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Assistant Professor Vilma Mesa



c© Kyungyong Lee 2008
All Rights Reserved



To my wife, Mina

ii



ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Rob Lazarsfeld for all of his help

throughout my entire graduate life. Without him, I would not have become a math-

ematician.

I also thank Professors Karen Smith, Mircea Mustaţă, Mattias Jonsson, Vilma
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CHAPTER I

Introduction

1.1 Introduction to the Main Theorem

The main purpose of this thesis is to deal with the question of which ideals can

or cannot be realized as multiplier ideals. We introduce now the main context of this

problem.

Let X be a smooth complex algebraic variety, and let b ⊂ OX be an ideal sheaf.

Given a rational number or real number c > 0, one can construct the multiplier ideal

J (bc) = J (X, bc) ⊂ OX

of b with weighting coefficient c. This new ideal measures the singularities of func-

tions f ∈ b in a subtle manner. In recent years, multiplier ideals have found many

applications in local and global geometry due to the fact that they satisfy vanishing

theorems.

Because of their importance, there has been considerable interest in understanding

which ideals can occur as multiplier ideals. It has long been known that multiplier ide-

als are integrally closed. It is then natural to ask whether conversely every integrally

closed ideal is actually a multiplier ideal.

In dimension 2, Favre-Jonsson [6] and Lipman-Watanabe [24] showed that every

integrally closed ideal can locally be realized as a multiplier ideal. However the

1
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corresponding statement in dimension greater than 2 was open for a number of years.

I studied the question of whether the ideal Ir ⊂ OC3 of r very general lines passing

through the origin can be realized as a multiplier ideal J (bc).

The main theorem of this thesis is given below. The precise definition of a ratio-

nally defined cone-like divisor will be given in Chapter 4. Vaguely speaking, it is a

certain type of function which behaves in some sense naturally along r very general

lines, and which varies rationally as the lines are deformed.

Theorem 1 (Main Theorem). When r ≤ 10, Ir is a multiplier ideal (of a rationally

defined cone-like divisor). When r À 0, Ir cannot be realized as a multiplier ideal of

a rationally defined cone-like divisor.

It is possible that the condition on the divisor is unnecessary, but the computations

are very involved and it is not yet certain that they handle the case of arbitrary divisor.

This work for lines suggested that there must be an obstruction to realizing in-

tegrally closed ideals as multiplier ideals in dimension ≥ 3. Subsequently Lazarsfeld

and I proved that the minimal syzygies of any multiplier ideal satisfy rather strong

conditions of an algebraic nature. It is amusing that the ideal of the union of lines,

which is unlikely to be a multiplier ideal, satisfies the necessary conditions.

This thesis is organized as follows. In Chapter 2, we define multiplier ideals

and give a quick snapshot of how we approach to the proof of the main theorem.

Chapter 3 is devoted to develop the main tools used in the proof of the main theorem.

Specifically we obtain some bounds on colengths of multiplier ideals on surfaces.

Chapter 3 also deals with t-multiplicity. Here we have strong bounds on colengths

of multiplier ideals and intersection multiplicities of two curves. Finally, in Chapter

4 we carry out the proof of the main theorem by using induction on the order of

blow-ups. We start by assuming that Ir can be realized as a multiplier ideal of a
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rationally defined cone-like divisor, and show that a desired log resolution would not

stop in finitely many times, which is a contradiction.

Besides the material in this thesis, I have completed some other works, some of

which are related and some not. In particular, I have completed several projects

touching on syzygies of multiplier ideals, cores of ideals, polynomial interpolation,

and Hilbert schemes. Before turning to the main content of this thesis, I will say a

few words about these other works.

1.2 Other Work

Here I briefly explain other work that I have completed besides this thesis.

1.2.1 Local syzygies of multiplier ideals

In a joint work with Lazarsfeld, we showed that syzygies of any multiplier ideals

satisfy rather strong conditions of an algebraic nature. We work in the local ring

(O,m) of a smooth complex variety X at a point x ∈ X, and as above d = dim X.

Theorem 1.2.1. Let J = J (bc)x ⊆ O be (the germ at x of ) any multiplier ideal. If

p ≥ 1, then no minimal pth syzygy of J vanishes modulo md+1−p.

Let us explain the statement more precisely. For the case p = 1, fix minimal

generators f1, . . . , fb ∈ J , and let g1, . . . , gb ∈ m be functions giving a minimal

syzygy
∑

gifi = 0

among the fi. Then the claim is that

ordx(gi) ≤ d− 1
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for at least one index i. In general, consider a minimal free resolution

. . .
u3−→ Ob2 u2−→ Ob1 u1−→ Ob0 −→ J −→ 0

of J , where each up is a matrix of elements in m whose columns minimally generate

the module of pth syzygies of J . The assertion of the theorem is that no column of up

(or any C-linear combination thereof) can consist entirely of functions vanishing to

order ≥ d + 1− p at x. Equivalently, no minimal generator of the pth syzygy module

Syzp(J ) =def Im(up) ⊆ Obp−1

of J lies in md+1−p · Obp−1 .

The theorem implies that if d ≥ 3, then many integrally closed ideals cannot arise

as multiplier ideals. For example consider 2 ≤ m ≤ d− 1 functions

f1, . . . , fm ∈ O

vanishing to order ≥ d at x. If the fi are chosen generally, then the complete in-

tersection ideal I = (f1, . . . , fm) that they generate will be radical, hence integrally

closed. On the other hand, the Koszul syzygies among the fi violate the condition in

Theorem 1.2.1, and hence I is not a multiplier ideal.

Theorem 1.2.1 follows from a more technical statement involving the vanishing of

a map on Koszul cohomology groups. Specifically, let h1, . . . , hr ∈ m be any collection

of non-zero elements generating an ideal a ⊆ O, and let K•(h1, . . . , hr) be the Koszul

complex on the hi. We prove:

Theorem 1.2.2. For every 0 ≤ p ≤ r, the natural map

Hp

(
K•(h1, . . . , hr)⊗ ar−pJ (bc)

) −→ Hp

(
K•(h1, . . . , hr)⊗ J (bc)

)

vanishes.
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Now fix generators z1, . . . , zd ∈ m, and write C = O/m for the residue field at x,

viewed as an O-module. Taking r = d and hi = zi, the theorem implies

Corollary 1.2.3. The natural maps

Torp

(
md−pJ ,C

) −→ Torp

(J ,C
)

vanish for all 0 ≤ p ≤ d.

Theorem 1.2.1 is deduced from this statement. As for Theorem 1.2.2, the proof is

simply to note that an exact “Skoda complex” [19, Section 9.6.C] sits inbetween the

two Koszul complexes in question.

Variant 1.2.4. In the situation of Theorem 1.2.1, suppose that J has a minimal pth

syzygy vanishing to order ap at x, and for 1 ≤ i ≤ p− 1 denote by

εi = εi(J )

the least order of vanishing at x of all non-zero entries in the matrix ui appearing in

the minimal resolution of J . Then

(*) ap + εp−1 + . . . + ε1 ≤ d− 1.

For example, consider when d = 4 the complete intersection ideal

I = (f1, f2, f3) ⊆ O

generated by three functions vanishing to order 2 at the origin. Then a2 = ε1 = 2, so I

cannot be a multiplier ideal, but this does not follow from the statement of Theorem

1.2.1 alone. We do not know how close (*) comes to being optimal. However we

construct an example lying on the boundary of Corollary 1.2.3.
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Example 1.2.5. Let J = J ((z1, z2, ..., zd−1, z
d
d)

d) = (z1, z2, ..., zd−1, z
d
d). Then the

natural map

Torp

(
md−1−pJ ,C

) −→ Torp

(J ,C
)

does not vanish for any 0 ≤ p ≤ d.

Remark 1.2.6. In [20], we say that the ideal of a suitable number of general lines

through the origin in C3 couldn’t arise as a multiplier ideal. However the correct

statement is the one which appears in Theorem 1.

1.2.2 Containment of cores of ideals

In [21], I study cores of ideals in a regular local ring R. Given an ideal I ⊂ R,

the core of I is defined to be the intersection of all the reductions of I. Huneke and

Swanson [16] raised the question of whether, given integrally closed ideals I ⊂ I ′ in

a ring R, it is necessarily true that core(I) ⊂ core(I ′). I show that cores of ideals do

not preserve the inclusion.

Theorem 1.2.7. Let R = k[x, y, z, w](x,y,z,w) with k a field of characteristic zero and

let m denote the maximal ideal of R. Let I = I2 + m3, where

I2 = (x2 + yw, y2 + zw, z2 + xw).

Then I ⊂ m2 but core(I) 6⊂ core(m2).

This theorem motivates the following conjecture.

Conjecture 1.2.8. Let R = k[x1, ..., xn](x1,...,xn) with k a field of characteristic zero

and let m denote the maximal ideal of R. Let I = Id + md+1, where Id is a radical

complete intersection ideal of s homogeneous polynomials of degree d (1 ≤ s < n).

Let b = bdn−s+1
d+1

c and a = dn− s + 1− (d + 1)b. Then

(1.2.1) core(I) = maIb.
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Theorem 1.2.9. The conjecture holds true for d = 1.

1.2.3 Interpolation problem in characteristic 2

It is natural and interesting to ask whether, given (d, n, m), there is a plane curve

of degree d passing through n general points with multiplicity at least m. If there is

no such curve, then the vector space V generated by all the monomials of degree ≤ d

can be (non-canonically) decomposed into n subspaces

V = ⊕n
α=1Vα,

where each of Vα is generated by monomials and does not contain any curve passing

through a general point with multiplicity at least m. There has been some interest

in understanding which subspaces satisfy such conditions.

In [22], I work on a bivariate polynomial interpolation problem in characteristic

2. Given a nonnegative integer t, I describe all the sub-linear systems generated by

monomials, in which there is no curve passing through a general point with multi-

plicity at least 2t. This interpolation problem is of inductive nature on t.

Given a fixed set S of distinct lattice points (i, j), i, j ≥ 0, the sub-linear system

P(S) with respect to S consists of all the polynomials of the form

P (x, y) =
∑

(i,j)∈S

ai,jx
iyj ∈ K[x, y].

Let Tm be the triangle of all (i, j) with i+j ≤ m−1. Tm contains |Tm| = 1
2
m(m+1)

lattice points.

For a set of n distinct interpolation knots Z = {zq := (xq, yq)}n
q=1 in K2, one

can consider (sub-)linear systems of plane curves passing through Z with multiplicity

≥ mq at each point zq. To put it in another way, we are interested in solving the
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Hermite interpolation problem

1

α!β!
· ∂α+βP

∂xα∂yβ

∣∣∣
zq

= 0, (α, β) ∈ Tmq , q = 1, · · · , n. (∗)

Note that we do not necessarily require |S| =
∑n

q=1 |Tmq |. We say that an interpo-

lation scheme is almost surely solvable or almost regular if (∗) is solvable for almost

all Z ∈ (K2)n. Since the right hand sides in (∗) are 0, our interpolation problem is

almost regular if and only if (∗) has only the trivial solution for almost all Z.

Since it is natural to ask which (sub-)linear systems are almost regular, there

has been some interest in trying to understand it. But up to now, even in the case

n = |Z| = 1 there have been no explicit criterions in positive characteristic, and

no criterions in characteristic 0 other than Bezout-Dumnicki Lemma and Petrakiev’s

Lemma, which give sufficient but not necessary conditions for a (sub-)linear system

to be almost regular.

We completely solve the interpolation problem in characteristic 2 in the case

when n = |Z| = 1 and m = m1 = 2t (t ∈ N). In other words, given t ∈ N, we

describe all the sub-linear systems generated by monomials, in which there is no

curve passing through a general point with multiplicity ≥ 2t. This case is already

interesting in its own right, and is indispensable for dealing with the cases of n ≥

2 knots. Because an n-generic-points interpolation problem can be reduced to n

one-generic-point interpolation problems on linear systems defined by adequate sets

of monomials. We remark that the asymptotic behaviors of certain interpolation

problems, such as the nef cone of the blown-up space of P2 at a given number (n > 9)

of very general points, can be determined by infinitely many interpolation problems.

Hence for some purposes it would be enough to look at interpolation problems with

m = m1 = · · · = mn = 2t for t ∈ N.
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When n = 1, our interpolation scheme 〈S, Tm〉 becomes

1

α!β!
· ∂α+βP

∂xα∂yβ

∣∣∣
z1

= 0, (α, β) ∈ Tm (∗∗).

The main result in [22] is the following.

Theorem 1.2.10. The determination of the solvability of a bivariate Hermite in-

terpolation problem with a point of multiplicity 2t+1 can be reduced to solving three

interpolation problems, each with a point of multiplicity 2t.

1.2.4 Hilbert schemes of points

We work over C. The maximal ideals in a polynomial ring are very basic objects,

and their deformations are easy to understand. However very little is known about

the family of the ideals that can be deformed to the square of a maximal ideal. Its

existence and connectedness [13] are well known. In [23], I study its dimension.

We consider the Hilbert scheme Hilbd+1(Cd) of (d + 1) points in affine d-space

Cd, d ≥ 3 (for general introduction to the Hilbert schemes of points, see [25, §18.4]).

It parametrizes the ideals I of colength (d + 1) in C[x] = C[x1, ..., xd]. As with any

moduli problem, it is natural to ask whether Hilbd+1(Cd) is irreducible. It is already

interesting because Hilbd+1(Cd) is irreducible for d ≤ 3 but reducible for d ≥ 12.1

Theorem 1.2.11. The dimension of Hilbd+1(Cd) is greater than k
(

d+1−k
2

)
for any

k = 0, 1, ..., d− 1.

Theorem 1.2.12. Hilbn(Cd) is reducible for n > d ≥ 12.

Our purpose is to describe equations for the most symmetric affine open subscheme

of Hilbd+1(Cd). We let U ⊂ Hilbd+1(Cd) denote the affine open subscheme consisting

of all ideals I ∈ Hilbd+1(Cd) such that {1, x1, ..., xd} is a C-basis of C[x]/I. We will

1Iarrobino [17] showed that Hilbn(Cd) is reducible for d > 5 and n > (1 + d)(1 + d/4).
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call U the symmetric affine subscheme. We note that the square of any maximal ideal

in C[x] belongs to the symmetric affine subscheme.

We give an elementary description of the coordinate ring of the symmetric affine

subscheme U . For a C-vector space V and a partition λ, the module SλV is defined

by the Schur-Weyl construction. By abuse of notation, the quotient ring given by the

ideal generated by SλV in the ring Sym•(SµV ) for some partitions λ and µ will be

denoted by Sym•(SµV )

<SλV >
.

Theorem 1.2.13. Let d ≥ 3. Let U be the symmetric affine open subscheme of

Hilbd+1(Cd). Then U is isomorphic to

Cd × Spec
Sym•(S(3,1,1,··· ,1,0)V )

< S(4,3,2,··· ,2,1)V >
,

where V is a d-dimensional C-vector space, (3, 1, 1, · · · , 1, 0) is a partition of (d + 1)

and (4, 3, 2, · · · , 2, 1) is of (2d + 2).

