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“Or se’ tu quel Virgilio e quella fonte
che spandi di parlar si largo fiume?”
rispuos’io lui con vergognosa fronte.

“O de li altri poeti onore e lume,
vagliami ’l lungo studio e ’l grande amore

che m’ha fatto cercar lo tuo volume.
Tu se’ lo mio maestro e ’l mio autore,

tu se’ solo colui da cu’ io tolsi
lo bello stilo che m’ha fatto onore.”

[“And are you then that Virgil, you the fountain
that freely pours so rich a stream of speech?”
I answered him with shame upon my brow.

“O light and honor of all other poets,
may my long study and the intense love

that made me search your volume serve me now.
You are my master and my author, you–
the only one from whom my writing drew

the noble style for which I have been honored.”]

from the Divine Comedy by Dante Alighieri,
as translated by Allen Mandelbaum [Man82].

In memory of Juha Heinonen,
my advisor, teacher, and friend.
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CHAPTER I

Introduction and Main Results

One of the central themes in metric-space analysis is to understand how the choices

of metric and measure on a space determine the geometry of the space. When these

choices are made in a compatible way, many familiar facts and constructions from

analysis extend naturally from the setting of Euclidean spaces to that of general

metric measure spaces, that is, metric spaces equipped with a measure.

Among many formulations of first-order calculus on such spaces, the following

work focuses mainly on objects called derivations. The subsequent results extend

Weaver’s theory of metric derivations and exterior differentiation [Wea00].

1.1 Lipschitz Functions and Rademacher’s Theorem.

To begin, let (X, ρ) be a metric space. Recall that a function f : X → R is said

to be Lipschitz if the quotients |f(y)− f(x)|/ρ(x, y) are uniformly bounded over all

pairs (x, y) in X × X, where x 6= y. In the case of Rn with the standard metric,

the classical theorem of Rademacher [Rad19] states that every Lipschitz function is

almost everywhere (a.e.) differentiable with respect to Lebesgue n-measure.

However, the Lipschitz condition is a purely metric condition. Suppose that we

have a metric space which supports some form of differential calculus. It is then

natural to inquire whether Lipschitz functions on that space exhibit similar differen-
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tiability properties as their counterparts on Euclidean spaces.

For our purposes, this work will only address those cases in which the target is Rn

and the source is a metric measure space. There is a substantial body of literature in

which these roles are reversed. Indeed, Kirchheim has proven that given any metric

space X, every Lipschitz map f : Rn → X is “metrically differentiable” at Lebesgue

a.e. point [Kir94, Thm 2]. We will not pursue this direction here, but for further

reading on this subject, see [Amb90], [AK00b], [DCP95], [Kir94], and [KS93].

For measure spaces (X,µ), Weaver has developed a theory of first-order calculus

in terms of objects called metric derivations [Wea00], [Wea99]. To explain the termi-

nology, he first defines a type of distance between µ-measurable subsets of X, called

a measurable metric. In the case when X admits a metric in the usual sense, the

measurable metric incorporates information from both the measure and the metric.

Returning to the general case, Weaver formulates a Lipschitz-type property for

functions in terms of measurable metrics. This framework then leads us to consider

metric derivations: these consist of a subspace of linear operators from the space

of “measurably Lipschitz” functions, as given above, to the space of µ-essentially

bounded functions on X, which we denote by L∞(X,µ).

Metric derivations generalize the usual differential operators on Rn. For instance,

they satisfy the Leibniz rule for products of Lipschitz functions. They also form a

vector space over R, as well as a module over the ring L∞(X,µ). Put another way,

Rademacher’s theorem is encapsulated in the structure of a metric measure space if

there exists a nonzero metric derivation on that space.

The framework of [Wea00] is very general and it admits a large class of examples.

These include classical spaces such as Riemannian manifolds, fractal-type spaces

such as the Sierpinski carpet and the Laakso spaces [Laa00], and infinite-dimensional
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spaces such as Banach manifolds and abstract Wiener spaces. To motivate the ab-

sence of a metric, Weaver also examines Dirichlet spaces on which the structure is

determined by a σ-finite measure and by bilinear operators called (L∞)-diffusion

forms. In this setting one recovers a measurable metric of the above type [Wea00,

Thm 54] but it is unclear whether this reduces to a pointwise metric.

1.2 Motivations and Main Results.

Our work on metric measure spaces follows Weaver, but our perspective takes a

more geometric direction. Here we develop a notion of derivation which is similar to

[Wea00], but where the choice of metric (in the usual sense) plays a more important

role. Like those of Weaver, these derivations form a module over L∞(X,µ). We are

then motivated by the following question, which is unsolved even in the case of Rn

with the standard metric. Given a metric space, what measures on the space induce

a nontrivial supply of derivations?

As a means of measuring the non-triviality of these modules, we use various

notions from linear algebra. Our goal will be to detect linearly independent sets of

derivations on a metric measure space and to determine the rank of the module of

derivations. Another goal will be to detect generating sets of such modules.

We first answer this question for two Euclidean spaces: the line and the plane. For

k = 1, 2, we classify all measures µ on Rk whose associated modules of derivations

contain linearly independent sets of cardinality k. Specifically, these are measures

which are absolutely continuous to Lebesgue k-measure, and the proof uses new

results about the structure of Lebesgue null sets due to Alberti, Csörnyei, and Preiss

[ACP05]. For Lebesgue singular measures µ, we also construct a derivation which

generates the full module of derivations on (R2, µ). It remains unclear, however,
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what conditions on µ will ensure a nonzero (generating) derivation.

In this direction, Stefan Wenger has made the following observation [unpublished]

which relates our theory of derivations to the theory of currents. On a complete,

separable metric space, each 1-dimensional current (in the sense of Ambrosio and

Kirchheim [AK00a, Defn 3.1]) induces a derivation, and the underlying measure is

the mass of the current [AK00a, Defn 2.6]. Conversely, it follows easily from the

definitions that if δ is a derivation on (X,µ) and if B is a ball in X, then the map

(f, π) 7→
∫
B

f · δπ dµ

determines an (Ambrosio-Kirchheim) 1-dimensional current. From this correspon-

dence, the problem of classifying Lebesgue singular measures that induce nontrivial

derivations on Rn is equivalent to the so-called “Flat Chain Conjecture” about one-

dimensional currents on Rn [AK00a, Sect 11]. We will not discuss currents here, but

for further reading, see [AK00a], [Lan], and the forthcoming article [HdP].

For α ∈ [0, 2], we also consider the class of measures in Rn which are concentrated

on subsets of σ-finite α-dimensional Hausdorff measure. The structure of their mod-

ules of derivations is similar to the cases of R and R2. To obtain these results, we

use the notion of a pushforward derivation, as well as additional facts from geo-

metric measure theory. Among these is the Besicovitch-Federer Projection Theorem

[Mat95, Thm 18.1]. Roughly speaking, it reduces such subsets to two cases: sets

which exhibit good properties under orthogonal projection onto hyperplanes, and

unions of C1-smooth submanifolds.

Lastly, we turn to a more general setting. In the spirit of Rademacher’s theorem,

Cheeger has proven a differentiability theorem [Che99, Thm 4.38] for real-valued

Lipschitz functions on a large class of metric measure spaces. Such spaces are char-

acterized by two properties: a growth condition on the measure, called the doubling
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property, and the validity of a weak (1, p)-Poincaré inequality, which generalizes

the classical Poincaré inequality on Rn. For concreteness, examples of such spaces

(and references) include Carnot-Carathéodory spaces [Gro96], [Mon02], the spaces

of Laakso [Laa00], complete manifolds with non-negative Ricci curvature [Bus82],

spaces of strong A∞-geometry [DS90], and boundaries (at infinity) of certain hyper-

bolic buildings [BP99].

Cheeger and Weaver have jointly shown that these spaces admit nontrivial mod-

ules of metric derivations [Wea00, Thm 43]. Proceeding in this direction, we prove

an analogue of their result for our derivations. We also show a special case of a

conjecture of Cheeger [Che99, Thm 4.63] which concerns the non-degeneracy of cer-

tain Lipschitz images of such spaces. The proofs of these facts use techniques from

Sobolev spaces on metric spaces, which we discuss in Chapter 6.

We note that Keith has generalized Cheeger’s theorem to a larger class of spaces

[Kei04, Thm 2.3.1]. Furthermore, his techniques [Kei04, Sect 2.4] can be adapted to

prove the same case of Cheeger’s conjecture. The argument uses a new fact about

sets of non-differentiability of Lipschitz functions on R2; see [ACP05, Thm 12].

1.3 Plan of the Thesis.

This paper is organized into eight chapters. The remainder of Chapter I consists

of notation and terminology which are used throughout this work. We also recall

briefly some familiar notions from measure theory and from functional analysis.

In Chapter II we review basic properties of Lipschitz functions on general metric

spaces. These include a normed linear structure on the space of bounded Lipschitz

functions and the corresponding weak-∗ topology. We also review several approxima-

tion theorems for Lipschitz functions on Euclidean spaces, which are given in terms
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of smooth functions and polynomials.

In Chapter III we begin our discussion of derivations on metric measure spaces

and their geometric properties. These operators exhibit similar properties as vector

fields on smooth manifolds, which include a locality property and the push-forward

construction. If the module of derivations is finitely generated, then it also admits

a type of generalized vector bundle structure. In the case of Rn, we show additional

properties of derivations, such as a variant of the Chain Rule, which are similar to

those of Euclidean partial differential operators.

In Chapter IV, we characterize measures on R which admit nontrivial derivations.

More generally, for a measure which is supported on a ‘one-dimensional’ subset of

Rn, its module of derivations is generated by at most one element. To prove the

latter fact, we use the concept of rectifiability from geometric measure theory.

In Chapter V, we prove two main facts about modules of derivations with respect

to Lebesgue singular measures on R2: (1) the rank of the module is at most one, and

(2) if the module is nonzero, then it is generated by a single derivation. The proofs

use several facts due to Alberti, Csörnyei, and Preiss [ACP05] about the geometry

of Lebesgue null sets in the plane. As an application of our techniques, we study

measures µ on Rn which are concentrated on ‘two-dimensional’ sets. This also uses

tools from rectifiability.

In Chapter VI, we introduce p-PI spaces. These are the metric measure spaces

for which Cheeger’s differentiability theorem holds. We show that such spaces also

admit a nontrivial module of derivations. The proof will require Cheeger’s theorem

[Che99, Thm 4.38] as well as techniques from Sobolev spaces on metric spaces. As

previously discussed, we also prove a special case of his conjecture.

Each of the remaining two chapters is an appendix of facts. In Chapter VII
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we compare Lipschitz continuity with Weaver’s (measurable) Lipschitz property for

functions, and we also show that a class of his metric derivations induce our deriva-

tions. Chapter VIII is a collection of assorted facts in functional analysis which

cannot be easily found in the literature; for completeness, we give their proofs.

1.4 Notation and Conventions.

The standard basis of unit vectors on Rn is denoted by {~ei}ni=1 and for 1 ≤ i ≤ n,

the ith Euclidean coordinate function is denoted by xi.

If S is a set and if f and g are real-valued functions on S, then we denote their

pointwise maximum and minimum as f ∨ g and f ∧ g, respectively.

As before, a triple (X, ρ, µ) is a metric measure space if (X, ρ) is a metric space and

µ is a measure on X. Here and in the sequel, Hk
X denotes k-dimensional Hausdorff

measure on a metric space X. When the metric is understood, dimH(E) denotes the

Hausdorff dimension of a subset E in X, which is defined as

dimH(E) := inf{α ∈ [0,∞) : Hα(E) = 0}.

If X = Rn, then we write Hk = Hk
X , and mn denotes Lebesgue n-measure on Rn.

Let (X,µ) be a measure space. A collection of subsets {Xi}∞i=1 is a measurable

decomposition of X if µ(X \
⋃∞
i=1Xi) = 0 and if µ(Xi ∩Xj) = 0, whenever i 6= j.

If Z is a µ-measurable subset of X, then we denote by µbZ the restriction (mea-

sure) of µ onto Z, which we define as

(
µbZ

)
(W ) := µ(Z ∩W ).

If µbZ = µ, then we say that µ is concentrated on Z. On a metric space (X, ρ) with

a Borel measure µ, the latter notion differs from the support of µ, which is defined
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to be the smallest closed set on which µ is concentrated [Mat95, Defn 1.12], i.e.

spt(µ) := X \ {x : µ(B(x, r)) = 0 holds for some r > 0}

= {x ∈ X : µ(B(x, r)) > 0 holds for all r > 0}.

Recall that a measure µ on X is absolutely continuous to another measure ν on

X, denoted µ � ν, if every ν-null set is also a µ-null set. Two measures µ and ν

on X are (mutually) singular, denoted µ ⊥ ν, if there exists A ⊂ X so that µ is

concentrated on A and ν is concentrated on X \A. By the Lebesgue Decomposition

Theorem [Fol99, Thm 3.8], for all σ-finite Radon measures µ and ν on X, there exist

σ-finite Radon measures µAC and µS so that the following conditions hold:

(1.4.1) µ = µAC + µS, µAC � ν, µS ⊥ ν.

When X = Rn and ν = mn, then we call µAC the Lebesgue absolutely continuous

part of µ and µS the Lebesgue singular part of µ.

For p ∈ [1,∞), Lp(X,µ) denotes the Banach space of p-integrable, real-valued

functions on X with respect to µ, and L∞(X,µ) denotes the space of µ-essentially

bounded, real-valued functions. The usual norms on these spaces are defined as

(1.4.2) ‖u‖µ, p :=


[∫

X
|u|p dµ

]1/p
, p ∈ [1,∞)

inf
{
λ ≥ 0 : µ

(
{x : |u(x)| > λ}

)
= 0

}
, p = ∞.

If the measure is understood, for p ∈ [1,∞) we write ‖u‖p as a shorthand for ‖u‖µ, p.

We always write ‖u‖∞ for the supremum norm of a function u, whenever it exists.

Given a Banach space V , we denote its dual Banach space by V ∗. We write

vn ⇀ v if {vi}i∈I is a net in V which converges weakly to v, which means that

〈v∗, vn〉 → 〈v∗, v〉 holds for all v∗ ∈ V ∗. For a dual Banach space W with pre-dual

V , we write wi
∗
⇀ w if {wi}i∈I is a weak-∗ convergent sequence in W with weak-∗

limit w, or equivalently, if 〈wi, v〉 → 〈w, v〉 holds for all v ∈ V .



CHAPTER II

Preliminaries: Lipschitz Functions

We begin by reviewing basic properties of Lipschitz functions on a metric space.

One crucial fact is that the space of bounded Lipschitz functions is a dual Banach

space and therefore admits a weak-∗ topology. In what follows, we will examine

convergence of bounded Lipschitz functions in this topology, as well as properties of

the pre-dual space. We will also recall several well-known approximation theorems

for Lipschitz functions on Rn.

2.1 Lipschitz Functions and Weak-∗ Topologies.

Let (X, ρX) and (Y, ρY ) be metric spaces. A map f : X → Y is Lipschitz if

L(f) := sup

{
ρY (f(x), f(y))

ρX(x, y)
: x, y ∈ X and x 6= y

}
is finite. If L(f) ≤ C holds for some C ≥ 0, then we say that f is C-Lipschitz. If

a map g : X → Y is Lipschitz on every bounded subset of X, then we say that g is

locally Lipschitz.

We denote the space of Lipschitz maps from X to Y by Lip(X, Y ) and the space

of locally Lipschitz maps from X to Y by Liploc(X;Y ). Several elementary facts are

stated below without proof. In particular, Part (2) follows easily from the definition

of Hα, for α ≥ 0; see [Mat95, Thm 7.5].

9
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Lemma 2.1.1. Let (X, ρX), (Y, ρY ), and (Z, ρZ) be metric spaces, and let C1, C2 ≥ 0.

1. If f : X → Y is C1-Lipschitz and if g : Y → Z is C2-Lipschitz, then the map

g ◦ f : X → Z is C1C2-Lipschitz.

2. Let f ∈ Lip(X;Y ) and let α ≥ 0. Then for all Hα-measurable subsets A in X,

Hα(f(A)) ≤ L(f)α · Hα(A).

If Y = R, then we write Lip(X) := Lip(X; R) and Liploc(X) := Liploc(X; R) for

short. The space of bounded, real-valued Lipschitz functions is denoted by Lip∞(X).

These spaces enjoy many additional properties, which we state below.

Lemma 2.1.2. Let (X, ρ) and (Y, ρ′) be metric spaces, and let C ≥ 0.

1. Lip(X) is a vector space over R, and Lip∞(X) is an algebra over R.

2. If f and g are C-Lipschitz functions on X, then so are f ∨ g and f ∧ g.

3. If {fi}i∈ I is a family of C-Lipschitz functions on X, then the function

x 7→ inf
i
fi(x)

is C-Lipschitz provided that it is finite at one point of X.

4. Let A ⊂ X. If f ∈ Lip(A), then there exists F ∈ Lip(X) so that F |A = f and

L(F ) = L(f). In addition, if f is a bounded function, then we may choose F

to be a bounded function that satisfies ‖f‖∞ = ‖F‖∞.

Parts (1) to (3) of Lemma 2.1.2 are standard facts. Assuming these, we prove

Part (4), which we will call the McShane-Whitney extension.1

1Our terminology may be non-standard. The usual notion of McShane-Whitney extension does not preserve
boundedness of the function.
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Proof of Lemma 2.1.2, Part (4). The lemma is clearly true for the zero function, so

assume that f 6= 0. Put L := L(f). For each point a ∈ A, consider the function

fa(x) := f(a) + L · ρ(a, x).

Clearly, the family {fa}a∈A is uniformly L-Lipschitz. Observe also that by construc-

tion, we have f(x) ≤ fa(x) for all a, x ∈ X, and that equality holds if and only if

x = a. Now consider the function

F̃ (x) := inf{fa(x) : a ∈ A}.

By Part (3), F̃ is also L-Lipschitz, and this proves the first assertion of (4).

To see that F̃ extends f , note that f(x) ≤ F̃ (x) holds for all x ∈ X. This follows

from the previous observation and by taking an infimum over all a ∈ A. In particular

we have f(a) ≤ F̃ (a), for all a ∈ A. However, F̃ is an infimum, so we always have

F̃ (x) ≤ fa(x), for all x ∈ X. In the case x = a, we obtain F̃ (a) ≤ fa(a) = f(a),

therefore F̃ (a) = f(a) holds for all a ∈ A.

Towards the second assertion, if f is not bounded, then put F := F̃ . Otherwise,

assume that f ∈ Lip∞(A) and consider the bounded function

F (x) :=
(
F̃ (x) ∨ (−‖f‖∞)

)
∧ ‖f‖∞.

Clearly we have ‖F‖∞ = ‖f‖∞. By Part (2), F is also L-Lipschitz. From the identity

f(x) =
(
f(x) ∨ (−‖f‖∞)

)
∧ ‖f‖∞,

we see that F |A = f follows from F̃ |A = f .

In addition to a linear structure, Lip∞(X) is a Banach space under the norm

(2.1.1) ‖f‖Lip := max(‖f‖∞, L(f)).

However, more is true. The following fact is due to Weaver [Wea99].
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Lemma 2.1.3 (Weaver, 1996). If (X, ρ) is a metric space, then Lip∞(X) is a dual

Banach space with respect to the norm in (2.1.1). In addition, on bounded sets of

Lip∞(X), its weak-∗ topology agrees with the topology of pointwise convergence.

The next corollary clarifies some details of weak-∗ convergence from Theorem

2.1.3. It gives simpler criteria for detecting weak-∗ convergent sequences in Lip∞(X).

Corollary 2.1.4. Let (X, ρX) and (Y, ρY ) be metric spaces, and let f and {fn}∞n=1

be functions in Lip∞(X).

1. The sequence {fn}∞n=1 converges weak-∗ to f in Lip∞(X) if and only if fn con-

verges pointwise to f and supn ‖fn‖Lip <∞.

2. If fn converges uniformly to f and supn L(fn) <∞, then fn
∗
⇀ f in Lip∞(X).

3. Let π ∈ Lip(X, Y ). If fn
∗
⇀ f in Lip∞(Y ), then fn ◦ π

∗
⇀ f ◦ π in Lip∞(X).

To prove Part (1) of Corollary 2.1.4, we will use a fact from functional analysis

[Yos95, Thm V.1.9(ii) & V.1.10].

Theorem 2.1.5. Let (V, ‖ · ‖) be a dual Banach space and suppose that a sequence

{vi}∞i=1 converges weak-∗ to v ∈ V . Then {‖vi‖}∞i=1 is uniformly bounded and satisfies

‖v‖ ≤ lim inf
i→∞

‖vi‖.

Proof of Corollary 2.1.4. (1) If fn
∗
⇀ f in Lip∞(X), then by Theorem 2.1.5, the

sequence {fn}∞n=1 is a norm-bounded set in Lip∞(X). By Lemma 2.1.3, fn converges

pointwise to f . On the other hand, if supn ‖fn‖Lip ≤ C holds for some C ≥ 0, then

by Lemma 2.1.3, the pointwise convergence fn → f implies weak-∗ convergence.

(2) If fn converges uniformly to f , then there is a N ∈ N so that ‖fn − f‖∞ < 1

holds whenever n > N . A straightforward estimate then gives

‖fn‖∞ ≤ ‖fn − f‖∞ + ‖f‖∞ ≤ 1 ∨
(

max
1≤n≤N

‖fn − f‖∞
)

+ ‖f‖∞ < ∞.
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From the previous estimate and the hypothesis supn L(fn) < ∞, it follows that the

sequence {fn}∞n=1 is a bounded subset of Lip∞(X). By Lemma 2.1.3, the pointwise

convergence fn → f implies weak-∗ convergence in Lip∞(X).

(3) By hypothesis, we have fn
∗
⇀ f in Lip∞(Y ), so there is a K > 0 so that

‖fn‖Lip < K holds for all n. From this we obtain the estimates

sup
n
‖fn ◦ π‖∞ ≤ sup

n
‖fn‖∞ < K,

L(fn ◦ π) ≤ L(fn) · L(π) ≤ K · L(π),

and these imply that the sequence {fn ◦ π}∞n=1 is bounded in Lip∞(X). Clearly,

fn ◦π converges pointwise to f ◦π, so by invoking Theorem 2.1.3 once more, we have

fn ◦ π
∗
⇀ f ◦ π in Lip∞(X).

With the same proof, a stronger form of Part (3) of Corollary 2.1.4 holds for a

class of homeomorphisms of metric spaces. We define them below.

Definition 2.1.6. Let (X, ρX) and (Y, ρY ) be metric spaces. We say that a home-

omorphism ϕ : X → X ′ is bi-Lipschitz if both ϕ and ϕ−1 are Lipschitz mappings.

Similarly, an embedding ψ : X → Y is a bi-Lipschitz embedding if it is a bi-Lipschitz

homeomorphism onto its image.

Corollary 2.1.7. Let (X, ρX) and (Y, ρY ) be metric spaces, let ϕ : X → Y be a

bi-Lipschitz homeomorphism, and let f and {fn}∞n=1 be functions in Lip∞(Y ). Then

fn
∗
⇀ f in Lip∞(Y ) if and only if fn ◦ ϕ

∗
⇀ f ◦ ϕ in Lip∞(X).

For further reading about Lipschitz maps on metric spaces and their properties,

see [Hei01, Chap 6], [LV77], [Mat95, Chap 7], and [Wea99]. In the case of real-valued

Lipschitz functions, see [EG92, Chap 3] or [Hei05, Sect 3].
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2.2 The Arens-Eells Space.

If (X, ρ) is a bounded metric space, then Lip(X) = Lip∞(X), and by Lemma

2.1.3, Lip(X) is a dual Banach space. In this case, we also obtain an explicit pre-

dual for Lip∞(X). In fact, more is true. Recall first that a metric space is separable

if it contains a countable dense subset.

Lemma 2.2.1. If (X, ρ) is a bounded, separable metric space, then the pre-dual of

Lip∞(X) is a separable Banach space.

Later we will use Lemma 2.2.1 in order to invoke facts from functional analysis

about dual Banach spaces of this type. Towards the proof, we first give a description

of the pre-dual. The following discussion is from [Wea99, Sect 1.1 & 2.2].

Let (X, ρ) be a bounded metric space and without loss of generality, assume that

diam(X) = 1. Let X+ be the set of all points of X as well as one additional point,

which we call e. The metric ρ on X extends to a metric ρ+ on X+ by the formula

ρ+(x, y) :=

 ρ(x, y), x, y ∈ X

1, x ∈ X, y = e.

As a Banach space, Lip∞(X) is isometrically isomorphic to the space

Lip0(X
+) := {f ∈ Lip(X+) : f(e) = 0}

[Wea00, Thm 1.7.2]. Indeed, Lip0(X
+) is a Banach space, and its norm is given by

the Lipschitz constant ‖f‖Lip0
:= L(f) [Wea00, Thm 1.6.2b].

For any point x ∈ X+, let δx denote the Dirac measure supported on x. If x and

y are distinct points in X+, put mxy := δx − δy. The space of signed measures

ÃE(X+) := span
R

{
mxy : x, y ∈ X+, x 6= y

}
.
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admits a norm [Wea99, Cor 2.2.3], which is given by the formula

(2.2.1) ‖m‖AE := inf
{ n∑

i=1

|ai| · ρ(xi, yi) : m =
n∑
i=1

aimxiyi

}
.

The Arens-Eells space AE(X+) of X+ is defined as the norm-completion of ÃE(X+)

with respect to ‖ · ‖AE. By [Wea99, Thm 2.2.2], we have
[
AE(X+)

]∗ ∼= Lip0(X
+).

Intuitively, the additional point e in X+ leads to a decomposition of measures

mxy = mxe + mey,

for all x, y ∈ X. This leads to the following correspondence: for φ ∈ [AE(X+)]∗, we

obtain Lipschitz functions fφ by the rule fφ(x) := φ(mxe).

Combining our previous conclusions, we observe that AE(X+) is the pre-dual of

Lip∞(X). With this additional information, we now prove Lemma 2.2.1.

Proof of Lemma 2.2.1. Let (X, ρ) be a bounded, separable metric space, let Y be a

countable, dense subset of X, and let ε > 0 be given. By definition, for all x, x′ ∈ X,

there exist y, y′ ∈ Y so that ρ(x, y) < ε/2 and ρ(x′, y′) < ε/2. We then compute

mxx′ −myy′ = (δx − δx′)− (δy − δy′) = mxy −mx′y′ ,

‖mxx′ −myy′‖AE = ‖mxy −mx′y′‖AE ≤ ρ(x, y) + ρ(x′, y′) < ε.

More generally, if m =
∑n

i=1 aimxix′i
, then for each i = 1, 2, . . . , n, we may choose

pairs yi, y
′
i ∈ Y so that ρ(xi, yi) < ε/bi and ρ(x′i, y

′
i) < ε/bi, where bi := 2n(|ai| ∨ 1).

Putting m′ :=
∑n

i=1 aimyiy′i
, a similar computation then gives

‖m−m′‖AE ≤
n∑
i=1

‖mxiyi
−mx′iy

′
i
‖AE

≤
n∑
i=1

|ai| ·
(
ρ(xi, yi + ρ(x′i, y

′
i)
)
< n ·

( ε

2n
+

ε

2n

)
= ε.

Since ε was arbitrary, this shows that ÃE(X+) contains a countable, dense subset.

Recall that the norm completion AE(X+) is formed as a set of Cauchy sequences
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of ÃE(X+), so AE(X+) also contains a countable, dense subset. This proves the

lemma.

2.3 Lipschitz Functions on Rn.

On Euclidean spaces, Lipschitz functions (with respect to the standard metric) en-

joy many additional properties. By the Weierstrass approximation theorem [CH53,

II.4.2] a continuous, real-valued function on Rn can be approximated locally uni-

formly by polynomials. Moreover, by well-known properties of convolution (with

respect to smooth mollifiers), continuous functions can also be approximated locally

uniformly by smooth functions [EG92, Thm 4.2.1.1].

In a similar spirit, a Lipschitz function on Rn can be approximated locally by such

functions in the weak-∗ topology of Lemma 2.1.3.

Lemma 2.3.1. Let f ∈ Lip∞(Rn).

1. For L = L(f), there is a sequence of smooth, bounded L-Lipschitz functions

{hj}∞j=1 so that hj
∗
⇀ f in Lip∞(Rn).

2. There is a sequence of polynomials {Pm}∞m=1 on Rn so that for every compact

subset K, we have Pm
∗
⇀ f in Lip∞(K).

To prove Part (2), we will require the following classical fact [CH53, Thm II.4.3].

Theorem 2.3.2. Let K be a compact subset of Rn and let ϕ ∈ C∞(Rn). Then there

is a sequence of polynomials Pm : Rn → R so that on K, the functions Pm converge

uniformly to ϕ and the gradients ∇Pm converge uniformly to ∇ϕ.

Proof of Lemma 2.3.1. To prove Part (1), consider the convolutions fε := f ∗ ηε,

where ηε is a smooth symmetric mollifier on Rn. In particular, fε is C∞-smooth, ηε
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has mass 1, and spt(ηε) = B̄(0, ε). From these properties we obtain

|fε(x)− fε(y)| ≤
∫

Rn

|f(x− z)− f(y − z)| · ηε(z) dz

≤ L(f) ·
∫

Rn

|x− y| · ηε(z) dz

= L(f) · |x− y|

whenever x and y are points in Rn. Taking suprema, we obtain L(fε) ≤ L(f) for

each ε > 0. A similar estimate also shows that fε converges uniformly to f :

|fε(x)− f(x)| ≤
∫

Rn

|f(z)− f(x)| · ηε(x− z) dz

≤ L(f) ·
∫

Rn

|x− z| · ηε(x− z) dz

= L(f) · ε ·
∫

Rn

ηε(x− z) dz = L(f) · ε.

Now let {εj}∞j=1 be any sequence of positive numbers decreasing to zero, and for each

j ∈ N, put hj := fεj . By Part (2) of Corollary 2.1.4, we have hj
∗
⇀ f in Lip∞(Rn).

The previous estimate also shows that {‖hj‖∞}∞j=1 is uniformly bounded, because

|hj(x)| ≤ |f(x)| + |hj(x)− f(x)| ≤ ‖f‖∞ + L(f) · εj,

holds for all x ∈ Rn. This proves Part (1).

It remains to show Part (2). By Part (1), there are smooth, bounded Lipschitz

functions {hm}∞m=1 so that hm
∗
⇀ f in Lip∞(Rn). For each m ∈ N, consider the closed

n-cube Qm = [−m,m]n. By Theorem 2.3.2, there is a polynomial Pm : Rn → R that

satisfies the following conditions:

∥∥(hm − Pm)|Qm

∥∥
∞ <

1

m
,(2.3.1) ∥∥(∇hm −∇Pm)|Qm

∥∥
∞ ≤ 1

m
.(2.3.2)

For a fixed m0 ∈ N, note that Pm converges pointwise to f on Qm0 , as m→∞. To
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see this, note that hm converges uniformly to f , so by inequality (2.3.1),

∥∥(f − Pm)|Qm0

∥∥
∞ ≤ ‖f − hm‖∞ +

∥∥(hm − Pm)|Qm0

∥∥
∞ < ε+ ε = 2ε

holds for sufficiently large indices m ∈ N.

So if K is an arbitrary compact subset of Rn, then K ⊂ Qm0 holds for some

m0 ∈ N. As a result, from inequalities (2.3.1) and (2.3.2) it follows that {Pm}∞m=1 is

a norm-bounded sequence in Lip∞(K). Therefore by Theorem 2.1.3 we have Pm
∗
⇀ f

in Lip∞(K), and this proves the lemma.



CHAPTER III

Derivations: Basic Properties

In this chapter we introduce the fundamental object of this paper. Following

Weaver [Wea00], a derivation on a metric measure space (X, ρ, µ) is a type of gener-

alized differential operator which acts linearly on Lip∞(X). However, there is a good

geometric interpretation of derivations as measurable vector fields. We will see that

derivations have good locality and push-forward properties. Moreover, the space of

derivations forms a module. It also leads to a type of vector bundle structure on X.

Here we assume that µ is a Radon measure on X. In other words, µ is a Borel

regular measure and bounded subsets of X have finite µ-measure.

