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INTRODUCTION

Wet steam flow has been studied for the break-up of
liquid films on flat plates inserted parallel to flow at the
trailing edge, as well as liquid droplet stability and dis-

integration. Some results are shown in this paper.

Moving rotor blading erosion of steam turbine final stages
is considered to be still an important problem. from the technical
and economic point of view. Because of this fact, there is a
reason to investigate the liquid phase behavior inside the
turbine. In particular, several problems are particularly
interesting:

1. condensation of the steam in state downstream of
the Wilson line

2. small (v 0.05 pm) primary droplets settling upon
blades surfaces and liquid film motion due to aero-
dynamic and centrifugal forces

3. large secondary drop motion and structure

4. erosion of turbine blading and methods useful in
avoiding erosion damage

The matter under consideration here concerns the third group
of problems. A thin liquid film flowing upon a fixed blade
disintegrates at the trailing edge, due to aerodynamic forces.
The droplets thus formed are believed to be about four orders
of magnitude larger than the primary droplets in the wet steam
due to condensation. The maximum droplet size which has been

estimated based on theoretical approach (1) for the last stage



of the turbine was around 300 ym, and other authors have
expected droplets to be larger than 1 mm (2), (3)r using
experimental turbines for their research.

The main purpose of the work hereby presented is to
measure the relationship between droplet stream structure
and the flow conditions. This has been done according to
the suggested procedure of J. Kryéanowski (4) in his work

at the University of Michigan.

EXPERIMENTAL EQUIPMENT USED
Figure 1 is a schematic representation of our experimental

facility and the pertinent flow parameters are as below:

\ 5
(p3)max 3.75 psia 0.258. 10 N/m2 (saturated steam)

Py 2.55 psia 0.175 .105 N/mz

Maximum Mach Number is ~ 0.75.

The test section is located after a stilling tank which is
supplied with low pressure steam from the laboratory heating
supply (~ 5 psig, 0.9 quality). A diffuser then guides the
steam to a jet-cooled condenser. The test section is of
plexiglas , so that the liquid droplets downstream, is well astt
liquid film upon the inserted flat plate, can be easily observed
This plate, which replaces a turbine fixed blade, is located
inside the test section (Fig. 2). A thin liquid film was
obtained upon the blade by means of a slot placed near the

leading edge (Fig. 3). Water flow-rate was measured by a

flow meter, and liquid film thickness by means of the residencd
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gage method (5), (6), using four gages in the plate surface.
The flow rate and liquid film thickness were as follows:

2.5~10 cm3/(cm.min)

q
h

50 ~ 250 Pm

The liquid film on the plate appeared first to disintegrate
into liguid filaments, and next into "secondary" droplets
(Fig. 4 ). These then pass downstream in the aerodynamic
wake, still being disintegrated due to the increasing aerodynamic
forces, since the velocity of the wake increases with distance
downstream from the trailing edge.

This liquid-phase behavior was studied photographically.
The camera was located as close as possible to the test section,
producing a magnification of ~2.4x. A light flash duration of
~ 1 us has been used, with light source perpendicular to
camera axis (Fig. 2). This was most suitable,as pictures
so taken were sharp and with good contrast. Several typical
pictures are included in this report (Fig. 4-9).
Droplet size measurement capability was, however, limited to
droplets above ~ 50 pm diameter because of limited optical
resolution of the camera and film. Smaller droplets had
too great velocity to be recorded with the available flash
duration. These limitations proved most significant at high
Mach number (M ~ 0.75), and relatively long distances downstream
of trailing edge.

We hope to develop another method for small droplets well

downstream and at high Mach number. This method will be based
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on laser light scattering from small particles, and should

be useful for the measurement of 1 ~ 20 um droplets.

RESULTS OF THE EXPERIMENT

Because of the erosion threat to turbine blading, informatio
of maximum droplet size is important. Many photographs ( ~ 300)
have been made at three Mach numbers;

M= 0.35" 0.55; 0.75
and at three values of the flow rate:
§= 2.5; 5.0; 10.0  cm/cm.min).

Several relationships have been obtained. These are presented
in Fig. 10-12. All large droplets provide data points on these
graphs acéording to their distance downstream in aerodynamic
wake (x-coordinate). The relationship between maximum droplet
size and distance downstream,DmaX = f(x), is established as a
limiting line above the area of the data points. This function
has been shown as a belt because the process of ligquid phase
disintegration is very non-uniform.

The function Dmax= f(x) decreases with distance X until

X 20 cm and then remains essentially constant. It is
independent of liquid flow rate for this experiment. However,
the shape of the curves depends very strongly on the Mach
number (Fig. 13).