Let us explain the notation more precisely. There is an injective homomorphism

j : S(4,3,2,··· ,2,1)V ↪→ Sym2(S(3,1,1,··· ,1,0)V )

of Schur modules. Then j induces natural maps

S(4,3,2,··· ,2,1)V ⊗ Symr−2(S(3,1,1,··· ,1,0)V )

↪→ Sym2(S(3,1,1,··· ,1,0)V )⊗ Symr−2(S(3,1,1,··· ,1,0)V )

→ Symr(S(3,1,1,··· ,1,0)V ), r ≥ 2,

which define the quotient ring
Sym•(S(3,1,1,··· ,1,0)V )

<S(4,3,2,··· ,2,1)V >
.

Corollary 1.2.14. Let H(r) be the Hilbert function of
Sym•(S(3,1,1,··· ,1,0)V )

<S(4,3,2,··· ,2,1)V >
. Let

Symr(S(3,1,1,··· ,1,0)V ) =
⊕

|λ|=r(d+1)

S ⊕mλ
λ ,
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where mλ ∈ Z≥0 and λ = (λ1, λ2, · · · , λd) is a partition of r(d + 1), i.e.,
∑d

i=1 λi =

r(d + 1) and λ1 ≥ λ2 ≥ · · · ≥ λd. Then

(1.2.2) H(r) ≥
∑

|λ|=r(d+1)
λd−k+···+λd≤rk

mλ(dimCSλ),

for any r ≥ 2 and any k = 0, ..., d− 1.

Corollary 1.2.14 is an elementary consequence of the combinatorial Littlewood-

Richardson rule (for example, see [8, Appendix]). In fact any Sλ appearing in the

decomposition of S(4,3,2,··· ,2,1)V ⊗(S(3,1,1,··· ,1,0)V )⊗(r−2) satisfies λd−k + · · ·+λd ≥ rk+1,

for any r ≥ 2 and any k = 0, ..., d− 1.

It is tedious but entirely possible to compute the right hand side of (1.2.2) for

small r. These computations suggest that the Hilbert function H(r) grows faster than

O
(
rk(d−k

2 )
)

for any k = 0, ..., d− 1. So Corollary 1.2.14 suggests that, for sufficiently

large d, the symmetric open subscheme U of Hilbd+1(Cd) has dimension greater than

d(d + 1), which implies that Hilbd+1(Cd) is reducible. To prove Theorem 1.2.11, we

actually find large dimensional families of ideals in a very explicit way.



CHAPTER II

Realization of Ir as a multiplier ideal for small r

2.1 Overview of multiplier ideals

In this section we give brief definitions and properties of multiplier ideals. For a

general introduction, we refer to [19]. Let X be a smooth complex algebraic variety

of dimension d. To define the multiplier ideals, we need log resolutions.

Definition 2.1.1 (Simple normal crossing support). Let Y be a smooth complex

variety with dimension dim Y = d and E ⊂ Y be a hypersurface (effective Weil

divisor). Write E = a1E1+· · ·+arEr, where the Ei are distinct irreducible components

of E and each ai > 0. Then E has simple normal crossing support (abbreviated SNC

support) if the Ei are all smooth, and if E1 + · · · + Er is defined in a neighborhood

of any point by an equation in local analytic coordinates of the type

z1 · ... · zk = 0

for some k ≤ d.

Definition 2.1.2 (Log resolution). Let b ⊂ OX be an ideal sheaf. A log resolution

of b is a projective birational map

µ : X ′ → X,

12



13

with X ′ non-singular, such that

b · OX′ = OX′(−F ),

where F is an effective divisor on X ′, and F + except(µ) has simple normal crossing

support.

Example 2.1.3. Let

b = (x3, y2) ⊂ C[x, y].

Then a log resolution µ : X ′ → X of b is obtained by the sequence of three blowings

up at singular points. It gives an embedded resolution of the cuspidal cubic {y2 = x3}.

In this case we have

b · OX′ = OX′(−2E1 − 3E2 − 6E3).

Definition 2.1.4 (Relative canonical divisor). Given any log resolution µ : X ′ →

X, we define the relative canonical divisor of X ′ over X by

KX′/X = KX′ − µ∗KX .

This is naturally defined as an effective divisor supported on the exceptional locus of

µ. In fact det(dµ) gives a local equation for the effective divisor KX′/X .

Example 2.1.5. Let µ : X ′ → X be the log resolution of b = (x3, y2) as in Exam-

ple 2.1.3. Then

KX′/X = E1 + 2E2 + 4E3. ¤

Now we define the multiplier ideals associated to an ideal sheaf.

Definition 2.1.6 (Multiplier ideal). Let b ⊂ OX be an ideal sheaf. Choose local

generators f1, · · · , fr ∈ b. Given c > 0, we can define the multiplier ideal J (bc) by

J (bc) :=locally

〈
h

∣∣∣ |h|2
(|f1|2 + · · ·+ |fr|2)c

is locally integrable
〉
.
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Equivalently, let µ : X ′ → X be a log resolution, and let b · OX′ = OX′(−F ).

Then

J (bc) := µ∗OX′(KX′/X − bcF c).

The equivalence is established in [19, 9.3.D].

Remark 2.1.7. J (bc) is independent of the log resolution µ. This is proven in [19,

9.2.A].

Example 2.1.8. Let b = (xe1
1 , . . . , xed

d ) ⊂ C[x1, . . . , xd]. Then

J (bc) =
(
xm1

1 , . . . , xmd
d

∣∣∣
∑

i

mi + 1

ei

> c
)
. ¤

Multiplier ideals satisfy vanishing theorems. Here we introduce Nadel’s vanishing

theorem which we will use in Section 3.4.

Theorem 2.1.9 (Nadel vanishing theorem). Let X be a smooth complex projective

variety, let D be any Q-divisor on X, and let L be any integral divisor such that L−D

is nef and big. Then

H i(X,OX(KX + L)⊗ J (D)) = 0 for i > 0. ¤

We present a well-known property of multiplier ideals.

Definition 2.1.10 (Integrally closed ideal). An ideal a ⊂ OX is integrally closed

if it satisfies either of the following:

(1) If f1, . . . , fr ∈ a are local generators, and g ∈ OX satisfies

|g(z)| ≤loc C ·
∑

|fi(z)|,

for some C > 0, then g ∈ a.

(2) There is a birational proper map ν : X+ → X, with X+ normal, and an

effective Cartier divisor F such that a = ν∗OX′(−F ).
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Corollary 2.1.11. Multiplier ideals are integrally closed.

Conversely one can ask the following question.

Question 2.1.12. Which integrally closed ideal is a multiplier ideal?

Example 2.1.13. Any radical ideal defining the union of disjoint smooth subvarieties

on X can be realized as a multiplier ideal.

2.2 How to realize Ir as a multiplier ideal for small r

Let Ir ⊂ OC3 be the ideal of r very general lines passing through the origin. Here

we illustrate how Ir can be realized as a multiplier ideal for small r, and give a brief

intuition on why it cannot be generalized to r À 0.

It is convenient to describe r very general lines passing through O as follows. Fix r

very general points q1, · · · , qr on P2 and think of Ir as the ideal of the affine cone over

the r points. Let Cd ⊂ P2 be a smooth curve of degree d passing through q1, · · · , qr

on P2 and let fd ∈ C[x, y, z] denote the corresponding homogeneous polynomial.

The following type of singularities will be necessary in the proof of the first state-

ment of the main theorem.

Definition 2.2.1. Two smooth curves meeting a point q are said to have the same

n-th order tangent direction at q if exactly n successive blow-ups are needed to resolve

the singularity at q in a minimal way. More concretely, two curves have the same

n-th order tangent direction at q if their union near q is analytically isomorphic to

{y(y − xn) = 0} ⊂ A2.

We deal with the first statement of the main theorem.

Theorem 2.2.2. When r ≤ 10, Ir is a multiplier ideal (of a rationally defined cone-

like divisor).
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Below we give an idea of how to prove this theorem. The precise proof will be

given in Theorem 2.2.4.

Sketch of Proof. It is easy to realize Ir as a multiplier ideal of an ideal with weighting

coefficient 2, when r ≤ 5, in other words, there is a curve of degree 1 or 2 passing

through q1, · · · , qr. We have

I1 = J (X, 2 · (f1, f
′
1)

I2 = J (X, 2 · (f1, f
′
2))

I3 = J (X, 2 · (f2, f
′
2, f

′′
2 ))

I4 = J (X, 2 · (f2, f
′
2))

I5 = J (X, 2 · (f2, f
′
3, f

′′
3 )),

where f ′ and f ′′ correspond to general curves meeting C transversally at each of

q1, · · · , qr, and the subscripts indicate the degrees.

However as soon as r = 6 it is impossible to realize Ir as a multiplier ideal of an

ideal b with weighting coefficient 2. Equivalently I6 is not an adjoint ideal. Because

if it were an adjoint ideal, b would vanish along 6 general lines so ordob ≥ 3 hence

J (X, 2 · b) ⊂ m4

but I6 6⊂ m4.

Therefore it is natural to use a smaller weighting coefficient in order to realize I6 as

a multiplier ideal. But to have a smaller coefficient, worse singularities are required.

We have

I6 = J (X,
3

2
· (f3, f

′
5)),

where f ′ corresponds to a general curve having the same tangent direction as C3 at

each of q1, · · · , q6.
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As r increases up to 10, we keep making coefficients smaller and singularities

worse. We realize I10 as a multiplier ideal as follows.

We have

I10 = J (X,
5

4
· (f4, f

′
11)),

where f ′ corresponds to a general curve having the same 4-th order tangent direction

as C4 at each of q1, · · · , q10.

The main observation is that the ideals which are used in the above examples have

somewhat similar log resolutions. They consist of blowing-up at the origin, followed

by blowing-up along a curve in the first exceptional divisor, followed by blowing-up

along a curve in the second exceptional divisor, and so on. Therefore we may guess

that if Ir were realized as a multiplier ideal of an ideal b then a log resolution of

(X, b) would be obtained by the same process. But this will not work for sufficiently

large r. To give the reader a quick intuition, we present the following theorem, which

essentially says that the above examples cannot be generalized to large r.

Theorem 2.2.3. For sufficiently large r, the ideal Ir cannot be realized as a multiplier

ideal of an ideal b satisfying the following properties (∗):

• b is a homogeneous ideal,

• b is generated by two elements fd1 and f ′d2
having degree d1 and d2 respectively,

• and two curves Cd1 and Cd2 defined by fd1 and f ′d2
respectively are smooth and

have the same n-th order tangent direction at each of q1, · · · , qr for some n.

Proof. Let d1 ≤ d2. Suppose to the contrary that

Ir = J (X, c · b),

for some c > 0 and for some ideal b satisfying the stated properties.
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Let S be a finite set of several general complex numbers. We consider the product

of several general elements in b:

g =
∏

λ∈S

(fd1(x, y, z) + λf ′d2
(x, y, z)).

Then after blow up at the origin, on a suitable affine chart, the proper transform of

g becomes
∏

λ∈S

(fd1(x, y, 1) + λzd2−d1f ′d2
(x, y, 1)).

There are two distinguished singularities along curves {fd1 = zd2−d1 = 0} and {fd1 =

f ′d2
= 0}. We first resolve the singularity along {fd1 = zd2−d1 = 0}, and then resolve

the singularity along the proper transform of {fd1 = f ′d2
= 0}.

Let ψ be the minimal resolution of b, i.e.,

ψ = σn ◦ · · · ◦ σ1 ◦ πd2−d1 ◦ · · · ◦ π1 ◦ π0,

where π0 : X0 → X is the blow-up of X at the origin O, πi : Xi → Xi−1 (1 ≤ i ≤

d2 − d1) is the blow-up of Xi along the intersection of the exceptional divisor and

the proper transform of the affine cone over Cd1 , and σi : Xi+d2−d1 → Xi+d2−d1−1

(1 ≤ i ≤ n) is the blow-up along the intersection of the proper transforms of the

affine cones over Cd1 and Cd2 .

Let X ′ = Xn+d2−d1+1. Then we have

KX′/X = 2E0 + 3E1 + · · ·+ (d2 − d1 + 2)Ed2−d1

+ Ed2−d1+1 + · · ·+ nEd2−d1+n,

b · OX′ = OX′

(
− d1E0 − (d1 + 1)E1 − · · · − d2Ed2−d1

− Ed2−d1+1 − · · · − nEd2−d1+n

)
.
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Then since J (X, c · b) vanishes along the given r lines, we have c ≥ n+1
n

. Then

J (X, c · b) ⊂ ψ∗OX′

(
(d2 − d1 + 2)Ed2−d1 −

⌊n + 1

n
d2

⌋
Ed2−d1

)

= ψ∗OX′

((− d1 + 2−
⌊d2

n

⌋)
Ed2−d1

)
.

On the other hand, since Cd1 and Cd2 have the same n-th order tangent direction

at each of r points, the intersection number of Cd1 and Cd2 on P2 becomes

Cd1 · Cd2 = d1d2 ≥ nr.

Thus d2

n
≥ r

d1
, which implies

−d1 + 2−
⌊d2

n

⌋
≤ −d1 + 2−

⌊ r

d1

⌋
≤ −b2√rc+ 3.

Let d = ordOIr. Then
(

d+1
2

) ≤ r <
(

d+2
2

)
. Let D be a general element in Ir∩md+1.

Then ordEd2−d1
ψ∗D = d + 1 < b2√rc − 3 for sufficiently large r. So

D 6∈ ψ∗OX′

((− b2√rc+ 3
)
Ed2−d1

)
,

which is a contradiction.

We now formally prove the realization of Ir for r ≤ 10. We prove in fact that Ir

can be realized by using the sort of resolution we have just described.

Theorem 2.2.4. For r ≤ 10, the ideal Ir can be realized as a multiplier ideal of an

ideal b satisfying the three properties (∗) in Theorem 2.2.3. In particular, Ir is a

multiplier ideal of a rationally defined cone-like divisor.

Proof. We keep using notations and log resolutions in the proof of Theorem 2.2.3.

We show that

Ir = J (X, c · b) = J (X,
n + 1

n
· b),

for some ideal b = (fd1 , f ′d2
) satisfying (∗).
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r d1 d2 n c

1 1 1 1 2

2 1 2 1 2

3 2 4 2 3
2

4 2 2 1 2

5 2 6 2 3
2

6 3 5 2 3
2

7 3 5 2 3
2

8 3 11 4 5
4

9 3 7 2 3
2

10 4 11 4 5
4

For each of the 10 cases, the existence of an ideal b satisfying the properties (∗)

can be checked by using Macaulay 2. Then we have

J (X, c · b)

= J
(
X,

n + 1

n
· b

)

= J
(
X,

n + 1

n
· (fd1 , f ′d2

)
)

= ψ∗OX′

(
KX′/X −

⌊
cd1E0 + c(d1 + 1)E1 + · · ·+ cd2Ed2−d1

+ cEd2−d1+1 + · · ·+ cnEd2−d1+n

⌋)

= ψ∗OX′

(
2E0 + 3E1 + · · ·+ (d2 − d1 + 2)Ed2−d1

+ Ed2−d1+1 + · · ·+ nEd2−d1+n

− ⌊
cd1E0 + c(d1 + 1)E1 + · · ·+ cd2Ed2−d1

+ cEd2−d1+1 + · · ·+ cnEd2−d1+n

⌋)
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= ψ∗OX′

(
(2− bcd1c)E0 + (3− bc(d1 + 1)c)E1 + · · ·+ (d2 − d1 + 2− bcd2c)Ed2−d1

− Ed2−d1+n

)

= ψ∗OX′

((− d1 + 2− bd2

n
c)Ed2−d1 − Ed2−d1+n

)

= Ir.