3.1 First Notions and a Few Examples.

Let (X, ρ, µ) be a metric measure space. By Lemma 2.1.3, Lip∞(X) is a dual

Banach space. In addition, L∞(X,µ) is a dual Banach space under the norm

‖u‖µ,∞ := inf
{
λ ≥ 0 : µ

(
{x : |u(x)| > λ}

)
= 0

}
,

and its pre-dual is L1(X,µ).

The following definition is adapted from [Wea00, Defn 21]. Strictly speaking,

Weaver’s notions of Lipschitz function and metric derivation are different from ours.

In Chapter VII we provide a clarification between the definitions here and in [Wea00].

19
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Definition 3.1.1. A derivation δ : Lip∞(X) → L∞(X,µ) is a linear map which

satisfies the following conditions:

1. Weak-∗ continuity on bounded sets: if {fi}i∈I is a norm-bounded net in Lip∞(X)

that converges weak-∗ to f in Lip∞(X), then the net {δfi}i∈I converges weak-∗

to δf in L∞(X,µ).

2. The Leibniz rule: for all f, g ∈ Lip∞(X), we have δ(f · g) = f · δg + g · δf .

The space of derivations on (X, ρ, µ) is denoted by Υ(X,µ).

Remark 3.1.2. Let δ be a derivation on (X,µ). By the Leibniz rule, we obtain

δ(1) = 1 · δ(1) + 1 · δ(1) = 2 · δ(1),

so δ(1) = 0. By linearity, δc = 0 holds whenever c is a constant function on X.

Recall that for dual Banach spaces V and W , a linear map T : V → W is weak-∗

continuous if it maps weak-∗ convergent nets in V to weak-∗ convergent nets in W .

It follows that the condition of weak-∗ continuity is stronger than that of weak-∗

continuity on bounded sets.

When the context is clear, we refer to the bounded weak-∗ continuity property of

derivations simply as the continuity property (of derivations). In Chapter VIII we

recall the definition of a net. In some cases, however, the continuity of a derivation

reduces to checking sequences instead of nets. As a convenient terminology, we say

that a linear map T : V → W is sequentially weak-∗ continuous if it maps weak-∗

convergent sequences in V to weak-∗ convergent sequences in W .

Lemma 3.1.3. Let (X, ρ) be a bounded, separable metric space, let µ be a Radon

measure on X, and let T : Lip∞(X) → L∞(X,µ) be a linear map. Then T is weak-∗

continuous on bounded sets if and only if it is sequentially weak-∗ continuous.
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Remark 3.1.4. By Theorem 2.1.5, a weak-∗ convergent sequence must be norm-

bounded, so one direction of Lemma 3.1.3 is clear. If a map is weak-∗ continuous on

bounded sets, then by definition it must preserve weak-∗ convergent sequences.

The other direction of the lemma follows from a more general fact from functional

analysis. We postpone its proof to Section 8.2.

We next observe that every δ ∈ Υ(X,µ) is also continuous as a bounded linear

operator between the Banach spaces Lip∞(X) and L∞(X,µ). This fact also holds

more generally. We state it below.

Lemma 3.1.5. Let W be a Banach space and let V be a separable Banach space.

If T : V ∗ → W ∗ is a sequentially weak-∗ continuous, linear map, then T is norm-

bounded: that is, there is a C ≥ 0 so that for all v ∈ V , we have

‖Tv‖W ∗ ≤ C · ‖v‖V ∗ .

Here ‖ · ‖W ∗ and ‖ · ‖V ∗ denote the norms of W ∗ and V ∗, respectively.

The proof of Lemma 3.1.5 will use the following fact about compactness in the

weak-∗ topology [Rud91, Thm 3.17].

Theorem 3.1.6 (Banach-Alaoglu). Let V be a separable Banach space. If {v∗n}∞n=1

is a bounded sequence in V ∗, then it contains a weak-∗ convergent subsequence

{v∗nk
}∞k=1.

Proof of Lemma 3.1.5. We argue by contradiction, so suppose that for each n ∈ N,

there is a vn ∈ V so that ‖v‖V ∗ ≤ 1 and ‖Tvn‖W ∗ > n. By Theorem 2.1.5 the

sequence {vn}∞n=1 is norm-bounded, so by Theorem 3.1.6 there is a subsequence

{vnj
}∞j=1 which converges weak-∗ to v in V .

Since T is weak-∗ continuous on bounded sets, it follows from Lemma 3.1.3 that

{Tvnj
}∞j=1 is a weak-∗ convergent sequence in W . By Theorem 2.1.5, it is also a
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bounded set. On the other hand, by construction we have ‖Tvnj
‖W > nj for all

j ∈ N. This is a contradiction, so the lemma follows.

Combining Lemmas 3.1.3 and 3.1.5, we see that the same conclusion follows from

more general assumptions.

Corollary 3.1.7. Let (X, ρ) be a bounded, separable metric space, let µ be a Radon

measure on X, and let T : Lip∞(X) → L∞(X,µ) be a linear map that is weak-∗

continuous on bounded sets. Then T is norm-bounded.

In view of Corollary 3.1.7, every derivation δ ∈ Υ(X,µ) is a bounded linear

operator and therefore has a well-defined operator norm. We denote it by

‖δ‖ := sup
{
‖δf‖µ,∞ : ‖f‖Lip ≤ 1

}
.

Observe also that Υ(X,µ) has the structure of a module over the ring L∞(X,µ).

Indeed, the scalar action of a function λ ∈ L∞(X,µ) on δ ∈ Υ(X,µ) is determined

by the action of λ · δ on functions f ∈ Lip(X). This is then determined by the rule

(λ · δ)f(x) := λ(x) · δf(x).

Following [Wea00], the dual module to Υ(X,µ) over L∞(X,µ) is denoted Ω(X,µ),

and its elements are called measurable 1-forms. Similarly to differential forms on

a smooth manifold, one defines the exterior differential d : Lip∞(X) → Ω(X,µ) by

duality. Given f ∈ Lip∞(X), the measurable 1-form df is characterized by the action

(3.1.1) 〈δ, df〉 = δf.

Below we list several examples of derivations on various spaces. For their proofs,

see [Wea00, Sect 5B], [Wea00, Thm 37], and [Wea00, Cor 35], respectively.
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Example 3.1.8. The module Υ(Rn,mn) is generated by the Euclidean partial dif-

ferential operators {∂xi
}ni=1. In addition, we have the module isomorphism

Υ(Rn,mn) ∼=
n⊕
i=1

L∞(Rn,mn).

In fact, a more general statement is true. See Corollary 3.5.4.

Example 3.1.9. Let M be a Riemannian manifold and let v be the volume element.

Then Υ(M, v) is isomorphic to the L∞(M, v)-module of bounded measurable sections

of TM , the tangent bundle of M .

Example 3.1.10. If µ is any measure on R which is concentrated on the ‘middle-

thirds’ Cantor set, then Υ(R, µ) is the zero module.

3.2 The Locality Property.

On a smooth manifold M , vector fields are local objects. In other words, their

action on a function f ∈ C∞(M) near a point x ∈M depends only on the behavior

of f near x. The next lemma shows that derivations have a similar property. This

becomes a convenient technical tool in later sections, because often we will use it to

reduce to the case of sets of finite measure.

Theorem 3.2.1. Let A be a µ-measurable subset of X. Then

(3.2.1) Υ(A, µ) ∼= {χAδ : δ ∈ Υ(X,µ)}.

Remark 3.2.2 (Notation). (1) We follow the conventions of [Wea00]. When the

context is clear, for δ ∈ Υ(X,µ) we will write χAδ ∈ Υ(A, µ).

(2) The left-hand side of equation (3.2.1) denotes the module of derivations on

the metric measure space (A, ρ, µbA). We will consistently write µ for µbA.
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Theorem 3.2.1 is known as the locality property for derivations. It is a variant of

[Wea00, Thm 29] and the proof is similar. For completeness we give a sketch of the

argument, and to do this we use three additional facts. The first is an elementary

characterization of weak-∗ convergence of nets (Lemma 8.1.5) and the second is the

Banach-Alaoglu Theorem (Theorem 3.1.6). The third is an auxiliary fact due to

Weaver [Wea99, Lem 7.2.3] which we state below; see also [Wea00, Lem 27].

Lemma 3.2.3 (Weaver, 1996). Let δ ∈ Υ(X,µ) and let A ⊂ X be µ-measurable.

If f, g ∈ Lip∞(X) satisfy f = g µ-a.e. on A, then δf = δg holds µ-a.e. on A.

The proofs of Lemma 3.2.3 in [Wea99] and [Wea00] hold in the general setting of

W ∗-domain algebras, which we will not discuss here. For a direct proof in the setting

Lip∞(X), see [Hei07, Lem 13.4].

Proof of Theorem 3.2.1. We first show the inclusion (⊃) in equation (3.2.1), so let

δ ∈ Υ(X,µ) be arbitrary. From χAδ we define a map δ∗ : Lip∞(A) → L∞(A, µ) in

the following way. Given f ∈ Lip∞(A), let F ∈ Lip∞(X) be its McShane-Whitney

extension (as in Part (4) of Lemma 2.1.2) and then put

δ∗f(x) =

 (χAδ)F (x), x ∈ A

0, x ∈ X \ A.

By Lemma 3.2.3, δ∗f is independent of the choice of extension of f .

We now show that δA ∈ Υ(A, µ). Clearly, δA is linear and satisfies the Leibniz

rule. It remains to show that δ∗ is continuous, so suppose that {fi}i∈I is a norm-

bounded net in Lip∞(X) which converges weak-∗ to f . To verify that δ∗fi
∗
⇀ δ∗f in

L∞(X,µ), we invoke Lemma 8.1.5 from Chapter VIII. It then suffices to show that

every sub-net of {δ∗fi}i∈I has a further sub-net which is weak-∗ convergent and with

the same weak-∗ limit δ∗f .
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Since any sub-net {fϕ(j)}j∈J is also bounded, the corresponding net of extensions

Gj of fϕ(j) is also bounded in Lip∞(X). By Theorem 3.1.6 there is a further sub-net

{Gψ(k)}k∈K and a function G ∈ Lip∞(X) so that Gψ(k)
∗
⇀ G. This implies that Gψ(k)

converges pointwise to G, so by Part (3.2.3) of Lemma 3.2.3, we have G|A = f .

Since δAf is independent of the extension of f , we obtain δ∗f = χA · δG. From

the continuity of δ, we also obtain δGbc
∗
⇀ δG in L∞(X,µ), and hence

δ∗fϕ(ψ(k)) = χA · δGψ(k)
∗
⇀ χA · δG = δ∗f

in L∞(A, µ). By the previous reduction, this gives the inclusion (⊃).

For the other set inclusion (⊂), let δ ∈ Υ(A, µ) be arbitrary, and put

(3.2.2) δ|AF (x) :=

 δ(F |A)(x), x ∈ A

0, x ∈ X \ A.

The map δ|A is well-defined because F |A ∈ Lip∞(A) whenever F ∈ Lip∞(X). By

similar arguments as before, we obtain δ|A ∈ Υ(X,µ).

We claim that the map δ 7→ δ|A is an isomorphism and that δ 7→ δ∗ is its inverse.

To see this, let g ∈ Lip∞(A), f ∈ Lip∞(X), and x ∈ A be given, and let GA be the

McShane-Whitney extension of g. For η ∈ Υ(A, µ) and δ ∈ Υ(X,µ), we compute

(η|A)∗g(x) = (η|A)GA(x) = η(GA|A)(x) = ηg(x),(3.2.3) (
(δ∗)|A

)
f(x) = δ∗(f |A)(x) = (χAδ)FA(x) = χA(x) · δf(x).(3.2.4)

This proves the lemma.

From Theorem 3.2.1 we obtain several additional facts. The first fact states that

a subdivision of X into µ-measurable subsets induces a splitting of Υ(X,µ) into

submodules with respect to these subsets.
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Lemma 3.2.4. Let µ be a Radon measure on X, and let {Xi}Ni=1 be a µ-measurable

decomposition of X. Then we have the L∞(X,µ)-module isomorphism

Υ(X,µ) ∼=
N⊕
i=1

Υ(Xi, µ).

Remark 3.2.5. Recall that Υ(Xi, µ) refers to derivations on Xi with respect to the

restriction measure µi := µbXi and not the measure µ.

However, it remains true that Υ(Xi, µ) is a module over L∞(X,µ). To see this,

note that µi � µ holds for each i ∈ N, and hence L∞(X,µ) is a linear subspace

of L∞(Xi, µi). It follows that λ · δf ∈ L∞(Xi, µi) holds whenever δ ∈ Υ(X,µi),

f ∈ Lip∞(Xi), and λ ∈ L∞(X,µ).

Proof. Put M :=
⊕N

i=1 Υ(Xi, µ). We claim that the map T : Υ(X,µ) →M given by

T (δ) := (χX1δ, . . . , χXN
δ)

is an isomorphism. For δi ∈ Υ(Xi, µ), let δi|Xi
denote its extension to Υ(X,µ) as

given in formula (3.2.2). We further claim that the map S : M → Υ(X,µ) given by

S(δ1, . . . , δN) :=
N∑
i=1

δi|Xi

is the inverse of T . Clearly, both S and T are homomorphisms, so it suffices to show

that S ◦ T = idΥ(X,µ) and that T ◦ S = idM .

Let δ ∈ Υ(X,µ). From equation (3.2.4) in the proof of Theorem 3.2.1, we obtain

(χXi
δ)|Xi

= δ for all 1 ≤ i ≤ N . It follows that

(S ◦ T )(δ) = S(χX1δ, . . . , χXN
δ) =

N∑
i=1

(χXi
δ)|Xi

=
( N∑
i=1

χXi

)
δ = δ.

From the definitions, χXi
(δ|Xj

) is zero whenever i 6= j. So for (δ1, . . . , δN) ∈ M , it
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follows from equation (3.2.3) that

(T ◦ S)(δ1, . . . , δN) = T
( N∑
i=1

δi|Xi

)
=

(
χX1

( N∑
i=1

δi|Xi

)
, . . . , χXN

( N∑
i=1

δi|Xi

))
= (δ1, . . . , δn).

This proves the lemma.

The next fact gives a method of ‘gluing’ derivations from separate subsets of X

into a derivation on all of X. In Chapters IV and V, we will use it to construct

generators of Υ(Rn, µ) for certain measures µ.

Lemma 3.2.6. Let {Xi}∞i=1 be a µ-measurable decomposition of X. For each i ∈ N,

let δi be a derivation in Υ(Xi, µ) which satisfies ‖δi‖ ≤ 1. Then the linear operator

δ : Lip∞(X) → L∞(X,µ) given by

(3.2.5) δf :=
∞∑
i=1

χXi
· δif

is a derivation in Υ(X,µ) and satisfies ‖δ‖ ≤ 1.

Remark 3.2.7. In equation (3.2.5), the terms on the right-hand side should be

understood as zero extensions. More precisely, we have
(
χXi

· δif
)
(x) = δif(x)

whenever x ∈ Xi and
(
χXi

· δif
)
(x) = 0 whenever x ∈ X \Xi.

Proof of Lemma 3.2.6. The map δ in formula (3.2.5) is clearly linear and satisfies

the Leibniz rule. Since ‖δi‖ ≤ 1, for each f ∈ Lip∞(X) with ‖f‖Lip ≤ 1, we have

µ({x ∈ X : |δf(x)| > 1}) ≤
∞∑
i=1

µ({x ∈ Xi : |δif(x)| > 1}) = 0.

As a result, we obtain the bound ‖δ‖ ≤ 1.

It remains to show that δ is continuous, so let h ∈ L1(X,µ) be arbitrary and let f

and {fj}j∈I be functions in Lip∞(X) so that fj
∗
⇀ f and so that C := supj ‖fj‖Lip <

∞. Let ε > 0 be given.
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By Theorem 2.1.3, fj converges pointwise to f . Since {Xi}∞i=1 is a measurable

decomposition of X, there is an N ∈ N so that whenever n ≥ N , we have

∞∑
i=n+1

∫
Xi

|h| dµ ≤ ε

4C
.

On the other hand, for all i ∈ N and j ∈ I we have ‖fj|Xi‖Lip ≤ C, so by Theorem

2.1.3 we also have fj|Xi
∗
⇀ f |Xi in Lip∞(Xi). As a result, there is an j0 ∈ I so that∣∣∣∣∫
Xi

h · δifj dµ −
∫
Xi

h · δif dµ
∣∣∣∣ <

ε

2N

holds, for all 1 ≤ i ≤ N and all j0 ≺ j. Combining the estimates above, for the same

choices of j we obtain∣∣∣∣∫
X

h · δ(fj − f) dµ

∣∣∣∣ ≤
N∑
i=1

∣∣∣∣∫
Xi

h · δ(fj − f) dµ

∣∣∣∣ +
∞∑

i=N+1

∫
Xi

|δ(fj − f)| · |h| dµ

= N · ε

2N
+ ‖δ(fj − f)‖µ,∞ ·

∞∑
i=N+1

∫
Xi

|h| dµ

≤ ε

2
+ 2C · ‖δ‖ · ε

4C

≤ ε

2
+
ε

2
= ε.

This proves the continuity of δ.

As a final consequence of Theorem 3.2.1, we observe that the action of a derivation

in Υ(X,µ) can be extended to locally Lipschitz functions on X. The proof is similar

to that of the previous lemma, but we will leave aside any issues of continuity.

Theorem 3.2.8. Let δ ∈ Υ(X,µ).

1. There is a linear operator δ̄ : Liploc(X) → L∞loc(X,µ) so that δ̄|Lip∞(X) = δ.

In addition, δ̄ is unique in the following sense: for all functions f ∈ Liploc(X)

and for all balls B of finite radius in X, we have

(3.2.6) χB · δ̄f = χB · δFB,



29

where FB is any bounded Lipschitz extension of f |B to all of X.

2. If (X, ρ) is separable, then δ̄ also satisfies δ̄
(

Lip(X)
)
⊂ L∞(X,µ) and

(3.2.7) ‖δ̄f‖µ,∞ ≤ ‖δ‖ · L(f).

Remark 3.2.9. By the uniqueness of the extension δ̄, it follows that δ̄ satisfies a

local version of the Leibniz rule. Indeed, for all f, g ∈ Liploc(X) we have

χB · δ̄(f · g) = χB
(
f · δ̄g + g · δ̄f

)
.

Proof of Theorem 3.2.8. Fix x0 ∈ X and for k ∈ N, put Ak := B(x0, k)\B̄(x0, k−1).

The collection of the sets {Ak}∞k=1 is a cover of X, and each annulus Ak is a bounded

set. As a result, if f ∈ Liploc(X), then f |Ak ∈ Lip∞(Ak) holds for each k ∈ N.

Using the locality property (Theorem 3.2.1), consider the derivations δk := χAk
δ

in Υ(Ak, µ). We then define the operator δ̄ by the rule

(3.2.8) δ̄f :=
∞∑
k=1

χAk
· δk(f |Ak),

where once again, the terms on the right-hand side are understood as zero extensions.

Indeed, for each f ∈ Liploc(X), the function δ̄f is well-defined for µ-a.e. x ∈ Ak and

hence for µ-a.e. x ∈ X. Since each map δk is linear, so is δ̄.

By its construction, δ̄g = δg holds whenever g ∈ Lip∞(X). More generally, let

f ∈ Liploc(X), let B be any ball in X, and let FB be the McShane-Whitney extension

of f |B. If δ ∈ Υ(X,µ), then by formula (3.2.8) and Lemma 3.2.3 we have

χB · δ̄f =
∞∑
k=1

χAk
· χB · δk(f |Ak)

=
∞∑
k=1

χAk
· χB · δk(FB|Ak) =

∞∑
k=1

χAk
· χB · δFB = χB · δFB.

Formula (3.2.6) follows.
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Let f ∈ Liploc(X). To see that the function δ̄f lies in L∞loc(X,µ), let K be any

compact subset of X. Since K is bounded, there is a k0 ∈ N so that K ⊂ B(x0, k0).

Put Λ := max{‖δkf‖µ,∞ : 1 ≤ k ≤ k0}. We now compute

µ({x ∈ K : |δ̄f(x)| > Λ}) ≤
k0∑
k=1

µ({x ∈ Ak : |δf(x)| > Λ}) = 0.

It follows that χK · δf ∈ L∞(X,µ), and this proves the first assertion.

Towards the second assertion, assume now that X is separable. Let {xj}∞j=1 be

a countably dense subset of X. Then the collection of balls Bj := B(xj, 1/2) covers

X. For each f ∈ Lip(X) and each j ∈ N, put gj := f − infBj
f . We then compute

‖gj|Bj‖∞ ≤
∣∣∣ sup
Bj

f − inf
Bj

f
∣∣∣ ≤ L(f) · diam(Bj) = L(f).

Now let Fj : X → R be the McShane-Whitney extension of gj|Bj, so L(Fj) = L(f)

and ‖Fj‖∞ = ‖gj|Bj‖∞. From these bounds and the previous estimate, we obtain

‖δFj‖µ,∞ ≤ ‖δ‖ · ‖Fj‖Lip = ‖δ‖ ·
(
‖Fj‖∞ ∨ L(Fj)

)
≤ ‖δ‖ · L(f).

Lastly, consider the pairwise disjoint collection of sets

C1 := B1, Cj := Bj \
j⋃
i=1

Bi, for j = 2, 3, . . .

which form a measurable decomposition of X. Put δj := χBj
δ and δ̄ :=

∑
j χCj

δj.

By the locality property (Theorem 3.2.1), for each j ∈ N we have δj ∈ Υ(Bj, µ)

and by Part (3.2.3) of Lemma 3.2.3, we have δjgj = χBj
· δFj. Since every derivation

applied to a constant function is zero, we have δjf = δjgj and hence δjf = χBj
· δFj.

Putting λ := ‖δ‖ · L(f), we now compute

µ({x ∈ X : |δ̄f(x)| > λ}) ≤
∞∑
j=1

µ({x ∈ Cj : |δjf(x)| > λ})

≤
∞∑
j=1

µ({x ∈ Cj : |δFj(x)| > λ}) = 0.

This gives inequality (3.2.7) and proves the theorem.
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3.3 Derivations, Bundle Structures, and Linear Algebra.

In the previous section, the locality property of derivations was motivated by

viewing metric measure spaces as similar to smooth manifolds. Here we follow this

analogy further by introducing additional properties of derivations that are reminis-

cent of smooth vector fields.

The following theorem is due to Weaver, and it is an immediate consequence of

[Wea00, Thm 10] and [Wea00, Cor 24]. It states that in certain cases, Υ(X,µ) can

be realized as measurable type of “vector bundle” over X.

Theorem 3.3.1 (Weaver, 1999). Let (X, ρ, µ) be a metric measure space and

suppose that Υ(X,µ) is a finitely generated module over L∞(X,µ). Then there is

a k ∈ N and a measurable decomposition X =
∐k

n=1X
n so that for each x ∈ Xn

there is a norm ‖ · ‖x on Rn with the following property: for each n, Υ(Xn, µ) is

isometrically and weak-∗ continuously isomorphic to the set of bounded µ-measurable

functions f : Xn → Rn with respect to the norm

‖f‖ := µ -ess-sup
x∈Xn

‖f(x)‖x.

Such a structure is an example of a (F) Banach bundle, which we will not discuss

here; for further details, see [DG83]. It is important to note that, unlike the case of

vector bundles on manifolds, Banach bundles often do not satisfy a local triviality

condition [Hir94, Sect 4.1]. In spite of this, Theorem 3.3.1 shows that the case of

finitely generated modules Υ(X,µ) have a clear geometric interpretation.

Later we consider a certain class of metric measure spaces (X, ρ, µ), called p-PI

spaces, which admit a similar bundle structure as in Theorem 3.3.1; see Theorem

6.2.1. For such spaces, it is not known whether the associated modules Υ(X,µ) are

finitely generated. However, we show in Chapter VI that these modules do satisfy a
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related condition in terms of linearly independent sets. We recall the definition from

linear algebra [Hun80, Sect IV.2].

Definition 3.3.2. Let m ∈ N. A subset {δi}mi=1 in Υ(X,µ) is linearly independent

if the following implication holds: whenever there are functions {λi}mi=1 in L∞(X,µ)

so that
∑m

i=1 λiδi is the zero derivation, then each λi is the zero function. The set

{δi}mi=1 is linearly dependent if it is not linearly independent.

The rank of Υ(X,µ) is the largest cardinality of linearly independent sets of

derivations in Υ(X,µ).

Remark 3.3.3. In the case of a zero measure, linear independence becomes a de-

generate notion. Indeed, if µ = 0, then L∞(X,µ) consists of the zero function only,

and Υ(X,µ) is the zero module. Moreover, if
∑N

i=1 λiδi = 0 holds for a collection of

functions {λi}Ni=1 in L∞(X,µ), then we obtain trivially λi = 0 for each index i. As a

result, {0} is a linearly independent set in Υ(X,µ).

To avoid such pathologies, we will discuss linear independence of sets in Υ(X,µ)

only when µ is a nonzero measure and when X has positive µ-measure.

Remark 3.3.4 (Bases and free modules). Our notion of rank may differ from

other definitions; as an example, see [Hun80, Sect IV.2]. In that reference, rank

makes sense only for free modules over rings which have the invariant dimension

property [Hun80, Sect IV.2]. Recall that a module M over R is a free module if it

admits a basis, that is, a linearly independent generating set. We will not define the

invariant dimension property here. However, L∞(X,µ) is a commutative ring with

identity and therefore has this property [Hun80, Cor IV.2.12].

For rings R with the invariant dimension property, the rank of M is then defined

as the cardinality of any basis of M . To reiterate, we will not use this notion of rank,
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but the notion of rank as given in Definition 3.3.2.

Note that there exist modules of derivations which do not have bases and hence

are not free modules.

Example 3.3.5. Consider the line L = {2} × R and the ball B = B(0, 1) in R2,

and put X = B ∪ L and µ = m2bB + H1bL. By Theorem 3.2.1, the operators

δ1 := χB∂x1 + χL∂x2 and δ2 := ∂x2 are derivations in Υ(X,µ). In fact, they form

a generating set. However, from the identity χL(δ1 − δ2) = 0, we see that the set

{δ1, δ2} must be linearly dependent.

As we will see later, for the previous example there are no generating sets for

Υ(X,µ) which are linearly independent; see Corollary 5.2.7.

The next lemma collects a few elementary facts about linearly independent sets

of derivations. Their proofs are straightforward and we omit them.

Lemma 3.3.6. Let N ∈ N.

1. If {δi}Ni=1 is a linearly independent set in Υ(X,µ), then so are subsets of {δi}Ni=1.

2. If {δi}Ni=1 is a linearly independent set in Υ(X,µ) and if A is a measurable subset

of X with µ(A) > 0, then {χAδi}Ni=1 is a linearly independent set in Υ(A, µ).

It is a general fact [HK98, Thm 5.5] that if R is a commutative ring with identity

and if M is a free R-module generated by n elements, then the rank of M is n. Under

additional hypotheses on X, a weak converse to this fact holds true for the modules

Υ(X,µ). With this in mind, we now give a definition and state a few lemmas.

Definition 3.3.7. Let G be a subset of Lip∞(X), and let R[G] denote the sub-

algebra in Lip∞(X) formed from sums and products of functions from G. We say

that G is a generating set for Lip∞(X) if Lip∞(X) is precisely the closure of R[G]
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with respect to the bounded weak-∗ topology. In such a case, we say that each

function gi ∈ G is a generator of Lip∞(X).

Furthermore, we say that Lip∞(X) is N-generated if there is a generating set G

for Lip∞(X) with cardinality N . We also say that Lip∞(X) is finitely generated (as

an algebra) if it is N -generated for some N ∈ N.

Example 3.3.8. If B is any bounded subset of Rn, then by Lemma 2.3.1, the func-

tions {xi}ni=1 form a generating set for Lip∞(B). Therefore Lip∞(B) is n-generated.

More generally, compact Riemannian manifolds M have finitely generated Lip∞(M).

Lemma 3.3.9. Let N ∈ N. Suppose that Lip∞(X) is N-generated with generating

set {gi}Ni=1 and suppose also that {δi}Ni=1 is a linearly independent set in Υ(X,µ).

Then the matrix [δigj(x)]Ni,j=1 is non-singular for µ-a.e. x ∈ X.

In the proof, we use the Laplace expansion formula for square matrices [HK98, Eqn

5.21]. Given a matrix A = [aij]
n
i,j=1, recall that the cofactor A(i1, . . . , im|j1, . . . jm)

of A is the (n−m)× (n−m) matrix formed by omitting from A the rows indexed

by i1, i2, . . . , im and the columns indexed by j1, j2, . . . jm. The Laplace expansion

formula then gives, for i = 1, 2, . . . , n,

(3.3.1) detA =
n∑
i=1

(−1)i+j · aij · detA(i|j).

Proof. Put M := [δigj]
n
i,j=1 and suppose that the set E := {x ∈ X : detM = 0} has

positive µ-measure. By formula (3.3.1) we obtain

0 = χE ·∆k
j · detM = χE ·

n∑
i=1

(−1)i+j · detM(i|j) · δigk,

for all j and k, and where ∆k
j is the Kronecker delta. Next, consider the derivations

(3.3.2) δ′j :=
n∑
i=1

χE · (−1)i+j · detM(i|j) δi
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By construction, we have δ′jgk = 0 for all indices j and k. Since {gk}Nk=1 is a generating

set for Lip∞(X), it follows from continuity that δ′jf = 0 holds for all f ∈ Lip∞(X)

and all indices j. However, the set {δi}Ni=1 is linearly independent by hypothesis. It

follows that χE · detM(i|j) = 0 holds, for all indices i and j.

Let 1 ≤ k < N be the least number with the following property: there is a cofactor

sub-matrix A of M which has zero determinant and for some i, j ∈ {1, 2, . . . , N},

there is a cofactor A(i; j) of A which has nonzero determinant. Up to a permutation

of indices, let A := [δigj(x)]ki,j=1. By the same arguments as above, we see that

0 =
k∑
i=1

χE · (−1)i+j · detA(i|j) δi.

Since one of the determinants detA(i|j) is nonzero, it follows that the set {χEδi}ki=1

is linearly dependent in Υ(X,µ). By Lemma 3.3.6, the sets {δi}ki=1 and {δi}Ni=1 are

also linearly dependent in Υ(X,µ), which is a contradiction.

It follows that for 1 ≤ k ≤ N , the determinant of each k×k cofactor of M is zero.

In the case k = 1, we see that χE · δigj = 0 holds for all indices i and j, and hence

χE · δif = 0 holds for all f ∈ Lip∞(X) and all 1 ≤ i ≤ N . Therefore each derivation

χEδi is zero, so we have χE = 0 and hence µ(E) = 0.

The next corollary is a type of Gram-Schmidt orthogonalization for linearly inde-

pendent sets of derivations. It is a direct consequence of Lemma 3.3.9.

Corollary 3.3.10. Let N ∈ N. Suppose that Lip∞(X) is N-generated with gener-

ating set {gi}Ni=1 and suppose also that {δi}Ni=1 is a linearly independent collection in

Υ(X,µ). Then there is a linearly independent set {δ′i}Ni=1 in Υ(X,µ) so that

1. if i 6= j, then δ′igj = 0;

2. for all 1 ≤ i ≤ n, the set {x ∈ X : δ′igi(x) = 0} has µ-measure zero.
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Recalling the exterior differential map from formula (3.1.1), one may interpret

the conclusions of Corollary 3.3.10 in the following way. By selecting a generating

set {gj}Nj=1 of Lip∞(X), conclusions (1) and (2) become “orthogonality” relations

between the derivations {δi}Ni=1 and the measurable 1-forms {dgj}Nj=1.

Proof of Corollary 3.3.10. By hypothesis, there is a linearly independent set {δi}Ni=1

in Υ(Rn, µ). If the above conclusions (1) and (2) are not satisfied for these, then

choose scalars {λij}Ni,j=1 in L∞(X,µ) as in formula (3.3.2), and put δ′j :=
∑n

i=1 λijδi.

Arguing once more by the Laplace expansion formula, it is easy to see that the

derivations {δ′i}Ni=1 do satisfy conclusions (1) and (2).

