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ABSTRACT 
 
 
Comparing the expression-profiles of over 10,000 genes from the human and mouse 

genomes, I address fundamental questions on mammalian gene expression.  First, I 

demonstrate that over 80% of human-mouse orthologous genes are evolutionarily conserved 

in their expression-profiles.  This result highlights the importance of proper gene expression 

to fitness.  Second, I show that highly expressed and tissue-specific genes tend to evolve 

slowly in expression-profile, implying that the expression pattern is of particular importance 

to highly expressed and tissue-specific genes.  I then investigate the potential roles that gene 

expression plays in protein sequence evolution, dynamics of genome organization, and 

evolutionary changes of gene essentiality in mammals.  My results indicate that tissue-

specificity is a stronger determinant on protein evolutionary rate than gene expression level, a 

factor that is known to be the most important rate determinant in yeasts.  The result suggests 

a great variation in rate determinants of protein sequence evolution between unicellular and 

multicellular organisms.  Subsequently, my analyses on the origin of co-expressed gene 

clusters indicate that co-expression of linked genes is a form of transcriptional interference 

that is disadvantageous to organisms, suggesting that transcriptional interference may 

promote recurrent relocations of genes in the genome.  Lastly, I study underlying 

mechanisms of the evolution of gene essentiality.  The results show that the changes of gene 

essentiality appear to be associated with adaptive evolution at the protein-sequence level, 

while gene duplication and gene expression evolution plays a negligible role.  Together, my 

studies help understand patterns, mechanisms and consequences of gene expression evolution. 
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INTRODUCTION 

 

Understanding the molecular basis of organismal evolution is one of the major tasks 

of biology.  For example, many scientists have been trying to identify the genetic bases 

underlying the major transitions of life forms throughout the history and to understand the 

causes setting us apart from other primates (Olson 1999; Zhang, Webb, and Podlaha 2002; 

Zhang 2003; Hayakawa et al. 2005; Prabhakar et al. 2006; Calarco et al. 2007; Harris, Rogers, 

and Milosavljevic 2007).  In evolution, gene function can be altered through changes in 

either protein function or gene expression.  Several case studies clearly demonstrated that 

gene expression changes can result in phenotypic changes with significant evolutionary 

ramifications.  For instance, the variation in beak depth and breadth among Darwin’s finches 

(Geospiza sp.) is due to the variation in Bmp4 gene expression pattern (Abzhanov et al. 2004).  

In humans, cis-regulatory changes elevating lactase (LCT) transcription enables northern 

Europeans to digest lactose through adulthood (Bersaglieri et al. 2004), while >90% of Asian 

people experience the condition of lactose intolerance.   

In spite of the important role gene expression evolution may play in organismal 

evolution, previous research mainly focused on protein coding-sequence evolution (Li 1997; 

Nei and Kumar 2000).  Because of that, several fundamental questions associated with gene 

expression evolution, such as how gene expression changes during evolution, how regulation 

of gene expression originated, and how expression evolution connects genomic and 

phenotypic evolution, are largely unexplored.  Studies on gene evolution at the 



 2

transcriptional level can provide a cohesive view of organismal evolution from DNA to 

phenotypes.  

Until recently, the technical difficulty associated with simultaneously measuring the 

expression of a large number of genes was a bottleneck for studies of general patterns of gene 

expression.  Nowadays, high-throughput microarray technologies allow the measurement of 

gene expression at the genomic scale, resulting in the generation of numerous genome-wide 

gene expression data for many organisms under various conditions.  These data enable me to 

use computational approaches to address several fundamental questions that have puzzled 

biologists for years.  My dissertation addresses gene expression evolution in mammals.  I 

approach these questions by comparing the expression-profiles (i.e., relative gene expression 

levels across different cell types) of over 10,000 genes from the human and mouse genomes 

(Su et al. 2004). 

My dissertation is comprised of two main sections.  The first section is on the 

evolutionary constraints and patterns of mammalian gene expression.  In Chapter 1, I reject 

the completely neutral model of transcriptome evolution (Khaitovich et al. 2004; Yanai, 

Graur, and Ophir 2004) by confirming the evolutionary conservation of expression-profile 

between >80% of human-mouse orthologs.  In Chapter 2, I study the evolutionary rate of 

gene expression-profiles.  The result suggests that expression-profile is of particular 

importance and tends to be more evolutionarily conserved for highly-expressed gene and 

tissue-specific genes. 

In the second section, I describe the potential roles gene expression has in molecular 

and organismal evolution at different levels.  The subjects in Chapter 3, Chapter 4 and 
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Chapter 5 are the effects of gene expression on protein sequence evolution, dynamics of 

genome architecture, and gene knockout phenotype evolution, respectively.   

In Chapter 3, I compare the relative importance of the rate determinants for 

mammalian protein evolution, including two important properties of gene expression, namely 

expression level and tissue-specificity.  I found considerable differences in the rules 

governing protein evolution between yeast and mammals.  In Chapter 4, I focus on the origin 

of co-expressed gene clusters in eukaryotic genomes.  Previous authors assumed that this 

phenomenon is a result of adaptive relocation of initially unlinked but co-expressed genes 

(e.g.(Hurst, Pal, and Lercher 2004).  I propose and test an alternative hypothesis that co-

expression of linked genes is a form of transcriptional interference that is disadvantageous to 

the organism.   My result suggests that transcriptional interference may underlie recurrent 

relocations of genes in the genome.  In Chapter 5, I investigate the molecular mechanisms 

responsible for the observation that 20% of mouse orthologs of human essential genes are 

non-essential.  Here, an essential gene is defined by its knockout phenotype of premature 

death or sterility.  Three possible mechanisms are examined:  (i) functional compensation 

between duplicate genes, (ii) divergence of protein sequences, and (iii) divergence of gene 

expression.  I found that the changes of gene essentiality appear to be associated with 

adaptive evolution at the protein-sequence level. 
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CHAPTER 1 
 

EVOLUTIONARY CONSERVATION OF MAMMALIAN GENE EXPRESSION: 
THE STUDY OF HUMAN-MOUSE ORTHOLOGOUS GENES 

 
 
 
 
1.1 ABSTRACT 

Mouse models are often used to study human genes, because it is believed that the 

expression and function are similar for the majority of orthologous genes between the two 

species.  However, recent comparisons of microarray data from thousands of orthologous 

human and mouse genes suggested rapid evolution of gene expression profiles under minimal 

or no selective constraint.  These findings appear to contradict non-array-based observations 

from many individual genes and imply the uselessness of mouse models for studying human 

genes.  Because absolute levels of gene expression are not comparable between species when 

the data are generated by species-specific microarrays, use of relative mRNA abundance 

among tissues (RA) is preferred to that of absolute expression signals.  We thus reanalyze 

human and mouse genome-wide gene expression data generated by oligonucleotide 

microarrays.  We show that the mean correlation coefficient among expression profiles 

detected by different probe sets of the same gene is only 0.38 for human and 0.28 for mouse, 

indicating that current measures of expression divergence are flawed because the large 

estimation error (discrepancy in expression signal detected by different probe sets of the 

same gene) is mistakenly included in the between-species divergence.  When this error is 

subtracted, 84% of human-mouse orthologous gene pairs show significantly lower expression 

divergence than that of random gene pairs.  In contrast to a previous finding, but consistent 

with the common sense, expression profiles of orthologous tissues between species are more 
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similar to each other than to those of non-orthologous tissues.  Furthermore, the evolutionary 

rate of expression divergence and that of coding sequence divergence are found to be weakly, 

but significantly positively correlated, when RA and the Euclidean distance are used to 

measure expression-profile divergence.  These results highlight the importance of proper 

consideration of various estimation errors in comparing the microarray data between species. 

 

 

1.2 INTRODUCTION 

Patterns and mechanisms of DNA and protein sequence evolution have been 

extensively studied in the past three decades (Li 1997; Nei and Kumar 2000).  By contrast, 

little had been known about the general patterns of gene expression evolution until a few 

years ago when high-throughput gene expression profiling technologies became available 

(Cavalieri, Townsend, and Hartl 2000; Enard et al. 2002; Oleksiak, Churchill, and Crawford 

2002; Ranz et al. 2003; Rifkin, Kim, and White 2003; Townsend, Cavalieri, and Hartl 2003).  

Because gene expression evolution links the evolutionary changes of genes and phenotypes, 

it is of fundamental importance to estimate the rate of gene expression evolution and to look 

for the underlying molecular mechanisms responsible for transcriptome evolution.  Among 

all the technologies for producing transcriptome data, the DNA (oligonucleotide or cDNA) 

microarray is most commonly used (Ruan et al. 2004).  This technology makes it possible to 

study the expression of large numbers of genes simultaneously with relatively low cost 

compared to sequencing-based technologies such as serial analysis of gene expression 

(SAGE) (Velculescu et al. 1995) and massively parallel signature sequencing (MPSS) 

(Brenner et al. 2000).  Transcriptome data from various tissues in various organisms have 
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been produced using DNA microarrays, making evolutionary analysis of genome-wide gene 

expression patterns feasible. 

Based on oligonucleotide microarray datasets obtained from the human and mouse 

(Su et al. 2002), Yanai, Graur, and Ophir (2004) found that the expression profiles of 

orthologous genes differ substantively between the two species, suggesting little selective 

constraint in the evolution of gene expression.  Additionally, based on the expression 

similarity among 32 human and mouse tissues, they found orthologous tissues between 

species (e.g., human liver and mouse liver) to be less similar than non-orthologous tissues 

within species (e.g., human liver and human testis).  Because tissue functions are determined 

by the genes expressed in the tissue, these results imply that the human liver is functionally 

more similar to the human testis than to the mouse liver, which is contrary to the common 

sense.  Based on both oligonucleotide and cDNA microarrays, Khaitovich et al. found that 

expression-level divergence between primate species increases linearly with divergence time 

and that functional genes and expressed pseudogenes have similar rates of expression 

evolution (Khaitovich et al. 2004).  Because pseudogenes evolve without any selective 

constraint, these results suggest that gene expression evolution is largely neutral, without the 

influence of either positive or purifying selection (Khaitovich et al. 2004).   

These findings are surprising for several reasons.  First, it is well established that 

coding sequences and functions of most orthologous genes are conserved across species (Li 

1997).  Because a gene must be expressed properly to function in the cell, it is puzzling why 

gene function should be conserved when the expression changes quickly.  Second, the 

expression pattern and function of human genes are often inferred from their mouse 

orthologs (e.g., Hinds et al. 1993), based on the assumption that these properties are 
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conserved between the two species.  The success of many mouse models of human genes and 

diseases suggests the validity of this assumption.  Studies using traditional non-array-based 

methods such as the Northern analysis showed that the expression profiles of human-mouse 

orthologs are overall similar, although a quantitative genome-wide measure of mean 

similarity is difficult to obtain, due to large variations in experimental designs among these 

individual-gene studies.  Third, a recent microarray-based study of the nematode 

Caenorhabditis elegans showed that transcriptome evolution is significantly faster in lab 

mutation-accumulation strains than in naturally isolated strains (Denver et al. 2005).  

Because the sizes of the lab populations are much smaller than those of the wild populations, 

Denver et al’s observation is best explained by purifying selection acting on expression 

divergence in nature.  The rate of expression divergence would have been similar between 

lab and wild populations if gene expression were not under any selection (Kimura 1983). 

With these considerations, we reexamined the expression divergence between 

orthologous genes, based on the oligonucleotide microarray data of human and mouse genes 

generated by Su et al. (2004).  Our choice of this dataset is not only because it (or its earlier 

version) has been used in a number of evolutionary studies (Li 1997; Makova and Li 2003; 

Huminiecki and Wolfe 2004; Yanai, Graur, and Ophir 2004; Jordan, Marino-Ramirez, and 

Koonin 2005; Yang, Su, and Li 2005), but also because this dataset is one of the largest for 

humans and mice, the expression divergence between which is of special importance to the 

biomedical community.  Our analysis showed that there is a large error in measuring gene 

expression using microarrays.  When this error is subtracted, the majority of orthologous 

genes show significantly lower expression-profile divergence between humans and mice than 

expected under neutrality.   
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1.3 MATERIALS AND METHODS 

1.3.1 Mapping expression data to Ensembl genes 

We used the Gene Atlas V2 microarray dataset of humans and mice 

(http://symatlas.gnf.org/).  The dataset was generated by hybridization of RNA from 79 

human and 61 mouse tissues onto the designed Affymetrix microarray chips (human: 

U133A/GNF1H; mouse: GNF1M) (Su et al. 2004).  These human and mouse chips were 

designed according to the annotated human and mouse genome sequences, respectively.  On 

a chip, each gene is represented by one to several probe sets, each of which comprises 11 

pairs of probes.  Each pair of probes contains a oligonucleotide probe that matches the 

genomic sequence perfectly and the second probe that is identical to the first probe except for 

the middle nucleotide, which differs from the genomic sequence.  To assign the probe sets to 

their corresponding human or mouse genes, we aligned sequences of each probe set to the 

Ensembl cDNA sequences (human: Homo_sapiens.NCBI35.feb.cdna.fa; mouse: 

Mus_musculus.NCBIM33.feb.cdna.fa; http://www.ensembl.org/) using BLASTn 

(http://www.ncbi.nlm.nih.gov/blast/) and retained those probe sets in which all matching 

probes perfectly matched to the same Ensembl gene.  25,368 probe sets (75.3%) in the 

human chip corresponding to 16,456 genes and 18,005 probe sets (49.8%) in the mouse chip 

corresponding to 15,835 genes were used for further analysis.  The expression level detected 

by each probe set was obtained as the signal intensity (S) computed by the MAS 5.0 

algorithm (Hubbell, Liu, and Mei 2002).  The S values were averaged among replicates. 