CHAPTER III

Curves on a smooth surface

In this chapter we develop the main tools which will be used in the proof of

the main theorem. In particular we obtain some bounds on colengths of multiplier

ideals on surfaces. If we specify t-multiplicity, we have strong bounds on colengths of

multiplier ideals and intersection multiplicities of two curves.

3.1 Preliminaries

We study curves on a smooth surface, their multiplier ideals and log canonical

thresholds. The theorems presented in this section will be proved in the following

sections. Throughout this thesis, we use the same notations for multiplier ideals and

log canonical thresholds as in [19].

We now introduce some definitions for a curve on a smooth surface. Let S be a

complex smooth surface, and C ⊂ S an effective (possibly non-reduced or reducible)

divisor. Fix q ∈ S.

First,

Definition 3.1.1 (Component multiplicity). The component multiplicity of C at

q is the maximum coefficient of any component in C that passes through q, i.e., if

22
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C =
∑

aiCi with Ci prime divisors, then

comp-multq(C) = max{ai|Ci 3 q}.

Our next invariant measures the maximal order of contact of C with any of its

tangent lines.

Definition 3.1.2 (t-multiplicity). Let

η : Blq(S) = S̃ −→ S

be the blow up of S at q, with exceptional divisor E, and denote by C̃ the proper

transform of C. The t-multiplicity of C at q is

t-multq(C) = maxp∈E(C̃ · E)p,

where (C̃ · E)p denotes the intersection multiplicity of C̃ and E at a point p ∈ E.

Finally recall that the Arnold multiplicity of C at q is

Arnold-mult(C; q) =
1

lct(C; q)
.

Example 3.1.3. Let C = {(y− x)(y + x)(y + x2)(y− x2)(y2− x3) = 0} ⊂ C2. Then

t-multO(C) = 4. (See Figure 3.1.)

We develop a new reduction method from the general case to the toric case. Before

stating the theorems, we need some definitions.

Definition 3.1.4. A permutation [s1, s2, · · · , sn] of a sequence [1, 2, · · · , n] of length

n is called upper unimodal or simply unimodal if there exists w, 1 ≤ w ≤ n such that

1 = s1 < s2 < · · · < sw > sw+1 > sw+2 > · · · > sn.

We always assume that s1 = 1.
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x
K1.0 K0.5 0 0.5 1.0

K1.0

K0.5

0.5

1.0

C = {(y − x)(y + x)(y + x2)(y − x2)(y2 − x3) = 0} ⊂ C2

t-multO(C) = 4

Figure 3.1: An example of t-multiplicity

Definition 3.1.5. Let S be a smooth complex surface. Let ψ : S̃ → S be a proper

birational morphism which is a sequence of n smooth blow-ups. By abuse of nota-

tions, let Fi be (the proper transform of) the exceptional curve of the i-th blow-up.

Suppose that the exceptional locus of ψ is a linear chain of n smooth rational curves.

The chain (illustrated diagrammatically)

• • · · · •
F1 = Fs1 Fs2 Fsn

will be said to be unimodal if s1 = 1 and the sequence s1, s2, · · · , sn is unimodal.

The following three theorems will be very useful in the proof of Theorem 1.

Theorem 3.1.6. Let S, S̃ be smooth complex surfaces. Let ψ : S̃ → S be a proper

birational morphism whose exceptional locus forms a unimodal linear chain. Let F

be the exceptional locus of ψ, and let p = ψ(F ). Then there are analytic coordinates

(x, y) at p, depending on ψ, such that we can associate to any effective divisor C ⊂ S

a unique integrally closed monomial ideal JC of the type
∏

j (xaj , ybj) (aj ≥ bj ≥ 1 for
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any j) satisfying the following properties:

(i) C 7→ JC is additive, i.e. JC1+C2 = JC1 · JC2 for any effective divisors C1 and C2,

(ii) multpC = multpC
′, where C ′ is a general element in JC,

(iii) J (S, c · C) ⊂ J (S, c · C ′) for any 0 ≤ c < 1,

(iv) and if F contains a place of log canonical singularities of C then

lct(C; p) = lct(C ′; p).

In the 2-dimensional case, the monomial ideal JC in the theorem may give more

precise information about C than a term ideal [19, 9.3.C] or an initial monomial ideal

[4, Chapter 15], [3, proof of Theorem 1.1], in the sense that JC satisfies (iv) while the

others do not in general. As an application, we obtain a bound of the colength of the

multiplier ideal of an effective Q-divisor on a surface.

Theorem 3.1.7. Let S be a smooth surface, C an effective divisor on S, and p a point

on C. Let m = multpC and l = lct(C; p). Then for any 0 ≤ c < 1, the inequality

colength J (S, c · C)p ≥
⌊cm− 1

lm− 1

⌋

holds.

Thanks to the Nadel vanishing theorem [19, Theorem 9.4.8], Theorem 3.1.7 can

provide better bounds on cohomologies, especially dimensions of global sections, of

sheaves on smooth projective surfaces. This is related to Nagata’s theorem [26], which
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stimulated research on the existence of curves of a given degree with prescribed sin-

gularities on the projective plane (for example, see [1],[9],[10],[11],[27] and references

therein). Along these lines we consider a variant of Nagata’s theorem where the log

canonical threshold is prescribed at given points. Before stating Theorem 3.1.9, We

define a notion of equisingularity at the points.

Definition 3.1.8 (Almost-equisingularity). Let S be a smooth surface, C an effective

divisor on S, and p a point on C. If C has the same multiplicity, the same log

canonical threshold and the same 1-dimensional (component) multiplicity at each of

several points p1, · · · , pr, then we say that C is almost-equisingular at p1, · · · , pr.

Theorem 3.1.9. Fix r > 9 very general points p1, · · · , pr on P2. Suppose that a

curve C of degree d is almost-equisingular at pi for 1 ≤ i ≤ r, and that the LC-loci

of C at pi are 0-dimensional. Let l ∈ Q denote the log canonical threshold of C at pi.

Then the inequality

d ≥ 3

2l
b√rc

holds.

3.2 Proof of Theorem 3.1.6 : Plane curves and monomializa-
tion

In this section we prove Theorem 3.1.6.

Theorem 3.2.1. Same assumptions as in Theorem 3.1.6. Then there are analytic

coordinates (x, y) at p, depending on ψ, such that we can associate to any effective

divisor C ⊂ S a unique integrally closed monomial ideal JC of the type
∏

j (xaj , ybj)

(aj ≥ bj ≥ 1 for any j) satisfying the following properties:
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(i) JC1+C2 = JC1 · JC2 for any effective divisors C1 and C2,

(v) ψ is a log resolution of JC,

(vi) and

ordFi
ψ∗C = ordFi

ψ∗C ′ for any irreducible exceptional curve Fi ⊂ S̃,

where C ′ is a general element in JC.

Lemma 3.2.2. Theorem 3.2.1 implies Theorem 3.1.6.

Proof. The property (ii) follows from (vi):

multpC = ordF1ψ
∗C = ordF1ψ

∗C ′ = multpC
′.

Let 0 ≤ c < 1. Since ψ is a log resolution of JC hence of C ′, the exceptional

divisors of ψ are the only ones contributing to J (S, c · C ′). Applying birational

transformation rule [19, Proposition 9.2.33] of multiplier ideals to ψ, we get

J (S, c · C) = ψ∗
(
J (S̃, ψ∗cC)⊗OS̃(KS̃/S)

)

⊂ ψ∗
(
J (S̃, ψ∗cC ′)⊗OS̃(KS̃/S)

)
= J (S, c · C ′),

because

J (S̃, ψ∗cC) = J
(

S̃, c
∑

i

(ordFi
ψ∗C)Fi + c(proper transform of C)

)

⊂ J
(

S̃, c
∑

i

(ordFi
ψ∗C)Fi

)

= J
(

S̃, c
∑

i

(ordFi
ψ∗C ′)Fi

)
(by (vi))

= OS̃

(
−bc

∑
i

(ordFi
ψ∗C ′)Fic

)
(by (v))

= OS̃

(
−bc

∑
i

(ordFi
ψ∗C ′)Fic − bc(proper transform of C ′)c

)

(by (v) and 0 ≤ c < 1)

= J (S̃, ψ∗cC ′),
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where we have used the fact that a general element in a monomial ideal of the type

∏
j (xaj , ybj) (aj ≥ bj ≥ 1 for any j) is reduced.

It remains to show (iv), but it follows from

lct(S, C; p) = mini

ordFi
KS̃/S + 1

ordFi
ψ∗C

= mini

ordFi
KS̃/S + 1

ordFi
ψ∗C ′ = lct(C ′; p).

We actually prove the following

Theorem 3.2.3. Same assumptions as in Theorem 3.1.6. Then there are analytic

coordinates (x, y) at p such that each analytically irreducible curve C gives rise to JC

satisfying (v) and (vi).

Lemma 3.2.4. Theorem 3.2.3 implies Theorem 3.2.1.

Proof. Any effective divisor C in a suitable analytic neighborhood of p can be ex-

pressed as

C =
n∑

i=1

miCi,

where Ci are analytically irreducible components of effective divisors and mi are

positive integers. Then we define JC by

JC :=
n∏

i=1

(JCi
)
mi

.

We recall a fact that a general element in JC is locally the product of each general ele-

ment in JCi
(cf. [5, p.197], [28, p.332], [30, p.386, Thm 3]). Then it is straightforward

to check that (i), (v) and (vi) are satisfied.

The following lemma, which deals with the singular case, plays a key role.
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Lemma 3.2.5. Same assumptions as in Theorem 3.1.6. Then there are analytic

coordinates (x, y) at p such that each analytically irreducible singular curve C at p

gives rise to JC satisfying (v) and (vi).

The rest of this section is devoted to the proof of Lemma 3.2.5. We recall the

Puiseux parametrization of an analytically irreducible curve.

Proposition 3.2.6 ([2], p386). Suppose that V ⊂ U ⊂ C2 is an irreducible complex

analytic subset of dimension 1 where U is a domain. Suppose that 0 ∈ V . Then there

exists an analytic (holomorphic) map f : D→ V , where D is the unit disc, such that

f(0) = 0 and f(D) = N where N ⊂ V is a neighbourhood of 0 in V , f is one to

one, and further f |D\{0} is a biholomorphism onto N \{0}. In fact there exist suitable

local coordinates (x, y) in C2 such that f is then given by ξ → (x, y) where x = ξl,

y =
∑∞

n=m cnξ
n where m > l. We call this a Puiseux parametrization of V .

Lemma 3.2.7. Same hypotheses and notations as in Lemma 3.2.5. Let C be a locally

analytically irreducible singular curve C at p, and consider a Puiseux parametrization

of C : x′ = ξl, y′ =
∑∞

n=m cnξn where m > l. Then

ordFi
ψ∗C = ordFi

ψ∗C̃ for any irreducible exceptional curve Fi of ψ,

where C̃ := {(x′)m − ω(y′)l = 0, ω is a general element in C}.

Proof. We recall that if C is singular, then its first Puiseux pair (m, l) is uniquely

determined [2, p.406]. Let ψ̃ be a minimal log resolution of C̃. Then the exceptional

locus of ψ̃ forms another unimodal linear chain F̃ . Kuwata [18, pp.710-711, 715-716]

showed that, loosely speaking, C and C̃ behave the same along F̃ hence any part

of F̃ . In particular they behave the same along F ∩ F̃ where we abuse notations.

Precisely speaking, let

ψ = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕt, ψ̃ = φ1 ◦ φ2 ◦ · · · ◦ φu,
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where ϕi and φi are single blow-ups. Let v, 1 ≤ v ≤ t be the largest number such

that

ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕv = φ1 ◦ φ2 ◦ · · · ◦ φv =: µ.

Then

ordFi
µ∗C = ordFi

µ∗C̃ for any irreducible exceptional curve Fi of µ,

which implies

ordFi
ψ∗C = ordFi

ψ∗C̃ for any irreducible exceptional curve Fi of ψ.

The following is a toric geometric fact which is known by experts. Since the author

cannot find a reference, he includes a proof. He would like to thank Mattias Jonsson

and Howard Thompson for valuable discussions.

Lemma 3.2.8. Same hypotheses and notations as in Lemma 3.2.5. There are analytic

coordinates (x, y) at p and a pair (a, b), a ≥ b of positive integers such that ψ is a

minimal log resolution of (xa, yb).

Proof. The pair (a, b), a ≥ b of two relatively prime integers is obtained by Lemma 3.5.3.

Suppose that the exceptional locus F of ψ is Fs1-Fs2-· · · -Fst . Let q0 be the length

of the first consecutively increasing part of [s1, ..., st] so that s1 = 1, s2 = 2, · · · ,

sq0 = q0, and st = q0 +1. Take general coordinates (x̃, ỹ) centered at p. Then there is

a sequence [ε1, · · · , εq0 ] of q0 complex numbers such that after change of coordinates

x = x̃, y = ỹ + ε1x̃ + · · ·+ εq0x̃
q0 ,

ψ is a log resolution of (xq0+1, y). In these coordinates (x, y), ψ is a minimal log

resolution of (xa, yb). In fact, after (q0 + 1)-th blow-up, each blow-up takes place
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only at an intersection of two irreducible exceptional curves, which can be considered

as an origin of an affine chart at each step of the well-known resolution process of

singularities of a monomial ideal (xa, yb).

Definition 3.2.9. Let ψ : S̃ → S be a proper birational morphism whose exceptional

locus forms a unimodal linear chain of t smooth rational curves. For any curve D,

there is a uniquely determined sequence (mi(D))t
i=1 of multiplicities (of the proper

transform of D) at the center of the i-th blow-up. We call it the multiplicity sequence

of D with respect to ψ. (cf. [2, p.503])

Example 3.2.10. Let ψ : S̃ → C2 be the minimal log resolution of {x3 − y2 = 0}.

Let D : x = ξ10, y = ξ40 + ξ45 + ξ47. Then the multiplicity sequence of D is (10, 10, 0)

with respect to ψ. Note that ψ∗D = 10F1 + 20F2 + 30F3 + (proper transform of D),

and that ψ is not a resolution of D.

Lemma 3.2.11. Let ψ : S̃ → S be a proper birational morphism whose exceptional

locus forms a unimodal linear chain. Let (x′, y′) be any analytic coordinates on S.

Let D be a general member in a monomial ideal of the type (x′`, y′℘) ⊂ C[x′, y′]. Then

the multiplicity sequence of D with respect to ψ is a partial Euclidean sequence with

respect to (`, ℘) (see Definition 3.5.2).