It remains to show that {δ′i}Ni=1 is a linearly independent set, so suppose there are

functions {λi}Ni=1 in L∞(X,µ) so that
∑N

i=1 λiδ
′
i is the zero derivation. In particular,

for each generator gj we will use conclusion (1) to obtain

0 =
( N∑
i=1

λiδ
′
i

)
gj = λj · δ′jgj.

By conclusion (2), δ′jgj is µ-a.e. nonzero, which means that λj = 0 holds µ-a.e. The

linear independence follows.

Lemma 3.3.11. Let N ∈ N and suppose that Lip∞(X) is N-generated. Then the

module Υ(X,µ) has rank at most N .

Proof. We argue by contradiction. Suppose that {δi}N+1
i=1 is a linearly independent

set in Υ(X,µ), so by Lemma 3.3.6 the subset {δi}Ni=1 is also linearly independent.

Let {gi}Ni=1 be a generating set for Lip∞(X), so there must exist L∞(X,µ)-linear

combinations {δ′i}Ni=1 of the {δi}Ni=1 which satisfy the conclusions of Corollary 3.3.10

with respect to the {gi}Ni=1. In particular, {δ′i}Ni=1 is a linearly independent set.

Since δN+1 is a nonzero operator, there must be an index j for which δN+1gj is

not identically zero. Let J be the set of all such indices, and to simplify notation,
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put δ′N+1 := δN+1 and J ′ := J ∪ {N + 1}. Consider the functions {λj}j∈ J ′ , given by

(3.3.3) λj :=

 δ′N+1gj ·
∏

i∈J\{j} δ
′
igi, j ∈ J

−
∏

i∈J δ
′
igi, j = N + 1.

By inspection, λj lies in L∞(X,µ), for each j ∈ J ′. In addition, note that if j ∈ J ,

then by conclusion (1) of Corollary 3.3.10, we obtain

∑
i∈ J ′

λi · δ′igj = λj · δ′jgj + λN+1 · δN+1gj = 0.

Otherwise j /∈ J , and by construction we have δ′igj = 0, for each i ∈ J ′. This shows

that the set {δ′i}i∈ J ′ is linearly dependent, which is a contradiction. As a result, the

initial set of derivations {δi}n+1
i=1 is linearly dependent.

We now compare linearly independent sets in Υ(X,µ) with generating sets of

Υ(X,µ). Roughly speaking, if Lip∞(X) is a finitely generated algebra and if there is

a linearly independent set in Υ(X,µ) of sufficiently large cardinality, then we obtain

generating sets of Υ(X,µ) with the same cardinality.

Theorem 3.3.12. Let N ∈ N and let µ be a Radon measure on X. Suppose that

Lip∞(X) is N-generated and that the rank of Υ(X,µ) is N . Then for any ε > 0,

there is a subset Xε of X so that µ(X \Xε) < ε and that Υ(Xε, µ) is generated by N

derivations.

Proof. Let ε > 0 be arbitrary, and let {gi}Ni=1 be a generating set of Lip∞(X). By

hypothesis there is a linearly independent set {δi}Ni=1 in Υ(X,µ), so there exist deriva-

tions {δ′i}Ni=1 in Υ(X,µ) which satisfy the orthogonality relations of Corollary 3.3.10.

Assume first that X is a bounded metric space. The subset Xε is constructed as

follows: given c > 0, first consider the subset

X1
c := {x ∈ X : |δ′1g1(x)| > c}.
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Clearly µ(X \
⋃
c>0X

1
c ) = 0 and if c < c′, then X1

c′ ⊂ X1
c . Since µ is Radon and X

is bounded, we see that X has finite µ-measure. It follows that

lim
c→0

µ(X \X1
c ) = µ

( ⋂
c>0

X \X1
c

)
= µ

(
X \

⋃
c>0

X1
c

)
= 0.

Choose c > 0 sufficiently small so that µ(X \ X1
c ) < ε/N , and put X1 := X1

c .

Iterating further, for 2 ≤ i ≤ N , let ci > 0 and consider the subsets

X i
ci

:= {x ∈ X i−1 : |δ′igi(x)| > ci}.

Arguing as before, we obtain subsets X i of X so that µ(X i−1 \ X i) < ε/N . Put

Xε = XN . It follows that

µ(X \Xε) = µ(X \XN) ≤
N∑
i=1

µ(X i−1 \X i) < N · ε
N

= ε.

To see that the set {δ′i}Ni=1 generates Υ(Xε, µ), let δ ∈ Υ(X,µ) be arbitrary. It suffices

to show that δ is a L∞(X,µ)-linear combination of the {δ′i}Ni=1. Choose {λi}N+1
i=1 in

L∞(X,µ) as in equation (3.3.3), with δ for δN+1, and put

(3.3.4) δ′ := λN+1δ +
N∑
i=1

λiδ
′
i.

By construction, δ′gj = 0 holds for all 1 ≤ j ≤ N . Moreover, {gi}Ni=1 is a generating

set for Lip∞(X), so every function f ∈ Lip∞(X) is a weak-∗ limit of polynomials

in {gi}Ni=1. From the continuity of each δi, it follows that δ′f = 0 holds for every

f ∈ Lip∞(X). Therefore δ′ is zero, and equation (3.3.4) becomes

δ =
−1

λN+1

·
N∑
i=1

λiδ
′
i.

From our previous choices, we have λN+1 =
∏N

i=1 δ
′
igi. By definition of Xε, there is

a C > 0 so that |λN+1(x)| ≥ C holds for µ-a.e. x ∈ Xε. As a result, each function

λi/λN+1 lies in L∞(Xε, µ), and hence δ is a linear combination of the {δ′i}Ni=1.
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If X is not bounded, then fix a point x0 ∈ X and consider the sequence of annuli

An := {x ∈ X : n ≤ ρ(x, xo) < n+ 1}.

By the previous argument, for all ε > 0 and each n ∈ N there exists a subset Anε of

An so that µ(An \ Anε ) < ε · 2−n and so that the set {χAnδ′i}Ni=1 generates Υ(An, µ).

Putting Xε :=
⋃∞
n=1A

n
ε , we see that

µ(X \Xε) ≤
∞∑
n=1

µ(An \ Anε ) < ε.

Moreover, by the locality property (Theorem 3.2.1), {δ′i}Ni=1 generates Υ(X,µ). This

proves the theorem.

3.4 Pushforwards of Derivations.

Following the example of manifolds once again, let M and N be Riemannian

manifolds and let f : M → N be a smooth injective map. To each vector field v in

the tangent bundle TM , the derivative map Df induces a pushforward vector field

f#v(f(x)) := Df(x) · v(x)

at every point in f(M). In addition, if dimM = dimN then for bounded open

subsets B of M and functions g ∈ C∞(N), we have the change of variables formula∫
f(B)

g(y) dVN(y) =

∫
B

(g ◦ f)(x) · detDf(x) dVM(x),

where VM and VN are the volume elements of M and N , respectively. On Euclidean

spaces, the Area and Co-Area Formulas [EG92, Thms 3.3.2.1 & 3.4.2.1] generalize

the above identity to Lipschitz non-injective maps f and Lipschitz functions g.

In what follows, we return to the setting of metric measure spaces, and we will

formulate the notion of a pushforward derivation in terms of similar transformation
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formulas. To begin, let π ∈ Lip(X, Y ) and let µ be a signed Borel measure on X.

Recall that for Borel subsets E of Y , the pushforward measure π#µ on Y is given by

π#µ(E) := µ(π−1(E)),

In addition, the following transformation formula [Mat95, Thm 1.19]

(3.4.1)

∫
Y

h d(π#µ) =

∫
X

(h ◦ π) dµ

is valid1 for all h ∈ L1(Y, π#µ). In the next lemma, we show that every derivation

in Υ(X,µ) induces a well-defined pushforward derivation in Υ(Y, π#µ).

Lemma 3.4.1. Let (X, ρX) and (Y, ρY ) be metric spaces, and let π : X → Y be a

Lipschitz map. For each δ ∈ Υ(X,µ), there is a unique derivation π#δ ∈ Υ(Y, π#µ),

called the pushforward of δ under π, that satisfies

(3.4.2)

∫
Y

h · (π#δ)f d(π#µ) =

∫
X

(h ◦ π) · δ(f ◦ π) dµ

for all f ∈ Lip∞(Y ) and all h ∈ L1(Y, π#µ). In addition, we have

(3.4.3) ‖π#δ‖ ≤ (1 ∨ L(π)) · ‖δ‖.

Proof. Put ν := π#µ. By formula (3.4.1), for each h ∈ L1(Y, ν) we have

‖h‖ν, 1 :=

∫
Y

|h| dν =

∫
X

|h ◦ π| dµ < ∞,

so h ◦ π ∈ L1(X,µ). Let f ∈ Lip∞(Y ). We now observe that

(3.4.4)

∣∣∣∣∫
X

(h ◦ π) · δ(f ◦ π) dµ

∣∣∣∣ ≤ ‖h‖ν, 1 · ‖δ(f ◦ π)‖µ,∞,

so the map lf (h) :=
∫
X

(h ◦ π) · δ(f ◦ π)dµ is an element of the dual [L1(Y, ν)]∗. By

duality, there is a unique function wπ,f ∈ L∞(Y, ν) so that the action of lf can be

1Strictly speaking, [Mat95, Thm 1.19] holds for positive measures only. However, every signed measure is the
difference of positive measures, so equation (3.4.1) follows by invoking [Mat95, Thm 1.19] for the positive measures
separately and then taking their difference.
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realized by integration against wπ,f . In symbols, we have

(3.4.5)

∫
X

(h ◦ π) · δ(f ◦ π) dµ = lf (h) =

∫
Y

h · wπ,f dν

for all h ∈ L1(Y, ν). We now define the operator π#δ : Lip∞(Y ) → L∞(Y, π#µ) by

the formula (π#δ)f := wπ,f . Clearly π#δ is linear and by equation (3.4.5), it also

satisfies the transformation formula (3.4.2).

Claim 3.4.2. The operator π#δ lies in Υ(Y, π#µ).

By inequality (3.4.4) and equation (3.4.5), we obtain the estimate

|lf (h)| :=

∣∣∣∣∫
Y

h · (π#δ)f dν

∣∣∣∣ ≤ ‖h‖ν, 1 · ‖δ(f ◦ π)‖µ,∞.

Taking suprema over all nonzero h, we see that ‖lf‖∗ ≤ ‖δ(f ◦ π)‖µ,∞. Observe that

the operator norm of lf ∈ [L1(Y, ν)]∗ agrees with the norm of (π#δ)f in L∞(Y, ν).

From this and from the boundedness of δ, it follows that there is a C > 0 so that

‖(π#δ)f‖ν,∞ = ‖lf‖∗ ≤ ‖δ(f ◦ π)‖µ,∞ ≤ C · ‖f ◦ π‖Lip.

Since the norm on Lip∞(X) is defined as a maximum, we begin by estimating

L(f ◦ π) ≤ L(π) · L(f),

‖f ◦ π‖∞ = sup
x∈X

|f
(
π(x)

)
| ≤ sup

y∈Y
|f(y)| = ‖f‖∞

from which we obtain, for C ′ = C · (1 ∨ L(π)),

‖(π#δ)f‖ν,∞ ≤ C ′ · ‖f‖Lip.

Inequality (3.4.3) follows. The continuity of π#δ follows from both formula (3.4.2)

and the continuity of δ. To see this, let f and {fi}i∈I be functions in Lip∞(Y ) so

that fi
∗
⇀ f and that supi ‖fi‖Lip < ∞. By Corollary 2.1.4, we have fn ◦ π

∗
⇀ f ◦ π
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in Lip∞(X). Moreover, for each h ∈ L1(Y, ν) we have h ◦ π ∈ L1(X,µ) by formula

(3.4.1). It follows that∫
Y

h · (π#δ)fi dν =

∫
X

(h ◦ π) · δ(fi ◦ π) dµ

→
∫
X

(h ◦ π) · δ(f ◦ π) dµ =

∫
Y

h · (π#δ)f dν.

Since h was arbitrary, we have (π#δ)fi
∗
⇀ (π#δ)f in L∞(X,µ). By similar arguments,

the Leibniz rule for π#δ follows from the Leibniz rule for δ.

Lastly, suppose that δ′ is another derivation in Υ(Y, ν) which satisfies formula

(3.4.2). For any f ∈ Lip∞(Y ), we have (δ′ − π#δ)f = 0 by linearity. As a result,

δ′ = π#δ and this gives the desired uniqueness.

Let π ∈ Lip(X;Y ) be arbitrary. Observe that each function λ ∈ L∞(X,µ) induces

a scalar action on each derivation δ ∈ Υ(Y, π#µ), by the rule

(3.4.6) λ · δ := (λ ◦ π)δ.

By the transformation formula (3.4.2), the map δ 7→ π#δ then determines a homo-

morphism of L∞(X,µ)-modules. We denote it by π# : Υ(X,µ) → Υ(Y, π#µ).

Under compatible choices of measures, bi-Lipschitz homeomorphisms give rise to

isomorphisms of modules in the above sense. To explain the terminology, on a space

X, two measures µ and ν are mutually absolutely continuous if µ� ν and ν � µ.

Theorem 3.4.3. Let (X, ρ, µ) and (Y, ρ′, ν) be metric measure spaces, and let ϕ :

X → Y be a bi-Lipschitz embedding. If ϕ#µ and ν are mutually absolutely continuous

Radon measures, then Υ(X,µ) and Υ(Y, ν) are isomorphic as L∞(X,µ)-modules.

To this end, we require an additional lemma. Both the proof of Theorem 3.4.3

and the lemma will use pushforward derivations.
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Lemma 3.4.4. Let (X, ρ) be a metric space and let µ and ν be Radon measures on

X. If µ� ν, then Υ(X, ν) is a sub-module of Υ(X,µ).

Proof of Lemma 3.4.4. If g ∈ L∞(X, ν), then the set {x : |g(x)| > ‖g‖ν,∞} has ν-

measure zero and hence µ-measure zero. This implies that ‖g‖µ,∞ ≤ ‖g‖ν,∞, and

hence L∞(X, ν) is a linear subspace of L∞(X,µ). As a result, each δ ∈ Υ(X, ν) is

a well-defined map from Lip∞(X) to L∞(X,µ). To avoid confusion, we denote the

latter map by δµ.

Clearly, δµ is linear and satisfies the Leibniz rule. To see that δµ is bounded, note

that if δ is bounded with constant C ≥ 0, then the previous estimate shows that

‖δµf‖µ,∞ ≤ ‖δf‖ν,∞ ≤ C · ‖f‖Lip.

Lastly, we show that δµ is continuous. Let w ∈ L1
loc(X, ν) be the Radon-Nikodym

derivative of µ with respect to ν, so dµ = wdν. If h is an arbitrary function in

L1(X,µ), then the product h · w lies in L1(X, ν). So if {fi}i∈I is a net in Lip∞(X)

which converges weak-∗ to f , then it follows from the continuity of δ that∫
X

h · δfi dµ =

∫
X

h · w · δfi dν →
∫
X

h · w · δf dν =

∫
X

h · δf dµ.

Therefore δµ is weak-∗ continuous, and this proves the lemma.

By the argument of the previous proof, if two measures µ and ν on a space X are

mutually absolutely continuous, then we have L∞(X,µ) = L∞(X, ν). From this we

obtain the following fact: a derivation δ ∈ Υ(X,µ) depends only on the metric and

the measure class of µ, that is, the class of measures which are mutually absolutely

continuous to µ.

Corollary 3.4.5. Let (X, ρ) be a metric space. If µ and ν are two mutually absolutely

continuous Radon measures on X, then Υ(X,µ) ∼= Υ(X, ν).
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Assuming Lemma 3.4.4, we now prove Theorem 3.4.3. In what follows, if µ1

and µ2 are mutually absolutely continuous measures on X, then we will no longer

distinguish between derivations in Υ(X,µ1) or in Υ(X,µ2).

Proof of Theorem 3.4.3. Since ϕ#µ and ν are mutually absolutely continuous mea-

sures, we have L∞(Y, ν) = L∞(Y, ϕ#µ). As a result, both Υ(Y, ϕ#µ) and Υ(Y, ν)

are L∞(X,µ)-modules, where the scalar action is defined as in equation (3.4.6). By

Lemma 3.4.1, Υ(Y, ν) and Υ(Y, ϕ#µ) are equal as sets and isomorphic as modules.

It then suffices to show that ϕ# : Υ(X,µ) → Υ(Y, ϕ#µ) is a module isomorphism.

To this end, we claim that its inverse is the map ϕ−1
# : Υ(Y, ϕ#µ) → Υ(X,µ).

Indeed, ϕ−1
# (ϕ#µ) = µ follows from definition. Letting δ ∈ Υ(X,µ), h ∈ L1(X,µ),

and f ∈ Lip∞(X) be arbitrary, the transformation formula (3.4.2) gives∫
Y

h · ϕ#(ϕ−1
# δ)f dµ =

∫
X

(h ◦ ϕ) · ϕ−1
# δ

(
f ◦ ϕ

)
d(ϕ#µ)

=

∫
X

(h ◦ ϕ ◦ ϕ−1) · δ(f ◦ ϕ ◦ ϕ−1) d(ϕ−1
# (ϕ#µ))

=

∫
Y

h · δf dµ.

It follows that ϕ# ◦ϕ−1
# is the identity map on Υ(X,µ). A similar computation then

shows that ϕ−1
# ◦ ϕ# is the identity on Υ(Y, ν), which gives the theorem.

3.5 Derivations on Rn.

On Euclidean spaces with a prescribed Radon measure µ, derivations in Υ(Rn, µ)

exhibit behavior that is similar to that of the partial differential operators {∂xi
}ni=1.

For instance, they satisfy a weak form of the Chain Rule for derivatives.

To formulate this fact, first recall that by Theorem 3.2.8, every derivation δ in

Υ(Rn, µ) extends to a linear operator δ̄ : Liploc(Rn) → L∞(Rn, µ). So if P is a poly-

nomial on Rn, then the function δ̄P is well-defined and lies in L∞(Rn, µ). In addition,
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from formula (3.2.6) it follows that δ̄P is determined uniquely by the function values

of P . With this in mind, we write δP for δ̄P .

Proposition 3.5.1. Let µ be a Radon measure on Rn and let δ ∈ Υ(Rn, µ). For

each f ∈ Lip∞(Rn), there exists a µ-measurable map gf = (g1
f , . . . , g

n
f ) : Rn → Rn

with the following properties:

‖gif‖µ,∞ ≤ L(f), for i = 1, 2, . . . , n(3.5.1)

δf =
n∑
i=1

gif · δxi µ-a.e.(3.5.2)

In the case when f is smooth, we may take gf to be the gradient of f .

Proof. Let f ∈ Lip∞(Rn) be given. We argue by cases.

Case 1: f is a polynomial. If f is the coordinate function xi, then f satisfies

formula (3.5.2) µ-a.e. with gf = ~ei. More generally, if f is a polynomial, then by the

local Leibniz rule (Remark 3.2.9), f satisfies formula (3.5.2) µ-a.e. with gf = ∇f .

Case 2: f is smooth. By Part (2) of Lemma 2.3.1, there is a sequence of polyno-

mials {Pm}∞m=1 so that for any compact subset K of Rn, we have Pm
∗
⇀ f in Lip(K).

So by the weak-∗ continuity of δ, we obtain δPm
∗
⇀ δf in L∞(K,µ). On the other

hand, the uniform convergence ∇Pm → ∇f on K also implies the convergence

n∑
i=1

∂Pm
∂xi

· δxi
∗
⇀

n∑
i=1

∂f

∂xi
· δxi

in L∞(K,µ). This follows from the Dominated Convergence Theorem, because for

any ϕ ∈ L1(Rn, µ) and for sufficiently large m, we have∣∣∣∣ϕ · δxi · ∂Pm∂xi

∣∣∣∣ ≤ |ϕ| · |δxi| ·
( ∣∣∣∣ ∂f∂xi

∣∣∣∣ + 1
)
.

µ-a.e. on K. From this it follows that, as m→∞,∫
K

ϕ ·
( n∑
i=1

∂Pm
∂xi

· δxi
)
dµ →

∫
K

ϕ ·
( n∑
i=1

∂f

∂xi
· δxi

)
dµ.
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However, each Pm satisfies equation (3.5.2) µ-a.e. on K, so by uniqueness of weak-∗

limits, f satisfies formula (3.5.2) µ-a.e. on K, with gf = ∇f . Since K was arbitrary,

we may choose it within the collection of cubes

Q(a) := [a1, a1 + 1]× . . .× [an, an + 1]

with indices a = (a1, . . . , an) varying over the integer lattice Zn. Such cubes cover

all of Rn, so as a result, f satisfies equation (3.5.2) µ-a.e. on Rn, with gf = ∇f .

Case 3: f is arbitrary. Let L := L(f). By Part (1) of Lemma 2.3.1, there is

a sequence of smooth, bounded L-Lipschitz functions {fk}∞k=1 so that fk
∗
⇀ f in

Lip∞(Rn). By the continuity of δ, we obtain δfk
∗
⇀ δf in L∞(Rn, µ).

Since the sequence {fk}∞k=1 is uniformly L-Lipschitz, for all 1 ≤ i ≤ n, the sequence

{∂ifk}∞k=1 are norm-bounded in L∞(Rn, µ) with supk ‖∂ifk‖µ,∞ ≤ L. For i = 1, it

follows from weak-∗ compactness (Theorem 3.1.6) that there is a weak-∗ convergent

subsequence {∂1fkj
}∞j=1 of {∂1fk}∞k=1 in L∞(Rn, µ).

Taking further subsequences if necessary, we may assume that for each 1 ≤ i ≤ n,

the same sequence {fkj
}∞j=1 gives a weak-∗ convergent subsequence {∂ifkj

}∞j=1 in

L∞(Rn, µ) with weak-∗ limit gif . By lower semi-continuity of norms (Theorem 2.1.5)

we have ‖gif‖µ,∞ ≤ L. Arguing similarly as before, we see that

n∑
i=1

∂fkj

∂xi
· δxi

∗
⇀

n∑
i=1

gif · δxi

in L∞(Rn, µ). By uniqueness of weak-∗ limits once more, formula (3.5.2) holds for

each limit function gif . This proves the Proposition.

Remark 3.5.2. If µ is absolutely continuous to mn, then by Rademacher’s theorem,

every Lipschitz function on Rn is µ-a.e. differentiable. Therefore equation (3.5.2)

holds for every f ∈ Lip∞(Rn), under the choice gf := ∇f .
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This follows from the fact that ∂ifj
∗
⇀ ∂if in L∞(Rn, µ) holds whenever fj

∗
⇀ f

in Lip∞(Rn); we will show this in the proof of Corollary 3.5.4. As a result, there is

no need to appeal to weak-∗ compactness in the proof of Proposition 3.5.1.

However, Lipschitz functions on Rn need not be differentiable a.e. with respect to

an arbitrary Radon measure µ, so it is unreasonable to expect gf = ∇f in general.

In fact, there are examples where this is untrue. It has been shown in [PT95] that for

each Lebesgue null set N in the real line, there exists a Lipschitz function f : R → R

that is differentiable at no point of N .

The following three facts are consequences of Proposition 3.5.1. The first fact

follows directly from equation (3.5.2) and we omit the proof. The second fact gener-

alizes Example 3.1.8, and the argument is similar to [Wea00, Sect 5B]. The third fact

is a technical tool for the proof of Theorem 5.3.1, in which we show the convergence

of sequence of derivations to a limit derivation.

Corollary 3.5.3. Let µ be a Radon measure on Rn and let δ ∈ Υ(Rn, µ). If δxi = 0

holds for every 1 ≤ i ≤ n, then δ is the zero derivation.

Corollary 3.5.4. If µ is a Radon measure on Rn with µ � mn, then the partial

differential operators {∂xi
}ni=1 form a generating set for Υ(Rn, µ). In addition, we

have the following isomorphism of L∞(Rn, µ)-modules:

Υ(Rn, µ) ∼=
n⊕
i=1

L∞(Rn, µ).

Proof. Since µ � mn, then by Rademacher’s theorem, each function f ∈ Lip∞(Rn)

is µ-a.e. differentiable. It follows that the operators ∂xi
: Lip∞(Rn) → L∞(Rn, µ) are

well-defined. Clearly, each is linear, norm-bounded, and satisfies the Leibniz rule.

Let w be the Radon-Nikodym derivative of µ with respect to mn, so dµ = wdmn.

To show continuity, suppose that {fj}j∈I is a norm-bounded net in Lip∞(Rn) that
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converges weak-∗ to f . Without loss of generality, we may assume that f is zero,

otherwise we would study the net {fj − f}j∈I instead.

Given h ∈ L1(Rn, µ), observe again that the product h · w lies in L1(Rn,mn).

Letting ε > 0 be given, there is a R > 0 so that∫
Rn\B(0,R)

|h| dµ <
ε

8C
.

Letting ηε denote a smooth, symmetric mollifier on Rn (see the proof of Lemma

2.3.1), there is a N ∈ N so that the convolution hN := (χB(0,R) · h ·w) ∗ η1/N satisfies∫
B(0,R)

|hN − h · w| dmn ≤ ε

8C
.

Combining the estimates above, we obtain∫
Rn

|hN − h · w| dmn ≤
∫
B(0,R)

|hN − h · w| dmn +

∫
Rn\B(0,R)

|h| dµ ≤ ε

4C
.

The net {fj}j∈I is norm-bounded and converges pointwise to zero, so by the Bounded

Convergence Theorem, the net {∂ihN · fj}j∈I converges to zero in L1(Rn,mn)-norm.

In particular, for sufficiently large indices j we have∫
Rn

|∂ihN · fj| dmn <
ε

2
.

Combining the above estimates, we integrate by parts and further estimate∣∣∣∣∫
Rn

h · w · ∂ifj dmn

∣∣∣∣ =

∣∣∣∣∫
Rn

(
(h · w − hN) + hN

)
· ∂ifj dmn

∣∣∣∣
=

∣∣∣∣∫
Rn

(
(h · w − hN) · ∂ifj − ∂xi

hN · fj
)
dmn

∣∣∣∣
≤ ‖∂ifj‖∞ ·

∫
Rn

|h · w − hN | dmn +

∫
Rn

|∂ihN · fj| dmn

< 2C · ε

4C
+
ε

2
= ε.

This shows the continuity of each operator ∂i.
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To see that {∂i}ni=1 is a generating set, let δ ∈ Υ(Rn, µ) be arbitrary. We observe

that the derivation δ′ := δ −
∑∞

i=1 δxi ∂i satisfies δ′xi = 0, for each 1 ≤ i ≤ n. By

Corollary 3.5.3, δ′ must be identically zero.

Lastly, put M :=
⊕n

i=1 L
∞(Rn, µ). Consider the linear maps T : Υ(Rn, µ) → M

and S : M → Υ(Rn, µ) given by the formulas

T (δ) := (δx1, . . . , δxn),

S(λ1, . . . , λn) :=
n∑
i=1

λi∂i.

Clearly, T ◦ S = idM , and S ◦ T = idΥ(Rn,µ) follows from the observation that

δ −
∑n

i=1 δxi ∂i is the zero derivation. This proves the corollary.

Corollary 3.5.5. Let µ be a Radon measure on Rn, let K be a compact subset of

Rn, and let p, q ∈ (1,∞) satisfy p−1 + q−1 = 1. If F is a uniformly Lipschitz family

in Lip(K), then there is a constant C = C(F , n) > 0 so that for all f ∈ F , for all

h ∈ Lq(K,µ), and for all δ ∈ Υ(K,µ),

(3.5.3)

∣∣∣∣∫
K

h · δf dµ
∣∣∣∣ ≤ C · ‖h‖q ·

(
max
1≤k≤n

‖δxk‖p
)
.

Proof. Choose L > 0 so that L(f) ≤ L holds, for all f ∈ F . By Proposition 3.5.1,

there are functions {gkf}nk=1 in L∞(K,µ) so that formula (3.5.2) holds µ-a.e. on K.

Hölder’s inequality then gives∣∣∣∣∫
Rn

h · δf dµ
∣∣∣∣ ≤ ‖h‖q ·

n∑
k=1

‖gkf‖µ,∞ · ‖δxk‖p ≤ n · L · ‖h‖q ·
(

max
1≤k≤n

‖δxk‖p
)
.

This proves the corollary.

We close this section by stating several corollaries about the module structure of

derivations on Rn. These follow from facts in Sections 2.3 and 3.3.
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Corollary 3.5.6. Let µ be a nonzero Radon measure on Rn. Then any set of n+ 1

derivations in Υ(Rn, µ) is linearly dependent.

Proof. Since µ is a nonzero measure, there is a number R > 0 so that µ(B(0, R)) > 0.

For convenience, we write B = B(0, R).

Let {δi}n+1
i=1 be an arbitrary subset of Υ(Rn, µ) and consider the corresponding

subset {χBδi}n+1
i=1 in Υ(B, µ). By Part (2) of Theorem 2.3.1, {xi}ni=1 is a generating

set for Lip∞(B), so by Theorem 3.3.11, the set {χBδi}n+1
i=1 is linearly dependent in

Υ(B, µ). So by the contrapositive of Part (2) of Lemma 3.3.6, {δi}n+1
i=1 is a linearly

dependent set in Υ(Rn, µ).

The proof of the next corollary is similar to the previous proof. After reducing to

the case of bounded sets, one invokes Theorem 3.3.12 in place of Theorem 3.3.11.

Corollary 3.5.7. Let µ be a Radon measure on Rn, and suppose that {δi}ni=1 is a

linearly independent set in Υ(Rn, µ). For any ε > 0, there is a subset Xε of Rn so

that µ(Rn \Xε) < ε and that Υ(Xε, µ) is generated by n derivations.



CHAPTER IV

Structure of Derivations on 1-Dimensional Spaces

Adapting the terminology of [Fal86], we say that a subset A in Rn is a k-set if

A is Hk-measurable set of σ-finite Hk-measure. We now characterize measures on

1-sets that admit nonzero modules of derivations.

Theorem 4.0.8. Let µ be a Radon measure on Rn, let A be a 1-set, and suppose

that µ is concentrated on A. If µH is the absolutely continuous part of µ with respect

to H1bA, then the modules Υ(Rn, µ) and Υ(Rn, µH) are isomorphic.

Recall that Theorem 3.3.12 and Corollary 3.5.7 were formulated from the perspec-

tive of abstract metric measure spaces, and their proofs relied on measure-theoretic

and linear algebraic techniques. In contrast, the setting of Euclidean spaces is more

concrete and we can employ techniques which are more geometric in nature. This

includes the notion of rectifiability from geometric measure theory.

Here and in later sections, we will tacitly invoke Theorem 3.2.8. So if π ∈ Lip(Rn)

and if δ ∈ Υ(Rn, µ), then as before, δπ is a well-defined function in L∞(Rn, µ).

4.1 Derivations on R.

We begin with some terminology. Every Radon measure µ on Rn is σ-finite, so

we may apply formula (1.4.1) to obtain µ = µS + µAC , where µS is the Lebesgue

51
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singular part of µ and µAC is the Lebesgue absolutely continuous part of µ.

There is a simple characterization of measures µ on R for which Υ(R, µ) is non-

trivial. The proof follows closely the argument in [AK00a, pp. 15–16].

Theorem 4.1.1. Let µ be a Radon measure on R, let E be a m1-null set in R, and

suppose that µS is concentrated on E. Then for all δ ∈ Υ(R, µ) and all f ∈ Lip∞(R),

we have

(4.1.1) δf(x) =

 δ(id)(x) · f ′(x), x ∈ R \ E

0, x ∈ E,

where id : R → R is the identity map and f ′(x) is the derivative of f at x.

By definition we have µAC � µ, so by Lemma 3.4.4 we see that Υ(R, µ) is a sub-

module of Υ(R, µAC). As a consequence of the theorem, it follows that Υ(R, µ) and

Υ(R, µAC) are isomorphic as L∞(R, µ)-modules. For n = 1, it is a sharper version of

Corollary 3.5.7.

Proof of Theorem 4.1.1. Let δ ∈ Υ(R, µ) be arbitrary. Observe that the collection

of sets Ek := E ∩ (k, k + 1], k ∈ Z, form a measurable decomposition of E. So to

show that χEδ is the zero derivation, it suffices to show that χEk
δ is zero for each k.

