles with real

coefficients by linearity. More specifically, given a divisor D =
∑

riDi and a 1-cycle

C =
∑

ajCj, the intersection number (D · C) is the real number,

∑

riaj(Di · Cj).

Definition II.10. Two 1-cycles C1, C2 are numerically equivalent, and we write,

C1 ≡num C2

if, (D · C1) = (D · C2) for any Cartier divisor D ∈ Div(X). We define the quotient
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groups of numerical equivalence classes,

N1(X) := Z1(X)/ ≡num

N1(X)Q := Z1(X)Q/ ≡num

N1(X)R := Z1(X)R/ ≡num

The definition of numerical equivalence for R-divisors is the same as for Cartier

divisors. The real Néron-Severi group of X is

N1(X)R := Div(X)R/ ≡num .

One observes that intersection numbers define a bilinear pairing

N1(X) × N1(X) −→ Z

and consequently N1(X) and N1(X) are free abelian groups of rank ρ(X). On the

other hand, there is an isomorphism

N1(X)R
∼= N1(X) ⊗ R

so N1(X)R is a finite-dimensional real vector space of dimension ρ(X). The inter-

section paring N1(X)R × N1(X)R −→ R is in fact a perfect pairing.

We understand by cone, a subset of a finite-dimensional vector space closed for

multiplication by positive scalars. In N1(X)R we define the following cones:

Amp(X) := convex cone spanned by ample Cartier divisors

Big(X) := convex cone spanned by big Cartier divisors

Nef(X) := convex cone spanned by nef Cartier divisors

Eff(X) := closure of the convex cone spanned by effective Cartier divisors
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Theorem II.11 (Kleiman). [11, Theorem 1.4.9] If D is a nef R-divisor on X, then

(Ddim V · V ) ≥ 0 for every irreducible variety V ⊆ X.

Theorem II.12. On a projective scheme X we have the following equalities,

Amp(X) = int(Nef(X))

Big(X) = int(Eff(X)).

In N1(X)R we define the cone of curves NE(X) spanned by the effective 1-cycles.

Its closure NE(X) is the closed cone of curves.

Campana and Peternell studied in [1] geometric properties of the nef cone and

found two interesting results. One is a generalized Nakai’s theorem for R-divisors.

Theorem II.13 (Nakai’s for R-divisors). If D is an R-divisor on X, then D is ample

if and only if (Ddim V · V ) > 0 for every irreducible variety V ⊆ X.

For a simplified proof of this theorem we refer to [11, Theorem 2.3.18]. The other

result is related to the structure of the nef cone and states that the nef boundary is

locally cut out by polynomials in a dense open subset.

Theorem II.14 (Campana-Peternell). Let βX = Nef(X)\Amp(X) be the nef bound-

ary. There is an open dense subset U ⊆ βX with the following property. For all

δ ∈ U , there is a proper irreducible variety V ⊆ X mapping to a point in S and an

open neighborhood W of δ in N1(X)R such that,

W ∩ βX = W ∩ {δ ∈ N1(X)R | (δdim V · V ) = 0}.



CHAPTER III

The relative setting

3.1 Relative intersection theory

Now, assume X,S are quasi-projective schemes and let

f : X −→ S

be a projective morphism and let n be the dimension of X.

Intersection theory does not apply directly on X because it is not complete. How-

ever one can do intersection theory on X against projective subvarieties of X, in

particular subvarieties mapping to a point. We will now explain this in more detail.

The main references for this chapter are [8], [7] and [10].

To begin with, it will be convenient to notice that on X the canonical map from

Cartier divisors to the Picard group is surjective.

Lemma III.1. The map Div(X) −→ Pic(X)

D 7→ OX(D)

is surjective.

Proof. Let OX(1) be an ample invertible sheaf on the quasi-projective scheme X.

Given a line bundle L on X, there is an integer m ≫ 0 such that, L ⊗ OX(m) and

OX(m) are globally generated. Choosing regular global sections of these invertible

sheaves and taking their zero loci, allows us to consider effective divisors D1, D2 ∈

14
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Div(X) for which, OX(D1) = L⊗OX(m) and OX(D2) = OX(m). As such, OX(D1−

D2) = L, showing that the map Div(X) −→ Pic(X) is indeed surjective.

Definition III.2. For a projective subvariety V ⊆ X of dimension k, and Cartier

divisors D1, . . . , Dk ∈ Div(X), we set

(D1 · . . . · Dk · V ) = (D1|V · . . . · Dk|V ).

We may also use the notation (D1 · . . . · Dk)V .

Remark III.3. Note that the restriction of each divisor Di to V is only defined if the

support of Di does not contain V . However, from Lemma III.1, Di|V may represent

a linear equivalence divisor class corresponding to the line bundle OV (Di) and this

is the notation we will use. So, one can just think that each Di|V is represented by

some divisor D′
i ∈ Div(V ) and

(D1 · . . . · Dk · V ) = (D′
1 · . . . · D

′
k).

Alternatively, we could replace each Di with some linear equivalence class D′′
i whose

support does not contain V , so that the restriction D′′
i |V might refer to an actual

divisor on V and then

(D1 · . . . · Dk · V ) = (D′′
1 |V · . . . · D′′

k |V ).

Recall that the projectivity hypothesis implies that all fibres of f over points of

S are projective and therefore we can, in particular, intersect Cartier divisors on X

with any subvariety contained in a fibre.

Example III.4. Let C ⊆ X be a proper integral curve mapping to a point in S and

let D be a divisor in Div(X). The intersection number (D · C) is just the degree of

OC(D).
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Example III.5. Let π : X = Bl{0}A2 −→ A2 be the blowup of the origin of the

affine plane. In this situation each Cartier divisor D ∈ Div(X) is represented by a

linear combination,

D = aE +
∑

aiCi

where a and the ai are integers, E is the exceptional divisor for π and each Ci is

the strict transform of an irreducible plane curve by π. Here, E ≃ P1 is a projective

subvariety of X. Even though X is not projective we still may intersect the divisor

D against E. The intersection number (E ·E) is by definition the degree of the line

bundle OE(E). So we have,

(E · E) = degOE(E)

= degE NE/X

= degOE(−1)

= −1.

On the other hand, for each Ci, the intersection number (E ·Ci) = degOE(Ci) is the

number of intersection points of Ci with E counted with multiplicities. By linearity,

we obtain,

(E · D) = −a +
∑

ai(D · Ci).

Example III.6. Let π : X = Bl{0}An+1 −→ An+1 be the blowup of the origin

of the n-dimensional affine space. We denote by E ≃ Pn the exceptional divisor.

Any Cartier divisor D ∈ Div(X) gives rise to a line bundle OE(D) which must be

linearly equivalent to OE(m) for some integer m. As a result, given D1, . . . , Dn ∈

Div(X) such that each OE(Di) is linearly equivalent to OE(mi) (mi ∈ Z), we get the

intersection number

(D1 · . . . · Dn · E) = m1 · . . . · mn.
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Intersection number on fibres lead to an equivalence relation of divisors that can

be set up with respect to a proper morphism between quasi-projective varieties.

Definition III.7. Two Cartier divisors D1, D2 ∈ Div(X) are relatively numerically

equivalent over S, and we write

D1 ≡S D2

if, (D1 · C) = (D2 · C) for every proper integral curve C mapping to a point. We

denote by

N1(X/S) = Div(X)/ ≡S

the resulting abelian group of relative numerical equivalence classes of divisors. By

construction, N1(X/S) is free abelian and finitely generated as we will show in

Theorem III.20. Its rank, denoted by ρ(X/S), is the relative Picard number.

Remark III.8. We also define the analogous equivalence relation in the Picard group

Pic(X). Given L1, L2 ∈ Pic(X), L1 ≡S L2 if (L1 ·C) = (L2 ·C) for every proper inte-

gral curve C mapping to a point. It follows from Definition III.2 that the intersection

number of divisors against proper subvarieties is independent of the linear equivalence

class of each divisor. In particular, from Lemma III.1, N1(X/S) ≃ Pic(X)/ ≡S.

One other point to make here is that intersection numbers factor through relative

numerical equivalence. More specifically, for any projective subvariety V ⊆ X of

dimension k mapped to a point, we have the following result.

Lemma III.9. If D ∈ Div(X) and D ≡S 0, then D|V ≡num 0. In particular,

restriction of divisors induces a map θ|V : N1(X/S) −→ N1(V ).

Proof. If D ≡S 0 then for any proper curve C contained in V we have,

(D|V · C) = (D · C) = 0
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and as a result D|V is numerically trivial.

As a consequence of this lemma, given δ1, . . . , δk ∈ N1(X/S) we denote,

(δ1 · . . . · δk · V ) = (δ1|V · . . . · δk|V ).

We proceed showing examples of relative numerical equivalence groups.

Example III.10. If X is projective and S is a closed point then N1(X/S) = N1(X).

Example III.11. If f : X = Bl{0}An+1 −→ An+1 = S is the blowup of the origin

on the n-dimensional affine space then we can define an isomorphism

i : N1(X/S) −→ N1(E) = N1(Pn)

δ 7→ δ|E

.

For showing that i is injective, let δ ∈ N1(X/S) be a numerical class such that

i(δ) = 0. Then δ|E ≡num 0 and for any proper integral curve C ⊆ E, we have

(δ · C) = (δ|E · C) = 0.

Therefore, δ = 0 because all curves contained in fibres are those contained in E and

this shows i is injective. Since E|E is the divisor class associated to OE(−1) and its

numerical class is a generator of N1(E), the map i is also surjective.

Example III.12. Generalizing a little further the previous example, we consider

the blowup of a finite set of points P = {p1, . . . , pm} in An+1. Then, for f : X =

BlP An+1 −→ An+1 = S we conclude likewise that N1(X/S) ≃ N1(E1) × . . . ×

N1(Em) ≃ Zm where each Ei is the exceptional fibre over the point pi.

In the case of birational maps we now show that the number of components of

the exceptional locus is an upper bound for the rank ρ(X/S) of N1(X/S). We start

with an auxiliary lemma.
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Lemma III.13. If D is a divisor in Div(S), then the pullback f ∗D is relatively

numerically trivial.

Proof. For any proper irreducible curve C contained in a fibre, one can find a divisor

D′ in Div(S) linearly equivalent to D such that the point f(C) is not in the support

of D′. Therefore,

(f ∗D · C) = (f ∗D′ · C) = 0

and this shows that f ∗D ≡S 0.

Proposition III.14. If π : X −→ S is a birational map and S is smooth, then

N1(X/S) is generated by numerical classes of divisors whose support is contained in

the exceptional locus Exc(π).

Proof. Let D be an irreducible effective divisor in Div(X). It will be enough to show

that D is relatively numerically equivalent to a divisor whose support is contained

in the exceptional locus of π. We suppose D is not contained in Exc(π), otherwise

the result would follow immediately. Then, π(D) is a divisor in S and we denote its

pullback π∗(π(D)) by D′. The divisor D′ is linearly equivalent to D − E for some

divisor E supported in Exc(π). By Lemma III.13, D′ ≡S 0 because D′ is the pullback

of a divisor in Div(S). So, D ≡S E as we wanted.

Corollary III.15. If π : X −→ S is a birational map to a smooth variety S and its

exceptional locus can be expressed as a union Exc(π) = E1 ∪ . . . ∪ En of irreducible

codimension 1 subvarieties Ei ⊆ X, then the relative Picard number ρ(X/S) is at

most n.

Proof. From Proposition III.14, the numerical classes [E1], . . . , [En] are generators of

N1(X/S).
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Example III.16. Let Y be a smooth variety of dimension m ≥ 2. Let π : X =

Xn
πn−→ Xn−1

πn−1
−→ . . .

π2−→ X1
π1−→ X0 = Y be a sequence of blowups of smooth

subvarieties of codimension ≥ 2. Let E1, . . . , En be the strict transforms on X of the

exceptional locus of each map π1, . . . , πn respectively. Then, the exceptional locus

Exc(π) = E1 ∪ . . . ∪ En

is a union of the codimension 1 subvarieties Ei ⊆ X. Hence, ρ(X/S) ≤ n. In Chapter

IV, we will see that actually there is an equality ρ(X/S) = n.

Example III.17. We will now see a case of a sequence of blowups where the re-

striction map θ|V : N1(X/S) −→ N1(V ) referred in Lemma III.9 is not surjec-

tive. In fact, in this example there is a strict inequality ρ(X/S) < ρ(V ). Let

π : X
π2−→ Bl{0}A3 π1−→ A3 = S be the composition of maps π1 ◦ π2 where π1

is the blowup of the origin in A3 and π2 is the blowup of a smooth irreducible

curve C ⊆ Bl{0}A3 intersecting the exceptional locus Exc(π) transversally at 2 dis-

tinct points. Let V be the strict transform of Exc(π) by π2. By Example III.16,

ρ(X/S) ≤ 2. On the other hand, V is isomorphic to the projective plane P2

blownup at 2 distinct points, whose Néron-Severi group is isomorphic to Z3. As

such ρ(X/S) < 3 = ρ(V ) and θ|V is not surjective.

