
TOPICS IN HIGH-DIMENSIONAL INFERENCE WITH

APPLICATIONS TO RAMAN SPECTROSCOPY

by

Amy S. Wagaman

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2008

Doctoral Committee:

Assistant Professor Elizaveta Levina, Chair
Professor Michael D. Morris
Associate Professor Kerby A. Shedden
Assistant Professor Ji Zhu



c© Amy S. Wagaman
All Rights Reserved

2008



To my family, especially my grandmother

ii



ACKNOWLEDGEMENTS

I would like to thank those who made the completion of this dissertation possi-

ble. I would especially like to thank Liza Levina for providing excellent guidance

and boundless patience during the development of the thesis. I would also like to

thank George Michailidis for helpful discussions on multi-dimensional scaling and

other dimension reduction techniques. I am also very grateful for the support of my

dissertation committee, and I would like to thank Michael Morris, Kerby Shedden,

and Ji Zhu for their guidance. I also owe a note of gratitude to Andrew Callender,

Gurjit Mandair, Kurt Golcuk, and Kate Dooley from the Morris lab for the time they

took to explain the chemistry setup to me, as well as data collection they did for our

analyses. I would also like to thank my family for their support and encouragement.

Many thanks to Kat Kentes, Herle McGowan and Brenda Gunderson for additional

support and encouragement during my years at Michigan.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Chemistry background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Current methods in Raman spectroscopy . . . . . . . . . . . . . . . . . . . . 7
1.3 Background on covariance estimation in high dimensions . . . . . . . . . . . 9

1.3.1 Known properties of covariance . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Alternative estimators of covariance matrices . . . . . . . . . . . . 12

II. Estimating Intrinsic Dimension for Chemical Components . . . . . . . . . . 17

2.1 Methods of estimating the number of pure components . . . . . . . . . . . . 18
2.1.1 Current methods for estimating the number of pure components . 18
2.1.2 Maximum likelihood estimation of dimension . . . . . . . . . . . . 19

2.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Choice of the tuning parameter k for the MLE . . . . . . . . . . . 27
2.2.4 Impact of image size . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Dealing with high levels of noise . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Choice of window size for smoothing . . . . . . . . . . . . . . . . . 31
2.3.2 Simulation results with high levels of noise . . . . . . . . . . . . . . 32

2.4 Applications to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Dataset 1: PMMA with two different curing times . . . . . . . . . 34
2.4.2 Dataset 2: Bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Using local dimension estimates for image segmentation . . . . . . . . . . . . 35
2.5.1 Image segmentation technique: normalized cuts . . . . . . . . . . . 36
2.5.2 Segmentation results . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

III. Isoband - Reordering Variables for Banded Covariance Estimation . . . . 41

iv



3.1 Background on banded and thresholded estimators . . . . . . . . . . . . . . 42
3.2 Reordering variables with the Isomap . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 The case of disconnected neighborhood graphs . . . . . . . . . . . . 47
3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Selecting the number of nearest neighbors for the Isomap . . . . . 49
3.3.2 Recovered orderings . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Estimation results for approximately bandable matrices . . . . . . 52
3.3.4 Estimation results for block-diagonal covariances . . . . . . . . . . 55

3.4 The Krzanowski measure for comparing eigenspaces . . . . . . . . . . . . . . 59
3.4.1 Comparison measures . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Model Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Protein consumption example . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IV. Improving Nearest Neighbor Graph Construction . . . . . . . . . . . . . . . 76

4.1 Background on nearest neighbor graphs . . . . . . . . . . . . . . . . . . . . . 76
4.2 Existing methods for graph perturbation . . . . . . . . . . . . . . . . . . . . 78
4.3 New perturbation proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Results for estimating block-diagonal structure . . . . . . . . . . . 82
4.4.2 Choice of tuning parameters . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Protein consumption example . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Gene expression example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

v



LIST OF FIGURES

Figure

2.1 Test set 1 (dissimilar spectra). The pure component spectra of plastics and bovine
bone are rescaled to maximum intensity 1; horizontal axis shows Raman shift (cm−1). 24

2.2 Test set 2 (similar spectra). The pure component spectra of mouse bone and PMMA
are rescaled to maximum intensity 1; horizontal axis shows Raman shift (cm−1). . 25

2.3 Sensitivity to k for sample size, n = 1000, and results averaged over 100 replications.
Dashed lines show the range where the estimate is rounded to the correct value. . . 28

2.4 MLE estimates on smoothed data as a function of MA window size at various noise
levels for dissimilar spectra with 4 major + 2 minor components at 10%, n = 3600,
k = 20. The horizontal lines show the range where the estimator is rounded to the
correct value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Segmentation results with .1% and .3% Gaussian noise; the pixel color values show
local dimension estimates. Estimated boundaries are shown in dark blue where
they do not match the true boundaries shown in red. . . . . . . . . . . . . . . . . . 39

3.1 Raw dissimilarities d(1, j) plotted against variable index j, and Isomap shortest-
path distances for several values of r (the number of nearest neighbors); p = n = 100. 49

3.2 Coordinates in R1 plotted against variable index for the MDS and Isomap applied
to the true Σ1(0.7) covariance and three realizations of the sample. Realization (a)
is typical, (b) is less common, and (c) is rare. . . . . . . . . . . . . . . . . . . . . . 51

3.3 Heatmap of percentage of times out of 50 replications each element was estimated
as zero for model Σ1(0.7, 0.8, 0.9). Black corresponds to 0%, white to 100%. . . . . 58

3.4 Heatmap of percentage of times out of 50 replications each element was estimated
as zero for model Σ2(1/2, 1/2, 1/2). Black corresponds to 0%, white to 100%. . . . 59

3.5 Scree plots of unspiked and spiked AR eigenvalues for first 20 eigenvectors for
ρ = .1,.5,.7, and .9 for one spike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Average Krzanowski measure vs. k for AR Setting n = p = 100, for several values
of m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 True vs. estimated average Krzanowski measures . . . . . . . . . . . . . . . . . . . 67

vi



3.8 Average K(m) vs. m for the banded estimates based on each tuning measure and
the sample covariance compared to the true covariance over 100 replications with
n = p = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 Agnes clustering of the protein consumption data in the space of the first two PCs.
The first split separates circles from everything else; the second split separates
triangles from pluses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Histograms of correlations for full p = 815 and partial p = 151 Raman data sets. . 75

4.1 Agnes clustering of the protein consumption data in the space of the first two PCs
after graph perturbation methods have been applied. . . . . . . . . . . . . . . . . . 87

4.2 Heatmap of Khan data, columns are sorted by tissue class, rows are genes by block
order for each estimator or hierarchical clustering for sample and labeled based on
position in hierarchical clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Heatmap of Khan data estimated correlation matrices for different covariance es-
timators. Black corresponds to correlations near -.6, white to correlations of 1.
Variables were clustered via hierarchical clustering for visual scanning of blocks. . 92

vii



LIST OF TABLES

Table

2.1 Spectral Peak Locations for Dissimilar Spectra. . . . . . . . . . . . . . . . . . . . . 23

2.2 Test set 1 (dissimilar spectra): estimated number of pure components. . . . . . . . 27

2.3 Test set 2 (similar spectra): estimated number of pure components. . . . . . . . . . 27

2.4 Test set 1 (dissimilar spectra): estimated number of pure components for n = 400. 29

2.5 Test set 1 (dissimilar spectra): sample size comparison (rounded to nearest integer). 29

2.6 Dissimilar Spectra smoothing results: n = 3600, k = 20, w = 9, 4 major + 2 minor
components, results averaged over 100 replications . . . . . . . . . . . . . . . . . . 33

2.7 Similar Spectra Smoothing Results: n = 3600, k = 20, w = 9, 4 major + 2 minor
components (5 distinct), results averaged over 100 replications. . . . . . . . . . . . 33

2.8 Real data results for the three estimators applied to raw and smoothed (denoted
by Sm) images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Average (SE) operator norm loss over 50 replications, for covariance models Σ1 and
Σ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Tuning parameter selection: averages (SE) over 50 replications (bandwidth for
banding and threshold for thresholding). . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Average (SE) operator norm loss over 50 replications for block-diagonal covariance
models. Block sizes are 50, 30, 20 for p = 100 and 100, 60, 40 for p = 200. . . . . . 56

3.4 Average l2 norm loss over 100 replications for each tuning measure. . . . . . . . . . 69

3.5 Krzanowski measure K(m): principal eigenspaces of Isoband and thresholding com-
pared to the sample covariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Percentage of variance explained by the nine PCs. . . . . . . . . . . . . . . . . . . 70

3.7 Loadings for the first two PCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Average operator norm loss over 100 replications for block-diagonal covariance mod-
els. Block sizes are 50, 30, 20 for p = 100 and 100, 60, 40 for p = 200. . . . . . . . . 83

viii



4.2 Average number of blocks found over 100 replications for block-diagonal covariance
models. Block sizes are 50, 30, 20 for p = 100 and 100, 60, 40 for p = 200. . . . . . 83

4.3 Krzanowski measure K(m): principal eigenspaces of the bootstrap and local smooth-
ing compared to Isoband. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ix



ABSTRACT

TOPICS IN HIGH-DIMENSIONAL INFERENCE WITH APPLICATIONS TO RAMAN
SPECTROSCOPY

by

Amy S. Wagaman

Chair: Elizaveta Levina

Recent advances in technology have led to a demand for statistical techniques

for high-dimensional data. This thesis explores dimension estimation and reduction,

covariance estimation and regularization, and improving nearest neighbor graphs

with some examples in the context of Raman spectroscopy.

A new technique for estimating intrinsic dimension is proposed and used to esti-

mate the number of pure components in a chemical mixture in Raman spectroscopy

applications. We show how the new method improves over existing procedures, can

be adapted via smoothing to deal with high noise levels, and has future applications

in detecting mixture homogeneity.

Next, we consider covariance estimation and regularization in high dimensions.

Regularized covariance estimators in high dimensions depend on the ordering of

variables or are completely invariant to variable permutations. We propose a new

method, Isoband, which uses the unordered data to discover a suitable order for the

variables and then apply methods which depend on variable ordering to improve

x



covariance estimation for sparse covariance matrices. Our method has the additional

advantage of being able to detect blocks within covariances and thus create additional

sparsity and structure in the estimate. We show by simulations that when a suitable

variable ordering exists, we do better by discovering it than by using a permutation-

invariant method, and illustrate the new methodology on a real data example.

The Isoband methodology relies on a nearest neighbor graph, and in the last

chapter, we address improving robustness of nearest neighbor graphs, which have

widespread statistical applications. In our application, the nearest neighbor graph is

based on the variables rather than the observations. Two new methods are proposed

which improve upon the basic nearest neighbor graphs by removing spurious edges by

either bootstrapping the data or smoothing. Both methods are competitive compared

to existing graph perturbation methods in the literature.
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CHAPTER I

Introduction

Many modern data sets are characterized by high dimensionality - that is, the

number of variables observed (p) may be very large, especially when compared to

the number of observations (n). Examples cover a wide range of fields including

spectroscopic analysis, gene expression data, financial data, and many others. In

this high-dimensional situation, many traditional statistical procedures fail, and de-

veloping alternatives specifically for high-dimensional data has become an important

area of modern statistics. This thesis contributes to the following general areas of

high-dimensional inference: dimension estimation and reduction, covariance estima-

tion and regularization, as well as perturbation methods for improving robustness of

nearest neighbor graphs, with some applications to Raman spectroscopy.

For high-dimensional data, dimension estimation and reduction can be a valu-

able data analysis tool. Estimating the true “intrinsic” dimension, s, of the data

in p dimensions (s ¿ p) can enable the use of dimension reduction methods and

thus remove the “curse of dimensionality”. Chapter II presents an interdisciplinary

project on Raman spectroscopy to identify chemical components in objects scanned

as images, where the number of distinct components can be viewed as the intrinsic

dimension of the data. We developed a new procedure [38] based on the maximum

1



2

likelihood estimator (MLE) of intrinsic dimension [36] that proved to be superior to

traditional estimators used in chemistry such as the Malinowski F -test [39] for esti-

mating the number of components. Preliminary background information on Raman

spectroscopy is given later in this Introduction (Section 1.1).

Another area of high-dimensional inference we consider is estimating the covari-

ance matrix. This is an important inference problem because of the number of

statistical techniques that require an estimate of the covariance matrix or its inverse.

Recent results in random matrix theory have shown the sample covariance performs

poorly when p is large relative to n. Thus, alternative ways of estimating covariance

are needed in high-dimensional situations. Alternative methods for estimating the

covariance can be divided into two classes depending on whether or not they require

ordered variables (e.g., time series). Background on known results on covariance

matrices in high dimensions and various alternative covariance estimators is given

in Section 1.3. In Chapter III, we propose a methodology we call Isoband to un-

cover structure in covariance by applying dimension reduction methods to discover

an ordering of variables. Chapter III also contains a discussion of eigenspace com-

parison measures needed to study the impact of different covariance estimators on

the resulting statistical analysis (e.g. PCA).

Chapter IV contains preliminary results on perturbation methods for constructing

a robust k nearest neighbor (NN) graph. The motivation comes from the Isoband

methodology in Chapter III, which relies on NN graphs, but many statistical proce-

dures in classification, clustering, semi-supervised learning, and dimension reduction

rely on k-NN graphs as well. The stability and robustness to noise of these graphs

has not been extensively studied. We examine ways of perturbing graphs with the

goal of improving robustness, propose two new methods, and apply these ideas to
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the Isoband methodology where constructing a more robust NN graph improves co-

variance estimation.

1.1 Chemistry background

In Raman spectroscopy, an object which is a mixture of chemical components

is hit with a laser, molecular excitations or absorptions of photons occur, the laser

photons may be altered as a result, and are then recollected. The photons are altered

if they interact with molecular bonds that are vibrating, and since not all molecules

vibrate at the same time, not all photons are altered (the fraction of altered photons

is small). It should be noted that some molecules never vibrate. Information about

all the returned photons is collected, and data from the photons that were not altered

is discarded. The information collected about the altered photons can be used to

determine the chemical components present in the scanned object. The object is

scanned as an image, hence data is collected by pixel. At each pixel, changes in the

laser photons are measured at specific wavelengths. Each wavelength corresponds

to a wavenumber, which is simply the inverse of the wavelength and hence is a

measure of the frequency of the vibration in the molecules and therefore also of the

energy required to excite the molecules. The observation at each pixel is a vector of

energy intensities by wavenumber, and is called a mixture spectrum. The spectra of

the chemical components present in the mixture are referred to as pure component

spectra. The mixture spectrum at each pixel is a function of the pure component

spectra and their relative concentrations.

The chemistry problem is to extract pure component spectra from the observed

mixture spectra, which allows identification of the chemical components in the mix-

ture. However, the researcher may not have a priori knowledge about the number
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of pure component spectra that are present in the mixture. Therefore, a number of

components to extract must be determined and the extraction performed based on

that estimated number of components. It is not guaranteed that the number of com-

ponents present is going to be homogeneous throughout the image under analysis. As

a general rule, regions of the image (i.e., parts of the object) with more components

are more interesting, and may warrant further study. Hence, when considering how

to determine the number of components to extract, local counting methods must be

considered along with global counting methods.

We note that the setting is high-dimensional. Each image is at least 64 by 64

pixels, hence the number of observations n is at least 4096 (other example image

sizes are 128 × 128 and 256 × 256). The number of observations is typically larger

than 10,000, but this may be reduced by summing over one dimension. For example,

a data set that is 100× 280 may be reduced to 100× 70 simply by summing up the

spectral information for groups of 4 observations along the second spatial dimension.

This amplifies the signal by enhancing the signal-to-noise ratio to help with further

analysis. The number of wavenumbers p where intensities are recorded at each pixel

ranges from 500 to 900 (depending on the laser used), but is consistent throughout

a single image. Thus, the data matrix (observations by wavenumber) is larger than

4000×500, but the number of chemical components present in the mixture is usually

under 20.

The extraction phase as currently practiced (further information in Section 1.2)

involves user intervention and utilizes expert knowledge to obtain the pure compo-

nent spectra. Chemists may suspect certain chemicals are present and can examine

the extracted spectra to see if any chemicals are easily recognizable (based on peak

location and other spectral features). This knowledge enables chemists to use/modify
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the extraction procedure to obtain “meaningful” results, but can be time-consuming

and subjective. Future applications will require faster analysis as the technology

becomes adapted to scan human beings rather than laboratory slides.

To further discussion, we introduce some notation. For each Raman spectroscopy

image, let n be the total number of pixels, and let p be the number of wavenumbers

measured at each pixel. Each individual spectrum is a 1× p row vector denoted X i

where i = 1, ..., n. We call the collected observed mixture spectra X which is an

n× p matrix. The pure component spectra are combined into a single (unknown)

matrix, A, which is s× p where s is the number of component spectra. Finally, we

have an unknown weight (concentration) n × s matrix W , containing weights with

which the pure component spectra are combined to obtain the mixture spectra.

There are two main physical properties that arise from the underlying chemistry

of the problem, including one that yields a model for the setting.

1. Linear additivity of spectra.

The first physical property of the system is that the observed mixture spectra

are simply a linear combination of the pure component spectra, with the concen-

tration matrix providing the weights. For the Raman scattering process, under

the assumptions that the chance of exciting a molecule is constant and that

identical molecules behave independently, the model implies that the molecular

changes in the altered photons that are caused by each pure component sim-

ply add up at each measured wavenumber [51]. Thus we have the following

relationship:

(1.1) X = WA + ε,

where ε is noise (details below). This model is analogous to the Lambert-Beer-
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Bougeur Law for absorption processes [59]. Note that X is observed, while

W , A, ε, and s are not. Each entry in X, denoted Xij, corresponds to the

spectral intensity for pixel i at wavenumber j. Here, ε is an n × p matrix of

error terms, which are assumed to be independent and identically distributed

Gaussian random variables. This assumption is made throughout the chemistry

literature [39] [58], though sometimes the errors are instead assumed to be

uniform on (-1,1) [59]. Note that the errors may be spatially correlated, and

hence the independence assumption for errors may not be valid in practice.

The linearly additive property is the primary feature of the problem, and is the

reason why principal components analysis (PCA) has been widely applied in

this area.

2. Non-negativity of spectra and spectral weights.

The spectra cannot have negative intensity values at any wavenumber because

negative numbers of photons cannot be observed. In addition, the spectral

weights (concentrations) must also be non-negative. Hence, each entry in W

and in A must be non-negative [58]. That is, we need each Wik ≥ 0 and Akj ≥ 0,

where k is the index for the pure component spectra, k = 1, .., s.