Fix k ∈ N. Since µ is Borel regular, for each ε > 0 there is a countable collection

of disjoint open intervals {Oj}∞j=1 so that their union O :=
⋃∞
j=1Oj contains Ek and

so that m1(O) < ε. Now consider the functions

gε(x) :=

∫ x

k

χR\O(t) dt.

As an indefinite integral of a characteristic function, each gε is 1-Lipschitz. Moreover,

on (k, k + 1] the functions gε converge uniformly to g(x) := x− k as ε→ 0, because

|g(x)− gε(x)| =

∣∣∣∣∫ x

k

1 dt−
∫ x

k

χR\O(t) dt

∣∣∣∣ =

∫ ∞

k

χO(t) dt ≤ m1(O) < ε.
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As ε→ 0, the convergence gε
∗
⇀ g in Lip(Ek) follows from Part (2) of Corollary 2.1.4.

So by continuity of δ, we also have δgε
∗
⇀ δg in L∞(Ek, µ), for all δ ∈ Υ(R, µ).

On the other hand, note that gε is constant on each interval Oj. By the locality

property (Theorem 3.2.1) we have χOj
· δgε = 0 for each j, and hence χEk

· δgε = 0.

From weak-∗ continuity it follows that χEk
· δg = 0, and because the derivation δ

applied to a constant function is zero, it also follows that χEk
· δ(id) = 0. So by

Corollary 3.5.3, χEk
δ must be the zero derivation in Υ(Ek, µ). However, k ∈ Z was

arbitrary, so χEδ must also be the zero derivation in Υ(R, µ).

By the previous argument, we have δ = χR\Eδ, so δ determines a derivation

in Υ(R, µAC) which we will also call δ. From µAC � m1 and from Rademacher’s

theorem, it follows that every Lipschitz function is differentiable µAC-a.e. Now put

δ′ := δ − δ(id) ·
(
χR\E

d

dx

)
.

By inspection we have δ′(id) = 0, so by Corollary 3.5.3 we also have δ′ = 0. This

gives formula (4.1.1).

4.2 Preliminaries: Geometric Measure Theory.

Following [Mat95, Defn 15.3], we now introduce the notions of k-rectifiable sets1

and purely k-unrectifiable sets in Rn.

Definition 4.2.1. Let k ∈ N. A Hk-measurable subset E of Rn is k-rectifiable if

(4.2.1) E = N ∪
( ∞⋃
i=1

fi(Ai)
)
,

holds, where N is a Hk-null set and for each i ∈ N, Ai is a subset of Rk with

mk(Ai) > 0 and fi : Ai → Rn is a Lipschitz map. A Hk-measurable subset F of Rn

is purely k-unrectifiable if Hk(F ∩E) = 0 holds for all k-rectifiable subsets E of Rn.

1The terminology here differs from that in [Fed69, Sect 3.2.14]; such sets are also called countable (Hk, k)-rectifiable
sets. A similar difference in terminology occurs for purely k-unrectifiable sets.
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Next we list several properties of k-rectifiable sets. The first result is a structure

theorem for k-sets on Rn [Mat95, Thm 15.6]. The second result states that for a

k-rectifiable set E, the regularity of the images fi(Ai) from equation (4.2.1) can be

substantially improved [Fed69, Lem 3.2.18 & Thm 3.2.29].

Theorem 4.2.2. Let k ∈ N and let A be a k-set. Then A = E ∪ F , where E is a

k-rectifiable subset of Rn and F is a purely k-unrectifiable subset of Rn.

Theorem 4.2.3 (Federer). The following are equivalent.

1. E is a k-rectifiable subset of Rn.

2. There exists a collection of C1-smooth k-submanifolds {Mi}∞i=1 in Rn so that

Hk(E \
( ∞⋃
i=1

Mi

)
) = 0.

3. For all L > 1, there exists a collection of compact subsets {Ki}∞i=1 of Rk and

countably many L-bi-Lipschitz maps ϕi : Rk → Rn so that {ϕi(Ki)}∞i=1 is a

pairwise-disjoint collection of subsets of E and so that

(4.2.2) Hk
(
E \

∞⋃
i=1

ϕi(Ki)
)

= 0.

Example 4.2.4. By Property (2) of Theorem 4.2.3, every smooth k-dimensional

sub-manifold M of Rn is a k-rectifiable set.

Similarly to smooth manifolds, every k-rectifiable set E in Rn admits a type of

differentiable structure. As in Property (3) of Theorem 4.2.3, assume that E can

be written in the form of equation (4.2.2). For x ∈ ϕi(Ki), the approximate tangent

space of E at x [Fed69, Thm 3.2.19] is defined to be the k-dimensional vector space

Tank(E, x) := span
R

{
Dϕi

(
ϕ−1
i (x)

)
· ~ej

}k
j=1
.
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Since Hk(N) = 0, we see that the collection {ϕi(Ki)}∞i=1 forms a Hk-measurable

decomposition of E. As a result, the space Tank(E, x) is well-defined for Hk-a.e.

x ∈ E. With this ambiguity understood, we now define the approximate tangent

bundle of a k-rectifiable set E to be the set of pairs

Tank(E) := {(x, v) : x ∈ E, v ∈ Tank(E, x)}.

There is a natural projection map p : Tank(E) → E by the formula p(x, v) = x.

As in Riemannian geometry, there is a natural inner product on approximate

tangent spaces. Indeed, for Hk-a.e. x ∈ ϕi(Ki) and for all v1, v2 ∈ Tank(E, x), put

〈v1, v2〉x := 〈~u1, ~u2〉,

where 〈·, ·〉 is the usual inner product on Rn and where, for i = 1, 2, we have

vi := Dϕi
(
ϕ−1
i (x)

)
· ~ui.

From this, we obtain a norm on Tank(E, x) by the formula ‖v‖x :=
√
〈v, v〉x. Since

each map ϕi is bi-Lipschitz, it follows that the norm ‖ · ‖x is comparable to the usual

Euclidean norm on Rk.

Definition 4.2.5. A section of the approximate tangent bundle Tank(E) is a map

s : E → Tank(E) which satisfies s ◦ p = idE.

If µ is a measure on Rn, then a µ-measurable section s : E → Tank(E) is a section

of Tank(E) which is also a µ-measurable map.

A bounded µ-measurable section s : E → Tank(E) is a µ-measurable section of

Tank(E) with the following property: there is a constant C ≥ 0 so that ‖s(x)‖x ≤ C

holds for µ-a.e. x ∈ E.

Just as derivatives are maps between tangent spaces, there is also the notion of

an approximate differential of a function. It is a map between approximate tangent
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spaces and often it is defined in terms of approximate limits [EG92, Sect 1.7.2]. Here

we give an equivalent definition on k-rectifiable sets [Fed69, Thm 3.2.19] by using

the additional structure of Theorem 4.2.3.

Following [Fed69, Sect 3.1.22], let f : Rm → Rn be continuous and let S ⊂ Rm.

Given a ∈ S̄, we say that f is differentiable relative to S at a if and only if there

exists a linear map ζa : Rm → Rn so that

lim
n→∞

|f(xn)− f(a)− ζa(xn − a)|
|xn − a|

= 0

holds for all sequences {xn}∞n=1 in S which converge to a. If it exists, then we

write D[f |S](a) := ζa. The next result follows from [Fed69, Lem 3.2.17]; if E is a k-

rectifiable set, then differentiation relative to E is well-defined for Lipschitz functions.

Lemma 4.2.6 (Federer). Let K ⊂ Rk with mk(K) > 0 and let ϕ : Rk → Rn be

a bi-Lipschitz embedding. If f : ϕ(K) → Rn is a Lipschitz map, then for Hk-a.e.

a ∈ ϕ(K), D[f |ϕ(K)](a) exists and satisfies the identity

(4.2.3) D[f |ϕ(K)](a) ◦Dϕ(ϕ−1(a)) = D[f ◦ ϕ](ϕ−1(a)).

Remark 4.2.7 (Uniqueness). If D[f |ϕ(K)](a) exists, then it is uniquely deter-

mined up to a Hk-null set. Indeed, since ϕ is bi-Lipschitz, if ϕ is differentiable at z

then Dϕ(z) is invertible. As a result, equation (4.2.3) can be rewritten as

D[f |ϕ(K)](a) = D[f ◦ ϕ](ϕ−1(a))[◦Dϕ(ϕ−1(a))]−1.

Since the right-hand side of the above equation is defined Hk-a.e. on ϕ(K), then so

is the left-hand side.

Definition 4.2.8. Let E be a k-rectifiable subset of Rn and as in Theorem 4.2.3,

let E = N ∪ (
⋃
i ϕi(Ki)). If x ∈ ϕi(Ki), then for each f ∈ Lip(E) the approximate

differential of f at x is the linear map DAf(x) := D[f |ϕi(Ki)](x).
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In [Wea00, Thm 38], Weaver has verified that for k-rectifiable sets E in Rn, the

module Υ(E,Hk) is isomorphic to the module of Hk-essentially bounded sections of

Tank(E). Moreover, his proof shows that for every δ ∈ Υ(E,Hk), there is a section

v : E → Tank(E) so that DAf · v = δf holds for all f ∈ Lip∞(E).

Recall that by Corollary 3.5.4, for each 1 ≤ i ≤ n, the partial differential operator

∂i is a derivation in Υ(Rn, µ), whenever µ � mn. So if u = (u1, . . . , un) is a vector

in Rn, then the differential operator in the direction of u, i.e.

(4.2.4) Du :=
n∑
i=1

ui∂i

is also a derivation in Υ(Rn, µ). With these facts in mind, the next lemma relates

directional differentiation on Rk and approximate differentiation on k-rectifiable sets

in terms of pushforward derivations.

Lemma 4.2.9. Let K ⊂ Rk with mk(K) > 0, let ϕ : K → Rn be a bi-Lipschitz

embedding, and let u ∈ Rk. Then for all f ∈ Lip∞(ϕ(K)), we have

(4.2.5) DAf · (ϕ#u) =
(
ϕ#Du

)
f,

where ϕ#u(x) := Dϕ
(
ϕ−1(x)

)
· u is an approximate tangent vector in Tan1(E, x),

and where Du is the map given in formula (4.2.4).

Proof. Let E = ϕ(K) and let µ := ϕ−1
# Hk. For all functions h ∈ L1(E,Hk) and all

f ∈ Lip∞(E), we invoke formulas (3.4.2) and (4.2.3) in order to obtain∫
E

h(x) ·
(
ϕ#Du

)
f(x) dHk(x) =

∫
K

(h ◦ ϕ)(y) ·D(f ◦ ϕ)(y) · u dµ(y)

=

∫
K

(h ◦ ϕ)(y) ·DAf
(
ϕ(y)

)
·
(
Dϕ(y) · u

)
dµ(y)

=

∫
E

h(x) ·DAf(x) ·
(
Dϕ(ϕ−1(x)) · u

)
dHk(x).

The lemma follows.
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Lastly, we also require a characterization of purely k-unrectifiable subsets of Rn.

The following theorem [Mat95, Thm 18.1] gives one in terms of orthogonal projections

of linear subspaces of Rn.

Below, “almost every subspace” is to be understood in terms of Haar measure on

G(n, k), the space of k-dimensional subspaces of Rn; see [Mat95, Sect 3.9]. For our

purposes here, only the case k = 1 is relevant. By identifying each 1-dimensional

subspace with a pair of antipodal points on the sphere Sn−1, the Haar measure on

G(n, 1) then reduces to the (normalized) surface measure Hn−1bSn−1.

Theorem 4.2.10 (Besicovitch, Federer). Let F be a k-set. Then F is purely

k-unrectifiable if and only if for almost every subspace V ∈ G(n, k), the orthogonal

projection of F onto V has Hk-measure zero.

4.3 Derivations on 1-Sets.

Using theorems from the previous section, every 1-set admits a decomposition

into two parts: a set which projects to a null set in a.e. direction, and a union of

bi-Lipschitz images of compacta from R. So to prove Theorem 4.0.8, it then suffices

to check derivations on each subset separately. The next result shows that sets of

the first kind cannot support any nonzero derivations.

Lemma 4.3.1. Let µ be a Radon measure on Rn. Suppose that F is a 1-set and that

µ is concentrated on F . If F is purely 1-unrectifiable, then Υ(Rn, µ) = 0.

Proof. We argue by contradiction, so suppose δ is a nonzero derivation in Υ(Rn, µ).

As a first case, assume that F is a bounded subset of Rn.

By Theorem 4.2.10, there is a collection of 1-dimensional subspaces {Vi}ni=1 of Rn

whose linear span is Rn and whose associated orthogonal projections πi : Rn → Vi

satisfy H1(πi(F )) = 0, for each 1 ≤ i ≤ n. This means that the R-linear span of the
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functions {πi}ni=1 agrees with the R-linear span of {xi}ni=1, so the set {πi}ni=1 must

generate the coordinate functions {xi}ni=1 on Rn.

By hypothesis, δ is nonzero. By Corollary 3.5.3 one of the functions {δxi}ni=1

is nonzero, and therefore one of the functions {δπi}ni=1 is also nonzero. Suppose

that δπi is such a function, and consider the sets F−i := {x ∈ F : δπi(x) < 0},

F+
i := {x ∈ F : δπi(x) > 0}, and Fi := F+

i ∪ F+
u . As a result, the derivation

δ′ := (χF+
i
− χF−

i
)δ

satisfies δ′πi > 0 for µ-a.e. point in Fi. By Lemma 3.4.1, there is a unique deriva-

tion πi#δ
′ in Υ(R, πi#µ) which satisfies the transformation formula (3.4.2). From

H1(pi(F )) = 0 and from Lemma 2.1.1, we have m1(π
i(F )) = 0. As constructed, the

measure πi#µ is concentrated on πi(F ), so by Theorem 4.1.1 we also have πi#δ
′ = 0.

Let I be any bounded interval in R. Let Ii be its preimage under πi, which

is an unbounded subset of Rn. By hypothesis, F is bounded and µ is Radon and

concentrated on F . So from formula (3.4.1) we obtain∫
I

1 d(πi#µ) =

∫
Ii

1 dµ =

∫
Ii∩F

1 dµ = µ(F ∩ Ii) < ∞.

It follows that 1 ∈ L1(R, πi#µ).

Since πi#δ
′ is the zero derivation in Υ(R, πi#µ), we see that χI(π#δ

′) is the zero

derivation in Υ(I, πi#µ). Using formula (3.4.2) with h = χI and f = idR |I, we have

0 =

∫
I

1 · (πi#δ′)f d(πi#µ) =

∫
F∩Ii

1 · δ′(f ◦ πi) dµ

=

∫
Fi∩Ii

δ′πi dµ

=

∫
F+

i ∩Ii
δπi dµ +

∫
F−

i ∩Ii
(−δπi) dµ > 0.

This is a contradiction, so we must have δ = 0.
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In the case when F is unbounded, let {Ak}∞k=1 be a µ-measurable decomposition

of bounded subsets of Rn. By the previous case, the derivation χAk∩F δ is zero for

each k ∈ N, from which it follows that δ = 0. This proves the lemma.

Corollary 4.3.2. Let µ be a measure on Rn, and suppose it is concentrated on a set

of Hausdorff dimension less than one. Then Υ(Rn, µ) = 0.

Proof. Let A be a subset of Rn on which µ is concentrated. If dimH(A) < 1, then

H1(A) = 0, so A is purely 1-unrectifiable. By Lemma 4.3.1, Υ(Rn, µ) = 0.

It remains to consider the case of 1-rectifiable subsets of Rn. The next lemma

characterizes measures µ on 1-rectifiable sets that admit nonzero modules of deriva-

tions. The idea is to pass to subsets of R by taking pushforward derivations. Using

the “pullback data” from the structure of derivations on R, one then constructs an

explicit generator for Υ(Rn, µ).

Lemma 4.3.3. Let µ be a Radon measure on Rn, let E be a 1-rectifiable subset in

Rn, and suppose that µ is concentrated on E.

1. If µ is singular to H1bE, then the module Υ(Rn, µ) is zero.

2. If µH is the absolutely continuous part of µ with respect to H1bE, then Υ(Rn, µ)

is isomorphic to the L∞(Rn, µ)-module of bounded µH-measurable sections of

Tan1(E).

Proof. By Part (3) of Theorem 4.2.3, E is the union of a H1-null set N and a further

union of pairwise-disjoint image sets ϕi(Ki), i ∈ N, where each map ϕi : R → Rn is

C-bi-Lipschitz, for some C ≥ 1. Let µS be the Lebesgue singular part of µ, let E ′ be

an H1-null set on which µS is concentrated, and put E ′′ := E \ E ′.

Recall once more that a H1-null set is a purely 1-unrectifiable set. So by Theorem

4.3.1, we have χNδ = 0 for every δ ∈ Υ(E, µ). In particular, if µ = µS, then µ is



61

concentrated on E ′ and hence χE′δ = 0. From the locality property (Theorem 3.2.1),

it follows that δ = 0. This proves Part (1).

To prove Part (2), we first observe the following fact.

Claim 4.3.4. Every L∞(E, µ)-section v : E → Tan1(E) determines a derivation

δv ∈ Υ(Rn, µ) by the rule δvf := χE′′ · (DAf · v).

To prove the claim, for i ∈ N, suppose that m1(K1) > 0. By definition we have

µbE ′′ = µH, and therefore (ϕ−1
i )#(µbE ′′) is a measure on R which is absolutely

continuous to m1. By Rademacher’s Theorem, Dϕi(y) exists for (ϕ−1
i )#(µbE ′′)-a.e.

y ∈ Ki, and hence Dϕi(ϕ
−1
i (x)) exists for µ-a.e. x ∈ ϕ(Ki) ∩ E ′′.

Since v is a section of Tan1(E), there is a function λ ∈ L∞(Rn, µ) so that for each

i ∈ N and for µ-a.e. point x ∈ ϕi(Ki) ∩ E ′′, we have

v(x) = λ(x) ·Dϕi(ϕ−1
i (x)) · ~e1.

So from formula (4.2.5) and the above equation, we obtain, for all f ∈ Lip∞(Rn),

DAf(x) · v(x) = DAf(x) ·
[
λ(x) ·Dϕi(ϕ−1

i (x)) · ~e1
]

= λ(x) ·
(
(ϕi)#∂1

)
f(x).

It follows that δv = (χE′′ · λ) · (ϕi)#∂1. By inspection, we have δv ∈ Υ(Rn, µ), and

this proves Claim 4.3.4.

For the other direction, let F be a m1-null set in R on which the Lebesgue singular

part of (ϕ−1
i )#µ is concentrated, and put G := R \ F . If ∂1 denotes the Euclidean

differential operator on R, then by Theorem 4.1.1, χG∂1 generates Υ(Ki, (ϕ
−1
i )#µ).

Since each ϕi is bi-Lipschitz, then by Theorem 3.4.3, the modules Υ(ϕi(Ki), µ)

and Υ(Ki, (ϕ
−1
i )#µ) are isomorphic, so the pushforward δi := (ϕi)#(χG∂1) generates

Υ(ϕi(Ki), µ). By Part (1) of Lemma 3.4.1, for each i ∈ N, the derivation δi satisfies

‖δi‖ ≤
(
1 ∨ L(ϕi)

)
· ‖∂1‖ ≤ C · 1.
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To summarize, there is a measurable decomposition
⋃
i ϕi(Ki) of E and on each

subset ϕi(Ki), there is a derivation δi in Υ(ϕi(Ki), µ) which satisfies ‖δi‖ ≤ C. We

now invoke Lemma 3.2.6 (with C−1δi for δi) from which we obtain the derivation

δE :=
∞∑
i=1

χϕi(Ki)δi.

By construction, δE generates Υ(Rn, µ). In addition, by Lemma 4.2.9 the action

of each δi agrees with approximate differentiation in the direction of the vectorfield

vi := Dϕi(ϕ
−1(x)) · ~e1. We then see that each δ ∈ Υ(Rn, µ) is determined by an

L∞(Rn, µ)-multiple of the section v :=
∑

i χϕi(Ki) · vi.

In the case k = 1, note that the approximate tangent bundle Tan1(E) of a 1-

rectifiable set E is generated by the single vector-field τE : E → Rn, given by

τE(x) := Dϕi
(
ϕ−1
i (x)

)
· ~e1.

Combined with the previous proof, this observation implies the following corollary.

Corollary 4.3.5. Let µ be a Radon measure on Rn, let E be a 1-rectifiable subset in

Rn, and suppose that µ is concentrated on E. If the absolutely continuous part µH

of µ is nonzero and is concentrated on a subset E ′ of E, then the derivation

δEf(x) := χE′(x) ·DAf(x) · τE(x)

generates the module Υ(Rn, µ).

The proof of Theorem 4.0.8 now follows easily from the previous facts about

1-rectifiable and purely 1-unrectifiable sets.

Proof of Theorem 4.0.8. Since A is a 1-set, by Theorem 4.2.2 there is a 1-rectifiable

set E and a purely 1-unrectifiable set F so that A = E∪F . If µ is singular to H1bA,
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then µ is concentrated on a H1-null set and hence on a purely 1-unrectifiable set. By

Lemma 4.3.1, we have Υ(Rn, µ) = 0.

This proves that if µ is singular to H1bA, then Υ(Rn, µ) = 0. By the locality

property, it also shows that Υ(Rn, µbF ) = 0. Let v : E → Tan1(E) be the section

as in the proof of Lemma 4.3.3. Then the derivation f 7→ χE · 〈DAf, v〉 generates

Υ(Rn, µbE). Part (2) then follows from the locality property.

The following corollary is a restatement of Theorem 4.0.8. It specifies further the

structure of the module of derivations on 1-sets in Rn, by collecting various facts

from this chapter.

Corollary 4.3.6. Let µ be a Radon measure on Rn, let A be a 1-set, and suppose

that µ is concentrated on A.

1. If A is purely 1-unrectifiable, then Υ(Rn, µ) = 0.

2. If A is not purely 1-unrectifiable, then Υ(Rn, µ) is isomorphic to the L∞(Rn, µ)-

module of bounded, µH-measurable sections of the approximate tangent bundle

Tan1(E). Here E is the 1-rectifiable part of A, as given in Theorem 4.2.2, and

µH is the part of µ which is absolutely continuous to H1bE.

To explain the proof, the first assertion of the corollary follows directly from

Lemma 4.3.1. For the second assertion, one first decomposes A into a purely 1-

unrectifiable subset and a 1-rectifiable subset (Theorem 4.2.2). It then suffices to

handle the case of the 1-rectifiable subset, and for that one argues similarly as in the

proof of Lemma 4.3.3.



CHAPTER V

Structure of Derivations on 2-Dimensional Spaces

In the last chapter we proved Theorem 4.1.1 by the following argument: if a Radon

measure µ on R is concentrated on a m1-null set E, then one covers E by open sets of

arbitrarily small m1-measure. From these covers, one forms a sequence of uniformly

Lipschitz functions that violates the continuity of any nonzero derivation in Υ(R, µ).

For n > 1, the difficulty in extending the previous proof to Rn lies in choosing

covers with a suitable geometry. To this end, we first recall some recent results of

Alberti, Csörnyei, and Preiss about the structure of Lebesgue null sets in R2 [ACP05].

We then adapt these results to prove the following fact.

Theorem 5.0.7. Let µ be a Radon measure on R2. If µ is singular to Lebesgue

2-measure, then any two derivations in Υ(R2, µ) form a linearly dependent set.

To prove this, one proceeds as in the 1-dimensional case. From appropriate covers

of m2-null sets, one constructs sequences of uniformly Lipschitz functions which

converge pointwise to x1 and x2. By using appropriate limits of these sequences, one

then shows that any two derivations in Υ(R2, µ) form a linearly dependent set.

Remark 5.0.8. Note that in the setting of R2, Theorem 5.0.7 implies a sharper

version of Corollary 3.5.6. Indeed, if µ ⊥ m2, then any two derivations in Υ(R2, µ)

form a linearly dependent set. So by Part (1) of Lemma 3.3.6, any three derivations
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in Υ(R2, µ) also form a linearly dependent set. If instead µ� m2, then by Corollary

3.5.4 the set {∂xi
}2
i=1 generates Υ(R2, µ), and this clearly implies that any three

derivations in Υ(R2, µ) also form a linearly dependent set. Corollary 3.5.6 then

follows from the Lebesgue decomposition of measures in R2.

In fact, more is true. We also give a sharper form of Corollary 3.5.7, which

concerns the cardinality of generating sets for Υ(R2, µ). As another application, we

obtain an analogue of Theorem 4.0.8 for 2-sets in Rn.

In what follows, we refer to Lebesgue null sets in R2 as null sets, Lebesgue singular

measures as singular measures, etc. As before, we consider only Radon measures µ.

5.1 Preliminaries: Null Sets in R2.

Towards a new covering theorem, we begin with a few definitions from [ACP05].

Definition 5.1.1. Let f : R → R be 1-Lipschitz. An x1-curve
1 is a graph of the

form

γ1(f) := {(x1, f(x1)) ∈ R2 : x1 ∈ R},

and we will refer to f as the (Lipschitz) parametrization of γi(f). An x1-stripe of

thickness δ is a subset of the form

N1(f ; δ) := {(x1, x2) : |x2 − f(x1)| ≤ δ/2}.

A x2-curve γ2(f) and a x2-stripe N2(f ; δ) are similarly defined.

Theorem 5.1.2 (Alberti-Csörnyei-Preiss, 2005). Let E be a null set in R2.

Then E can be written as E = E1 ∪ E2 such that each set Ei satisfies the following

property: for each ε > 0, Ei can be covered by countably many xi-stripes of thickness

δj, where
∑

j δj < ε.

1This notation differs from that of [ACP05]; in their work, such curves are called x-curves and y-curves.
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Remark 5.1.3. Theorem 5.1.2 can be improved in the case when E is a compact

null set. From the proof in [ACP05, pp. 4-5] one observes that each set Ei satisfies

the following stronger properties.

1. The set Ei can be covered by finitely many xi-stripes. In addition, given ε > 0

we may choose a uniform thickness δ > 0 for each xi-stripe, so that the total

thickness of all the xi-stripes remains less than ε.

2. The covering xi-stripes can be chosen in the following way: the Lipschitz

parametrizations of the associated xi-curves are piecewise-linear functions with

finitely many corner points.2

In the next theorem we show that the covering xi-stripes for each Ei can be chosen

so that intersections occur only along their boundaries. This will be a technical

convenience in the proof of Theorem 5.0.7.

Theorem 5.1.4. Let E be a compact null set in R2. Then E = E1 ∪ E2, where

for i = 1, 2, each sets Ei has the properties given in Remark 5.1.3. In addition, the

covering xi-stripes for Ei can be chosen to have pairwise-disjoint interiors.

Before proving the theorem, we first require a lemma. It assures that the xi-

curves associated to the covering xi-stripes of Ei can be chosen without crossings.

So if γi(f) and γi(g) are such xi-curves, then either f ≤ g holds on all of R, or f ≥ g

holds on all of R.

Lemma 5.1.5. Let i ∈ {1, 2} and let {αj}Nj=1 be a collection of xi-curves. Then

there is a collection of xi-curves {ηj}Ni=1, with ηj = γi(fj), so that

(5.1.1)
N⋃
j=1

αj =
N⋃
j=1

ηj

2That is, points of non-differentiability.
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and for each t ∈ R and each 1 < i ≤ N , the following holds:

(5.1.2) fi−1(t) ≤ fi(t).

Moreover, if the curves {αj}Nj=1 are piecewise linear, then so are the curves {ηj}Nj=1.

Proof of Lemma 5.1.5. Given the collection of xi-curves {αj}Nj=1, let {gj}Nj=1 denote

their Lipschitz parametrizations. That is, each function gj : R → R is 1-Lipschitz

and satisfies αj = γi(gj). We now argue inductively, by selecting collections of xi-

curves of increasing cardinality and whose parametrizations satisfy conditions (5.1.1)

and (5.1.2). To simplify notation, we assume that i = 1 and we use the variables x,

y in place of x1, x2, respectively.

The case N = 1 is vacuous, so by the induction hypothesis, we assume that

(5.1.3) g1 ≤ g2 ≤ . . . ≤ gN−1.

Put h0 := gN . We define inductively the functions hj and fj by

1 ≤ j < N : fj := gj ∧ hj−1, hj := gj ∨ hj−1,

j = N : fj := hN−1.

By Part (2) of Lemma 2.1.2, fj and hj are 1-Lipschitz. This shows that we obtain

well-defined xi-curves ηj = γi(fj). Moreover, if each gj is piecewise-linear, then by

construction, fj and hj are also piecewise-linear.

Observe next that for j < N − 1, the estimate gj ≤ hj holds by definition and

gj ≤ gj+1 holds by assumption. So by inequality (5.1.3) it follows that

fj ≤ gj ∧ hj−1 ≤ gj ≤ gj+1 ∧ hj = fj+1.

Lastly, fN−1 ≤ fN holds by construction, so this gives condition (5.1.2).

For the other condition, observe that for 0 ≤ j < N , we have

{y = hj(x)} ∪ {y = gj+1(x)} = {y = fj+1(x)} ∪ {y = hj+1(x)}
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and the union of sets
⋃N
j=1{y = gj(x)} can then be transformed as follows:

N⋃
j=1

{y = gj(x)} = {y = h0(x)} ∪ {y = g1(x)} ∪
N−1⋃
j=2

{y = gj(x)}

= {y = f1(x)} ∪ {y = h1(x)} ∪
N−1⋃
j=2

{y = gj(x)}

= . . . =
N⋃
j=1

{y = fj(x)}.

This means that the xi-curves {ηj}Nj=1 satisfy condition (5.1.1).

We now prove Theorem 5.1.4. The argument is an iterative procedure. At each

stage, one chooses new stripes which satisfy the following properties: they cover

the null set, they preserve the order of the previous stripes, but the interior of the

“bottom-most” stripe does not meet the others.

Proof of Theorem 5.1.4. Let ε > 0 be given. By Remark 5.1.3, we have E = E1∪E2

and there are collections of x1-stripes {N j
1 }N1

j=1 and x2-stripes {N j
2 }N2

j=1 whose unions

cover E1 and E2, respectively. Since the argument is symmetric, we assume that

E = E1. As a simpler notation, we also write N for N1 and N j for N j
1 .

By Lemma 5.1.5, we also assume that the parametrizations {fj}Nj=1 of the x1-

stripes {N j}Nj=1 satisfy conditions (5.1.2). As a first iteration, put

(5.1.4) f 1
j (x) :=

 f1, i = 1

fj(x) ∨
(
f1(x) + δ

)
, 1 < j ≤ N

and consider the stripes Mj := N (f 1
j ; δ), for 1 ≤ j ≤ N .

Claim 5.1.6. The collection of stripes {Mj}Nj=1 satisfies the following properties:

(i) the stripes {Mj}Nj=1 also cover E;

(ii) none of the stripes {Mj}Nj=2 meet the interior of M1.
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For (i), it suffices to show N j \ N 1 ⊂Mj for each j > 1, from which we obtain

(5.1.5) E ⊂
N⋃
i=1

N j = N 1 ∪
( N⋃
i=2

N j \ N 1
)
⊂ M1 ∪

( N⋃
i=2

Mj
)

=
N⋃
i=1

Mj.

Let p ∈ N j \ N 1 with p = (p1, p2), and we will argue by cases. If f 1
j (p1) = fj(p1),

then from the definition of N j we obtain

|p2 − f 1
j (p1)| = |p2 − fj(p1)| ≤ δ/2,

which gives the inclusion (5.1.5). If instead f 1
j (p1) = f1(p1) + δ, then

p2 ≤ fj(p1) + δ/2 ≤ f 1
j (p1) + δ/2.

In addition, we know that p /∈ N 1 and f1 ≤ fj, so we further obtain

p2 ≥ f1(p1) + δ/2 = f 1
j (p1)− δ/2.

Combining the two estimates above, we obtain inclusion (5.1.5). This proves (i).

To show (ii), from the definitions of f 1
1 and f 1

j we see that whenever j 6= N ,

f 1
1 (p1) + δ/2 = f1(p1) + δ/2 ≤ f 1

j (p1)− δ/2.

So if p lies in the interior of M1, then by formula (5.1.4) we obtain

p2 < f1(p1) + δ/2 ≤ f 1
j (p1)− δ/2.