The next result illustrates how to obtain functorial homomorphisms between rel-

ative Néron-Severi groups.

Proposition III.18. Let X,X ′, S, S ′ be quasi-projective schemes. Consider the fol-

lowing commutative diagram

X ′ α //

f ′

��

X

f

��
S ′

β
// S
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where f and f ′ are proper morphisms. Then there is an induced functorial group

homomorphism (α/β)∗ : N1(X/S) −→ N1(X ′/S ′). Moreover (α/β)∗ is injective if

for every proper integral curve C ⊆ X mapping to a point by f , there is a proper

integral curve C ′ ⊆ X ′ mapping to a point by f ′ such that α(C ′) = C.

Proof. Let D ∈ Div(X) such that D ≡S 0. Given a proper integral curve C ′ ⊆ X ′

mapped to a point by f ′, from the projection formula, we have

(α∗D · C ′) = deg(α|C′)(D · α(C ′)) = 0

Therefore, α∗D ≡S′ 0 which shows that (α/β)∗ is well-defined.

For the injectivity statement, let D ∈ Div(X) such that α∗D ≡S′ 0. Given a

proper integral curve C ⊆ X mapping to a point by f , let C ′ ⊆ X ′ be a proper

integral curve mapping to a point by f ′ such that α(C ′) = C. Once again by the

projection formula, we have

0 = (α∗D · C ′) = (D · C)

which establishes the result.

3.2 Theorem of the base

We state a generalized version of the Hodge Index theorem that will be a key

ingredient for showing the main theorem in this section. Its proof will appear after-

wards.

Proposition III.19. Let A be an ample divisor on a smooth projective variety V of

dimension n ≥ 2. Let D and B be two divisors on V such that

(B2 · An−2) > 0, (D · B · An−2) = 0, (D2 · An−2) ≥ 0.

Then D ≡num 0. In particular, if (D ·An−1) = 0 and (D2 ·An−2) ≥ 0 then D ≡num 0.
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We follow with the fundamental result that shows how properness for mappings

allows an important common feature shared between absolute and relative Néron-

Severi groups.

Theorem III.20 (Theorem of the base). N1(X/S) is a free abelian group of

finite rank.

Proof. [8, Proposition IV.4.3] We will use induction on dimS.

If dim S = −1 then S is the empty set and the result is trivial. Suppose now that

dim S = n ≥ 0 and that the theorem holds whenever dimS < n.

We will do a series of reductions in several steps.

Step 1. We may assume that X and S are integral schemes.

In fact, let Xi be the irreducible components of X with their induced reduced

structures. Let Si be the scheme-theoretic image of Xi by f . Since Xi is reduced,

this means that Si is just the reduced induced structure on the closure of the image

f(Xi). The Si are irreducible because the Xi also are. This way we get induced

projective maps fi : Xi −→ Si of integral schemes.

It follows from Proposition III.18 that N1(X/S) injects into N1(
⊔

Xi/Si) =

⊕

N1(Xi/Si).

Step 2. We may assume X is smooth.

Take a resolution of singularities µ : X ′ −→ X where X ′ is smooth and µ is

a projective birational morphism. We obtain an injection N1(X/S) →֒ N1(X ′/S)

using again Proposition III.18.

Step 3. We may assume f : X −→ S has connected fibres.
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Using a Stein factorization as shown in the diagram

X

f

��

f ′

// S ′

g
~~}}

}}
}}

}}

S

where f ′ is projective with connected fibres and g is finite, we get N1(X/S) →֒

N1(X/S′).

Step 4. We may assume that f : X −→ S is smooth and that all fibres are

irreducible of the same dimension.

Since f : X −→ S is a morphism of integral schemes over C and X is smooth,

by generic smoothness there is a nonempty open set U ⊆ S such that f |f−1(U) is

smooth.

Let S ′ = S \ U and V ′ = f−1(S ′). Then,

N1(X/S) →֒ N1(f−1(U)/U ⊔ V ′/S ′) = N1(f−1(U)/U) ⊕ N1(V ′/S ′).

Since dim S ′ < dim S, by the induction hypothesis N1(V ′/S ′) is free abelian of finite

rank. As a result, we only need to prove the theorem for f |f−1(U). Moreover, from

the fact that f has connected fibres we conclude that all fibres are irreducible and

have the same dimension applying [15, Corollary I.§8.1].

Step 5. We are assuming that X is a smooth variety, S is an integral scheme and

f : X −→ S is a smooth projective morphism with irreducible fibres of the same

dimension. Under these hypothesis, we can now show that the relative Néron-Severi

group N1(X/S) is a subgroup of N1(Xs) for any s ∈ S, where Xs = f−1(s) is the

fibre over the point s.

Set Ds = D|Xs
for any D ∈ Div(X) and any s ∈ S. Let n be the dimension of

each fibre. Let D be a divisor on X and suppose that Ds0 ≡num 0 for some s0 ∈ S.

We claim that D ≡S 0.
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Since f is flat, the Euler characteristic χ(Fs) is independent of s ∈ S. As such, for

any Cartier divisors D1, . . . , Dr ∈ Div(X), the intersection number (D1 · . . . ·Dr ·Xs)

is also independent of s.

If n = 0, then D ≡S 0 by definition. If n = 1, then (D ·Xs) = 0 for all s ∈ S and

consequently D ≡S 0.

If n = 2, by the projectivity of f we can consider a divisor A ∈ Div(X) whose

divisor class As is ample for all s ∈ S. By virtue of the independency of intersection

numbers along fibres and Ds0 being numerically trivial, we have

(D · An−1 · Xs) = (D2 · An−2 · Xs) = 0 for all s ∈ S,

which means that

(Ds · A
n−1
s ) = (D2

s · A
n−2
s ) = 0 for all s ∈ S.

With this equality, we want to apply Proposition III.19 to each divisor class Ds. We

can actually do it because for any s ∈ S, As is ample and Xs is a smooth projective

variety, as a consequence of f being a smooth and projective map. We conclude that

Ds ≡num 0 for all s ∈ S and therefore D ≡S 0 as required.

The theorem is proved since N1(Xs) is a free abelian group.

We now turn to the proof of Proposition III.19 for which we will need some

auxiliary results.

Theorem III.21 (Hodge Index Theorem). [See [5], Theorem V.1.9] Let H be

an ample divisor on a smooth surface X. Suppose that D is a divisor such that

(D · H) = 0 and (D2) ≥ 0. Then D ≡num 0.

Corollary III.22. Suppose B and D are divisors on a smooth surface X such that,

(B2) > 0, (B · D) = 0, (D2) ≥ 0.
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Then D ≡num 0.

Proof. Let H be an ample divisor on X. By Hodge Index, (B · H) 6= 0 otherwise B

would have to be numerically trivial. So, let r be a real number such that,

((D + rB) · H) = 0.

Note that ((D+rB)2) = (D2)+r2.(B2) ≥ 0 and therefore D+rB ≡num 0, by Hodge

Index once again. But,

0 = (B · (D + rB)) = r.(B2)

implies r = 0, meaning that D ≡num 0.

Lemma III.23. Let f : X −→ S be a projective morphism of quasi-projective

schemes and let C ⊆ S be a proper integral curve. Then, there is a proper inte-

gral curve C ′ ⊆ X such that f(C ′) = C.

Proof. We can replace S by C and X by f−1(C). We can also assume X is a projective

variety. Indeed, X is projective by the projectivity of C and the morphism f . We may

assume X is integral replacing it by the reduced scheme of an irreducible component

surjecting onto C.

We now use induction on n = dim(X).

If n = 1 we can just take C ′ = X.

For n > 1, let W ⊆ X be a codimension 1 subscheme defined by a very ample

divisor H ∈ Div(X). Assuming f(W ) 6= C, let p ∈ C be a point not contained in

f(W ) and let F = f−1(p) be the fibre over p. Then W ∩ F is empty and as a result

H|F ≡num 0. Hence, H|F is not an ample divisor class, contradicting the fact that

H is ample. So f(C) = W and the result follows by the induction hypothesis taking

an irreducible component of W surjecting onto C.
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Proof of Proposition III.19. We start by fixing an integral proper curve C in V and

we want to show that under the stated assumptions, (D · C) = 0.

Let π : V ′ −→ V be the blowing-up of V along C with exceptional locus E ⊆ V ′.

Let m be a positive integer such that H = mπ∗A−E is a very ample divisor on V ′.

Since V ′ is a projective variety over an algebraically closed field of characteristic 0,

by Bertini’s Theorem [6, Corollary 6.11], we can find a proper subvariety W ′ ⊆ V ′ of

dimension 2 which is a complete intersection of n − 2 linear sections defined by H.

By construction, the variety W ′ is the strict transform under π of a 2-dimensional

subscheme W ⊆ V , which is a complete intersection of n− 2 effective divisors of the

linear system |mA − C|. As such, the curve C is contained in W .

Moreover, W is in fact a projective variety. It is projective because V is projective.

It is irreducible for being topologically the image under π of W ′. Also, W is a

Cohen-Macaulay scheme as it is a complete intersection on a smooth variety. In

order to show that W is reduced, we use the fact that any Cohen-Macaulay scheme

whose singular locus has codimension ≥ 1 is reduced [4, Theorem 18.15]. But this is

certainly the case, by virtue of W being birational to the variety W ′.

Hence, replacing A by mA and consequently An−2 by W , our assumptions become,

(B2 · W ) > 0, (B · D · W ) = 0, (D2 · W ) ≥ 0.

Since C ⊆ W , we have

(D · C) = (D|C)C

= (D|W |C)C

= (D|W · C)W

and therefore we are left with having to prove that (D|W · C)W = 0.
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Let µ : W ′ −→ W be a resolution of singularities. By projection formula, we get

that

(µ∗B|W )2 > 0, (µ∗D|W · µ∗B|W ) = 0, (µ∗D|W )2 ≥ 0.

From Corollary III.22, we obtain µ∗D|W ≡num 0. We may assume the map µ is

projective because W is projective, and therefore use Lemma III.23. So, let C ′ be an

integral proper curve in µ−1(C) that maps onto C. Then, µ|C′ : C ′ −→ C is a finite

morphism of degree d > 0. Using the projection formula and the fact that µ∗D|W is

numerically trivial, one obtains

d.(D|W · C)W = (µ∗D|W · C ′)W ′ = 0.

Thus, (D|W · C)W = 0 as we wanted.



CHAPTER IV

Relative Néron-Severi group of a sequence of blowups

Let π : X −→ Y be a sequence of blowups with smooth centers starting from

a smooth variety Y . In this chapter we present a result showing the intersection

pairing

N1(X/Y ) × N1(X/Y ) −→ Z

defines a duality of Z-modules. This will allow to prove that the numerical classes

of the strict transforms of the blownup smooth centers form a basis for N1(X/Y ).

Additionally, we will provide an explicit method for obtaining a dual basis formed

by anti-effective 1-cycles.

Because we deal in smooth varieties in this chapter, all Cartier divisors will be

seen as Weil divisors and represented by formal linear combinations of codimension

1 subvarieties.

We start with a lemma that will introduce the generic setting we will work with.

Lemma IV.1. Let Y be a smooth variety of dimension m ≥ 2. Let

π : X = Xn
πn−→ . . .

π2−→ X1
π1−→ X0 = Y

be a sequence of blowups of smooth subvarieties Vi ⊆ Xi of codimension ≥ 2. For

each k ≥ i ≥ 1, let E
(k)
i ⊆ Xk be the strict transform on Xk of the exceptional divisor

of Xi
πi−→ Xi−1. There exist rational curves C

(k)
i ⊆ E

(k)
i such that:

28
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a) πi(C
(i)
i ) is a point;

b) C
(k)
i is the strict transform of C

(i)
i under the composition map of blowups

Xk −→ Xi;

c) C
(k)
i 6⊆ E

(k)
j , for any j 6= i.

Proof. We claim we only need to find a point pi ∈ E
(i)
i that is not contained in any

divisor

E
(i)
j , j < i

nor in the image of the exceptional locus

fi(Exc(fi)),

where fi : X −→ Xi is the composite map of blowups.