Proof. This follows from the well-known resolution process of singularities of a mono-

mial ideal (x′`, y′℘). Note that ψ is a sequence of smooth blow-ups. As long as the the

centers of the blow-ups lie in the proper transforms of D, the multiplicity sequence

of D with respect to ψ is determined by the Euclidean algorithm. But as soon as the

center of a blow-up is away from the proper transform of D, the Euclidean algorithm

stops contributing to the multiplicity sequence. In fact since ψ is a linear chain, if

a blow-up takes place away from the proper transform of D, then all the following
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blow-ups never hit the proper transform of D.

Proof of Lemma 3.2.5. By Lemma 3.2.7, we may assume that C is defined by {(x′)`−

ω(y′)℘ = 0, ω is a general element in C}. Thanks to Lemma 3.2.11, the multiplicity

sequence of C with respect to ψ is a partial Euclidean sequence with respect to (`, ℘).

It is a sum of finitely many, say n, full Euclidean sequences with respect to (`i, ℘i)
n
i=1

by Lemma 3.5.4. Lemma 3.2.8 gave us coordinates (x, y) so that the multiplicity

sequence of a general member in (x`i , y℘i) agrees with the full Euclidean sequences

with respect to (`i, ℘i), hence that ψ is a log resolution of (x`i , y℘i). So we can take

JC =
∏n

i=1 (x`i , y℘i). The uniqueness follows from the construction.

Example 3.2.12. Let ψ : S̃ → C2 be the minimal embedded resolution of {x4−y3 =

0}. Let (3, 1, 1, 0) be a multiplicity sequence of some curve with respect to ψ. Then

(3, 1, 1, 0) = (2, 1, 1, 0) + (1, 0, 0, 0) is the multiplicity sequence of a general member

in (x3, y2)(x, y).

To complete the proof of Theorem 3.2.3, it remains to treat the smooth case.

Lemma 3.2.13. Same assumptions as in Theorem 3.1.6. Then there are analytic

coordinates (x, y) at p such that each analytically irreducible smooth curve C at p

gives rise to JC satisfying (v) and (vi). In particular JC = (xj, y) for some j.

Proof. Suppose that the exceptional locus F of ψ is Fs1-Fs2-· · · -Fst . Let q0 be the

length of the fist consecutively increasing part of [s1, ..., st] so that s1 = 1, s2 = 2,

· · · , sq0 = q0, and st = q0 + 1. Since C is smooth at p, after the i-th blow-up the

proper transform of C meets Fi transversally or does not meet Fi at all. So the proper

transform of C under ψ meets one, say Fj, of F1, F2, ..., Fq0 , Fq0+1 transversally. Then

a monomial ideal (xj, y) is the desired one.
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3.3 Proof of Theorem 3.1.7 : Morphism of Log Canonical
Singularities

In this section we prove Theorem 3.1.7.

Let X be a smooth complex surface, p a point on X, and C ⊂ X a (possibly

reducible and non-reduced) curve passing through p. Let S be a local analytical

neighborhood of X at p. Suppose that J (S, c′C) := J (X, c′C)|S is co-supported at

p for some c′ ∈ Q. Let r be the maximum coefficient of any component of C passing

through p. Consider the minimal log resolution µ : S ′ → S of (S, C), which consists

of smooth blow-ups. Such a resolution exists and is uniquely obtained when we blow

up as few times as possible ([2, p.498]). Let

KS′/S =
∑

i

aiFi and µ∗C =
∑

i

biFi + (proper transform of C),

where i′s denote the order of smooth blow-ups and Fi are the corresponding irreducible

exceptional divisors. Then we have

lct(S,C) = min
{

mini
ai + 1

bi

,
1

r

}
.

If lct(S,C) = 1
r

then the LC-locus is 1-dimensional, while if lct(S,C) = mini
ai+1

bi
< 1

r

then the LC-locus is 0-dimensional.

Definition 3.3.1. We assume that the LC-locus is 0-dimensional. If
aj+1

bj
= lct(S,C)

then Fj is called a place of log canonical singularities. It may be possible that there

are many places of log canonical singularities.

Definition 3.3.2. For any irreducible exceptional curve Ft, there is a unique proper

birational morphism ψt : St → S such that µ factors through ψt and that the push-

forward of Ft is the only one irreducible exceptional (−1)-curve on St. In fact, ψ is
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obtained by keeping contracting (−1)-curves until there is no other (−1)-curve than

(the push-forward of) Ft. By abuse of notation, we denote the push-forward of Ft by

Ft.

If Ft is a place of log canonical singularities, then we call ψt the morphism of log

canonical singularities with respect to Ft. By reordering blow-ups, we may assume

that the exceptional locus of ψt is {F1, F2, · · · , Ft}.

Proposition 3.3.3 ([18]). The exceptional locus of the morphism ψt of log canonical

singularities is a unimodal linear chain.

Proof. Since µ is a minimal log resolution, we can apply Kuwata’s result [18, pp

715–716].

Remark 3.3.4. Mattias Jonsson pointed out that Proposition 3.3.3 follows from [6,

Lemma 2.11] as well.

Proof of Theorem 3.1.7. Let ψ be a morphism of log canonical singularities. Then by

Proposition 3.3.3, the exceptional locus of ψ forms a unimodal linear chain. So we

can apply Theorem 3.1.6 and get

J (S, c · C) ⊂ J (S, c · C ′),

where C ′ is a general element in JC . Hence

colength J (S, c · C) ≥ colength J (S, c · C ′).

Since multpC = multpC
′ and lct(C; p) = lct(C ′; p), it is enough to prove for C ′ hence

for monomial ideals. But this is an easy application of Howald’s theorem [15]. In

fact J (C2, (xm, y(lm−1)m)
c

lm−1 ) has the smallest colength in the collection of multiplier

ideals

{J (cw · I) | w ∈ R>0, I : monomial ideal,

m = w · ordpI, l = infr∈R〈J (rw · I) ⊆ mp〉}.
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We note that the edge of the Newton polytope corresponding to (xm, y(lm−1)m)
1

lm−1

passes through (0,m) and (1
l
, 1

l
).

Let N(c,m, l) denote the number of non-negative lattice points in the quadrilateral

region with vertices (−1,−1), (−1, c
l
− 1), ( c

l
− 1, c

l
− 1) and ( cm

lm−1
− 1,−1) ∈ R2

(including boundaries). Then for any 0 ≤ c < 1, the inequality

colength J (S, c · C)p ≥ N(c,m, l)

holds. It is elementary to check that

N(c,m, l) ≥
⌊cm− 1

lm− 1

⌋
.

3.4 Proof of Theorem 3.1.9: Vanishing theorem

In this section we prove Theorem 3.1.9.

As a matter of notation, let (C1 · C2)p denote the intersection multiplicity of C1

and C2 at p.

Proposition 3.4.1. Let S be a smooth surface and p a point on S. Let m1 ∈ N.

Let C1 be a smooth effective divisor and C2 be another effective divisor whose support

does not contain C1. Assume p ∈ C1 ∩ C2. Then the following are equivalent.

(i) The multiplier ideal J (S, c(m1C1 +C2))p is co-supported at {p} for some c ∈ Q>0.

(ii) (C1 · C2)p > m1.

Proof. (i) ⇒ (ii).

Since J (S, c(m1C1 +C2))p is co-supported at {p} but not along C1, we have cm1 < 1.

Since J (S, cC2 + cm1C1) is non-trivial and C1 is smooth, Inversion of adjuction [19,

Corollary 9.5.11] implies that J (C1, c(C2)C1
) is non-trivial, which means

c(C1 · C2)p ≥ 1.
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The desired inequality follows from cm1 < 1.

(ii) ⇒ (i).

Since the intersection multiplicity is an integer, we have (C1 · C2)p ≥ m1 + 1. Take

a minimal resolution µ : S̃ → S of singularities of (S,m1C1 + C2) at p. Let Fj be

the exceptional divisor of µ, with which the proper transform of C1 meets. As in

Definition 3.3.2, there is a unique proper birational morphism ψj : Sj → S such

that µ factors through ψj and that the push-forward of Fj is the only one irreducible

exceptional (−1)-curve on Sj. Since C1 is smooth, the exceptional locus of ψj forms

a linear chain. Suppose that the chain consists of j irreducible exceptional divisors.

Then (C1 ·C2)p = ordFj
ψ∗j C2. Since ordFj

ψ∗j C1 = j and (C1 ·C2)p ≥ m1 + 1, we have

lct(S, m1C1 + C2) ≤
1 + ordFj

KSj/S

ordFj
ψ∗j (m1C1 + C2)

≤ j + 1

jm1 + m1 + 1
<

1

m1

.

So if c = lct(S,m1C1 + C2) then J (S, c(m1C1 + C2))p is co-supported at {p}.

Proposition 3.4.2. Fix r distinct points p1, · · · , pr on a smooth projective surface

S. Assume that an effective divisor C is almost-equisingular at pi for 1 ≤ i ≤ r,

and that the LC-loci of (S, C) at pi are 0-dimensional. Let m = multpi
C. Fix a real

number m′ with m/2 < m′ < m. Suppose that

(C − uC ′) · C ′ < (u + 1)r

for any u, m′ ≤ u ≤ m− 1 and for any curve C ′ ≤ C passing through p1, · · · , pr.

Then there is no non-reduced curve D ≤ C, which has multiplicity ≥ m′ and

passes through p1, · · · , pr. In particular, the local multiplier ideal J (S, (1/m′)C)pi
is

trivial or co-supported at pi.

Proof. Suppose that there is a non-reduced curve D ≤ C, which has multiplicity

u ≥ m′ and passes through p1, · · · , pr. If Dred is singular at pi, i.e. multpi
Dred ≥ 2,
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then

m = multpi
C ≥ multpi

D ≥ multpi
uDred ≥ 2u ≥ 2m′ > m,

which is absurd. So Dred is smooth at pi. By Proposition 3.4.1 the intersection

multiplicity of Dred and C − uDred at each pi is at least (u + 1).

Hence the global intersection number

(C − uDred) ·Dred ≥ (u + 1)r,

but this contradicts our assumption.

Corollary 3.4.3. Same assumptions as in Proposition 3.4.2. Write C = C<m′ +

C≥m′, where C<m′ (resp. C≥m′) is the union of irreducible components of C with

multiplicity < m′ (resp. ≥ m′). Let L ⊂ S a divisor such that L− (1/m′)C<m′ is nef

and big. Then

χ(KS + L) ≥
r∑

i=1

dimC

(
OS,pi

/J (
S,

1

m′C
)

pi

)
.

Proof. Due to Proposition 3.4.2, any component of C≥m′ does not pass through any

pi. So

J
(
S,

1

m′C
)

pi

= J
(
S,

1

m′C<m′

)
pi

.

Since the global multiplier ideal J ( 1
m′C<m′) defines at most zero-dimensional scheme,

we get
r∑

i=1

dimC

(
OS,pi

/J ( 1

m′C<m′
)

pi

)
≤ dimC

(
OS/J ( 1

m′C<m′
))

= χ
(
OS/J ( 1

m′C<m′
))

.

Consider the exact sequence

0 −→ J
( 1

m′C<m′

)
−→ OS −→ OS

J ( 1
m′C<m′)

−→ 0.

Twisting by OS(KS + L) and taking the Euler characteristic, we have

χ(KS + L)− χ
( OS

J ( 1
m′C<m′)

)
= χ

(
OS(KS + L)⊗ J ((1/m′)C<m′)

)
.
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Applying Nadel vanishing theorem to

OS(KS + L)⊗ J (
(1/m′)C<m′

)
,

we get

χ(KS + L)−
r∑

i=1

dimC
(OS,pi

/J ((1/m′)C<m′)pi

)

≥ χ(KS + L)− dimC
(OS/J ((1/m′)C<m′)

)

= χ
(
OS(KS + L)⊗ J ((1/m′)C<m′)

)

= h0
(
OS(KS + L)⊗ J ((1/m′)C<m′)

)
≥ 0.

Proof of Theorem 3.1.9. Let m be the multiplicity of C at pi. Suppose l ≥ 3
2m

. Then

we get

d ≥ mb√rc ≥ 3

2l
b√rc,

where the first inequality follows from [26, p.767] or [10, pp.692-694].

Suppose 3
2m

> l. Thanks to Theorem 3.1.7, we have

colength J (P2,
4l

3
· C)pi

≥ N(
4l

3
,m, l),

where N(4l
3
,m, l) denotes the number of non-negative lattice points in the quadrilat-

eral region with vertices (−1,−1), (−1, 4l/3
l
−1), (4l/3

l
−1, 4l/3

l
−1) and (4lm/3

lm−1
−1,−1) ∈

R2 (including boundaries). It is easy to check that N(4l
3
,m, l) ≥ 2, which yields that

colength J (P2,
4l

3
· C)pi

≥ 2. (∗)

Suppose to the contrary that d < 3
2l
b√rc. Let C< 3

4l
be the union of components

of C with multiplicity < 3
4l

. Set L = 2b√rcH, with H being the hyperplane divisor

on P2, so that L− 4l
3
C is big and nef hence so is L− 4l

3
C< 3

4l
.
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We want to apply Proposition 3.4.2 and Corollary 3.4.3. Let m′ = 3
4l

so m/2 <

m′ < m. Then for any u, m′ ≤ u ≤ m− 1 and for any curve C ′ of degree d′ passing

through p1, · · · , pr, we get

(C − uC ′) · C ′ = (d− ud′)d′

<

(
3

2l
b√rc − 3

4l
d′

)
d′

=
3

4l

(
2b√rc − d′

)
d′

< (u + 1)(2b√rc − d′)d′

≤ (u + 1)r,

where we have assumed d − ud′ > 0 (otherwise (d − ud′)d′ ≤ 0 < (u + 1)r is ob-

vious), and the last inequality follows from (d′ − √r)2 ≥ 0. So the assumptions of

Proposition 3.4.2 and Corollary 3.4.3 are satisfied.

Due to (∗), we have

χ(KP2 + L) =

(
2b√rc − 1

2

)

< 2r

≤
r∑

i=1

dimC(Opi
/J

(4l

3
· C)pi

)
,

which contradicts Corollary 3.4.3.

3.5 Some Combinatorial Lemmas

This section includes, for the convenience of the reader, two combinatorial results

which are elementary in nature but necessary for the completeness of the proofs.

Definition 3.5.1. A permutation [s1, s2, · · · , st] of a sequence [1, 2, · · · , t] of length

t is called upper unimodal or simply unimodal if there exists w, 1 ≤ w ≤ t such that

1 = s1 < s2 < · · · < sw > sw+1 > sw+2 > · · · > st.
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We always assume that s1 = 1.

Definition 3.5.2. Let (`, ℘) be any pair of positive integers with ` ≥ ℘. Then the

Euclidean algorithm allows us to define a sequence r0, q0, · · · , rk, qk in the following

way:

r0 = ℘

` = q0r0 + r1 (0 < r1 < r0)

r0 = q1r1 + r2 (0 < r2 < r1)

... (‡)

rk−2 = qk−1rk−1 + rk (0 < rk < rk−1)

rk−1 = qkrk.