To allow application of these results for other conditions,
a more universal relationship has been generated. Using the
results of Fig. 13, and transforming them into a dimensionless
function of Weber number,

Wemax = f (M)I
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the relationship of Fig. 14 was obtained. Here

_ ¢ Ve Do

We =

max G;

D = maximum droplet size, from center of data

max scatter, at distance x = 22 cm, assuming

maximum droplet size to be approximately
constant for distances longer than x = 22 cm

Vo, = the velocity of the steam outside of the

aerodynamic value

Results obtained by other authors are also presented, 1-€.,
Weigle and Severin (7), wusing an air tunnel, and Valha
from a steam tunnel (8).

To obtain further information on liquid droplet stream
structure, still another approach was applied. Based on
several droplet pictures (Fig. 4-9 ), a droplet size distribu-
tion function has been established.

This function is defined as follows:

N(d) 1

Fld) = —x— - A3

where:
d = droplet size

A3 = droplet size interval (A4d = 200 pm for presented
experiment)
N(d)= average number of droplets of the size enclosed
in the region d - AEd' 3 +Agg),
N = average total number of the droplets visible
in the test area.

In order to obtain the above function, droplets visible on the
picture were counted according to their sizes (using a magnify-

ing glass with scale). Consequently, the droplet size distribution
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function was used to establish a droplet mass distribution

function:
al . N, d.> F(d,)
R(m) = m(d) 1 _ i i 1 _ 71 i 1
m= ~ Ad I=n Ad - I=n Ad
3 b
= a; N(a,) = a3r@y
i=1 i=1
where:
m(d) = average mass of droplets of the size enclosed
in the region (d __%g_, a +/§2__q )
m = average total mass of the droplets visible
in the test area.
_ _max
" T Ad

Both functions were normalized in order that the integral is

equal to one.

The results of the experiment reduced to size and mass
distribution functions are shown on Figs. 15-18 for the follow-
ing values of the Mach number:

M = 0.35

*

0.55

[}

M

To be sure, both functions are being changed according to the
distance X; the ratio of large droplets decreases,
and the ratio of small droplets increases. The same effect

takes place as Mach number increases. The highest probability

of droplets occurring (the maximum of the function of proba-

bility density) is shown below in the conclusions.

*Unfortunately it was impossible to obtain any droplet size
mass distribution function at My = 0.75. The cause has been dis
cussed above. The same difficulty appeared for long distances

(x) petween the trailing edge and the test area.



CONCLUSIONS
1. The maximum droplet size function Dmax = g(x,M), decreases
with the distance x and Mach number M . D becomes

max
constant for distance x = 22 cm. In this region, maximum

droplet size varies with Mach number.

M = 0.35; Dmax = 750 pm
0.55; 500 pm
0.75; 250 pm

The variation of Dmax with respect to x and M proved to be
different than had been estimated theoretically based on the
steam velocity distribution in the aerodynamic wake and assumed
critical Weber number, (We = 13) (l1). Droplet diameter here

measured is at least twice that estimated before.

2. The critical value of the Weber number

2
Wo = QVZDmax

has been estimated as follows:

Lad

M = 0.35 We = 30
M= 0.5; 0.75; We £ 45 (Fig. 14)

3. The most probable droplet size to appear in the aerodynamic
2.5 to 4 mm),

wake, in the vicinity of the trailing edge (x
according to the size distribution function is:

A/

M = 0.35; da = 250 P_m
M = 0.55; ad= 133
and according to the mass distribution function:
M = 0.35; a= 500m
M = 0.55; d%E 475 w

4. There is no significant influence of (water) liquid film
flow rate (up to g = 10 cm3/cm.s) on the maximum droplet size

Dmax' and on the droplet size and mass distribution function F (d),

R(m) .
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Figure 1 - Schematic Diagram of the University of Michigan
Steam Tunnel (4)
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Figure 2 - Schematic of Test Section and the Position of
Camera and Flash (4)
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Figure 4 - Photographs of Liquid Film Disintegration into 3 i
Droplets at the Trailing Edge, M = 0.35, ¢ = 5 cm”/cm-®in:
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Figure 5 - Photographs of Liquid Film Disintegration into
Droplets at the Trailing Edge, M = 0.55, g. = 25 cm3/cm°TnﬁL
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Figure 6 = Photographs of Ligquid Film Disintegration into
Droplets at the Trailing Edge, M = 0.75, g. = 5 cm3/cmemin.
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Figure 7 - Photographs of Liquid Droplets Distribution in Downstream
Flow, M = 0.35, g = 10 cm3/cm°InHLp X = 14 cm
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Figure 8 - Photographs of Liquid Dropléts Distribution in Downstream
Flow,

M= 0.55, g = 10 cm’/cmemin.
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Figure 9 - Photographs of Liquid Droplets Distribution in Downstream

Flow, M = 0.75, ¢ = 10 cm3/cmeimin. X = 5 cm
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Maximum Droplet Size as a Function of the Distance
From the Trailing Edge, M = 0.55
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Figure 13 - Maximum Droplet Size as a Function of the Distance

From the Trailing Edge at three Mach Numbers
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Figure 15 - Droplet Size Distribution Function at M = 0.35,
X =2.5cmand X = 4.0 cm.
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