Apart from the constraints, the general setup of this problem implies that A

and W can be recovered from X by either factor analysis or principal components

analysis. Each X i is a linear combination of the spectra Ak and corresponding

weights W k, where each Ak is a 1 by p vector representing a single spectrum and

each W k is an n by 1 vector representing the weights given to spectrum k in each

pixel. If the Ak’s are viewed as unknown factors, with the W k’s as factor loadings,

then this scenario is akin to factor analysis (which we will see is utilized by some of

the current chemistry techniques).
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1.2 Current methods in Raman spectroscopy

The process of identifying the pure components present in the mixture spectra

currently used in the chemistry literature can be broken down into two main stages.

Conceptually, the first stage is both a counting and extraction stage using PCA,

where s and the matrix of principal components V are found. The second stage

is rotation, where the proposed extracted spectra (the principal components in V )

are rotated into spectrally “meaningful” components. That is, a rotation matrix T

is applied to V such that Â = TV , and the resulting spectra found in Â meet the

necessary constraints. The first stage can be broken further down into a counting

stage where the number of components to extract is determined and an extraction

stage. The counting is usually done using a PCA-based technique, such as a scree

plot, or Malinowski’s F -test (to be discussed later), or by eye [58][39].

Different chemistry techniques utilize different manipulations during the rotation

stage to satisfy the constraints, but do not make any adjustments to PCA itself

in the extraction phase. Recall that principal components analysis is a dimension

reduction technique which finds linear combinations of the original variables that best

explain the variability in the data. Recall that X1,X2, ..., Xn are the p-dimensional

data vectors. PCA consists of computing the eigenvalues and eigenvectors of the

data covariance matrix Σ̂ = 1/n
∑n

i=1(X i− X̄)(X i− X̄)′, where A′ denotes matrix

transpose, and X̄ = 1/n
∑n

i=1 X i. Alternatively, the principal components can

be computed from the singular value decomposition of the data matrix X. The

eigenvalues of Σ̂, λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂p ≥ 0, represent the amount of variation in the

data explained by the corresponding principal component. Briefly, we examine some

of the current chemistry algorithms for extracting and rotating spectra, which fall
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into a class called self-modeling curve resolution algorithms (SMCR) [26, 25]. These

algorithms have a variety of applications, though we limit our discussion to their use

in Raman spectroscopy.

Factor analysis-based SMCR algorithms have been used on Raman images to

determine the mineral and matrix components contained within bone tissue [56, 42,

54, 57]. In this context, factor analysis is used interactively to allow the user to

visualize different linear combinations of potentially useful eigenvectors, which are in

turn extracted by principal component analysis (PCA) [44]. This approach has been

used to distinguish between healthy and diseased bone tissues [42, 54, 57], as well

as to highlight chemical differences between trabecular and cortical bone structures

at the micro-structural level [56]. Factor analysis is also useful for removal of non-

informative eigenvectors associated with background tissue fluorescence and bone

tissue embedding reagents, such as poly(methyl methacrylate) (PMMA) [56, 42].

While factor analysis-based starting techniques are useful and popular, they fre-

quently run into difficulties with over- or under-determination because they assume

that an appropriate number of eigenvectors (number of components) has been se-

lected [20, 58]. Alternatives to factor analysis include Simplisma and band-target

entropy minimization (BTEM) [58], which uses a larger number of eigenvectors than

the number of components, s. BTEM has been shown to outperform Simplisma

in terms of recovering minor components [58]. However, even in BTEM, the final

decision on the number of extracted components has to be made by the user and is

based on visual inspection of the eigenvectors. It also places considerable demands

on the user in terms of computational time and human interaction (exhaustive band

targeting) [58]. This is especially undesirable if the user needs to analyze a large

collection of Raman images or spectra, or to perform the analysis quickly.
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Finally, we note the data from Raman experiments are very complex, with back-

ground fluorescence and other illumination issues to be considered, that signal-to-

noise (s/n) ratios in real-time in situ Raman experiments are often low, and the

structure of the noise may, in general, be non-linear (beyond the spatial correlation

already mentioned). This situation may be further compounded by local variations

in s/n ratios as the Raman scattering properties of the irradiated specimen depend

on its surface morphology and chemical composition; this may make the use of a

local method more appropriate in some situations.

In summary, homogeneity, concentration, and the number of pure components

within the chemical system are seldom known in advance [49, 8] and low signal-to-

noise ratios must be taken into account. With this in mind, we focus on the counting

stage of the analysis in Chapter 2. We employ a maximum likelihood based counting

method, and compare it to existing methods. We show how our counting method can

be used for identifying non-homogeneous samples and homogeneous regions within

those samples. The new counting method is adapted to deal with the high levels of

noise present in the data using smoothing methods.

1.3 Background on covariance estimation in high dimensions

Estimation of the covariance matrix has always been a fundamental problem in

statistical inference, since the covariance matrix plays a key role in many data anal-

ysis techniques. Principal component analysis (PCA), classification by linear and

quadratic discriminant analysis (LDA and QDA), inference about the means (e.g.,

setting confidence intervals on contrasts), and analysis of independence and condi-

tional independence in graphical models all require an estimate of the covariance

matrix or its inverse, also known as the precision or concentration matrix. Advances
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in random matrix theory – from the classical results of [41] to the recent work of

Johnstone and his students on the theory of the largest eigenvalues and eigenvectors

[27, 28, 45, 30], and many others – allowed in-depth theoretical studies of the tra-

ditional estimator, the sample (empirical) covariance matrix, and showed that there

are problems with the sample covariance in high dimensions. Specifically, under the

normal assumption on the variables the sample covariance performs very poorly when

the number of variables p is large relative to the sample size n. In particular, unless

p/n → 0, the sample covariance eigenvalues are over-dispersed and the eigenvectors

are not consistent. It has also been shown that classification by LDA breaks down

and reduces to random guessing when p/n → ∞ [3]. These results have demon-

strated that alternative ways of estimating the covariance matrix are needed in high

dimensions. Next, we briefly review some known properties of the sample covariance

eigenvalues and eigenvectors, and introduce alternative covariance estimators.

1.3.1 Known properties of covariance

Within our context of Raman spectroscopy (performing PCA on a spectral data

set), we are most interested in the behavior of the sample eigenvectors and so we

begin our discussion with sample eigenvectors in high dimensions. Johnstone and Lu

showed that the sample eigenvector ê1 corresponding to the largest sample eigenvalue

is an inconsistent estimate of e1, the population eigenvector corresponding to the

largest population eigenvalue unless certain conditions are met [28]. This was shown

for a factor model where the observations X i are given by

(1.2) X i = µ +
m∑

j=1

(vj
i )(ej) + σzi, i = 1, ...n

where vj
i is a N(0, 1) random effect and the zi’s are Np(0, I), i.i.d. noise vectors

independent of the v’s. It is assumed that p/n → γ as n → ∞ and also that
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‖e1(n)‖ → % > 0 as n → ∞. Then Johnstone and Lu [28] showed that if p/n →

γ > 0, then lim infn→∞ E∠(ê1, e1) > 0 where ∠ represents the angle between the two

vectors. When the number of dimensions p = o(n), ê1 is a consistent estimate of e1.

There are some known results about the angles between sample and population

eigenvectors for the leading eigenvalues in a “spiked” covariance model [45], [22],

[23]. This model assumes that most of the population eigenvalues are 1, while a few

are greater than 1 and well-separated from the rest. Paul [45] and others [22], [23]

consider this “spiked” model where p/n → γ ∈ (0,∞) as n → ∞. The population

model under consideration is that each X i, i = 1, ..., n is Np(0, Σ), the X i’s are

independent, and Σ = diag(λ1, λ2, ..., λM , 1, ..., 1), where λ1 ≥ λ2 ≥ · · · ≥ λM > 1.

For the following results, γ is also restricted to be in (0, 1), but the results can be

extended to γ ∈ [1,∞).

Hoyle and Rattray [22], [23] showed heuristically that if 1 < λj ≤ 1 +
√

γ, where

λj is an eigenvalue of multiplicity one, then the cosine of the angle between ej and

êj almost surely converges to 0. If instead, λj > 1 +
√

γ, then the limit is positive.

Paul derives a similar result rigorously in [45]: Let dj denote the jth row of In (the

n by n identity matrix). Then if λj > 1 +
√

γ and is of multiplicity one, as n →∞,

almost surely,

(1.3) |〈êj, dj〉| →
√(

1− γ

(λj − 1)2

)
/

(
1 +

γ

λj − 1

)
,

where 〈x, y〉 is the inner product between x and y. If instead, 1 < λj ≤ 1+
√

γ, then

as n →∞,

(1.4) 〈êj, dj〉 → 0 a.s.

These results indicate that the sample eigenvectors are not a good basis for PCA

in high dimensions. There are known problems with the sample eigenvalues in high
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dimensions as well. It is known that the sample eigenvalues, λ̂j’s, are more spread out

than the population eigenvalues λj’s, and the larger the ratio of p/n, the more spread

out the sample eigenvalues are. For the largest sample eigenvalue λ̂1, if p/n → γ ≤ 1,

then, [17]

(1.5) λ̂1 → (1 + γ1/2)2 a.s.

The distribution of λ̂1 has also been derived, for details, see [27].

In the “spiked” covariance model, it has been shown that a “threshold” value

for the sample eigenvalues is 1 +
√

γ [45],[22],[23] . The sample eigenvalues behave

differently depending on whether the corresponding population eigenvalues are larger

or smaller than the threshold. Under the “spiked” covariance model, Paul showed

that if 1 < λj ≤ 1 +
√

γ, then λ̂j → (1 +
√

γ)2, almost surely as n → ∞. If

λj > 1+
√

γ, then λ̂j → λj

(
1 + γ

λj−1

)
, almost surely as n →∞ [45]. Paul also derives

an asymptotic distributional result for λ̂j when λj > 1 +
√

γ [45]. If λj > 1 +
√

γ

and λj is of multiplicity 1, then, as n and p →∞ and p/n− γ = o(n−1/2),

(1.6)
√

n(λ̂j − pj) ⇒ N(0, σ2(λj)),

where

(1.7) pj = λj

(
1 +

γ

λj − 1

)
; σ2(λj) = 2λ2

j

(
1− γ

(λj − 1)2

)
.

These results on sample covariance eigenvectors and eigenvalues demonstrate why

alternative covariance estimators are needed in high dimensions. A discussion of

alternative estimators follows.

1.3.2 Alternative estimators of covariance matrices

Regularized covariance estimators proposed as alternatives to the sample covari-

ance in high dimensions can be loosely divided into two types. One large class of
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methods covers the situation where variables have a natural ordering or there is a no-

tion of distance between variables, as in longitudinal data, time series, spatial data,

or spectroscopy. The implicit regularizing assumption underlying these methods is

that variables far apart are only weakly correlated, and therefore one can improve

on the sample covariance by taking advantage of the ordering [60, 24, 15, 5, 37].

Consistency and convergence rates have been established for some of these estima-

tors in the high-dimensional setting; see more on this in Section 3.1. Apart from the

normal assumption, these methods do not make any parametric assumptions on the

covariance structure.

For regularizing the inverse covariance matrix in the case of ordered variables, a

popular tool is the Cholesky decomposition. The modified Cholesky decomposition

of the inverse covariance matrix Σ−1 is

(1.8) Σ−1 = T ′DT,

where D is a diagonal matrix and T is a lower-triangular matrix with ones along

the diagonal. The elements of T and D have useful interpretations. If we let X =

(X1, ..., Xp)
′ be the time-ordered vector with mean 0 and covariance matrix Σ, and

perform a linear regression of Xt on its predecessors Xt−1, ..., X1, so that Xt =

∑t−1
j=1 φtjXj + εj, then the elements of T are the −φ’s and the diagonal elements of

D are the variances of the ε’s. Thus, the covariance estimation problem is reduced

to a series of regressions [46].

Methods for regularization of the Cholesky factor include banding T [60] [5],

adding an l1 or l2 penalty on the elements of T to the normal likelihood [24], and

adding a nested Lasso penalty [37] which results in variable bandwidth banding of

T .

For regularizing the covariance matrix itself rather than its inverse a simple and
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popular approach is banding, or more generally, filtering [5] [15]. In filtering, the

sample covariance matrix is replaced by an entry-wise (Schur) product of itself and

a weight matrix, Σ̂ ∗Fk, where Fk is the weight matrix and k is a tuning parameter.

The simplest filtered estimator (referred to as simple banding) produces a k-

diagonal estimate. The (i, j)th entry of this weight matrix is given by Fk(i, j) =

I(|i−j| ≤ k), simply the indicator of whether the entry is on the first k subdiagonals.

The covariance estimate resulting from simple banding may not be non-negative

definite. Another choice of the weight matrix is

(1.9) Fk(i, j) =

(
1− |i− j|

k + 1

)

+

.

We call this weight matrix a triangular filter. Like banding, it results in zeros once

|i−j| > k, but the resulting covariance estimate is non-negative definite, because the

Schur product of two non-negative definite matrices is non-negative definite. Finally,

we can consider a smooth weight matrix. One example where the resulting estimate

is no longer banded, but is non-negative definite, is a Gaussian filter

(1.10) Fk(i, j) = exp(−|i− j|2
τ(k)

).

To make Gaussian filtering comparable to banding, one could choose τ(k) = −k2/ log ε,

which ensures Fk(i, j) ≤ ε once entries are more than k units away from the diagonal.

The tuning parameter k can be chosen by cross-validation, for example via the

scheme proposed by [5], which involves computing all possible k banded estimates

on a training set and comparing the estimates to the sample covariance on a test set.

We give more details on banding in Chapter III.

Regularization methods we have discussed so far require an ordering of the vari-

ables. There are, however, many applications where such an ordering is not available:

genetics, for example, or social, financial and economic data. Methods that are in-
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variant to variable permutations, like the covariance matrix itself, are appropriate

for such applications, resulting in a second class of methods of permutation-invariant

estimators.

The class of permutation-invariant estimators includes estimators which shrink

the sample eigenvalues. Regularizing large covariance matrices by Steinian shrinkage

of eigenvalues has been proposed early on, originally by Stein in a Rietz lecture in

1975, and developed further by [19] and [12]. A more recent shrinkage estimator

of Ledoit and Wolf replaces the sample covariance with a linear combination of

the sample covariance and the identity matrix, with optimal (in a suitable sense)

coefficients estimated from data [35]. Specifically, Ledoit and Wolf set out to find

an estimator Σ∗ such that Σ∗ = ρ1I + ρ2Σ̂ which minimizes expected quadratic

loss E [‖Σ∗ − Σ‖2], where ‖A‖ =
√

tr(AA′)/p, a modified Frobenius norm. The

sample estimate Σ̂∗ derived by Ledoit and Wolf is a consistent estimate for Σ∗,

and it also has the same asymptotic risk [35]. Other shrinkage estimators include

the empirical Bayesian estimator [19] which is also a linear combination of I and

Σ̂, but the weights are determined by n and p only, as well as the Stein-Haff [52]

and minimax estimators [12] which replace the sample eigenvalues with shrunken

versions. While shrinkage estimators are invariant to variable permutations, they

do not affect the eigenvectors of the covariance, only the eigenvalues, and hence

cannot be relied on to improve PCA. Shrinking eigenvalues also does not create

sparsity in any sense, so these estimators cannot be used to analyze independence

and conditional independence relations.

A number of non-shrinkage estimators have been developed. A penalized likeli-

hood approach has been used to derive a sparse permutation-invariant estimator of

the inverse covariance matrix based on adding an l1 penalty to the normal likelihood
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[10], [61], and [47]. An estimator for a factor analysis model with known factors

has been proposed by [14]. Thresholding the sample covariance (i.e., setting small

entries to zero), which is obviously permutation-invariant, has been analyzed in the

high-dimensional setting by [4] and [29]. The permutation invariant thresholded

covariance estimator is defined by

(1.11) Tt(Σ̂) = [σ̂ij I(|σ̂ij| ≥ t)] ,

where I(·) is the indicator function. We will include more detailed results on thresh-

olding in Chapter III.

In Chapter III, we propose an approach that complements these covariance es-

timation methods by taking a different view on covariance structure. Rather than

focus purely on permutation-invariant estimators when the data is unordered, we

seek to find an ordering in the data that allows for application of covariance estima-

tors which are not permutation-invariant. We focus on finding an ordering by using

a manifold projection method, the Isomap, which makes simple banding appropriate

and finds block-diagonal covariance structures.



CHAPTER II

Estimating Intrinsic Dimension for Chemical Components

To reliably extract pure component spectra in Raman spectroscopy, chemists need

a counting procedure to determine the number of components to extract. In this

Chapter, we adapt a non-linear dimension estimator, the maximum likelihood esti-

mator (MLE) of intrinsic dimension, to the problem of determining the number of

pure components in a mixture from Raman spectroscopy data, though the method

can be applied to any spectral data and even more generally. We show how the

intrinsic dimension corresponds to the number of pure components and introduce

the MLE, as well as review existing counting methods in Section 2.1. In Section 2.2,

we discuss the selection of a tuning parameter, and show on simulated mixtures that

the MLE produces superior results compared to other methods, and is accurate even

when minor components are present. In Section 2.3, we show how to handle low s/n

ratios in the data to obtain accurate estimates, and illustrate by applying the MLE

to two real datasets with high noise levels in Section 2.4. In Section 2.5, we show

how computing local estimates at every image pixel can be used to automatically

divide the image into homogeneous regions. Section 2.6 concludes with discussion.

17
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2.1 Methods of estimating the number of pure components

Many extraction (SMCR) methods require an estimate ŝ of the number of the

components to be extracted, but few in fact make use of formal estimates. Exam-

ining a scree plot or plots of extracted eigenvectors by eye remains the prevalent

method of analysis; and while the human eye can often be more accurate than an

automated method, visual procedures are subjective, inconsistent across users, and

time-consuming. In this section, we first review the methods that are currently avail-

able (even if not necessarily used) for estimating the number of components, and then

present the new maximum likelihood method.

2.1.1 Current methods for estimating the number of pure components

Principal components analysis may be used for both the counting and extraction

of the pure components. Recall that the eigenvalues of Σ̂, λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂p ≥ 0,

represent the amount of variation in the data explained by the corresponding prin-

cipal component. A scree plot of these eigenvalues can be used to estimate the true

dimension by eye using the traditional “elbow” method. A somewhat more princi-

pled approach is to estimate the dimension of the data by the number of principal

components that explain a pre-specified (large) fraction of the variance in the data:

(2.1) ŝ = arg min
s
{s :

s∑
j=1

λ̂j ≥ (1− ε)

p∑
j=1

λ̂j}.

Choosing an appropriate fraction 1− ε generally depends on the amount of noise

in the data, which is not known in advance. This is one difficulty with using PCA for

estimating dimension. Typically the fraction chosen is at least 90%; we use ε = 0.01

throughout this Chapter.