Then we define a unique sequence of integers by

( r0, ..., r0︸ ︷︷ ︸ , r1, ..., r1︸ ︷︷ ︸, ..., rk, ..., rk︸ ︷︷ ︸), (♦)

q0 q1 qk

and we call it the full Euclidean sequence with respect to (`, ℘).

For any n, 1 ≤ n ≤ ∑k
i=0 qi, a sequence consisting of the first n terms in (♦) is

called a partial Euclidean sequence.

Lemma 3.5.3. There is a canonical bijection between the set of unimodal permutation

sequences and the set of full Euclidean sequences with respect to pairs of relatively

prime integers.

Proof. Any unimodal permutation sequence [s1, s2, · · · , st] uniquely defines a sequence

{q0, q1, · · · , qk} of positive integers such that

s1 = 1, s2 = 2, · · · , sq0 = q0,
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sq0+1 = q0 + q1 + 1, sq0+2 = q0 + q1 + 2, · · · , sq0+q2 = q0 + q1 + q2,

sq0+q2+1 = 1 +
3∑

i=0

qi, sq0+q2+2 = 2 +
3∑

i=0

qi, · · · , sq0+q2+q4 = q4 +
3∑

i=0

qi,

and so on.

Note that q0 is the length of the first consecutively increasing part of [s1, s2, · · · , st],

that q1 is the length of the last consecutively decreasing part, that q2 is the length of

the second consecutively increasing part, and so forth.

If we let rk = 1, then rk−1, · · · , r1, r0 are (reverse-)inductively defined as in (‡).

Hence a full Euclidean sequence can be determined. The inverse is straightforward.

Lemma 3.5.4. Any partial Euclidean sequence can be expressed as a sum of finitely

many full Euclidean sequences.

Proof. Any partial Euclidean sequence with respect to (`, ℘) is of the form

( r0, ..., r0︸ ︷︷ ︸ , r1, ..., r1︸ ︷︷ ︸, ..., rk, ..., rk︸ ︷︷ ︸, 0, ..., 0), · · · · · · (∗)

q0 q1 qk

where

r0 = ℘

` = q0r0 + r1 (0 < r1 < r0)

r0 = q1r1 + r2 (0 < r2 < r1)

... (†)

rk−2 = qk−1rk−1 + rk (0 < rk < rk−1)

rk−1 ≥ qkrk.
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Note that the last relation in (†) is an inequality.

We define a sequence

( s0, ..., s0︸ ︷︷ ︸ , s1, ..., s1︸ ︷︷ ︸, ..., sk, ..., sk︸ ︷︷ ︸, 0, ..., 0). · · · · · · (∗∗)

q0 q1 qk

by

sk = rk

sk−1 = qkrk

sk−2 = qk−1sk−1 + sk

...

s0 = q1s1 + s2,

so that this sequence is a full Euclidean sequence with respect to (q0s0 + s1, s0).

Subtracting (∗∗) from (∗), we get

(r0 − s0, ..., r0 − s0︸ ︷︷ ︸, ..., rk−1 − sk−1, ...rk−1 − sk−1︸ ︷︷ ︸, 0, ..., 0)

q0 qk−1

This sequence satisfies (†) with k being replaced by a smaller number, because

ri − si = (qi+1ri+1 + ri+2)− (qi+1si+1 + si+2)

= qi+1(ri+1 − si+1) + (ri+2 − si+2),

for 0 ≤ i ≤ k − 2. Repeating this, we get the desired set of full Euclidean sequences.

3.6 Ruled surfaces

In this section we give a variant of Corollary 3.4.3 on ruled surfaces.

Lemma 3.6.1. Let T be a smooth curve and let E = P(OT ⊕ L), where L is a line

bundle on T with deg L = −w. Let $ : E → T be the natural surjective morphism.
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Fix r distinct points q1, · · · , qr on E with $(qi) 6= $(qj) for any i 6= j. Let C be

an effective divisor in the numerical equivalent class of as + bf, where s denotes the

negative section and f denotes the fiber class. Assume that any component of C does

not contain s.

Let u be a positive integer. Suppose that u > a/2, aw > b− ur, and

C = u · C ′ + C ′′,

where C ′ passes through q1, · · · , qr. Then

C ′ ∼=num s + xf

for some x ≥ w.

Proof. Suppose that C ′ is the union of some fibers on the ruled surface E, i.e., C ′ ∼=num

x · f for some x. Since C ′ passes through r points all of which lie in different fibers,

x ≥ r. By assumption, we have

C ′′ = C − uC ′ ∈ |as + (b− ux)f|.

Since any effective divisor on a ruled surface is nef if and only if it does not contain

a negative section, any component of C is nef. Then C ′′, and hence as + (b − ux)f

should be nef, which implies aw ≤ b−ux. But this contradicts aw > b−ur ≥ b−ux.

It follows that

C ′ ∼=num ys + x · f

for some y ∈ N>0. This yields

C ′′ = C − uC ′ ∈ |(a− uy)s + (b− ux)f|.

If y ≥ 2 then a− uy ≤ a− 2u < 0 by assumption. Then C ′′ cannot be effective.
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Lemma 3.6.2. Same assumptions as above. Fix a positive rational number γ > 0.

Suppose that J (E, γC)qα is trivial or co-supported at qα for each point qα. Then

χ
(
KE + dγaes + (w + dγbe)f

)
>

r∑
α=1

dimC

(
OE,qα/J (E, γC)qα

)
.

Proof. The proof is essentially the same as that of Lemma 3.4.3.

3.7 t-multiplicity

In this section we show that Theorem 3.1.6 can be generalized to obtain some

inequalities on intersection multiplicities and t-multiplicities.

We recall definition of t-multiplicity of a curve at a point on a smooth surface.

Definition 3.7.1 (t-multiplicity). Let

η : Blq(S) = S̃ −→ S

be the blow up of S at q, with exceptional divisor E, and denote by (̃C) the proper

transform of C. The t-multiplicity of C at q is

t-multq(C) = maxp∈E(C̃ · E)p,

where (C̃ · E)p denotes the intersection multiplicity of C̃ and E at a point p ∈ E.

We recall Theorem 3.1.6.

Theorem 3.7.2 (3.1.6). Let S, S̃ be smooth complex surfaces. Let ψ : S̃ → S be a

proper birational morphism whose exceptional locus forms a unimodal linear chain.

Let F be the exceptional locus of ψ, and let p = ψ(F ). Then there are analytic

coordinates (x, y) at p, depending on ψ, such that we can associate to any effective

divisor C ⊂ S a unique integrally closed monomial ideal JC of the type
∏

j (xaj , ybj)

(aj ≥ bj ≥ 1 for any j) satisfying the following properties:
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(i) C 7→ JC is additive, i.e. JC1+C2 = JC1 · JC2 for any effective divisors C1 and C2,

(ii) multpC = multpC
′,

(iii) J (S, c · C) ⊂ J (S, c · C ′) for any 0 ≤ c < 1,

(iv) and if F contains a place of log canonical singularities of C then

lct(C; p) = lct(C ′; p),

where C ′ is a general element in JC.

Theorem 3.7.2 followed from Theorem 3.2.1. We recall Theorem 3.2.1.

Theorem 3.7.3 (3.2.1). Same assumptions as in Theorem 3.7.2. Then there are

analytic coordinates (x, y) at p, depending on ψ, such that we can associate to any

effective divisor C ⊂ S a unique integrally closed monomial ideal JC of the type

∏
j (xaj , ybj) (aj ≥ bj ≥ 1 for any j) satisfying the following properties:

(i) JC1+C2 = JC1 · JC2 for any effective divisors C1 and C2,

(v) ψ is a log resolution of JC,

(vi) and

ordFi
ψ∗C = ordFi

ψ∗C ′ for any irreducible exceptional curve Fi ⊂ S̃,

where C ′ is a general element in JC.

Lemma 3.7.4. The map C 7→ JC in the Theorem 3.7.2 satisfies more properties :

(vii) if C1 is smooth then (C1 · C2)p ≥ (C ′
1 · C ′

2)p,

(viii) t-multpC ≥ t-multpC
′.
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Proof. We stick to the notations in Theorem 3.2.1. If C1 is smooth then multpC1 = 1,

hence the property (ii) implies that JC1 = (xj, y) for some j. Then we have

(C1 · C2)p ≥ ordFj
ψ∗C2,

and

(C ′
1 · C ′

2)p = ordFj
ψ∗C ′

2.

(cf. [9, Proof of Lemma 2.16]) Due to Theorem 3.2.1, we get

ordFj
ψ∗C2 = ordFj

ψ∗C ′
2,

which implies (vii).

It remains to prove (viii). Let C̃ (resp. C̃ ′) be the proper transform of C (resp.

C ′) under the single blow-up at p. Suppose that the exceptional locus of ψ is a linear

chain Fs1 − Fs2 − · · · (s1 = 1). Let p̃ denote the intersection point of F1 and Fs2 .

Then we have

t-multpC ≥ (F1 · C̃)p̃

= ordFs2
ψ∗C − (s2 − 1)ordF1ψ

∗C

= ordFs2
ψ∗C ′ − (s2 − 1)ordF1ψ

∗C ′

= (F1 · C̃ ′)p̃ = t-multpC
′,

where we have used Theorem 3.2.1.

3.8 t-multiplicity and colength

In this section we give a stronger bound on the colengths of multiplier ideals on

surfaces.

We recall Theorem 3.1.7.
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Theorem 3.8.1 (3.1.7). Let S be a smooth surface, C an effective divisor on S, and

p a point on C. Let m = multpC and l = lct(C; p). Then for any 0 ≤ c < 1, the

inequality

colength J (S, c · C)p ≥
⌊cm− 1

lm− 1

⌋

holds.

If t-multiplicity is specified, then we have a stronger inequality.

Proposition 3.8.2. Let S be a smooth surface, C a curve on S and p a point on

C. Let m = multpC, t = t-multpC, and l = lct(C; p). Suppose that J (S, c · C)p is

nontrivial for some 0 < c < 1. Then the inequality

colength J (S, c · C) ≥
⌊(2t−m)(c− l)

lt− 1

⌋
+ 1

holds.

Proof. Let ψ be a morphism of log canonical singularities of (S, C) at p. Then the

exceptional locus of ψ forms a unimodal linear chain. So we can apply Theorem 3.7.2

and Lemma 3.7.4. If the exceptional locus of ψ has only one irreducible exceptional

divisor, then l = 2
m

. In this case it is straightforward to check the inequality.

Suppose that the exceptional locus of ψ consists of more than one irreducible

exceptional divisors. First we prove the inequality in question for a general element

C ′ in JC . Let t′ = t-multpC
′.

By Theorem 3.7.2, multpC = multpC
′ and JC is of the form

∏
j (xaj , ybj) (aj ≥

bj ≥ 1 for any j). Since m = multpC
′ and t′ = t-multpC

′, we get

JC = (x, y)(m−t′)
∏

j

(xaj , ybj) (
∑

j

bj = t′, aj > bj ≥ 1). (∗)

Since lct(C; p) = lct(C ′; p), one of the edges of the Newton polytope corresponding to

JC must pass through (1
l
, 1

l
). (∗∗)
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Then the convex Newton polytope corresponding to any integrally closed ideal

satisfying (∗) and (∗∗) is contained in the unbounded region given by the x-axis, the

y-axis, the line segment joining (0, c
l
) and ( c

l
, c

l
), and the line segment joining ( c

l
, c

l
)

and ( c(2t′−m)
lt′−1

, 0). So, due to Howald’s theorem [15],

colength J (S, c · C ′) ≥ N(c,m, t′, l),

where N(c,m, t, l) denotes the number of non-negative lattice points in the quadrilat-

eral region with vertices (−1,−1), (−1, c
l
−1), ( c

l
−1, c

l
−1) and ( c(2t−m)

lt−1
−1,−1) ∈ R2

(including boundaries).

Now we are ready to prove the general case. Recall (iii) in Theorem 3.7.2: J (S, c ·

C) ⊂ J (S, c · C ′) for any 0 ≤ c < 1. So we have

colength J (S, c · C) ≥ colength J (S, c · C ′).

On the other hand, t-multpC ≥ t-multpC
′ by Lemma 3.7.4. Since t ≥ t′ and l ≤ 2

m
,

we get c(2t−m)
lt−1

− 1 ≤ c(2t′−m)
lt′−1

− 1, which implies N(c,m, t′, l) ≥ N(c,m, t, l). It is

elementary to check

N(c,m, t, l) ≥
⌊(2t−m)(c− l)

lt− 1

⌋
+ 1.

Therefore the desired inequality follows.

3.9 t-multiplicity and intersection multiplicity

In this section we give another bound on intersection multiplicities between two

curves on surfaces.

We recall Proposition 3.4.1.

Proposition 3.9.1 (3.4.1). Let S be a smooth surface. Let m1 ∈ N. Let C1 be a

smooth effective divisor passing through p ∈ S and C2 be another effective divisor.
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Assume that the multiplier ideal J (S, c(m1C1 +C2))p is co-supported at {p} for some

c ∈ Q>0. Then

(C1 · C2)p > m1.

If t-multiplicity is specified, then we have another inequality.

Proposition 3.9.2. Let S be a smooth surface. Let C1 be a smooth effective divisor

passing through p ∈ S, C2 another arbitrary effective divisor, and C = m1C1+C2. Let

m = multpC and t = t-multpC. Suppose that m1 ≥ m
2
. Assume that the multiplier

ideal J (S, c · C)p is co-supported at {p} for some c ∈ Q. Then

(C1 · C2)p ≥ (t−m1)(1− c(m− t))

ct− 1
+ m− t.

Proof. We take the minimal resolution µ : S̃ → S of (S, C) near p. Let Ft ⊂ S̃ be a

place of log canonical singularities, and ψ the morphism of log canonical singularities

(see Definition 3.3.2). Then, thanks to Proposition 3.3.3, the exceptional locus of

ψ forms a unimodal linear chain. Applying Theorem 3.7.2 and Lemma 3.7.4, it is

enough to prove for C ′, i.e. for a general element in the monomial ideal JC .

By Theorem 3.7.2, we have local coordinates (x, y). Since C1 is smooth, we have

multpC1 = 1, hence the property (ii) in Theorem 3.7.2 implies that

JC1 = (xu, y)

for some u. Since JC2 is of the type
∏

j (xaj , ybj) (aj ≥ bj ≥ 1 for any j), let

JC2 = (x, y)m3

n∏
i=1

(xai , ybi),

where ai > bi for any 1 ≤ i ≤ n. The property (i) in Theorem 3.7.2 gives

JC = (JC1)
m1JC2 .
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Let m2 =
∑n

i=1 bi. Then a general element C ′
2 in JC2 has multiplicity (m2 + m3)

at p, so m = m1 + m2 + m3. If ψ were a single blow-up, i.e., the first exceptional

divisor F1 were a place of log canonical singularities, then

(3.9.1) lct(S, C ′; p) =
2

m
.

But since J (S, c(m1C1 + C2))p vanishes not along C1 but at {p}, we get

(3.9.2)
1

m1

> c ≥ lct(S, C; p) = lct(S, C ′; p).