Suppose pi is such a point. Since πi(pi) ∈ Vi−1, the fibre π−1
i (πi(pi)) is isomorphic

to a projective space Pri−1, where ri is the codimension of Vi−1 in Xi−1. We define

the curve

C
(i)
i ⊆ π−1

i (πi(pi)) ⊆ E
(i)
i

to be a line passing through the point pi and let

C
(k)
i ⊆ E

(k)
i , k > i

be the strict transform of C
(i)
i on Xk. The fact that these strict transforms are well

defined is a direct consequence of assuming the point pi ∈ C
(i)
i is not in fi(Exc(fi)).

Conditions a) and b) are automatically satisfied by definition. Condition c), for

j < i, follows from E
(i)
j not containg pi and, for j > i, comes from fi(Exc(fi)) not

containing pi. This proves the claim.

We are left with having to show the existence of such a point pi ∈ E
(i)
i . We do
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this establishing that the closed set

((∪j<iE
(i)
j ) ∪ fi(Exc(fi))) ∩ E

(i)
i

is a codimension ≥ 1 algebraic subset of E
(i)
i .

For j < i, each E
(i)
j is the strict transform of the divisor E

(i−1)
j , hence

E
(i)
j ∩ E

(i)
i

has codimension ≥ 1 in E
(i)
i and so does (∪j<iE

(i)
j ) ∩ E

(i)
i .

On the other hand,

fi(Exc(fi)) = fi(∪j>iE
(n)
j )

= ∪j>ifi(E
(n)
j ).

Since, for j > i, each set fi(E
(n)
j ) factors through the codimension ≥ 2 variety Vj−1

in Xj−1, then fi(E
(n)
j ) has codimension ≥ 2 in Xi implying that (∪j>ifi(E

(n)
j ))∩E

(i)
i

is codimension ≥ 1 in E
(i)
i .

This way we conclude that

((∪j<iE
(i)
j ) ∪ fi(Exc(fi))) ∩ E

(i)
i

is a codimension ≥ 1 algebraic subset of E
(i)
i , as we wanted.

All results in this chapter assume the setting of Lemma IV.1 together with its

notation. We shall omit superscripts whenever implicit from context.

Proposition IV.2. The n × n matrix A = ((Ei · Cj)ij) has determinant (−1)n.

Proof. We use induction on the number of blowups n.

If n = 1, we have OE1(−E1) = OE1(1) and this implies that degOC1(−E1) = 1

because C1 is a line in a fibre. So, (E1 · C1) = −1 and the result follows.
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For n > 1, denote E ′
i = E

(n−1)
i and C ′

i = C
(n−1)
i for each 1 ≤ i < n. Set the

(n − 1) × (n − 1) matrix

A′ = ((E ′
i · C

′
j)i,j<n).

By construction and from the induction hypothesis we have det(A′) = (−1)n−1. We

claim that for all 1 ≤ i, j < n,

(Ei · Cj) = (E ′
i · C

′
j) − (Ei · Cn)(En · Cj).

For that purpose, it is convenient to notice the intersection number (En · Cn) is

−1, as in the case n = 1. This is so because Cn is a line in a fibre and therefore

OEn
(−En) = OEn

(1) implies degCn
O(−En) = 1. On the other hand, there is an

integer a such that,

π∗
nE

′
i = Ei + aEn.

Since πn(Cn) is a point, by projection formula,

(π∗E ′
i · Cn) = 0.

But,

(π∗
nE

′
i · Cn) = ((Ei + aEn) · Cn)

= (Ei · Cn) + a(En · Cn)

= (Ei · Cn) − a

yielding

a = (Ei · Cn)

and in particular,

π∗
nE

′
i = Ei + (Ei · Cn)En.
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Moreover, πn(Cj) = C ′
j and using projection formula once again, we get

(E ′
i · C

′
j) = (π∗

nE
′
i · Cj)

= (Ei · Cj) + (Ei · Cn)(En · Cj),

showing

(Ei · Cj) = (E ′
i · C

′
j) − (Ei · Cn)(En · Cj)

as we claimed.

This equation allows a simple description of how to obtain A from A′. We set the

column vector

s =

(

(E1 · Cn) · · · (En−1 · Cn)

)T

and the row vector

b =

(

(En · C1) · · · (En · Cn−1)

)

whose product is the (n − 1) × (n − 1) matrix

sb =

(

(Ei · Cn)(En · Cj)

)

i,j<n

.

With this notation the matrices A and A′ are related by the following formula,

A =







A′ − sb s

b −1






.

In order to compute det(A) we point out that all rows of the n × n matrix







sb −s

0 0






=







s

0







(

b −1

)

are multiples of the row vector
(

b −1

)

.
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As a consequence, the determinant

det(A) =

∣

∣

∣

∣

∣

∣

∣

A′ − sb s

b −1

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣







A′ − sb s

b −1






+







sb −s

0 0







∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

A′ 0

b −1

∣

∣

∣

∣

∣

∣

∣

= − det(A′)

= −(−1)n−1

= (−1)n

as required.

Analyzing further the nature of the matrix ((Ei · Cj)ij), we are able to conclude

that the numerical classes [E1], . . . , [En] form a basis for N1(X/Y ), by finding a dual

basis with respect to the intersection pairing, consisting of linear combinations of the

numerical classes [C1], . . . , [Cn] ∈ N1(X/Y ) with non-positive integer coefficients.

Proposition IV.3. The n×n matrix A = ((Ei ·Cj)ij) is invertible and A−1 = (dij)

has non-positive integer coefficients. For all 1 ≤ i, j ≤ n,

(Ei · (d1jC1 + . . . + dnjCn)) = δij.

Proof. From Proposition IV.2, the matrix A has determinant (−1)n, hence A is

invertible and A−1 has integer coefficients.

We use induction on the order of the square matrix A to show that A−1 has

non-positive integer coefficients.

If n = 1 the result follows from the fact that A = (−1) = A−1.

For n > 1, we use the same construction and notation of Proposition IV.2. Start-
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ing with the formula

A =







A′ − sb s

b −1







we are able to find the inverse matrix A−1 explicitly.

Using row equivalence and noticing A′ is invertible by induction hypothesis, we

obtain

(

A Idn+1

)

⇔







Idn s

0 1















A′ − sb s

b −1

Idn+1









⇔







A′−1 0

0 −1















A′ 0

b −1

Idn s

0 1









⇔







Idn 0

b 1















Idn 0

−b 1

A′−1 A′−1s

0 −1









⇔









Idn+1

A′−1 A′−1s

bA′−1 bA′−1s − 1









.

As a result,

A−1 =







A′−1 A′−1s

bA′−1 bA′−1s − 1






.

By construction, Cj is irreducible and is not contained in Ei whenever i 6= j.

This means (Ei · Cj) counts intersection multiplicities for i 6= j, and consequently,

vectors b and s both have non-negative entries. By induction hypothesis A′−1 has

non-positive entries and we conclude that A−1 has non-positive entries.
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Let A = (aij) and A−1 = (dij). Then for all 1 ≤ i, j ≤ n,

δij ⇔ ai1d1j + . . . + aindnj

⇔ (Ei · C1)d1j + . . . + (Ei · Cn)dnj

⇔ (Ei · (d1jC1 + . . . + dnjCn))

as wanted.

Corollary IV.4. The numerical classes ([E1], . . . , [En]) form a basis of N1(X/Y )

with dual basis (d1j[C1] + . . . + dnj[Cn])1≤j≤n of N1(X/Y ) with respect to the inter-

section pairing.

Proof. By Corollary III.15, [E1], . . . , [En] generate N1(X/Y ). They are linearly in-

dependent because if
∑

ai[Ei] = 0

then, by Proposition IV.3,

0 = ((
∑

aiEi) · (d1iC1 + . . . + dniCn)) = ai

for all 1 ≤ i ≤ n. So, ([E1], . . . , [En]) is a basis of N1(X/Y ).

Besides, the intersection pairing implies that N1(X/Y ) is isomorphic to a subgroup

of Hom(N1(X/Y ), Z). By Proposition IV.3, (d1j[C1] + . . . + dnj[Cn])1≤j≤n defines a

dual basis of ([E1], . . . , [En]) showing that the intersection pairing actually defines

an isomorphism

N1(X/Y ) ∼= Hom(N1(X/Y ), Z).

Corollary IV.5. When Y is a 2-dimensional variety, the intersection pairing matrix

A = ((Ei · Ej)ij) has determinant (−1)n. Its inverse matrix A−1 = (dij) has non-
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positive entries and

(d11[E1] + . . . + dn1[En], d12[E1] + . . . + dn2[En], . . . , d1n[E1] + . . . + dnn[En])

forms a dual basis to ([E1], . . . , [En]).

Proof. Since each Ei is an integral curve, the only integral curve it contains is Ei itself,

meaning that Ci = Ei. As such, the result follows immediately from Proposition IV.2

and Corollary IV.4.

Example IV.6. Let π : X = X3
π3−→ X2

π2−→ X1
π1−→ X0 = Y be a sequence of

blowups where Y = A2 is the affine plane. We describe the maps involved:

– π1 is the blowup of the origin;

– π2 is the blowup of a point in E1;

– π3 is the blowup of the intersection point E1 ∩ E2.

We exhibit the intersection matrix A = ((Ei ·Ej)ij) and its inverse A−1 after each

blowup.

n 1 2 3

A

(

−1

)







−2 1

1 −1





















−3 0 1

0 −2 1

1 1 −1















A−1

(

−1

)







−1 −1

−1 −2





















−1 −1 −2

−1 −2 −3

−2 −3 −6















In this case the dual basis to ([E1], [E2], [E3]) with respect to the intersection

pairing is

(−[E1] − [E2] − 2[E3],−[E1] − 2[E2] − 3[E3],−2[E1] − 3[E2] − 6[E3]).
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Example IV.7. Let π : X = X3
π3−→ X2

π2−→ X1
π1−→ X0 = Y be a sequence of

blowups where Y = A3 is the affine space. We describe the maps involved:

– π1 is the blowup of the origin;

– π2 is the blowup of a smooth conic in E1
∼= P2;

– π3 is the blowup of the curve E1 ∩ E2.

We assume C2 does not meet C1 and C3 The matrices A = ((Ei ·Cj)ij) and A−1 we

obtain after each blowup, as long as we pick up rational curves according to Lemma

IV.1, are the following.

n 1 2 3

A

(

−1

)







−3 1

2 −1





















−5 0 1

0 −2 1

2 1 −1















A−1

(

−1

)







−1 −1

−2 −3





















−1 −1 −2

−2 −3 −5

−4 −5 −10















Notice that this time the matrices are no longer symmetric. The dual basis to

([E1], [E2], [E3]) with respect to the intersection pairing is

(−[C1] − 2[C2] − 4[C3],−[C1] − 3[C2] − 5[C3],−2[C1] − 5[C2] − 10[C3]).



CHAPTER V

Relative real Nakai’s criterion

The primary goal of this chapter is to extend Nakai’s criterion for R-divisors to

the relative setting. We present here a detailed discussion leading to the proof of that

result. We start by introducing the relative notion of amplitude for Q-divisors and

show its numerical nature. Then, we carefully do the same for R-divisors and enhance

the differences arising from this viewpoint. We also give examples illustrating how

to define relative ample cones using Nakai’s criterion for a mapping.

The results of this chapter are mostly based on the exposition in [11].

5.1 Relative amplitude for Q-divisors

Throughout this chapter we let f : X −→ S be a projective morphism of quasi-

projective schemes, unless otherwise stated.

Definition V.1. A line bundle L on X is f -very ample if the canonical map

f ∗f∗L −→ L

is surjective and defines an embedding X →֒ P(f∗L) of schemes over S. A line bundle

L on X is f -ample if mL is f -very ample for some positive integer m > 0. A Q-

divisor D ∈ Div(X)Q is f -ample (or f -very ample) if there is an integer n > 0 such

that the line bundle OX(nD) is f -ample (or f -very ample).

38
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Remark V.2. Note that f -amplitude is local on the base. Given a divisor D ∈

Div(X)Q, if there is a covering of S by affine open sets Ui such that D|f−1(Ui) is

f |f−1(Ui)-ample we can show that D is f -ample. By quasi-compactness of S we may

assume that the covering is finite. Taking positive integers ni for which each divisor

class niD|f−1(Ui) is f |f−1(Ui)-very ample and letting n to be a common multiple of

every ni, we conclude that nD is f -very ample.

We proceed with the cohomological characterization of f -amplitude.

Theorem V.3. The following conditions are equivalent:

a) D is f -ample;

b) For any coherent sheaf F on X and m ≫ 0, Rif∗(F(mD)) = 0 for all i > 0;

c) For any coherent sheaf F on X and m ≫ 0 the canonical map

f ∗f∗(F(mD)) −→ F(mD)

is surjective.