The Malinowski’s F -test [39] was introduced in the chemometrics literature to

differentiate between significant and noise eigenvectors in PCA. The sum of the
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eigenvalues
∑p

j=1 λj can be decomposed into pieces representing significant and noise

eigenvalues, with the number of significant eigenvalues providing an estimate of the

number of pure components. The test starts from the smallest eigenvalue λp and goes

through the eigenvalues in increasing order until it finds the first significant one. Once

one eigenvalue has been determined to be significant, all larger eigenvalues are also

considered significant. The Malinowski’s F -statistic for testing the significance of

the s-th eigenvalue is given by

(2.2) Fs =
λs∑p

j=s+1 λj/(p− s)
.

Under the null hypothesis that the s-th eigenvector is noise, Malinowski argued that

Fs has an F distribution with 1 and p−s degrees of freedom. The estimated number

of components based on the F -test can be computed as

(2.3) ŝ = min
s
{Fs > f1,p−s(1− α)},

where f1,p−s(1−α) is the (1−α) critical value for the F (1, p−s) distribution. Again,

the choice of α, like the choice of ε in (2.1), is at the user’s discretion; we will use

α = 0.01 throughout. In any case, since the test is repeated until the first significant

eigenvalue is found, this creates a multiple testing problem (see, e.g., [53]), and

the actual overall significance level will be higher than α. A comparison of similar

techniques and a modified F -test can be found in [40].

2.1.2 Maximum likelihood estimation of dimension

The maximum likelihood estimator (MLE) of intrinsic dimension [36] was origi-

nally proposed for estimating the intrinsic dimension s of data X1,X2, ..., Xn which

are measured as p-dimensional vectors, but in fact lie on a manifold, that is, in an

s-dimensional subspace of the p-dimensional space, with s typically much smaller
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than p. Here we show how the MLE of intrinsic dimension can be applied to spec-

troscopy data and resolve practical issues that arise in the process, such as choosing

the tuning parameter and dealing with high levels of noise in the data.

Let the Euclidean distance from a fixed observation x to its jth nearest neighbor,xj

in the sample be denoted Tj(x).

The MLE is derived by fixing an arbitrary point x and assuming the density

f(x) of the observations is constant in a small sphere of radius R around x, denoted

Sx(R). Then, define N(t, x), a process which counts the number of observations

within distance t of x, as

(2.4) N(t, x) =
n∑

r=1

I(Xr ∈ Sx(t)), 0 ≤ t ≤ R.

With the assumption of constant density around x, the process N is a Poisson process

whose rate can be calculated explicitly and used to write the log-likelihood of the

process. Then, the MLE can be found by solving the likelihood equations. The final

estimate ŝR(x) is computed as

(2.5) ŝR(x) =

[
1

N(R, x)

N(R,x)∑
j=1

log
R

Tj(x)

]−1

Notice that for a given radius R, there may be different numbers of nearest neighbors

within radius R for each x. It is possible to rewrite the MLE based on considering a

fixed number k of nearest neighbors at each point, rather than a fixed neighborhood

radius R, which is often more intuitive and hence easier to pick. The estimate is

then rewritten as

(2.6) ŝk(x) =

[
1

k − 1

k−1∑
j=1

log
Tk(x)

Tj(x)

]−1

This estimate can be made unbiased by replacing k − 1 with k − 2. We will use the

fixed k version with k − 2 (2.6).
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Equation (2.6) allows us to obtain an estimate of the intrinsic dimension at every

data point X i. Then the global estimate (or an estimate over a particular region)

can be computed by averaging the local estimates over the entire data set (or the

region in question). The global MLE for the whole dataset is given by

(2.7) ŝk =
1

n

n∑
i=1

ŝk(X i)

We discuss the choice of k and the sensitivity of the estimator to k in Section 2.2;

usually k is chosen to be a relatively small number, and the estimator is robust to the

choice of k. Note also that in general neither (2.6) nor (2.7) give an integer estimate

of dimension; in practice (2.7) is rounded to the nearest integer.

For the specific context of Raman spectroscopy, the intrinsic dimension of the

space generated by the spectra is not in itself an estimate of the number of pure

components present in the mixture. Consider the following: a “mixture” of two

points generates a line, which has intrinsic dimension one, and three points generate

a plane, which has intrinsic dimension two. Since the MLE estimates the dimension

of the manifold generated by the mixture (the line or the plane), we add one to

the MLE of intrinsic dimension in order to obtain the MLE for the number of pure

components present in the mixture.

An advantage of the MLE is that it automatically generates an estimate of the

number of components at every data point (pixel). While some variability in local

estimates is expected even in homogeneous mixtures due to noise, a lot of variability

indicates that the mixture under examination is likely not homogeneous. Another

potential application is using the local MLEs for testing for mixture homogeneity.

An application of local MLEs to segmenting the Raman image into homogeneous

regions is presented in Section 2.5.
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2.2 Simulation results

In this section we investigate the performance of all three estimators (PCA, Ma-

linowski F -test, and the MLE) on simulated mixtures obtained from real spectra.

Each pure material was scanned separately, and their individual spectra are com-

bined into a s× p pure component spectra matrix A, where s is the number of pure

components and p the number of different wavenumber values at which the spectra

were measured. To generate n mixture spectra X1, . . . , Xn, which we combine into a

single n×p matrix X, we first generate a random n×s matrix of component weights

W where the distribution of the weights in W is described in detail below. The

mixture spectra are then generated according to the linear additivity of the system

with i.i.d. Gaussian noise, ε, as discussed in the Introduction:

(2.8) X = WA + ε.

2.2.1 Data description

For generating simulated mixtures, we used two separate test sets of pure com-

ponent spectra generously provided by the Morris lab. The first set consists of

five plastics and one bovine bone spectra collected on the visible Raman system,

which are quite dissimilar from each other and should be easy to discriminate. The

pure components in this set are polyethylene (PE), Delrin (Del), polystyrene (PS),

poly(methyl methacrylate) (PMMA), bovine bone (Bone), and Teflon (Tefl), mea-

sured at p = 512 wavenumber values in the range 700 − 1600 cm−1. For details

on the visible Raman system and experimental conditions, see the Appendix. The

pure spectra were rescaled to have maximum intensity 1 (to compensate for different

amount of material present in each scan) and are shown in Figure 2.1, with distinct

spectral features of each component clearly visible by eye, although there is some
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overlap in peak locations (wavenumber location, also called Raman shift), as shown

in Table 2.1. Table 2.1 shows, however, that each spectra has at least one peak that

allows it to be easily discriminated from the others. Note that in each spectrum,

there is a fluorescence background present which varies across the spectrum. This

background is usually removed before pure component spectra are extracted from

the mixture, but the procedure to remove the background is subjective, time con-

suming, and not always fully successful. For testing the counting methods, we leave

the background present as it does not affect the number of pure components present.

Table 2.1: Spectral Peak Locations for Dissimilar Spectra.
Pure Component Approximate Main Peak Locations

Del 925, 1100, 1350, 1400, 1500
PE 825, 875, 990, 1000, 1050, 1175, 1340, 1450
PS 1000, 1030, 1200, 1600
Tefl 730, 1220, 1300, 1400
Bone 960, 1450

PMMA 800, 990, 1000, 1140, 1180, 1200, 1250, 1450

The second set of spectra contains five spectra of a fractured mouse tibia bone

and one plastic (PMMA) collected on the NIR system (see the Appendix for details)

and measured at 815 different spectral values. PMMA is used to embed the fractured

bone, and the five bone spectra are measured at different distances along the mouse

bone, gradually moving away from the fracture. The five bone spectra vary with

the distance away from the fracture but these differences in the spectra are minute

(see Figure 2.2). The further away from the fracture, the less the spectra differ; in

fact, the last two bone spectra, measured at 900 µm and 1100 µm away from the

fracture, are identical. Hence, this set of six spectra contains only five distinct pure

components. It is nearly impossible to see any differences between the spectra in

Figure 2.2, but there are changes to the amide and phosphate components in the

bone, which occur around wavenumbers 1240 to 1270 and also from 1600 to 1700.
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Figure 2.1: Test set 1 (dissimilar spectra). The pure component spectra of plastics and bovine bone
are rescaled to maximum intensity 1; horizontal axis shows Raman shift (cm−1).

We examined many combinations of weight matrices and noise levels in our simu-

lations. For the results presented here, for each set of six spectra we always select four
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Figure 2.2: Test set 2 (similar spectra). The pure component spectra of mouse bone and PMMA
are rescaled to maximum intensity 1; horizontal axis shows Raman shift (cm−1).

major components (Delrin, polystyrene, PMMA, and bone for set 1, and PMMA and

the three bone spectra closest to the fracture for set 2). The remaining two spec-
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tra in each set were used as minor components, to test whether the methods are

able to pick components present in small amounts. For the setting with just four

major components, each component’s weight was drawn uniformly from the interval

(.15,.30). When minor components were added at 10% and 5% levels, major compo-

nent weights were drawn uniformly from (.15,.25), and minor weights from (.05,.15)

and (.03,.07), respectively. In Section 2.3, we push the minor components level down

to 1%, in which case we draw the major weights from (.20,.30), and the minor weights

from (.00,.02). In each case, weights are randomly drawn from a uniform distribu-

tion on each interval were rescaled to sum to 1. Gaussian noise was added at a q%

level, which means that the noise has mean 0 and variance (0.01q)2. We also studied

settings with only three major components and obtained similar results.

2.2.2 Results

The results presented for each spectra set (Tables 2.2 and 2.3) are representative

of all simulations we performed. In each case, the number of pixels is n = 3600

(60 by 60 image), and the estimated numbers of components are averaged over 100

replications. We compare the MLE at k = 20 (the choice of tuning parameter is

discussed below), PCA at 99% variance explained, and Malinowski’s F -test at 1%

significance level. If the estimate is given as an integer (e.g., 4), it means there

was no variation in the estimate across the 100 replications. If there was variation

but the average came out to be 4, it is given as 4.0. Although global MLEs are

usually rounded to integer values in practice, for these results, the global MLEs are

not rounded to integer values before averaging in order to produce more accurate

average results.

The levels of noise are chosen to show where the MLE starts picking up noise

components and overestimates the number of pure components. For both test sets,
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Table 2.2: Test set 1 (dissimilar spectra): estimated number of pure components.
No. comp. 4 6 6
Minor level (%) 0 10 5
Noise level (%) 0 .05 .1 .3 0 .05 .1 .3 0 .05 .1 .3
MLE 4.0 4.2 4.9 10.9 5.6 5.8 6.4 12.2 5.5 5.8 6.6 15
PCA (99%) 4 4.0 5 5 5 5 5.2 6 5 5 5.1 5.1
F -test (1%) 4 4 4 1 6 6 1 1 6 6 1 1

Table 2.3: Test set 2 (similar spectra): estimated number of pure components.
No. comp. 4 5 5
Minor level (%) 0 10 5
Noise level (%) 0 .005 .01 .03 0 .005 .01 .03 0 .005 .01 .03
MLE 3.9 4.1 4.7 10.2 4.7 4.9 5.5 11.7 4.5 4.5 5.7 14
PCA (99%) 3 4 4.0 5 4 5 5 6 4 5 5.1 6
F -test (1%) 4 4 3 2 6 3 3 2 6 3 2 2

it is clear that at low noise levels the MLE estimate performs as well as or better

than the other two methods. Note that PCA fails to obtain the correct number of

components even with no noise if minor components are present. The F -test can

obtain the correct estimates with no noise, but fails once noise is added. In fact,

as noise levels increase, all methods begin to suffer, but the MLE is more sensitive

to noise than PCA. As expected, it takes less noise for the estimates to break down

when the spectra are very similar than when they are different. Otherwise, the same

pattern holds for both test sets. The issue of dealing with high levels of noise is

addressed in Section 2.3.

2.2.3 Choice of the tuning parameter k for the MLE

The MLE estimate requires choosing a value of k, the number of nearest neigh-

bors around each point on which the local estimator is based. The impact of k on

the estimate was examined via simulation. Figure 2.3 shows the global MLE esti-

mate plus and minus one standard deviation versus k over 100 replications for three

different settings. Keeping in mind that in practice the estimate is rounded to the
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nearest integer, we see that the MLE estimates vary very little across replications

(small standard deviation), and are fairly robust to the choice of k. The derivation

of the MLE involves an approximation that requires k to be small relative to n, and

smaller values of k reduce the amount of computation; on the other hand, very small

values of k may lead to too much variability in local estimates. On the balance, we

chose k = 20 and kept it constant for all simulations and real data applications. We

note that for other applications the user may choose to average MLEs derived for a

range of k values.
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Figure 2.3: Sensitivity to k for sample size, n = 1000, and results averaged over 100 replications.
Dashed lines show the range where the estimate is rounded to the correct value.
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2.2.4 Impact of image size

The behavior of all estimators can in general be affected by the amount of data

available. In general, larger images are better since they contain more information

about the mixture. To study this effect, we performed simulations with smaller image

sizes of n = 400 and 1000 (n = 3600 in Tables 2.2 and 2.3). Table 2.4 gives results

for n = 400. For quick reference, Table 2.5 compares n = 400 with n = 3600 directly.

Table 2.4: Test set 1 (dissimilar spectra): estimated number of pure components for n = 400.
No. comp. 6 6

Minor level (%) 10 5
Noise level (%) 0 .01 .03 .05 .1 .15 .3 .5 0 .01 .03 .05 .1 .15 .3 .5

MLE (k=5) 5.4 5.5 5.5 5.6 5.9 6.6 9.7 16.7 5.7 5.7 5.9 6.1 7.1 8.7 17.1 33.1
MLE (k=10) 5.3 5.3 5.3 5.4 5.7 6.1 8.5 13.7 5.7 5.7 5.8 6.0 6.7 8.0 14.4 27.7
PCA (99 %) 5 5 5 5 6 6 7 10 5 5 5 5 5 6 6 7

Table 2.5: Test set 1 (dissimilar spectra): sample size comparison (rounded to nearest integer).
No. comp. n 6 6

Minor level (%) 10 5
Noise level (%) 0 .01 .03 .05 .1 .15 .3 .5 0 .01 .03 .05 .1 .15 .3 .5
MLE (k=10) 400 5 5 5 5 6 6 8 14 6 6 6 6 7 8 14 28

3600 6 6 6 6 7 8 14 28 6 6 6 6 7 9 18 36
PCA (99 %) 400 5 5 5 5 6 6 7 10 5 5 5 5 5 6 6 7

3600 5 5 5 5 5 6 6 7 5 5 5 5 5 5 5 7

The standard errors of the MLE estimate decrease as the image size increases, as

expected. When the noise level is high, the MLE estimates for n = 3600 are much

higher than the n = 400 estimates. This is expected: the noise is overwhelming the

signal, and as the estimate becomes more accurate for larger n, it picks up more noise

components. This issue is addressed in detail in Section 2.3. Finally, we note that for

large image sizes, the computational complexity associated with the singular value

decomposition makes the MLE, which only requires finding the nearest neighbors, a

more attractive choice than both the PCA and the F -test.
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2.3 Dealing with high levels of noise

Simulations showed the MLE method is sensitive to noise, which is common in

real data. When high levels of noise are present, smoothing the data before applying

the procedure can enhance the performance of the estimator. There are two types

of smoothing one can consider: smoothing along each spectrum, and smoothing

spatially across the image. Individual spectra can be smoothed, for example, with a

Blackman-Harris filter, a signal processing tool available in many software libraries

[21]. We found that smoothing the spectra helps somewhat, but is less efficient than

spatial smoothing. When both methods of smoothing are combined, the effect is

the same as that of spatial smoothing alone. Therefore we choose not to smooth

the individual spectra at all, which allows us to better preserve the peaks and other

spectral features.

Spatial smoothing can be achieved via a convolution of the image X with a filter

matrix Q. At each spectral wavenumber l and pixel location (x, y), we compute

(2.9) XQ(l, x, y) =
∞∑

u=−∞

∞∑
v=−∞

X(l, u, v)Q(x− u, y − v),

where values of matrices outside of the valid index range are defined to be zero.

The filter matrix, generally speaking, averages the values around (x, y), and many

choices are possible (simple averaging, weighted averaging over a fixed window, ex-

ponentially decaying weights over the whole image, etc). We found a simple spatial

moving average (MA) filter to perform very well in this context. The MA filter re-

places the value at each pixel with the average of pixel values in a w × w window

around it. The window size is taken to be odd for convenience, w = 2m + 1, and the
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convolution formula reduces to

(2.10) XMA(l, x, y) =
1

w2

x+m∑
u=x−m

y+m∑
v=y−m

X(l, u, v).

We only compute this for x and y that are at least m pixels away from the edges of

the image and discard the rest. Alternatively, the convolution could be modified to

“pad” the edges so that no values are discarded.

Finally, we investigated smoothing across neighbors in terms of spectral similarity

rather than spatial location. This technique is often used for data on a manifold, for

smoothing over manifold neighbors. We have investigated a moving average smoother

over “spectral” neighbors and the iterative locally linear smoothing technique [62].

The results were found to be inferior to spatial smoothing. The spatial moving

average is therefore our final choice and the only technique we present formal results

for.

2.3.1 Choice of window size for smoothing

The window size w for the MA smoother is another tuning parameter to be

selected. We investigated many window sizes in extensive simulations; Figure 2.4

shows a representative plot of MLE estimates applied to smoothed data for several

noise levels as a function of window size. The setting is dissimilar spectra with four

major components and two minor components at 10%.

An important conclusion from Figure 2.4 is that it is better to over-smooth than

to under-smooth. For consistency, we selected the first window size for which the

MLE estimates at all noise levels obtained a correct estimate, which is w = 9 (a 9×9

window), which we will use in all results below. In general, we recommend this as

a rule-of-thumb starting value, since over-smoothing does not appear to present a

problem. Plots of the MLE as a function of window size like the ones in Figure 2.4
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Figure 2.4: MLE estimates on smoothed data as a function of MA window size at various noise
levels for dissimilar spectra with 4 major + 2 minor components at 10%, n = 3600,
k = 20. The horizontal lines show the range where the estimator is rounded to the
correct value.

can also be investigated for different applications and w selected as the point where

the plot “levels off”.

2.3.2 Simulation results with high levels of noise

To examine the impact of smoothing on all three estimators, we performed sim-

ulations with increased noise levels. All settings were the same as before, except

Gaussian noise was added at higher levels (.1%, 1%, or 3%). The results are shown

in Table 2.6 (dissimilar spectra, all six are distinct) and Table 2.7 (similar spectra, 5

out of 6 are distinct). A 9× 9 window was used for spatial smoothing of the 60× 60

image.