To compare our results with those of Yanai, Graur, and Ophir (2004), we also 

analyzed the expression dataset used in their study, which is from Su et al. (2002).  The 

results obtained from the two datasets were consistent with each other when the same method 
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was used.  We also used the expressional values computed by the robust multi-array 

averaging (RMA) (Bolstad et al. 2003; Irizarry et al. 2003).  The results obtained from MAS 

5.0 and RMA algorithms were similar.  Thus, only the results derived from the dataset Gene 

Atlas V2 and calculated by MAS 5.0 are presented here. 

 

1.3.2 Human-mouse orthologs 

Homology information of human and mouse genes was obtained from Ensembl 

EnsMart (http://www.ensembl.org/Multi/martview) (Kasprzyk et al. 2004).  There are several 

homologous relationships between human and mouse genes annotated by Ensembl.  We only 

considered those pairs of genes annotated as UBRH (Unique Best Reciprocal Hit, meaning 

that they were unique reciprocal best hits in all-against-all BLASTZ searches) as orthologous.  

10,607 pairs of human-mouse orthologs have expression information from the microarray 

data we use.  Among these genes, 64.5% of human genes and 86.9% of mouse genes were 

represented by a single probe set, while the others have multiple probe sets on the chips.  

Affymetrix probes with name suffixes “_x_at” and “_s_at” are believed to be prone to cross-

hybridization, compared to other probes (Affymetrix Technical Support, Data Analysis 

Fundamentals, Appendix B; http://www.affymetrix.com/), and have been considered 

“suboptimal” (Huminiecki and Wolfe 2004; Yang, Su, and Li 2005).  But our analysis 

showed that the quality of these probes is not worse than other probes (see below).  We 

therefore considered all probe sets equally. 

The number of synonymous substitutions per synonymous site (dS) and the number of 

nonsynonymous substitutions per nonsynonymous site (dN) between human and mouse 
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orthologs were retrieved form Ensembl EnsMart.  In this database, dS and dN were estimated 

by codeml of the PAML package (Yang 1997) using the likelihood method. 

 

1.3.3 Analysis of gene expression data 

For the purpose of studying the divergence of expression profiles between human-

mouse orthologs, we analyzed 26 common tissues from the two species (see Figure 1.2 for 

the tissues examined; note that mouse lower spinal cord was used as the homologous tissue 

of human spinal cord). 

For calculating the expressional divergence between a pair of orthologous genes, the 

expression signal in human and that in mouse must be comparable.  Log2-transformed signal 

intensity (S) is commonly used to quantitatively measure the level of gene expression.  But it 

has intrinsic problems for comparing expression data derived from different Affymetrix 

microarrays.  First, probes are separately designed for the human and mouse orthologous 

genes and do not target the same sequences.  Therefore, the human probes and mouse probes 

have different affinities to their target RNAs (Binder et al. 2004a; Binder et al. 2004b).  

Subsequent normalization procedures still depend on the properties of the microarray chip 

and do not make the expression signals of orthologous genes from different chips comparable.  

This important technical issue was apparently ignored in earlier evolutionary studies (Yanai, 

Graur, and Ophir 2004; Jordan, Marino-Ramirez, and Koonin 2005), as the authors directly 

compared S or log2-transformed S values obtained from the human and mouse chips.  Second, 

because the S value detected by the microarray is approximately linear with the actual 

quantity of target RNA within reasonable ranges of measurement (Affymetrix 2001), log2-

transformed S values tend to overestimate the difference between two low expressional 
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values but underestimate the difference between two high expressional values.  For these two 

reasons, we used relative abundance (RA) to measure the relative expression level of a gene 

in a given tissue among the sampled tissues.  The RA for human or mouse gene i expressed in 

tissue j is defined as  
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Here, n is the number of common tissues considered and is 26 in this study.  H indicates 

human and M indicates mouse.  ),( jiSH  and ),( jiSM  are the expression signal intensities of 

gene i in human tissue j and mouse tissue j, respectively.  When the RMA algorithm was 

used to measure expression, S was calculated by anti-log of the default output value.  It 

should be noted that by using RA we lose the information of the absolute expression level in 

all tissues, but as aforementioned, the absolute expression levels of orthologs are practically 

incomparable.   

The divergence between expression profiles of human and mouse orthologous genes 

is measured by “1 - Pearson’s correlation coefficient (r)” and “Euclidean distance (d)” using 

the RA values of the 26 pairs of tissues.  Pearson’s r between human and mouse gene i is 

computed by:  
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Euclidean distance d between human and mouse gene i is computed by: 
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For those genes with more than one probe set, we randomly pick one probe set to represent 

that gene while measuring the expressional divergence of human-mouse orthologs.  

Our analysis showed that different probe sets on the same chip often give very 

different S values for a given gene in a given tissue.  This difference is most likely due to the 

variation in affinity among probe sets for a given gene.  Let dH denote the Euclidean distance 

between the expression profiles estimated by two randomly picked probe sets for the same 

human gene, dM denote the Euclidean distance for the corresponding mouse gene, and d be 

the Euclidean distance defined in formula [3].  We estimate the net distance (D) between 

human and mouse orthologous genes by 

D= d – (dH + dM)/2.         (4)   

This procedure is analogous to the estimation of the net genetic difference between two 

populations by subtracting the genetic variation within populations from that between 

populations (Nei 1987).  D should be interpreted as the detectable divergence in expression-

profile between an orthologous gene pair from the human and mouse.  A lower d than (dH + 

dM)/2 indicates no detectable divergence under the current technology; we therefore assume 

D=0.  There were 3762 and 1385 genes with multiple probe sets on the human and mouse 

chip, respectively.  The number of genes with multiple probe sets in at least one species is 

4564.  These 4564 genes were used to measure D.  For a given gene, when one of the two 

species has only one probe set, we assumed dH =dM.  Human and mouse genes in this set of 

4564 orthologs were randomly paired to estimate the neutral expectation of expression 

divergence between the two species.  

The tissue expression dendrograms were calculated from the matrix of distances 

among tissues, which were estimated from the RA values of 10,607 gene pairs in humans and 
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mice.  Pearson’s correlation coefficient between human tissue j1 and mouse tissue j2 is 

computed by 
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Here N is the total number of genes studied.  The correlation coefficient between tissue j1 

and j2 of the same species, say human, can be computed by replacing M with H in the above 

formula.  Distance between two tissues is defined as 1-r.  The dendrograms of tissues were 

derived from the hierarchical clustering algorithm (Murtagh 1985) implemented in R 

(http://www.r-project.org/).  We generated 10,000 dendrograms by bootstrapping genes.  For 

a gene with more than one probe set, we randomly pick a probe set whenever the gene is 

sampled.  The final consensus tree was constructed by MEGA3 (Kumar, Tamura, and Nei 

2004).  In addition to the distance 1-r, we also used the Euclidean distance to compute the 

distance of expression profiles between two tissues.  That is, the Euclidean distance between 

human tissue j1 and mouse tissue j2 is computed by  
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The distance between tissue j1 and j2 of the same species, say human, can be computed by 

replacing M with H in the above formula.  

 

 

1.4 RESULTS AND DISCUSSIONS 

1.4.1 The mean expression divergence between human-mouse orthologs is lower than 

that between random gene pairs 
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To study whether the expression profile is conserved between human and mouse 

orthologous genes, it is necessary to know the expected value of expression divergence under 

complete neutrality.  Ideally, this value should be estimated using expressed pseudogenes.  

However, it is unlikely that a functionless pseudogene generated before the separation of 

primates and rodents would still be retained and expressed in humans and mice.  Jordan, 

Marino-Ramirez, and Koonin (2005) suggested that the expected expression divergence 

under neutrality can be approximated by the expression difference between a randomly 

picked human gene and a randomly picked mouse gene.  This suggestion was based on the 

assumption that the expression similarity between human-mouse orthologs has been 

completely lost under neutrality.  Following this logic, we compared expression divergence 

of orthologous human and mouse genes with that of randomly paired human and mouse 

genes.  Our dataset included 10,607 orthologous gene pairs, each with expression 

information from 26 common tissues from the two species (see Materials and Methods).  For 

a gene of a species, the signal intensity (S) values from all the tissues were transformed to the 

relative abundance (RA) values, which are the signal intensities in individual tissues divided 

by the total signals in all the tissues considered (see formula [1] in Materials and Methods).  

The reason for using RA, instead of S, is that the absolute expression signal is not meaningful 

in the human-mouse comparison as different microarrays were used for the two species.  We 

then used 1 - Pearson’s correlation coefficient (r) to measure the divergence of expression 

profile between species (see formula [2] in Materials and Methods).  Note that r can vary 

between -1 and 1, thus the value of 1-r ranges from 0 to 2.  Higher r means lower 1-r and 

indicates smaller expression divergence.  For randomly paired human-mouse genes, the mean 

r is 0.002 and the median r is -0.024 (Figure 1.1a).  Hence, on average, randomly paired 
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human and mouse genes show no expression similarity, as expected.  For human and mouse 

orthologous gene pairs, the mean r is 0.216 and the median r is 0.165.  Orthologous genes 

have significantly higher r values than random gene pairs do (P<10-280, Mann-Whitney U 

test).  Thus, the expression divergence between human and mouse orthologous genes is on 

average lower than expected under complete neutrality, suggesting that expression evolution 

has been under purifying selection.  We also used another commonly used measure of 

expression divergence, Euclidean distance (d) (see formula [3] in Materials and Methods), 

which is always positive.  Higher d indicates greater expression divergence.  We found that 

human-mouse orthologs have a mean d of 0.180 and a median d of 0.149 (Figure 1.1b).  By 

contrast, human-mouse random gene pairs have a mean d of 0.229 and a median d of 0.177 

(Figure 1.1b).  Again, expression divergence measured by Euclidean distances is lower 

between orthologous gene pairs than between random pairs (P<10-151, Mann-Whitney U test), 

consistent with the result obtained from the use of r.  These results support the findings of 

Yanai, Graur, and Ophir (2004) and Jordan, Marino-Ramirez, and Koonin (2005), although 

they used different datasets and/or different ways of analysis.  For example, Yanai, Graur, 

and Ophir (2004) used an earlier version of the microarray data (Su et al. 2002), which was 

considerably smaller than the version used here.  They also removed those genes with more 

than one probe set on the chip.  The number of orthologous gene pairs they analyzed was 

only 1350, compared with 10,607 in our analysis.  When multiple probe sets are available for 

a gene, Jordan, Marino-Ramirez, and Koonin (2005) picked the probe set that showed highest 

S, while we randomly picked a probe set.  Because it is unclear whether the use of the probe 

set with highest expression signal introduces biases, our result should be less influenced by 

such potential biases. 
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1.4.2 Errors in measuring gene expression 

Although the overall rate of transcriptome evolution between humans and mice 

appears lower than the neutral expectation, it is unclear what proportion of genes are under 

purifying selection in their expression evolution and how strong the selection is.  To address 

this question, it is necessary to evaluate the error in measuring gene expression by 

microarrays.  It is quite common that more than one probe set is used to represent a gene on 

an oligonucleotide microarray.  Theoretically, if the same transcripts are targeted and if there 

is no cross-hybridization, all probe sets designed for the same gene should provide the same, 

or at least similar, expression signals.  However, this is often not the case.  For example, 

there are two probe sets on the human chip and two on the mouse chip for the gene RUTBC1.  

The S as well as RA values obtained from the two probe sets on the same chip are quite 

different even for the same tissues (Figure 1.2).  In this example, the r between the RA values 

generated from the two mouse probe sets (0.23) is even lower than the average r between the 

RA values generated from a human probe set and a mouse probe set (0.40).  In other words, 

the apparent low r between species is largely attributable to the estimation error of gene 

expression within species.  For many of the 3762 genes with multiple probe sets on the 

human chip, the r values between the expression profiles generated by two randomly picked 

probe sets of the same gene are much lower than 1 (Figure 1.3a).  In fact, r has a mean of 

0.375 and a median of 0.368.  There are 1385 genes with multiple probe sets on the mouse 

chip.  The mean r is 0.277 and the median r is 0.235 between the expression profiles 

generated by two randomly picked probe sets of the same mouse gene (Figure 1.3a).  These 

low r values show that the expression level is not precisely measured by the microarrays.  

Rather, there are large errors associated with the estimates.  Similar results were obtained 
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when d was used to measure the difference between expression profiles detected by different 

probe sets targeting the same gene (Figure 1.3b).   

It is unclear what factors caused such a great variation between expressional levels 

detected by different probe sets.  Affymetrix probes with name suffixes “_x_at” and “_s_at” 

are thought to be prone to cross-hybridization, compared to other probes, and have been 

considered “suboptimal” (Huminiecki and Wolfe 2004; Yang, Su, and Li 2005).  Using the 

human chip, we examined whether the high estimation error is due to the inclusion of 

suboptimal probe sets.  Let A be the group of genes with multiple probe sets and B be the 

subset of A that contain multiple optimal probe sets but no suboptimal probe sets.  There are 

3762 genes in group A and 1097 genes in group B.  Assuming that “suboptimal” probes are 

randomly distributed among genes, we expect that the mean expression-profile similarity 

between two probe sets of the same gene is higher for group B genes than for group A genes.  

However, we observed the opposite pattern (Figure A.1), suggesting that the estimation error 

was not due to the inclusion of “suboptimal” probe sets.  We also compared the average S of 

all 26 tissues generated by “suboptimal” probe sets and the corresponding value generated by 

“optimal” probe sets for each of the human genes with at least one “suboptimal” and at least 

one “optimal” probe sets.  We found that 1,016 genes show higher mean S from 

“suboptimal” probe sets than from “optimal” probe sets and that 1,187 genes exhibit the 

opposite pattern (P<0.0003, chi-squares test).  Thus, although “suboptimal” probe sets tend 

to show slightly lower signal intensities than “optimal” probe sets do, the bias is small.  