As a result, p /∈Mj. This proves (ii) and Claim 5.1.6.

We now iterate the same argument with the new collection {γ1(f
1
j )}Nj=2 in place of

the old collection {γ1(fj)}Nj=2. Note that the new curve parametrizations {f 1
j }Nj=1 will

also satisfy condition (5.1.2), and this follows from the definition in formula (5.1.4).

More explicitly, given an index 1 ≤ j < N , we have

f 1
j (p1) = fj(p1) ∨ (f1(p1) + δ) ≤ fj+1(p1) ∨ (f1(p1) + δ) = f 1

j+1(p1)
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for each p ∈ R. For 2 < j ≤ N we define an analogous function f 2
j : R → R by

f 2
j (p1) := f 1

j (p1) ∨
(
f 1

2 (x1) + δ
)

and by similar arguments, none of the stripes {Ni(f
2
j ; δ)}Nj=3 meets the interior of

either Ni(f
1
1 ; δ) or Ni(f

2
2 ; δ).

Iterating further, we obtain a 1-Lipschitz function f jj : R → R and an x1-curve

γj := γ1(f
j
j ) for each 1 ≤ j ≤ N . Putting N j := N (f jj ; δ), it follows that {N j}Nj=1 is

the desired collection of x1-stripes of thickness δ.

To complete this discussion of null sets, we recall a fact [ACP05, Rmk 3(ii)] about

the geometry of the subsets E1 and E2. Roughly speaking, it states that E1 is

purely 1-unrectifiable in close-to-vertical directions, in the sense that E1 intersects

x2-curves in sets of H1-measure zero. In a similar sense, E2 is purely 1-unrectifiable

in close-to-horizontal directions.

In the proof of Theorem 5.0.7, this property of “directional pure unrectifiability”

will ensure that such subsets are negligible to derivations. See Remark 5.2.4.

Lemma 5.1.7. Let E be a null set in R2 and let L ∈ (0, 1). For {i, j} = {1, 2}, if

γ is an xj-curve whose parametrization is L-Lipschitz, then H1(γ ∩ Ei) = 0, where

Ei is the subset from Theorem 5.1.2.

Proof. Since the argument is symmetric in i and j, we assume that i = 1 and j = 2.

Let γ be a x2-curve in R2 as above, and put F 1 := E1 ∩ γ. By Theorem 5.1.4, for

any ε > 0, the set E1 can be covered by a collection of x1-stripes {N k}∞k=1, each of

thickness δk, so that
∑∞

k=1 δk < ε. Clearly, the same union also covers F 1.

Let pk be the point in γ ∩N k with least x2-coordinate. Note that γ ∩N k can be

covered by a set of the form K(pk)∩N k, where K(pk) is a one-sided cone with vertex
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pk, direction ~e2, and opening angle 2 arctan(1/L). In particular, the set K(pk)∩N k

has diameter at most C · δk, where C is a positive constant depending only on L.

In this way we cover F 1 ∩ γ with open sets {Ok}∞k=1, each of which has diameter

at most 2C · δk and hence at most 2C · ε. We now estimate:

H1(F 1 ∩ γ) ≤ lim sup
ε→0

∞∑
k=1

diam(Ok) ≤ lim sup
ε→0

∞∑
k=1

2C · δk ≤ 2C · ε.

Since ε > 0 was arbitrary, the lemma follows.

5.2 Linearly Independent Derivations on R2.

Towards proving Theorem 5.0.7, we first show a special case.

Lemma 5.2.1. Let µ be a Radon measure on R2. If µ is concentrated on a compact

null set E of R2, then any two derivations of Υ(R2, µ) are linearly dependent.

The proof can be divided into two steps. As stated before, the first step is to

cover the null set by unions of x1- and x2-stripes of decreasing total thickness. From

these covers, one constructs two sequences of Lipschitz functions which approximate

the coordinate functions x1 and x2 in the weak-∗ topology of Lip(E).

Using these sequences, the second step is to show a linear relation between δx1

and δx2 that holds true for any δ ∈ Υ(R2, µ). The linear dependence then follows

from this relation. To simplify the discussion, we state and prove the first step as a

separate lemma. It is a construction similar to that of Theorem 4.1.1.

Lemma 5.2.2. Let E be a compact null set in R2, and let E = E1 ∪ E2 be the

decomposition as given in Theorem 5.1.4. Then for {i, l} = {1, 2}, there is a sequence

of uniformly Lipschitz functions {ϕi, k}∞k=1 on R2 so that

1. ϕi, k
∗
⇀ xl in Lip(E);

2. locally, the restriction ϕi, k|Ei depends only on the variable xi.
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We will formulate property (2) more precisely in the proof. Put simply, each ϕi, k

is constructed from a cover of Ei by xi-stripes. The behavior of ϕi, k near a point

p ∈ Ei is then determined by the geometry of the xi-stripe which contains p.

Proof of Lemma 5.2.2. Let ε > 0 be given. Since E is bounded, we may assume that

E lies in the cube [0, 1]2. By Theorem 5.1.4, for i = 1, 2 each of the sets Ei can be

covered by N xi-stripes of thickness δ, where N · δ < ε and where the interiors of

the stripes are pairwise disjoint. The argument is symmetric in x1 and x2, so for

simplicity we study the case i = 1 and l = 2.

For 1 ≤ j ≤ N , let N j := N1(fj; δ) be an x1-stripe as described above. Emphasiz-

ing the dependence on ε, we also put N (ε) := R2 \
⋃
j N j. Now consider the family

of functions ϕε : R2 → R that are given by the formula

(5.2.1) ϕε(p) :=

∫
{p1}×[0,p2]

χN (ε) dH1,

where p = (p1, p2) ∈ R2. Indeed, if p ∈ E, then we obtain the estimates

0 ≤ ϕε(p) ≤ p2 ≤ 1.

It follows that the sequence {ϕε|E}ε>0 is bounded in sup-norm. In addition, any

subsequence of {ϕε}ε>0 converges pointwise to the function x2. To see this, note that

0 ≤ p2 − ϕε(p) ≤
N∑
j=1

∫
{p1}×R

χN j dH1 = N · δ < ε.

Claim 5.2.3. The family of functions {ϕε}ε>0 is uniformly 3-Lipschitz.

To begin, let p = (p1, p2) and q = (q1, q2) be points in R2. We argue by cases.

Case 0: p and q lie on the same vertical line. Since ϕε is the indefinite integral of

a bounded function with sup-norm 1, it is 1-Lipschitz in the variable x2. As a result,

(5.2.2) |ϕε(p)− ϕε(q)| ≤ |p2 − q2| = |p− q|.
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Case 1: p and q lie in the same stripe N j. The line segment {p1}×[fj(p1)−δ/2, p2]

lies entirely in N j, so consider its lower endpoint p′ := (p1, fj(p1) − δ/2). From

integration we then obtain the identity

ϕε(p) =

∫
{p1}×[0, p2]

χN (ε) dH1 =

∫
{p1}×[0, fj(p1)−δ/2]

χN (ε) dH1 = ϕε(p
′).

Similarly, we see that the point q′ := (q1, fj(q1)−δ/2) satisfies ϕε(q) = ϕε(q
′). Recall

that the interiors of the {N j}∞j=1 are pairwise disjoint, so a ray with initial point p′

and direction −~e2 will cross through j − 1 stripes of thickness δ. It follows that

ϕε(p
′) = fj(p1)− δ/2− (j − 1) · δ

ϕε(q
′) = fj(q1)− δ/2− (j − 1) · δ

and because fj is 1-Lipschitz, ϕε|N j is also 1-Lipschitz:

(5.2.3) |ϕε(p)− ϕε(q)| = |fj(p1)− fj(q1)| = |p1 − q1| ≤ |p− q|.

From the previous equations, we also see that whenever p ∈ N j, we have

(5.2.4) ϕε(p) = fj(p1)− δ/2− (j − 1) · δ.

Case 2: p, q /∈ N (ε), and both points lie between the same pair of stripes3. The

argument is similar to Case 1. If p and q lie below every x1-stripe, then we have

ϕε(p) = p2 and ϕε(q) = q2.

Otherwise let j0 be the largest index so that fj0(p1) ≤ p2. Since the {N j}Nj=1

have pairwise-disjoint interiors, from integration we obtain ϕε(p) = p2 − j0 · δ and

ϕε(q) = q2 − j0 · δ. In either case, we find that

ϕε(p)− ϕε(q) = p2 − q2

|ϕε(p)− ϕε(q)| = |p2 − q2| ≤ |p− q|.
3It does not follow, of course, that p and q lie in the same connected component of N (ε). Consider, for example,

the case where the boundaries of two stripes meet.
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Case 3: p and q are arbitrary. By Case 2 we may assume that p and q are

separated by a boundary curve of some stripe N j. Without loss of generality, it is

an upper boundary curve, i.e. the graph

Γ := {(x1, x2) : x2 = fj(x1) + δ/2}

and moreover, assume that p lies above the curve and q lies below the curve:

p′2 := fj(p1) + δ/2 ≤ p2, q′2 := fj(q1) + δ/2 ≥ q2.

Observe that the points p′ = (p1, p
′
2) and q′ = (q1, q

′
2) lie on the same vertical lines as

p and q, respectively. Moreover, p′ and q′ also lie on Γ. Using the Triangle Inequality

and inequalities (5.2.2) and (5.2.3) from the previous cases, we now estimate

(5.2.5)


|ϕε(p)− ϕε(q)| ≤ |ϕε(p)− ϕε(p

′)|+ |ϕε(p′)− ϕε(q
′)|+ |ϕε(q′)− ϕε(q)|

≤ |p2 − p′2|+ |fj(p1)− fj(q1)|+ |q′2 − q2|.

We claim further that the following inequality

(5.2.6) |p2 − p′2|+ |q′2 − q2| ≤ |p2 − q2|+ |p′2 − q′2|

is true for all choices of p′2 ≤ p2 and q2 ≤ q′2, and this can be shown geometrically.

By studying the intervals Ip := [p′2, p2] and Iq := [q2, q
′
2] in R, one first observes that

m1(Ip) +m1(Iq) is the left-hand side of inequality (5.2.6). Arguing further by cases,

1. Suppose that Ip and Iq are disjoint. Depending on the relative positions of p2

and q2, the union Ip ∪ Iq lies in one of the intervals [p2, q2] or [q′2, p
′
2]. Inequality

(5.2.6) then follows from the estimate

m1(Ip) +m1(Iq) ≤ m1([p2, q2]) ∨m1([p
′
2, q

′
2])

≤ m1([p2, q2]) +m1([p
′
2, q

′
2]) = |p2 − q2|+ |p′2 − q′2|.
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2. Suppose that Iq ⊂ Ip. Then for the intervals I ′ := [p′2, q
′
2] and I = [q2, p2], we

have Ip = I ∪ I ′ and Iq = I ∩ I ′. Inequality (5.2.6) then follows from

m1(Ip) +m1(Iq) = m1(I) +m1(I
′) = |p2 − q2|+ |p′2 − q′2|.

If instead Ip ⊂ Iq, then the roles are reversed: we have Iq = I∪I ′ and Ip = I∩I ′.

However, the same identity holds, which also gives inequality (5.2.6).

3. As a final case, suppose that Ip ∩ Iq 6= ∅, Ip 6⊂ Iq, and Iq 6⊂ Ip. Of the intervals

[q2, p2] and [p′2, q
′
2], one is Ip ∪ Iq and the other is Ip ∩ Iq. Inequality (5.2.6) then

follows from the estimate

m1(Ip) +m1(Iq) = m1(Ip ∪ Iq) +m1(Ip ∩ Iq) = |p2 − q2|+ |p′2 − q′2|.

This proves inequality (5.2.6). From this and inequality (5.2.5), we then obtain

|ϕε(p)− ϕε(q)| ≤ |fj(p1)− fj(q1)|+ |p2 − p′2|+ |q′2 − q2|

≤ 1 · |p1 − q1|+ |p2 − q2|+ |p′2 − q′2|

≤ |p1 − q1|+ |p2 − q2|+ |p1 − q1|

≤ 3 · |p− q|,

which gives Claim 5.2.3. Lastly, this claim and the bound ‖ϕε|E‖∞ ≤ 1 imply that

{ϕε}ε>0 is a norm-bounded net in Lip∞(E).

Letting {εk}∞k=1 be any decreasing sequence in (0, 1] with εk ↘ 0, the functions

ϕ1, k := ϕεk converge pointwise to x2. By Lemma 2.1.3, this is equivalent to the

convergence ϕ1, k
∗
⇀ x2 in Lip∞(E), which is property (1) in the lemma.

We now discuss property (2) of the lemma. By equation (5.2.4), we see that the

restriction ϕ1, k|N j agrees with the function

(5.2.7) Fj(p1) := fj(p1)− δ/2− (j − 1) · δ.
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This dictates the local behavior of ϕi, k in the following way. Given any point p ∈ E1

and any neighborhood O of p, there is a stripe N j which contains p and where the

function ϕ1, k|(O ∩ N j) agrees with a univariate function in the variable x1. With

this understood, property (2) follows.

Remark 5.2.4. (1) When restricted to the bounded null set Ei, observe that the Lip-

schitz functions {ϕi, k}∞k=1 from Lemma 5.2.2 are piecewise-linear in the xi-coordinate

and constant in the other coordinate. So for each index k, there is a finite union of

line segments {`jk} which are orthogonal to ~ei and on which ϕi, k is non-differentiable.

However, the sets `k :=
⋃
j `jk are negligible under the action of derivations in

Υ(R2, µ). To see this, recall that by Lemma 5.1.7, each set Ei ∩ `jk has zero H1-

measure, so in particular the set Eik := Ei ∩ `k is purely 1-unrectifiable. By Lemma

4.3.1, we see that χEikδ = 0 holds for every δ ∈ Υ(R2, µ).

(2) Observe that the points in `k are not the only points of non-differentiability

for the function ϕi, k. By construction, ϕi, k is piecewise linear on every line in the

direction ~ei. As a result, boundary points on each xi-stripe N j
i are also points of

non-differentiability. In the proof of Lemma 5.2.1, we will treat these sets separately.

Proof of Lemma 5.2.1. By Theorem 5.1.4, E can be written in the form E = E1∪E2,

where for each k ∈ N, the set Ei can be covered by Nk xi-stripes, each of thickness δ,

and so that Nk · δ < 2−k. For simplicity, we also assume that E1 and E2 are disjoint

sets, otherwise we may study the sets E2 and E1 \ E2 instead.

We also partition each Ei further into two subsets. For each i = 1, 2, let {N j
i }

Nk
j=1

be the collection of xi-stripes whose union covers Ei. We then consider the union of

all boundaries of xi-stripes, for 1 ≤ j ≤ Nk and for all k ∈ N:

Γi :=
∞⋃
k=1

Nk⋃
j=1

∂N j.
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Put Γ := Γ1 ∪ Γ2. We now argue by cases.

Case 1: µ(Γ) > 0. By construction, Γ is a 1-rectifiable set. If Υ(Γ, µ) = 0, then

we would have χΓ(δ1 − δ2) = 0 for all derivations δ1, δ2 ∈ Υ(R2, µ), and this would

prove the lemma. Therefore we assume that the module Υ(Γ, µ) is nonzero. It then

follows from Corollary 4.3.5 that Υ(Γ, µ) is generated by the derivation δΓ.

This implies that for any two nonzero derivations δ1 and δ2 in Υ(R2, µ), there

exist nonzero functions Λ1,Λ2 ∈ L∞(R2, µ) so that δ1 = Λ1δE and δ2 = Λ2δΓ. By

inspection, the linear combination Λ2δ1 − Λ1δ2 is precisely the zero derivation. It

follows that {δ1, δ2} is a linearly dependent set in Υ(R2, µ), as desired.

Case 2: µ(Γ) = 0. The argument will be symmetric in x1 and x2, so assume

that i = 1. Let {fj}Nj=1 be the parametrizations of the x1-stripes {N j
1 }

Nk
j=1, and let

{ϕ1, k}∞k=1 be the sequence of uniformly Lipschitz functions from Lemma 5.2.2.

Claim 5.2.5. There exists g1 ∈ L∞(R2, µ) so that for each δ ∈ Υ(R2, µ), we have

(5.2.8) χE1 · δx2 = g1 · χE1 · δx1 µ-a.e.

By Theorem 5.1.4, recall that the x1-curves {γ1(fj)}Nj=1 are piecewise linear. As

given in Item (1) of Remark 5.2.4, let `k be the union of vertical line segments on

which ϕ1, k is non-differentiable, and put E1k = E1 ∩ `k.

Let f ′j denote the derivative of fj. The image Aj := f ′j(R \ proj~e2(`
k)) is clearly

a finite set in [−1, 1]. So up to a finite union of vertical lines, we may partition the

interior of N j into finitely many subsets of the form

N j(c) := {x ∈ int(N j) : f ′j(x1) = c}.

Next, recall that ϕ1, k is piecewise-linear on vertical lines L and constant on subsets

of the form L∩N j
1 . It follows that for every point p in the interior of N j

1 , the partial

derivative ∂2ϕ1, k(p) exists and is zero.
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Let δ ∈ Υ(R2, µ) be arbitrary. By the previous observation, the locality property

(Theorem 3.2.1), the Chain Rule (Proposition 3.5.1), and formula (5.2.7) we obtain

χN j(c) · δϕ1, k = χN j(c) · (∂1ϕ1, k · δx1 + ∂2ϕ1, k · δx2)

= χN j(c) · (f ′j · δx1 + 0 · δx2)

= χN j(c) · (c · δx1).

We now define an auxiliary function hk : R2 → R by the formula

hk :=
N∑
j=1

∑
c∈Aj

c · χN j(c).

By hypothesis, Γ has µ-measure zero, so the set E1 ∩ ∂N j
1 also has µ-measure zero.

As a result, the collection of subsets {N j(c) : c ∈ Aj} is a measurable partition of

(E1 \E1k) ∩N j
1 and hence the collection of subsets {N j(c) : c ∈ Aj, 1 ≤ j ≤ Nk} is

a measurable partition of E1 \ E1k. It follows that the identity

(5.2.9) δϕ1, k = hk · δx1

holds µ-a.e. on the set E1 \ E1k.

By item (1) of Remark 5.2.4, we have χE1kδ = 0. This means that we also have

δx1(p) = 0 and δϕ1, k(p) = 0 whenever p ∈ E1k. It follows that equation (5.2.9) holds

more generally; it is valid for µ-a.e. point in E1.

Since each fj is the parametrization of an x1-curve, it follows that |f ′j| ≤ 1 holds

on (E1 ∩N j
1 ) \E1j for each 1 ≤ j ≤ Nk. This implies that {hk}∞k=1 is a subset of the

closed unit ball of L∞(R2, µ). By weak-∗ compactness (Theorem 3.1.6), it contains

a weak-∗ convergent subsequence {hkm}∞m=1. Let g1 denote the weak-∗ limit. By

the lower-semicontinuity of norms (Theorem 2.1.5), we see that ‖g1‖µ,∞ ≤ 1. A

straightforward argument also gives hkm · δx1
∗
⇀ g1 · δx1 in L∞(E1, µ).
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By Lemma 5.2.2 we have ϕ1, km

∗
⇀ x2 in Lip∞(E). By equation (5.2.9) and by the

continuity of δ, we obtain the convergence

hkm · δx1 = δϕ1, km

∗
⇀ δx2 in L∞(E1, µ).

By uniqueness of weak-∗ limits, we must have g1 · δx1 = δx2 for µ-a.e. point in E1.

Observe that this is precisely equation (5.2.8), which proves Claim 5.2.5.

By the symmetry of the argument, there also exists a function g2 ∈ L∞(R2, µ) so

that ‖g2‖µ,∞ ≤ 1 and so that, for every δ ∈ Υ(R2, µ), we have

(5.2.10) δx1 = g2 · δx2 µ-a.e. on E2.

We now show that any two derivations δ1 and δ2 in Υ(R2, µ) form a linearly dependent

set. Without loss of generality, neither δ1 nor δ2 is zero, so consider the functions

λ1 := χE1 · δ2x1 + χE2 · δ2x2

λ2 := −χE1 · δ1x1 − χE2 · δ1x2.

One easily sees that λ1 and λ2 both lie in L∞(R2, µ). Moreover, the linear combi-

nation δ := λ1δ1 + λ2δ2 annihilates the coordinate functions x1 and x2, because for

points in E1 the linear relation (5.2.8) implies the identities

δx1 = (δ2x1) · δ1x1 − (δ1x1) · δ2x1 = 0

δx2 = (δ2x1) · δ1x2 − (δ1x1) · δ2x2 = (δ2x1) · g1 · δ1x1 − (δ1x1) · g1 · δ2x1 = 0.

For µ-a.e. point in E2, a similar argument shows that δx1 = 0 and δx2 = 0. By

Corollary 3.5.3, it follows that δ = 0.

Suppose now that λ1 = λ2 = 0. From formulas (5.2.8) and (5.2.10), we obtain

δ1x1 = δ2x1 = 0 on E1 and δ1x2 = δ2x2 = 0 on E2.
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By Corollary 3.5.3, this implies that δ1 and δ2 are both zero, which is a contradiction.

As a result, the derivations χR2\Γδ1 and χR2\Γδ2 form a linearly dependent set.

By using the Borel regularity of µ, Theorem 5.0.7 follows readily from Lemma

5.2.1.

Proof of Theorem 5.0.7. We argue by contradiction, so suppose that µ is a nonzero

measure that µ is concentrated on a null set E in R2, and that there is a linearly

independent set {δ1, δ2} in Υ(R2, µ).

We also assume that E is a bounded set. Indeed, since µ is Radon, the square

Qab := [a, a+1)× [b, b+1) is µ-measurable for each pair (a, b) ∈ Z2. Moreover, there

must be a pair (a′, b′) for which µ(Qa′b′) > 0, otherwise we would have

µ(R2) ≤
∞∑

a=−∞

∞∑
b=−∞

µ(Qab) = 0

and hence µ would be the zero measure. As a shorthand, put Q := Qa′b′ .

Since the set {δ1, δ2} is linearly independent in Υ(R2, µ), by Lemma 3.3.6, the set

{χQδ1, χQδ2} must also be linearly independent in Υ(Q, µ). We then arrive at the

desired contradiction if we show that any two derivations in Υ(Q,µ) form a linearly

dependent set. To simplify the argument, we put E = Q.

Since µ is Radon, there is compact exhaustion {Ek}∞k=1 of E, which means that

Ei ⊂ Ei+1 for all i ∈ N and µ(E \ Ek) → 0 as k → ∞. In particular, each Ek is a

compact null set. So by Theorem 5.1.4, each has the form Ek = E1
k ∪ E2

k , where we

again assume that E1
k ∩ E2

k = ∅.

By Lemma 5.1.4, the sets E1
k and E2

k can be covered by unions of finitely many

x1- and x2-stripes with total thicknesses 2−k, respectively. For i = 1, 2, let Γik be the

union of the boundaries of the xi-stripes, and put Γ =
⋃∞
k=1(Γ

1
k ∪ Γ2

k). Clearly, Γ is

a 1-rectifiable subset of R2. We now argue by cases.
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Case 1: µ(Γ) > 0. Arguing as in Case 1 in the proof of Lemma 5.2.1, we see that

each of the derivations χΓδ1 and χΓδ2 is a L∞(R2, µ)-multiple of the derivation δΓ,

as given in Corollary 4.3.5. It follows that the set {χΓδ1, χΓδ2} is linearly dependent

in Υ(R2, µ), which proves the theorem.

Case 2: µ(Γ) = 0. For each k ∈ N there exist g1
k and g2

k in L∞(R2, µ) which

satisfy the linear relations (5.2.8) and (5.2.10) µ-a.e. on E1
k and E2

k , respectively. In

particular, the same linear relations also hold on the smaller sets F 1
k := E1

k \ Ek−1

and F 2
k := E2

k \ Ek−1, respectively.

For i = 1, 2 put F i :=
⋃∞
k=1 F

i
k, and hence E = F 1 ∪ F 2. Consider the functions

hi :=
∞∑
k=1

χF i
k
· gik.

By construction, h1 and h2 lie in L∞(R2, µ) and they satisfy the linear relations

χF 1 · δx2 = χF 1 · h1 · δx1(5.2.11)

χF 2 · δx1 = χF 2 · h2 · δx2(5.2.12)

for every δ ∈ Υ(R2, µ). From these relations, consider the scalars

λ1 := χF 1 · δ2x1 + χF 2 · δ2x2

λ2 := −χF 1 · δ1x1 − χF 2 · δ1x2

and put δ′ := λ1δ1 + λ2δ2. For i = 1, 2, we see that χF i · δ′xi = 0, because

χF i · δ′xi = (χF i · δ2xi) · δ1xi − (χF i · δ1xi) · δ2xi = 0.

For i 6= j, we have χF i ·δ′xj = 0, and this follows from equations (5.2.11) and (5.2.12):

χF i · δ′xj = (χF i · δ2xi) · δ1xj − (χF i · δ1xi) · δ2xj

= χF i ·
[
δ2xi · (hi · δ1xi)− δ1xi · (hi · δ2xi)

]
= 0.
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Therefore δ′ is the zero derivation, by Corollary 3.5.3.

Lastly, suppose that λ1 and λ2 are both identically zero. Arguing as in the proof of

Lemma 5.2.1, this implies that δ1 and δ2 are both zero, which is a contradiction.

In the previous proof, the argument reduced to two cases: (1) a 1-rectifiable set

Γ consisting of boundaries of covering stripes for the null set E, and (2) subsets of

E on which the linear relations (5.2.11) and (5.2.12) hold. The next corollary states

that similar linear relations are also valid µ-a.e. on the exceptional 1-rectifiable set

Γ. This will be a technical convenience in the proof of Theorem 5.3.1.

Corollary 5.2.6. Let µ be a singular Radon measure on R2 and suppose that E is

a bounded null set in R2 on which µ is concentrated. Then there exist µ-measurable

subsets F 1 and F 2 in R2 and functions g1, g2 ∈ L∞(R2, µ) so that E = F 1 ∪ F 2 and

that for all derivations δ ∈ Υ(R2, µ), we have

χF 1 · δx2 = χF 1 · g1 · δx1(5.2.13)

χF 2 · δx1 = χF 2 · g2 · δx2.(5.2.14)

In what follows, we assume all the notation from the proof of Theorem 5.0.7.

Proof. From Case 2 of the proof of Theorem 5.0.7 (where µ(Γ) = 0), we see that the

same arguments remain valid for the subsets E1 \ Γ1 and E2 \ Γ2. As a result, we

have the following identities for the functions h1 and h2:

χF 1\Γ1 · δx2 = χF 1\Γ1 · h1 · δx1,

χF 2\Γ2 · δx1 = χF 2\Γ2 · h2 · δx2.

We show next that Γ1 and Γ2 exhibit similar linear relations. The argument is

symmetric, so we will assume that i = 1.
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Let l ∈ N, k ∈ N, and j ∈ {1, 2, . . . , Nk} be arbitrary integers, and consider the

upper and lower boundary curves

A+
jkl :=

{(
t, fj(t) +

δ

2

)
: t ∈ [l, l + 1]

}
⊂ ∂N kj

1 ,

A−jkl :=
{(
t, fj(t)−

δ

2

)
: t ∈ [l, l + 1]

}
⊂ ∂N kj

1 .

By the symmetry of the argument, we consider only the case of A+
jkl, and the other

case is similar.

For p = (p1, p2), the map ϕ(p) := p1 − l is clearly a bi-Lipschitz homeomorphism

of A+
jkl onto [0, 1]. As a shorthand, we write A := A+

jkl, ψ := ϕ−1, and ν := ϕ#µ.

If the singular part νS of ν is nonzero, then let E be a null set in R on which νS is

concentrated and put w := χR\E.

By Rademacher’s theorem, every Lipschitz function is ν-a.e. differentiable on the

set [0, 1]\E. Note that the coordinate function x2 is a bounded Lipschitz function on

A, and therefore x2◦ϕ is a bounded Lipschitz function on [0, 1]. Letting h ∈ L1(R2, µ)

and δ ∈ Υ(R2, µ) be arbitrary, we then invoke the transformation formula (3.4.2) and

the 1-dimensional formula (4.1.1) to obtain∫
A

h · δx2 dµ =

∫
A

(h ◦ ψ ◦ ϕ) · δ(x2 ◦ ψ ◦ ϕ) dµ =

∫ 1

0

(h ◦ ψ) · (ϕ#δ)(x2 ◦ ψ) dν

=

∫ 1

0

(h ◦ ψ) · (x2 ◦ ψ)′ · (ϕ#δ)(idR) · w dν

=

∫
A

h ·
(
(x2 ◦ ψ)′ ◦ ϕ

)
· δϕ · (w ◦ ϕ) dµ.

Put λA := ((x2 ◦ ψ)′ ◦ ϕ) · (w ◦ ϕ). Since h was arbitrary, it follows that

(5.2.15) χA · δx2 = λ+
A · χA · δϕ = λ+

A · χA · δ(x1 − l) = λ+
A · χA · δx1,

and a straightforward estimate shows that λ+
A ∈ L∞(A, µ):

|λ+
A| ≤ |(x2 ◦ ψ)′ ◦ ϕ| · |w ◦ ϕ|

≤ |(x2 ◦ ψ)′| · 1 ≤ L(x2 ◦ ψ) ≤ L(x2) · L(ψ) ≤ 1 · 2.
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By a similar argument, for A′ := A−jkl there exists λA′ ∈ L∞(A′, µ) which satisfies

(5.2.16) χA′ · δx2 = λA′ · χA′ · δx1.

Combining equations (5.2.15) and (5.2.16) and suppressing the indices j, k, l, we put

λ1 :=
∞∑

l=−∞

∞∑
k=1

Nk∑
j=1

(χA · λA + χA′ · λA′),

and summing over j, k, l, we then obtain the identity

χΓ1 · δx2 = λ1 · χΓ1 · δx1.

By the symmetry of the argument, we run a similar construction by using boundaries

of x2-stripes and invoking the transformation formula (3.4.2) again. From it we

obtain a function λ2 ∈ L∞(R2, µ) that satisfies

χΓ2 · δx2 = λ2 · χΓ2 · δx1.

Lastly, for i = 1, 2 we define gi := χF i\Γi · hi + χΓi · λi. By the above identities, it

follows that the functions g1 and g2 satisfy formulas (5.2.13) and (5.2.14) on F 1 and

F 2, respectively. This proves the corollary.

The next corollary settles Example 3.3.5. It shows that for many measures µ on

R2, the module Υ(R2, µ) is not necessarily a free module over L∞(R2, µ).

Corollary 5.2.7. Let µ be a Radon measure on R2, and suppose that {δ1, δ2} is a

linearly independent set in Υ(R2, µ). Then µ� m2.

Proof. We argue by contradiction, so suppose that the singular part of µ is nonzero.

Let A be a null set in R2 on which the singular part is concentrated, so µ(A) > 0.

By Part (2) of Lemma 3.3.6, the set {χAδi}2
i=1 is linearly independent in Υ(A, µ).
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By inspection, for each λ ∈ L∞(X,µbA) the restriction λ|A lies in L∞(A, µ). As

µbA � µ, it follows by Lemma 3.4.4 that each χAδi is a derivation in Υ(R2, µbA).

So suppose there are scalars λ1 and λ2 in L∞(R2, µbA) so that

λ1 · (χAδ1)f + λ2 · (χAδ2)f = 0

holds for all f ∈ Lip∞(R2). Since the set {χAδi}2
i=1 is linearly independent in Υ(A, µ),

both λ1|A and λ2|A must be the zero function in L∞(A, µ). This means that λ1 and

λ2 are the zero function in L∞(X,µbA), and hence the set of derivations {χAδi}2
i=1

is also linearly independent in the module Υ(R2, µbA).

On the other hand, µbA is singular. By Theorem 5.0.7, the set {χAδi}2
i=1 is linearly

dependent in Υ(R2, µbA), which is a contradiction. The corollary follows.

5.3 Singular Measures on R2.

In the previous section we proved that for a singular measure µ on R2, the rank

of the module Υ(R2, µ) is at most one. The next theorem discusses the number of

generators of the module. In particular, it is a sharper version of Corollary 3.3.12

and Theorem 5.0.7, which discusses only a proper subset Xε of X = R2 and the

number of generators of Υ(Xε, µ).