The results show that, while the MLE estimate is the most sensitive to high levels

of noise, it is also the only one that is able to obtain correct (on average) estimates

on smoothed data. Both PCA and the F -test do not come close to the true number

of components whether the data are smoothed or not, which suggests that generally
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Table 2.6: Dissimilar Spectra smoothing results: n = 3600, k = 20, w = 9, 4 major + 2 minor
components, results averaged over 100 replications

Minor level (%) 10 5 1
Noise level (%) .1 1 3 .1 1 3 .1 1 3
MLE 6.7 58.7 101.2 7.1 65.7 104.6 8.2 74.5 110.7
Smoothed MLE 6.0 5.4 5.3 6.1 5.5 5.2 6.4 5.5 5.2
PCA 5 31 38 4 31 37 4 31 36.1
Smoothed PCA 1 5 20 1 4.1 19 1 4.6 17.9
F -test 1 0 0 1 0 0 1 0 0
Smoothed F -test 1 1 1 1 1 1 1 1 1

Table 2.7: Similar Spectra Smoothing Results: n = 3600, k = 20, w = 9, 4 major + 2 minor
components (5 distinct), results averaged over 100 replications.

Minor level (%) 10 5 1
Noise level (%) .1 1 3 .1 1 3 .1 1 3
MLE 64.7 132.9 153.1 59.9 128.5 155.6 82.1 137.6 158.4
Smoothed MLE 6.5 5.4 5.4 6.0 5.4 5.6 5.7 5.5 5.6
PCA 2 33 37 2 34 38 2 34.1 40
Smoothed PCA 1 14 24.9 1 14 26 1 14.1 26.9
F -test 1 0 0 1 0 0 1 0 0
Smoothed F -test 1 1 1 1 1 1 1 1 1

their results cannot be trusted for data with high noise levels. The MLE, on the

other hand, performs well on smoothed data even when the noise level (3%) is higher

than the amount of minor components present (1%).

2.4 Applications to real data

The simulation results in the previous section were based on using real spectra

which were artificially combined into a simulated mixture. In contrast, here we

apply the proposed methodology to Raman images of real specimen (see Appendix

for experimental details). Based on results in Sections 2.2 and 2.3, we set the MLE

tuning parameter to k = 20 and apply a spatial moving average smoother with a

window size of 9 as a preprocessing step. For a fair comparison, we report the results

for the other two estimators for both raw and smoothed data.
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2.4.1 Dataset 1: PMMA with two different curing times

Our first real dataset is a 130 by 30 image of a polymer (PMMA), with Raman

spectra measured at 512 spectral values. The specimen was obtained by combin-

ing two Koldmount mixtures at different stages of polymerization. Koldmount is

commonly used to embed biological specimens. The solid component and the liq-

uid are mixed; the reaction proceeds quickly to produce a translucent material. In

this dataset, “fresh” PMMA (three minutes after mixing) was layered onto partially

cured PMMA (eight minutes after mixing). The image was taken at the interface.

The details of the experiment are given in the experimental section.

The initial mixture contains four chemical components – PMMA particles, unre-

acted monomer, and two initiators (trace amounts). The mixture is not necessarily

homogeneous, especially because the reactions continued as Raman measurements

were taken. The volume fraction of unreacted monomer depends on the reaction

rate and the time (post-mixing) at which any particular pixel was imaged. As a

result, substantial variation in the proportions of the two major components is ex-

pected. This relatively simple system serves as an excellent test case for estimating

the number of pure components.

Table 2.8: Real data results for the three estimators applied to raw and smoothed (denoted by Sm)
images.

Data MLE MLE(Sm) PCA PCA(Sm) F -test F -test(Sm)
PMMA with 2 curing times 50 4 6 4 1 1
Bone embedded in PMMA 47 5 5 4 9 9

The results are shown in Table 2.8. If no smoothing is applied as a pre-processing

step, all estimators give incorrect results. With smoothing, the MLE and PCA both

pick up 4 components. The F -test only detects 1 component, with and without

smoothing. The MLE on smoothed data was the same for a range of values of k and
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the moving average window size w.

2.4.2 Dataset 2: Bone

We also examined a 300 by 50 bone image consisting of Raman spectra measured

at 512 spectral values. The bone was a murine femur, embedded in PMMA resin.

A transverse section was chosen at the edge of the bone to include both bone and

resin in the field of view. However, no significant concentration of resin was seen in

the data; the reduced collection efficiency at the edges of the CCD camera left the

section known to contain PMMA relatively dark. Based on previous experiments

on similar specimens, the presence of PMMA distributed within the bone tissue is

still expected. Thus, there are at least three major components expected in the

data – PMMA, bone mineral, and bone matrix. There may also be additional bone

components, depending on age and damage [58]. Here, MLE and PCA obtain 5 and

4 components respectively on the smoothed data, with the F -test obtaining 9.

Even though in real data, unlike in simulations, we do not know the correct answer

exactly, the MLE appears to perform well on smoothed data. For these datasets,

PCA and the MLE give comparable results; however, results in Tables 2.6 and 2.7

suggest that in general the MLE of smoothed data is likely to be more reliable than

PCA when high levels of noise are present.

2.5 Using local dimension estimates for image segmentation

The MLE in (2.6) is computed at every pixel, but so far we have been using the

global average (2.7) as the estimate for the number of components. We can also

use the pointwise estimates for other tasks, such as finding regions with different

numbers of components (areas with more components may be more chemically in-

teresting), or evaluating homogeneity of the mixture. To illustrate the potential of
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local estimators, we demonstrate how they can be used to segment an image into

regions with homogeneous numbers of components.

2.5.1 Image segmentation technique: normalized cuts

Normalized cuts, or Ncuts [50] is an image segmentation procedure that divides

an image into regions by both maximizing similarity of points within each region and

maximizing dissimilarity between regions. The procedure treats segmenting the data

into regions as a graph partitioning problem. Pixels form the set of vertices V , and

weights w(x, y) on the edges between points x ∈ V and y ∈ V represent a measure

of similarity between x and y. The partition of V into two non-overlapping sets A

and B is then found by minimizing a function of the data called the normalized cut.

The normalized cut between two regions A and B is defined to be

(2.11) Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
,

where association and cut are defined as

(2.12) assoc(A, V ) =
∑

x∈A,y∈V

w(x, y); cut(A,B) =
∑

x∈A,y∈B

w(x, y).

The idea is to find A and B that have the least similarities between them (minimize

the cut) but penalize for segmenting out the regions that are not well connected

within themselves – that is the purpose of normalizing by the association. If the

normalization is omitted, the segmentation will tend to cut off single points. Note

that this problem can be restated in terms of normalized association. When solving

for the partition, minimizing the normalized cut means minimizing the association

between the split groups while maximizing the normalized association means search-

ing for a segmentation that leaves the split groups as similar as possible internally.

It turns out that these two formulations are equivalent [50].
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In order to implement the normalized cuts, we need an appropriate measure of

similarity between pixels. For regular image segmentation (original context of the

application), Shi and Malik [50] used a similarity measure based on spatial distance

between pixels and differences in their brightness values. For our application, we

propose a similarity measure which reflects both the spatial distance between pixels

and the differences in the estimated number of components at each pixel. For a pair

of data points, where x is located at (ix, jx) and y is located at (iy, jy), with ŝx and

ŝy the number of components estimated at each point, we define the weight on the

edge between x and y to be

(2.13) w(x, y) = exp

(
−(ŝx − ŝy)

2

σ1

− (ix − iy)
2 + (jx − jy)

2

σ2

)
.

The scaling factors σ1 and σ2 can be used to vary how much importance is given to

spatial proximity versus the similarity in the number of components. They can also

be used to resolve scaling issues if the two measures combined are not on the same

scale. In this case, the two components in (2.13) are on the same scale, and we set

σ1 = σ2 = 1 in the results shown below.

The normalized cut problem itself is NP-hard, but a relaxation can be solved

efficiently through a generalized eigenvalue problem. Here we briefly summarize the

algorithm (see [50] for further details). Let d(i) =
∑

j w(i, j) and let D be a diagonal

matrix with diagonal d. Let W = [w(i, j)]1≤i,j≤n be the symmetric matrix of edge

weights. Finally, let v be an n × 1 indicator vector with v(i) = 1 if the i-th data

point is in A and −1 if it is in B. Now let

b =
∑
x∈A

d(x)/
∑
x∈B

d(x),(2.14)

c = (1 + v)− b(1− v).(2.15)

In effect, c is a continuous approximation to v. Shi and Malik show that the solution
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to the normalized cuts problem can be found by solving the eigenvalue system

(2.16) (D −W )c = λDc.

The second smallest eigenvector of the system gives the first split, with the partition

based on the signs of the entries in the eigenvector. The procedure can then be

repeated to split the two regions A and B further.

2.5.2 Segmentation results

For simulations, we divided a 60 × 60 image into three 20 × 60 horizontal strips

with 3, 6, and 3 components, respectively. The three major components were bone,

PMMA, and Delrin, with polystyrene added as a major component and Teflon and

polyethylene as minor components at 10% in the middle region. Then we generated

two images, with two levels of noise (.1% and .3%). The local MLEs were computed

at each pixel with k = 20. To keep the example straightforward, we set the levels of

noise low enough so that smoothing was unnecessary. Similar results were obtained

with MA smoothing as a preprocessing step. The local estimates were used in (2.13)

to create the weights and normalized cuts were applied to segment out three regions.

The resulting segmentations are shown in Figure 2.5. The procedure correctly finds

the three regions we built into the data generation. For low noise, the average MLE

in each region was 3.0, 5.4, and 3.0, respectively. For higher noise, the region averages

were 4.4, 5.9, and 4.5. We can see that the MLE performs better at low noise levels

in terms of obtaining the correct number of components (recall that no smoothing

was applied to the data), but the segmentation is still correct at the higher noise

level.

Since normalized cuts require the user to specify the number of regions to be

segmented, we experimented with asking for more than three regions. In this case
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the procedure segments out additional very small areas, but the main three regions

are still clearly visible. Hence this segmentation procedure can be used even if little

is known a priori about the number of different regions in the image. Also note

that we did not incorporate spectral similarity into the measure (2.13), and it is

of course possible to have spectroscopically different regions with the same total

number of pure components. This example was intended to illustrate the potential

of local estimates; an in-depth investigation of their applications to segmentation

and homogeneity testing is a subject for future research.
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Figure 2.5: Segmentation results with .1% and .3% Gaussian noise; the pixel color values show local
dimension estimates. Estimated boundaries are shown in dark blue where they do not
match the true boundaries shown in red.

2.6 Conclusions

Determining the number of pure components present in a mixture is an impor-

tant step before extracting and identifying the chemical components, and having a

reliable estimate of how many components to extract leads to more objective and
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accurate data analysis, as well as reduces the amount of human visual inspection and

other manipulations. We have shown the maximum likelihood estimator of intrinsic

dimension, designed for general data on non-linear manifolds, can be successfully

applied to this problem, and tested its performance on both real and simulated mix-

tures of Raman spectra. The method is robust to the choice of the tuning parameter

k and outperforms PCA and the Malinowski’s F -test, particularly when minor com-

ponents are present and/or the signal-to-noise ratios are low. When the noise level is

very high, additional preprocessing via spatial smoothing has been shown to produce

good results.

The MLE of intrinsic dimension is a general method and is likely to find applica-

tions in other areas of chemometrics and in other fields. One advantage of the MLE

is that it automatically generates an estimate of the number of components at every

data point (in case of images, at every pixel). Here we illustrated the potential of

these local estimates by using them to segment the specimen into homogeneous re-

gions in terms of the number of components present. Local estimates can also be used

to test for mixture homogeneity, which is an important pharmaceutical application;

this application is a subject of future work.



CHAPTER III

Isoband - Reordering Variables for Banded Covariance
Estimation

In this Chapter, we propose an approach that complements methods for permutation-

invariant covariance estimation by taking a different view on covariance structure.

Rather than restricting ourselves to methods that completely ignore potential struc-

ture in the order of the variables, we try to discover a structured ordering in the data

and then use it to our advantage. The two types of structure we focus on are “ap-

proximately bandable” matrices, where you expect variables far apart in the ordering

to be weakly correlated, and block-diagonal structures. The block-diagonal structure

is a reasonable assumption for many types of data, including gene networks, where

genes can often be clustered into strongly connected groups. Our main idea is to use

the correlations between variables as a measure of similarity, and embed the variables

in one dimension preserving the similarities as closely as possible. The coordinates

of the variables in one dimension then provide an ordering.

In general, our method is most appropriate when there is structure, but it is

non-trivial to describe the correct ordering. For instance, the example we consider

in Section 3.5 has data on consumption of protein from various food sources in 25

European countries. It is clear that some foods are “closer” than others, e.g., one

might think that beef and pork are more similar to each other than fish and fruit

41
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in terms of protein consumption; but it is not obvious how such variables can be

ordered. We show that in these situations, one will generally do better by discovering

an ordered structure in the data than by ignoring it. However, note that our method

is also invariant to permutations, in the sense that the order in which the variables

are provided plays no role.

The rest of the chapter is organized as follows. In Section 3.1, we give some

additional background on banding and thresholding a covariance matrix in high

dimensions. In Section 3.2 we present the proposed methodology for discovering

the ordering, which is based on the Isomap manifold projection method. Section

3.3 addresses selection of tuning parameters and gives extensive simulation results

on discovering bandable and block-diagonal structures in the data. A discussion of

comparison measures for comparing eigenvectors and using those measures to choose

k for banding is given in Section 3.4. Section 3.5 presents an application to data on

protein consumption from various sources in 25 European countries, and Section 3.6

gives some concluding remarks.

3.1 Background on banded and thresholded estimators

We focus on finding an ordering of the variables that will make the matrix as

close to “bandable” as possible, and/or block-diagonal. To formalize what we mean

by bandable, we provide a more in-depth review of the results on banded covariance

estimators obtained by [5]. For this discussion, the observed p-dimensional random

vectors X1, . . . , Xn are distributed according to a distribution F , with EX = 0

(without loss of generality), and E(XXT ) = Σ which is estimated by the sample

covariance matrix, Σ̂. For simplicity, we assume that F is Gaussian, although [5]

showed that Gaussianity can often be replaced by a tail condition on F .
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Define the class of approximately bandable covariance matrices Σ = [σij] by

U(ε, α, C) =
{
Σ : max

j

∑
i

{|σij| : |i− j| > k} ≤ Ck−α for all k > 0,

and 0 < ε ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ε
}
,(3.1)

where λmin(Σ) and λmax(Σ) are the smallest and the largest eigenvalues of Σ, respec-

tively. The first condition makes the matrix approximately bandable, and the second

condition ensures it is well conditioned. This condition holds for all p, and Σ can

be thought of as an infinite-dimensional matrix (or operator), with Σp given by the

upper p× p submatrix of Σ. Define the (simple) banded estimator

Bk(Σ̂) = [σ̂ij I(|i− j| ≤ k)],

where I(·) is the indicator function. Then it was shown that [5] uniformly on

U(ε, α, C), if kn ³ (n−1 log p)−
1

2(α+1) , then

(3.2) ‖Bk(Σ̂p,n)− Σp‖ = OP

((
log p

n

) α
2(α+1)

)
= ‖Bk(Σ̂p,n)−1 − Σ−1

p ‖ .

Thus, the banded estimator and its inverse are consistent as long as (log p)/n → 0,

as opposed to the sample covariance matrix which requires p/n → 0 for consistency.

Note the condition on the eigenvalues of Σ is a necessary condition for convergence

of the banded estimator’s inverse only, not the banded covariance estimator itself.

Here ‖M‖2 = maxi |λi(M
′M)| is the operator norm, a.k.a. the matrix l2 norm or

spectral norm. Convergence in operator norm guarantees convergence of all eigen-

values and eigenvectors [5, 29], and thus suggests that the estimator would be useful

for improving PCA.

The result (3.2) makes it clear that if an ordering of the variables that has such

a banded structure (or gets as close to it as possible) can be recovered, then covari-

ance estimation can be greatly improved upon as compared to the sample covariance.
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However, a comparison to a permutation invariant method of regularizing the sample

covariance is also of interest – for example, does the structure matter if one is thresh-

olding small entries to zero anyway? A partial answer is provided by the result of [4]

on thresholding estimators of covariance. Recall the thresholded covariance estimate

is given by

(3.3) Tt(Σ̂) = [σ̂ij I(|σ̂ij| ≥ t)] .

By analogy to banding, a permutation-invariant analogue of the class of approxi-

mately bandable matrices can be defined as

(3.4) Uτ

(
q, M, C(p)) = {Σ : σii ≤ M,

p∑
j=1

|σij|q ≤ C(p), for all i} ,

where M > 0 and 0 ≤ q < 1. On this class, it is known [4] that if the threshold

tn ³ (n−1 log p)1/2, then

(3.5) ‖Ttn(Σ̂p,n)− Σp‖ = OP

(
C(p)

(
log p

n

) 1−q
2

)
.

It is easy to check that U ⊂ Uτ with appropriately chosen constants. It is also

easy to check that on the subclass U , the rate of banding is better than the rate of

thresholding although the difference is not sharp [4]. Thus, if there is an ordering of

the variables that can make the matrix approximately bandable, the theory indicates

we can expect to do better than thresholding if we discover that ordering.

3.2 Reordering variables with the Isomap

To focus ideas, we start with looking for an ordering of the variables that makes

the matrix as close to bandable as possible within a single block of variables, and

postpone the discussion of block-diagonal structures for later. The main idea is to

treat discovering an ordering as a dimension reduction problem. We have p points
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(variables) whose pairwise similarities are given by their covariances, or correlations.

Using the correlations eliminates scaling issues between the variables. If we can

embed these points in R1 in a way that maps their dissimilarities into distances in

R1, the coordinates of the variables in R1 will give us an ordering where closely

correlated variables are placed near each other, and variables with weak correlations

are placed far apart.

This embedding problem may be solved by multi-dimensional scaling (MDS), see,

e.g., [7]. MDS starts with pairwise dissimilarities for a set of objects and constructs

their embedding in Rd for a given d so that the dissimilarities match the Euclidean

distances in Rd between the embedded points as closely as possible. Dimensions

d = 2 or d = 3 are often used for visualization, and the dimension of the input data

is typically much higher.