Furthermore, in the presence of cross-hybridization, it is unclear whether our observation 

means that “suboptimal” probes are less or more accurate than “optimal” probes.  In sum, we 

found no definite evidence that “suboptimal” probe sets performed worse than “optimal” 
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probe sets.  Other possible sources of the estimation error are cross-hybridization with 

products of multiple genes, hybridization with different transcripts of the same gene, variable 

hybridization affinities of different probe sets, and stochastic background noise of the 

microarray.  To address estimation errors, a variety of methods have been employed, such as 

removing “suboptimal” probe sets (Huminiecki and Wolfe 2004; Yang, Su, and Li 2005), 

discarding genes with multiple probe sets (Yanai, Graur, and Ophir 2004), and selecting the 

probe set with the highest expression level for each gene (Jordan et al. 2004; Jordan, Marino-

Ramirez, and Koonin 2005).  However, none of these strategies remove the estimation error.  

First, as we have shown, eliminating “suboptimal” probe sets does not reduce the estimation 

error.  Second, removing genes with multiple probe sets does not reduce the intrinsic 

imprecision of individual probe sets.  Finally, choosing the highest signal may only alleviate 

the error slightly because it is still unknown whether the quality of the highest-signal probe 

set on the human chip is comparable to that on the mouse chip and whether highest-signal 

means most accurate.  

 
1.4.3 Expression profiles of 84% of human-mouse orthologs are significantly lower 

than expected under neutrality 

Despite the high estimation error shown in Figure 1.3, the expression differences 

between human and mouse orthologs are higher than those detected by different probe sets 

within species.  This indicates that for many genes the expression profile is not completely 

conserved between the two species.  For estimating the proportion of human-mouse 

orthologs that diverge significantly slower than expected under neutrality, Euclidean distance 

d is preferred over 1-r, because the correlation coefficient r ignores any linear changes which 

may exist between expression profiles.  We computed the net expression distance D between 
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human and mouse by subtracting the expression distance between probe sets within species 

from the expression distance between species (see formula [4] in Materials and Methods).  

This procedure is analogous to the estimation of the net genetic difference between 

populations by subtracting the variation within populations (Nei 1987).  D can be interpreted 

as the detectable expression divergence given the estimation error.  Randomly paired human-

mouse genes should have no expression similarity, thus the Euclidean distances do not 

require correction.  We found that d has a relatively wide distribution for random gene pairs 

(Figure 1.4).  Five percent of d are smaller than d5%=0.0897.  If the D value of a human-

mouse orthologous gene pair is smaller than d5%, we may claim that the expression 

divergence of this gene pair has been under selective constraint because the probability that 

the evolution has been neutral is lower than 5% (Figure 1.4).  Using this criterion, we found 

that the detectable expression divergence of 83.9% of genes is significantly lower than 

expected under complete neutrality.  A simple interpretation is that the expressions of these 

genes are under purifying selection.  However, our result may also reflect the large 

estimation error of the current microarray technology and consequently low detectable 

expression divergence between species.  More accurately, our findings suggest that at least 

for 84% of genes the current data do not provide evidence for neutrality.  Note that this 

estimate was derived from 4564 orthologous gene pairs in which multiple probe sets are 

available for at least one species so that the estimation error could be evaluated.  Under the 

assumption that the probe design for a gene is independent of the rate of gene expression 

evolution, our result is applicable to the entire genome.  We also computed the values of dH 

and dM by averaging the Euclidean distances of all possible combinations of probe sets of the 
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same gene, instead of using two randomly picked probe sets.  The results are very similar 

(Figure A.2).   

 

1.4.4 Orthologous tissues between species are more similar than non-orthologous 

tissues in terms of expression profile 

It is expected that orthologous tissues between species (e.g., human liver and mouse 

liver) should have similar expression profiles because they carry out similar physiological 

functions.  However, Yanai, Graur, and Ophir (2004) showed that 16 pairs of human and 

mouse tissues were clustered into two species-specific clades.  They explained that the 

dichotomy of human and mouse tissue expression in the dendrogram is due to large numbers 

of changes in the expression programs and considered this pattern as evidence for the neutral 

evolution of transcriptional profiles.  To understand the exact cause of their findings, we 

regenerated the tissue expression dendrograms.  When we measured the gene expression 

level by the normalized RMA default output or log2 MAS 5.0 signal intensity as Yanai, 

Graur, and Ophir (2004) did, we reproduced their dendrogram that showed the separate 

clustering of human and mouse tissues.  However, a completely different dendrogram is 

produced when RA is used.  Now most of the human-mouse orthologous tissues cluster, with 

bootstrap values higher than 95% (Figure 1.5).  Similar results were obtained when either 1-r 

(Figure 1.5a) or d (Figure 1.5b) was used to measure the expression distance between tissues 

(formulas [5] and [6] in Materials and Methods) or when a smaller microarray dataset (Su et 

al. 2002) was used.  Because our results are more consistent with the expectation, we believe 

that the previous observation by Yanai, Graur, and Ophir (2004) was due to inappropriate 

data processing.  In particular, ignoring the systematic bias caused by the use of two different 
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oligonucleotide arrays and direct comparison of S (or log-transformed S) between species 

was the major problem (see Materials and Methods).  Irrespective of the distance measure 

used, some non-orthologous species-specific tissue clusters remain in our dendrograms with 

relatively high bootstrap percentages (Figure 1.5).  For example, amygdala, hypothalamus, 

and spinal cord of the same species cluster together.  Whether this phenomenon is owing to 

simultaneously rapid evolution of the genes co-expressed in these regions or other reasons 

requires further investigation. 

 

1.4.5 Correlation between the rate of expression-profile divergence and that of coding 

sequence divergence 

It has been controversial as to whether there is a positive correlation between the rate 

of expression evolution and the rate of coding sequence evolution across many genes in a 

genome.  In earlier studies, this question was addressed by comparing duplicate genes within 

species (Wagner 2000; Gu et al. 2002; Makova and Li 2003).  However, such analysis can 

only test whether the expression divergence and sequence divergence between two 

homologous genes are correlated, but cannot test whether the rates of the two divergences are 

correlated.  The latter question can be answered only when orthologous genes between two 

species are compared.  Recent studies using human-mouse orthologs, however, do not find 

such a correlation (Jordan et al. 2004; Yanai, Graur, and Ophir 2004; Jordan, Marino-

Ramirez, and Koonin 2005).  In contrast, we found significantly positive correlations 

between d and coding sequence divergence in terms of dS (Pearson’s correlation 

coefficient=0.119, P<10-32; Fig. 6a) or dN (Pearson’s correlation coefficient =0.187, P<10-80; 

Fig. 6b).  Because all the human-mouse orthologous gene pairs have the same divergence 
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time, these results show that the rate of gene expression-profile divergence and the rate of 

coding sequence divergence at both the synonymous and nonsynonymous sites are positively 

correlated.  In other words, proteins with low rates of sequence evolution also tend to have 

low rates of expression-profile evolution.  We also observed that d and dN/dS are positively 

correlated (Pearson’s correlation coefficient=0.152, P<10-52; Fig. 6c).  In our dataset, there is 

virtually no correlation between dN/dS and dS (Pearson’s correlation coefficient=0.023, 

P=0.02), contrary to the observation of a high positive correlation in a recent analysis of 

3561 human-mouse orthologous gene pairs (Wyckoff et al. 2005).  Thus, dN/dS is a reliable 

measure of the strength of purifying selection acting on coding sequences.  The correlation 

between d and dN/dS suggests that the level of purifying selection preventing protein 

sequence divergence is positively correlated with the level of purifying selection preventing 

expression-profile divergence.  We think that this correlation arises because when a gene is 

functionally important, both its protein sequence and expression profile tend to be more 

conserved, compared to the situation when the gene is less important.  It should be pointed 

out that although the correlations we detected are highly significant, the magnitudes of the 

correlations are low.  This is not unexpected, as both the rate of sequence evolution and that 

of expression-profile evolution are determined by multiple factors and the estimated rate of 

expression-profile evolution has large errors.  A recent study of humans and chimpanzees 

suggested that the rate of gene sequence evolution and the rate of expression-level evolution 

may also be positively correlated (Khaitovich et al. 2005).   

We believe that the main reason why the positive correlation between expression-

profile divergence and coding sequence divergence was not previously observed in the 

comparison of human and mouse orthologous genes (Yanai, Graur, and Ophir 2004; Jordan, 
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Marino-Ramirez, and Koonin 2005) is because S (or the log-transformed S) was used, instead 

of RA, in the estimation of d.  However, the observed difference in the absolute level of gene 

expression between species is not meaningful due to the use of species-specific microarrays.  

Therefore, inclusion of this difference in computing d substantially increases the noise.  

Furthermore, highly expressed genes tend to be more conserved at the coding sequence level 

(Pal, Papp, and Hurst 2001; Rocha and Danchin 2004; Jordan, Marino-Ramirez, and Koonin 

2005; Zhang and He 2005).  They also tend to have high d when it is computed using S 

(Jordan, Marino-Ramirez, and Koonin 2005).  Together, these factors dramatically reduce the 

positive correlation between d and coding sequence divergence.  This problem is rectified 

when d is computed by RA.   

As mentioned, 1-r and d are commonly used to measure gene expression divergence.  

Compared to d, 1-r is more often adopted by evolutionists, such as in the studies of 

duplicated genes in yeast (Wagner 2000; Gu et al. 2002), nematode (Castillo-Davis, Hartl, 

and Achaz 2004; Conant and Wagner 2004), human (Makova and Li 2003; Huminiecki and 

Wolfe 2004), mouse (Huminiecki and Wolfe 2004), and mustard (Haberer et al. 2004).  

However, d reportedly performs better (Slonim et al. 2000) and has been used to compare 

orthologous genes (Yanai, Graur, and Ophir 2004; Jordan, Marino-Ramirez, and Koonin 

2005) and to cluster co-expressed genes (Wen et al. 1998; de Bivort, Huang, and Bar-Yam 

2004).  To our surprise, we did not observe positive correlations between 1-r and either dN, 

dS, or dN/dS.  But this result is consistent with that of Jordan et al. (2004), although they used 

Spearman’s rank correlation instead of Pearson’s correlation (r) to measure the human-

mouse expression-profile similarity.  One may think that the expression divergences 

measured by d and 1-r should be positively correlated.  However, the mathematical 
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properties of d and 1-r are different.  For example, any linear transformations of S do not 

affect r, while they may influence d.  In addition, 1-r is bounded between 0 and 2, whereas d 

can increase infinitely.  In our data, 1-r and d have a weak, but significant, negative 

correlation (Figure A.3).  Although both measures are commonly used, which one better 

describes the expression divergence between orthologous genes remains unanswered.  It is 

possible that the advantages of these two measures vary depending on the conditions used.  It 

is also important to note that neither 1-r nor d measures the number of genetic changes (i.e., 

number of nucleotide substitutions) underlying the observed expression-profile divergence.  

Because the molecular mechanism of gene expression regulation is complex and not well 

understood, no distance measures currently exist to quantify the genetic changes underlying 

expression-profile divergence (Leung and Cavalieri 2003). 

 

1.4.6 Final remarks 

There are two ways to compare the transcriptomes of two species using DNA 

oligonucleotide microarrays.  The first approach is to use a single array to detect gene 

expression in multiple species, while the second approach is to use species-specific arrays.  

Using a single array is only applicable to closely related species and is subject to biases 

caused by interspecific sequence differences (Hsieh et al. 2003; Preuss et al. 2004; Gilad et al. 

2005).  Using multiple species-specific arrays is applicable to any species pairs, but we found 

that the expression divergence between species is substantially overestimated.  This 

overestimation results from the large variation in sensitivity among different probe sets.  