Theorem 5.3.1. Let µ be a Radon measure on R2 and suppose that the module

Υ(R2, µ) is nontrivial. If µ is singular, then Υ(R2, µ) is generated by one element.

Example 5.3.2. The module Υ(R2, µ) can be zero, even when µ 6= 0. Weaver

[Wea00, Thm 41] has shown that if S is the ‘middle-thirds’ Sierpinski carpet and if

α = log 8/ log 3, then Υ(R2,HαbS) = 0.

To explain the proof, the idea is to choose a derivation which acts “maximally” on

the functions x1 and x2. To this end, we use standard facts from functional analysis in
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order to obtain a maximal linear operator of the above type. An additional argument

ensures that such an operator is a derivation, from which Theorem 5.3.1 follows.

To begin, let E be a null set in R2 and suppose that µ is concentrated on E. Let

L be the space of bounded linear operators from Lip∞(R2) to L∞(R2, µ). Clearly, L

is a vector space, and it becomes a Banach space under the operator norm

‖T‖ := sup
{
‖Tf‖µ,∞ : f ∈ Lip∞(R2), ‖f‖ ≤ 1

}
.

By Corollary 5.2.6, E has the form E = F 1 ∪ F 2 and there exist g1 and g2 in

L∞(R2, µ) for which the linear relations (5.2.13) and (5.2.14) both hold on F 1 and

F 2, respectively. For i = 1, 2, consider the sets

Vi :=
{
δxi : δ ∈ Υ(R2, µbF i), ‖δ‖ ≤ 1

}
.

By Theorem 3.2.8, the action of each δ ∈ Υ(R2, µ) extends to Lipschitz functions on

R2. In particular, we have δxi ∈ L∞(R2, µ), and from inequality (3.2.7) we obtain

‖δxi‖µ∞ ≤ ‖δ‖ · L(xi) ≤ 1.

Therefore Vi is a subset of the closed unit ball in L∞(R2, µ).

Lemma 5.3.3. Let E, F 1, F 2, µ, V1, V2 be as above. There exist derivations δ∗1 and

δ∗2 in Υ(R2, µ) so that for i = 1, 2 and for µ-a.e. p ∈ F i, we have

(5.3.1) δ∗i xi(p) = sup{v(p) : v ∈ Vi}.

Before proving the lemma, we require a few additional facts. The first fact is the

lower semi-continuity of the norm under weak-∗ convergence (Theorem 2.1.5) and

the second fact is Mazur’s Lemma [Rud91, Thm 3.13], of which one version (Lemma

8.2.8) is stated in Chapter VIII. The third fact is a compactness theorem on L(Y ;Z),
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the space of bounded linear operators between Banach spaces Y and Z. Specifically,

Z will be the dual of a Banach space W , so Z = W ∗.

Recall that a net {Sj}j∈ J in L(Y ;Z) converges to an operator S in the weak-∗

operator topology if 〈w, Sjy〉 → 〈w, Sy〉 holds, for all y ∈ Y and all w ∈ W .

Recall also that the space L(Y ;Z) admits an operator norm, which is given by

‖T‖ := sup{‖Ty‖Z : y ∈ Y, ‖y‖Y ≤ 1},

and where ‖ · ‖Y and ‖ · ‖Z are the norms on Y and Z, respectively. As a result, the

closed unit ball in L(Y ;Z) is well-defined.

Theorem 5.3.4. Let Y be a Banach space and let Z be a dual Banach space. If B

is the closed unit ball in L(Y ;Z), then B is compact in the weak-∗ operator topology.

If Y and Z are Hilbert spaces with Y = Z, then Theorem 5.3.4 is a standard fact

from the theory of operator algebras. The same proof is equally valid in our setting;

see [KR97, Thm 5.1.3]. For completeness, however, we will discuss this topology on

L(Y ;Z) and prove Theorem 5.3.4 in Chapter VIII.

Proof of Lemma 5.3.3. As a first case, we assume that E is a bounded subset of R2.

The argument proceeds in three stages, which are stated below as claims. As before,

the argument is symmetric, so without loss of generality we assume that i = 2. We

also write V for V2, F for F2, and µ for µbF 2.

Claim 5.3.5. The supremum in equation (5.3.1) is attained by w, for some function

w ∈ L∞(R2, µ).

We first define a relation (≺) on V by the following rule:

δx2 ≺ δ′x2 ⇐⇒ δx2 ≤ δ′x2 µ-a.e.

Note that (V,≺) is a directed set (see Section 8.1), which means that:
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1. we have v ≺ v, for each v ∈ V ;

2. if v, v′, v′′ ∈ V satisfy v ≺ v′ and v′ ≺ v′′, then v ≺ v′′;

3. for all v, v′ ∈ V , there is a v′′ ∈ V so that v ≺ v′′ and v′ ≺ v′′.

The first two properties are clear from the definition of ≺. For the third property,

let δ and δ′ be derivations in Υ(R2, µ) and put

K := {p ∈ R2 : δx2(p) ≤ δ′x2(p)},

δ′′ := χKδ
′ + χR2\Kδ.

By the locality property (Theorem 3.2.1), δ′′ is a well-defined derivation in Υ(R2, µ).

From its construction, it is immediate that δx2 ≺ δ′′x2 and δ′x2 ≺ δ′′x2.

From this relation, we see that V is a net which is indexed by its own elements.

In other words, v ∈ V has index v, so formally vv := v and V = {vv : v ∈ V }.

By Theorem 3.1.6, the closed unit ball in L∞(R2, µ) is weak-∗ compact. Therefore

there is an index set I, an element w ∈ V , and a sub-net W = {wi}i∈I of V so that

wi
∗
⇀ w in L∞(R2, µ). By Definition 8.1.1, there is a map ϕ : I → V so that

(N1) for each i ∈ I, there is a vϕ(i) ∈ V so that wi = vϕ(i);

(N2) for all v ∈ V , there is a i0 ∈ I so that if i0 ≺ i, then vv ≺ wi.

Because L∞(R2, µ) is the dual of a separable Banach space, we may assume that the

sub-net W is in fact a sequence; for a proof, see Lemma 8.1.7.

We now show that v ≺ w holds for all v ∈ V . Supposing otherwise, there exists

v ∈ V with v 6= w, and there is a subset G of F so that µ(G) > 0 and w(x) < v(x),

for all x ∈ G. By (N2), there is a i0 ∈ I so that whenever i0 ≺ i, the inequality

v(x) ≤ vv(x) ≤ wi(x)
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holds for all x ∈ G. Letting g : R2 → [0,∞) be an arbitrary function in L1(R2, µ),

we then obtain the following estimates:∫
G

v · g dµ ≤
∫
G

wi · g dµ,∫
G

v · g dµ = lim
i

∫
G

v · g dµ ≤ lim
i

∫
G

wi · g dµ =

∫
G

w · g dµ.

This contradicts our hypothesis, which gives the claim.

Claim 5.3.6. The supremum in equation (5.3.1) is attained by Tx2, for some T ∈ L.

Since each wi ∈ W has the form wi = δϕ(i)x2, consider the subset D := {δϕ(i)}∞i=1

of the closed unit ball of Υ(R2, µ). By Theorem 5.3.4, there is a further subsequence

D′ of D which converges in the weak-∗ operator topology. Writing D′ := {δk}∞k=1,

let δ∗2 : Lip∞(R2) → L∞(R2, µ) be the limit operator. For all h ∈ L1(R2, µ), we have∫
R2

h · δkx2 dµ →
∫

R2

h · δ∗2x2 dµ.

Equivalently, we have δkx2
∗
⇀ δ∗2x2 in L∞(R2, µ). By uniqueness of weak-∗ limits, we

obtain δ∗2x2 = w, as desired.

Claim 5.3.7. The map δ∗2 is a derivation in Υ(R2, µ).

Clearly, δ∗2 is linear. Since D′ is a convergent sequence in the weak-∗ operator

topology, for each f ∈ Lip∞(R2) we have δkf
∗
⇀ δ∗2f in L∞(R2, µ). By lower semi-

continuity of the L∞(R2, µ)-norm (Theorem 2.1.5), we obtain the estimate

(5.3.2) ‖δ∗2f‖µ,∞ ≤ lim inf
k→∞

‖δkf‖µ,∞ ≤ 1 · ‖f‖Lip.

Therefore δ∗2 is bounded. Similarly, for all pairs f1 and f2 in Lip∞(R2), we obtain

δkf1
∗
⇀ δ∗2f1 and δkf2

∗
⇀ δ∗2f2 in L∞(R2, µ). In particular, both functions f1 and f2

are bounded, so we further obtain the weak-∗ convergence

f1 · δkf2 + f2 · δkf1
∗
⇀ f1 · δ∗2f2 + f2 · δ∗2f1



90

in L∞(R2, µ). The Leibniz Rule for δ∗2 then follows from uniqueness of weak-∗ limits.

It remains to show continuity. For this, we use a stronger mode of convergence.

Since µ is Radon and F is bounded, it follows that µ is a finite measure and for

each 1 ≤ q <∞, Lq(R2, µ) is a dense subset of L1(R2, µ). This shows that for p > 1

with p−1 + q−1 = 1, the functions δkx2 converge weakly to δ∗2x2 in Lp(R2, µ). By

Lemma 8.2.8, there exist (finite) convex combinations of the form

δ̃i :=
∞∑
k=1

cik · δkx2

which converge in norm to δ∗2x2 in Lp(X,µ). Since each δ̃i is a finite sum, we have

δ̃i ∈ Υ(R2, µ) for each i ∈ N. In addition, δ̃ix1 also converges in norm to δ∗2x1 in

Lp(R2, µ), because by the linear relation (5.2.12), we may estimate as follows:∫
R2

|δ̃ix1 − δ∗2x1|p dµ ≤
∫

R2

|g2|p · |δ̃ix2 − δ∗2x2|p dµ

≤ ‖g2‖pµ,∞ · ‖δ̃ix2 − δ∗2x2‖pµ, p → 0.

The subset Lq(R2, µ) is dense in L1(R2, µ), so for j = 1, 2 we have δ̃ixj
∗
⇀ δ∗2xj in

L∞(R2, µ). In fact, more is true.

Subclaim 5.3.8. The sequence {δ̃i}∞i=1 converges to δ∗2 in the weak-∗ operator topology.

Let f ∈ Lip(R2) be arbitrary. By the Chain Rule (Proposition 3.5.1), there exist

functions g1
f and g2

f in L∞(R2, µ) so that the following identity holds:

δ̃if − δif = g1
f · (δ̃ix1 − δix1) + g2

f · (δ̃ix2 − δix2).

Both sequences {δ̃ixj}∞j=1 and {δixj}∞j=1 have the same weak-∗ limit δ∗2xj, and as

a result, δ̃ixj − δixj
∗
⇀ 0 in L∞(R2, µ). So from the previous identity, we obtain

δ̃if − δif
∗
⇀ 0. On the other hand, by Claim 5.3.6 we have δif

∗
⇀ δ∗2f in L∞(R2, µ),

and hence δ̃if
∗
⇀ δ∗2f in L∞(R2, µ). This gives Subclaim 5.3.8.
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We now prove Claim 5.3.7. Suppose {fm}∞m=1 is a sequence in Lip∞(R2) such

that fm converges pointwise to zero and such that ‖fm‖Lip ≤ 1. Let ε > 0 and

h ∈ L1(R2, µ) be arbitrary. As before, for 1 < q <∞, Lq(R2, µ) is a dense subset of

L1(R2, µ), so there is a function h′ ∈ Lq(R2, µ) which satisfies∫
R2

|h′ − h| dµ <
ε

4
.

Since δ̃i converges to δ∗2 in the weak-∗ operator topology, we see that for each m ∈ N,

the sequence {δ̃ifm}∞i=1 converges weak-∗ to δ∗2fm in L∞(R2, µ). By the lower semi-

continuity of the L∞-norm (Theorem 2.1.5) and the boundedness of each δ̃i, we

obtain

‖δ∗2fm‖µ,∞ ≤ lim inf
i→∞

‖δ̃ifm‖µ,∞ ≤ lim inf
i→∞

‖δ̃i‖ · ‖fm‖Lip ≤ 1 · 1,

for all m ∈ N. From the above estimates, it follows by the Triangle Inequality that

(5.3.3)


∣∣∣∣∫

R2

h · δ∗2fm dµ
∣∣∣∣ ≤ ∫

R2

|h− h′| · |δ∗2fm| dµ +

∣∣∣∣∫
R2

h′ · δ∗2fm dµ
∣∣∣∣

≤ 1 · ε
4

+

∣∣∣∣∫
R2

h′ · δ∗2fm dµ
∣∣∣∣

By the Triangle Inequality, we further obtain

(5.3.4)



∣∣∣∣∫
R2

h′ · δ∗2fm dµ
∣∣∣∣ =

∣∣∣∣∫
R2

h′ ·
(
δ∗2fm − δ̃lfm + δ̃lfm − δ̃kfm + δ̃kfm

)
dµ

∣∣∣∣
≤

∣∣∣∣∫
R2

h′ · (δ∗2 − δ̃l)fmdµ

∣∣∣∣ +

∣∣∣∣∫
R2

h′ · (δ̃l − δ̃k)fmdµ

∣∣∣∣
+

∣∣∣∣∫
R2

h′ · δ̃kfmdµ
∣∣∣∣

For j = 1, 2, we have δ̃kxj → δ∗2xj in Lp(R2, µ). As a result, there is a N ∈ N so that

whenever k, l ≥ N , we have the inequality

‖(δ̃l − δ̃k)xj‖p <
ε

4 · 2 · ‖h′‖q
.
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Since the sequence {fm}∞m=1 is uniformly 1-Lipschitz, we now invoke Corollary 3.5.5

for n = 2 and C = 1. From this and the estimate above, it follows that

(5.3.5)

∣∣∣∣∫
R2

h′ · (δ̃l − δ̃k)fm dµ

∣∣∣∣ ≤ 2 · ‖h′‖q ·
(

max
j=1,2

‖(δ̃l − δ̃k)xj‖p
)
≤ ε

4
.

With k ≥ N chosen as above, we may choose a sufficiently large m ∈ N so that, by

the continuity of δ̃k, we obtain the estimate

(5.3.6)

∣∣∣∣∫
R2

h′ · δ̃kfm dµ
∣∣∣∣ ≤ ε

4
.

Lastly, recall that by Subclaim 5.3.8, the sequence {δ̃l}∞l=1 converges to δ∗2 in the

weak-∗ operator topology. With m ∈ N as above, we may choose l ≥ N so that

(5.3.7)

∣∣∣∣∫
R2

h′ · (δ̃ − δ̃l)fm dµ

∣∣∣∣ ≤ ε

4
.

Combining inequalities (5.3.3) through (5.3.7), we obtain
∣∣∫

R2 h · δ∗2fm dµ
∣∣ < ε, from

which Claim 5.3.7 follows.

To complete the proof, suppose that E is unbounded. For each (j, k) ∈ Z2, put

Ejk := E ∩
(
(j, j + 1]× (k, k + 1]

)
.

By similar arguments, there is a δ∗2, jk in Υ(Ejk, µ) which satisfies ‖δ∗2,jk‖ ≤ 1 and

δ∗2,jkx2(p) = sup
{
δx2(p) : δ ∈ Υ

(
R2, µb(F 2 ∩ Ejk)

)
, ‖δ‖ ≤ 1

}
for µ-a.e. p ∈ Ejk. By Lemma 3.2.6, the linear operator δ∗2 :=

∑
j,k χEjk

δ∗2,jk is

a derivation in Υ(R2, µ) that satisfies ‖δ∗2‖ ≤ 1. By construction, it also satisfies

equation (5.3.1). This proves the lemma.

We now prove Theorem 5.3.1. It suffices to show that the derivations given in

Lemma 5.3.3 produce a generator for Υ(R2, µ).
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Proof of Theorem 5.3.1. Let E be a null set, and suppose that µ is concentrated on

E. By Corollary 5.2.6, E can be written as a union E = F 1 ∪ F 2, where F 1 and F 2

are disjoint. In addition, there exist functions g1 and g2 in L∞(R2, µ) for which the

linear relations (5.2.13) and (5.2.14) both hold.

By Lemma 5.3.3 there are derivations δ∗1 ∈ Υ(R2, µbF 1) and δ∗2 ∈ Υ(R2, µbF 2)

which satisfy equation (5.3.1) for i = 1, 2. Using the locality property (Theorem

3.2.1), we now define a derivation δ∗ ∈ Υ(R2, µ) by the formula

(5.3.8) δ∗ := χF 1δ∗1 + χF 2δ∗2.

Claim 5.3.9. The derivation δ∗ generates Υ(E, µ).

Indeed, let δ ∈ Υ(E, µ) be arbitrary and consider the function

(5.3.9) λ(p) :=


δx1(p) / δ

∗
1x1(p), p ∈ F 1, δ∗1x1(p) 6= 0

δx2(p) / δ
∗
2x2(p), p ∈ F 2, δ∗2x2(p) 6= 0

0, otherwise.

Clearly, the derivation ‖δ‖−1δ has norm 1. By the definition of δ∗ and by Lemma

5.3.3, we see that the derivation δ∗ satisfies

δ∗xi(p) = χF i(p) · δ∗i xi(p) ≥ χF i(p) · ‖δ‖−1 · δxi(p)

for µ-a.e. p ∈ F i and hence, for µ-a.e. p ∈ E and i ∈ {1, 2}, we have

δ∗xi(p) ≥ ‖δ‖−1 · δxi(p).

By the symmetry of the argument, we see that δ∗1 and δ∗2 are also minimal derivations

in Υ(R2, µbF 1) and in Υ(R2, µbF 2), respectively, in the sense that

−δ∗xi(p) ≤ −‖δ‖−1 · δxi(p)
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holds for µ a.e. p ∈ E. So from equation (5.3.1), we obtain the inequality

‖δ‖−1 · |δxi| ≤ |δ∗i xi|

for µ-a.e. point in E and for i ∈ {1, 2}. In particular, if δ∗i xi = 0 then δxi = 0. It

follows that |λ| ≤ ‖δ‖ holds µ-a.e., and hence λ ∈ L∞(R2, µ). To prove the claim, it

suffices to show that δ − λδ∗ is zero. The argument is symmetric in F 1 and F 2, so

without loss, let p ∈ F 1. Observe that if δ∗1x1(p) = 0, then δx1(p) = 0 and

δx1(p)− λ(p) · δ∗x1(p) = 0.

Moreover, by the linear relation (5.2.13) we obtain

δx2(p)− λ(p) · δ∗x2(p) = g1(p) · δx1(p)− λ(p) · g1(p) · δ∗x1(p) = 0.

Hence we may assume that δ∗1x1(p) 6= 0. Computing further, we have the identities

δx1(p)− λ(p) · δ∗x1(p) = δx1(p)−
δx1(p)

δ∗1x1(p)
· δ∗1x1(p) = 0,

δx2(p)− λ(p) · δ∗x2(p) = g1(p) · δx1(p)−
δx1(p)

δ∗1x1(p)
· g1(p) · δ∗1x1(p) = 0.

Therefore χF 1 · (δ − λδ∗) = 0. By the symmetry of the argument, this gives both

Claim 5.3.9 and the theorem.

We now summarize our results by stating a structure theorem for Υ(R2, µ). To

formulate it, (∼=) will denote an isomorphism of modules over L∞(R2, µ). As be-

fore, let µS and µAC be the Lebesgue singular and absolutely continuous parts of µ,

respectively. By Remark 3.2.5, L∞(R2, µAC) is a module over L∞(R2, µ).

Theorem 5.3.10. Let µ be a Radon measure on R2.

1. If Υ(R2, µS) 6= 0, then Υ(R2, µ) ∼= [L∞(R2, µAC)]2 ⊕ L∞(R2, µS).

2. If Υ(R2, µS) = 0, then Υ(R2, µ) ∼= L∞(R2, µAC)⊕ L∞(R2, µAC).
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Proof. We will prove Part (1). The proof of Part (2) is similar. Let E be a null set

on which µS is concentrated, and put D := R2 \ E. Since we have µbE = µS and

δ = χEδ, for all δ ∈ Υ(R2, µS), it follows from the locality property that

Υ(E, µ) = Υ(E, µS) ∼= χE ·Υ(R2, µS) = Υ(R2, µS).

Similarly, we also have Υ(D,µ) ∼= Υ(R2, µAC).

By hypothesis Υ(R2, µS) is nonzero, so from the proof of Theorem 5.3.1 it is

generated by the derivation δ∗, as defined in formula (5.3.8). It follows that Υ(R2, µS)

and L∞(R2, µS) are isomorphic as L∞(R2, µ)-modules. We now invoke Lemma 3.2.4

and Corollary 3.5.4 to obtain

Υ(R2, µ) ∼= Υ(D,µ)⊕Υ(E, µ) ∼= Υ(R2, µAC)⊕Υ(R2, µS)

∼=
[
L∞(R2, µAC)⊕ L∞(R2, µAC)

]
⊕ L∞(R2, µS).

This gives the desired isomorphism of modules.

5.4 Derivations on 2-Sets.

To close the discussion of derivations on R2, we now give a second application

of our results from previous sections. We begin by recalling Theorem 4.0.8. For

measures µ that are concentrated on 1-sets in Rn, the module Υ(Rn, µ) has a similar

structure to a module of derivations on R. To prove this, one shows that non-

degeneracy of derivations is preserved under the pushforward procedure.

Now consider measures that are concentrated on 2-sets in Rn. With small modi-

fications in the proof, a similar fact holds true: linear independence of derivations is

also preserved under the pushforward procedure.

Theorem 5.4.1. Let µ be a Radon measure on Rn, let A be a 2-set in Rn, and

suppose that µ is concentrated on A.
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1. Any three derivations in Υ(Rn, µ) form a linearly dependent set.

2. If Υ(Rn, µ) contains a linearly independent set of two derivations, then there

is a 2-rectifiable subset E of A so that µ � H2bE. Moreover, Υ(Rn, µ) is

isomorphic to the module of L∞(Rn, µ)-sections of Tan2(E).

As before, the proof of Theorem 5.4.1 reduces to the separate cases of 2-rectifiable

sets and purely 2-unrectifiable sets. The next lemma addresses the latter case, and

the ideas in its proof are borrowed from Lemmas 3.3.9 and 4.3.1.

Stated briefly, one considers pushforward derivations and applies the Besicovitch-

Federer projection theorem to obtain a contradiction. In order to implement this

strategy, however, one must find the right coordinate functions on the image of the

projection. This is the contribution of Lemma 3.3.9.

Lemma 5.4.2. Let µ be a measure on Rn, let F be a 2-set in Rn, and suppose that

µ is concentrated on F . If F is purely 2-unrectifiable, then any two derivations in

Υ(Rn, µ) form a linearly dependent set.

Proof of Lemma 5.4.2. If n = 2 then the lemma reduces to Theorem 5.0.7, so we

assume that n ≥ 3. We argue by contradiction, so suppose that there is a linearly

independent set {δ1, δ2} in Υ(Rn, µ).

Since F is purely 2-unrectifiable, by Theorem 4.2.10 there are n spanning direc-

tions {~vi}ni=1 in Rn so that the orthogonal projections of F onto each of the 2-planes

Vij := spanR{~vi, ~vj}, 1 ≤ i < j ≤ n

are H2-null sets. For simplicity, we assume that ~vi = ~ei holds for all 1 ≤ i ≤ n and

that the projections above consist of pairs of Euclidean coordinate functions

projVij
= (xi, xj) : Rn → Vij.
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The argument continues in several stages, which we formulate below as claims.

Claim 5.4.3. For 1 ≤ i ≤ 2 and 1 ≤ j ≤ n, the n × 2 matrix-valued function [δixj]

has rank two µ-a.e. on F .

Supposing otherwise, there is a subset G ⊂ F with µ(G) > 0 and so that the

matrix [χG · δixj] has rank at most one µ-a.e. This implies that any two of the

rows {(δ1xj, δ2xj)}∞j=1 are parallel vectors µ-a.e. on G. As a result, the functions

λ1 := χG · δ2x1 and λ2 := −δ1x1 satisfy

(5.4.1) λ1 · δ1xj + λ2 · δ2xj = 0 µ-a.e.

for all j. By Corollary 3.5.3, this contradicts the linear independence of {δ1, δ2},

which proves the claim.

Claim 5.4.4. There is a measurable decomposition
⋃
i<j Fij = Rn so that on Fij, the

derivations χFij
δ1 and χFij

δ2 are determined by their action on xi and xj.

From the previous claim, for µ-a.e. p ∈ F there are two columns of the matrix

[δixj(p)] which are linearly independent vectors. As a first case, assume that the first

and second columns of [δixj] form a nonsingular 2× 2 matrix. This implies that, for

each 3 ≤ j ≤ n, there exist µ-measurable functions {λij}3
i=1 on Rn so that

λ1j

 δ1x1

δ2x1

 + λ2j

 δ1x2

δ2x2

 + λ3j

 δ1xj

δ2xj

 =

 0

0


holds µ-a.e. on F . Now consider the subsets

Aij :=
{
x ∈ Rn : |λij(x)| = max

k
|λkj(x)|

}
.

Clearly, the sets {Aij}3
i=1 partition Rn and at every point x ∈ A3j, we have

δixj =
λ1j

λ3j

· δix1 +
λ2j

λ3j

· δix2
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for i = 1, 2. Putting F12 :=
⋂n
j=3A3j, it follows from the previous equation and from

Lemma 2.3.1 that χF12δ1 and χF12δ2 are determined by their actions on x1 and x2.

From other pairs of linearly independent columns of [δkxl] we may take similar

(n−2)-fold intersections Fij. Arguing as before, these sets also have the property that

the derivations χFij
δ1 and χFij

δ2 are determined by their action on the coordinate

functions xi and xj. This proves Claim 5.4.4.

Claim 5.4.5. For all pairs of indices i < j, there are two linearly independent deriva-

tions in Υ(R2, νij), where νij := (projVij
)#(µbFij).

We first construct linearly independent sets in Υ(Rn, µbFij) which satisfy similar

conclusions to those of Corollary 3.3.10. The claim then follows by taking pushfor-

ward derivations. To simplify the discussion, we assume that µ is concentrated on

F ∩ F12. Now consider the derivations

δ∗1 := χF12 ·
[
(δ1x1)δ2 − (δ2x1)δ1

]
δ∗2 := χF12 ·

[
(δ2x2)δ1 − (δ1x2)δ2

]
.

By Claim 5.4.3, the matrix [δixj]
2
i,j=1 is nonsingular µ-a.e. on F12, so the set {δ∗1, δ∗2}

is linearly independent in Υ(Rn, µbF12). If i 6= j, then we have δ∗i xj = 0, as well as

δ∗1x1 = δ∗2x2 = det[δixj] 6= 0 µ-a.e.

For i = 1, 2, without loss of generality we may assume that δ∗i xi > 0 holds µ-a.e.

Otherwise we would consider the sets Ai := {δ∗i xi > 0} and Bi := {δ∗i xi < 0} and

study (χAi
− χBi

)δi in place of δi.

Put p = projV12
. By Theorem 3.4.1, the pushforward derivations p#δi satisfy

(5.4.2)

∫
Rn

h · (p#δ
∗
i )xi dνij =

∫
F

(h ◦ p) · δ∗i (xi ◦ p) dµ =

∫
F

(h ◦ p) · δ∗i xi dµ,
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for all h ∈ L1(R2, νij). By inspection, we have (p#δ
∗
i )xj = 0 whenever i 6= j. Under

the choices Zi := F12 ∩ {(p#δ
∗
i )xi = 0} and h = χZi

, equation (5.4.2) becomes

0 =

∫
p−1(Zi)∩F

δ∗i xi dµ.

This further implies that µ(p−1(Zi)) = 0, and hence p#δ
∗
i xi 6= 0 holds νij-a.e. So by

testing against the coordinate functions x1 and x2, it is then easy to see that p#δ
∗
1

and p#δ
∗
2 form a linearly independent set. This proves Claim 5.4.5.

On the other hand, the image set projVij
(F ∩ Fij) is a Lebesgue 2-null set, so νij

must be a Lebesgue singular measure on R2. By Theorem 4.1.1, any two derivations

in Υ(R2, νij) must form a linearly dependent set, and this contradicts Claim 5.4.5.

The lemma follows.

Proof of Theorem 5.4.1. Since A is a 2-set, by Theorem 4.2.2 it has the form A =

E ∪ F , where E is a 2-rectifiable set and F is a purely 2-unrectifiable set.

Suppose that µ(F ) > 0. By Lemma 5.4.2, any two derivations in Υ(F, µ) form a

linearly dependent set. By the locality property (Theorem 3.2.1), for all derivations

δ1 and δ2 in Υ(Rn, µ) there exist λ1 and λ2 in L∞(F, µ), not both zero, so that

λ1 · (χF δ1) + λ2 · (χF δ2) = 0.

As in Remark 3.2.7, for i = 1, 2, let Λi : Rn → R be the zero extension of χF · λi,

which is a nonzero function in L∞(Rn, µ). For all f ∈ Lip∞(Rn), we have

λi · (χF δi)f = Λi · δif,

and hence {δ1, δ2} is a linearly dependent set in Υ(Rn, µ), as desired.

Without loss of generality, we now assume that H2(F ) = 0 and that A = E.

Let C > 1. By Theorem 4.2.3 there are compact sets Ki in R2 and C-bi-Lipschitz
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embeddings ϕi : Ki → Rn so that µ(E \
⋃∞
i=1 ϕi(Ki)) = 0 and so that the collection

{ϕi(Ki)}∞i=1 is pairwise disjoint. Put ψi := (ϕi|Ki)
−1.

If µ is singular to H2bE, then for each i ∈ N, the measure µbϕi(Ki) is singular

to H2bϕi(Ki) and the measure (ψi)#µ is singular to m2bKi. By Theorem 5.3.1,

the module Υ(R2, (ψi)#µ) is generated by the derivation δ∗i , as given in formula

(5.3.8). Since ϕi is bi-Lipschitz, it follows from Theorem 3.4.3 that (ϕi)#δ
∗
i generates

Υ(ϕi(Ki), µ). By Part (1) of Lemma 3.4.1, the derivation (ϕi)#δ
∗
i further satisfies

‖(ϕi)#δ
∗
i ‖ ≤ (1 ∨ L(ϕi)) · ‖δ∗i ‖ ≤ C · 1.

This shows that {‖(ϕi)#δi‖}∞i=1 is uniformly bounded in R. By Theorem 3.2.6, we

obtain a derivation in Υ(Rn, µ) by the formula

δ∗ :=
∞∑
i=1

χϕi(Ki)(ϕi)#δ
∗
i .

By construction, δ∗ generates Υ(E, µ). So for all nonzero pairs δ1 and δ2 in Υ(E, µ),

there are nonzero functions λ1 and λ2 in L∞(E, µ) so that δ1 = λ1δ
∗ and δ2 = λ2δ

∗.

We then observe that λ1δ1 − λ2δ2 is zero, from which Part (2) follows.

Without loss of generality, assume that µ� H2bE. So for each i ∈ N, we have

(ψi)#µbKi � (ψi)#H2bKi � m2.

By Corollary 3.5.4, {∂j}2
j=1 is a generating set for Υ(Ki, (ψi)#µ), so {(ϕi)#∂j}2

j=1

is a generating set for Υ(ϕi(Ki), µ). By equation (4.2.5), each (ϕi)#∂j is precisely

approximate differentiation in the direction of the tangent vector (ϕi)#~ej.

Taking sums over i ∈ N and invoking Theorem 3.2.6, a similar argument shows

that every δ ∈ Υ(E, µ) is generated by bounded measurable sections of the approxi-

mate tangent bundle Tan2(E). This proves Part (1) and the theorem.



CHAPTER VI

Derivations on p-PI Spaces

For the spaces R and R2, we learned that the existence of linearly independent

sets of derivations imposes restrictions on the underlying measures. In this section

we show that this principle holds for a general class of metric measure spaces, called

p-PI spaces, which we describe in further detail.

It is known that such spaces (X, ρ, µ) possess good geometric properties. In

addition, they support a rich theory of Sobolev spaces which generalize the usual

function spaces W 1,p(Rn), for p ∈ [1,∞). Using techniques from this theory, Cheeger

has proven a differentiability theorem for Lipschitz functions on X [Che99].