For our purposes, however, MDS turns out to be a poor choice. The metric MDS

works best when applied to distances in Euclidean space; dissimilarities based on cor-

relations are not necessarily Euclidean (a Euclidean distance may be formed based on

correlations but the measure we use is not Euclidean). Apart from that, in a sparse

matrix many empirical correlations will be close to zero, and metric MDS turns out

to be unable to order those correctly (see more on this in Section 3.3). This problem

does not occur when the true zero correlations are used as dissimilarities, and thus is

caused by the noise in estimating covariance rather than by the covariance structure

itself. Non-metric MDS, which only preserves the ranking of similarities rather than

their values, has the same problem. Instead, we use a non-linear dimension reduction

method designed for data on a manifold, the Isomap [55]. The Isomap is one of many

manifold projection methods that became popular in machine learning several years

ago (see also [48], [2], [13], [36] and many others), although perhaps found fewer
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applications than was initially hoped for. The Isomap algorithm seems particularly

suited for our problem because it explicitly aims to preserve distances between vari-

ables, but does not assume they are Euclidean. However, it is possible that similar

results could have been obtained with another manifold projection algorithm.

Next, we describe the Isomap algorithm. It takes a pairwise dissimilarity measure

d(i, j) as input, and requires setting an integer tuning parameter r.

The Isomap algorithm

1. For each point, find its r nearest neighbors using the dissimilarities d(i, j) (the

dissimilarity between point i and point j). Construct a neighborhood graph by

connecting each point to its r nearest neighbors (NN), with dissimilarities as

the edge weights.

2. Estimate the geodesic distance d̃r(i, j) between each pair of points i, j by com-

puting the shortest-path distance from i to j through the neighborhood graph.

3. Apply metric MDS to the matrix of pairwise shortest-path distances to obtain

an embedding in Rd. In our case, since we need a one-dimensional solution

to get an ordering, this means find z1, . . . , zp ∈ R1 that minimize the stress

function (known as stress 1 in the literature)

S(z1, . . . , zp) =

∑
i

∑
j(|zi − zj| − d̃r(i, j))

2

∑
i

∑
j |zi − zj|2 .

This minimization can be reduced to an eigenvalue problem.

Then we simply read off the ordering of the variables by ordering their projections

z1, . . . , zp on the line. Ordering by descending or ascending order of the coordinates

makes no difference. From this ordering, we construct a p× p variable permutation

matrix P̂ . The covariance matrix is then reordered by

(3.6) Σ̂o = P̂ Σ̂P̂ T ,



47

the banding operator Bk is applied to the new matrix Σ̂o, and the variables are then

reordered back to obtain the final estimator

(3.7) Σ̂I = P̂ T Bk(Σ̂o)P̂ .

We will refer to this estimator as Isoband, for Isomap+banding.

There are many ways to define a dissimilarity measure based on the covariance

matrix. We use

d(i, j) = 1− |ρ̂ij|

as a measure of dissimilarity, where ρ̂ij is the sample correlation coefficient between

variables i and j. Other monotone decreasing functions of |ρ̂ij| have been tested

and shown to behave very similarly. Alternatively, one could use d(i, j) = C −

|σ̂ij| (dissimilarities need to be non-negative). In either case, we do not distinguish

between positive and negative correlations. However, the measure can easily be

adjusted to accommodate other desired features of the ordering: for example, using

d(i, j) = 1 − ρ̂ij would result in strongly negatively correlated variables placed as

far apart as possible, and positively correlated variables closer together. This case is

related to the correlation clustering problem in computer science [1, 11], which aims

to partition a weighted graph with positive and negative edge weights so that negative

edges are broken up and positive edges are kept together. However, the correlation

clustering algorithm does not look for the ordering that we need for banding, as we

do not wish to remove strong negative correlations, and has also been shown to be

NP-hard.

3.2.1 The case of disconnected neighborhood graphs

So far, we have assumed that the neighborhood graph constructed by the Isomap

is connected, and thus shortest-path distances can be computed between all pairs of
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variables. This is not guaranteed to be the case. If the graph consists of two or more

connected components, then it seems reasonable to infer that the variables can be

separated into independent blocks (this amounts to connected component clustering

on the correlations), and set all between-block correlations to zero. Then Isomap

can be applied to each component separately to make each block as bandable as

possible, followed by banding each reordered block. The resulting estimator is both

block-diagonal and banded, but we select the bandwidth separately for each block;

we will still denote it Σ̂I and refer to it as Isoband.

Note that we do not explicitly seek to construct a block-diagonal estimator, and

only impose a block-diagonal structure if more than one connected component is

found. An alternative would be to select a fixed number of blocks B, apply a clus-

tering method to correlations to obtain B clusters, and construct a block-diagonal

estimator with a block per cluster. We do not pursue this approach here, and note

that in our case, the number of blocks B is determined from the data rather than

supplied by the user.

3.3 Simulation results

In this section, we investigate Isoband’s performance by simulations, and address

algorithmic issues such as tuning parameter selection. For simulations, the natural

test is to take a covariance matrix that is approximately bandable and see whether

(a) the Isomap can recover the correct ordering of the variables and (b) the Isoband

estimator is closer to the true covariance matrix than its competitors. Throughout,

we consider two types of bandable covariance structures:

(3.8) Σ1(ρ) : σij = ρ|i−j| , Σ2(m) : σij =

(
1− |i− j|

m + 1

)

+

.
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Σ1 corresponds to an AR(1) process and its entries decay exponentially as one moves

away from the diagonal; the entries of Σ2 decay linearly and are set to zero outside

the first m sub-diagonals. Both Σ1 and Σ2 are in the class U , but Σ1 is only approx-

imately banded, whereas Σ2 is m-diagonal (banded). Later, we will also concatenate

these structures together in independent blocks to test Isomap’s ability to discover

independent blocks of variables.

3.3.1 Selecting the number of nearest neighbors for the Isomap
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(c) Σ2(m = 25)

Figure 3.1: Raw dissimilarities d(1, j) plotted against variable index j, and Isomap shortest-path
distances for several values of r (the number of nearest neighbors); p = n = 100.

Figure 3.1 shows the original dissimilarities for the first variable d(1, j) = 1−|ρ̂1j|

plotted against variable index j, along with shortest-path distances d̃r(1, j) for the
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number of nearest neighbors r = 3, 15, and 30. For all three cases, p = n = 100.

It is clear that for MDS to recover the correct ordering the distances need to be

increasing, and the more separated they are, the more likely the embedding is to be

correct. Figure 3.1 explains why MDS fails to recover the ordering – all the distant

variables are interchangeable; the Isomap, on the other hand, successfully builds

up the distances through the neighborhood graph. The “humps” in the Isomap

distances for larger r are due to “short-circuit” edges between points that are not

true neighbors. At what value of r these short circuits begin to occur depends on

how sparse the true matrix is: the sparser the matrix, the smaller r needs to be to

avoid them. On the other hand, there does not appear to be a disadvantage in using

smaller r for less sparse matrices; we fix r = 3 from this point on.

An alternative is to cross-validate for r following, for example, the cross-validation

scheme proposed for selecting the bandwidth by [5]. A general result on the validity

of this method was obtained in [4]. However, the embedding does not appear sensitive

to the value of r as long as it is not too large, and we already have to apply cross-

validation to select the bandwidth, so cross-validation for r would result in a grid

search over k and r. This is in principle feasible, but to keep computational costs

low, we fix the value of r instead.

3.3.2 Recovered orderings

Before comparing covariance estimators resulting from reordering the variables,

we examine the orderings themselves. For model Σ2, where the truth is banded, the

order is recovered perfectly every time. For model Σ1, which is only approximately

banded, solutions are slightly more variable. To assess an ordering, we can plot the

coordinates from the embedding against the variable index. The order will be recov-

ered perfectly if the curve is monotone. Figure 3.2 shows the embedding coordinates
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Figure 3.2: Coordinates in R1 plotted against variable index for the MDS and Isomap applied to the
true Σ1(0.7) covariance and three realizations of the sample. Realization (a) is typical,
(b) is less common, and (c) is rare.

from the true Σ1 (which always results in a correct ordering), and coordinates from

three different realizations of the sample covariance. The MDS orderings in all three

realizations are completely wrong. For the Isomap, the correct ordering (a) is by far

the most likely; the ordering shown in (b) is unusual, but it still does not significantly

affect the performance of the estimator; the ordering in (c) does affect performance,

but is rare.
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3.3.3 Estimation results for approximately bandable matrices

Ultimately, the relevant measure of performance for our method is improved co-

variance estimation (rather than any measure related to the ordering itself). Here we

compare the performance of the Isoband estimator Σ̂I , which is invariant to variable

permutations, to three other permutation-invariant estimators: the sample covari-

ance Σ̂, the thresholded sample covariance Tt(Σ̂), and the shrinkage estimator of

Ledoit-Wolf [35], Σ̂LW . To demonstrate the advantage of the Isomap over MDS in

recovering the ordering, we also include Σ̂M , a banded estimator obtained after re-

ordering the variables according to their MDS projection onto 1-d. In addition, we

include the banded estimator, which is not permutation invariant, applied to two dif-

ferent matrices: Bk(Σ̂), where the variables are in their “correct” order as specified

by the simulation models, and Bk(P Σ̂P T ), where P is a random permutation ma-

trix. Of the banded estimators, we expect the best performance from Bk(Σ̂) (since

the correct order is given and the matrix is approximately bandable), and the worst

from Bk(P Σ̂P T ). Note, however, that for a very sparse matrix, banding even in the

wrong order may introduce enough zeros to improve on the sample covariance. The

hope is that the performance of Σ̂I will be close to Bk(Σ̂).

For any estimator Σ̃, we measure the estimation performance by the operator

(matrix l2) norm of the difference between the estimator and the truth,

L(Σ̃, Σ) = ‖Σ̃− Σ‖2 = max
i
|λi(Σ̃− Σ)| ,

where λi(A) denotes the i-th eigenvalue of A. Note that for the permuted estimator

Bk(P Σ̂P T ), the correct loss is L(Bk(P Σ̂P T ), PΣP T ), rather than L(Bk(P Σ̂P T ), Σ).

We chose the operator norm because, as discussed in Section 3.1, convergence in oper-

ator norm implies good performance in PCA. However, in all simulations the matrix
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l1 norm and the Frobenius norm were also computed as alternative loss functions;

all results are consistent across these three norms.

For each simulation, n = 100 observations were drawn from a multivariate normal

distribution with mean zero and covariance matrix Σ, where Σ was from the class

Σ1 or Σ2. For model Σ1, we selected ρ = 0.5, 0.7, and 0.9; for Σ2, m = 0.1p,

0.25p, and 0.5p. For all of these, simulations were conducted for p = 10, 100, and

200, with 50 replications for each setting. The random permutation P was fixed

throughout the replications; the results are very similar if we average over many

random permutations instead. For all banding estimators and for thresholding, the

tuning parameter was chosen following the cross-validation scheme of [5] with 10

random splits of the data. In this set of simulations, the neighborhood graph with

r = 3 was always connected.

Table 3.1: Average (SE) operator norm loss over 50 replications, for covariance models Σ1 and Σ2.
p Sample Banding Band.Perm. MDS Isoband Thresh. Ledoit-W.

ρ Model Σ1

10 0.75(.02) 0.68(.02) 1.05(.06) 0.78(.03) 0.74(.02) 0.87(.04) 0.69(.02)
.5 100 3.49(.04) 0.97(.02) 2.03(.00) 1.95 (.01) 1.96(.01) 1.74(.01) 1.80(.01)

200 5.61(.04) 1.01(.02) 2.05(.00) 2.05(.00) 2.04(.00) 1.77(.01) 1.98(.01)
10 0.80(.03) 0.86(.03) 0.80(.03) 0.90(.03) 0.86(.03) 0.87(.04) 0.82(.03)

.7 100 4.07(.08) 1.73(.03) 4.59(.02) 3.38(.05) 1.89(.04) 2.89(.03) 3.12(.03)
200 6.68(.08) 1.77(.04) 4.67(.00) 3.93(.03) 2.04(.06) 3.00(.02) 3.81(.02)
10 1.11(.08) 1.12(.08) 1.12(.08) 1.12(.08) 1.12(.08) 1.12(.08) 1.10(.08)

.9 100 6.10(.18) 4.81(.11) 9.54(.31) 6.45(.20) 4.99(.14) 7.02(.16) 5.84(.11)
200 9.17(.16) 5.38(.11) 16.4(.23) 9.02(.17) 5.30(.11) 8.90(.11) 8.42(.12)

m Model Σ2

10 0.69(.02) 0.41(.02) 0.85(.01) 0.70(.02) 0.69(.03) 0.54(.03) 0.63(.02)
.1p 100 5.53(.13) 2.58(.07) 8.87(.14) 4.93(.10) 2.55(.07) 3.35(.08) 4.78(.07)

200 10.5(.20) 5.06(.12) 17.7(.27) 10.3(.23) 4.99(.11) 6.55(.13) 9.26(.13)
10 0.83(.03) 0.68(.03) 0.83(.03) 0.75(.04) 0.70(.03) 0.79(.03) 0.82(.03)

.25p 100 7.81(.32) 5.60(.27) 8.14(.37) 7.09(.32) 5.56(.25) 6.79(.30) 7.51(.29)
200 14.8(.47) 10.1(.36) 16.1(.59) 13.8(.55) 10.1(.36) 12.6(.46) 14.4(.44)
10 1.08(.06) 1.01(.06) 1.10(.06) 1.01(.06) 1.01(.06) 1.08(.06) 1.07(.05)

.5p 100 8.64(.45) 7.42(.42) 8.59(.44) 7.66(.41) 7.48(.39) 8.44(.43) 8.38(.42)
200 17.8(1.0) 15.8(.96) 17.8(1.0) 15.8(.89) 15.6(.96) 17.3(1.0) 17.2(.94)

Table 3.1 shows the average and standard error (SE) of operator norm loss over
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50 replications for the seven estimators. For Σ1, for ρ = 0.7 and 0.9 and p = 100

and 200, Isoband comes close to banding in the correct order and performs better

than any other estimator, including the estimator generated by the MDS reordering,

thresholding and Ledoit-Wolf. For p = 10, the large p regime does not apply, so

we see that banding even in the correct order does not necessarily improve on the

sample covariance (and neither do thresholding or Ledoit-Wolf). For ρ = 0.5, which

has very few entries that are substantially different from zero (and thus order is not

as important), all the estimators show similar improvement relative to the sample

covariance.

For Σ2, the pattern is similar. For p = 100 and 200 and for all values of m

considered, Isoband comes very close to the benchmark of banding in the correct

order, and outperforms everything else. This is also true even for p = 10 for the less

sparse structures with 3 and 5 sub-diagonals. For p = 10 and m = 1, thresholding

comes closer to the benchmark banding result than Isoband, but that is the only

exception.

The tuning parameters chosen by the various banding estimators (k) and thresh-

olding (t) are shown in Table 3.2. Consistently in all situations, the bandwidth picked

for banding in the correct order is very close to the bandwidth picked for banding

in the Isomap order, another indication that the Isomap is recovering the ordering

well. For banding after the variables have been permuted, the results are variable:

it either tends to discard almost everything and keep the matrix near-diagonal if the

underlying model is very sparse, or it tries to keep many more diagonals than needed

in the right ordering. Finally, the threshold selections, which cannot be directly

compared to bandwidths, are included for completeness. They do confirm that, in

general, the larger the p, the more entries one needs to discard for best estimation
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Table 3.2: Tuning parameter selection: averages (SE) over 50 replications (bandwidth for banding
and threshold for thresholding).

p Banding Band.Perm. MDS Isoband Thresh.
ρ Model Σ1

10 2.9(.09) 5.64(.46) 3.96(.16) 4.08(.18) 0.27(.02)
.5 100 3.36(.07) 1.28(.09) 3.12(.20) 2.86(.26) 0.48(.001)

200 3.44(.08) 1.06(.03) 2.08(.20) 1.42(.11) 0.49(.001)
10 5.68(.23) 10.0(.00) 5.40(.19) 5.68(.21) 0.12(.01)

.7 100 5.68(.13) 1.78(.25) 6.72(.36) 6.22(.19) 0.47(.003)
200 6.24(.11) 1.16(.07) 6.00(.37) 7.40(.23) 0.48(.002)
10 9.84(.08) 9.98(.02) 9.72(.08) 9.82(.07) 0.01(.003)

.9 100 16.0(.39) 36.8(2.5) 21.3(.89) 15.2(.37) 0.38(.01)
200 16.3(.44) 9.82(1.6) 21.3(1.0) 16.6(.38) 0.45(.004)

m Model Σ2

10 2.00(.00) 2.48(.18) 3.32(.15) 3.24(.15) 0.37(.01)
.1p 100 9.20(.11) 8.64(1.2) 15.8(.83) 9.04(.11) 0.44(.01)

200 16.7(.19) 16.1(2.3) 27.7(1.7) 16.8(.21) 0.44(.01)
10 3.94(.07) 8.62(.09) 4.44(.11) 4.00(.08) 0.26(.01)

.25p 100 20.5(.31) 87.1(2.1) 29.0(1.3) 20.9(.29) 0.35(.01)
200 39.7(.53) 173(4.9) 53.4(2.4) 40.4(.81) 0.36(.01)
10 5.70(.15) 8.92(.10) 5.62(.10) 5.70(.18) 0.14(.01)

.5p 100 41.3(.89) 95.8(.36) 44.2(2.1) 42.1(.89) 0.18(.01)
200 88.2(3.7) 193 (.65) 81.6(2.7) 85.2(2.8) 0.16(.01)

performance.

3.3.4 Estimation results for block-diagonal covariances

Here we test the ability of the Isomap to discover independent variable blocks

corresponding to the connected components of the neighborhood graph. Three types

of within-block structure were considered: Σ1 (AR(1)), Σ2 (triangular), and, addi-

tionally, Σ3, a constant correlation structure with σij = ρ for all i 6= j, and σii = 1.

Here we only consider dimensions p = 100 and 200, and n = 100. The number of

blocks was fixed at 3, with sizes 50, 30, and 20 for p = 100 and 100, 60, and 40 for

p = 200. We only show results for concatenating blocks of the same type, although

many other settings with different numbers of blocks, block sizes, and block struc-

tures were examined. We use notation Σ1(0.7, 0.8, 0.9) to refer to a model with three

AR(1) blocks with values of ρ of 0.7, 0.8, and 0.9, and size of the blocks as described
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above. Similarly, Σ2(1/2, 1/2, 1/2) has three triangular blocks with m determined

as a fraction of the corresponding block size; e.g., for p = 100 the m values for this

model would be 25, 15, and 10. Again, r was fixed at 3, number of replications at

50, and a single random permutation P was fixed; there was no significant difference

in performance for different permutations. The performance is again measured with

the operator norm loss.