Then ( 3.9.1) and ( 3.9.2) would contradict m1 ≥ m
2
. So ψ consists of more than one

blow-ups.

Lemmas 3.9.3 and 3.9.4 will complete the proof.

For the proof of Lemmas 3.9.3 and 3.9.4, we will use only Howald’s theorem [15]

and Inversion of adjuction [19, Corollary 9.5.11]. The rest will be merely delicate

computations.

Lemma 3.9.3. lct(S, C ′; p)(m1 + m2)− 1 ≥ 0.

Proof. Let c′ = lct(S, C ′; p). If m3 = 0 then, by [19, Proposition 9.5.13], c′ ≥ 1
m

=

1
m1+m2

. Suppose m3 > 0. Let H be a general element in (x, y), D in
∏n

i=1 (xai , ybi),

and C ′
1 in JC1 .

Since J (S, c′ · JC) is non-trivial, neither is J (S, c′(m1C
′
1 + D) + c′m3H). Since

m = m1+m2+m3 and m1 ≥ m
2
, we have m1 ≥ m2+m3. Putting m1 ≥ m2+m3 ≥ m3

and 1
m1

> c ≥ c′ together, we get c′m3 < 1. Inversion of adjuction [19, Corollary

9.5.11] implies that J (H, c′(m1C
′
1 + D)H) is non-trivial, which means

c′(m1 + m2) ≥ 1.
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Lemma 3.9.4. (C1 · C2)p ≥ m2(1−cm3)
c(m1+m2)−1

+ m3.

Proof. Since J (S, c(m1C1 + C2))p is co-supported at {p} and

m2(1− cm3)

c(m1 + m2)− 1
+ m3 ≤ m2(1− c′m3)

c′(m1 + m2)− 1
+ m3 for any c′ ≤ c,

we may assume that c = lct(C; p).

Let

a =
∑

i, ai≤ubi

ai, b =
∑

i, ai≤ubi

bi,

a′ =
∑

i, ai>ubi

ai, b′ =
∑

i, ai>ubi

bi.

Since

JC = (xu, y)m1(x, y)m3

n∏
i=1

(xai , ybi)

⊃ (xu, y)m1(x, y)m3(xa, yb)(xa′ , yb′) =: J ′C ,

we have

lct JC ≥ lct J ′C .

So we may assume that c = lct J ′C . Since

multp(xa, yb)(xa′ , yb′) = b + b′ =
n∑

i=1

bi = m2,

we may replace JC by JC′ .

We note that

(C ′
1 · C ′

2)p ≥ m3 +
n∑

i=1

min(ai, u · bi)

= m3 + a + ub′.

In order to use Howald’s theorem [15], we illustrate the Newton polytope corre-

sponding to J ′C .



52

•A(0,m1 + m3 + m2)

•B(m3,m1 + m2)

•C(m3 + a,m1 + b′)
•D(um1 + m3 + a, b′)

•E(um1 + m3 + a + a′, 0)

@
@

@HHHHXXXXhhhhhhhhhhhhhhhh

The line y = x does not meet the line segment AB because m3 < m1+m2. Neither

does DE because m1 > m2 = b+ b′ implies um1 +m3 +a > b′. Hence it meets BC or

CD, in other words, lct J ′C is determined by BC or CD. It is tedious to check that

m3 + a + ub′ ≥ m2(1− cm3)

c(m1 + m2)− 1
+ m3, (∗)

which implies the desired inequality. We present the computations for (∗) in the next

subsection.

3.9.1 Computations : Completion of the proof of Lemma 3.9.4

In order to complete Lemma 3.9.4, we need to show that

m3 + a + ub′ ≥ m2(1− cm3)

c(m1 + m2)− 1
+ m3.

We separate into two cases : m3 + a ≥ m1 + b′ or m3 + a < m1 + b′.

Lemma 3.9.5. If m3 + a ≥ m1 + b′ then

m3 + a + ub′ ≥ m2(1− cm3)

c(m1 + m2)− 1
+ m3.

Proof. We have

(3.9.3) c = lct J ′C =
m2 + a− b′

a(m1 + m2) + m3(m2 − b′)
,

equivalently

a(c(m1 + m2)− 1) = m2 − b′ − cm2m3 + cb′m3,
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so

a =
(m2 − b′)(1− cm3)

c(m1 + m2)− 1
.

Then it is enough to show that

u ≥ 1− cm3

c(m1 + m2)− 1
,

equivalently

c ≥ u + 1

u(m1 + m2) + m3

.

From ( 3.9.3), we need to show

(3.9.4)
m2 + a− b′

a(m1 + m2) + m3(m2 − b′)
≥ u + 1

u(m1 + m2) + m3

.

Recall b + b′ = m2. So ( 3.9.4) becomes

(3.9.5)
a + b

a(m1 + m2) + bm3

≥ u + 1

u(m1 + m2) + m3

.

Recall that

a =
∑

i, ai≤ubi

ai, b =
∑

i, ai≤ubi

bi.

So a ≤ ub. Since m1 + m2 ≥ m3, we get ( 3.9.5).

Lemma 3.9.6. If m3 + a < m1 + b′ then

m3 + a + ub′ ≥ m2(1− cm3)

c(m1 + m2)− 1
+ m3.

Proof. We have

(3.9.6) c = lct J ′C =
u + 1

m3 + a + u(m1 + b′)
.

We want to show that

u + 1

m3 + a + u(m1 + b′)
≥ m2 + (a + ub′)

(m1 + m2)(a + ub′) + m2m3

,
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equivalently

(3.9.7) (m3 + a + ub′ −m1)um2 ≥ (m3 + a + ub′ −m1)(a + ub′).

Since 1 > cm1, we have

1

m1

> c =
u + 1

m3 + a + u(m1 + b′)
,

which gives

m3 + a + ub′ −m1 > 0.

On the other hand, since a ≤ ub and b + b′ = m2, we get um2 ≥ a + ub′. So ( 3.9.7)

follows.

Therefore

c ≥ m2 + (a + ub′)
(m1 + m2)(a + ub′) + m2m3

,

equivalently

a + ub′ ≥ m2(1− cm3)

c(m1 + m2)− 1
.



CHAPTER IV

The Main Theorem

In this chapter, we prove Theorem 1. We start by giving definitions of a cone-like

and rationally defined divisor, and carry out the proof of the main theorem by using

induction on the order of blow-ups.

4.1 Rationally defined cone-like divisor

Here we define a rationally defined cone-like divisor on A3. First a cone-like divisor

is defined.

Definition 4.1.1 (Cone-like divisor). Let X = A3. Let

π0 : X0 −→ X

be the blowing-up along O, with the exceptional divisor E0.

An effective divisor D on X will be said to be a cone-like divisor if it satisfies the

following property :

In a neighborhood of any point in E0, each analytic branch of the proper transform

of D, if not empty, is smooth and meets E0 transversally.

Example 4.1.2. Any affine cone over unions of smooth curves on P2 is cone-like.

55
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Next, we define a notion of being rationally defined. The intuition is that a

rationally defined divisor varies rationally as points are deformed and switched.

Definition 4.1.3 (Rationally defined divisor). Fix a set Z of r distinct points on P2.

We say that an effective divisor D ⊂ X(= A3) is rationally defined with Z if there

are a smooth variety U , a point u ∈ U , an effective divisor D ⊂ X ×U , and a variety

Z ⊂ E0(:= the exceptional divisor of the blow-up π0 of X×U along O×U = P2×U)

satisfying the following properties :

(1) Z is irreducible and smooth,

(2) Z is contained in the proper transform of D under π0,

(3) Z is the fiber of Z → U over u,

(4) D is the fiber of D → U over u, and

(5) Z is flat and finite of degree r over U .

Example 4.1.4. Let U be (any smooth open set of) the Hilbert scheme Hilbr(P2)

of r points on P2, Z ⊂ U × P2 the universal family, and let D ⊂ X × U be any

effective divisor whose proper transform contains Z. Then a general fiber of D → U

is rationally defined.

As we will see, any rationally defined divisor over r very general points has similar

behaviors near each of the r points.

Here is the statement of the Main Theorem.

Theorem 4.1.5 (Main Theorem). Let X = A3. Let r À 0 be a sufficiently large

integer. Let Ir ⊂ OX be the defining ideal of the affine cone over r very general points

on P2.

Then Ir cannot be realized as a multiplier ideal of a rationally defined cone-like

divisor.
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4.2 Set up

Let Ir ⊂ OX be the defining ideal of the affine cone over r very general points.

We will assume that

(4.2.1) Ir = J (X, c ·D),

for some integral rationally-defined cone-like divisor D ⊂ X and some c ∈ Q. The

plan is to start by blowing up at O, and restrict to the exceptional divisor.

Set-up 4.2.1. Let

π0 : X0 −→ X

be the blowing-up at the origin O, with the exceptional divisor E0
∼= P2 ⊂ X0. Let

(4.2.2) D0 = proper transform of D,

(4.2.3) C0 = D0|E0.

Note that D0 contains the proper transforms (lα)0 of the r lines lα. Write

(4.2.4) qα = (lα)0 ∩ E0,

equivalently, q1, · · · , qr ∈ E0
∼= P2 are points in P2 determined in a natural way by

lines lα ⊂ C3. (See Figure 4.1.)

One of the advantages of dealing with general lines and a rationally defined divisor

is that we can assume that D0 looks similar at all of the r points qα ∈ E0.

Definition 4.2.2. Let S be a smooth surface, C an effective divisor on S, and q1, ..., qr

points on C. If C has the same multiplicity, the same t-multiplicity, the same log

canonical threshold and the same 1-dimensional (component) multiplicity at each of

several points q1, · · · , qr, then we say that C is almost-equisingular at q1, · · · , qr.



58

E0

(l2)0
...

(l1)0

q1

q2

D0︷︸︸︷

C0

Figure 4.1: The blown-up space of X at the origin O

Lemma 4.2.3. If D is rationally defined over r very general points, D0|E0 is almost-

equisingular at q1, · · · , qr.

Proof. The uniform invariant property that we will describe now is motivated by

[14],[7].

By Definition 4.1.3, there are a smooth variety U , a point u ∈ U , an effective divi-

sorD ⊂ X×U , and a varietyZ ⊂ E0(:= the exceptional divisor of the blow-up π0 of X×

U along O × U = P2 × U) satisfying the following properties :

(1) Z is irreducible and smooth,

(2) Z is contained in the proper transform of D under π0,

(3) Z is the fiber of Z → U over u,

(4) D is the fiber of D → U over u, and

(5) Z is flat and finite of degree r over U .
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The key point is that Z is irreducible.

We just blew up X × U along O × U . Let D0 be the proper transform of D, and

L0 the proper transform of the universal family of affine cones over r points. E0 and

L0 meet transversally, and their intersection Z is irreducible.

Let C0 := D0|E0 and denote by C0u the fiber of the morphism C0 → U at u ∈ U .

Let invariant(C0u; (qα)u) be one of multiplicity, t-multiplicity, Arnold multiplicity, or

component multiplicity of C0u at (qα)u. Choose the largest possible rational number

p such that

invariant(C0u; (qα)u) ≥ p

for any u ∈ U and any (qα)u. By semi-continuity, the set

{(qα)u ∈ Z | invariant(C0u; (qα)u) > p}

is of codimension ≥ 1 in Z, hence its dimension is less than dim U(= dim Z).

Therefore there is u ∈ U such that invariant(C0u; (qα)u) is the same (= p) for ev-

ery α = 1, ..., r.

4.3 The base step of the Induction

In this section we prove the base step of the induction (see Section 4.4.1). We

return to Set-up 4.2.1. Recall that we are assuming

Ir = J (X, c ·D).

Let

(4.3.1) d = ordOIr,

equivalently, d is the least degree of curves in P2 passing through r points

q1, · · · , qr ∈ P2
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determined by lines. As in Set-up 4.2.1, consider the blowing-up π0 : X0 −→ X at

the origin O, with the exceptional divisor E0.

Lemma 4.3.1. We have

(4.3.2)
d + 1 + ordE0KX0/X

ordE0π0
∗D

=
d + 3

ordE0π0
∗D

> c.

Proof. Let m be the maximal ideal corresponding to O. Then

J (X, c ·D) ⊂ π0∗OX0((ordE0KX0/X − bc · ordE0π0
∗Dc)E0),

equivalently

J (X, c ·D) ⊂ mbc·ordE0
π0
∗Dc−ordE0

KX0/X .

Since d is the order of J (X, c ·D) at the origin,

J (X, c ·D) ⊂ md

but

J (X, c ·D) 6⊂ md+1.

Thus we have

bc · ordE0π0
∗Dc − ordE0KX0/X ≤ d.

Lemma 4.3.2. Recall the situation of Set-up 4.2.1. We have

d + 3

ordE0π0
∗D

> c ≥ lct(E0, C0; qα).

Proof. Since Ir = J (X, c · D), the multiplier ideal J (X, c · D) vanishes along the r

lines. Under π there is an isomorphism D − O ∼= D0 − π−1
0 (O). So the multiplier
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ideal J (X0, c · D0) vanishes on the proper transform (lα)0 of r lines, in particular,

J (X0, c ·D0) vanishes at q. Then, by the restriction theorem, we have

J (E0, c ·D0|E0) ⊆ J (X0, c ·D0)|E0 .

Hence J (E0, c · C0) vanishes at q. This implies

d + 3

ordE0π0
∗D

>Lemma 4.3.1 c ≥ lct(E0, C0; qα).

Lemma 4.3.3. Let qα (α = 1, 2, · · · , r) be the intersection points of E0 and the

proper transform of r lines. For every α = 1, 2, · · · , r, the LC-locus of (E0, C0) at qα

is 1-dimensional.

Proof. Let e denote the degree of C0 on E0
∼= P2. We observe that e = ordE0π0

∗D.

The Proposition 4.3.2 shows

(4.3.3) d + 3 > e · lct(E0, C0; qα).

Since d is the least degree of curve in P2 passing through r general points, we have

(4.3.4)

(
d + 1

2

)
≤ r,

so

d + 3 <
3

2
b√rc for r > 1600.

In particular we have

3

2
b√rc > e · lct(E0, C0; qα).

But we saw in Theorem 3.1.9 that if C0 were a curve of degree e passing through r

very general points qα, with 0-dimensional LC-locus, then we would have 3
2
b√rc ≤

e·lct(E0, C0; qα). Therefore the LC-locus of (E0, C0) at qα should be 1-dimensional.
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Remark 4.3.4. Assuming 0-dimensional LC-locus as in Theorem 3.1.9, one can easily

obtain e · lct ≥ (d+1). In fact if e · lct < (d+1) then Nadel vanishing theorem would

imply H i(P2,O(KP2 + (d + 1)H)⊗J (l ·C0)) = 0, i > 0, which contradicts Riemann-

Roch. But this weaker bound cannot prove Lemma 4.3.3.

We have established that C0 has 1-dimensional LC-locus in a neighborhood of

each qα, and by almost-equisingularity in Lemma 4.2.3, it has the same component

multiplicity at each qα. So we can write

(4.3.5) C0 = mC ′
0 + C ′′

0 ,

where C ′
0 is a reduced curve passing through each qα, and

(4.3.6) J (E0, lct(C0) · C0) = OE0(−C ′
0)

in a neighborhood of each qα. In particular,

(4.3.7) lct(C0; qα) =
1

m
.