Proof. All these conditions are local on S and as a result we may assume that S is

an affine scheme. Taking this into account, in order to show a) ⇒ b) let n > 0 be an

integer such that nD is very ample. Let F be a coherent sheaf on X. Applying [5,

Proposition III.5.2(b)] to OX(nD) and the sheaves F ,F(D), . . . ,F((n − 1)D) one

obtains that Ri(X,F(mD) = 0 for all n ≫ 0. For the remaining we just observe that

b) ⇔ c) is the content of [5, Proposition III.5.3] and that c) ⇒ a) follows from the

proof of[5, Theorem II.7.6], applied in both cases to the invertible sheaf OX(D).

The following result shows that the notion of f -amplitude can be reduced to the

absolute setting in the case of Cartier Q-divisors.
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Theorem V.4 (Fibre-wise amplitude). [See [11], Theorem 1.2.17] Let D ∈ Div(X)Q

and for s ∈ S set Xs = f−1(s), Ds = D|Xs
. Then D is f -ample if and only if Ds is

ample on Xs for all s ∈ S.

In order to prove this theorem we will need the following proposition showing that

ampleness is an open property in families.

Proposition V.5. Let f : X −→ S be a proper morphism of schemes and D ∈

Div(X)Q. Let s ∈ S be a point. If Ds is ample in Xs then Ds′ is ample for all s′ in

a neighborhood U ⊆ S of s.

Proof. First we claim that for any coherent sheaf F on X, there is a neighborhood

U ′ of s where

Rif∗(F(mD)) = 0

for i > 0 and m ≫ 0.

We prove the claim by descending induction on i. The statement is true for large

i so assume that it holds for some i > 1 and all F . We want to show that it holds

also for i − 1.

Let u1, . . . , up be generators of the maximal ideal ms in an affine neighborhood

Spec(A) of s. This gives rise to a presentation

A⊕p α // A // A/ms
// 0

of A/ms, where α is defined by mapping each element (a1, . . . , ap) to Σaiui. Then

we get an exact diagram:

0 // Ker(f ∗α ⊗ 1) // Op
X ⊗F

f∗α⊗1
//

''OOOOOOOOOOO
F // OXs

⊗F // 0

Im(f ∗α ⊗ 1)

99sssssssssss

%%LLLLLLLLLLL

0

77nnnnnnnnnnnnn
0



41

By the inductive hypothesis, we can find a neighborhood U ′ of s where for m ≫ 0,

Rif∗(Ker(f ∗α ⊗ 1)(mD)) = 0.

This implies the surjectivity on U ′ of the map,

Ri−1f∗(O
p
X ⊗F(mD)) −→ Ri−1f∗(Im(f ∗α ⊗ 1)(mD)).

Moreover, since OXs
(mD) is ample, the higher direct images of OXs

⊗ F(mD) will

vanish for sufficiently large m. So, it is also surjective the map

Ri−1f∗(Im(f ∗α ⊗ 1)(mD)) // // Ri−1f∗(F(mD))

and therefore the composition

Ri−1f∗(O
p
X ⊗F(mD)) −→ Ri−1f∗(F(mD))

is surjective on U ′ for m ≫ 0.

From the projection formula,

Ri−1f∗(O
p
X ⊗F(mD)) ∼= Op

X ⊗ Ri−1f∗(F(mD))

and the surjective map

Op
X ⊗ Ri−1f∗(F(mD)) // // Ri−1f∗(F(mD))

is just α ⊗ 1 by construction. Hence,

Ri−1f∗(F(mD)) = msR
i−1f∗(F(mD))

and by Nakayama’s Lemma Ri−1f∗(F(mD)) = 0 on U ′ as wanted. This proves the

claim.

Applying this result to the ideal sheaf IXs/X we obtain a surjective map

f∗OX(mD) −→ f∗(OXs
(mD))
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on a neighborhood U ′ of s for m ≫ 0. We now form a commutative diagram,

f ∗f∗(OX(mD)) // //

ρX

��

f ∗f∗(OXs
(mD))

ρXs

��

OX(mD) // OXs
(mD)

where ρX and ρXs
are the canonical maps.

Since OXs
(mD) is ample, the map

f ∗f∗(OXs
(mD)) = H0(Xs,OX(mD)) ⊗OXs

ρXs // OXs
(mD)

is also surjective for sufficiently large m. Looking back at the diagram, it follows

that ρX is surjective on Xs and consequently surjective near Xs because Coker(ρX)

has closed support for being coherent. By virtue of f being a closed map, we can

take an open affine neighborhood U = SpecB ⊆ U ′ of s, such that ρX is surjective

on f−1(U). Picking a finite number of sections generating f∗(OX(mD)) and pulling

them back to X, we reach a surjective morphism of sheaves on f−1(U),

f ∗On+1
U

// // Of−1(U)(mD)

which defines a map

ϕ : f−1(U) −→ Pn(On+1
U ) = Pn × U

such that ϕ∗
Pn×U(1) = Of−1(U)(mD). The invertible sheaf Of−1(U)(mD)|Xs

is ample

and therefore ϕ|Xs
is finite. From upper semicontinuity of fibre dimension and the

properness of f we conclude that ϕ|Xs′
is finite for all s′ on a neighborhood of s.

We now turn to the proof of the theorem.

Proof of Theorem V.4. If D is f -ample then let s be a point in S. Let j : Xs →֒ X

be the inclusion mapping of the fibre over s in X. For any coherent sheaf F on Xs
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and any integers i,m > 0 we have that,

H i(Xs,F ⊗ j∗OX(mD)) = H i(X, j∗(F ⊗ j∗OX(mD))) because j is finite

= H i(X, j∗F ⊗OX(mD)) by projection formula.

For m ≫ 0, Rif∗(j∗F ⊗ OX(mD)) = 0 thanks to the f -ampleness of D and this

implies that,

H i(X, j∗F ⊗OX(mD)) = H i(S, f∗(j∗(F) ⊗OX(mD)))

= H i(S, (f |Xs
)∗(F ⊗ j∗OX(mD))).

Since (f |Xs
)∗(F ⊗ j∗OX(mD)) is supported at a point, we obtain

H i(Xs,F ⊗ j∗OX(mD)) = 0

which shows that Ds is ample.

For the converse, suppose that Ds is ample for all s ∈ S. From the fact that

f -amplitude is a local condition on S, we just need to show that for each s ∈

S has a neighborhood U ⊆ S such that D|f−1(U) is f |f−1(U)-ample. The proof of

Proposition V.5 shows we can find for each s ∈ S a neighborhood U ⊆ S such that

f |U factors though Pn × U as shown in the diagram

f−1(U)
ϕ

//

f |
f−1(U)

%%LLLLLLLLLLL
Pn × U

πU

��
U

where ϕ is a finite map, πU is the projection on U and Of−1(U)(mD) = ϕ∗OPn×U(1).

Since we only need to prove that mD is f |f−1(U)-ample we can replace D by mD and

assume Of−1(U)(D) = ϕ∗OPn×U(1).
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Let F be a coherent sheaf on f−1(U). For all integers i, r > 0 we have

Ri(f |f−1(U))∗(F(rD)) = H i(f−1(U),F(rD))∼ because U is affine

= H i(Pn × U,ϕ∗F(rD))∼ because ϕ is finite

= H i(Pn × U,ϕ∗(F) ⊗OPn×U(1))∼ by projection formula

= Ri(πU)∗(ϕ∗(F) ⊗OPn×U(1)).

From the πU -amplitude of OPn×U(1) we get that for r ≫ 0, Rif∗(F(rD)) = 0, and

therefore D|f−1(U) is f |f−1(U)-ample as required.

As a corollary, one obtains a relative version of the classical Nakai-Moishezon

Criterion.

Corollary V.6 (Nakai-Moishezon criterion for a mapping). A divisor D ∈ Div(X)Q

is f -ample if and only if Ddim V .V > 0 for every irreducible subvariety V ⊆ X of

positive dimension that maps to a closed point in S.

Proof. This follows directly form Theorem V.4 combined with Theorem II.13.

Corollary V.7. f -ampleness is a numerical property of Q-divisors.

Example V.8. Let Y be a smooth surface and let

π : X = Xn
πn−→ . . .

π2−→ X1
π1−→ X0 = Y

be a sequence of blowups of points pi ∈ Xi. Let

Exc(π) = E1 ∪ . . . ∪ En

where each Ei is the strict transform in X of the exceptional divisor of Xi
πi−→ Xi−1.

Then, by Corollary IV.5, the intersection matrix A = ((Ei · Ej)ij) is invertible and

letting A−1 = (dij), the divisor classes

ξj = d1j[E1] + . . . + dnj[En], 1 ≤ j ≤ n
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form a dual basis to ([E1], . . . , [En]). Therefore, by Corollary V.6, a divisor D ∈

Div(X)Q is π-ample if and only if its relative numerical equivalence class is a linear

combination
∑

aiξi

for some rational coefficients ai ≥ 0.

5.2 Relative amplitude for R-divisors

We recall that an R-divisor is an element in Div(X)R = Div(X)⊗ R written as a

finite sum
∑

riDi

where each ri is a real number and each Di is a Cartier divisor in Div(X). A divisor

is effective if it can be written as a sum where each ri is positive and each Di is

effective.

One can easily extend intersection theory for R-divisors just by setting

(
∑

riDi · C) =
∑

ri(Di · C)

for any given proper integral curve C ⊆ X mapping to a point in S.

Definition V.9. The group of numerically trivial R-divisors over S, denoted by

Num(X/S)R, is formed by the R-divisors D such that

(D · C) = 0

for any proper integral curve C ⊆ X mapping to a point in S. We define the relative

Néron-Severi group of R-divisors over S as being the quotient

N1(X/S)R := Div(X)R/Num(X/S)R.
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We start by giving a useful characterization of Num(X/S)R.

Lemma V.10. A numerically trivial R-divisor over S is an R-linear combination

of numerically trivial integral divisors over S, meaning that,

Num(X/S)R = Num(X/S) ⊗ R.

Proof. Let D0 = ΣriDi ∈ Div(X)R be a numerically trivial R-divisor over S. Let

V =< Di >Div(X)R

be the finite dimensional real vector subspace of Div(X)R generated by the Di. Then

V ′ = V ∩ Num(X/S)R

is also a finite dimensional vector space which contains D0. As such, we can find a

finite number of integral proper curves C1, . . . , Cn ⊆ X mapped to points so that,

V ′ = {D ∈ V |(D · Ci) = 0 for all 1 ≤ i ≤ n}.

Consider now the exact sequence of abelian groups

0 // Kerα // < Di >
α // Zn

where < Di > is the subgroup of Div(X) generated by the Di and α is the homomor-

phism defined by mapping each D ∈< Di > to ((D ·C1), . . . , (D ·Cn)). By tensoring

with R, one gets an exact sequence

0 // Kerα ⊗ R // V
α⊗1

// Rn

because R is a flat Z-module. But the homomorphism α⊗1 is defined by intersection

with the curves C1, . . . , Cn and as a result,

V ′ = Ker(α ⊗ 1) = Kerα ⊗ R,
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by construction. Since D0 ∈ V ′ and Kerα ⊆ Num(X/S), we conclude that D0 can

be written as an R-linear combination of numerically trivial integral divisors over S,

as required.

Corollary V.11. There is an isomorphism of finite-dimensional real vector spaces,

N1(X/S)R
∼= N1(X/S) ⊗ R.

Proof. Tensoring the short exact sequence

0 −→ Num(X/S) −→ Div(X) −→ N1(X/S) −→ 0

with R yields another short exact sequence

0 −→ Num(X/S) ⊗ R −→ Div(X)R −→ N1(X/S) ⊗ R −→ 0

due to R being a flat Z-module. Therefore,

N1(X/S) ⊗ R ∼= Div(X)R/Num(X/S) ⊗ R

∼= Div(X)R/Num(X/S)R by Lemma V.10

= N1(X/S)R.

Both vector spaces are finite-dimensional because N1(X/S) is finitely generated

by Theorem III.20.

Definition V.12. A divisor in Div(X)R is f -ample if it can be written as a finite

sum
∑

riDi

where each ri is a positive real number and each Di is an f -ample integral Cartier

divisor.

Proposition V.13. f -ampleness is a numerical property of R-divisors.
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Proof. Let A be an f -ample divisor in Div(X)R and B a divisor in Num(X/S)R. We

want to show that A + B is f -ample. We can assume that A = rD for some positive

real number r and integral Cartier divisor in Div(X) because f -ampleness is stable

under addition. Let r1, r2 ∈ Q+ such that r1 < r−1 < r2. Then there is a t ∈ (0, 1)

such that r−1 = tr1 + (1 − t)r2. Consequently,

A + B = rt(D + r1B) + r(1 − t)(D + r2B).