We also add another estimator, Σ̂BD, which is block-diagonal and assumes known

blocks, but does not apply banding. The benchmark banding estimator, Bk(Σ̂BD),

in a slight abuse of notation, represents banding each of the known blocks with

variables given in their correct order, but the bandwidth k is selected separately

for each block. Recall that for Isoband, the bandwidth for each found block is also

selected separately. The estimator Bk(Σ̂BD) is expected to be the best, and others

can be compared to it to see relative improvement. The MDS estimator is omitted

from comparisons in this section, because it was shown to be inferior to the Isomap

and it does not have the ability to generate a block-diagonal estimator.

Table 3.3: Average (SE) operator norm loss over 50 replications for block-diagonal covariance mod-
els. Block sizes are 50, 30, 20 for p = 100 and 100, 60, 40 for p = 200.

Setting p Sample Banding Band.Perm. Σ̂BD Isoband Thresh. Ledoit-W.
Σ1 100 4.04(.07) 1.65(.04) 4.53(.01) 3.19(.09) 1.88(.05) 2.74(.03) 3.01(.03)

(.7,.7,.7) 200 6.51(.06) 1.80(.03) 4.64(.00) 5.22(.14) 2.21(.05) 2.98(.02) 3.79(.02)
Σ1 100 4.59(.12) 2.41(.08) 9.41(.16) 2.96(.08) 2.59(.10) 3.61(.10) 4.42(.10)

(.7,.8,.9) 200 7.96(.17) 3.53(.14) 13.64(.08) 5.10(.15) 3.61(.12) 5.44(.13) 6.85(.13)
Σ2 100 6.47(.19) 4.29(.20) 7.70(.26) 4.65(.21) 4.23(.21) 5.26(.20) 6.27(.16)

( 1
2 , 1

2 , 1
2 ) 200 12.50(.39) 7.75(.40) 16.65(.84) 8.73(.38) 7.75(.38) 9.91(.42) 12.32(.38)

Σ2 100 4.99(.10) 2.47(.10) 9.55(.19) 3.16(.08) 2.44(.10) 3.13(.08) 4.54(.09)
( 1
10 , 1

3 , 3
4 ) 200 10.34(.28) 5.06(.28) 17.54(.44) 6.42(.23) 5.09(.29) 6.42(.25) 9.19(.16)

Σ3 100 7.74(.35) 5.22(.36) 8.87(.44) 5.60(.39) 5.48(.33) 5.78(.33) 7.30(.27)
(.7,.5,.3) 200 14.59(.58) 10.52(.62) 19.58(.79) 10.59(.60) 10.89(.61) 11.72(.50) 14.67(.62)

Block diagonal covariance results are shown in Table 3.3. For the first two mod-

els, Σ1 and Σ2, Isoband comes significantly closer to the benchmark Bk(Σ̂BD) than
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anything else, being just slightly worse for Σ1 and essentially the same for Σ2. Thresh-

olding and the unbanded block-diagonal estimator Σ̂BD perform noticeably worse,

and Ledoit-Wolf performs poorly, only slightly better than the sample covariance.

Banding in the wrong order does very poorly, as it should (though still better than

the sample in one case).

For the last model, Σ3, the blocks are not banded, and there is little differ-

ence between the block-diagonal estimator, the block-diagonal estimator banded,

and Isoband; thresholding is slightly worse than these three. The Ledoit-Wolf esti-

mator is very similar to the sample, and banding in the wrong order is worse than the

sample. This example serves to reassure us that when there is no structure, band-

ing after reordering by the Isomap will do no harm, as the banding procedure can

choose a large enough k to retain most of the diagonals: in this case, we discovered

the blocks, but did not do any worse by trying to reorder the variables within the

blocks.

To assess the sparse structures recovered by each estimator, we plot heatmaps

of percentage of the time each element of the matrix was estimated as zero, for the

benchmark banding of the correct blocks, Isoband, and thresholding. Banding in

permuted order tends to pick a very large k and produces very few zeros, and the

Ledoit-Wolf estimator is not sparse; they are omitted from the comparison.

Figure 3.3 shows the sparse structure of the estimators for the AR(1) block model

Σ1(0.7, 0.8, 0.9). Note that, strictly speaking, the truth is not sparse, but it has many

very small elements, which should be set to zero. In this case, Isomap does make

a few mistakes in identifying the blocks (light-gray patches outside the blocks) but

does very similar to benchmark banding within the blocks. Thresholding seems to

be overall sparser – it has very few non-zeros outside the blocks and substantially
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Figure 3.3: Heatmap of percentage of times out of 50 replications each element was estimated as
zero for model Σ1(0.7, 0.8, 0.9). Black corresponds to 0%, white to 100%.

fewer non-zeros inside – but we know from Table 3.3 that it does not do as well as

banding on estimation, and thus must be cutting off too many elements.

Results for the triangular block model Σ2(1/2, 1/2, 1/2) are shown in Figure 3.4.

Here, the Isoband results are only slightly noisier than banding, and it identifies the

blocks perfectly every time. Thresholding makes some errors outside the blocks, and

again appears to cut off a little bit more than necessary inside the blocks. Overall,

the Isomap does very well on picking up the two structural features we built into the

simulated data – the blocks and the banded structure within each block.
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Figure 3.4: Heatmap of percentage of times out of 50 replications each element was estimated as
zero for model Σ2(1/2, 1/2, 1/2). Black corresponds to 0%, white to 100%.

3.4 The Krzanowski measure for comparing eigenspaces

Before demonstrating the performance of Isoband on real data, a discussion of

comparison measures for eigenvectors and/or eigenspaces is appropriate. We have

been using the matrix l2 norm for choosing k and comparing matrices, but may not

always be interested in improving estimation of the entire covariance matrix. Con-

sider the case where we are only interested in the first few eigenvectors rather than

the entire covariance matrix, as is the case in PCA. We introduce some comparison

measures and investigate their ability to help select tuning parameters for procedures

such as banding for that setting.
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3.4.1 Comparison measures

In order to determine what measures are appropriate to examine improvement in

the leading eigenvector estimation and to perhaps also choose the value k for banding,

we consider how values of k have been chosen in the literature when the goal was

to improve estimation of the sample covariance matrix [5]. We have mentioned

this cross-validation scheme previously in the Introduction, but here we discuss the

details.

When the goal is to obtain the “best” estimate of the population covariance matrix

and we are choosing k for simple banding, one may consider the risk function

(3.9) R1(k) = ‖Σ− Σ̂k‖

where ‖ · ‖ denotes the matrix l2 norm. The optimal value of Σ̂k is the estimate that

minimizes the risk function. However, we do not know the true covariance matrix,

hence we must estimate the risk function, and examine whether or not it has minima

at the same values of k that the population risk function does.

The cross-validation scheme of Bickel and Levina estimate the risk function as

follows [5]. Consider repeatedly splitting the data into a training and test data

set. For each split i, on the test data set, compute the sample covariance estimate,

denoted Σ̂
(1)
i , and on the training data set, compute all possible k banded sample

covariance estimates, denoted Σ̂
(2)
i,k . Then estimate the risk as

(3.10) R̂1(k) =
1

N

N∑
i=1

‖Σ̂(1)
i − Σ̂

(2)
i,k‖,

where N is the number of splits, and choose k so that R̂1(k) is minimized. In this

approach, the test set is used to get an estimate of the truth, and the training data

set is used to examine what possible regularized covariance matrices might look like.
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This risk function has been found to behave similarly to the population version via

simulations [5], and a theoretical justification has been provided in [4].

With the goal of comparing eigenvectors and improving estimation of the eigen-

vectors in mind, we can consider other measures besides the l2 norm as the risk

function, while still utilizing the general procedure outlined above with repeated

data splits to choose k. One possible measure of comparison of eigenvectors is the

cosine of the angle between them, analyzed theoretically by Johnstone and Lu [28].

Then k can be chosen to maximize the cosine of the angle between the vectors, or,

in terms of minimizing a risk function, for just the first pair of eigenvectors choose k

to minimize:

(3.11) R2(k) = 1− e1(Σ)′e1(Σ̂k)

where e1(M) denotes the first eigenvector of a matrix M . Using the cross-validation

scheme (let i count the number of splits), we can choose k to minimize the estimated

risk function:

(3.12) R̂2(k) =
1

N

N∑
i=1

(
1− e1(Σ̂

(1)
i )′e1(Σ̂

(2)
i,k )

)
,

This idea can be extended to deal with comparisons of multiple eigenvectors. How-

ever, we note that even when dealing with one eigenvector, sometimes the first sam-

ple and first population eigenvectors do not “match”, because the order of estimated

eigenvectors may not match the order of population eigenvectors, even if the principal

eigenspaces are similar. Resolving these difficulties is possible with a matching algo-

rithm; however, it adds computational complexity, and it is easier to use a measure

of comparison that avoids this matching difficulty.

Measures of similarity have been derived for comparing principal components

across several groups (or populations). Krzanowski [34] developed a measure of
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similarity that can be used to compare the first m principal components from two

or more groups. His measure also involves the cosines of the angles between the

eigenvectors but does not suffer from a matching problem because all possible pairs

are considered up to a point.

Following Krzanowski’s setup, consider two covariance matrices Σ1 and Σ2. To

compare the principal eigenspaces spanned by the first m PCs of each covariance

matrix, let the lead eigenvectors for Σ1 be denoted by {e1, . . . , em}, and the lead

eigenvectors for Σ2 by {f1, . . . , fm}. Define a measure of similarity by

(3.13) K(m) =
m∑

i=1

m∑
j=1

< ei, fj >2 ,

where the inner product < ei, fj > gives the cosine of the angle between ei and fj.

We call this measure of similarity the Krzanowski measure. If the two eigenspaces are

exactly the same, K(m) will take on its maximum value of m. Note that K(p) = p

always, and by definition, K(0) ≡ 0. Note that this measure examines all possible

eigenvector pairings for the first m eigenvectors, and hence, this measure does not

suffer from matching problems so long as m is chosen to be large enough.

We can use this measure in a risk function for choosing k for regularization.

Let θij represent the angle between the ith population eigenvector and jth sample

eigenvector. Then a risk function can be defined as

(3.14) R3(k) = m−
m∑

i=1

m∑
j=1

cos2(θij) = m−K(m),

where K(m) is the Krzanowski similarity measure between Σ and Σ̂k. If we again

divide the data into training and test data sets, where we compute all possible banded

estimates on the training data set, and let θ̂ijk
represent the angle between the ith

eigenvector from the test data set and jth eigenvector from the training data set for
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the k-banded estimator, then we can approximate the risk function R3(k) by

(3.15) R̂3(k) =
1

N

N∑
i=1

(
m−

m∑
i=1

m∑
j=1

cos2(θ̂ijk
)

)
,

where N is the number of splits.

3.4.2 Model Settings

In order to examine the Krzanowski measure as a possible tuning measure for

selecting the bandwidth k, we need to examine a model similar to the “spiked”

covariance model, where only the first few eigenvectors are of interest. This model

assumes that most of the population eigenvalues are 1, while a few are greater than

1 and well-separated from the rest. In the original spiked model by Paul [45], Σ =

diag(λ1, λ2, ..., λM , 1, ..., 1), with M eigenvalues greater than 1. However, in this

model k = 0 is clearly the best choice for any measure to make since the true

covariance is diagonal. Instead, we extend the idea of a “spiked” model to an auto-

regressive (AR) setting.

The AR covariance structure Σ1 defined in (3.8) has eigenvalues that are not

well separated for most ρ. Let λ1 be the largest eigenvalue of the unspiked AR(1)

covariance matrix. In order to introduce a single spike, we set the variance of the

first variable to be q ∗ λ1, where q is a multiplier greater than 1. We examined a

range of values of q though the results presented here focus on q = 2. To introduce

more than one spike, let the number of spikes be s, and the value of the multiplier

for the smallest spike be q. Then, set the variances of the first s variables to be

q ∗ λ1,(q + 1) ∗ λ1,...,(q + s− 1) ∗ λ1, respectively. With this method of spiking, the

AR correlation decay structure is preserved, and the eigenvalues corresponding to

each spike are well separated. Then, we sample observations from this model under

the Gaussian assumption. Scree plots for the unspiked and spiked AR model with
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ρ = .1,.5,.7, and .9 are shown in Figure 3.5; only the first 20 eigenvalues are shown

for p = 100. The figure shows how the spiking procedure results in well-separated

eigenvalues in the case of a single spike.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

E
ig

e
n

v
a

lu
e

 

 
ρ=.1
ρ=.5
ρ=.7
ρ=.9

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

E
ig

e
n

v
a

lu
e

 

 
ρ=.1
ρ=.5
ρ=.7
ρ=.9

(a) Unspiked (b) Spiked

Figure 3.5: Scree plots of unspiked and spiked AR eigenvalues for first 20 eigenvectors for ρ =
.1,.5,.7, and .9 for one spike

For all of the simulations, the number of observations in each sample was n = 100,

the number of variables p = 10, 50, 100, and 200, and for the AR structure, ρ = .1, .5,

.7, and .9. For each simulation, 100 data sets were drawn from the true model. When

the cross-validation scheme was being used to choose k, simulations for p = 10 were

run with 50 splits on each data set, and with 10 splits for p > 10. For the Krzanowski

measure, the number of principal components compared (m) ranged from 1 to 20

taking values in (1,2,3,4,5,10,15,20). Other simulation details are discussed with the

results.
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3.4.3 Results

We summarize our results for choosing k using the various risk functions, and

examine the effects of the regularized estimators on the resulting eigenvectors and

eigenvalues. Selected results are presented that are representative of all results.

First, we investigated whether the three proposed risk functions based on matrix

l2 norm (Norm), cosine between first eigenvectors (Cos), and the Krzanowski measure

(K(m)) result in different oracle values of k. That is, we computed the population

version of the risk functions (3.9), (3.11), (3.14), and examined the optimal k chosen

by each measure. The number of replications to compute the expectation for and

number of observations n were both set at 100 for each combination of p and ρ.

While the chosen values of k were similar and generally small, they were not exactly

the same across the three measures.

In order to estimate the three risk functions from data, we implemented the cross-

validation scheme described above and computed risk from (3.10), (3.12), (3.15), for

100 replications with n = 100 observations sampled for each combination of p and ρ.

Figure 3.6 displays the average estimated value of the Krzanowski measure (K(m)

itself rather than the risk function (3.15)) versus the values of k for p = 100 and

several values of ρ and m when there was one spike in the data. The locations of the

maxima of the curve (which correspond to the optimal k) do change depending on

ρ as expected due to the AR structure, but are fairly consistent across m, although

the curve has local maxima at high m for high ρ. We fix m = 5 in the results that

follow.

Figure 3.7 shows the true versus estimated average values of the Krzanowski

measures for p = 100, m = 5, and values of ρ = .5 and .9. The estimated measure

is less than the true measure in all cases (as expected), but the maxima occur at



66

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

k for Banding

K
r
z
a

n
o

w
s
k
i 
M

e
a

s
u

r
e

 

 
m=5
m=10
m=20

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

k for Banding

K
r
z
a

n
o

w
s
k
i 
M

e
a

s
u

r
e

 

 
m=5
m=10
m=20

(a) ρ = .5 (b) ρ = .7

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

k for Banding

K
r
z
a

n
o

w
s
k
i 
M

e
a

s
u

r
e

 

 
m=5
m=10
m=20

(c) ρ = .9

Figure 3.6: Average Krzanowski measure vs. k for AR Setting n = p = 100, for several values of m

roughly the same k values. This suggests the resampling scheme provides an adequate

estimate of the risk based on the Krzanowski measure for the purposes of choosing

k.

In order to determine which tuning measure is best for improving the estimation
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Figure 3.7: True vs. estimated average Krzanowski measures

of the leading eigenvectors, we computed the Krzanowski measure between the dif-

ferent banded estimators with k chosen using the estimated risk functions (3.10),

(3.12), (3.15), and the true covariance. Results in Figure 3.8 show how each measure

improved estimation of the first m eigenvectors, for n = p = 100. We used m = 5 in

(3.15) although only one spike was introduced into the model. Figure 3.8 shows that

the estimate based on the Krzanowski measure is the best at improving estimation

of the leading eigenvectors. For completeness, we include a table of average l2 norms

over the 100 replications with each estimator compared to the true covariance. Table

3.4 confirms that all the banded estimates improve on the sample covariance in terms

of the l2 norm for this “spiked” AR model with one spike. Moreover, for all but the

smallest value of ρ, the Krzanowski measure provides better tuning than the norm

measure even when performance is measured by the norm loss.

Future work will need to further examine the impact of m on the chosen values

of k. In conclusion, the Krzanowski measure is a suitable measure for comparing
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Figure 3.8: Average K(m) vs. m for the banded estimates based on each tuning measure and the
sample covariance compared to the true covariance over 100 replications with n = p =
100

principal components, and could have applications choosing tuning parameters in

settings where a comparison of eigenvectors is of primary interest.
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Table 3.4: Average l2 norm loss over 100 replications for each tuning measure.
ρ Sample K(5) Cos Norm
.1 2.94 .60 .57 .53
.5 3.76 1.23 1.62 1.47
.7 4.79 2.10 3.40 3.33
.9 9.17 6.26 8.87 8.26

3.5 Protein consumption example

In this section, we illustrate advantages of discovering structure on a dataset that

contains data on per capita protein consumption from nine different protein sources

in 25 European countries, which was analyzed via principal component analysis in

[16]. All variables are measured in grams per capita per day, so there is no need

to standardize, and we perform PCA on the covariance rather than the correlation

matrix. The nine protein sources are meat (grazing animals), pork and poultry,

eggs, dairy, fish, cereals, starchy foods, pulses and nuts and oil-seeds, and fruits and

vegetables. While the dimension of the data (p = 9) is moderate, the low sample

size (n = 25) makes regularization necessary. This situation is exactly what our

estimator is designed for: it is clear that some variables are “closer” than others

(e.g., one might think that meat and pork are closer than dairy and fish), but it is

not obvious a priori how the variables should be ordered.

To compare the estimators, we compute the principal components from the sam-

ple covariance matrix, Isoband, and the thresholded covariance matrix. Note that

the Ledoit-Wolf’s estimator does not change the eigenvectors, and its principal com-

ponents are identical to those of the sample covariance. The Isomap reordered the

variables as eggs, meat, starchy foods, pork and poultry, cereals, dairy, pulses and

nuts and oil-seeds, fish, and fruits and vegetables. Banding in this order chose to keep

only three sub-diagonals, introducing 30 zeros in the covariance matrix. The thresh-
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olded covariance had 35 zeros; notably, covariances between fruits and vegetables

and all other variables were set to 0 (which accounts for 16 of the zeros).