Thus, precise measurement of expression divergence between species is still a challenging 

task.  cDNA microarrays have also been used to assess the expression divergence between 
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species (Ranz et al. 2003; Renn, Aubin-Horth, and Hofmann 2004).  Our method of analysis 

(e.g., use of RA instead of S) applies to cDNA array data as well.  We think that advances in 

both microarray technology and statistical methodology are needed to better characterize the 

evolution of gene expression, which is central to our understanding of the mechanism of 

biological evolution (Rodriguez-Trelles, Tarrio, and Ayala 2005).  
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Figure 1.1  Expression-profile divergences of orthologous genes and randomly paired 
genes from humans and mice.  A total of 10,607 orthologous gene pairs and 10,607 random 
gene pairs are analyzed.  Expression divergence is measured by (a) Pearson’s correlation 
coefficient r and (b) Euclidean distance d.  Both measurements show that the expression-
profile divergence of human-mouse orthologs is significantly lower than that of random gene 
pairs (P<10-280 for r and P<10-151 for d; Mann-Whitney U test). 
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Figure 1.2  Expression profiles of the RUTBC1 gene in humans and mice measured by 
the oligonucleotide microarrays.  Two probe sets (#1: 212319_at; #2: 36129_at) were used 
on the human chip and two (#1: gnf1m22384_at; #2: gnf1m28735_at) on the mouse chip.  
Note that none of them are so-called “suboptimal” probe sets.  (a) Signal intensity values.  (b) 
Relative abundance values.  The expression-profile similarity measured by r is 0.744 and 
0.229, respectively, between the two probe sets for the human gene and between the two 
probe sets for the mouse gene.  When the inter-specific divergence is estimated by comparing 
the expression profile measured by a human probe set and that measured by a mouse probe 
set, four possible r values can be obtained with equal probability: 0.484, 0.449, 0.495 and 
0.164.  The mean of the four r values is 0.398. 
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Figure 1.3  Expression-profile divergences within and between species.  Presented are the 
results obtained from 3762 human genes and 1385 mouse genes for which multiple probe 
sets per gene are available.  Two probe sets for each gene are randomly picked on a 
microarray to measure the expression-profile divergence within species (i.e., variation due to 
estimation errors).  Two probe sets, one from the human gene and other from the orthologous 
mouse gene, are picked to measure the between-species divergence.  The experiment is 
repeated 5 times.  Within-species divergences are denoted in blue for human and red for 
mouse, while the between-species divergences are represented by green lines.  The 
expression-profile divergence is measured by (a) Pearson’s correlation coefficient r and (b) 
Euclidean distances d.  Both measures show that within-species expression divergences are 
significantly lower than between-species divergences (when r is used, P<10-115 for human 
and P<10-5 for mouse; when d is used, P<10-100 for human and P<10-35 for mouse; Mann-
Whitney U test). 
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Figure 1.4  Net distances (D) of expressional profiles between human and mouse 
orthologs and Euclidean distances (d) of random human-mouse gene pairs.  The 
distribution of the random pairs represents the neutral expectation of expressional 
divergences.  The black area left to the vertical dashed line (d5%=0.0089) shows the 5% 
smallest d values.  83.9% of 4564 human-mouse orthologous genes have D smaller than d5%, 
suggesting that the detectable expression-profile divergence of 83.9% of genes is lower than 
the neutral expectation at the 5% significance level. 
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Figure 1.5  Dendrograms of 26 human and 26 mouse tissues based on: (a) 1-Pearson’s 
correlation coefficient r and (b) Euclidian distance d of tissues.  The consensus trees from 
1000 bootstrap trees are presented, with the support values (bootstrap percentages) shown on 
branches.  Interior branches with support values lower than 40 are collapsed.   
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Figure 1.6  Correlation between expression-profile divergence and coding sequence 
divergence. Expression-profile divergence between species, measured by the Euclidean 
distance d, is positively correlated with the coding sequence divergence measured by (a) 
synonymous distance dS, (b) nonsynonymous distance dN, and (c) dN/dS.  Averaged (± 
standard error) dS, dN or dN/dS are shown for each group of orthologs categorized by d.  The 
number of human-mouse orthologous gene pairs per category is 1689, 5739, 1670, 544, and 
494, respectively, for the five categories. 
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CHAPTER 2 
 

DIFFERENTIAL EVOLUTIONARY RATES OF MAMMALIAN  
GENE EXPRESSION 

 
 
 
 
2.1 ABSTRACT 

Evolutionary rates provide important information about the pattern and mechanism of 

evolution.  Although the rate of gene sequence evolution has been well studied, the rate of 

gene expression evolution is poorly understood.  In particular, it is unclear whether the gene 

expression level and tissue-specificity influence the divergence of expression profiles 

between orthologous genes.  Here we address this question using a microarray dataset 

comprising the expression signals of 10,607 pairs of orthologous human and mouse genes 

from over 60 tissues per species.  We show that the level of gene expression and the degree 

of tissue-specificity are generally conserved between the human and mouse orthologs.  The 

rate of gene expression-profile change during evolution is negatively correlated with the level 

of gene expression, measured by either the average or the highest level among all tissues 

examined.  This is analogous to the observation that the rate of gene (or protein) sequence 

evolution is negatively correlated with the gene expression level.  The impacts of the degree 

of tissue-specificity on the evolutionary rate of gene sequence and that of expression-profile, 

however, are opposite.  Highly tissue-specific genes tend to evolve rapidly at the gene 

sequence level, but slowly at the expression-profile level.  Thus, different forces and 

selective constraints must underlie the evolution of gene sequence and that of gene 

expression. 
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2.2 INTRODUCTION 

It has been proposed that evolutionary changes of morphology and development are 

more often due to alterations of gene expressions than protein sequences (King and Wilson 

1975; Carroll 2005).  However, compared to our knowledge of gene and protein sequence 

evolution (Li 1997; Nei and Kumar 2000), genome-wide patterns of gene expression 

evolution (Cavalieri, Townsend, and Hartl 2000; Enard et al. 2002; Oleksiak, Churchill, and 

Crawford 2002; Ranz et al. 2003; Rifkin, Kim, and White 2003) are poorly understood, 

except for the divergences of duplicate genes (Gu et al. 2002; Makova and Li 2003; Gu et al. 

2004; Huminiecki and Wolfe 2004; Gu, Zhang, and Huang 2005; He and Zhang 2005).  The 

advancement of high-throughput technologies for characterizing the expressions of thousands 

of genes simultaneously and the subsequent availability of microarray expression data from 

multiple species open the door for searching for general principles governing gene expression 

evolution.  Two recent studies suggested that expression evolution is largely neutral, with 

little influences of either positive or purifying selection (Khaitovich et al. 2004; Yanai, Graur, 

and Ophir 2004).  However, subsequent experimental studies and computational analysis 

using microarray-based expression data suggested that the expression evolution of most 

genes is subject of purifying selection (Denver et al. 2005; Jordan, Marino-Ramirez, and 

Koonin 2005; Rifkin et al. 2005; Liao and Zhang 2006).  For example, in Chapter 1 we 

estimated that 84% of mammalian genes have significantly lower expression divergence than 

expected under complete neutrality.  These findings raise the question about the determinants 

of the level of purifying selection on gene expression.   

Evolutionary changes of gene expression can be studied from two aspects: (1) 

changes of gene expression level in a given tissue or under a certain condition and (2) 
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changes of gene expression-profile across spatial, temporal, or environmental dimensions.  

The first aspect has been studied more than the second (e.g., Ranz et al. 2003; Khaitovich et 

al. 2004).  Therefore, we focus on the second aspect in this work.  Specifically, we examine 

expression-profile evolution of mammalian genes across tissues by comparing human and 

mouse orthologs.  Pearson’s correlation coefficient (r) is used to measure the expression-

profile similarity between a pair of orthologous genes.  Because all human-mouse orthologs 

have diverged for the same amount of time, one can use r to compare the relative rates of 

expression-profile evolution among genes.  That is, higher r indicates a lower rate of 

evolution, whereas lower r indicates a higher rate of evolution. 

Here we consider two potential determinants of the rate of gene expression-profile 

evolution: expression level and tissue-specificity.  These two factors were previously shown 

to be major determinants of the rate of gene (or protein) sequence evolution (Hastings 1996; 

Duret and Mouchiroud 2000; Pal, Papp, and Hurst 2001; Subramanian and Kumar 2004; 

Zhang and Li 2004; Zhang and He 2005) and our analysis would answer whether gene 

sequence evolution and expression-profile evolution are governed by the same rules.  

Furthermore, a recent study showed that the expression divergence between a pair of human-

mouse orthologs is negatively correlated with the number of tissues in which the gene is 

expressed (Yang, Su, and Li 2005).  This finding is puzzling, because highly specific tissue 

expression of a gene indicates that the gene performs a tissue-specific function (e.g., 

chemoreception or immunity) and it would be unlikely for such a highly specialized gene to 

perform functions useful to other tissues in a different species.  Here we analyze the Gene 

Atlas V2 microarray dataset (Su et al. 2004), which includes the expression information of 

10,607 human and mouse orthologous genes in over 60 tissues.  Our analysis indicates that 
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the evolutionary rate of gene expression-profile is negatively correlated with the level of 

expression and the degree of tissue-specificity. 

 

 

2.3 MATERIALS AND METHODS 

2.3.1 Gene expression data 

We used the human and mouse gene expression information from the Gene Atlas V2 

dataset (http://symatlas.gnf.org/), which contains the expression data obtained by 

hybridization of RNAs from 73 human non-pathogenic tissues and 61 mouse tissues onto the 

Affymetrix microarray chips (human: U133A/GNF1H; mouse: GNF1M) designed according 

to the annotated human and mouse genome sequences (Su et al. 2004).  A gene is represented 

on a chip by at least one probe set, each of which comprises several pairs of probes that 

overlap in their nucleotide sequences.  To assign the probe sets to the current annotated 

version of Ensembl human and mouse genes, we aligned sequences of each probe set to the 

Ensembl cDNA sequences (human: Homo_sapiens.NCBI35.feb.cdna.fa; mouse: 

Mus_musculus.NCBIM33.feb.cdna.fa; http://www.ensembl.org/) using BLASTn 

(http://www.ncbi.nlm.nih.gov/blast/) and kept those probe sets in which all matching probes 

perfectly matched to the same Ensembl gene.  25,368 probe sets (75.3%) in the human chip 

corresponding to 16,456 genes and 18,005 probe sets (49.8%) in the mouse chip 

corresponding to 15,835 genes were retained for further analysis.  The expression level 

detected by each probe set was obtained as the signal intensity (S) computed from either 

MAS 5.0 algorithm (MAS5) (Hubbell, Liu, and Mei 2002) or GC-content-adjusted robust 

multi-array algorithm (GC-RMA) (Wu et al. 2004).  The Gene Atlas V2 dataset derived from 
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GC-RMA algorithm was downloaded from GNF Genome Informatics Applications & 

Datasets (http://wombat.gnf.org).  The S values were averaged among replicates.  Because 

the results from MAS5 and GC-RMA are similar, we present the findings obtained from 

MAS5 unless otherwise noted. 

 

2.3.2 Tissue-specificity of gene expression 

We used Tissue Specificity Index τ (Yanai et al. 2005) to measure the tissue-

specificity of a human or mouse gene.  The τ of human gene i is defined by 

,     (1) 

where nH is the number of human tissues examined and SH(i, max) is the highest expression 

signal of gene i across the nH tissues.  To minimize the influence of noise from low 

intensities, we arbitrarily let SH(i, j) be 100 if it is lower than 100.  Note that this strategy of 

reducing the effect of noise is used only in computing τ.  When a gene has more than one 

probe set on the chip, we compute τ by averaging the τ values derived from the different 

probe sets.  The τ value ranges from 0 to 1, with higher values indicating higher variations in 

expressional level across tissues, or higher tissue specificities.  If a gene has expression in 

only one tissue, τ approaches 1.  In contrast, if a gene is equally expressed in all tissues, τ = 0.  

 

2.3.3 Human-mouse orthologs 

The homology information of human and mouse genes was obtained from Ensembl 

EnsMart (http://www.ensembl.org/Multi/martview) (Kasprzyk et al. 2004).  There are several 
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annotated homology relationships between human and mouse genes by Ensembl.  We only 

considered those pairs of genes annotated as UBRH (Unique Best Reciprocal Hit, meaning 

that they were unique reciprocal best hits in all-against-all BLASTZ searches) to be 

orthologous.  We found that 10,607 pairs of human-mouse orthologs have expression data.  

Affymetrix probes with name suffixes _x_at and _s_at were thought to be prone to cross-

hybridization, compared to other probes (Affymetrix Technical Support, Data Analysis 

Fundamentals, Appendix B; http://www.affymetrix.com/), and have been considered 

“suboptimal” (Yang, Su, and Li 2005).  But our recent analysis showed that the quality of 

these probes is not worse than other probes (Liao and Zhang 2006).  We therefore considered 

all probe sets equally. 

The number of synonymous substitutions per synonymous site (dS) and the number of 

nonsynonymous substitutions per nonsynonymous site (dN) between human and mouse 

orthologs were retrieved from Ensembl EnsMart.  In this database, dS and dN were estimated 

by the maximum likelihood method using the PAML package (Yang 1997).   

 

2.3.4 Expression-profile similarity between orthologous genes 

To measure the similarity in expression-profile between human and mouse orthologs, 

we analyzed 26 common tissues of the two species included in the dataset (Su et al. 2004).  

These 26 tissues are adipocyte, adrenal gland, amygdala, bone marrow, cerebellum, dorsal 

root ganglion, heart, hypothalamus, kidney, liver, lung, lymph node, ovary, pancreas, 

pituitary, placenta, prostate, skeletal muscle, spinal cord, testis, thymus, thyroid, tongue, 

trachea, trigeminal ganglion, and uterus.  Mouse lower spinal cord was used as the 
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homologous tissue of human spinal cord.  We measured the expression-profile similarity 

between a pair of orthologous genes by Pearson’s correlation coefficient r, defined as  

r
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Here, n =26 is the number of common tissues considered, H indicates human, and M 

indicates mouse.  SH(i, j) and SM(i, j) are the expression signal intensity of gene i in human 

tissue j and mouse tissue j, respectively.  A high r indicates a high similarity in expression-

profile between the orthologs and a low rate of expression-profile evolution.  Note that in our 

previous study (Liao and Zhang 2006), the relative abundance of mRNA across tissues (the 

signal of one tissue relative to the total signal of all tissues) was used to compute r.  In fact, 

using either relative abundance or S gives exactly the same r value.  To compare our results 

with those of Yang, Su, and Li (2005), we also used the Expression Conservation Index (ECI) 

that they developed.  The ECI between a pair of human-mouse orthologs is  
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where NH and NM  are the numbers of human and mouse tissues in which the gene is 

expressed, respectively, and NHM is the number of tissues in which the gene is expressed in 

both species.  According to Yang, Su, and Li (2005), a gene is considered to be expressed in 

a tissue if S ≥ 200 for the tissue.  ECI varies from 0 to 1, with higher values indicating higher 

similarity between expression profiles.  When a gene is represented by more than one probe 

set on a microarray chip, r and ECI are computed by averaging the values obtained from all 

possible combinations of a human probe set and a mouse probe set of the gene.   
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2.4 RESULTS AND DISCUSSIONS 

2.4.1 Choice of parameters used in this study  

The transcriptome data analyzed in the present study were obtained from 

oligonucleotide microarray experiments.  When quantifying tissue-specificity of a gene or 

comparing expression-profile similarity between a pair of orthologs, it is important to 

consider properties of microarray data. 