Since D + r1B and D + r2B are both f -ample, so is A + B.

The relative notion of nefness is the following.

Definition V.14. A divisor D ∈ Div(X)R is f -nef if (D · C) ≥ 0 for any integral

proper curve C mapped to a point. A numerical class in N1(X/S)R is f -nef if it is

represented by an f -nef divisor.

Theorem V.15 (Kleiman for a mapping). An R-divisor D on X is f -nef if and

only if (Ddim V · V ) ≥ 0 for every irreducible variety V ⊆ X mapped to a point.

Proof. This is a restatement of Theorem II.11 in the relative setting.

We are particularly interested in understanding the structure of the f -ample nu-

merical classes and their relation with the f -nef numerical classes inside the finite-

dimensional vector space N1(X/S)R. One easily observes that f -ampleness and

f -nefness are both stable under addition and positive scalar multiplication straight

from their definition. This motivates the use of the respective associated cones which

we denote by,

Amp(X/S) := convex cone of f -ample classes in N1(X/S)R

Nef(X/S) := convex cone of f -nef classes in N1(X/S)R.
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Proposition V.16. There are f -ample integral divisors A1, . . . , An ∈ Div(X) whose

classes form a finite basis for N1(X/S)R.

Proof. By Corollary V.11 we may pick a a basis for N1(X/S)R consisting of a finite

number of classes of integral divisors D1, . . . , Dn ∈ Div(X). Let A be an f -ample

integral divisor. We can find a sufficiently large integer m > 0 such that the divi-

sors mA + Di are f -ample and their numerical classes are linearly independent in

N1(X/S)R. Letting

Ai = mA + Di

for all i, we obtain a desired basis of f -ample integral divisors for N1(X/S)R.

The following lemma will be the key ingredient for showing that f -ampleness is

an open property in N1(X/S)R.

Lemma V.17. Let A ∈ Amp(X/S) and D ∈ DivR(X). Then, mA+D ∈ Amp(X/S)

for all real m ≫ 0.

Proof. If D = rD′ for some real number r ∈ R and integral divisor D′ ∈ Div(X), let

r1, r2 ∈ Q such that r1 < r < r2. We can pick q ∈ Q so that each Q-divisor qA+ riD

is f -ample. Therefore,

mA + riD = (m − q)A + (qA + riD)

is an f -ample R-divisor for all real m ≫ 0. Letting t ∈ (0, 1) such that r = tr1 +

(1 − t)r2 we obtain,

mA + D = t(mA + r1D) + (1 − t)(mA + r2D)

which shows mA + D is f -ample for all sufficiently large m.
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In the case of a general R-divisor D = r1D1 + . . . + rnDn with ri ∈ R and

Di ∈ Div(X), we have that the R-divisors

mn−1A + riDi

are simultaneously f -ample for all m ≫ 0. Hence,

mA + D = Σ(mn−1A + riD)

will also be f -ample.

Corollary V.18. The f -ample cone Amp(X/S) is an open subset of N1(X/S)R.

Proof. Let H ∈ Amp(X/S) be an f -ample R-divisor. Let A1, . . . An ∈ Amp(X/S) be

a finite set of divisors whose classes form a basis for N1(X/S)R. By Corollary V.17,

consider a sufficiently large m > 0 such that,

mH − A1 − . . . − An

is f -ample. Then, the R-divisor

H − m−1A1 − . . . − m−1An

is also f -ample. As such, for any real numbers r1, . . . rn ≥ −m−1, the R-divisor

H + r1A1 + . . . + rnAn

is f -ample, proving that all R-divisors are f -ample in a neighborhood of H.

We can now extend fibre-wise amplitude to R-divisors.

Lemma V.19. Let D ∈ Div(X)R and let s ∈ S be a point. If Ds is ample then there

is a neighborhood U of s such that D|f−1(U) is f |f−1(U)-ample.
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Proof. By Proposition V.16 we can write D =
∑

αiAi where each αi ∈ R and the

Ai are f -ample integral divisors. By Corollary V.18, let 0 < r ≪ 1 such that

(D −
∑

rAi)s is an ample Q-divisor class. From Proposition V.5, we can find a

neighborhood U of s where (D −
∑

rAi)|f−1(U) is f |f−1(U)-ample. Thus,

D|f−1(U) = (D −
∑

rAi)|f−1(U) +
∑

rAi|f−1(U)

is f |f−1(U)-ample.

Theorem V.20 (Fibre-wise amplitude for R-divisors). Let D ∈ Div(X)R. Then D

is f -ample if and only if Ds is ample for all s ∈ S.

Proof. We only need to show that if Ds is ample for all s ∈ S then D is f -ample.

Applying Lemma V.19, for each s ∈ S there is an open neighborhood Us of s such

that D|f−1(U) is f |f−1(U)-ample. By quasi-compactness we can find a finite sub-

cover {Us0 , . . . , Usm
} of S. Let A1, . . . , An be a basis of f -ample integral divisors for

N1(X/S)R. Corollary V.18 allows us to consider a real number 0 < r ≪ 1 such that

each (D −
∑

rAi) is a Q-divisor and (D −
∑

rAi)|f−1(U) is f |f−1(Usi
)-ample for all i.

Then, (D −
∑

rAi) is f -ample by Theorem V.4. So,

D = (D −
∑

rAi) +
∑

rAi

is f -ample.

Corollary V.21 (Relative Nakai’s criterion for R-divisors). If D is an R-divisor on

X, then D is f -ample if and only if (Ddim V · V ) > 0 for every irreducible variety

V ⊆ X mapped to a point.

Proof. This comes directly from Theorem V.20 together with Theorem II.13.

Lemma V.22. Let D be an f -nef R-divisor on X. Then, for any f -ample R-divisor

A on X, D + εA is f -ample for every ε > 0.
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Proof. By fibre-wise amplitude we only need to show (D+εA) is ample on each fibre

for any ε > 0. Since Ds is nef and As is ample, it follows from [11, Corollary 1.4.10]

that (D + εA) is ample as wanted.

Theorem V.23. The following equalities hold,

Amp(X/S) = int(Nef(X/S)), Nef(X/S) = Amp(X/S).

Proof. Let D be an R-divisor on X whose relative numerical class is in int(Nef(X/S)).

Then, let A be an f -ample R-divisor such that D − A is f -nef. By Lemma V.22,

D = (D − A) + A

is f -ample meaning that Amp(X/S) ⊇ int(Nef(X/S)). By virtue of the f -ample

cone being an open set contained in the f -nef cone it follows that Amp(X/S) =

int(Nef(X/S)).

On the other hand, let ξ ∈ Amp(X/S). Let (ξn) be a sequence of f -ample classes

converging to ξ. Then, for any curve C ⊆ X mapped to a point,

(ξn · C) > 0.

As intersection against C defines a linear functional on N1(X/S)R, which is in par-

ticular an R-valued continuous function, we obtain

(ξ · C ≥ 0).

Hence ξ is f -nef and we conclude that Nef(X/S) = Amp(X/S).

One can also consider cones inside N1(X/S)R. We define,

NE(X/S) := convex cone of effective classes in N1(X/S)R.
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We let the relative closed cone of curves be NE(X/S), the closure of NE(X/S)

in N1(X/S)R. We state an alternative characterization of f -ampleness in terms of

intersection against this cone.

Theorem V.24. (Kleiman’s criterion) If D is an R-divisor on X, then D is f -ample

if and only if (D · C) > 0 for all C ∈ NE(X/S)\{0}.

Theorem V.24 is a straight generalization of the result in the absolute case and

we omit its proof. For the proof in the absolute case we refer to [11, Theorem 1.4.29]

and [9, Proposition II.4.8].

In the following examples we describe several different relative nef cones of a

mapping. In all the analyzed cases these cones will be polyhedral although in general

this does not always happen as we will see in Chapter VII.

Example V.25. Going back to Example V.8 the cone Nef(X/Y ) is generated by

n extremal rays spanned by the ξi, while the n numerical classes [Ei] are distinct

extremal rays spanning NE(X/Y ) and defining the faces of the f -nef cone.

Example V.26. Let π : X = X2
π2−→ X1

π1−→ A3 = Y be a sequence of blowups

with the following description:

– π1 is the blowup of the origin;

– π2 is the blowup of 3 distinct non-collinear points p1, p2, p3 ∈ Exc(π1) ∼= P2.

The exceptional divisor

Exc(π) = E ∪ E1 ∪ E2 ∪ E3

has 4 components where E is the strict transform of Exc(π1) under π2 and each

Ei = π−1
2 (pi) for 1 ≤ i ≤ 3. Then N1(X/Y )R =< E,E1, E2, E3 >∼= R4. We want to

find the relative nef cone Nef(X/Y ).

Let H = −E − E1 − E2 − E3. We will use the notation,
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ei := divisor class of Ei

h := divisor class of H

L := strict transform of line in Exc(π1) not containing any pi

Lj := strict transform of line in Exc(π1) through pj not containing any pi (i 6= j)

Ljk := strict transform of line in Exc(π1) through pj and pk

Fj := E ∩ Ej.

We set the multiplication table,

(ei · L) = 0 (ei · Ljk) = δij + δik (ei · Fj) = −δij

(h · L) = 1 (h · Ljk) = 1 (h · Fj) = 0.

We claim Nef(X/Y ) is defined by 6 linear inequalities imposed by intersection

with the curves L12, L13, L23, F1, F2, F3.

In order to prove the claim, consider the hyperplane section of the relative nef

cone,

V = Nef(X/Y ) ∩ {ξ ∈ N1(X/Y ) | (ξ · L) = 1}.

So, we write a divisor class ξ ∈ V as ξ = h − ae1 − be2 − ce3 and obtain a system of

inequalities,

(ξ · F1) = a ≥ 0 (ξ · L12) = 1 − a − b ≥ 0

(ξ · F2) = b ≥ 0 (ξ · L13) = 1 − b − c ≥ 0

(ξ · F3) = c ≥ 0 (ξ · L23) = 1 − a − c ≥ 0

that define the polyhedron pictured in Figure 5.1.

It is now enough to show that the vertices of this polyhedron are π-nef. By Nakai’s

criterion, a divisor class is π-nef if the restrictions ξ|E and ξ|Ei
are nef. Since each

Ei
∼= P2, we have that ξ|Ei

is nef for all 1 ≤ i ≤ 3 if and only if (ξ · Fi) ≥ 0 for
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−e1

−e3

−e2

h

h − e1

h − e2

h − e3

h − 1

2
e1 −

1

2
e2 −

1

2
e3

b

b

b

b

b

Figure 5.1: Section of Nef(X/Y ) for p1, p2, p3 collinear

all 1 ≤ i ≤ 3. But this comes directly from the initial setup. On the other hand,

each vertex restricted to E is a positive multiple of a divisor class represented by an

irreducible curve. More specifically,

h|E = [L] (h − ei)|E = [Li] (h − 1
2
e1 −

1
2
e2 −

1
2
e3)|E = 1

2
[C],

where C is the strict transform of a conic in Exc(π1) through the points p1, p2, p3.

Thus, we only need to check that the self-intersection of these classes is non-negative.

Indeed,

([L])2 = 1 ([Li])
2 = 0 ([C])2 = 1,

showing Figure 5.1 is a hyperplane section of Nef(X/Y ). We also conclude that

Nef(X/Y ) has 5 extremal rays spanned by

h, h − e1, h − e2, h − e3, h −
1

2
e1 −

1

2
e2 −

1

2
e3

and NE(X/Y ) has 6 extremal rays spanned by the classes of

F1, F2, F3, L12, L13, L23.

Example V.27. Consider the same setting of Example V.26 assuming p1, p2, p3 are

collinear. We maintain the notation except for Ljk since a line through 2 points will
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contain the third. Instead, we denote

L123 := strict transform of line in Exc(π1) through p1, p2, p3.

We obtain a multiplication table

(ei · L) = 0 (ei · L123) = 1 (ei · Fj) = −δij

(h · L) = 1 (h · L123) = 1 (h · Fj) = 0.

This time, Nef(X/Y ) will be defined by the 4 inequalities imposed by F1, F2, F3, L123.

In fact, for ξ = h − ae1 − be2 − ce3, these curves yield a system of conditions

a, b, c ≥ 0

(ξ · L123) = 1 − a − b − c ≥ 0

describing the polyhedron in Figure 5.2.

−e1

−e3

−e2

h

h − e1

h − e2

h − e3

b

b

b

b

Figure 5.2: Section of Nef(X/Y ) for p1, p2, p3 non-collinear

The argument used in Example V.26 to show h and h − ei are nef classes works

here again exactly the same way. Hence, they span 4 extremal rays of Nef(X/Y ).