To compare the differences in principal eigenspaces, we use the Krzanowski mea-

sure [34]. Table 3.5 gives the values of the Krzanowski measure for m = 1, .., 9 for

Isoband and thresholding, both compared to the sample covariance PCs. A gain of

about 1 between K(m− 1) and K(m) indicates that the m-th PCs are very similar;

a gain close to zero indicates that they are different. Table 3.5 shows that there is a

big difference in the 1st PC between the sample covariance and Isoband. Moreover,

K(m) does not come close to m until m = p, which means that the 1st Isoband

PC is different from all the first eight PCs the sample covariance has found. For

thresholding, on the other hand, the first four PCs are very similar to the sample,

and the differences only appear in the 5th PC, which accounts for only about 2% of

the total variation (Table 3.6).

Table 3.5: Krzanowski measure K(m): principal eigenspaces of Isoband and thresholding compared
to the sample covariance.

m 1 2 3 4 5 6 7 8 9
Isoband .17 1.04 2.14 2.94 3.48 4.45 5.45 7.11 9

Thresholding .999 1.91 2.90 3.88 4.06 4.81 6.29 7.32 9

Table 3.6: Percentage of variance explained by the nine PCs.
m 1 2 3 4 5 6 7 8 9

Sample 72.27 14.10 6.72 3.87 1.76 1.11 .73 .33 .11
Isoband 69.30 14.76 6.16 4.82 1.79 1.44 .94 .70 .08

Thresholding 69.76 15.36 6.24 4.05 2.34 1.48 .63 .15 .01

Examining the loadings in Table 3.7 shows that the first principal component for

the sample covariance and thresholding is essentially the difference between cereals

and dairy, whereas the first PC from Isoband is the difference between cereals and

fish. The second PC involves more variables, but the sample and thresholding both
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Table 3.7: Loadings for the first two PCs.
Estimator Meat Pork/Poul. Eggs Dairy Fish Cereal Starch Pulses Fruits/Veg.

First Principal Component
Sample -.15 -.13 -.067 -.43 -.13 .86 -.067 .11 .020

Thresholding -.15 -.11 -.067 -.42 -.12 .87 -.057 .11 0
Isoband -.01 -.11 -.065 -.13 .87 -.42 .11 -.13 .014

Second Principal Component
Sample .14 -.05 .008 .84 -.27 .40 -.078 -.06 -.17

Thresholding .16 -.28 .006 .82 -.30 .34 -.10 -.03 0
Isoband .025 .30 .047 .051 -.34 -.85 .08 .19 .17

still put a large weight on dairy, and Isoband does not.

To further illustrate the differences between the principal components, we pro-

jected the data onto the first two principal components and applied agglomerative

clustering (bottom-up) via the agnes algorithm [32] using Euclidean distances be-

tween projected data points as dissimilarities. Results for three clusters are shown

in Figure 3.9. Agnes solutions are hierarchical; at the first split, it divides the data

into two clusters, and then further splits one of the clusters into two.

Briefly, we make some notes about the principal component scores. The principal

component scores for the sample covariance are uncorrelated, by definition of princi-

pal components analysis. The scores based on thresholding appear uncorrelated due

to the similarity between the principal components from the sample covariance and

thresholding. However, the principal component scores for Isoband are positively

correlated. This can happen whenever the principal components are modified for

better interpretability, in particular, when small loadings are thresholded to zero.

The clustering for the sample covariance matrix is very similar to thresholding.

Both essentially cluster only on the second PC, and both separate out Finland (sam-

ple at the second split and thresholding at the first). The only difference is that

Czechoslovakia and Hungary are split off from the biggest cluster in thresholding

and combined with East Germany, Spain and Portugal. Geographically and cul-
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Figure 3.9: Agnes clustering of the protein consumption data in the space of the first two PCs.
The first split separates circles from everything else; the second split separates triangles
from pluses.

turally, these clusters are difficult to explain. The Isoband clustering is completely

different. All three clusters are substantial in size and both the first and second

PCs have discriminating information. The biggest cluster is clearly Western Europe;
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the second split separates South-Eastern Europe (Yugoslavia, Romania, and Bul-

garia) from the rest. While it is possible that other clustering methods may have

obtained somewhat different clustering results, this example serves as an illustration

of a meaningful reordering of the variables resulting in more meaningful principal

components.

3.6 Discussion

While in this chapter we have concentrated on regularizing the covariance matrix

itself after recovering an ordering, there are many methods for regularizing the con-

centration matrix (the inverse of the covariance) that depend on variable ordering,

for example, banding [60, 5] or adaptive banding [37] of the Cholesky factor of the

inverse. Since these methods also rely on an ordering that places correlated variables

close together, our methodology for finding an ordering is equally applicable to regu-

larizing the concentration matrix. An alternative would be to use partial correlations

as a measure of similarity, since they are directly the entries of the concentration ma-

trix, but this is not feasible in high dimensions because partial correlations, unlike

regular (marginal) correlations, cannot be estimated reliably.

Another extension of our method is to spatial data, where one might project

onto two or three dimensions instead of one to find a variable structure that is most

suitable for, e.g., modeling by a Markov random field. Since the theoretical results

on banding generalize to any metric on the variable indexes, not just the distance

on the line, one would gain the same advantages from regularization, but a 2- or

3-dimensional structure may be more meaningful in some applications.

Also, note that the computational cost of finding a one-dimensional ordering is

simply the cost of computing the leading eigenvector of a p × p matrix. This can
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be done efficiently and quickly for p on the order of several thousand, and the com-

putation cost is negligible compared to permutation-invariant methods that require

semi-definite programming algorithms.

Finally, we return to our Raman spectroscopy application and consider the effect

of applying PCA to the Isoband estimate rather than the sample covariance to extract

the pure component spectra. We examined a data set where the primary interest was

extracting the spectra for normal and damaged bone. The most prominent difference

in the pure component spectra is a peak shift for the phosphate component between

957 and 962 cm−1, although shifts are present at other wavenumbers. On both the

full data set (p = 815) and a subset of variables chosen to cover the main peak shifts

(p = 151), Isoband found only one block and picked k = p, and thus the resulting

extracted spectra are identical to those extracted via the sample covariance. The

principal reason for this is that the covariance matrix in the Raman spectroscopy

application is not sparse in the sense that Isoband is designed for; the measurements

across different wavelengths are highly correlated (see Figure 3.10). Similarly, for

thresholding the cross-validation chooses such a low threshold that no values are

actually set to zero. For this data, the smallest correlation in the data set was .6696

and for the partial p = 151 subset, it was .8937. Alternative estimators for Raman

spectroscopy will need to be investigated that do not rely on sparsity in the matrix

but instead capitalize on the low intrinsic dimension of the data and the underlying

linear structure of the problem.
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Figure 3.10: Histograms of correlations for full p = 815 and partial p = 151 Raman data sets.



CHAPTER IV

Improving Nearest Neighbor Graph Construction

4.1 Background on nearest neighbor graphs

Graph construction is a building block of many statistical techniques. In di-

mension reduction, the Isomap method relies on a NN graph to estimate geodesic

distances between points to uncover non-linear structure in the data [55]. In ma-

chine learning (most notably semi-supervised learning), NN graphs can be used to

label the unlabeled data points [63]. Graphs are also a fundamental part of studying

networks, including social, computer, and biological networks [43].

Consider a graph where edges between the vertices (which may or may not have

weights) reflect similarity of the vertices. One such graph is a fully connected graph,

where every vertex has an edge to every other vertex with weights to reflect similarity

between vertices. However, these graphs are not practical in some applications as

they have a high computational cost. Alternatives to fully connected graphs are

sparse graphs including k-NN graphs, ε-NN graphs, tanh-weighted graphs, and exp-

weighted graphs. In k-NN graphs, each point is connected by an edge (directed or

undirected) to its k nearest neighbors under some dissimilarity d. These graphs may

not be connected, particularly with small k, which we capitalized on in our Isoband

methodology to discover blocks. An alternative is to have edges between vertices x

76
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and y if d(x, y) ≤ ε for some ε, which is referred to as the ε-NN graph. The choice of ε,

however, depends on the problem and can be challenging. The tanh-weighted graphs

and exp-weighted graphs are constructed with weight functions that can set edge

weights to zero based on the value of the dissimilarity between vertices, and hence,

not add an edge between x and y if the dissimilarity is large. In semi-supervised

learning, k-NN graphs have been found to perform well compared to these other

graphs [63]. Similarly, k-NN graphs worked well for our Isoband methodology, so

here we focus on improving construction of undirected k-NN graphs.

In general, there are no restrictions on the dissimilarity function d. However, for

many methods including the Isomap, it is natural to have non-negative dissimilarities,

d(x, x) = 0, and d(x, y) = d(y, x), but the triangle inequality does not need to

be satisfied, i.e., d does not need to be a metric. However, note that even with

symmetric dissimilarities, d(x, y) = d(y, x) does not imply that x is one of the k

nearest neighbors of y if y is one of the k nearest neighbors of x.

Based on our experience with Isoband, we have seen that noise in the data can

lead to unstable k-NN relationships. This occurred with block diagonal covariances,

where the blocks with weaker internal correlations were merged incorrectly about 20

percent of the time. Additionally, particularly if the data are not sampled uniformly,

the choice of constant k for all data points can force erroneous nearest neighbor

connections into the graph. These short-circuits (erroneous nearest neighbors con-

nections) and issues with instability in k-NN graphs call for investigating robust

methods for constructing the graphs.

In this chapter, we explore modifications to k-NN graph construction with an

aim to improve block detection in our Isoband method. We discuss existing graph

perturbation methods in Section 4.2. Section 4.3 discusses two new proposals aimed
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at improving graph stability, based on the bootstrap and on local smoothing. Simu-

lation results on block diagonal covariance models demonstrating the improvement

in Isoband are given in Section 4.4. Section 4.5 shows the results of applying the

bootstrap and smoothing graph perturbation methods to the protein consumption

data from Section 3.5, and Section 4.6 demonstrates results on a gene expression

data set. We conclude with discussion and future work in Section 4.7.

4.2 Existing methods for graph perturbation

One area where graph perturbation has been used to improve robustness is the

study of networks, where researchers aim to uncover community structure in large-

scale networks but the number and size of communities in the network is not known

a priori [43]. In this field, researchers have sought a measure for quantifying the

strength of discovered community structure. It seems plausible to conclude that if the

number of edges between groups is sufficiently small, or the number of edges within

a group is sufficiently large, compared to what would be expected from a random

graph, the community structure found is meaningful. This idea was quantified by the

concept of modularity. Modularity is defined to be (up to a multiplicative constant)

the number of edges falling within groups minus the expected number in a network

where the expected degree of vertices matches the starting network but with edges

placed at random. This random graph is called the standard configuration model

[43]. However, researchers have found that some networks with high modularity do

not have strong community structure, and hence, high modularity is only a necessary

but not a sufficient condition for strong community structure [31].

Instead of maximizing modularity when looking for community structure, Karrer

et al. [31] proposed to test community structure by studying the robustness of
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the community assignments to perturbations of the graph. The procedure used to

perturb the graph and test robustness is as follows:

1. For a given network with n vertices and m edges, compute the degree of each

vertex ki, i = 1, ..., n.

2. Compute the expected number of edges between vertex i and j under the so-

called standard configuration model as

(4.1) eij =
kikj

2m
.

3. For each edge in the original network, with probability α, remove that edge and

add a new edge between vertex i and j with probability eij/m.

Constructing a perturbed network in this fashion results in the same expected degree

of vertices as in the starting network. Varying α allows different levels of perturbation

of the network: α = 0 implies that no edges are perturbed, while for α = 1 the process

will generate a fully random graph with the same expected degree of each vertex.

Note that in the application in [31], edges are not weighted.

A modification of this perturbation method is necessary to apply it to a weighted

graph based on correlations for use in Isoband. The original graph is constructed us-

ing k nearest neighbors defined by the correlation-based dissimilarity measure. Then

its adjacency matrix is perturbed T times according to the algorithm we outlined

above. The adjacency matrices of the T perturbed graphs are then combined into

a final adjacency matrix, which has an edge between variables i and j if there is an

edge between i and j in more than cT of the T graphs, where 0 < c < 1 is a tuning

parameter. The weight is set equal to the original weight if the edge is included.

We refer to this method as the edge perturbation method since it works by directly

perturbing the edges.
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Another graph perturbation method was introduced by Carreira-Perpiñán and

Zemel [9], in the context of perturbing minimal spanning trees (MST). Each data

point xi is perturbed by adding Gaussian noise with mean zero and standard devi-

ation si = βγi where γi is the average distance to the k nearest neighbors of xi and

β ∈ [0, 1] is a tuning parameter. A MST is constructed from the perturbed data

set (note that this tree is unweighted), and the process is repeated on T perturbed

versions of the data (T = 20 was used in [9]). The final tree has a weight on each

edge equal to the number of times that edge appears in the T perturbed trees [9].

One possible extension when starting with a weighted graph is to retain edges in the

final graph if those edges appeared in more than cT of the perturbed graphs, and

keep original weights. This method was designed to use with Euclidean distances

between observations, but in our context adding something on the scale of the cor-

relations directly to the variable vectors does not make sense. Instead, we propose a

new method in the next section that makes use of neighborhood information.

Another perturbation method is simply to add noise to all data points (regardless

of neighbors), or to all the weights. A technique of this type was studied in [6],

but a detailed discussion of how the noise was added was omitted. We implement

a “noise” method, where noise is added to the dissimilarity matrix before graph

construction. The noise added to each dissimilarity is Gaussian with variance γ2,

then the dissimilarity matrix is checked to be sure all dissimilarities remain non-

negative (set to 0 if negative after noise added) and to enforce d(x, x) = 0 ∀x. A

k-NN graph is constructed after the noise has been added and the entire process is

repeated T times. The final adjacency matrix for the “noise” method retains edges

that appear in more than cT of the repetitions and keeps original weights for those

edges.
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In the next section, we introduce two new perturbation methods motivated by

the Isoband application.

4.3 New perturbation proposals

The idea of the local noise model of [9] is to perturb each data point in a way that

depends on its average distance to nearest neighbors. However, our nearest neigh-

bors are variables as measured by correlations, not the data points. So, instead of

perturbing the data points, we will perturb the variables, and in essence, “smooth”

rather than add noise. First, we standardize the variables. Then, using our dissimi-

larity 1− |ρ̂ij|, we find the k nearest neighbors of each standardized variable vector,

Xi, which is n by 1. Then, assign a new value X̃i to variable i as

(4.2) X̃i = (1− δ)Xi +
δ

k

k∑
j=1

Xj(i),

where Xj(i) is the jth nearest neighbor of Xi. The k-NN graph is then constructed

using the modified vectors X̃. Note the value of the tuning parameter δ here is

pre-determined. A variation would be to sample δ uniformly from [0, 1] and combine

multiple perturbed graphs as before. Finally, we set the edge weights in the final

graph to the original correlations. We refer to this method as the local smoothing

method where the principle of local smoothing is analogous to the approach we take

in Section 2.3 to deal with high levels of noise.

Finally, we introduce a new graph perturbation method based on the bootstrap,

where we resample the original data set with replacement T times and recompute the

k-NN graph for each bootstrapped sample using new correlations. The final graph

is aggregated over the T bootstrapped samples by keeping edges which appeared in

more than cT of the bootstrapped graphs, and using the original weights for those

edges.
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4.4 Simulation results

The four graph perturbation methods: the edge perturbation, noise, local smooth-

ing, and bootstrap methods were used to obtain different NN graphs prior to apply-

ing Isomap on various block diagonal designs (details below) with T = 100, c = .5,

γ = .001, α = .1, and δ = .5. The values of c and T are kept constant for the boot-

strap, the edge perturbation method, and the noise method for easier comparison.

However, one could easily change either c or T (or both) for each method as desired.

The choice of tuning parameters is discussed in Section 4.4.2 below. For all simula-

tions, n = 100 and p = 100 or 200 as in Chapter III, with block sizes (50,30,20) and

(100,60,40), with 100 replications for each setting. Recall from Chapter III, the two

types of bandable covariance structures we use are:

(4.3) Σ1(ρ) : σij = ρ|i−j| , Σ2(m) : σij =

(
1− |i− j|

m + 1

)

+

,

which we concatenate as blocks. We use notation Σ1(0.7, 0.8, 0.9) to refer to a model

with three AR(1) blocks with values of ρ of 0.7, 0.8, and 0.9, and size of the blocks

as described above. Similarly, Σ2(1/2, 1/2, 1/2) has three triangular blocks, and each

m is half of the corresponding block size. Block detection for block diagonal designs

with Σ2 was already good, but there was room for improvement for Σ1.

4.4.1 Results for estimating block-diagonal structure

We compare average l2 norm losses (Table 4.1) and average number of blocks

detected (Table 4.2) for the four graph perturbation methods, as well as the sample

covariance and Bk(Σ̂BD) (best estimator with correct ordering and with banding

applied to known blocks), along with the Isoband without any perturbations. From

the results in Tables 4.1 and 4.2, it is clear that the bootstrap and local smoothing

outperform the other estimators, including Isoband itself. The noise method and
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the edge perturbation method offer no improvement over Isoband. Because of the

poor performance of the edge perturbation method and noise method, while we

discuss choice of tuning parameters for them, we do not include them in our real

data examples which follow in Sections 4.5 and 4.6.

Table 4.1: Average operator norm loss over 100 replications for block-diagonal covariance models.
Block sizes are 50, 30, 20 for p = 100 and 100, 60, 40 for p = 200.

Setting p Sample Banding Isoband Local Sm. Bootstrap Noise Edge Pert.
Σ1 100 4.17 1.72 1.85 1.74 1.71 1.87 1.84

(.7,.7,.7) 200 6.61 1.82 3.80 1.90 1.84 2.20 2.24
Σ1 100 4.73 2.52 4.40 2.54 2.51 2.60 2.57

(.7,.8,.9) 200 7.76 3.47 3.58 3.51 3.49 3.63 3.62
Σ2 100 6.42 4.25 4.25 4.21 4.28 4.24 4.25

(1
2 , 1

2 , 1
2 ) 200 13.48 8.87 8.92 8.99 8.91 8.97 8.87

Σ2 100 5.05 2.28 2.27 2.28 2.28 2.27 2.28
( 1
10 , 1

3 , 3
4 ) 200 10.34 4.57 4.54 4.55 4.61 4.54 4.56

Table 4.2: Average number of blocks found over 100 replications for block-diagonal covariance mod-
els. Block sizes are 50, 30, 20 for p = 100 and 100, 60, 40 for p = 200.