Tissue-specificity of gene expression measures the degree of differential expression 

across tissues.  It is expected that a gene with higher tissue-specificity tends to have lower 

expression breadth (B), which is the proportion of tissues in which the gene is expressed.  In 

microarray data analysis, the number of tissues (N) in which a gene is expressed is usually 

determined by an arbitrary cutoff of the signal intensity S (Su et al. 2002; Vinogradov 2004; 

Yang, Su, and Li 2005).  Similar definitions of tissue-specificity have also been used in 

studies based on SAGE (serial analysis of gene expression) or EST (expression sequence tag) 

data (Duret and Mouchiroud 2000; Ponger, Duret, and Mouchiroud 2001; Lercher, Urrutia, 

and Hurst 2002; Subramanian and Kumar 2004).  However, there are several problems with 

the approach of applying a cutoff in defining whether a gene is expressed in a tissue.  First, 

the number of mRNA molecules of a gene in a given tissue is a continuous figure; expression 

should not be characterized as absent or present.  Second, the expression level required for a 

gene to be functional presumably varies substantively among genes; it is unreasonable to use 

a single cutoff for all genes in all tissues.  Third, expression breadth actually measures the 

tissue restriction of expression, but ignores quantitative variations in expression among many 

tissues (Schug et al. 2005).  Fourth, the S value in microarray data is not only determined by 

the quantity of the target mRNA, but also by the probe-target affinity and the algorithm of 
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raw-data processing.  In other words, two genes with the same S values do not necessarily 

have the same mRNA concentration.  Although a recent study (Khaitovich et al. 2005) used 

the Affymetrix detection p-value instead of the cutoff value of S to determine the expression 

status of a gene in a given tissue, several of the above problems cannot be avoided.  Because 

of these problems with the cutoff-based expression breadth (B), we use Tissue Specificity 

Index (τ) to measure tissue-specificity.  Use of the parameter τ can avoid the aforementioned 

problems.  

Another potential measure of tissue-specificity is the coefficient of variation (CV) of 

expression across tissues.  CV is defined as the standard deviation of a random variable 

divided by its mean.  The CV value for human gene i can be computed by the standard 

deviation of log ( , )2 S i jH  among the 73 human tissues considered divided by the average 

log ( , )2 S i jH of the 73 tissues.  A high CV indicates a great variation in gene expression 

among tissues, implying tissue-specificity.  Because τ and CV are highly correlated 

(Spearman’s rank correlation coefficient = 0.693, P<10-300; Pearson’s correlation coefficient 

= 0.690, P<10-300; see Figure A.4), we will only use τ in this study.  

We use Pearson’s correlation r to measure the expression-profile similarity 

(conservation) between a pair of orthologous genes.  It was claimed by Yang, Su and Li 

(2005) that compared to r, ECI is a more appropriate measure.  However, our results suggest 

that r is better than ECI in quantifying expression-profile similarity (see below).  For instance, 

unlike ECI, using r avoids the use of cutoff-based method in defining N. 

 

2.4.2 Conservation of gene expression level and tissue-specificity during evolution 
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We examine whether the level of gene expression and the degree of tissue-specificity 

are similar between human and mouse orthologous genes.  If gene expression evolution is not 

selectively constrained, as suggested earlier (Khaitovich et al. 2004; Yanai, Graur, and Ophir 

2004), no such similarity is expected (Jordan, Marino-Ramirez, and Koonin 2005), because 

of the long divergence time between the two species (Springer et al. 2003; Murphy, Pevzner, 

and O'Brien 2004) and the rapid pace with which gene expression can change during 

evolution (Gu et al. 2002).  However, we found a strong positive correlation in both mean 

expression level (Figure 2.1a; Spearman’s rank correlation coefficient = 0.392, P < 10-300) 

and tissue-specificity (Figure 2.1b; Spearman’s rank correlation coefficient = 0.296, P < 10-

212) between human and mouse orthologs.  Note that the mean expression levels are 

calculated from averaging S values of 73 normal human tissues or 61 mouse tissues.  Similar 

results were obtained when only the 26 common tissues between humans and mice were 

considered (Spearman’s rank correlation coefficient = 0.384, P < 10-300, for mean expression 

level; Spearman’s rank correlation coefficient = 0.335, P < 10-276, for tissue-specificity).  It is 

interesting to note that although the type of microarray data we analyzed were reported to be 

noisy (Hill et al. 2001; Irizarry et al. 2003) and probe sets of orthologous genes often have 

different hybridization behaviors (Liao and Zhang 2006), significant similarities in 

expression level and tissue-specificity are still apparent between human and mouse orthologs, 

strongly suggesting the evolutionary conservation of gene expression.  Our result regarding 

the conservation of gene expression level is consistent with that of Jordan, Marino-Ramirez, 

and Koonin (2005). 

Previous studies showed that gene expression level and expression breadth are 

strongly and positively correlated (Lercher, Urrutia, and Hurst 2002; Vinogradov 2004).  
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This is not unexpected, as expression breadth is determined by the expression-signal cutoff 

used.  However, in the present study, virtually no correlation is found between expression 

level and tissue-specificity τ.  For example, in humans, Spearman’s rank correlation 

coefficient between τ and mean S is -0.007 (P = 0.481).  Because the correlations we report 

in the following two sections are much higher and very significant, it is appropriate to 

assume that τ and S are uncorrelated. 

 

2.4.3 Highly expressed genes have low rates of expression-profile evolution  

The phenomenon that highly expressed genes have lower substitution rates than lowly 

expressed genes in coding-sequences has been reported in bacteria (Rocha and Danchin 

2004), unicellular eukaryotes (Pal, Papp, and Hurst 2001; Wall et al. 2005; Zhang and He 

2005), and multicellular eukaryotes (Subramanian and Kumar 2004; Jordan, Marino-Ramirez, 

and Koonin 2005).  This is also true in our dataset.  For example, the average expression 

level of human genes (SH) and the nonsynonymous nucleotide distance dN between human 

and mouse orthologs are negatively correlated (Spearman’s rank correlation coefficient = -

0.160, P <10-58).  We also found a weak negative correlation between SH and the 

synonymous nucleotide distance dS (Spearman’s rank correlation coefficient = -0.099, P <10-

23).  SH and dN/dS are also negatively correlated (Spearman’s rank correlation coefficient = -

0.139, P <10-44).  These results confirm that genes of high expression are more selectively 

constrained in the coding-sequence than genes of low expression.  Below, we examine 

whether highly expressed genes are also more constrained in their expression-profile 

evolution. 

 Our analysis of 10,607 human-mouse orthologs shows that highly expressed genes 
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have more similar expression profiles between species than lowly expressed genes (Figure 

2.2 for the binned data).  This is true regardless of whether the expression level is measured 

by the average S over all tissues (Figure 2.2a: human; Figure 2.2b: mouse) or by the 

maximum S (Figure 2.2c: human; Figure 2.2d: mouse) among 73 human or 61 mouse tissues 

examined.  For the unbinned original data, the positive correlation between profile similarity 

and expression level is also strong (rank correlation coefficient: 0.17 to 0.37) (Figure 2.2 

legend).  Because the expression-profile similarities are derived from the 26 tissues common 

to the human and mouse, we also conducted the correlation analysis using average S and 

maximum S computed from the 26 common tissues.  The results obtained (Figure A.5) are 

similar to those presented in Figure 2.2.  Furthermore, we used the GC-RMA expression 

dataset and obtained similar results (Figure A.6). 

It is possible that the positive correlation between gene expression level and 

expression-profile similarity is due to the relatively strong background noise at low 

expression levels, which would reduce the expression-profile similarity more for lowly 

expressed genes.  If our result is mainly due to such a factor, the correlation between the 

expression level and profile similarity should be much weaker in the subset of genes with 

high expressions.  We examined genes with average S ≥ 800, a much greater value than that 

commonly thought to be significant (S = 200, Su et al. 2002).  We found that highly 

expressed genes (S ≥ 800) still show the same trend (Figure 2.2a and 2.2b), suggesting that 

our observation is not due to the background noise.  Our results thus suggest that highly 

expressed genes are exposed to stronger purifying selection in both coding-sequence 

evolution and expression-profile evolution than lowly expressed genes.   
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2.4.4 Tissue-specific genes have low rates of expression-profile evolution 

Previous studies showed that broadly expressed genes such as housekeeping genes 

have lower substitution rates in their coding-sequences than narrowly expressed genes 

(Hastings 1996; Duret and Mouchiroud 2000; Winter, Goodstadt, and Ponting 2004; Zhang 

and Li 2004).  It is expected that the same trend exists between tissue-specificity τ and the 

rate of coding-sequence evolution.  Indeed, we found weak positive correlations between τH 

and dN (Spearman’s rank correlation coefficient = 0.089, P <10-18), dS (Spearman’s rank 

correlation coefficient = 0.114, P <10-24), and dN/dS (Spearman’s rank correlation coefficient 

= 0.060, P <10-9).  Next, we examined the relationship between tissue-specificity and the rate 

of expression-profile divergence.  We found that genes with higher τ tend to show higher 

expression-profile similarity (r) between human-mouse orthologs (see Figure 2.3 for the 

binned data).  This correlation is strong (rank correlation coefficient of 0.34-0.38) and highly 

significant even for the original unbinned data (see Figure 2.3 legend).  The GC-RMA 

expression dataset gave similar results (Figure A.7).  Because the correlation between r and τ 

is much higher than that between τ and S, we conclude that the former correlation is not due 

to the latter.  In other words, expression level and tissue-specificity independently influence 

the rate of expression-profile evolution. 

 Our finding of the positive correlation between r and τ appears to be opposite of what 

Yang, Su, and Li (2005) found.  They showed that broadly expressed genes have lower rates 

of gene expression-profile evolution than narrowly expressed genes, which was based on the 

observation of a positive correlation between expression breadth (B) and the Expression 

Conservation Index (ECI) between human and mouse orthologs.  Their results may not 

reflect biological reality for the following three reasons.   
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First, as aforementioned, they used a potentially problematic approach of applying a 

signal cutoff to the microarray data and defining expression breadth by counting the number 

of tissues in which a gene is expressed.  Figure 2.4a gives an example illustrating its flaws.  It 

is common that on a microarray chip there are more than one probe sets to represent a gene.  

Theoretically, different probe sets of the same gene should give similar values of τ (or B) 

because these different probe sets target the same mRNA.  However, when the cutoff value 

of 200 is used for the two probe sets of human WASPIP gene, B is substantively different 

depending on which probe set is used (probe set #1: B=2/26=0.077; probe set #2: 

B=17/26=0.654).  Fig. 4a shows that the two probe sets provide relatively consistent 

expression patterns except that probe set #1 has much lower affinity to the target mRNA than 

probe set #2.  Contrary to B, similar τ values were obtained using these two probe sets (probe 

set #1: 0.351; probe set #2: 0.334), illustrating that τ is a better measure than B.  

Second, because the number of tissues in which a gene is expressed (N) is highly 

dependent on the signal cutoff used and because ECI is computed from N, one can expect 

that ECI is also problematic.  For example, in Figure 2.4a, although the two probe sets 

represent the same human gene (WASPIP) and have congruent expression patterns, the ECI 

value is low (0.250).  In Figure 2.4b, although human and mouse NEU1 genes have 

substantively different expression profiles, ECI is high (0.961).  Contrary to ECI, Pearson’s r 

between expression profiles seems a better index reflecting biological facts (Figure 2.4a: r = 

0.849; Figure 2.4b: r = 0.288). 

Finally, because both ECI and B are computed from N, it is expected that ECI and B 

are not independent from each other.  From formula (3), we expect that human-mouse 

orthologs with larger N should have higher ECI values, because by chance they have more 
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opportunities to overlap in expression.  To demonstrate this effect, we randomly paired 

human and mouse genes.  As shown in Figure 2.5a, the randomly paired genes still show 

positive correlation between ECI and B, suggesting that the previously observed correlation 

in Yang, Su, and Li (2005) may not be due to true biological relationships, but rather an 

artifact caused by the dependence between the two parameters used.  By contrast, such a 

correlation does not exist for randomly paired genes when we use τ to measure tissue-

specificity and r to measure expression-profile similarity (Figure 2.5b).  Yang, Su, and Li 

(2005) attempted to avoid the dependence between ECI and B by using different sets of 

tissues to compute ECI and B.  They suggested that their result still holds after this 

consideration, as shown in their Table 1.  However, they did not control for the expression 

level S.  Because expression breadth B and mean S are highly correlated (Spearman’s rank 

correlation = 0.86, P<10-300 in our data), their observation of conservation of broadly 

expressed genes could be due to the fact that (i) broadly expressed genes tend to have high 

expression and (ii) highly expressed genes tend to be conserved (Figure 2.2).  The advantage 

of using τ instead of B is that τ and S are uncorrelated (see above).   

Previous molecular evolutionary studies have considered the differences between 

house-keeping and non-house-keeping genes (e.g., Zhang and Li 2004).  House-keeping 

genes are those expressed in the majority of tissues.  It is expected that house-keeping genes 

have lower tissue-specificity than non-house-keeping genes.  If one defines human house-

keeping genes by S ≥ 200 in at least 70 of the 73 examined tissues, τ is 0.168±0.001 (mean ± 

standard error of mean) for the 2262 house-keeping genes, but 0.225±0.001 for the other 

8345 genes, consistent with the above expectation.  However, the average expression level is 

much higher for house-keeping genes (1351±33) than for the other genes (413±5).  
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Interestingly, we found that the expression-profile similarity (r) between human-mouse 

orthologs does not differ between house-keeping genes (0.211±0.006) and the other genes 

(0.215±0.003).  Apparently, high expression levels and low tissue-specificities offset each 

other so that house-keeping genes do not differ from other genes in r.  We note that although 

house-keeping genes tend to have low variations in expression level across tissues, the 

variance is not 0.  Furthermore, the relative expression levels across tissues may not be 

important to house-keeping genes.  This may explain why r is not higher for house-keeping 

genes than for non-house-keeping genes. 