Moreover NE(X/Y ) has 4 extermal rays spanned by the classes of F1, F2, F3, L123.



CHAPTER VI

Relative Campana-Peternell theorem

In this chapter we will explore the geometrical properties of the boundary of the

relative nef cone with respect to a mapping. We start by introducing some notation.

We lef f : X −→ S be a projective morphism of quasi-projective schemes. Let

BX/S be the f -nef boundary Nef(X/S)\Amp(X/S). We denote by V the set of all

proper irreducible varieties on X mapping to a point in S. If V ∈ V then there is an

associated function

ϕV : N1(X/S)R −→ R

D 7−→ (Ddim V · V ).

We also define the null locus

NV := {D ∈ N1(X/S)R | ϕV (D) = 0}.

Remark VI.1. By considering a finite basis of integral divisors on N1(X/S)R, the

function ϕV is a homogeneous polynomial with rational coefficients on the respective

basis coordinates. In particular, the family of null loci (NV )V ∈V has at most countable

many distinct members.

With this in mind we can extend the Theorem II.14 of Campana-Peternell char-

acterizing the boundary of the nef cone, to the relative setting. This result will tell

57
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that the boundary of the f -nef cone is also locally cut out by polynomials in a dense

open substet.

Theorem VI.2. There is a dense open set U ⊆ BX/S with the following property.

For all ξ ∈ U , there is a proper irreducible variety V ⊆ X mapping to a point in S

and an open neighborhood W of ξ in N1(X/S)R such that, W ∩ BX/S = W ∩NV .

Proof: For each proper irreducible variety V ⊆ X mapped to a point, let BV =

BX/S∩NV and let OV be the interior of BV in BX/S. By the relative Nakai’s criterion,

(6.1) BX/S =
⋃

V ∈V

BV .

We claim that

U ′ =
⋃

V ∈V

OV

is dense in BX/S.

Suppose U ′ is not dense in BX/S. Then there is a point ξ ∈ BX/S with an open

neighborhood W such that its closure W in BX/S is compact and W ∩ OV = ∅ for

all V ∈ V. This implies that fixing some V ∈ V, the interior of W ∩ BV in W does

not intersect W and consequently is empty. Hence,

(W ∩ BV )V ∈V = (W ∩NV )V ∈V

is a family of closed subsets of W having empty interior with at most countable many

distinct members by Remark VI.1. By virtue of W being a complete topological

space, we can apply Baire’s theorem to conclude that the set

⋃

V ∈V

(W ∩ BV ) = W ∩ (
⋃

V ∈V

BV ) = W by (6.1)

has empty interior in W . This is absurd and the claim follows.
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It is clear that the set U ⊆ BX/S satisfying the conditions of the theorem is open.

We now prove that every point in U ′ is a limit of points in U . Due to U ′ being dense

in BX/S this will show that so is U as required.

For this purpose we first note that any point ξ ∈ OV such that

dϕV (ξ; H) > 0

for some V ∈ V and H ∈ Amp(X/S) must be in U . Indeed, this set up assures us

that near ξ, OV is a piece of a regular hypersurface in N1(X/S)R. On the other hand

BX/S is a topological manifold of codimension 1 in N1(X/S)R for being the boundary

of a convex open set. Since OV ⊆ BX/S and both are topological manifolds of the

same dimension near ξ, then there is an open neighborhood W of ξ in N1(X/S)R

such that W ∩ BX/S = W ∩NV . This means that ξ ∈ U as wanted.

The final step will be establishing that for a fixed point ξ ∈ U ′ we can find a

variety V ∈ V and an f -ample divisor H such that ξ is a limit of points ξ′ ∈ OV

satisfying

dϕV (ξ′; H) > 0.

To this end, consider a variety V of positive minimal dimension mapping to a point

s ∈ S such that ξ ∈ OV . Let H be an f -ample divisor whose restriction Hs to Xs is

an integral very ample divisor class. Then for any ξ′ ∈ OV ,

dϕV (ξ′; H) =
d

dt
|t=0[ϕV (ξ′ + tH)]

=
d

dt
|t=0[((ξ

′ + tH)dim V · V )]

=
d

dt
|t=0[(ξ

′ dim V · V ) + t dim V (ξ′ dim V −1 · H · V ) + t2(. . .)]

= dim V (ξ′ dim V −1 · H · V ).

When V is a curve, dϕV (ξ′; H) = (H · V ) is positive because H is f -ample. In

case dim V > 1, using Bertini’s Theorem, the divisor class Hs can be assumed to be
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represented by a section meeting V properly at an irreducible variety that we denote

by V ∩ H. By minimality of V , ξ is a limit of points ξ′ ∈ OV such that,

ϕV ∩H(ξ′) > 0

and therefore satisfying

dϕV (ξ′; H) = dim V ϕV ∩H(ξ′) > 0,

as required.



CHAPTER VII

Non-polyhedral relative nef cone for a sequence of blowups

Our primary goal in this chapter is finding examples of relative nef cones for a

sequence of blowups that fail to be polyhedral. Since there are plenty of well know

surfaces with non-polyhedral nef cones, we develop an approach based on making a

connection between relative nefness for a given morphism and nefness on a surface

contained in the exceptional locus of that morphism. This will allow us to prove the

existence of such non-polyhedral relative nef cones.

7.1 Main theorem: construction and notation

The statement of the main theorem is the following.

Theorem VII.1. There exists a morphism f : X −→ A4, obtained as sequence of

blowups of smooth centers, such that Nef(X/A4) is non-polyhedral.

For the purpose of proving Theorem VII.1, we now introduce the construction we

will use throughout this chapter together with its notation.

We define a sequence of blowups

π : X = X2
π2−→ X1

π1−→ X0
π0−→ A4

the following way. The map X0 −→ A4 is the blowup of the origin with exceptional

divisor E0
∼= P3. Then, let S be a smooth surface on E0. In practice, the surface
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S we will have in mind is a particular K3 surface with round ample cone. Let C1

and C2 be two irreducible smooth curves on S intersecting transversally that are also

ample divisors on S. The map X1 −→ X0 is the blowup of C1 and X2 −→ X1 is the

blowup of the strict transform of C2.

On E0 there is an invertible sheaf OE0(1) = OE0(−E0) and we set,

d = deg S, d1 = deg C1, d2 = deg C2,

δ = (C1 · C2), δ1 = (C1 · C1), δ2 = (C2 · C2),

considering degrees on E0 and intersection numbers on S. We let Ei be the excep-

tional divisor for each map πi and set:

E
(j)
i := strict transform of Ei on Xj for j ≥ i;

E
(i)
10 := E

(i)
1 ∩ E

(i)
0 on E

(i)
0 ⊆ Xi for i ≥ 1;

E
(i)
20 := E

(i)
2 ∩ E

(i)
0 on E

(i)
0 ⊆ Xi for i = 2;

S(i) := strict transform of S on E
(i)
0 ⊆ Xi for i ≥ 0;

C
(0)
1 := C1 on S(1) ⊆ X0;

C
(1)
1 := E

(1)
1 ∩ S(1) on S(1) ⊆ X0;

C
(2)
1 := strict transform of C

(1)
1 on S(2) ⊆ X2;

C
(0)
2 := C2 on S(1) ⊆ X0;

C
(1)
2 := strict transform of C

(0)
2 on S(1) ⊆ X1;

C
(2)
2 := E

(2)
2 ∩ S(2) on S(2) ⊆ X2;

H(i) := pullback of −E0 on Xi for i ≥ 0;

H
(i)
0 := divisor class H|

E
(i)
0

in N1(E
(i)
0 )R for i ≥ 0;

h(i) := divisor class h|S(i) in N1(S(i))R for i ≥ 0.

Note that for i > j, the maps S(i) −→ S(j), C
(i)
1 −→ C

(j)
1 and C

(i)
2 −→ C

(j)
2 are

isomorphisms and the divisor class h is invariant under the pullback isomorphism
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N1(S(i)) −→ N1(S(j)). From now on we shall omit superscripts an we do in figure 7.1

illustrating the blowups on E0.

We now state the proposition that will allow us to prove the main theorem.

Proposition VII.2. Let e1 = dd1−δ1 and e2 = dd2−δ2−δ. Assuming that e1, e2 ≤ 0

we have that a numerical class D = H − xE1 − yE2 ∈ N1(X/A4)R is nef if and only

if,

δ1x + δy ≤ d1, 0 ≤ y ≤ x, δx + δ2y ≤ d2

and

D|S = h − xC1 − yC2 ∈ Nef(S).

S

C1

C2

S

C1

C2

E10

S

C1

C2

E10

E20

Figure 7.1: Blowup of the curves C1 and C2 on E0

Remark VII.3. From Corollary IV.4, the divisor classes E0, E1, E2 form a basis for
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the relative Néron-Severi group N1(X/A4)R. Since H = −E0 − E1 − E2, the divisor

classes H,−E1,−E2 also define a basis for N1(X/A4)R. We observe that in order

for a numerical class D = tH − xE1 − yE2 ∈ N1(X/A4)R\{0} to be π-nef we must

have t > 0 and x, y ≥ 0. Indeed, if fi ⊆ Ei is the fibre over a point in Ci\Cj (i 6= j)

then (H · fi) = (Ej · fi) = 0 and (Ei · fi) = −1 which implies x, y ≤ 0. It is clear

that t ≥ 0 because for a curve C ⊆ X not meeting E1 ∪ E2 one obtains a positive

intersection number (D ·C) = x(H ·C) > 0. Moreover, if t = 0 and x, y ≤ 0 then by

considering a curve C ⊆ X meeting both E1 and E2 but not contained in E1 ∪ E2

we get (D ·C) < 0. Consequently, t > 0 for any non-trivial π-nef divisor D. As such

the relative nef cone Nef(X/A4) is totally described by the section t = 1 in the sense

that any π-nef divisor is a multiple of one in that section.

Using the notation from [5, Chapter V.§2], the numbers e1, e2 denote the e in-

variant of the ruled surfaces E
(1)
1 and E

(2)
2 respectively. The assumption e1, e2 ≤ 0

is used for technical convenience. Geometrically, this theorem says that under these

circumstances the cone Nef(X/A4) is obtained by intersecting a polyhedral cone de-

fined by linear conditions with an affine transformation of a part of the cone Nef(S).

In particular, by considering a surface S where Nef(S) is non-polyhedral we will be

able to construct an example where Nef(X/A4) is non-polyhedral.

7.2 Q-twists

For the proof of Proposition VII.2 we will use the formalism of Q-twisted bundles

that we now shortly introduce.

Definition VII.4. A Q-twisted bundle on a projective variety X,

E<γ>

is an ordered pair consisting of a vector bundle E on X and a numerical class γ ∈
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N1(X)Q defined up to isomorphism. If D is a Q-divisor on X, we write E<D> for

the twist of E with the numerical class of D.

Definition VII.5. The isomorphism relation on Q-twisted vector bundles on X is

generated by declaring,

E<A + D>= E ⊗OX(A)<D>

for any vector bundle E on X, any integral Cartier divisor A on X and D ∈ Div(X)Q.

Definition VII.6. Let E<γ> be a Q-twisted vector bundle on X. Let ξ and F be

the divisor classes on P(E) corresponding to the invertible sheaf OP(E)(1) and the

pullback of γ by the projection P(E) −→ X respectively. Then E<γ> is nef (or

ample) if and only if ξ + F in nef (or ample).

Proposition VII.7. Let L,E,M be vector bundles on X and γ ∈ Div(X)Q.

a) If L −→ M −→ 0 is exact and L<γ> is nef (or ample) then so is M<γ>;

b) If 0 −→ L −→ E −→ M −→ 0 is exact and both L<γ> and M<γ> are nef (or

ample) then so is E<γ>.

Proof. See [11], Lemma 6.2.8 and Theorem 6.2.12.

Definition VII.8. Let E be a vector bundle and A an ample divisor class on X.

We define the Barton invariant of E with respect to A as the real number,

β(X,E,A) = sup{t ∈ Q | E<−tA> is nef}.

Corollary VII.9. Let L,E,M be vector bundles on a smooth projective curve C.

Suppose there is a short exact sequence,

0 −→ L −→ E −→ M −→ 0.
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If A is an ample line bundle on C and L<−β(C,M,A)> is nef (or equivalently

β(C,L,A) ≥ β(C,M,A)) then

β(C,E,A) = β(C,M,A).

In particular, if ξ and F are the divisor classes on P(E) of OP(E)(1) and the pullback

of A by the projection P(E) −→ X respectively, then for any real number s,

ξ + sF is nef if and only if s ≥ −β(C,M,A).