Lemma 4.3.5. C ′
0 is smooth at every qα.

Proof. Recall the fact that an one dimensional LC-locus of an effective divisor on

a surface is locally either a node or smooth. If C ′
0 has a node at some qα, then

C0 = mC ′
0 in a neighborhood of qα. Let H ⊂ X be a general effective divisor whose

proper transform under π0 passes through qα. If we replace D by D+εH (0 < ε ¿ 1),

then we still have Ir = J (X, c · D) but the LC-locus of (E0, D0|E0) at qα is not 1-

dimensional.

Next,

Lemma 4.3.6. C ′
0 must be irreducible.
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Proof. If C ′
0 were not irreducible, then by monodromy argument as in Lemma 4.2.3,

it would have to have at least one irreducible component passing through each qα so

deg C ′
0 ≥ r, which gives

e = ordE0π0
∗D = deg C0 ≥ mr.

But this contradicts Lemma 4.3.2.

Lemma 4.3.7. Let δ be the degree of C ′
0. Then δ is equal to d, (d + 1) or (d + 2).

Proof. By (4.3.3), we get δ < d + 3. On the other hand, since C ′
0 passes r general

points, we have δ ≥ d.

We observe that c is quite tightly bounded.

Lemma 4.3.8. We have

(4.3.8)
d + 3

e
> c ≥ lct(E0, C0; qα) =

1

m
≥ d

e
.

Proof. We recall that m is the multiplicity of C0 along C ′
0. The first and second

inequalities follow from Proposition 4.3.1 and Proposition 4.3.2. The equality is due

to Lemma 4.3.3. The last inequality follows from

e = deg C0 ≥ m · deg C ′
0 ≥ mδ ≥ md.

Recall that we are assuming that, in a neighborhood of any point of C ′
0, each

analytic component of D0 is smooth and meets E0 transversally.

Definition 4.3.9 (Desingularization away from qα). We obtained an irreducible curve

C ′
0 which is smooth at qα. But C ′

0 may have singularities away from qα. So we take a

desingularization πς
0 : X ς

0 → X0 in such a way that πς
0 is a proper birational morphism
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and is isomorphic over some open set containing qα, that the indeterminacy locus

of πς
0|E0

−1 is 0-dimensional, and that (Cς
0)
′ is smooth, where we denote the proper

transform of D0 by Dς
0, the proper transform of E0 by Eς

0, and Dς
0|Eς

0 by Cς
0 and we

write Cς
0 = m(C ′

0)
ς + (C ′′

0 )ς .

4.4 Induction : Blow-ups along Curves

We recall the notations we are using. Let X = A3 = Spec C[x, y, z]. Let r be

a sufficiently large integer and consider r very general lines passing through O :=

(0, 0, 0) ∈ X. We denote by Ir the radical ideal corresponding to the union of r lines.

Let

d = ordOIr.

Throughout the induction process below, we assume that

Ir = J (X, c ·D)

for some c ∈ Q>0 and some effective rationally defined cone-like divisor D on X.

Notation 4.4.1. For any birational morphism Z ′ → Z and any divisor W ⊂ Z, we

denote by W p the proper transform of W on Z ′.

4.4.1 Induction Hypotheses and Notations

We present the induction hypotheses and the notations we will use. The hypothe-

ses are labeled [ I ], [ II ], [ III ] and [ IV ].

[ I ] Let

πi : Xi → X ς
i−1

be the smooth blow-up along (C ′
i−1)

ς (X ς
−1 := X, (C ′

−1)
ς := the origin O). Denote

π0 ◦ πς
0 ◦ π1 ◦ πς

1 ◦ · · · ◦ πi by σi. Let Di be the proper transform of D under σi, and
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Ei the exceptional divisor with respect to πi. Let

(4.4.1) Ci = Di|Ei.

Remark 4.4.2. We notice that E0
∼= P2 but that Ei is a ruled surface over (Cς

i−1)
′

for every i ≥ 1.

[ II ] Each of the proper transforms of the given r lines meets Ei. By abuse of

notation, let qα (1 ≤ α ≤ r) be the intersection points of Ei and the proper transforms

of r lines. We assume that there is an effective irreducible reduced divisor C ′
i on Ei

such that

• Ci = mi+1C
′
i + C ′′

i for some mi+1 ∈ Z>0,

• J (Ei, lct(Ci) · Ci) = OEi
(−C ′

i) in a neighborhood of each qα,

• C ′
i is smooth at qα, 1 ≤ α ≤ r.

• C ′
i belongs to the numerically equivalent class

∣∣∣− (δ + i− 1− εi)E
p
i−1 − (δ + i− εi)Ei

∣∣∣
Ei

(Ep
−1 := ∅)

for some εi ≥ 0, where

δ = deg C ′
0

on E0
∼= P2.

Let

πς
i : X ς

i → Xi

be a desingularization of C ′
i in the sense of Definition 4.3.9. Let Dς

i be the proper

transform of Di under πς
i , and Eς

i be the proper transform of Ei under πς
i . Let

Cς
i = Dς

i |Eς
i .
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The proper transform of C ′
i is smooth and will be denoted by (C ′

i)
ς .

[ III ] Let e = deg C0 on E0
∼= P2. We have

(4.4.2)
d + 4 + i

e + si

> c ≥ 1

mi+1

≥ · · · ≥ 1

m1

≥ d

e
,

where s0 := 0, si :=
∑i

j=1 mj.

[ IV ] We have

(4.4.3) ordEi
KXi/X = i + 2,

and

(4.4.4) ordEi
(σi)

∗D = e + si.

On the other hand, (C ′
i)

ς ∩ Ep
k = ∅ for all k < i.

Remark 4.4.3. It follows that

(4.4.5) ordEς
i
KXς

i /X = i + 2,

and

(4.4.6) ordEς
i
(σi ◦ πς

i )
∗D = e + si.

Since we have a long list of induction hypotheses, it might be helpful to illustrate

them in Figure 4.2.

4.5 The Proof of the Induction : Non-termination of resolu-
tion

In Section 4.3, we blew up X at the origin O and defined [ I ] for i = 0 and proved

[ II ], [ III ] and [ IV ] for i = 0.
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...
...

↘πi+1

X ς
i

↙πς
i

Ei, Ep
i−1, ..., Ep

0 , Di
⊂ > Xi Ci := Di|Ei

↘πi Ci = mi+1C
′
i + C ′′

i

X ς
i−1

↙πς
i−1

...
...

E1, Ep
0 , D1

⊂ > X1

↘π1

X ς
0

↙πς
0

E0, D0
⊂ > X0

D ⊂ > X

π0

∨

Figure 4.2: The induction process
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Using induction on i, we will prove that [I],[II],[III] and [IV] are valid for every

i ≥ 0. Concretely speaking, the Subsections 4.5.1, 4.5.2, 4.5.3 and 4.5.4 will show

that

[I],[II],[III],[IV] for i = j

wwÄ

[I],[II],[III],[IV] for i = j + 1.

Our induction proceeds as follows:

[[I],[II],[III],[IV] for i = 0 ] ⇒ Lemma 4.5.3 ⇒ [[I],[II],[III],[IV] for i = 1 ] ⇒ · · · ⇒

[[I],[II],[III],[IV] for i = j ] ⇒ Lemma 4.5.3 ⇒ [[I],[II],[III],[IV] for i = j + 1 ] ⇒ · · · .

Therefore we have the following statement.

Proposition 4.5.1. If Ir ⊂ OX were realized as a multiplier ideal of a rationally

defined cone-like divisor D, then a sequence of blow-ups given by the induction would

be infinite.

The idea is that we try to resolve the singularities of D0 at a generic point of C ′
0

in X0. We state the theorem of Beppo Levi in the following form:

Theorem 4.5.2 ([29], Theorem 6). A sequence of surfaces obtained from D0 by blow-

ups along curves having multiplicity > 1 is necessarily finite.

We prove the Main Theorem as follows.

Proof of Main Theorem. Suppose that Ir ⊂ OX could be realized as a multiplier ideal

of a rationally defined cone-like divisor D. Then our inductive steps would produce an

infinite sequence of blow-ups along curves having multiplicity > 1, by Lemma 4.5.3.

But this contradicts Theorem 4.5.2. This means that the singularities of D0 at a

generic point of C ′
0 cannot be resolved. This is an ultimate contradiction. Therefore

Ir cannot be realized as a multiplier ideal of a rationally defined cone-like divisor.
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4.5.1 The reason that we blow up along (C ′
j)

ς and define [ I ] for i = j + 1

The following lemma explains why we are forced to blow up X ς
j along (C ′

j)
ς .

Lemma 4.5.3. Dς
j ∪Eς

j does not have a SNC singularity at a generic point of (C ′
j)

ς .

In particular, Dς
j has multiplicity > 1 along (C ′

j)
ς .

Proof. Suppose that Dς
j ∪Eς

j has a SNC singularity at a generic point of (C ′
j)

ς . Then

since

Cj = mj+1C
′
j + C ′′

j ,

we have

Dς
j = mj+1D

ς
j
′ + Dς

j
′′,

where Dς
j
′ is smooth along (C ′

j)
ς . Then it follows from c ≥ 1

mj+1
(the induction

hypothesis [III]) that

J (X, c ·D) ⊂ J
(
X,

1

mj+1

·D
)

⊂ (σj)∗OXj

(⌊
− 1

mj+1

Dς
j

⌋)
= (σj)∗OXj

(−Dς
j
′).

But the last ideal defines a 2-dimensional subscheme in X. Therefore J (X, c · D)

cannot be Ir which defines 1-dimensional lines. This establishes the first statement.

The second statement follows from the assumption that D is cone-like.

4.5.2 The Proof of [ IV ] for i = j + 1

As soon as we blow up along (C ′
j)

ς as in [I], we immediately have

ordEj+1
KXj+1/X = (j + 1) + 2.

For ordEj+1
(σj+1)

∗D, it is enough to observe that Eς
j intersects transversally with any

analytic branch of Dς
j , which follows from D being cone-like.
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4.5.3 The Proof of the first inequality in [III] for i = j + 1

Lemma 4.5.4. Let qα be the intersection points of Ej+1 and the proper transform of

r lines. Then we have

d + (j + 1) + 4

e + sj+1

> lct(Ej+1, Cj+1; qα).

Proof. Let m be the maximal ideal corresponding to O. Then

J (X, c ·D) ⊂ σj+1∗OXj+1

(
(ordEj+1

KXj+1/X − bc · ordEj+1
σj+1

∗Dc)Ej+1

)
,

which, by [IV], yields

Ir = J (X, c ·D) ⊂ σj+1∗OXj+1

(
(j + 1) + 2− bc(e + sj+1)c)Ej+1

)
.

For a general element G in Ir, we have

ordEj+1
σj+1

∗G ≤ d + 1,

because d is the vanishing order of Ir at the origin, and on E1 the proper transform

of G does not contain (C ′
1)

ς . Thus we have

(j + 1) + 2− bc(e + sj+1)c ≥ −d− 1.

Now it remains to show

c ≥ lct(Ej+1, Cj+1; qα),

but its proof is essentially the same as that of Lemma 4.3.2.

The following bound will be useful later.

Lemma 4.5.5. We have

1

mj+1

· d + (j + 1) + 4

d + (j + 1)
> lct(Ej+1, Cj+1; qα).
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Proof. It follows from e ≥ m1d and m1 ≥ m2 ≥ · · · ≥ mj+1 (induction hypothesis

[III]) that

1

mj+1

· d + (j + 1) + 4

d + (j + 1)
≥ d + (j + 1) + 4

e +
∑j+1

k=1 mk

=
d + (j + 1) + 4

e + sj+1

> lct.

4.5.4 The Proof of [ II ] and [ III ] for i = j + 1

Here we prove [ II ] and [ III ] for i = j + 1. The following lemma is the key one.

Its entire proof is rather long, so we present it in Section 4.6.

Lemma 4.5.6. The LC-loci of (Ej+1, Cj+1) at qα are 1-dimensional. Hence the LC-

loci of (Eς
j+1, C

ς
j+1; qα) are 1-dimensional.

Proof. See Section 4.6.

We will frequently use intersection theory on Ej+1. The following Lemmas 4.5.7,

4.5.8 and 4.5.10 are all straightforward.

Lemma 4.5.7. We have the following three intersection numbers on E1:

(Ep
0)

2|E1 = −δ(δ + 1 + ε1),

Ep
0 · E1|E1 = δ(δ + ε1),

and (E1)
2|E1 = −δ(δ − 1 + ε1), for some ε1 ≥ 0.

Proof. First we treat with the case that C ′
0 is nonsingular. Then we get (Ep

0)
3 =

(−1− δ)2 and (Ep
0)

2(E1) = −δ2 − δ by using

NEp
0/X1

= π∗0NE0/X0(−Ep
0 · E1).

It follows from

0 → NC′0/E0
→ NC′0/X0

→ NE0/X0|C′0 → 0
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that (E1)
3 = −δ2 + δ. To get (Ep

0)(E1)
2 = δ2, we use

1 = (E0)
3 = (Ep

0 + E1)
3 = (Ep

0)
3 + 3(Ep

0)
2(E1) + 3(Ep

0)(E1)
2 + (E1)

3.

If C ′
0 is singular, then we take a desingularization πς

0 : X ς
0 → X0 as in Nota-

tion 4.3.9. Then (Ep
0)

2(E1) is less than −δ2 − δ. Other intersection numbers can be

similarly computed.

Lemma 4.5.8. We have the following three intersection numbers on Ej+1:

(Ep
j )

2|Ej+1
= −δ · (δ + j + 1 + εj+1),

Ep
j · Ej+1|Ej+1

= δ · (δ + j + εj+1),

and (Ej+1)
2|Ej+1

= −δ · (δ + j − 1 + εj+1), for some εj+1 ≥ 0.

In particular,

(−xEp
j − yEj+1|Ej+1

)2 = (y − x)δ(2y − (y − x)(δ + j + 1 + εj+1)).

Proof. Once we have

Cς
i ≡ −(δ + i− 1 + εi)E

p
i−1 − (δ + i + εi)Ei|Ei

and use induction on i, the computation is straightforward as above. In particular,

(Ep
j )

2|Ej+1
can be obtained from

NEp
j /Xj+1

= π∗j+1NEς
j /Xj

(−Ep
j · Ej+1).

Again the extra term εj+1 results from a desingularization πς
j : X ς

j → Xj.

Remark 4.5.9. Those who are familiar with notations s and f in [12, V.2.] can easily

check that

s = Ep
i−1|Ei
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and

f = −(1/δ)Ep
i−1 − (1/δ)Ei|Ei

.

In particular, s denotes the section whose self-intersection number is negative, and f

stands for the fiber class.

Lemma 4.5.10. On Ej+1, the divisor class −xEp
j − yEj+1|Ej+1

is ample if and only

if

1 <
y

x
<

δ + j + 1 + εj+1

δ + j + εj+1

.