 

2.4.5 Similarities and differences between coding-sequence and expression-profile 

evolution 

In this work, we used statistical correlations to identify factors that might influence 

the evolution of expression profiles of mammalian genes.  It is important to address (i) 

whether two quantities are significantly correlated and (ii) how strong the correlation is.  The 

important correlations on which our main conclusions are based range from 0.17 to 0.38.  

These correlations are not particularly high, though statistically highly significant.  The 

relatively low correlations may reflect two facts.  First, the evolutionary rate of gene 

expression-profile is determined by multiple factors, each of which may only have a small 

effect.  Second, microarray expression data are known to be noisy, which reduces 

correlations.  Because the evolution of gene expression-profiles is poorly understood, it is 

important to first identify all relevant determinants before one can evaluate their relative 

contributions.  It is also useful to compare the magnitudes of the newly identified correlations 

with those of well established correlations, as will be discussed below. 
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By analyzing over ten thousand human-mouse orthologous gene pairs, we found that 

highly expressed genes have lower rates of evolution than lowly expressed genes in both 

coding-sequence and expression-profile (Figure 2.6).  Gene expression level (S) is thought to 

be the single most important determinant of the rate of coding-sequence evolution 

(Drummond, Raval, and Wilke 2006).  We found that the correlation (0.17) between 

expression-profile similarity (r) and S is slightly higher than that (0.14-0.16) between dN (or 

dN/dS) and S for mammalian genes, suggesting similar importance of expression level in 

determining the rate of expression-profile evolution and the rate of coding-sequence 

evolution.   

Do the similar impacts of gene expression level on coding-sequence and expression-

profile evolution suggest a common evolutionary mechanism?  A recent study proposed that 

highly expressed proteins are under stronger pressures to avoid misfolding caused by 

translational errors; consequently, these proteins have more rigid requirements for their 

sequences and are more conserved in evolution (i.e., the translational robustness hypothesis) 

(Drummond et al. 2005).  Although this hypothesis may explain why highly expressed genes 

have low rates of coding-sequence evolution, it cannot explain why they also have low rates 

of expression-profile evolution, because there is no link between expression-profile 

conservation and protein misfolding.  It has also been proposed that highly expressed genes 

are functionally more important and therefore are more conserved in their coding-sequences 

(Rocha and Danchin 2004).  This functional importance hypothesis may explain our 

observations if functionally important genes are under strong purifying selection in both 

coding-sequences and expression profiles.  However, the functional importance hypothesis 

was not supported in a previous study of yeasts (Drummond et al. 2005).  Furthermore, in 
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yeasts and bacteria, only a small fraction of the strong correlation between gene expression 

level and dN may be explained by their covariations with gene importance, which is measured 

by the fitness reduction caused by gene deletions (Rocha and Danchin 2004; Zhang and He 

2005).  The main reason behind the impact of gene expression level on the rate of coding-

sequence evolution is still unclear.  It is possible that the apparently similar influences of 

gene expression level on coding-sequence divergence and expression-profile divergence have 

different underlying causes.  

We found that tissue-specificity has opposite impacts on the rate of coding-sequence 

evolution and the rate of expression-profile evolution.  Compared with a gene with low 

tissue-specificity, a gene with high tissue-specificity tends to evolve faster in its coding-

sequence, but slower in its expression profile (Figure 2.6).  It has been suggested that there is 

less functional constraint on a protein sequence if it is expressed only in a small number of 

tissues (Duret and Mouchiroud 2000).  At the same time, tissue-specific genes may be more 

adaptable due to fewer pleiotropic effects (Duret and Mouchiroud 2000).  As a consequence, 

tissue-specificity and dN become positively correlated.  More detailed causal effects 

regarding this relationship have been discussed in Zhang and Li (2004).  However, it is worth 

noting that the correlation between tissue-specificity (τ) and dN is low (Spearman’s rank 

correlation = 0.089) in our analysis.  Previous studies demonstrating an impact of tissue-

specificity on coding-sequence evolution were likely confounded by the influence of 

expression level, as expression cutoffs were used to define tissue-specificity (Duret and 

Mouchiroud 2000; Zhang and Li 2004).  In the present study, however, the impact of tissue-

specificity can be clearly separated, as τ is uncorrelated with expression level.  
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The correlation between expression-profile similarity and τ ranges from 0.34 to 0.38, 

indicating that the impact of tissue-specificity on expression-profile evolution is much 

greater than that on coding-sequence evolution.  Given the large estimation error of 

expression-profile similarity caused by microarray technologies (Liao and Zhang 2006), the 

high correlation observed prompts us to believe that tissue-specificity is one of the most 

important determinants of the evolutionary rate of gene expression-profile in mammals.  

Why do highly tissue-specific genes have a low rate of expression-profile evolution?  It is 

possible that for a tissue-specific gene, its function is highly specialized for the tissue(s) 

where it is expressed.  Expression of the gene in a different tissue would make the protein 

physiologically useless or even detrimental.  In contrast, non-tissue-specific genes may be 

more tolerant to changes of expression level in various tissues, thus having relatively high 

rates of expression-profile evolution.  Taken together, expression-profile evolution and 

coding-sequence evolution appear to be governed by different principles.  

A recent study based on human-chimpanzee comparisons suggested that the 

evolutionary rate of the expression level of a gene is positively correlated with the 

evolutionary rate of its coding-sequence (Khaitovich et al. 2005).  However, it is unclear 

whether the evolutionary rate of expression-profile is correlated with that of coding-sequence 

(Figure 2.6).  Several studies using human-mouse orthologs do not find such a correlation 

(Jordan et al. 2004; Yanai, Graur, and Ophir 2004; Jordan, Marino-Ramirez, and Koonin 

2005).  Our previous study revealed a weak positive correlation between these two quantities 

when the Euclidean distance was used to measure the profile similarity of human-mouse 

orthologs (Liao and Zhang 2006).  However, such a correlation was not observed when 

Pearson’s r was used to measure the profile similarity.  Figure 2.6 illustrates that these 
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ambiguous results might be related to the different effects of the expression level and tissue-

specificity on the evolutionary rate of coding-sequence and that of expression profile.   

It should be emphasized that genome-wide analysis of gene expression evolution has 

just begun and most studies have focused on identifying correlations.  When a higher 

quantity and quality of data become available, the underlying causes of the identified 

correlations and the relative contributions of various factors may be examined.  We also want 

to stress that the impacts of expression level and tissue-specificity on the evolutionary rate of 

expression profile that we report in this work should be confirmed in other datasets and other 

species.  Unlike the study of gene/protein sequence evolution, in which various evolutionary 

distances have been developed (Li 1997; Nei and Kumar 2000), the study of expression-

profile divergence still lacks a good distance measure.  All the distances so far introduced (r, 

Euclidian distance, and ECI) only measure the relative divergence of expression profiles, but 

tell nothing about the number of genetic changes that are responsible for the expression 

divergence.  Understanding the molecular genetic mechanisms of expression regulation will 

facilitate the development of such distance measures, which will in turn help elucidate the 

mode and cause of expression evolution.  
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Figure 2.1  Expression similarity between human-mouse orthologs in (a) mean 
expression level and (b) tissue-specificity.  Spearman’s rank correlation coefficient = 0.392 
(P < 10-300) for panel (a) and 0.296 (P < 10-212) for panel (b).  In addition, the linear 
regression and Pearson’s correlation coefficient (R) is presented for each panel.  The data 
include 10,607 human-mouse orthologs.  The mean expression levels (SH or SM) and tissue-
specificity (τH or τM) of the human and mouse genes are calculated from 73 human and 61 
mouse normal tissues, respectively. 
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Figure 2.2  Highly expressed genes have higher expression-profile similarity between 
human-mouse orthologs than lowly expressed genes (MAS5 dataset).  The expression 
level is measured by either the mean expression level or the maximum expression level 
across all tissues (i.e., 73 human normal tissues or 61 mouse tissue).  The error bar shows 
95% confidence interval of the mean, estimated by 10,000 bootstrap replications for each bin.  
The data include 10,607 human-mouse orthologs.  We measured the correlations using the 
original unbinned data.  Spearman’s rank correlation coefficient is (a) 0.172 (P <10-71), (b) 
0.176 (P <10-74), (c) 0.333 (P <10-272), and (d) 0.365 (P <10-300), respectively.  The number 
of gene pairs used in each bin is: (a) 0-200: 2517, 200-400: 2781, 400-800: 3093, 800-1600: 
1576, >1600: 640; (b) 0-200: 4377, 200-400: 3132, 400-800: 2064, 800-1600: 768, >1600: 
266; (c) 0-400: 909, 400-800: 1900, 800-1600: 2743, 1600-3200: 2302, 3200-6400: 1472, 
>6400: 1281; (d) 0-400: 2439, 400-800: 2507, 800-1600: 2402, 1600-3200: 1619, 3200-6400: 
961, >6400: 679. 
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Figure 2.3  Greater expression-profile similarities between human-mouse orthologs for 
genes of high tissue-specificity than genes of low tissue-specificity (MAS5 dataset).  
Tissue-specificity is measured using all tissues (i.e., 73 human normal tissues or 61 mouse 
tissue).  The error bar shows 95% confidence interval of the mean, estimated by 10,000 
bootstrap replications for each bin.  The data include 10,607 human-mouse orthologs.  We 
measured the correlations using the original unbinned data.  Spearman’s rank correlation 
coefficient is (a) 0.340 (P <10-285) and (b) 0.377 (P <10-300).  The numbers of genes in each 
bin are: (a) 0.00-0.05: 84, 0.05-0.10: 397, 0.10-0.15: 1810, 0.15-0.20: 3146, 0.20-0.25: 2352, 
0.25-0.30: 1305, 0.30-0.35: 756, 0.35-0.40: 397, >0.40: 360; (b) 0.00-0.05: 444, 0.05-0.10: 
1184, 0.10-0.15: 2473, 0.15-0.20: 2151, 0.20-0.25: 1613, 0.25-0.30: 1117, 0.30-0.35: 740, 
0.35-0.40: 444, >0.40: 441. 
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Figure 2.4  Two examples of expression profiles obtained from Gene Atlas V2.  (a) 
Profiles of two probe sets (probe set #1: 202663_at; probe set #2: 202664_at) of human 
WASPIP gene.  Expression breadth (B) for the probe set #1 and probe set #2 is 0.077 and 
0.654, respectively.  Tissue-specificity (τ) for the two probe sets is 0.351 and 0.334, 
respectively.  For the similarity between the two profiles generated by the two probe sets, 
ECI = 0.250 and r = 0.849.  (b) Expression profiles of human NEU1 gene (probe set: 
208926_at) and its mouse ortholog (probe set: gnf1m23979_at).  The ECI value between the 
profiles of human-mouse NEU1 orthologs is 0.961, while r is 0.288. 
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Figure 2.5  The comparison of parameters measuring gene expression conservation and 
expression breadth.  The correlation between expression breadth (B) and expression 
conservation index (ECI) is due to the intrinsic dependence between the two parameters.  (a) 
B and ECI are positively correlated in both real orthologs and randomly paired human and 
mouse genes.  Following the procedure that Yang, Su and Li (2005) used to generate their 
Fig. 3, we calculated B from the 47 human tissues that are not studied in mouse.  (b) Tissue-
specificity (τ) and expression-profile similarity (r) are positively correlated in real orthologs, 
but not in randomly paired human and mouse genes. 
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Figure 2.6  A summary of the correlations discussed in this chapter.  The “+” symbol 
denotes a positive correlation; while the “-” symbol denotes a negative correlation.  The 
correlations found in previous studies and confirmed in the present work are presented as 
grey arrows, while those newly found in this study are presented as black arrows.  The 
relationship between the evolutionary conservation of coding-sequences and that of 
expression-profiles is unclear. 
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CHAPTER 3 
 

IMPACT OF GENE EXPRESSION AND OTHER PROPERTIES OF GENES  
ON THE RATE OF MAMMALIAN PROTEIN EVOLUTION 

 
 
 
 
3.1 ABSTRACT 

Understanding the determinants of the rate of protein sequence evolution is of 

fundamental importance in evolutionary biology.  Many recent studies have focused on the 

yeast because of the availability of many genome-wide expressional and functional data.  

Yeast studies revealed a predominant role of gene expression level and a minor role of gene 

essentiality in determining the rate of protein sequence evolution.  Whether these rules apply 

to complex organisms such as mammals is unclear.  Here we assemble a list of 1,642 

essential and 1,341 nonessential mouse genes based on targeted gene deletion experiments 

and report a significant impact of gene essentiality on the rate of mammalian protein 

evolution.  Gene expression level has virtually no effect, although tissue-specificity in 

expression pattern has a strong influence.  Unexpectedly, gene compactness, measured by 

average intron size and UTR (untranslated region) length, has influence as great as gene 

essentiality.  Hence, the relative importance of the various factors in determining the rate of 

mammalian protein evolution is gene compactness ≈ gene essentiality > tissue-specificity > 

expression level.  Our results suggest a considerable variation in rate determinants between 

unicellular organisms such as the yeast and multicellular organisms such as mammals.   
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3.2 INTRODUCTION 

What determines the rate of protein sequence evolution is a fundamental question in 

molecular evolution.  It is well known that the evolutionary rates of different proteins in a 

genome vary by several orders of magnitude (Dayhoff 1972; Li 1997).  This variation is 

typically explained by differences in the mutation rate and selection intensity among genes 

(Kimura 1983; Li 1997).  However, the biological factors underlying such differences had 

not been examined with sufficiently large data until a few years ago when genome sequences 

and functional genomic data became available.  Factors that have been shown to influence 

the protein evolutionary rate include gene essentiality (Hirsh and Fraser 2001; Jordan et al. 