In turn, from his techniques we obtain derivations on these spaces, with respect

to the underlying measure. In the opposite direction, we will use these derivations

to address Cheeger’s conjecture, which concerns the structure of such measures.

6.1 Preliminaries: Calculus on Metric Spaces.

As in Chapter II, (X, ρ, µ) denotes a metric space (X, ρ) endowed with a Borel

regular measure µ. Here and in the remainder of this section, we assume that the

measure µ is a doubling measure: that is, every ball has finite and positive µ-measure,

and there is a constant κ ≥ 1 so that for all balls B in X, we have

(6.1.1) µ(2B) ≤ κ · µ(B),

101
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where 2B is the ball with same center as B and twice the radius of B.

Remark 6.1.1. Recall that if a metric space X admits a doubling measure, then

X is in fact a doubling metric space. This means the following: there is a constant

N ∈ N so that every ball B in X can be covered by N balls of half the radius of B.

Let B be a ball in a doubling metric space (X, ρ). By iterating the doubling

property, we see that (B, ρ) is a separable metric space. It follows from Lemma 3.1.3

that a linear map δ : Lip∞(B) → L∞(B, µ) is weak-∗ continuous on bounded sets if

and only if δ is sequentially weak-∗ continuous.

Following [HK98], we now introduce the notion of an upper gradient of a function.

Definition 6.1.2. Let (X, ρ) be a metric space, and let u : X → R be a function.

A Borel function g : X → [0,∞] is an upper gradient for u if the inequality

(6.1.2) |u(y)− u(x)| ≤
∫ b

a

g(γ(t)) dt

holds for all rectifiable curves γ : [a, b] ⊂ R → X which are parametrized by arc-

length and which satisfy x = γ(a) and y = γ(b).

Example 6.1.3. In the case of Rn, if f ∈ Lip(Rn) then |∇f | is an upper gradient

of f . This follows from the Fundamental Theorem of Calculus. Indeed, for every

rectifiable curve γ : R → Rn parametrized by arc-length, we have

f(γ(b))− f(γ(a)) =

∫ b

a

∇f(γ(t)) · γ̇(t) dt

By the Triangle inequality, it follows that

|f(γ(b))− f(γ(a))| ≤
∫ b

a

|∇f(γ(t))| dt,

where γ̇(t) is the tangent vector of γ at the point γ(t).
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Similarly we also consider weak formulations of the classical Poincaré inequality

[EG92, Thm 4.5.2.2] in the metric space setting. To fix notation, for u ∈ L1(X,µ)

and for a ball B in X, we write the average value of u over B as

uB := −
∫
B

u dµ :=
1

µ(B)

∫
B

u dµ.

Definition 6.1.4. A metric measure space (X, ρ, µ) admits a weak (1, p)-Poincaré

inequality if there exist constants Λ ≥ 1 and C > 0 so that for all balls B in X,

(6.1.3) −
∫
B

|u− uB| dµ ≤ C · diam(B)

[
−
∫

ΛB

gp dµ

]1/p

holds for all u ∈ L1
loc(X,µ) and where g is an upper gradient of u. The space (X, ρ, µ)

is a p-PI space if µ is doubling and X admits a weak (1, p)-Poincaré inequality.

Remark 6.1.5. The assumptions of a doubling measure µ and a weak (1, p)-Poincaré

inequality on (X, ρ) imply nontrivial geometric properties on X. For example, David

and Semmes have shown that complete p-PI spaces are λ-quasiconvex [DS90]. This

means that for all x, y ∈ X, there is a curve γ : [a, b] ⊂ R → X joining x to y so that

lengthX(γ) ≤ λ · ρ(x, y).

In addition, the constant λ depends only on the constants κ and C in inequalities

(6.1.1) and (6.1.3), respectively. For a proof, see [DS90] or [Che99, Sect 17].

Let p ∈ [1,∞). Recall that the Sobolev space W 1,p(Rn) can be identified as

the completion of the space of smooth, Lebesgue p-integrable functions on Rn with

p-integrable weak partial derivatives [EG92, Thm 4.2.1.2], with respect to the norm

f 7→ ‖f‖mn, p +
n∑
i=1

‖∂if‖mn, p .

A similar construction is also possible on metric measure spaces, by means of upper

gradients. Following [Che99, Sect 2], for u ∈ Lp(X,µ) we define

(6.1.4) ‖u‖1,p := ‖u‖p + inf
{gi}

lim inf
i→∞

‖gi‖p



104

where the infimum is taken over all sequences {ui}∞i=1 in Lp(X,µ) so that ui → u in

Lp(X,µ)-norm and so that gi is an upper gradient of ui, for each i ∈ N.

The Sobolev space H1,p(X,µ) is then defined as the subspace of functions u ∈

Lp(X,µ) for which ‖u‖1,p <∞. The function ‖ · ‖1,p becomes a norm on H1,p(X,µ),

but more is true [Che99, Thms 2.7 & 4.48].

Theorem 6.1.6 (Cheeger, 1999). The space (H1,p(X,µ), ‖·‖1,p) is a Banach space.

If X is a p-PI space and if p > 1, then H1,p(X,µ) is a reflexive Banach space.

In addition, for each u ∈ H1,p(X,µ), the infimum ‖u‖1,p in formula (6.1.4) is

realized by a unique function gu ∈ Lp(X,µ) [Che99, Thms 2.10 & 2.18]. We call it

the minimal generalized upper gradient of u.

Theorem 6.1.7 (Cheeger). For all p ∈ (1,∞) and all f ∈ H1,p(X,µ), there is a

function gf ∈ Lp(X,µ) so that ‖f‖1,p = ‖f‖p + ‖gf‖p. In addition, if g ∈ Lp(X,µ)

is an upper gradient of f , then gf ≤ g holds µ-a.e.

Remark 6.1.8 (Other constructions). Shanmugalingam [Sha00] has constructed

Newtonian spaces N1,p(X,µ) that are equivalent to the spaces H1,p(X,µ) and that

also generalize the classical Sobolev spaces on Rn. For p ∈ (1,∞), it follows that

H1,p(Rn,mn) ∼= N1,p(Rn,mn) ∼= W 1,p(Rn).

In particular, using the notion of p-modulus (an outer measure on families of curves)

one defines weak upper gradients as functions which satisfy (6.1.2) for modp-a.e. curve

γ in X. With a similar norm as in formula (6.1.4), the spaces N1,p(X,µ) are norm

completions of functions in Lp(X,µ) which admit weak upper gradients in Lp(X,µ).

Preceding these two constructions, Haj lasz [Haj96] has also formulated a notion

of Sobolev space M1,p(X,µ) on a metric space X. Here the role of the gradient of u
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is replaced by a “Lipschitz modulus of continuity” M [u] : X → [0,∞], which satisfies

|u(x)− u(y)| ≤
(
M [u](x) +M [u](y)

)
· ρ(x, y)

for all x, y ∈ X. In particular, a weak (1, p)-Poincaré inequality always holds for

such functions u, and for all balls B in Rn (of possibly infinite radius), we have

M1,p(B,mn) ∼= W 1,p(B).

For further reading about Sobolev spaces, see [Hei01, Chap 5-6] and [Hei07].

Recall from Example 6.1.3 that in Rn, upper gradients generalize the norm of the

gradient of a Lipschitz function. We now present a framework [Che99, Sect 1] which

extends this analogy. In this case, the forthcoming upper gradients will rely on the

behavior of Lipschitz functions on small scales.

Definition 6.1.9. Let f ∈ Lip(X). If x is a (non-isolated) point in X, the pointwise

upper and lower Lipschitz constants1 of f at x are defined, respectively, as

Lip[f ](x) := lim sup
y→x

|f(y)− f(x)|
ρ(x, y)

lip[f ](x) := lim inf
r→0

sup
ρ(x,y)≤r

|f(y)− f(x)|
r

.

In the case where x is isolated, put lip[f ](x) = Lip[f ](x) = 0.

The proof of the next lemma is straightforward, so we omit it.

Lemma 6.1.10. Let f ∈ Lip(X). Then for all x ∈ X, we have

(6.1.5) lip[f ](x) ≤ Lip[f ](x) ≤ L(f).

The next lemma [Che99, Prop 1.11] (see also [Sem95, Lem 1.20]) states that for any

Lipschitz function, its pointwise lower Lipschitz constant is an upper gradient. By

the previous lemma, this also holds true for the pointwise upper Lipschitz constant.
1In [Che99], the pointwise lower Lipschitz constant is denoted Lip[f ] instead of lip[f ].
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Lemma 6.1.11 (Semmes, 1996). Let f ∈ Lip(X). Then the functions lip[f ] and

Lip[f ] are upper gradients of f .

6.2 Differentiability Induces Derivations.

Recall that Rademacher’s theorem states that every Lipschitz function on Rn is

mn-a.e. differentiable. As discussed before in Chapter I, Cheeger has proven a similar

differentiability theorem [Che99, Thm 4.38] for p-PI spaces, of which one version is

stated below. Keith has also extended this result to a larger class of metric measure

spaces; for details, see [Kei04, Thm 2.3.1].

To fix notation, for vectors a = (a1, . . . , ak) ∈ Rk and vectorfields f : X → Rk

with components f = (f1, . . . , fk), put a ∗ f :=
∑

i aifi.

Theorem 6.2.1 (Cheeger, 1999). Let (X, ρ, µ) be a p-PI space. Then there exist

N ∈ N and a measurable decomposition X =
∐∞

n=1X
n where for each n ∈ N, we

have µ(Xn) > 0 and there is an integer k = k(n) ≤ N and a map ξn ∈ Lip(X; Rk)

with the following properties:

1. There is a constant K = K(n) > 0 so that for all x ∈ Xn,

(6.2.1) K ≤ inf
{

Lip[a ∗ ξn](x) : a ∈ Rk(n), |a| = 1
}
.

2. For each f ∈ Lip(X), there is a unique map dnf : Xn → Rk, with components

in L∞(X,µ), so that for µ-a.e. x ∈ Xn,

(6.2.2) lim sup
y→x

f(y)− f(x)− 〈dnf(x), ξn(y)− ξn(x)〉
ρ(x, y)

= 0.

Let ξn = (ξn1 , . . . , ξ
n
k ). To mimic the terminology of manifolds, we refer to the

functions ξni : X → R as coordinate functions on Xn, the triples (ξn, Xn, ξn(Xn)) as

coordinate charts on Xn, and the map dnf as the (Cheeger) differential of f on Xn.
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Remark 6.2.2. The bound N in Theorem 6.2.1 depends only on the constants from

the doubling condition (6.1.1) and the Poincaré inequality (6.1.3).

Remark 6.2.3. Property (1) of Theorem 6.2.1 is a tacit consequence of Cheeger’s

proof [Che99, pp. 457]. In that proof, one chooses an initial measurable decomposi-

tion X =
∐∞

m=1 Ym, where each set Y m satisfies the properties below. As a shortand,

if a ∈ Rk then we write ga for the minimal generalized upper gradient of a ∗ ξn.

1a. For µ-a.e. x ∈ Y m and all a ∈ Rk, we have ga(x) ≤ Lip[a ∗ ξm](x). In addition,

the function a 7→ ga(x) is L-Lipschitz on Rk, where L = maxi L(ξmi ).

1b. For µ-a.e. x ∈ Y m and all nonzero a ∈ Rk, we have ga(x) > 0.

From (1a) and (1b), one shows that for all x ∈ Y m, there exists Kn(x) > 0 so that

Kn(x) ≤ ga(x) ≤ Lip[a ∗ ξn](x)

holds for all a ∈ Rk with |a| = 1. One further divides each Y m into subsets {Xn
(m)}∞n=1

so that Kn is strictly positive on Xn
(m), from which we obtain inequality (6.2.1) for

Xn
(m) in place of Xn. By relabeling indices, this gives Property (1).

In Rn, for each 1 ≤ i ≤ n, the function xi is precisely the Lipschitz function whose

gradient is ~ei. The next corollary is an analogue of this fact for p-PI spaces.

Corollary 6.2.4. Under the assumptions of Theorem 6.2.1, we have dnξni = ~ei for

each n ∈ N and each 1 ≤ i ≤ k.

Proof. For each 1 ≤ i ≤ k, we first observe that the identity

ξni (y)− ξni (x)− 〈~ei, ξn(y)− ξn(x)〉 = 0

holds for all x, y ∈ X. If ξni is nonconstant on every neighborhood of x, we see

that the constant vectorfield ~ei on X satisfies equation (6.2.2). By uniqueness of the
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Cheeger differential, we then obtain dnξni = ~ei. So to prove the corollary, it then

suffices to show that each ξni is nonconstant on every ball B in X.

We now argue by contradiction. To simplify notation, assume that i = 1. Suppose

that there is a ball B in X on which ξn1 is constant. Then by equation (6.2.2),

lim sup
y→x

k∑
i=2

(dnξn1 )i ·
ξni (y)− ξni (x)

ρ(y, x)
= 0

holds for each x ∈ B, and where (dnξn1 )i is the ith component of the vectorfield dnξn1 .

As a result, for each r ∈ R, the vectorfield given by

x 7→ (r, (dnξni )2, . . . , (d
nξni )n)

also satisfies equation (6.2.2). Because µ is doubling, we have µ(B) > 0 and this

contradicts the uniqueness of the differential dnξn from Theorem 6.2.1. Therefore ξn1

cannot be constant on any ball in X.

For a p-PI space (X, ρ, µ), the module Υ(X,µ) is nontrivial, and the proof is due

to Cheeger and Weaver [Wea00, Thm 43]. In fact, more is true. It is known that

such spaces X admit a measurable co-tangent bundle T ∗X [Che99, pp. 458]. It is

constructed from the differentials of the coordinate maps {ξn}∞n=1 over each Xn. The

proof of [Wea00, Thm 43] then shows that T ∗X is isomorphic to the dual module

Ω(X,µ) of measurable 1-forms.

However, as stated in [Wea00] the theorem holds only for metric derivations, and

the proof in [Wea00] is non-constructive. The next theorem states that on p-PI

spaces, there is a simple formula for derivations in the sense of Chapter III.

Theorem 6.2.5. Let (X, ρ, µ) be a p-PI space. For f ∈ Lip(X), let dnf : Xn → Rk

be the Cheeger differential of f . For each n ∈ N, there are derivations {δni }ki=1 in

Υ(Xn, µ), where each δni is given by the formula

(6.2.3) δni f := 〈dnf,~ei〉.
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The proof of Theorem 6.2.5 requires several steps. The lemma below is taken

from Cheeger’s proof of Theorem 6.2.1. For f ∈ Lip(X), a similar argument from

[Che99, pp.457] shows that the components of dnf lie in L∞(X,µ).

Lemma 6.2.6. Let (X, ρ, µ) be a p-PI space. For each n ∈ N, there is a constant

C = C(n) > 0 so that for all f ∈ Lip(X),

|δni f | ≤ C · Lip[f ] µ-a.e. on Xn.

Proof of Lemma 6.2.6. By inequality (6.2.1), there is a constant K = K(n) > 0 so

that for µ-a.e. x ∈ Xn, we have K ≤ Lip[a ∗ ξn](x) for all |a| = 1.

In particular, this inequality also holds for the vector a = dnf(x)/|dnf(x)|, so by

Part (2) of Theorem 6.2.1, we compute

Lip

[
dnf(x)

|dnf(x)|
∗ ξn

]
(x) =

1

|dnf(x)|
· lim sup

y→x

|dnf(x) · (ξn(y)− ξn(x))|
ρ(x, y)

=
1

|dnf(x)|
· lim sup

y→x

|f(y)− f(x)|
ρ(x, y)

=
Lip[f ](x)

|dnf(x)|
.

Using this identity and inequality (6.2.1), we obtain the lemma with C = 1/K.

We now prove Theorem 6.2.5 using Lemma 6.2.6, the conclusions of Theorem

6.2.1, and properties of the Sobolev space H1,p(X,µ).

Proof of Theorem 6.2.5. We first show that δni is a derivation; it is clearly linear. To

show that δni is bounded, we invoke Lemmas 6.1.10 and 6.2.6 to obtain

|δni f(x)| ≤ C · Lip[f ](x) ≤ C · L(f)

for µ-a.e. x ∈ Xn. The Leibniz rule comes from the uniqueness of Cheeger differ-

entials, in the following way. Let f and g be arbitrary functions in Lip∞(X). By

Theorem 6.2.1, Cheeger differentials are unique, so it suffices to show that the map
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f · dng + g · dnf satisfies equation (6.2.2) for the function f · g. As a temporary

notation, for any function h : X → R, put

Qh(y, x) := [h(y)− h(x)] / ρ(x, y).

From the elementary identity

Qfg(y, x) =
f(y) · g(y)− f(x) · g(x)

ρ(x, y)
= f(y) ·Qg(y, x) + g(x) ·Qf (y, x),

we apply equation (6.2.2) to obtain

0 = lim sup
y→x

∣∣∣∣g(x) ·Qf (y, x)− 〈g(x) · dnf(x), ξn(y)− ξn(x)〉
ρ(x, y)

∣∣∣∣ .
From the continuity of f , we have∣∣∣(f(y)− f(x)

)
·Qg(y, x)

∣∣∣ ≤ |f(y)− f(x)| · L(g) → 0

as y → x. It follows again from equation (6.2.2) that

0 = lim sup
y→x

∣∣∣∣f(x) ·Qg(y, x)− 〈f(x) · dng(x), ξn(y)− ξn(x)〉
ρ(x, y)

∣∣∣∣
= lim sup

y→x

∣∣∣∣f(y) ·Qg(y, x)− 〈f(x) · dng(x), ξn(y)− ξn(x)〉
ρ(x, y)

∣∣∣∣ .
As a result, the map f · dng + g · dnf is the Cheeger differential of f · g.

Claim 6.2.7. The map δni is weak-∗ continuous on bounded sets.

Let x ∈ Xn and let B = B(x, r) be a ball in X. We first show that χBδ
n
i is con-

tinuous, and by Remark 6.1.1 it suffices to show that χBδ
n
i maps weak-∗ convergent

sequences in Lip∞(B) to to weak-∗ convergent sequences in L∞(B, µ).

Let f and {fa}∞a=1 be functions in Lip∞(X) so that fa
∗
⇀ f . In particular, fa

converges pointwise to f and on B, the sequence {fa}∞a=1 is uniformly bounded. So

given a point x0 ∈ B, for sufficiently large a we have

|fa(x0)| ≤ 1 + |f(x0)|.



111

From this bound and the uniform Lipschitz continuity of the {fa}∞a=1, we obtain

|fa(x)| ≤ |fa(x)− fa(x0)|+ |f(x0)|+ 1

≤ L(fa) · ρ(x, x0) + |f(x0)|+ 1

≤ sup
a
L(fa) · diam(B) + |f(x0)|+ 1 =: K < ∞.

From the estimate above, we further obtain∫
B

Lip[fa]
p dµ ≤

∫
B

L(fa)
p dµ ≤

[
sup
a
L(fa)

]p · µ(B)∫
B

|fa|p dµ ≤ Kp · µ(B).

So for each p ∈ (1,∞), the sequence {fa}∞a=1 is a bounded subset of H1,p(B, µ).

By Theorem 6.1.6, for p > 1 the function space H1,p(B, µ) is reflexive, so there

exists a subsequence {fab
}∞b=1 of {fa} and a function h ∈ H1,p(B, µ) so that fab

converges weakly to h in H1,p(X,µ). By a variant of Mazur’s Lemma (Lemma 8.2.8),

there is a sequence of convex combinations {hb}∞b=1 in H1,p(B, µ) of the {fab
} which

converge in Sobolev norm to h. It follows that a further subsequence {hbc}∞c=1 of the

{hb} converges pointwise to h.

However, by hypothesis {fa} converges pointwise to f , as does the subsequence

{fab
}. By Lemma 8.2.8, {hb} also converges pointwise to f , as does the subsequence

{hbc}. It follows that h = f and by Lemma 8.1.4, that fa ⇀ f in H1,p(B, µ).

For each ψ ∈ Lq(X,µ), we now define a functional on Lip∞(X) by

Tψ(h) :=

∫
B

ψ · δni h dµ.

The action of Tψ on Lip∞(X) is clearly linear. For m ∈ N, let C = C(n) > 0 be

the constant as given in Lemma 6.2.6. By Hölder’s inequality and Lemma 6.2.6, it

is also bounded with respect to the H1,p-norm on B. Below, ‖ · ‖q and ‖ · ‖p are to
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be understood as the norms on Lq(B, µ) and Lp(B, µ), respectively:∣∣∣∣∫
B

ψ · δni h dµ
∣∣∣∣ ≤ ‖ψ‖q · ‖δni h‖p ≤ C · ‖ψ‖q · ‖Lip[h]‖p ≤ C · ‖ψ‖q · ‖h‖1,p .

Therefore Tψ is a bounded linear functional on a linear subspace of H1,p(B, µ). By the

Hahn-Banach Theorem, it extends to an element in the dual space [H1,p(B, µ)]∗ and

we also write Tψ for the extension. Since fα ⇀ f in H1,p(B, µ), then by continuity

we have Tψ(fα) → Tψ(f) and hence Tψ(fα − f) → 0.

To finish the claim, let u ∈ L1(X,µ) and ε > 0 both be given, and put hα := fα−f

and C := supa∈N L(ha). Observe that there is a ball B on which∫
X\B

|u| dµ <
ε

3
.

In addition, Lq(B, µ) is a dense subset of L1(B, µ), so there is a ψ ∈ Lq(B, µ) so that∫
B

|u− ψ| dµ <
ε

3C
.

By the previous case, we know that for ψ ∈ Lq(B, µ), there is a N ∈ N so that∣∣∣∣∫
B

ψ · δni ha dµ
∣∣∣∣ <

ε

3

holds whenever a ≥ N . So from the previous estimates, it follows that∣∣∣∣∫
X

u · δni ha dµ
∣∣∣∣ ≤

∣∣∣∣∫
B

u · δni ha dµ
∣∣∣∣ +

ε

3

≤
∣∣∣∣∫
B

(u− ψ) · δni ha dµ
∣∣∣∣ +

∣∣∣∣∫
B

ψ · δni ha dµ
∣∣∣∣ +

ε

3

≤ C ·
∫
B

|u− ψ| dµ +
ε

3
+

ε

3

≤ C · ε

3C
+

2ε

3
= ε.

This proves the claim and the theorem.

The next corollary follows directly from Theorem 6.2.5. However, it plays a key

part in Section 6.3.
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Corollary 6.2.8. Let (X, ρ, µ) be a p-PI space. Then as defined by formula (6.2.3),

the set of derivations {δni }ki=1 is linearly independent in Υ(Xn, µ).

Proof. Suppose there are functions {λi}ki=1 in L∞(X,µ) so that
∑

i λiδ
n
i is the zero

derivation. This implies that for every ball B in X and every function f ∈ Lip(B),

the function
∑

j λj · χB · δnj f is identically zero. In particular, let 1 ≤ i ≤ k be

arbitrary and put f = ξni |B. By Corollary 6.2.4 we obtain

0 =
k∑
j=1

χB · λj · δnj ξni = χB · λi · 1.

As a result, λi is µ-a.e. zero on every ball B, and hence it is the zero function in

L∞(Xn, µ). This gives the desired linear independence.

6.3 Cheeger’s Measure Conjecture.

Following the discussion of Theorem 6.2.1, Cheeger posed a conjecture [Che99,

Conj 4.63] of which one version is stated below. As mentioned before in Chapter I,

it concerns the non-degeneracy of the images of coordinate charts.

Conjecture 6.3.1 (Cheeger, 1999). Let (X, ρ, µ) be a p-PI space. Following the

notation of Theorem 6.2.1, let X =
∐∞

n=1X
n and for each n ∈ N, let k = k(n) and

let ξn : Xn → Rk. Then the image set ξn(Xn) has positive mk-measure.

Remark 6.3.2. The conjecture remains open in general, but some special cases are

known. We list them below.

1. Cheeger has proved Conjecture 6.3.1 in the case when the measure µ is lower

Ahlfors k-regular [Che99, Thm 13.12]. This means that there exist constants

C > 0 and R > 0 so that, for all x ∈ Xn and all 0 < r < R, we have

C · rk ≤ µ(B(x, r)).



114

2. Keith has proven Conjecture 6.3.1 in the case k = 1 [Kei04], but his proof is

also valid for k = 2. Specifically, his argument reduces to the following question

[Kei04, Ques II]: Does there exist a Radon measure µ in a Euclidean space,

singular with respect to Lebesgue measure, such that every Lipschitz function is

classically differentiable a.e. with respect to µ?

In the case of R, the answer is negative [PT95] and from it, Keith’s theorem

follows. In the case of R2, the question has also been answered negatively in

[ACP05, Thm 12]. This implies the case k = 2 [unpublished].

We now prove Conjecture 6.3.1 for k = 2, and our methods are independent from

those in [Kei04]. In fact, the case of k = 2 is a consequence of the next lemma, which

is in turn a direct consequence of Theorem 5.0.7 and Corollary 6.2.8.

Lemma 6.3.3. Let (X, ρ, µ) be a p-PI space. Under the assumptions of Theorem

6.2.1, let X =
∐∞

n=1X
n and for each n ∈ N, let ξn : Xn → Rk. If k = 2, then ξn#µ

is absolutely continuous with respect to Lebesgue k-measure.

We note that the first part of the proof below holds for all k ∈ N. The hypothesis

k = 2 is used only in the second part, where we invoke Theorem 5.0.7.

Proof of Lemma 6.3.3. By Theorem 6.2.5, µ admits a linearly independent set {δni }ki=1

in Υ(Xn, µ), as defined by formula (6.2.3). Put ν := (ξn)#µ, which is a measure con-

centrated on the set ξn(Xn).

For i = 1, 2, consider the pushforward derivations ξn#δ
n
i in Υ(Rk, ν). We claim that

{ξn#δni }ki=1 is a linearly independent set in Υ(Rk, ξn#µ), and it suffices to show orthog-

onality relations similar to those in Corollary 3.3.10. Indeed, by the transformation

formula (3.4.2) we have, for all u ∈ L1(Rk, ν) and all f ∈ Lip(Rk),∫
Rk

u · (ξn#δni )f dν =

∫
Xn

(u ◦ ξn) · δni (f ◦ ξn) dµ.
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Now let j ∈ {1, 2} and put f = xj. If i 6= j, then by Corollary 6.2.4 we have∫
Rk

u · (ξn#δni )xj dν = 0

for all u ∈ L1(Rk, ν), hence ξn#δ
n
i xj = 0. On the other hand, for i ∈ {1, 2} we have∫

Rk

u · (ξn#δni )xi dν =

∫
Xn

(u ◦ ξn) · δni ξni dµ =

∫
Xn

u ◦ ξn dµ =

∫
Rk

u dν

for all u ∈ L1(Rk, ν), so (ξn#δ
n
i )xi = 1. As a result, if λ1(ξ

n
#δ

n
1 ) + λ2(ξ

n
#δ

n
2 ) = 0, then

in particular we obtain the identity

0 =
(
λ1(ξ

n
#δ

n
1 ) + λ2(ξ

n
#δ

n
2 )

)
xi = λi · (ξn#δni )xi = λi · 1.

Hence λi = 0 for each i, and this proves the claim.

Now suppose that ν has a nonzero singular part νS, and let Ω be a subset of ξn(Xn)

on which νS is concentrated. By Part (2) of Lemma 3.3.6, the set {χΩ(ξn#δ
n
i )}ki=1 is

linearly independent in Υ(R2, νS). However, if νS admits a linearly independent set

of two derivations, then by Theorem 5.0.7, it cannot be singular to mk. This is a

contradiction, which proves the lemma.

Theorem 6.3.4. Conjecture 6.3.1 is true for k = 2.

Proof. The measure µ is nonzero by hypothesis. In turn, the measure ξn#µ is also

nonzero and it is concentrated on the image ξn(Xn), hence ξn#µ(ξn(Xn)) > 0. By

Lemma 6.3.3, ξn#µ is absolutely continuous to m2, so m2(ξ
n(Xn)) > 0.



CHAPTER VII

Derivations from Measurable Metrics: Appendix A

In this section we introduce the notion of a measurable metric and measurably

Lipschitz functions on separable metric measure spaces (X, ρ, µ). From them we will

show that Weaver’s notion of a metric derivation agrees with Definition 3.1.1.

7.1 Measurable Metrics and Measurably Lipschitz Functions.

Recall that if A and B are subsets of X, then their symmetric difference is the set

A∆B := (A \B) ∪ (B \ A).

To fix notation, let (Pµ(X),∼=) denote the collection of subsets of X with positive

µ-measure, under the following equivalence relation. We say that two subsets A and

A′ are equivalent if their symmetric difference has zero µ-measure. In symbols,

(7.1.1) A′ ∼= A ⇐⇒ µ(A′∆A′) = 0.

The following fact will be useful in choosing good equivalent sets.

Lemma 7.1.1. Let A ∈ Pµ(X).

1. If A′ ∼= A, then A′ ∩ A ∼= A.

2. A ∩ spt(µ) ∼= A.
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To prove the lemma, we now recall a general covering theorem which is valid on

separable metric spaces. For a proof, see [Hei01, Thm 1.2].

Theorem 7.1.2. Let (X, ρ) be a separable metric space and let F be a collection

of balls with uniformly bounded radius. Then there is a countable, pairwise-disjoint

sub-collection F ′ of F so that ⋃
B∈F

B ⊂
⋃
B∈F ′

5B

where 5B is the ball with same center as B but with five times the radius.

Proof of Lemma 7.1.1. Since A ∩ A′ ⊂ A, the symmetric difference between A ∩ A′

and A is precisely the set A \ A′. In symbols,

A∆ (A ∩ A′) =
(
A \ (A ∩ A′)

)
∪

(
(A ∩ A′) \ A

)
= (A \ A′) ∪ ∅ = A \ A′.

By hypothesis, A ∼= A′, so µ(A∆A′) = 0. The set inclusion A \ A′ ⊂ A∆A′ follows

from definitions, and from this it follows that

µ
(
A∆ (A ∩ A′)

)
= µ(A \ A′) ≤ µ(A∆A′) = 0.

This gives Part (1). Towards Part (2), we note that the symmetric difference of A

and A ∩ spt(µ) is precisely A′ := A \ spt(µ), so it suffices to show that µ(A′) = 0.

By the definition of spt(µ), for each a ∈ A′, there is a ra > 0 so that

µ(B(a, 5r)) = 0

holds, whenever r ∈ (0, ra). Without loss of generality, assume that ra ≤ 1. The

collection of balls F := {B(a, ra)}a∈A′ clearly covers A′. By Theorem 7.1.2, there is

a countable, pairwise-disjoint sub-collection F ′ := {B(ai, ri)}∞i=1 of F so that⋃
B∈F

B ⊂
∞⋃
i=1

B(ai, 5ri).



118

By the sub-additivity property of measures, we then obtain

µ(A′) ≤ µ
( ∞⋃
i=1

B(ai, 5ri)
)
≤

∞∑
i=1

µ(B(ai, 5ri)) = 0,

which gives Part (2).

We now introduce the notion of a measurable metric ρµ as given in [Wea99, Ex

6.1.5]. For a metric space (X, ρ), recall that the distance between nonempty subsets

A and B in X is defined by the formula

dist(A,B) := inf{ρ(a, b) : a ∈ A, b ∈ B}.

Intuitively, ρµ measures the distance between subsets of positive µ-measure in X, up

to the equivalence relation in equation (7.1.1).

Definition 7.1.3. Let µ be a σ-finite measure on X. A measurable metric ρµ :

Pµ(X)×Pµ(X) → [0,∞], as induced from a metric ρ on X, is a function of the form

ρµ(A,B) := sup
{

dist(A′, B′) : A′ ∼= A, B′ ∼= B
}
.

To motivate the terminology, measurable metrics ρµ on (X,µ) do share similar

qualities with pointwise metrics. For example, it satisfies a weak version of the

triangle inequality [Wea99, pp.164]. Indeed, for all A,B,C ∈ Pµ(X), we have

(7.1.2) ρµ(A,B) ≤ sup
C′⊂C

ρµ(A,C ′) + ρµ(C ′, B).