Moreover, the integral nef cone is generated by

−(δ + j + εj+1)E
p
j − (δ + j + 1 + εj+1)Ej+1|Ej+1

and

−(1/δ)Ep
j − (1/δ)Ej+1|Ej+1

.

Proof. In the situation of Remark 4.5.9, apply [12, V. Proposition 2.20].

Now we are ready to complete the proof of [ II ] and [ III ] for i = j + 1.

Lemma 4.5.11. Let Cj+1
′ be the union of the LC-loci of (Ej+1, Cj+1) at qα’s. Then

the curve Cj+1
′ is irreducible and belongs to

∣∣∣− (δ + j + εj+1)E
p
j − (δ + (j + 1) + εj+1)Ej+1

∣∣∣
Ej+1

for some εj+1 ∈ 1
δ
Z≥0.

Proof. By the same argument in the proof of Lemma 4.3.5, we may assume that an

1-dimensional LC-locus is smooth in a neighborhood of α.

We can compute the numerically equivalent class of Cj+1 on the ruled surface

Ej+1. Indeed, by Lemma 4.6.4, we have

Cj+1
∼=num mj+1s + (δ(e + sj+1)− ε)f



74

for some ε ≥ 0. Then it is elementary to check that the induction hypothesis [III]

satisfies the assumptions in Lemma 3.6.1. If Cj+1
′ ∼=num as + bf for some a ≥ 2 and

b, then this would contradict Lemma 3.6.1. Therefore a ≤ 1.

If Cj+1
′ were reducible, then for some α, the LC-locus of (Ej+1, Cj+1; qα) would

be a fiber f on the ruled surface Ej+1. Then by the monodromy argument as in

Lemma 4.2.3, for all α, the LC-loci of (Ej+1, Cj+1; qα) would be fibers. But again this

would contradict Lemma 3.6.1.

Therefore all the statements for i = j + 1 in [II] follow from Lemmas 4.5.6 and

4.5.11. They in turn give c ≥ lct(Ej+1, Cj+1; qα) = 1
mj+2

. It remains to show mj+2 ≤

mj+1, but this is clear from construction (or see Lemma 4.6.1).

4.6 The Proof of Lemma 4.5.6

In this section we prove Lemma 4.5.6.

4.6.1 Bound of Multiplicity

In this subsection, we will compute upper bounds on the multiplicity and t-

multiplicity of Cj+1 at qα.

Lemma 4.6.1. The t-multiplicity (see Definition 3.1.2) of Cj+1 at qα is at most mj+1.

This is a local statement. Before we give a proof, we describe Dj with analytic

local coordinates near qα ∈ Xj.

Notation 4.6.2. We define analytic coordinates (u, v, z) at qα ∈ Xj as follows.

The set {z = 0} locally defines Ej, and {u = 0} corresponds to any fixed smooth

surface which meets Ej transversally along the smooth curve Cς
j . We call another

coordinate v.
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To simplify notations, we let m = mj+1. Since the multiplicity of Cς
j ⊂ Ej is m,

we may locally define Dj by an equation of the form P (u, v)um +
∑

s≥1 zsQs(u, v)

near qα, where P (u, v), Qs(u, v) ∈ k{{u, v}}.

Lemma 4.6.3. mult0P (0, v) ≤ m.

Proof. Note that Cj = Dj|Ej is locally defined by {P (u, v)um = 0}|{z=0} and the

LC-locus of (Ej, Cj; qα) is Cς
j , that is to say locally, the LC-locus of {P (u, v)um = 0}

on {z = 0} is {u = z = 0}. Then Proposition 3.4.1 implies

mult0P (0, v) = (Cς
j · (Cj −mCς

j ))qα ≤ m.

Proof of Lemma 4.6.1. D being cone-like implies that every analytic branch of Dj

and Ej meet transversally along {u = z = 0}. Then, for each 1 ≤ s ≤ m, zsQs(u, v)

contains a factor zsux where x ≥ m−s. Because if x < m−s then Dj and Ej = {z =

0} would share some tangent vectors. So Qs(u, v) = um−sQ′
s(u, v) for 1 ≤ s ≤ m,

which means that in local coordinates, Dj is actually defined by

P (u, v)um +
∑

1≤s≤m

zsum−sQ′
s(u, v) +

∑
s>m

zsQs(u, v).

Since we carried out blowing up along Cς
j = {u = z = 0} by

z 7→ z1, u 7→ z1u1 and v 7→ v1,

the pullback of Dj locally becomes

P (z1u1, v1)(z1u1)
m +

m∑
s=1

(z1)
s(z1u1)

m−sQ′
s(z1u1, v1) + (z1)

m+1R

= (z1)
m

[
P (z1u1, v1)(u1)

m +
m∑

s=1

(u1)
m−sQ′

s(z1u1, v1) + (z1)
1R

]
,
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where Ej+1 locally corresponds to {z1 = 0}. Hence Cj+1(= Dj+1|Ej+1) is locally

defined by

(‡) P (0, v1)(u1)
m +

∑
1≤s≤m

(u1)
m−sQ′

s(0, v1).

The Lemma 4.6.3 implies that mult0P (0, v1) ≤ m.

Consider the blow up Ẽj+1 → Ej+1 of Ej+1 at qα = {u1 = v1 = 0} and let F be

the exceptional curve. Then the intersection multiplicity at any point x ∈ F between

F and the proper transform Cp
j+1 of Cj+1 is less than or equal to

max{mult0P (0, v1), mult0(u1)
mj+1} = m = mj+1.

Note that the result does not depend on the choice of coordinates.

Before we give a bound on multqαCj+1, it will be more convenient to describe the

numerically equivalent class of Cj+1 in terms of s and f.

Lemma 4.6.4. Let E ′ be the union of proper transforms of exceptional loci Exc(πς
i )

(i = 0, ..., j), counting multiplicities appearing in σ∗j+1D. Then

Cj+1
∼=num

∣∣∣− (e + sj)E
p
j − (e + sj+1)Ej+1 − E ′

∣∣∣
Ej+1

.

Equivalently,

Cj+1
∼=num mj+1s + (δ(e + sj+1)− ε)f

for some ε ≥ 0.

Proof. Since the induction hypothesis [ IV ] implies

σ∗j+1D = Dj+1 +

j−1∑
i=0

(e + si)E
p
i + (e + sj)E

p
j + (e + sj+1)Ej+1 + E ′,

we have

Cj+1 = Dj+1|Ej+1 ∈
∣∣∣σ∗j+1D −

j−1∑
i=0

(e + si)E
p
i − (e + sj)E

p
j − (e + sj+1)Ej+1 − E ′

∣∣∣
Ej+1

=
∣∣∣− (e + sj)E

p
j − (e + sj+1)Ej+1 − E ′

∣∣∣
Ej+1

,
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where the last equality follows from the induction hypothesis [ IV ].

Then Lemma 4.5.9 implies

Cj+1 ∈
∣∣∣(e + sj+1 − e− sj)s + δ(e + sj+1)f− E ′

Ej+1

∣∣∣

=
∣∣∣mj+1s + δ(e + sj+1)f− E ′ ∩ Ej+1

∣∣∣.

Since E ′ ∩ Ej+1 is the union of some fibers, we get the last statement.

We will need later the following result.

Lemma 4.6.5. We have

multqαCj+1 ≤ mj+1 +
4δ

r
mj+1.

Proof. Let m = mj+1. By Lemma 4.6.4 and the induction hypothesis [II], we have

Cj = −(e + sj−1)Ej−1 − (e + sj)Ej|Ej
− εf,

for some ε ≥ 0, and

Cj
′ = −(δ + j − 1 + εj)E

p
j−1 − (δ + j + εj)Ej|Ej

.



78

Then

(Cj −mCj
′) · Cj

′

= mCj · Cj
′ −m(Cj

′)2

≤ (−(e + sj−1)E
p
j−1 − (e + sj)Ej) · (−(δ + j − 1 + εj)E

p
j−1 − (δ + j + εj)Ej)|Ej

−m(−(δ + j − 1 + εj)E
p
j−1 − (δ + j + εj)Ej)

2|Ej

= − (e + sj−1)(δ + j − 1 + εj)δ(δ + j + εj)

+ (e + sj−1)(δ + j + εj)δ(δ + j − 1 + εj)

+ (e + sj)(δ + j − 1 + εj)δ(δ + j − 1 + εj)

− (e + sj)(δ + j + εj)δ(δ + j − 2 + εj)

−mδ(2(δ + j + εj)− (δ + j + εj)) by Lemma 4.5.8

= (e + sj)(δ)−m(δ)(δ + j + εj)

≤ m(δ)(δ + j + 4)−m(δ)(δ + j + εj) by induction hypothesis [III]

≤ 4δm.

Since we may assume singularities at qα are almost-equisingular, the intersection

multiplicity at each qα of (Cj−mCj
′) and Cj

′ is no greater than 4δm
r

. Using notations

above, we have

mult0P (0, v1) = mult0P (0, v) = (C ′
j · (Cj −mCj

′))qα ≤
4δ

r
mj+1.

So

multqαCj+1 ≤ mult0P (0, v1)(u1)
mj+1 ≤ mj+1 +

4δ

r
mj+1.

4.6.2 Completion of the Proof of Lemma 4.5.6

We complete the Proof of Lemma 4.5.6.
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Lemma 4.6.6. Suppose that the LC-loci of (Ej+1, Cj+1) at qα are 0-dimensional.

Suppose that

Cj+1 = u · C ′
j+1 + C ′′

j+1,

where C ′
j+1 is a reduced effective divisor passing through q1, · · · , qr. Then

u < 0.7mj+1.

Proof. Suppose to the contrary that u ≥ 0.7mj+1.

It is elementary to check that the induction hypothesis [ III ] satisfies the assump-

tions in Lemma 3.6.1. Then, by Lemma 3.6.1, we have

C ′
j+1

∼=num s + xf

for some x ≥ δ(δ + j + 1).

We will compute the intersection number of C ′
j+1 and C ′′

j+1 This is a merely ele-

mentary computation.

C ′
j+1 · C ′′

j+1

= C ′
j+1 · (Cj+1 − u · C ′

j+1)

= (s + xf) · ((mj+1 − u)s + (δ(e + sj+1)− ε− ux)f)

= − (mj+1 − u)δ · (δ + j + 1) + (mj+1 − 2u)x + δ(e + sj+1)− ε

≤ − (mj+1 − u)δ(δ + j + 1) + (mj+1 − 2u)x + δ(e + sj+1)

≤ − (mj+1 − u)δ(δ + j + 1) + (mj+1 − 2u)δ(δ + j + 1) + δ(e + sj+1)

= − uδ · (δ + j + 1) + δ(e + sj+1)

= δ
[
(e + sj+1)− u(δ + j + 1)

]

On the other hand, Lemma 4.6.4 implies

u ≤ mj+1.
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Multiplying by ( r
4δ
− d+j+5

d+j+1
− 1)(d + j + 1) gives

u

(
r

4δ
− d + j + 5

d + j + 1
− 1

)
(d + j + 1) ≤

(
r

4δ
− d + j + 5

d + j + 1
− 1

)
mj+1(d + j + 1).

Then

u
[ r

4δ
(d + j + 1)

(
1− d + j + 5

d + j + 1

4δ

r

)
− (δ + j + 1)

]

≤ u
[ r

4δ
(d + j + 1)

(
1− d + j + 5

d + j + 1

4δ

r

)
− (d + j + 1)

]

≤ r

4δ
(d + j + 1)

(
1− d + j + 5

d + j + 1

4δ

r

)
mj+1 + 4mj+1 −mj+1(d + j + 4)−mj+1,

equivalently

mj+1(d+j+4)+mj+1−u(δ+j+1) ≤ r

δ

[mj+1 − u

4
(d+j+1)

(
1− d + j + 5

d + j + 1

4δ

r

)
+

4δ

r
mj+1

]

or

δ
[
mj+1(d+j+4)+mj+1−u(δ+j+1)

]
≤ r

[mj+1 − u

4
(d+j+1)

(
1− d + j + 5

d + j + 1

4δ

r

)
+

4δ

r
mj+1

]
.

Hence

C ′
j+1 · C ′′

j+1

≤ δ
[
(e + sj+1)− u(δ + j + 1)

]

= δ
[
(e + sj) + mj+1 − u(δ + j + 1)

]

< δ
[
mj+1(d + j + 4) + mj+1 − u(δ + j + 1)

]
by induction hypothesis [III]

≤ r
[mj+1 − u

4
(d + j + 1)

(
1− d + j + 5

d + j + 1

4δ

r

)
+

4δ

r
mj+1

]

= r
[(mj+1 − u)

(
1− 1

mj+1

d+j+5
d+j+1

4δ
r
mj+1

)

1
mj+1

d+j+5
d+j+1

mj+1 − 1
+

4δ

r
mj+1

]

< r
[(mj+1 − u)(1− l 4δ

r
mj+1)

lmj+1 − 1
+

4δ

r
mj+1

]
by Lemma 4.5.5 (l := lct(Ej+1, Cj+1; qα))

≤ r
[(t− u)(1− l(m− t))

lt− 1
+ m− t

]
(m := multqαCj+1, t := t-multqαCj+1),

but this contradicts Proposition 3.9.2.
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Finally we complete the proof of Lemma 4.5.6.

Proof of Lemma 4.5.6. Suppose to the contrary that the LC-loci of (Ej+1, Cj+1) at qα

are 0-dimensional. Then Lemma 4.6.6 implies that J (Ej+1,
1

0.7mj+1
Cj+1)qα is trivial

or co-supported at qα for each point qα. Applying Lemma 3.6.2, we get

χ

(
KEj+1

+ d 1

0.7mj+1

mj+1es +
(
δ(δ + j + 1 + εj+1) + d 1

0.7mj+1

(δ(e + sj+1 − ε)e
)
f

)

>

r∑
α=1

dimC

(
OEj+1,qα/J (Ej+1,

1

0.7mj+1

Cj+1)qα

)
,

but this contradicts Proposition 3.8.2.

More precisely, since Lemma 4.5.8 provides all the intersection numbers on Ej+1,

the left hand side of the above inequality can be explicitly computed by Riemann-

Roch formula, and is approximately equal to

(
KEj+1

+ d 1

0.7mj+1

mj+1es +
(
δ(δ + j + 1 + εj+1) + d 1

0.7mj+1

(δ(e + sj+1 − ε)e
)
f

)

·
(
d 1

0.7mj+1

mj+1es +
(
δ(δ + j + 1 + εj+1) + d 1

0.7mj+1

(δ(e + sj+1 − ε)e
)
f

)
,

which is less than

3δ(δ + j + 1).

On the other hand, Proposition 3.8.2 implies that the right hand side is greater than

r

(
2mj+1 − (mj+1 + 4δ

r
mj+1)

)
( 1

0.7mj+1
− l)

lmj+1 − 1
≈ 0.3

4
r(d + j + 1).

Since r ≈ O(d2) À d ≈ δ, it is easy to see

3δ(δ + j + 1) <
0.3

4
r(d + j + 1)

for sufficiently large r, which is a contradiction.
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