2002; Wall et al. 2005; Zhang and He 2005), gene expression level (Pal, Papp, and Hurst 

2001b; Akashi 2003; Rocha and Danchin 2004; Subramanian and Kumar 2004; Drummond, 

Raval, and Wilke 2006), tissue-specificity (Hastings 1996; Duret and Mouchiroud 2000; 

Subramanian and Kumar 2004; Winter, Goodstadt, and Ponting 2004; Zhang and Li 2004), 

presence of a duplicate copy (Nembaware et al. 2002; Castillo-Davis and Hartl 2003; Yang, 

Gu, and Li 2003), properties in the protein-interaction network (Fraser et al. 2002; Fraser 

2005; Hahn and Kern 2005; Makino and Gojobori 2006), local recombination rate (Pal, Papp, 

and Hurst 2001b), and pleiotropy (He and Zhang 2006), although some of these factors are 

interrelated.  In the past few years, many studies have focused on unicellular organisms, 

particularly the yeast Saccharomyces cerevisiae, due to the early availability of a large 

amount of functional genomic data for this model organism.  With the advancement of 

mammalian genomics, it becomes possible to conduct genome-wide analysis of several 

biological factors that potentially influence the rate of mammalian protein evolution and to 
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compare the relative importance of these factors in yeasts and mammals, respective 

representatives of unicellular and multicellular eukaryotes. 

Among the potential rate determinants, gene essentiality is perhaps the most studied 

and debated factor.  Essential genes refer to those that cause lethality or infertility when 

deleted.  Based on the neutral theory of molecular evolution (Kimura and Ohta 1974), it was 

predicted that essential genes are subject to stronger selective constraints and therefore 

evolve more slowly than nonessential genes (Wilson, Carlson, and White 1977).  However, 

Hurst and Smith (1999) failed to verify this prediction when they compared 67 essential 

genes and 108 nonessential genes of the mouse.  Although subsequent analysis of bacterial 

and yeast genes found gene essentiality to be an important rate determinant (Hirsh and Fraser 

2001; Jordan et al. 2002), these results were suggested to arise from a confounding factor of 

the gene expression level (Pal, Papp, and Hurst 2003; Rocha and Danchin 2004).  More 

recent analyses, however, showed that gene essentiality has a small, yet statistically 

significant, impact on the evolutionary rate of yeast proteins even when the gene expression 

level is controlled for (Zhang and He 2005; Wall et al. 2005).  Nonetheless, despite the 

availability of many mouse strains produced in targeted gene deletion experiments, whether 

gene essentiality influences mammalian protein evolution remains unsolved due to the lack 

of a comprehensive list of essential and nonessential genes. 

The importance of gene expression level in determining the protein evolutionary rate 

in yeasts and bacteria is well established (Pal, Papp, and Hurst 2001a; Rocha and Danchin 

2004; Zhang and He 2005; Drummond, Raval, and Wilke 2006), although the molecular 

evolutionary mechanisms are unclear and debated (Akashi 2003; Drummond et al. 2005).  

Unlike unicellular organisms, mammalian cells are highly differentiated and different types 
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of cells turn on different sets of genes to maintain their identities and functions.  Hence, both 

the expression level and tissue-specificity of expression may be important in determining the 

rate of mammalian gene evolution.  In fact, previous studies of mammalian genes showed 

higher evolutionary rates among lowly expressed genes than highly expressed genes 

(Subramanian and Kumar 2004) and higher rates among tissue-specific genes than 

housekeeping genes (Duret and Mouchiroud 2000; Winter, Goodstadt, and Ponting 2004; 

Zhang and Li 2004).  However, because housekeeping genes tend to be highly expressed 

(Vinogradov 2004; Liao and Zhang 2006a), it is unknown whether expression level and 

tissue specificity have independent influences on the evolutionary rate. 

A previous study of 363 mouse and rat genes showed a significant, but weak, 

negative correlation between protein length and the rate of protein sequence evolution 

(Zhang 2001).  An opposite pattern, however, was found in the fruitfly (Lemos et al. 2005).  

Recent studies also showed that highly expressed genes tend to code for short proteins and 

have short introns (Castillo-Davis et al. 2002).  Because highly expressed genes tend to have 

low rates of protein evolution, one would expect a positive correlation between protein (or 

intron) length and the rate of protein evolution.  It is interesting to test this prediction. 

In the present study, we first compile a list of 2,982 mouse genes with essentiality 

information derived from targeted gene deletion data.  We then study the influences of gene 

essentiality, gene expression level, tissue-specificity, and gene compactness (in terms of 

protein length, average intron length, and UTR length) on the rate of mammalian protein 

evolution.  We conduct a series of partial correlation analyses to disentangle the contributions 

of various factors and compare our results with findings from the yeast.  Our results reveal a 

great variation in rate determinants between unicellular and multicellular organisms.  
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3.3 MATERIALS AND METHODS 

3.3.1 Mouse essential and nonessential genes  

Mouse genes subject to targeted deletion experiments were downloaded from Mouse 

Genome Informatics (MGI) (MGI 3.51; http://www.informatics.jax.org/).  Only those genes 

having one corresponding Ensembl gene name were kept for subsequent analysis.  These 

genes were classified into essential and nonessential genes based on their targeted deletion 

phenotypic codes (MP numbers) provided by MGD.  By definition, essential genes are those 

with the knockout phenotype of lethality or sterility.  That is, those entries possessing 

embryonic lethality (MP: 0002080), prenatal lethality (MP: 0002081), post-natal lethality 

(MP: 0002082), premature death or induced morbidity (MP: 0002083), abnormal 

reproductive system morphology (MP: 0002160) or abnormal reproductive system 

physiology (MP: 0001919) were grouped as essential genes.  All other genes associated with 

a phenotypic classification term, including those entries with a normal phenotype, were 

grouped as nonessential genes.   

 

3.3.2 Gene orthology and evolutionary rate  

The homology information of mouse and rat genes was obtained from Ensembl 

EnsMart (http://www.ensembl.org/Multi/martview).  There were several annotated homology 

relationships between mouse and rat genes by Ensembl.  We only considered those pairs of 

genes annotated as UBRH (Unique Best Reciprocal Hit, meaning that they were unique 

reciprocal best hits in all-against-all BLASTZ searches) to be orthologous.  The number of 

synonymous substitutions per synonymous site (dS) and the number of nonsynonymous 
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substitutions per nonsynonymous site (dN) between mouse and rat orthologs were estimated 

by the maximum likelihood method of Yang (1997) and retrieved from Ensembl EnsMart. 

 

3.3.3 Structural and functional annotations of mouse genes 

The structural and functional annotations of mouse genes were obtained from 

Ensembl version 38.  Chromosomal positions, CDS (coding sequence) lengths, intron 

numbers, intron lengths, and 5’- and 3’-UTR (untranslated region) lengths of mouse genes 

were retrieved from Ensembl EnsMart (http://www.ensembl.org/Multi/martview) (Kasprzyk 

et al. 2004).  For alternatively spliced genes, we chose structural information of the splice 

form with the longest coding sequence.  Genes having immune-related functions were 

identified from the Gene Ontology description (http://www.geneontology.org/) contained in 

Ensembl database.  It should be noted that not all mouse genes in the preliminary dataset 

have rat orthologs.  After removing mouse genes without UBRH rat orthologs, 1,642 

essential and 1,341 nonessential mouse genes were kept for subsequent analysis. 

The gene structure annotation of the yeast S. cerevisiae was also obtained from 

Ensembl EnsMart.  Nucleotide substitution rates between S. cerevisiae and S. bayanus 

orthologous genes were obtained from Zhang and He (2005). 

 

3.3.4 Analysis of gene expression pattern 

The spatial expression information of mouse genes was obtained from the Gene Atlas 

V2 dataset (http://symatlas.gnf.org/SymAtlas/).  This dataset was generated by hybridization 

of RNAs from 61 mouse tissues onto Affymetrix microarray chips (GNF1M) (Su et al. 2004).  

To assign expression data from probe sets to corresponding Ensembl mouse genes, we 
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aligned probe sequences of each probe set to the Ensembl cDNA sequences 

(Mus_musculus.NCBIM33.feb.cdna.fa; http://www.ensembl.org/info/data/download.html) 

using BLASTn (http://www.ncbi.nlm.nih.gov/blast/).  Only those probe sets in which all 

matching probes perfectly matched to the same Ensembl gene were considered to be valid.  

The expression level detected by each probe set was obtained as the signal intensity (S) 

computed from MAS 5.0 algorithm (MAS5) (Hubbell, Liu, and Mei 2002).  The S values 

were averaged among replicates. 

In the present study, we measured two properties of the mouse gene expression 

pattern: expression level (ExpLev) and tissue-specificity (τ).  ExpLev is defined as the 

average signal intensity (S) of a mouse gene across 61 examined tissues.  The tissue-

specificity of a gene is defined as the heterogeneity of its expression level across all the 

tissues and is estimated by 
1
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tissues examined here and Smax is the highest expression signal of the gene across all tissues 

(Yanai et al. 2005).  To minimize the influence of noise from low intensities, we arbitrarily 

let S(j) be 100 if it is lower than 100 (Liao and Zhang 2006a).  The τ value ranges from 0 to 1, 

with higher values indicating greater variations in expressional level across tissues and thus 

higher tissue specificity.  The advantage of using τ rather than expression breadth, which 

requires an arbitrary cutoff to determine whether a gene is expressed in a given tissue, has 

been extensively discussed (Liao and Zhang 2006a).  Some mouse genes are represented by 

more than one probe set on the microarray.  Because it was not possible to tell which probe 

set provides the best expression measure of a target gene (Liao and Zhang 2006b), we 

computed ExpLev and τ by averaging the values derived from the different probe sets of the 
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same gene.  The final dataset used in partial correlation analyses contained 2,214 mouse 

genes with knockout phenotypes, orthologous rat genes, and structural and expression data.  

Among them, 1,255 were essential and 959 were nonessential. 

 

 

3.4 RESULTS 

3.4.1 Nonessential proteins evolve faster than essential proteins 

We compiled a list of essential and nonessential genes using mouse targeted gene 

deletion data.  Among them, 1,642 essential and 1,341 nonessential genes have orthologous 

genes in the rat.  The number of synonymous substitutions per synonymous site (dS) and the 

number of nonsynonymous substitutions per nonsynonymous site (dN) were estimated for 

these genes using mouse and rat orthologs.  We found a significant difference between 

essential and nonessential genes in dN (P < 10-28, Mann-Whitney U test; Figure 3.1a).  On 

average, dN is 40% greater for nonessential genes than essential genes.  We noticed that X-

linked genes and immune-system genes are slightly overrepresented in the nonessential 

group (3.3% and 7.0%), compared to the essential group (2.3% and 3.1%).  Because X-linked 

mammalian genes may behave differently from autosomal genes due to differences in gene 

content, mutation rate, and selection intensity (Wang et al. 2001; Malcom, Wyckoff, and 

Lahn 2003; Lu and Wu 2005) and immune-system genes tend to be under diversifying 

positive selection (Hughes and Nei 1988; Hughes 1999), we repeated the above analysis by 

removing X-linked genes and immune-related genes.  Our results, however, remain 

unchanged (Figure 3.1a).  Although dS is also significantly higher for nonessential genes than 

essential genes, the difference in mean dS between the two groups is small (~3%) (Figure 
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3.1b).  The average dN/dS ratio of nonessential genes is 33-42% greater than that of essential 

genes, depending on whether X-linked genes and immune-system genes are considered or 

not (Figure 3.1c).  Thus, the correlation between gene essentially and dN or dN/dS is 

significantly negative (Table 3.1).  These results indicate that gene essentiality affects the 

rate of mammalian protein evolution by influencing the selective constraint on the proteins.  

 

3.4.2 Effects of gene expression level and tissue specificity on the rate of protein 

evolution 

Two gene expression properties, expression level (Pal, Papp, and Hurst 2001a; Rocha 

and Danchin 2004; Subramanian and Kumar 2004; Zhang and He 2005; Drummond, Raval, 

and Wilke 2006) and tissue-specificity (Hastings 1996; Duret and Mouchiroud 2000; 

Subramanian and Kumar 2004; Zhang and Li 2004), have been shown to affect the rate of 

protein sequence evolution to various degrees in different species.  Specifically, highly 

expressed genes and non-tissue-specific genes tend to evolve slowly.  Analysis based on our 

dataset confirms these findings (Table 3.1 and Figure 3.2).  Interestingly, although gene 

expression level is the most important rate determinant in bacteria (Rocha and Danchin 2004) 

and yeast (Drummond, Raval, and Wilke 2006), the correlation between gene expression 

level (ExpLev) and dN is weak (Spearman’s ρ = -0.05) and only marginally significant (P = 

0.01) in mammals.  Similar results are obtained when essential and nonessential genes are 

analyzed separately.  By contrast, the correlation between tissue-specificity (τ) and dN is 

much stronger (ρ = 0.166, P < 10-16).  We noticed that tissue-specific genes not only have 

greater dN/dS but also greater dS values (Figure 3.2), implying that faster protein evolution of 

tissue-specific genes may have resulted from both higher mutation rate and lower purifying 
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selection.  Since average dS does not exhibit the same magnitude of increase as average dN 

while τ becomes larger (~17% increase versus ~90% increase), mutation rate bias is unlikely 

to be the main cause for high dN of tissue-specific genes.  Our result is consistent with that of 

Zhang and Li (2003).  