Setting p Isoband Local Sm. Bootstrap Noise Edge Pert.
Σ1 100 2.13 2.88 2.95 2.14 2.13

(.7,.7,.7) 200 1.94 2.75 2.97 1.94 1.94
Σ1 100 2.85 2.95 3 2.86 2.85

(.7,.8,.9) 200 2.81 2.95 3 2.81 2.81
Σ2 100 3 3 3 3 3

( 1
2 , 1

2 , 1
2 ) 200 3 3 3 3 3

Σ2 100 3 3 3 3 3
( 1
10 , 1

3 , 3
4 ) 200 3 3 3 3 3

4.4.2 Choice of tuning parameters

In the simulations the tuning parameters we used were: c = .5 for the fraction

of perturbed graphs that an edge needed to appear in to be kept in the final graph

(shared between the bootstrap, noise, and edge perturbation methods), γ = .001

for the standard deviation in the noise method, α = .1 for the percentage of edges

to remove and replace for the edge perturbation method, and δ = .5 to govern the

amount of smoothing for the local smoothing method. In the simulations, T = 100
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was used for the number of bootstraps and perturbed graphs (shared between the

bootstrap, noise, and edge perturbation methods).

Detailed investigations on the Σ1(.7, .8, .9) setting with p=100 reveal the following

for the tuning parameters for each method. Local smoothing seems to work best for

lower values of δ (.1-.5) and does not seem sensitive to the choice in that range.

At higher values (.7 or .9), however, it begins to find more blocks than are actually

present. The bootstrap does not seem sensitive to the choice of c if c is in the range

from .3 − .9. When c is less than .3, the bootstrap does not offer any improvement

over Isoband in terms of improving block detection. For edge perturbation, best

results are for c in (.1-.7) and low α (.05 or .1). When c is greater than .7, this

method finds too many blocks (i.e., too many edges are dropped from the original

graph), and also finds too many blocks if α > .1 (.2 or .3). Finally, for the noise

method, choice of c does not affect performance if the amount of noise added is low

(γ = .0001 or .001). Higher values of γ (.01 or .1) cause the method to find too many

blocks at any level of c. Even at optimal settings, however, the noise method and

edge perturbation method cannot compete with the bootstrap and local smoothing.

Based on these results, we selected c = .5 for the bootstrap, noise method and edge

perturbation. For method specific tuning parameters, we chose γ = .001 for the noise

method, α = .1 for edge perturbation, and δ = .5 for local smoothing.

4.5 Protein consumption example

Recall the protein consumption data discussed in Section 3.5 with 25 countries

and nine variables. Previously, we compared the sample covariance, thresholding,

and Isoband on this data by applying the covariance estimators and examining their

principal components by looking at clustering solutions on the space of the first two
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principal components. Here we investigate how much the results are affected if the

graph is perturbed by the bootstrap and the local smoothing method. We omit the

other two perturbation methods because they were not competitive in simulations.

The variable order that was found by Isoband in Section 3.5 was eggs, meat,

starchy foods, pork and poultry, cereals, dairy, pulses and nuts and oil-seeds, fish,

and fruits and vegetables. The bootstrap was applied with c = .5 and with 1000

bootstrap replications and produced a variable order of eggs, starchy foods, pork

and poultry, meat, cereals, pulses and nuts and oil-seeds, dairy, fish, and fruits

and vegetables. With the bootstrap ordering, banding chose to retain one more

diagonal than Isoband. The local smoothing method was applied with δ = .5 and

banding applied after local smoothing chose to keep two more diagonals than Isoband.

The variable ordering recovered for local smoothing was dairy, meat, fish, pulses

and nuts and oil-seeds, starchy foods, cereals, eggs, pork and poultry, and fruits

and vegetables. The changes in the order suggest that we may see some changes

to the principal components. Note that no blocks were found using Isoband, the

bootstrap, or local smoothing (which distinguishes these results from thresholding,

which isolated fruits and vegetables from the other variables). We now examine the

principal components and clustering solutions for each estimator.

As before, we use the Krzanowski measure to compare the principal components

of the bootstrap and local smoothing to Isoband with results in Table 4.3. We see

that there are slight differences between these new principal components and those

found by Isoband. However, values for m = 2 are very close so we do not expect the

clustering solutions to be very different from the Isoband solution.

Clustering results are shown in Figure 4.1 for thresholding, Isoband, the bootstrap,

and local smoothing. In each case we clustered the data into three clusters using the
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Table 4.3: Krzanowski measure K(m): principal eigenspaces of the bootstrap and local smoothing
compared to Isoband.

m 1 2 3 4 5 6 7 8 9
Bootstrap .9998 1.98 2.97 3.92 4.65 4.85 6.16 7.03 9

Local smoothing .9993 1.90 2.91 3.84 4.46 4.91 6.56 7.34 9

agnes hierarchical clustering [32]. Recall the thresholding results were very similar to

the sample covariance results, with one cluster containing a single country (Finland)

(see Figure 3.9). The bootstrap solution is almost identical to the Isoband solution,

although the middle cluster for the bootstrap is a little tighter. For local smoothing,

the changes to the variable ordering and keeping an additional diagonal are enough to

change the clustering since Portugal is far enough from the other countries to be set

aside as its own cluster. It appears that the Isoband and the bootstrap solutions are

the best with the additional advantage of tighter clusters provided by the bootstrap.

Although this example shows that the bootstrap may improve over Isoband, there

are no blocks detected in this example. Next, we consider a larger gene expression

data set, where blocks of variables are present.

4.6 Gene expression example

In this section, we show the advantages of improving graph construction in the

context of finding blocks of variables in a covariance matrix for a gene expression

data set. The full data set contains 2308 gene expression profiles measured on n = 64

samples which included four classes of small round blue cell tumors of childhood [33].

There were 23 samples from the Ewing family of tumors (EWS), 8 from Burkitt

lymphoma, a subset of non-Hodgkin lymphoma (BL-NHL), 12 from neuroblastoma

(NB), and 21 from rhabdomyosarcoma (RWS). For our analysis, we select a subset

of the genes which carry the most discriminative information, as measured by the

F -statistics computed using all four tissue classes. Specifically, the F -statistic is
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Figure 4.1: Agnes clustering of the protein consumption data in the space of the first two PCs after
graph perturbation methods have been applied.

computed as

(4.4) F =
1

k−1

∑k
i=1 ni(x̄i − x̄)2

1
n−k

∑k
i=1(ni − 1)σ̂2

i

,
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where k = 4 is the number of groups, n = 64 is the total number of samples, ni is

the number in each class (given above), x̄i and σ̂2
i are the sample mean and variance

of class i, and the overall mean is x̄. We examined subsets of size 50, 100, 250, 500,

and 1000 based on the F -statistics, but only discuss results for the subset of 50 here,

since visualization of correlation matrices is easier with small p. Similar results were

found for the other subsets.

With a reduced data set of 50 gene profiles across the 64 samples, we applied

thresholding, Isoband, the bootstrap with 100 bootstrap replications and c = .5,

and local smoothing with δ = .5. Thresholding chooses a very small threshold and

thresholds no correlations, and thus is identical to the sample covariance. Isoband

finds three blocks of sizes 32, 11, and 7, and retains 4, 10, and 7 diagonals in each

respectively. The bootstrap finds five blocks of sizes 24, 11, 7, 7, and 1, and chooses

not to band anything. Local smoothing finds four blocks of sizes 24, 11, 8, and 7,

retains only 2 diagonals in the first block, and does no banding in the smaller blocks.

Even though the block sizes are similar for local smoothing and the bootstrap, there

are some differences in the orderings as shown in Figure 4.2. Note that the size 24

blocks for the bootstrap and local smoothing do not contain the exact same genes.

One way to compare the estimators is to compare the blocks found to the four

tissue classes. In Figure 4.2, columns are sorted by tissue class (labeled with class

abbreviations: EWS, BL-NHL, NB, and RWS). The rows are the 50 genes sorted

in the order found by each method with the largest blocks starting at the bottom

of the figure. The gene expression values have been standardized for each gene;

white corresponds to the largest standardized positive expression values, while the

largest (in magnitude) standardized negative expression values are black. For the

sample, the genes were simply sorted by hierarchical clustering (average linkage)
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using the dissimilarity d(i, j) = 1 − |ρ̂ij|, where ρ̂ is the sample correlation between

variable i and j. For the other methods, genes are labeled based on their ordering

in hierarchical clustering for ease of comparison.

Figure 4.2 shows that hierarchical clustering groups genes based on positive ex-

pression levels which correspond to the tissue classes, and there are clearly blocks

of genes that correspond to each class. The Isoband plot appears different from the

others due to the large block of 32 genes at the bottom of the figure, which cov-

ers classes BL-NHL and EWS. This is due to Isoband detecting the strong negative

expression values for genes 43-50 for class BL-NHL as strong negative correlations

with genes 1-24, and therefore merging the two blocks and retaining strong negative

correlations in banding. It may be more appropriate here to use a dissimilarity of

the form 1− ρ̂ij rather than 1− |ρ̂ij|. The other two blocks still correspond to genes

36-42 and genes 25-35; however, the ordering within blocks is not exactly the same

as the hierarchical solution. Note the changes to ordering are most significant in the

first block since Isoband only retains 4 diagonals in that block compared to 10 out

of 11 and 7 out of 7 diagonals in the other blocks.

Turning our attention to the bootstrap ordering, we see a new feature in the first

block of genes (size 24, bottom of figure), because the bootstrap detected the large

negative correlations between gene 50 and genes 9 and 20 and included gene 50 in

that block. Gene 50 has large negative expression values for class BL-NHL rather

than large positive ones, but that still means the first bootstrap block distinguishes

class BL-NHL from the other classes. The next three blocks are genes 25-35, 36-42,

and 43-49, just as in the Isoband solution, except with gene 50 missing from the last

block, and each block corresponds to high positive expression levels for one of the

remaining tissue classes. Again, the ordering within blocks is slightly different from
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both the hierarchical solution and Isoband. The bootstrap isolated gene 11 (no other

genes remained nearest neighbors to it in more than 50 % of the perturbed graphs)

and it has high positive expression values for class BL-NHL.

Finally, we consider the local smoothing ordering where the blocks of genes found

by local smoothing are genes 1-24, 25-35, 36-42, and 43-50. These blocks correspond

to high positive expression levels for one tissue class each; the blocks in the figure

are ordered to match the hierarchical clustering solution. Note that for the large

block (bottom 24 genes of figure) the order of variables is not the same as in any

of the other methods. This is significant because local smoothing bands this block

more than both Isoband and the bootstrap, so genes far apart in this block have

their correlations set to zero.

We also examined the number of edges in each graph. Isoband (with the tradi-

tional 3-NN graph) has 104 edges between the 50 variables. Local smoothing results

in a graph with 99 edges and the bootstrap in a graph with 84 edges, so it does seem

likely that the perturbation methods remove some erroneous edges.

When looking at the estimated matrices themselves, we will display the corre-

lation matrices rather than the covariance matrices. To enhance the display of the

correlation matrices, the variables were ordered according to a hierarchical clustering

algorithm. All estimated correlation matrices were reordered in this order for ease

of comparison and plotted as heatmaps in Figure 4.3. Thresholding is omitted since

it is the same as the sample covariance.

Figure 4.3 shows that Isoband retains many of the variables with strong positive

correlations and a few negative ones, while the bootstrap results in even stronger

blocks and a few additional negative correlations being retained. Local smoothing

produces more zeros in the largest block, and zeros out all the negative correlations.



91

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

24
23
18
19
12

4
10

7
11
13
14

8
17
20

2
3

16
6
1
5

15
22

9
21
50
48
47
44
49
43
46
45
30
31
29
27
26
25
28
32
33
35
34
36
37
40
39
42
38
41

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

(a) Sample (b) Isoband

4
2

10
1
3
7

22
8
6
9

50
20

5
21
16
17
15
14
13
12
19
18
24
23
34
35
33
32
28
25
29
27
26
31
30
41
42
38
39
40
37
36
47
48
49
44
46
43
45
11

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

4
2

10
1
3
8
7

11
6
9

20
5

22
21
17
16
15
13
14
12
19
18
24
23
34
35
33
32
25
26
27
28
30
31
29
41
42
38
39
40
37
36
45
43
46
44
49
47
48
50

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
E

W
S

E
W

S
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
B

L−
N

H
L

B
L−

N
H

L
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
N

B
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

R
M

S
R

M
S

(c) Bootstrap (d) Local Smoothing

Figure 4.2: Heatmap of Khan data, columns are sorted by tissue class, rows are genes by block order
for each estimator or hierarchical clustering for sample and labeled based on position
in hierarchical clustering.

Both new methods result in blocks of genes which can distinguish the tissue

classes, which is an improvement over Isoband. The bootstrap retains negative cor-

relations while local smoothing does not, and is less sparse than local smoothing.
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Figure 4.3: Heatmap of Khan data estimated correlation matrices for different covariance estima-
tors. Black corresponds to correlations near -.6, white to correlations of 1. Variables
were clustered via hierarchical clustering for visual scanning of blocks.

Overall, it appears that both perturbation methods result in “cleaner” block-diagonal

estimates, which in this case clearly corresponds to the class structure in the data.

4.7 Discussion and future work

In this chapter we have concentrated on improving k-NN graph construction for

use in Isoband and have shown the promise of two new methods – the bootstrap

and local smoothing. Note the computational cost for local smoothing is much lower

than that of the bootstrap. One issue we will address in future work is the effect of

perturbation on k-NN graphs for larger k. We conjecture that perturbation will still
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help eliminate spurious edges. Another extension is to ε-NN graphs. It is important

to note that the bootstrap works well in our application because the k-NN graph

is constructed on variables rather than observations. If the vertices of the graph

were the observations themselves, resampling with replacement would result in some

vertices missing and some replicated; a different resampling mechanism may make

more sense in this case. Local smoothing, on the other hand, is straightforward

to apply to a NN graph based on the observations. More sophisticated forms of

smoothing will be investigated as well.

We also plan to investigate a rigorous procedure for choosing the tuning parameter

based on some type of cross-validation. Ultimately, the details of the methodology

will need to be adapted to the application at hand, but the general idea of graph

perturbation to improve robustness of NN graphs is applicable to a wide range of

statistical methods.
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Appendix

The description of the experiments and equipment was provided by the Morris

lab, and is included for completeness and as needed for reference for future work.

A.1 Raman instrumentation

Raman spectra were collected using two different systems: a Raman microprobe

optimized for collection in the near-infrared (NIR) [58] and a purpose-built, visi-

ble Raman microscope [18]. Briefly, the NIR system consists of an epi-illumination

microscope frame (Olympus, BH-2) and a 400 mW 785 nm laser (Invictus, Kaiser

Optical Systems, Inc.). The laser light is line-focused through a Powell lens (Stocker

Yale) and into a 20x/0.75 NA Fluar objective (Carl Zeiss, Inc). For the visible Ra-

man system, a research grade microscope (Nikon E600) and a 2 W 532 nm laser

(Spectra Physics, Millenia II) were used. The circular beam profile of the Millenia II

laser is reshaped into a line using a Powell lens and focused through a 4x/0.20 NA

infinity-corrected objective (Nikon). For visible Raman hyperspectral imaging, a sin-

gle axis scanning mirror (64240H, Cambridge Technology, Inc., Cambridge, MA) was

used [18]. A LabVIEW (National Instruments, Austin, TX) program controlled the

mirror’s position by adjusting the voltage sent to the mirror control board through

a 12-bit digital-analog converter. The mirror could be positioned to approximately

±0.2 µm with a setting of 1-3 ms. Raman scatters from both systems were collected

using an f/1.8 axial transmissive spectrograph (Kaiser, HoloSpec). NIR and visible

Raman scatter were detected using a back-thinned, deep depletion 1024× 128 pixel

95
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CCD camera (Andor Technology) or an 512 × 512 pixel electron-multiplying CCD

camera (iXon Andor Technology), respectively. The spectral axis was calibrated

(pixel to wavenumbers) using emission lines from a neon or argon discharge lamp.

Curvature corrections and data analysis were performed in Matlab 6.1 using built-in

and locally-written scripts.

A.2 Chemical components (dissimilar spectra)

Raman spectra of bovine bone, polyethylene, polystyrene, Teflon, Delrin, and

PMMA were acquired using the visible Raman system. All spectra were collected

using an acquisition time of 10 seconds and within the 700 − 1600 cm−1 spectral

range. Bovine bone specimens were obtained from a local abattoir and sectioned

into 5 × 10 × 2 mm blocks under constant irrigation using a diamond wheel saw.

The sections were rinsed with calcium-buffered saline solution to remove any blood

residues, and stored at -30oC until required.

A.3 Fractured mouse bone (similar spectra)

Raman spectra of the fractured bone specimen embedded in PMMA were collected

using the NIR Raman microprobe. A series of spectra were taken in parallel with

the fracture from the edge at 100 µm intervals. Spectra were collected using a 7

minute integration time to ensure good s/n ratios. To prepare the fractured mouse

bone specimens, a heavy rounded blade was dropped onto the tibia of a 10 month

old wild-type mouse. Fractured mouse tibias were harvested according to a protocol

approved by the University of Michigan Institutional Committee on Use and Care

of Animals. The specimens were embedded in PMMA, sectioned, and polished to

reveal the fractured ends of the bone.
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A.4 PMMA curing

Koldmount (Vernon & Bishoff, Albany, NY) is a two-part acrylic resin commonly

used to embed biological specimens for microscopy and archival preservation. The

solid component (poly(methyl methacrylate) plus benzoyl peroxide as an initiator)

and the liquid (methyl methacrylate monomer plus N ,N -dimethyl-p-toluidine as an

initiator) are mixed; the reaction proceeds quickly to produce a translucent (highly

scattering) material. Koldmount powder (2.3 g) and Koldmount liquid (1.5 mL) were

mixed together using vendor-supplied protocols. The mixture was stirred briefly at

ambient temperature and immediately poured into a polystyrene cuvette. A second

batch of Koldmount was prepared after 5 minutes, mixed and poured into the same

cuvette, on top of the partially cured material. The fresh mixture was allowed to

cure for 3 minutes (the minimum at which it no longer flows as a liquid). The cuvette

was then turned on its side and placed on the microscope stage for Raman imaging.

The reaction continued during the imaging.

Transects (30 in all) for the Raman image were collected on the 532-nm system

with 500 mW excitation power and 4 seconds acquisition time. The spectra – initially

512 spectral values by 390 spatial pixels, 30 exposures altogether – were binned

spatially to improve the s/n ratio. This gave a data set consisting of 3900 spectra

(130× 30), each with 512 values in the spectral dimension (800− 1500 cm−1).

A.5 Bone image

Visible hyperspectral imaging of mouse bone specimens embedded in PMMA were

performed using the scanning mirror described previously [18], measured over the

range 800 − 1500 cm−1 (512 spectral values). Spectra were acquired with an inte-

gration time of 4 seconds per line; the excitation power was 300 mW. The image
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comprised of 30 lines with a reduced pixel size of 300× 50.
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