Proof. We claim that for any t ∈ Q the twisted bundle E<−tA> is nef if and only if

M<−tA> is also so. Since M is a quotient of E, by Proposition VII.7 a) the nefness

of E<−tA> implies that M<−tA> is nef. On the other hand, if E<−tA> is nef

then we have,

t ≤ β(C,M,A) ≤ β(C,L,A).

Hence, L<−tA> is nef due to the nef cone of P(E) being closed. As such, we can

apply Proposition VII.7 b) and deduce that E<−tA> is nef as claimed.

Assuming the claim then the equality

β(C,E,A) ≤ β(C,M,A)

follows immediately from the definition of Barton invariant.

The second assertion of the corollary is a direct consequence of the definition of

nefness for Q-twisted bundles, at least when s is a rational number. However, we

can extend this result for real values of s using again the fact that nefness is a closed

condition.

7.3 Proof of Proposition VII.2

We now start showing a series of lemmas that will lead to the proof of Proposi-

tion VII.2.
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Lemma VII.10. Let D = H − xE1 − yE2. The following conditions are equivalent:

a) D|E20 is nef;

b) D|E2 is nef;

c) δx + δ2y ≤ d2 and 0 ≤ y.

Proof. We start by showing a) ⇔ c). Since E20 = P(N∗

C2/E
(1)
0

), then Pic(E20) =

ZOE20(1)⊕ Z(π2|E20)
∗Pic(C2) where OE20(1) is the line bundle OE20(−E2). Besides,

any two fibres of π2|E20 : E20 −→ C2 are numerically equivalent and therefore the

divisor classes of −E2 and a fibre F of π2|E20 form a basis of N1(E20).

The conormal exact sequence

0 −→ N∗

S/E
(1)
0

|C2 −→ N∗

C2/E
(1)
0

−→ N∗
C2/S −→ 0

defines a section C
(1)
2 −→ C

(2)
2 ⊆ E

(2)
20 for which

OE20(−C2) ⊗OE20(1) = (π2|E20)
∗(N∗

S/E
(1)
0

|C2)

together with the restriction morphism OE20(1) −→ OC2(1). We now want to apply

Corollary VII.9 to this exact sequence and the Barton invariants associated with the

divisor class P of a closed point on C2. Straight computations yield

β(C2, N
∗

S/E
(1)
0

|C2 , P ) = β(C2,OE
(1)
0

(−S)|C2 , P )

= β(C2,OE
(1)
0

(E1 − dH)|C2 , P )

= β(C2,OC2(E1 − dH), P )

= degC2
OC2(E1 − dH)

= δ − dd2
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and

β(C2, N
∗
C2/S, P ) = β(C2,OS(−C2)|C2 , P )

= degC2
OS(−C2)

= −δ2.

Since

β(C2, N
∗

S/E
(1)
0

|C2 , P ) ≥ β(C2, N
∗
C2/S, P ) ⇔ δ − dd2 ≥ −δ2

⇔ dd2 + δ2 − δ ≤ 0

⇔ e2 ≤ 0,

the corollary tells us that

β(C2, N
∗

C2/E
(1)
0

, P ) = −δ2

and

(7.1) OE20(−E2) + s(π2|E20)
∗P is nef if and only if s ≥ δ2.

For determining when the divisor numerical class D|E20 is nef we rewrite it as

D|E20 = (H − xE1 − yE2)|E20

= yOE20(1) + (d2 − δx)π2|
∗
E20

P.

The coefficient y must be non-negative by virtue of OE20(1) intersecting positively

any fibre of π2|E20 . If y = 0 then D|E20 is nef if and only if d2 − δx ≥ 0. If y > 0 then

D|E20 is nef if and only if (d2 − δx)/y ≥ δ2. Therefore, D|E20 is nef if and only if

d2 − δx − δ2y ≥ 0 and y ≥ 0

establishing a) ⇔ c).
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We now show b) ⇔ a). We use our knowledge regarding nefness on E20 to deter-

mine nefness on E2. This is done using the conormal exact sequence

0 −→ N∗
E0/X1

|C2 −→ N∗
C2/X1

−→ N∗

C2/E
(1)
0

−→ 0

which defines the embedding E20 −→ E2 = P(N∗
C2/X1

) ⊆ X2 over C
(1)
2 so that

OE2(−E20) ⊗OE2(1) = (π2|E2)
∗(N∗

E0/X1
|C2)

together with the restriction morphism OE2(1) −→ OE20(1). We can apply Corol-

lary VII.9 to this exact sequence as we did before. This time, the relevant Barton

invariants are

β(C2, N
∗
E0/X1

|C2 , P ) = β(C2,OX1(−E0)|C2 , P )

= β(C2,OX1(E1 − H)|C2 , P )

= β(C2,OC2(E1 − H), P )

= δ − d2

and the already computed

β(C2, N
∗

C2/E
(1)
0

, P ) = −δ2.

The inequality

β(C2, N
∗
E0/X1

|C2 , P ) ≥ β(C2, N
∗
E0/X1

|C2 , P ) ⇔ δ − d2 ≥ −δ2

⇔ d2 − δ − δ2 ≤ 0

is valid because d2 − δ − δ2 ≤ dd2 − δ − δ2 = e2 ≤ 0. As a result, the corollary yields

the condition

(7.2) OE2(−E2) + s(π2|E2)
∗P is nef if and only if s ≥ δ2.
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We now claim that the restriction morphism N1(E2) −→ N1(E20) is an isomor-

phism and a class θ ∈ N1(E2) is nef if and only if θ|E20 is nef. The isomorphism

is easily seen since (OE2(−E2), (π2|E2)
∗P ) forms a basis of N1(E2) being mapped to

the basis (OE20(−E2), (π2|E20)
∗P ). Restriction of nef classes are certainly nef so we

are left with having to show that if θ|E20 is nef then θ is also nef. Conditions 7.1 and

7.2 show that if θ = −tE1 + sπ∗P the claim holds for t > 0. If t = 0 then it is also

clear that θ nef ⇔ θ|E20 nef ⇔ s ≥ 0.

If t < 0 then neither θ nor θ|E20 are nef since they both intersect any curve mapped

to a point by E20 −→ C2 non-negatively. Therefore the claim holds and consequently

a) ⇔ b).

For analyzing nefness on E1 we will need first to determine what happens on E
(1)
1 .

Lemma VII.11. Let D = H − xE1. The following conditions are equivalent:

a) D|
E

(1)
10

is nef;

b) D|
E

(1)
1

is nef;

c) δ1x ≤ d1 and 0 ≤ x.

Proof. We start by showing a) ⇔ c). Since E
(1)
10 = P(N∗

C1/E
(0)
0

), then Pic(E
(1)
10 ) =

ZO
E

(1)
10

(1)⊕Z(π1|E(1)
10

)∗Pic(C1) where O
E

(1)
10

(1) is the line bundle O
E

(1)
10

(−E1). Besides,

any two fibres of π1|E(1)
10

: E
(1)
10 −→ C1 are numerically equivalent and therefore the

divisor classes of −E1 and a fibre F of π1|E
(1)
10 form a basis of N1(E

(1)
10 ).

The conormal exact sequence

0 −→ N∗

S/E
(0)
0

|C1 −→ N∗

C1/E
(0)
0

−→ N∗
C1/S −→ 0

defines a section C
(0)
1 −→ C

(1)
1 ⊆ E

(1)
10 for which

O
E

(1)
10

(−C1) ⊗O
E

(1)
10

(1) = (π1|E(1)
10

)∗(N∗

S/E
(0)
0

|C1)
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together with the restriction morphism O
E

(1)
10

(1) −→ OC1(1). We now want to apply

Corollary VII.9 to this exact sequence and the Barton invariants associated with the

divisor class P of a closed point on C1. Straight computations yield

β(C1, N
∗

S/E
(0)
0

|C1 , P ) = β(C1,OE
(0)
0

(−S)|C1 , P )

= β(C1,OE
(0)
0

(−dH)|C1 , P )

= β(C1,OC1(−dH), P )

= degC1
OC1(−dH)

= −dd1

and

β(C1, N
∗
C1/S, P ) = β(C1,OS(−C1)|C1 , P )

= degC1
OS(−C1)|C1

= −δ1.

Since

β(C1, N
∗

S/E
(0)
0

|C1 , P ) ≥ β(C1, N
∗
C1/S, P ) ⇔ dd1 ≥ −δ1

⇔ dd1 − δ1 ≤ 0

⇔ e1 ≤ 0,

the corollary tells us that

β(C1, N
∗

C1/E
(0)
0

, P ) = −δ1

and

(7.3) O
E

(1)
10

(−E2) + s(π1|E10)
∗P is nef if and only if s ≥ δ1.
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For determining when the divisor numerical class D|
E

(1)
10

is nef we rewrite it as

D|
E

(1)
10

= (H − xE1)|E(1)
10

= xO
E

(1)
10

(1) + d1(π1|E10)
∗P.

The coefficient x must be non-negative by virtue of O
E

(1)
10

(1) intersecting positively

any fibre of π1|E10 . If x = 0 then D|
E

(1)
10

is nef because d1 ≥ 0. If x > 0 then D|
E

(1)
10

is nef if and only if d1/x ≥ δ1. Therefore, D|
E

(1)
10

is nef if and only if

d1 − δ1x ≥ 0 and x ≥ 0

establishing a) ⇔ c).

We now show b) ⇔ a). We use our knowledge regarding nefness on E
(1)
10 to

determine nefness on E
(1)
1 . This is done using the conormal exact sequence

0 −→ N∗
E0/X0

|C1 −→ N∗
C1/X0

−→ N∗

C1/E
(0)
0

−→ 0

which defines the embedding E
(1)
10 −→ E

(1)
1 = P(N∗

C1/X0
) ⊆ X1 over C

(0)
1 so that

O
E

(1)
1

(−E10) ⊗O
E

(1)
1

(1) = (π1|E1)
∗(N∗

E0/X0
|C1)

together with the restriction morphism O
E

(1)
1

(1) −→ O
E

(1)
10

(1). We can apply Corol-

lary VII.9 to this exact sequence as we did before. This time, the relevant Barton

invariants are

β(C1, N
∗
E0/X0

|C1 , P ) = β(C1,OX0(−E0)|C1 , P )

= β(C1,OX0(−H)|C1 , P )

= β(C1,OC1(−H), P )

= −d1

and the already computed

β(C1, N
∗

C1/E
(0)
0

, P ) = −δ1.
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The inequality

β(C1, N
∗
E0/X0

|C1 , P ) ≥ β(C1, N
∗
E0/X0

|C1 , P ) ⇔ −d1 ≥ −δ1

⇔ d1 − δ1 ≤ 0

is valid because d1 − δ1 ≤ dd1 − δ1 = e1 ≤ 0. As a result, the corollary yields the

condition

(7.4) O
E

(1)
1

(−E1) + s(π1|E1)
∗P is nef if and only if s ≥ δ1.

We now claim that the restriction morphism N1(E
(1)
1 ) −→ N1(E

(1)
10 ) is an isomor-

phism and a class θ ∈ N1(E
(1)
1 ) is nef if and only if θ|

E
(1)
10

is nef. The isomorphism

is easily seen since (O
E

(1)
1

(−E1), (π1|E1)
∗P ) forms a basis of N1(E1) being mapped

to the basis (O
E

(1)
10

(−E1), (π1|E10)
∗P ). Restriction of nef classes are certainly nef so

we are left with having to show that if θ|E10 is nef then θ is also nef. Conditions

7.3 and 7.4 show that if θ = −tE1 + s(π1|E1)
∗P the claim holds for t > 0. If t = 0

then it is also clear that θ nef ⇔ θ|E10 nef ⇔ s ≥ 0. If t < 0 then neither θ nor

θ|
E

(1)
10

are nef since they both intersect any curve mapped to a point by E
(1)
10 −→ C

(1)
1

non-negatively. Therefore the claim holds and consequently a) ⇔ b).

Lemma VII.12. Let D = H − xE1 − yE2. The following conditions are equivalent:

a) D|E10 is nef;

b) D|E1 is nef;

c) δ1x + δy ≤ d1 and 0 ≤ y ≤ x.

Proof. The implication b) ⇔ a) is trivial since nefness is preserved under restriction.

For showing a) ⇔ c) we find curves defining the given inequalities. The intersec-

tion C
(1)
1 ∩ C

(1)
2 is non-empty because C1 and C2 are ample divisors on S. So, let Q
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be a point where C
(1)
1 and C

(1)
2 meet the fibre π1|

−1
E10

(π1(Q)). Let fQ
1 ⊆ E

(1)
1 be the

strict transform of the fibre π−1
1 (π1(Q)) ⊆ E

(1)
1 and let fQ

2 ⊆ E
(1)
1 be the fibre over

Q.