Example 7.1.4. For X = R2 and µ = m2, let A be the union of the closed unit ball

and the x2-axis, and let A′ be the ball with center (0, 3) and radius 1. Then

ρµ(A,A′) = ρµ(B(0, 1), A′) = 1.

In other words, the measurable metric ignores the x2-axis, which is a µ-null set.
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Remark 7.1.5. By Lemma 7.1.1, A′ ∼= A implies A′ ∩ A ∼= A. Hence we obtain an

equivalent formula for ρµ(A,B) if we infimize instead over subsets A∩A′ and B∩B′

in place of A′ and B′, respectively:

ρµ(A,B) ≡ inf
{

dist(A ∩ A′, B ∩B′) : A′ ∼= A, B′ ∼= B
}
.

The notion of a measurable metric (and pseudometric) is more general than stated

above1; for a reference, see [Wea99, Chap 6]. However, we are motivated by met-

ric spaces (X, ρ) which are paired with geometrically compatible measures µ and

therefore admit geometrically compatible measurable metrics. Thus we have not

provided the most general definition here. However, in the next section we relate

such measurable metrics to their respective (pointwise) metrics.

Definition 7.1.6. Given a µ-measurable function f : X → R, the essential range of

f is the set

R(f) := {a ∈ f(X) : µ(f−1(U)) > 0 for every neighborhood U of a}.

In what follows, we consistently use the distance between the essential ranges of

two functions. As a shorthand, we write ρµ,f (A,B) := dist
(
R(f |A),R(f |B)

)
.

Definition 7.1.7. Let f ∈ L∞(X,µ). The µ-Lipschitz constant of f is the number

Lµ(f) := sup

{
ρµ,f (A,B)

ρµ(A,B)
: A,B ∈ Pµ(X) and ρµ(A,B) > 0

}
If L := Lµ(f) < ∞, then we say that f is µ-measurably L-Lipschitz. The space of

such functions will be denoted Lipµ(X). If the constant L is understood, then we

say that f is µ-measurably Lipschitz whenever f ∈ Lipµ(X).

Recall that Lip∞(X) is a dual Banach space by Theorem 2.1.3, but this fact holds

more generally. By [Wea99, Cor 6.3.3], the space Lipµ(X) also enjoys this property.

1In fact, the weak Triangle Inequality (7.1.2) is one of the axioms of a measurable pseudo-metric.
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Theorem 7.1.8 (Weaver, 1996). Lipµ(X) is a dual Banach space under the norm

‖f‖µ,Lip := max
(
‖f‖µ,∞, Lµ(f)

)
,

and on bounded sets of Lipµ(X), the weak-∗ topology agrees with the restriction of

the weak-∗ topology of L∞(X,µ) to the subspace Lipµ(X).

Remark 7.1.9. In fact, one can prove Theorem 2.1.3 from Theorem 7.1.8 [Wea99,

Ex 6.2.2]. To see this, let µ be the counting measure on X, that is, every one-point

set in X has µ-measure 1. If A ∼= A′, then A and A′ must be the same set, and hence

ρµ({a}, {b}) = ρ(a, b)

holds for all a, b ∈ X with a 6= b. Observe also that each f ∈ L∞(X,µ) must be

everywhere bounded. Similarly, the essential range R(f) is the image set f(X), so

ρµ,f ({a}, {b}) = |f(b)− f(a)|

holds for all a, b ∈ X. This shows that L(f) ≤ Lµ(f), so every µ-measurably

Lipschitz function is a bounded Lipschitz function in the usual sense. In addition,

for each x ∈ X, the characteristic function χ{x} is µ-integrable. So if f and {fα}∞α=1

are functions in L∞µ (X,µ) so that fα
∗
⇀ f , then as α→∞,

fα(x) =

∫
X

χ{x}fα dµ →
∫
X

χ{x}f dµ = f(x).

Hence fα converges pointwise to f , and in particular, fα
∗
⇀ f in Lip∞(X).

Note that several facts from Remark 7.1.9 hold in greater generality.

Lemma 7.1.10. If f ∈ Lip∞(X), then we have the estimates

Lµ(f) ≤ 2 · L(f)(7.1.3)

L
(
f | spt(µ)

)
≤ 2 · Lµ(f).(7.1.4)
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Derivations on metric measure spaces obey the locality property (Theorem 3.2.1),

which is restriction to subsets of positive µ-measure in X. So in light of Lemma

7.1.1, it is reasonable to restrict the setting from X to spt(µ).

Proof of Lemma 7.1.10. Let A and B be distinct sets in Pµ(X) so that ρµ(A,B) > 0,

and up to the equivalence relation (7.1.1) we may assume that dist(A,B) > 0. Note

that for all a ∈ A ∩ spt(µ), we have f(a) ∈ R(f |A). Similarly, f(b) ∈ R(f |B) holds

whenever b ∈ B ∩ spt(µ). So for such points a and b, we obtain

ρµ,f (A,B) ≤ |f(b)− f(a)|.

We now choose points a ∈ A ∩ spt(µ) and b ∈ B ∩ spt(µ) so that

ρ(a, b) ≤ 2 · dist
(
A ∩ spt(µ), B ∩ spt(µ)

)
≤ 2 · ρµ(A,B).

Combining the above estimates, we obtain

1

2
· ρµ,f (A,B)

ρµ(A,B)
≤ |f(b)− f(a)|

ρ(a, b)

and by taking suprema over all such points a and b and over all subsets A and B in

Pµ(X), we obtain inequality (7.1.3), as desired.

To show inequality (7.1.4), let a, b ∈ spt(µ) and let δ ∈ (0, ρ(a, b)/2) be arbitrary.

By definition, the closed balls Aδ := B̄(a, δ) and Bδ = B̄(b, δ) are sets of positive µ-

measure. If A′ and B′ are subsets of X that are equivalent to Aδ and Bδ, respectively,

then the Triangle Inequality gives

dist(A′ ∩ Aδ, B′ ∩Bδ) ≤ ρ(a, b) + 2δ.

By Remark 7.1.5 and the previous estimate, we infimize over A′ and B′ to obtain

(7.1.5) ρµ(Aδ, Bδ) ≤ dist(A′ ∩ Aδ, B′ ∩Bδ) ≤ ρ(a, b) + 2δ ≤ 2 · ρ(a, b).
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Let f ∈ Lip∞(X) and let ε > 0 be given. By continuity, we may choose δ sufficiently

small so that the lengths |f(a) − f(a′)| and |f(b) − f(b′)| are at most ε, whenever

a′ ∈ Aδ and b′ ∈ Bδ. Applying the Triangle Inequality once more, we see that

|f(b)− f(a)| − 2ε ≤ |f(b′)− f(a′)|

holds for all a′ ∈ Aδ and all b′ ∈ Bδ. It follows that

(7.1.6) |f(b)− f(a)| − 2ε ≤ dist
(
f(Aδ), f(Bδ)

)
≤ ρµ,f (Aδ, Bδ).

Combining estimates (7.1.5) and (7.1.6), we obtain

|f(b)− f(a)| − 2ε ≤ ρµ,f (Aδ, Bδ)

≤ Lµ(f) · ρµ(Aδ, Bδ) ≤ 2 · Lµ(f) · ρ(a, b)

for all ε > 0. Taking the limit as ε→ 0 and taking suprema over all points a and b,

we obtain inequality (7.1.4).

Corollary 7.1.11. Let (X, ρ, µ) be a metric measure space, and let Cb(X) denote the

space of bounded, continuous functions from X to R. Then we have the inclusions

Lip∞(X) ⊂ Lipµ(X),

Cb(X) ∩ Lipµ(X) ⊂ Lip∞
(

spt(µ)
)
.

Proof. The first set inclusion follows from inequality (7.1.3). For the second set

inclusion, note that only continuity was needed in the proof of inequality (7.1.4).

The argument then generalizes to functions in Cb(X) ∩ Lipµ(X).

7.2 Two Notions of Derivations.

We now introduce Weaver’s metric derivations [Wea00, Defn 21] and compare

the definition with Definition 3.1.1. It uses the notion of bounded weak-∗ continuity,

which we define in Section 8.2.
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Definition 7.2.1 (Weaver, 1999). Let X be a measurable metric space. A metric

derivation δ : Lipµ(X) → L∞(X,µ) is a boundedly weak-∗ continuous, linear map

that satisfies the Leibniz rule.

Remark 7.2.2. It is worth noting that the setting of [Wea00] is quite general.

In particular, the target space L∞(X,µ) in Definition 7.2.1 can be replaced by any

abelian W ∗-module over the ring L∞(X,µ), but we will not discuss such constructions

here. For further reading about operator modules over L∞(X,µ), as well as over other

function rings and algebras, see [Wea00, Sect 2] and [Wea96, Sect II].

Proposition 7.2.3. Let µ be a Borel measure on X. If δ : Lipµ(X) → L∞(X,µ)

is a metric derivation, then the restriction of δ to the linear subspace Lip∞(X) is a

derivation in the sense of Definition 3.1.1.

Proof. To simplify notation, put δ′ = δ|Lip∞(X). It is clear that δ′ is linear and

satisfies the Leibniz rule. By the definition of the L∞-norm, we have ‖f‖µ,∞ ≤ ‖f‖∞

for all f ∈ Lip∞(X). From this and Lemma 7.1.10 we obtain

‖δf‖µ,∞ ≤ max
(
‖f‖µ,∞, Lµ(f)

)
≤ 2 ·max

(
‖f‖∞, L(f)

)
= 2 · ‖f‖Lip,

which shows that the operator δ′ is bounded.

Lastly, we show that δ′ is continuous. By hypothesis, δ is boundedly weak-∗

continuous, so by Lemma 8.2.4, δ is weak-∗ continuous on bounded sets.

To this end, let f and {fα}∞α=1 be functions in Lip∞(X) so that fα
∗
⇀ f , and

suppose that L = ‖f‖Lip ∨ supα ‖fα‖Lip is a finite number. Next, fix a base point x0

in X. Without loss, we may assume that for all α ∈ N we have

(7.2.1) fα(x0) = f(x0),

otherwise we consider fα − fα(x0) and f − f(x0) in place of fα and f , respectively.

Now let ε > 0 be given. For any ϕ ∈ L1(X,µ), the measure dµϕ = |ϕ|dµ is finite and
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Borel. So by regularity there is an R > 0 so that, for B = B̄(x0, R), we have

(7.2.2) µϕ
(
X \B

)
<

ε

4L
.

On the other hand, {fα}∞α=1 is uniformly L-Lipschitz, so by equation (7.2.1) we have

|fα(x)| ≤ |fα(x0)|+ |fα(x)− fα(x0)|

≤ |f(x0)|+ L(fα) · ρ(x− x0)

≤ |f(x0)|+ L ·R,

whenever x ∈ B. By the Dominated Convergence Theorem, for any ψ ∈ L1(X,µ)

we have ψ ·fα → ψ ·f in L1(B, µ); it follows that fα
∗
⇀ f in L∞(B, µ). From Lemma

7.1.10 once more, we have Lµ(fα) ≤ 2L for all α, and hence fα
∗
⇀ f in Lipµ(B).

Moreover, since δ is weak-∗ continuous on bounded sets, by Theorem 3.2.1 we

obtain δfα
∗
⇀ δf in L∞(B, µ), so there is a α ∈ N so that

(7.2.3)

∣∣∣∣∫
B

ϕ · δ(fα − f) dµ

∣∣∣∣ <
ε

2
.

Combining estimates (7.2.2) and (7.2.3), we further obtain∣∣∣∣∫
X

ϕ · δ(fα − f) dµ

∣∣∣∣ ≤
(
‖δfα‖µ,∞ + ‖δf‖µ,∞

)
· µϕ(X \B) +

∣∣∣∣∫
B

ϕ · δ(fα − f) dµ

∣∣∣∣
≤ 2L · ε

4L
+
ε

2
= ε.

This gives the continuity of δ′ and proves the proposition.



CHAPTER VIII

Facts from Functional Analysis: Appendix B

In previous sections we have used many facts from functional analysis, some of

which include variants of standard results in the literature. We now list these variants

and for completeness, we provide their proofs.

8.1 Nets vs. Sequences.

We begin by recalling the definition of a net.

Definition 8.1.1. A set I is a directed set1 if there is a relation ≺ on I which satisfies

the following three properties:

• reflexivity : for each i ∈ I, we have i ≺ i;

• transitivity : for all i, j, k ∈ I, if i ≺ j and j ≺ k, then i ≺ k;

• a successor property : for all i, j ∈ I, there is a k ∈ I so that i ≺ k and j ≺ k.

Let X be a topological space. A net Y = {yi}i∈I in X is a set of points in X

which is indexed by a directed set I = (I,≺). A net Z = {zj}j∈J is a sub-net of Y

if there is a map ϕ : J = (J,≺′) → I so that

• for each j ∈ J , we have zj = yϕ(j);

1We follow the convention that a directed net is not necessarily a partially ordered set. Specifically, we do not
require the following condition: if i ≺ j and j ≺ i, then i = j.
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• for each i ∈ I, there is a jo ∈ J so that i ≺ ϕ(j) whenever jo ≺′ j.

Lastly, we say that a net Y = {yi}i∈I converges to x ∈ X if, for each neighborhood

O of x, there is an io ∈ I so that yi ∈ O whenever io ≺ i.

Example 8.1.2. Note that N determines a directed set under the relation ≤. As a

result, every sequence in a topological space is a net.

It is clear that if a net {vi}i∈I converges in a topological space, then so does every

sub-net of {vi}i∈I . The following two lemmas are elementary but useful for detecting

when a net (or a sequence) converges.

Lemma 8.1.3. In a topological space X, a net {xi}i∈I converges to a point x if

and only if the following property holds: every sub-net of {xi}i∈I contains a further

sub-net which converges to x.

Proof. If {xi}i∈I converges to x, then by the previous observation, every sub-net of

{xi}i∈I also converges to x. For the other direction, suppose {xi}i∈I is a net which

does not converge to x but has the sub-net property with common sub-limit x. It

follows that there is a neighborhood O of x so that for each i ∈ I, there is an i′ ∈ I

so that i ≺ i′ and xi′ /∈ O.

Let I ′ be the subset of all such indices i′. Observe that for each i ∈ I, there is

a i′o ∈ I ′ so that i ≺ i′0, and if i′ ∈ I ′ satisfies i′0 ≺ i′, then by transitivity of the

relation ≺, we also have i ≺ i′. Therefore the inclusion map I ′ ↪→ I determines a

sub-net {xi′}i′∈I′ of {xi}i∈I .

By construction, the sets X ′ := {xi′}i′∈I′ and O are disjoint, so the sub-net X ′ does

not converge to x, and neither does any further sub-net of X ′. This is a contradiction,

which proves the lemma.
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Arguing similarly, we obtain an analogue of Lemma 8.1.5 about convergent se-

quences in metric spaces.

Lemma 8.1.4. In a metric space (X, ρ), a sequence {xn}∞n=1 converges to a point x

if and only if the following property holds: every subsequence of {xn}∞n=1 contains a

further subsequence which converges to x.

The next lemma follows easily from Lemma 8.1.3. It is specific to the setting of

dual Banach spaces.

Lemma 8.1.5. In a dual Banach space V , a net {vi}i∈I converges to v in the weak-∗

topology if and only if the following property holds: every sub-net of {vi}i∈I contains

a further sub-net which converges to v in the weak-∗ topology.

Proof. Again, one direction is clear: any sub-net of a weak-∗ convergent net is also

weak-∗ convergent with the same limit. So suppose that {vi}i∈I is a net in V which

is not weak-∗ convergent to v but has the above property with weak-∗ sub-limit v.

Let W denote the pre-dual of V , and let w ∈ W be arbitrary. If {vik}k∈K is any

sub-net of {vi}i∈I , then by the sub-limit property, there is a further sub-net {vikl
}l∈L

which is weak-∗ convergent to v. So by definition of weak-∗ convergence, we have

〈vikl
, w〉 → 〈v, w〉.

This shows that for the net of real numbers {〈vikl
, w〉}l∈L, every sub-net has

a further convergent sub-net to the same limit 〈v, w〉. By Lemma 8.1.3, we have

〈vi, w〉 → 〈v, w〉. Since w was arbitrary, we conclude that vi
∗
⇀ v in V .

In general, L∞(X,µ) is not separable with respect to the norm topology. So given

an uncountable subset S in the closed unit ball of L∞(X,µ), weak compactness only

guarantees a convergent sub-net of S. In contrast, weak-∗ compactness on the closed

unit ball of L∞(X,µ) does produce convergent sequences. This follows from the fact
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that its pre-dual L1(X,µ) is a separable Banach space. More generally, we have the

following fact [Rud91, Thm 3.16].

Theorem 8.1.6. Let V be a separable topological vector space. If K is a weak-∗

compact subset of the dual space V ∗, then K is metrizable in the weak-∗ topology.

We next discuss a procedure to extract a weak-∗ convergent subsequence from a

weak-∗ convergent net. This fact is folklore and it holds in the general case of dual

Banach spaces with separable pre-dual. For completeness, we include a proof.

Lemma 8.1.7. Let V be a separable Banach space and let V ∗ be its Banach dual.

Then every norm-bounded, weak-∗ convergent net in V ∗ contains a weak-∗ convergent

subsequence with the same weak-∗ limit.

Proof. For each r > 0 and each v∗ ∈ V ∗, let B̄(v∗, r) be the closed ball with center

v∗ and radius r. By Theorem 3.1.6, B̄(v∗, r) is weak-∗ compact, and by Theorem

8.1.6, the weak-∗ topology restricted to B̄∗(v∗, r) is metrizable. As a result, v∗ has a

countable basis of neighborhoods in the weak-∗ topology of B̄(v∗, r).

Now suppose that {v∗i }i∈I is a net which converges weak-∗ to v∗ in V ∗ and suppose

there is a constant C ≥ 0 so that supi ‖v∗i ‖ ≤ C. By the previous argument, there is

a countable basis of neighborhoods {Uj}∞j=1 for v∗ in the weak-∗ topology of B̄(v∗, C).

Since v∗i
∗
⇀ v∗ in V ∗, for each j ∈ N there is an ij ∈ I so that v∗i ∈ Uj whenever

ij ≺ i. In particular, we may choose indices {ij}∞j=1 ⊂ I so that ij ≺ ij+1 holds for

all j ∈ N. Putting w∗j := v∗ij , the sequence {w∗j}∞j=1 also converges weak-∗ to v∗.

8.2 Modes of Convergence.

Following [DS90, Defn V.5.3], one defines the bounded weak-∗ topology2 on a dual

Banach space V ∗ in the following way: for each r > 0, it is the strongest topology
2Our terminology differs from that in [DS90]. On a Banach space X, the bounded weak-∗ topology on X∗ is

known as the bounded X topology on X∗.
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which agrees with the weak-∗ topology on the set V ∗ ∩ B̄(0, r). Thus a subset U in

V ∗ is open in the bounded weak-∗ topology if and only if for every r > 0, the set

U ∩ B̄(0, r) is a relatively weak-∗ open set in B̄(0, r).

To avoid confusion, we will denote the bounded weak-∗ topology on V ∗ by τb and

the weak-∗ topology on V ∗ by τ∗. We will also say that a subset O in V is τb-open

(resp. τ∗-open) if it is open with respect to the topology τb (resp. τ∗).

Remark 8.2.1. Observe that if O ⊂ V is τ∗-open, then it is also τb-open. This

follows because for each r > 0, the set O ∩ B̄(0, r) is relatively τ∗-open in B̄(0, r).

The following lemma [DS90, Lem V.5.3] gives a concrete characterization of neigh-

borhood bases for the bounded weak-∗ topology.

Lemma 8.2.2. Let V be a Banach space and let V ∗ be its dual. A neighborhood

basis for the point 0 ∈ V ∗ for the topology τb consists of the sets

{v∗ ∈ V ∗ : |v∗(v)| < 1 for all v ∈ A}

where A = {vm}∞m=1 is a sequence of elements in V that converge to 0.

We now consider linear operators between dual Banach spaces that are endowed

with bounded weak-∗ topologies.

Definition 8.2.3. Let V ∗ and W ∗ be dual Banach spaces. We say that a map

T : V ∗ → W ∗ is boundedly weak-∗ continuous if it is continuous with respect to the

bounded weak-∗ topologies on V ∗ and W ∗.

Lemma 8.2.4. Let (V ∗, ‖ · ‖V ∗) and (W ∗, ‖ · ‖W ∗) be dual Banach spaces, and let

T : V ∗ → W ∗ be a linear map. If T is boundedly weak-∗ continuous, then T is weak-∗

continuous on bounded sets; that is, if {vi}i∈I is a norm-bounded net so that vi
∗
⇀ v

in V ∗, then Tvi
∗
⇀ Tv in W ∗.
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Proof. Let T : V ∗ → W ∗ be a linear, boundedly weak-∗ continuous map, let r > 0,

and let {vi}i∈I be a net in V so that vi
∗
⇀ v in V ∗ and so that supi ‖vi‖V ∗ ≤ r.

We argue by contradiction, so suppose that Tvi does not converge weak-∗ to Tv.

By definition, there is a τ∗-open neighborhood U of Tv in W ∗ so that for each i0 ∈ I,

there is a i ∈ I so that i0 ≺ i and Tvi /∈ U .

By Remark 8.2.1, the set U is also τb-open in W ∗. Since T is boundedly weak-∗

continuous, the preimage set T−1(U) is τb-open in V ∗. From the definition of the

bounded weak-∗ topology, it follows that there is a τ∗-open set O in V ∗ so that

(8.2.1) T−1(U) ∩ B̄(0, r) = O ∩ B̄(0, r).

Since v is a preimage of Tv, we have v ∈ T−1(U) and by lower semi-continuity of

norms, we have v ∈ B̄(0, r). From equation (8.2.1) it follows that

v ∈ T−1(U) ∩ B̄(0, r) = O ∩ B̄(0, r) ⊂ O.

By hypothesis, we have vi
∗
⇀ v, so there is an i1 ∈ I so that vi ∈ O whenever i1 ≺ i.

For such indices i, we invoke equation (8.2.1) again and obtain the inclusions

vi ∈ O ∩ B̄(0, r) = T−1(U) ∩ B̄(0, r) ⊂ T−1(U),

T vi ∈ T (T−1(U)) = U.

Letting i0 = i1, we obtain a contradiction.

Towards a proof of Lemma 3.1.3, we first show a more general fact. For dual

Banach spaces (V ∗, ‖ · ‖V ∗) and (W ∗, ‖ · ‖W ∗) with separable pre-duals X and Y , we

show that a linear map T : V ∗ → W ∗ is weak-∗ continuous on bounded sets if and

only if it is sequentially weak-∗ continuous.

Lemma 8.2.5. Let W be a Banach space, let ∗X be a separable Banach space, and

let T : V ∗ → W ∗ be a linear map. The following propeties are equivalent:
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1. T is weak-∗ continuous on bounded sets;

2. T is sequentially weak-∗ continuous;

3. For all r > 0, the map T |B̄(0, r) is weak-∗ continuous.

Remark 8.2.6. Property (3) means that T is continuous with respect to the weak-

∗ topology on W ∗ and the relative weak-∗ topology on B̄(0, r) as induced by the

weak-∗ topology on V ∗.

It is a straightforward argument to show that (3) implies (1). From the definitions

in Section 3.1, it is also clear that (1) implies (2). For completeness, we prove the

remaining implication.

Proof of (2) ⇒ (3). By hypothesis, T is a sequentially continuous map between V ∗

and W ∗ with respect to their weak-∗ topologies. Letting r > 0 be arbitrary, the

restriction T |B̄(0, r) is a sequentially continuous map with respect to the relative

weak-∗ topology on B̄(0, r) and the weak-∗ topology on W ∗.

Since V is separable, by Theorem 8.1.6 the weak-∗ topology on B̄(0, r) is metriz-

able. It is a fact from topology [Mun75, Thm 21.3] that on metrizable spaces, conti-

nuity and sequential continuity are equivalent. From this it follows that T |B̄(0, r) is

continuous with respect to the relative weak-∗ topology on B̄(0, r) and the weak-∗

topology on W ∗. Therefore T |B̄(0, r) is weak-∗ continuous.

In light of the previous facts, we see that Lemma 3.1.3 follows easily from the

structure of the Arens-Eells space on a metric space X (see Section 2.2).

Proof of Lemma 3.1.3. Let X be a bounded, separable metric space. By Lemma

2.2.1, AE(X+) is a separable Banach space. Since Lip∞(X) = [AE(X+)]∗, the

lemma follows by invoking Lemma 8.2.5.
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Lastly, the following lemma is due to Mazur [Rud91, Thm 3.13]. For previous

applications we have used a corollary to the lemma, which is stated below it.

Lemma 8.2.7. Let (V, ‖ · ‖) be a Banach space. If {vn}∞n=1 is a sequence in V which

converges weakly to v, then there are numbers {λmn}∞n,m=1 ⊂ (0,∞) so that

1.
∑∞

m=1 λmn = 1;

2. for each n ∈ N, all but finitely many terms of the sequence {λmn}∞m=1 are zero.

3. the sequence
{ ∑∞

m=1 λmnvm
}∞
n=1

in V converges in norm to v.

Lemma 8.2.8. In Lemma 8.2.7, the coefficients can be further chosen so that

{λmn}nm=1 = {0}.

Proof of Lemma 8.2.8. Suppose that {vn}∞n=1 is a sequence in V which converges

weakly to a point v in V . For m ∈ N, the subsequence Sm := {vn}∞n=m also converges

weakly to v. Applying Lemma 8.2.7 to each Sm, we obtain sequences

vmn :=
∞∑
k=1

λmknvk, n ∈ N

in V so that each sequence of coefficients {λmkn}∞n=1 satisfy conclusions (1), (2), and

(3). For each m ∈ N, we have vmn → v as n → ∞, so there is an nm ∈ N so that

‖v − vmnm
‖ < 2−m. By construction, the sequence {vmnm

}∞m=1 converges in norm to v

and satisfies the conclusions of Lemma 8.2.7. In addition, for each m ∈ N we have

{λmknm
}mk=1 = {0}.

8.3 Operator Topologies and Compactness.

Recall that by Theorem 5.3.1, if µ is singular to Lebesgue 2-measure, then the

module Υ(R2, µ) is generated by at most one derivation. The proof uses Theorem
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5.3.4, which concerns compactness on the space of linear operators L(Y ;Z) from a

Banach space Y to a dual Banach space Z. As a convention, we always write W for

the pre-dual of Z, so W ∗ = Z. We also write L = L(Y ;Z) as a shorthand.

In this section we prove Theorem 5.3.4. To do this, we first study the relevant

topology on L, which we call the weak-∗ operator topology. The discussion below

follows closely the exposition in [KR97, Chap 5]. In the case where Y and Z are

Hilbert spaces with Y = Z, then this topology is the usual weak operator topology.

Let FY,W denote the family of linear functionals ly,w : L → R of the form

ly,w(T ) := 〈w, Ty〉

where y ∈ Y , w ∈ W , and T ∈ L. Next, let |lw,y|(T ) := |lw,y(T )| and put

|F|W,Y := {|lw,y| : lw,y ∈ FW,Y }.

Observe that each functional |lw,y| satisfies the properties of a semi-norm, that is,

1. homogeneity: for all T ∈ L and r ∈ R, we have

|lw,y|(rT ) = |r| · |lw,y|(T );

2. sub-additivity: for all S, T ∈ L, we have

|lw,y|(S + T ) ≤ |lw,y|(S) + |lw,y|(T ).

We also note that the family |F|W,Y is separating in the following sense: if T is a

nonzero element in L, then there is a |lw,y| ∈ |F|W,Y so that |lw,y|(T ) 6= 0.

We next state a fundamental fact from functional analysis [Rud91, Thm 1.37]. To

this end, recall that on a topological vector space V ,

• a subset B of V is balanced if B = {−b : b ∈ B};
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• a subset B of V is bounded if for every neighborhood N of 0 in V , there is a

number s > 0 so that E ⊂ tN whenever s < t.

Here tN refers to the set of vectors {tn : n ∈ N}.

Theorem 8.3.1. Let V be a vector space, and suppose that F is a family of semi-

norms on V that is separating. To each f ∈ F and each n ∈ N, put

V (f ;n) := {v ∈ V : f(v) < 2−n}

and let B be the collection of all finite intersections of the sets V (f ;n). Then B is a

convex, balanced, local basis of neighborhoods for a topology τ on V . In addition, V

is a locally convex (topological vector) space such that

• every f ∈ F is continuous;

• a set E in V is bounded if and only if every f ∈ F is bounded on E.

Definition 8.3.2. The weak-∗ operator topology τ∗ on L is the locally convex topol-

ogy induced by the family of semi-norms |F|W,Y . A local basis of neighborhoods for

τ∗ consists of all finite intersections of the sets

V (w, y;n) := {T ∈ L : |lw,y|(T ) < 2−n}.

Lastly, let {Xi}∞i=1 be a collection of topological spaces. Following [Mun75, Section

2.19] the product topology τπ on
∏∞

i=1Xi is formed by taking the sets proj−1
Xi

(Ui) as a

sub-basis, where Ui is an open set in Xi and for each i ∈ N, projXi
:
∏∞

i=1Xi → Xi

is the projection map onto Xi.

We are now ready to prove Theorem 5.3.4. It states that the closed unit ball in

L is compact in the weak-∗ operator topology.
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Proof of Theorem 5.3.4. For each w ∈ W and y ∈ Y , put rw,y := ‖w‖W · ‖y‖Y and

consider the intervals Bw,y := [−rw,y, rw,y] in R. We now define a map h from the

unit ball of L to the product space Π :=
∏

w∈W, y∈Y Bw,y by the formula

hw,y(T ) := 〈w, Ty〉, h(T ) :=
{
hw,y(T ) : w ∈ W, y ∈ Y

}
.

Note that h is injective. To see this, let S and T be operators in L which satisfy

h(S) = h(T ). Then for each y ∈ Y , the bounded linear functionals w 7→ 〈w, Sy〉 and

w 7→ 〈w, Ty〉 are equal. From the duality W ∗ = Z, we have Sy = Ty, and because

y was arbitrary, we obtain S = T .

From the definition of the weak-∗ operator topology on L and the product topol-

ogy on Π, it is clear that the map h is a homeomorphism from (L, τ∗) onto its image

in (Π, τπ). Since each set Bw,y is compact and Hausdorff in R, by Tychonoff’s Theo-

rem [Mun75, Thm 37.3], the space Π is also compact and Hausdorff in the product

topology. So if h(L) is closed, then h(L) is compact, and by the continuity of h, L

is compact with respect to τ∗.

Claim 8.3.3. The set h(L) is closed in Π.

To this end, let b be a point in the closure of h(L). Letting a ∈ R, w1, w2 ∈ W ,

and y1, y2 ∈ Y all be arbitrary, for all ε > 0 there is a T ∈ L so that each of

|bwj ,yk
− 〈wj, T yj〉|, |a · bwj ,yk

− a · 〈wj, T yj〉|,

|baw1+w2,yk
− 〈aw1 + w2, T yj〉|, |bwj ,ay1+y2 − 〈wj, ay1 + y2〉|

is at most ε/3, for {i, j} = {1, 2}. By the Triangle Inequality, we then obtain

|baw1+w2,y1 − a · bw1,y1 − bw2,y1| < ε,

|bw1,ay1+y2 − a · bw1,y1 − bw1,y2| < ε.

It follows that b is linear in each index. Because bw,y ∈ Bw,y, we have |bw,y| ≤ rw,y.

As a result, b is a bounded bi-linear functional on W × Y . In particular, for each
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y ∈ Y the map w 7→ bw,y lies in W ∗ and can be identified with an element zy ∈ Z.

Clearly, the map y 7→ zy is bounded because b is bounded. However, observe that

the map is also linear because, for all a ∈ R and y1, y2 ∈ Y , we have

〈w, zay1+y2〉 = bw,ay1+y2 = a · bw,y1 + bw,y2

= a · 〈w, zy1〉+ 〈w, zy2〉 = 〈w, a · zy1 + zy2〉.

As a result, there is an operator S ∈ L so that

〈w, Sy〉 = 〈w, zy〉 = bw,y

holds for all w ∈ W and all y ∈ Y . Moreover, because b is bounded, so is S. This

proves the claim and the theorem.
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