The curves we are interested in are fQ
1 , fQ

2 and C1. In order to calculate their

intersection numbers against D it is convenient to point out that the divisor H−xE1

is the pullback π∗
2(H − xE1) which allows the application of projection formula. It

is also useful to compute (E
(1)
1 · C(1)

1 ) beforehand. So,

(E
(1)
1 · C(1)

1 ) = degC1
OX1(E1)|C1

= degC1
OS(E1)|C1

= degC1
OS(C1)|C1

= δ1.

Taking this into account we obtain the following intersections numbers.

(D · fQ
1 ) = ((H − xE1 − yE2)|E10 · f

Q
1 )

= ((H − xE1)|E(1)
10

· (π2|E10)∗f
Q
1 ) − y(E2|E10 · f

Q
1 )

= x − y

(D · fQ
2 ) = ((H − xE1 − yE2)|E10 · f

Q
2 )

= ((H − xE1)|E(1)
10

· (π2|E10)∗f
Q
2 ) − y(E2|E10 · f

Q
1 )

= y

(D · C1) = ((H − xE1 − yE2)|E10 · C1)(7.5)

= ((H − xE1)|E(1)
10

· C(1)
1 ) − y(E2|E10 · C1)

= d1 − xδ1 − yδ.
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Since all these must be non-negative we conclude that

0 ≤ y ≤ x and d1 − xδ1 − yδ ≥ 0

which yields a) ⇒ c) as wanted.

We are left to show the implication c) ⇒ b). We want to show that a divisor

D = (H − xE1 − yE2)|E1 on E1 satisfying the conditions of c) is nef. For that

purpose we are going to check that the intersection number (D · C) is non-negative

for any irreducible curve on E1. We consider all possible curves splitting them into

cases according to their geometric nature.

Case 1. The curve C is contained in E2.

There is a fibre F of π2|E1 : E
(2)
1 −→ E

(1)
1 containing C that is isomorphic to P2

and such that −E2|F is the divisor class of OF (1). So,

(D · C) = ((H − xE1 − yE2) · C)

= ((H − xE1) · (π2|F )∗(C)) + y(−E2|F · C)

= y degC OF (1)|C

≥ 0.

Case 2. The curve C is C1.

Then, as we saw in 7.5,

(D · C) = d1 − δ1x − δy ≥ 0.

Case 3. The curve C 6⊆ E2 is contained in E10 and distinct from C1.

Then,

(D · C) = ((H − xE1 − yE2)|E10 · C)(7.6)

= ((H − xE1)|E10 · π2(C)) − y(E2|E10 · C).
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The key argument here is to find an upper bound for (E2|E10 · C). Since

π2|E10 : E
(2)
10 −→ E

(1)
10

is a blowup of the intersection set C
(1)
1 ∩C

(1)
2 consisting of δ distinct points and E2|E10

is the exceptional divisor for this map, then (π2|E10)
∗(C1) = C1 + E2|E(2)

10
by virtue

of C
(1)
1 meeting C

(1)
2 transversally. As such, from projection formula we get,

(C1 · π2(C))
E

(1)
10

= ((C1 + E2|E10) · C)

= (C1 · C)E10 + (E2|E10 · C)

hence,

(C1 · π2(C))
E

(1)
10

≥ (E2|E(2)
10

· C)

because (C1 · C)
E

(2)
10

≥ 0. This yields the upper bound we wanted and as a result,

from 7.6 we have,

(D · C) ≥ (((H − xE1)|E(1)
10

− yC
(1)
1 ) · π2(C))E10

(1) .

We now claim that the divisor class (H − xE1)|E(1)
10

− yC
(1)
1 on E

(1)
10 is nef which is

enough to show (D · C) ≥ 0. Note that,

O
E

(1)
10

(C1) = OE0(S)|
E

(1)
10

= OE0(dH − E1)|E(1)
10

and therefore C
(1)
1 is numerically equivalent to dH − E1 on E

(1)
10 . Thus the divisor

class (H − xE1)|E(1)
10

− yC
(1)
1 is numerically equivalent to

((1 − dy)H − (x − y)E1)|E(1)
10

and we just need to show its nefness in order to establish the claim. We point out
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that 1 − dy > 0. In fact,

e1 < 0 ⇔ dd1 − δ1 ≤ 0

⇔ dd1 ≤ δ1

⇔ d1/δ1 ≤ 1/d

and consequently

δ1x + δy ≤ d1 ⇔ δ1y + δy ≤ d1

⇔ y ≤ d1/(δ1 + δ)

⇒ y < d1/δ1

⇒ y < 1/d

⇔ 1 − dy > 0.

So, by Lemma VII.12, the divisor class ((1 − dy)H − (x − y)E1)|E(1)
10

is nef when

0 ≤ (x − y)/(1 − dy) ≤ d1/δ1

⇔ 0 ≤ δ1(x − y) ≤ d1 − dd1y

⇔ 0 ≤ x − y and δ1x + (dd1 − δ1)y ≤ d1

⇐ y ≤ x and δ1x + δy ≤ d1 (because dd1 − δ1 = e1 ≤ 0 < δ).

By hypothesis these inequalities hold and we prove the claim as required.

Case 4. The curve C ⊆ E1 is not contained in E10 ∪ E2.

Then,

(D · C) = ((H − xE1 − yE2)|E1 · C)(7.7)

= ((H − xE1)|E1 · π2(C)) − y(E2|E1 · C).

The key argument here is to find an upper bound for (E2|E1 ·C). Since π2|E1 : E
(2)
1 −→

E
(1)
1 is a blowup of the intersection set C

(1)
1 ∩C

(1)
2 consisting of δ distinct points and
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E2|E1 is the exceptional divisor for this map, then (π2|E1)
∗(E10) = E10 + E2|E1 by

virtue of C
(1)
2 meeting E

(1)
10 transversally. As such, from projection formula we get,

(E10 · π2(C))E10 = ((E10 + E2|E1) · C)

= (E10 · C)E1 + (E2|E1 · C)

hence,

(E10 · π2(C))E1 ≥ (E2|E1 · C)

because (E1 ·C)E1 ≥ 0. This yields the upper bound we wanted and as a result, from

7.7 we have,

(D · C) ≥ (((H − xE1)|E(1)
1

− yE
(1)
10 ) · π2(C))E1

(1) .

We now claim that the divisor class (H − xE1)|E(1)
1

− yE
(1)
10 on E

(1)
1 is nef which is

enough to show (D · C) ≥ 0. Note that,

O
E

(1)
1

(E10) = OX1(E0)|E1

= OX1(−H − E1)|E1

and therefore E
(1)
10 is numerically equivalent to −H − E1 on E

(1)
1 . Thus the divisor

class (H − xE1)|E(1)
1

− yE
(1)
10 is numerically equivalent to

((1 + y)H − (x − y)E10)|E(1)
1

and we just need to show its nefness in order to establish the claim. By Lemma VII.12,

this divisor class is nef when

0 ≤ (x − y)/(1 + y) ≤ d1/δ1

⇔ 0 ≤ δ1(x − y) ≤ d1(1 + y)

⇔ 0 ≤ x − y and δ1x − (d1 + δ1)y ≤ d1

⇐ y ≤ x and δ1x + δy ≤ d1.
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By hypothesis these inequalities hold and we prove the claim as required.

Lemma VII.13. Let D = H − xE1 − yE2. The following conditions are equivalent:

a) D|E0 is nef;

b) δ1x + δy ≤ d1, 0 ≤ y ≤ x, δx + δ2y ≤ d2 and D|S = h − xC1 − yC2 ∈ Nef(S).

Proof. Since the restriction of a nef divisor is nef, if D|E0 is nef then D|E1 , D|E0

and D|S must be nef. Using Lemmas VII.10 and VII.12 we conclude that all the

conditions in b) are necessary.

On the other hand suppose b) is satisfied and let C be an irreducible curve in

E0. Then, if C ⊆ S ∪ E1 ∪ E2 then (D · C) ≥ 0 by Lemmas VII.10 and VII.12. If

C 6⊆ S ∪ E1 ∪ E2, then note that x, y ≤ 1/d. If C * S
⋃

E1

⋃

E2, then note that

x, y ≤ d1/δ1 and by assumption dd1 − δ1 ≤ 0 means d1/δ1 ≤ 1/d. Hence, x, y ≤ 1/d.

Moreover, S|E0 is linearly equivalent to (dH − E1 − E2)|E0 and therefore

H − (1/d)E1 − (1/d)E2 ≡ (1/d)S.

So, D ≡ (1/d)S + (1/d − x)E1 + (1/d − y)E2 is an effective class on E0 and then

(D.C) ≥ 0. As a result D|E0 is nef.

Proof of Proposition VII.2. The divisor D is relatively nef if and only if D|X2 is nef.

Since X2 = E0∪E1∪E2 then by Lemmas VII.10, VII.12 and VII.13 we conclude that

D|X2 is nef if and only if all the conditions stated in the theorem are satisfied.

7.4 Proof of main theorem

Using the construction described in this chapter we are now ready to create an

example where the relative nef cone obtained is non-polyhedral. Having Proposi-

tion VII.2, it is a matter of picking a smooth projective surface with a couple of
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smooth ample curves meeting transversally so that the respective relative nef cone

has some part defined ba a non-linear condition arising from restriction of divisors

to that surface.

Proof of Theorem VII.1. We will use a surface whose existence is guaranteed by a

theorem of Morrison.

Theorem VII.14. [14, Theorem 2.9] For ρ ≤ 11, every lattice of signature (1, ρ−1)

occurs as the Picard group of a smooth projective K3 surface.

By Theorem VII.14, let S be a smooth projective K3 surface with intersection

form

q = 4a2 − 4b2 − 4c2.

Cutkosky studied in [2] the properties of divisor on this surface and his results are

summarized in the following theorem.

Theorem VII.15. Let D = (a, b, c) ∈ Z3 ∼= Pic(S) be an ample line bundle and let

h = (1, 0, 0) be a divisor on S such that h = (1, 0, 0). Then,

a) |h| embeds S as a quartic surface on P3;

b) |D| is base point free;

c) There exists a smooth curve C on S such that C ∼ D;

d) The nef cone of S is

Nef(S) = {(a, b, c) ∈ R3 | q(a, b, c) ≥ 0, a ≥ 0}.

Let D1, D2 ∈ Pic(S) such that

D1 = (5, 1, 0) and D2 = (2, 0, 1).
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First note that D1 is very ample because we can write it as a sum

D1 = h + (4, 1, 0)

where h is very ample and (4, 1, 0) is globally generated. Indeed, since (4, 1, 0) is in

the interior of Nef(S) then it is ample and globally generated by Theorem VII.15

b). Also, D2 is ample and by Theorem VII.15 c) it can be represented by a smooth

curve C2. Since D1 is very ample we can pick a smooth curve C1 ∼ D1 meeting C2

transversally.

We can now apply Proposition VII.2 considering the quartic surface S ⊆ P3

together with the curves C1 and C2. For that purpose we just need to check that

e1, e2 ≤ 0, which is the case once we observe the computed parameters for the

construction,

d = deg S = 4, d1 = deg C1 = 20, d2 = deg C2 = 18,

δ = (C1 · C2) = 36, δ1 = (C1 · C1) = 96, δ2 = (C2 · C2) = 12,

e1 = dd1 − δ1 = −16, e2 = dd2 − δ2 − δ = −16.

Therefore D = H − xE1 − E2 is nef if and only if

δ1x + δy ≤ d1, 0 ≤ y ≤ x, δx + δ2y ≤ d2

and

D|S = h − xC1 − yC2 ∈ Nef(S).

The first 3 conditions are easily simplified to,

24x + 5y ≤ 5, 0 ≤ y ≤ x, 9x + 3y ≤ 2.
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On the other hand,

D|S = (1, 0, 0) − x(5, 1, 0) − y(2, 0, 1)

= (1 − 5x − 2y,−x,−y)

and

D|S ∈ Nef(S) ⇔ (1 − 5x − 2y)2 − x2 − y2 ≥ 0 and 1 − 5x − 2y ≥ 0

⇔ 1 − 5x − 2y ≥
√

x2 + y2

describes a region of the plane bounded by a non-degenerate conic. Putting together

all conditions we obtain 5 curves on the plane making up the respective boundaries

as in Figure 7.2.

Nef(Y/A4)
x

x − y

1 − 5x − 2y −
√

x2 + y2

5 − 24x − 5y

2 − 9x − 3y

Figure 7.2: Section of Nef(Y/A4) and the 5 conditions

In fact, the relative nef cone is defined by the inequalities,

0 ≤ y ≤ x, 1 − 5x − 2y ≥
√

x2 + y2.

As such Nef(Y/A4) is non-polyhedral.
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