Because the expression level and tissue-specificity may be correlated, we measured 

the partial correlation between ExpLev and dN by controlling for τ.  Although the partial 

correlation becomes stronger and more significant (ρ = -0.061, P < 10-2), it is still not 

comparable to the partial correlation between τ and dN when ExpLev is controlled for (ρ = 

0.174, P < 10-18).  These results suggest that tissue-specificity is much more important than 

average expression level in determining the rate of mammalian protein sequence evolution. 

 

3.4.3 Compact genes have high rates of evolution 

Although a significant positive correlation between the CDS length and dN was 

observed in fruitfly (Lemos et al. 2005) and a significant negative correlation was observed 

in a set of 363 mouse and rat genes (Zhang 2001), no significant correlation is found in our 

data (Table 3.1).  Surprisingly, we found a negative correlation between UTR length and dN 

(or dN/dS) (Figure 3.3 and Table 3.1).  For example, the mean dN of genes with a total UTR 

length of <300 nucleotides is about twice that of genes with a total UTR length of >2400 

nucleotides (Figure 3.3a).  Similarly, we found a negative correlation between average intron 

size in a gene (but not intron number) and dN (or dN/dS) of the gene (Figure 3.4 and Table 

3.1).  The mean dN of genes with an average intron size of <1000 nucleotides is over 5 times 

that of genes with an average intron size of >8000 nucleotides (Figure 3.4a).  The 
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correlations between gene compactness and dN are of comparable or even higher magnitudes 

than that between tissue-specificity (τ) and dN (Table 1).   

In the above analysis, we used the longest splice form for those genes that have 

alternative splicing.  We repeated the above analysis by using the shorted splice form or 

removing genes with alternative splicing.  The results are essentially the same (Tables A.1 

and A.2).  There are also many overlapping (including nested) genes in the mouse genome 

(Veeramachaneni et al. 2004).  Removing these genes does not affect our result (Table A.3).   

 

3.4.4 Relative impacts of gene essentiality, expression pattern, and gene compactness 

on the evolutionary rate 

The above examined factors are not completely independent in determining the rate 

of protein sequence evolution.  For instance, genes with high expression levels tend to have 

small introns (ρ = -0.079, P < 10-4).  In order to separate the contributions of multiple factors, 

we applied partial correlation analyses.  Although a recent study suggested that principle 

component analysis is superior to partial correlation analysis for noisy data (Drummond, 

Raval, and Wilke 2006), subsequent analytical and empirical analyses do not support this 

view (S. Yi, personal communication).  In our partial correlation analysis, we focused on the 

correlation between the evolution rate and one of the three factors (i.e., gene essentiality, 

expression pattern, and gene compactness), by controlling the other two factors.  All factors 

having very significant effects (P<0.01) on the evolutionary rate in Table 3.1 show 

significant and independent effects on dN and dN/dS, with the exception of ExpLev (Table 3.2).  

After controlling for gene essentiality, the negative correlation between ExpLev and dN and 

that between ExpLev and dN/dS become only marginally significant (P = 0.041 and 0.026, 
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respectively), suggesting that the weak negative correlation between gene expression level 

and protein evolutionary rate in Table 3.1 may be due to the fact that essential genes tend to 

have both high ExpLev and low dN.  Our result thus suggests that the effect of expression 

level itself on the evolutionary rate of mammalian proteins is negligible.  We notice that 

genes with high expression levels tend to have high dS but low dN/dS (Table 3.2).  Hence, the 

relatively weak correlation between ExpLev and dN may be due to the opposite effects of high 

mutation rates and strong purifying selection at highly expressed genes.  Comparing to 

properties of gene expression (expression level and tissue specificity), gene essentiality and 

compactness seem to have larger impacts on the rate of mammalian protein evolution (Table 

3.1 and Table 3.2).  Based on the partial correlation analysis (Table 2), we conclude that the 

relative importance of the factors in determining the rate of mammalian protein evolution is 

gene compactness ≈ gene essentiality > tissue-specificity > gene expression level. 

 

 

3.5 DISCUSSIONS 

In this work, we used statistical analysis to study the determinants of the rate of 

mammalian protein sequence evolution.  Because there are potentially many rate 

determinants and because some measures of these determinants (e.g., gene expression level 

and tissue specificity) have large estimation errors (Wall et al. 2005; Liao and Zhang 2006b), 

it is not unexpected that the observed correlation coefficients are not very high.  We thus 

evaluate the impact of each factor by considering both the statistical significance in 

correlation analysis and the magnitude of the correlation.  We also compare the impacts of 

different factors for a given species and the impacts of the same factor across species. 
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Based on an analysis of 175 mouse genes, Hurst and Smith (1999) found no 

significant correlation between gene essentiality and dN/dS.  Zhang and He (2005) suggested 

that this negative result was likely due to an insufficient sample size.  Indeed, when 2,983 

mouse genes are analyzed here, essential genes showed significantly lower dN/dS than 

nonessential genes.  This difference remains highly significant even when we remove 

immune-system genes and X-linked genes.  Furthermore, the correlation between gene 

essentiality and dN (or dN/dS) is still significant after controlling for gene expression level, 

tissue specificity, UTR length, and intron length.  We conclude that gene essentiality is an 

independent determinant of the rate of mammalian protein evolution.  It is interesting to note 

that in yeasts, the average dN of nonessential genes is ~40% higher than that of essential 

genes (Zhang and He 2005), a number slightly greater than that observed for mammalian 

genes (30%).  The rank correlation coefficient between gene essentiality and dN is ~0.2 in 

yeast, also slightly greater than that in mammals (0.14).  After controlling for gene 

expression level, the correlation coefficient becomes 0.10-0.15 in yeast and 0.17 in mammals.  

Note that the yeast gene knockout data used by Zhang and He (2005) contained >90% of 

yeast genes, while the mouse gene knockout data used here contained only 15% of mouse 

genes.  Since targeted gene deletion in mouse requires great efforts, it is possible that 

researchers tend to study and report functionally important mouse genes that have human 

orthologs, thus reducing the variation in essentiality among the genes included in our dataset.  

This reduction could potentially decrease the correlation coefficient between gene 

essentiality and dN.  But, at any rate, gene essentiality and dN are significantly correlated in 

mammals.  Thus, in all organisms so far examined (bacteria, yeasts, nematodes, and 

mammals), nonessential genes tend to evolve faster than essential genes.  It is thus 
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appropriate to conclude that the fundamental prediction of the neutral theory, that less 

important genes evolve faster than important genes, is universally supported by empirical 

data at the genomic level.  However, it should be pointed out that the correlation between 

gene essentiality and dN, although statistically significant, is small in magnitude.  This weak 

correlation contrasts the strong belief of many biologists that functionally important DNA 

sequences evolve slowly, which is the basis of many successful bioinformatic methods such 

as BLAST (Altschul et al. 1990) and phylogenetic footprinting (Gumucio et al. 1993).  It is 

possible that the knockout phenotype observed in the lab only roughly reflects the amount of 

fitness reduction in the wild, which is expected to be a better rate determinant.    

A previous study showed that human morbid genes (those known to cause diseases 

when mutated) evolve more slowly than non-morbid genes (Kondrashov, Ogurtsov, and 

Kondrashov 2004).  Their analysis is not equivalent to a comparison between essential and 

nonessential genes, because non-morbid genes can have unidentifiable embryonic lethal 

phenotype or infertility phenotype when mutated.  In other words, non-morbid genes include 

both essential and nonessential genes and thus there is no clear prediction as whether non-

morbid genes should evolve more rapidly or more slowly than morbid genes.  In fact, Smith 

and Eyre-Walker (2003) also analyzed morbid and non-morbid genes, but obtained an 

opposite result. 

We found that the rate of mammalian protein evolution is not, or is only weakly, 

correlated with the gene expression level, when gene essentiality is controlled for.  In the 

future, it would be important to verify this finding for the entire genome as more gene 

knockout data become available.  If our finding is generally true for mammals, it contrasts 

that from the yeast, where the expression level explains about a quarter (ρ2=~0.25) of the 
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variation in dN (Zhang and He 2005).  The reduction of the correlation in mammals may be 

due to smaller population sizes in mammals than in yeasts, because the expression level 

becomes a weaker selective force as the population size reduces (Ohta 1992).  However, 

although the correlations between various rate determinants and protein evolutionary rate in 

mammals may be reduced due to smaller population sizes, the relative importance of these 

rate determinants should remain unchanged.  Why are the influences of gene expression level 

on dN drastically different between yeast and mammals?  To address this question, one has to 

understand why the gene expression level affects dN in yeast.  However, no widely accepted 

explanation exists at this time.  The recently proposed translational robustness hypothesis 

(Drummond et al. 2005) suggests that highly expressed proteins are prone to forming 

misfolded protein aggregates that could be toxic or pathogenic to the organism (Ellis and 

Pinheiro 2002).  Thus, their coding regions are under intense selective pressure to maintain 

certain sequences that avoid misfolding in the presence of translational errors (Drummond et 

al. 2005).  If this hypothesis is correct, our observation of no impact of expression level on dN 

in mammals may be due to a lowered probability of protein aggregation in mammalian cells.  

It is known that a misfolded protein may aggregate, particularly when it is in high 

concentration (Minton 2000).  The cell volume of the mouse sperm (61-70μm3) (Brotherton 

1975), the smallest mouse cell, is similar to that of a haploid yeast cell (~70μm3) (Sherman 

1991).  Generally speaking, other types of mammalian cells are much larger than the sperm 

cell (and the yeast cell).  If the protein concentration (per gene) in a cell is generally lower in 

mammals than in yeast, the pressure of avoiding aggregation would also be lower in 

mammalian cells, making expression level a negligible factor in determining dN.  

Nonetheless, this explanation is built on two assumptions, the translational robustness 
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hypothesis and a lower protein concentration per gene in mammalian cells than in yeast cells, 

both of which require further scrutiny.  An alternative explanation is that the gene expression 

level of a unicellular organism and the average gene expression level across tissues of a 

multicellular organism are two different things and are not comparable.  Interestingly, when 

using the gene expression level estimated from the mouse ESTs at an embryonic stage, 

Subramanian and Kumar (2004) found a significant impact of gene expression level on the 

rate of protein evolution.  Because many genes are not expressed at the embryonic stage, the 

biological meaning of their observation is not immediately clear.  It remains to be seen 

whether the correlation between gene expression level and protein evolutionary rate exists 

only among genes having similar functions or expression patterns (as in Subramanian and 

Kumar’s study), but not among genes with diverse properties.  Alternatively, the microarray 

gene expression data used in the present study may be too noisy to accurately reflect mRNA 

abundance compared to the EST data used by Subramanian and Kumar (2004).  But, 

interestingly, the same microarray data revealed a strong correlation between τ and dN, 

suggesting that these data still contain a sufficient amount of expression information.  We 

also examined the correlation between the dN of a gene and the maximum expression level of 

the gene across 61 tissues surveyed.  Unexpectedly, a weak positive correlation was observed 

(ρ=0.075, P=1.4×10-4).  It is unclear what caused this positive correlation. 

A surprising finding of the present study is that compact genes (with short UTRs and 

introns) tend to evolve fast (Figure 3.3 and 3.4).  Although the above finding was based on 

genes with knockout data, essentially the same result was obtained when the entire genome is 

analyzed (Table A.4).  Previous studies showed that highly expressed genes have short 

introns (Castillo-Davis et al. 2002) and evolve slowly (Subramanian and Kumar 2004).  Thus, 
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one expects that genes with short introns evolve slowly.  But, our observation is opposite.  

The reason for this unexpected observation is not entirely clear.  Of course, in our analysis, 

gene expression level and dN are virtually uncorrelated, and thus the prediction that compact 

genes evolve slowly is invalid.  Nevertheless, the observation that compact genes evolve fast 

is still surprising.  Since UTRs and introns are noncoding regions of a gene and the majority 

of these sequences are more tolerant than coding regions to insertions and deletions, we 

consider the length variation of these noncoding sequences as a result of variation of local 

insertion and deletion rates (Vinogradov 2004).  That is, we assume that the 

insertion/deletion rate ratio varies across genomic regions, making some genes more compact 

than others.  It has been proposed that the presence and length of noncoding regions such as 

introns and intergenic regions can increase the frequency of recombination between adjacent 

exons and genes (Comeron and Kreitman 2002).  Accordingly, for two genes with the same 

functional importance, same CDS length, same number of introns, but different intron sizes, 

purifying selection is expected to be more efficient for the gene with bigger introns than the 

one with smaller introns, as the former has a higher recombination rate (per gene) than the 

latter.  This difference results in a lower expected dN for the gene with bigger introns, which 

is observed in this study.  Of course, recombination rate variation provides just one possible 

explanation of our observation; other possibilities cannot be excluded.  Contrary to mammals, 

only 263 yeast protein-coding genes (~5%) contain intron(s).  Thus, it is expected that gene 

compactness will not be an important factor in determining yeast protein evolution at the 

genomic level.  However, among 86 intron-containing yeast (S. cerevisiae) genes that have S. 

bayanus orthologs, the average intron size and dN are negatively correlated (ρ = -0.282, P < 

0.01), similar to the result obtained from mammalian genes.  It would be interesting to 
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examine whether the influence of gene compactness on protein evolutionary rate is as 

significant for unicellular eukaryotes with high prevalence of introns (e.g., the green algae 

Chlamydomonas reinhardtii) as in mammals. 

 In summary, we find that the relative importance of various rate determinants in 

mammals is gene compactness ≈ gene essentiality > tissue-specificity > gene expression level.  

This order differs substantively from that in yeasts or bacteria.  For example, although the 

absolute magnitudes of the impact of gene essentiality are similar between the yeast and 

mammals, the relative impacts appear quite different, because the gene expression level plays 

a much greater role in yeast than in mammals.  It seems that the rules governing the rate of 

protein evolution need not be the same for all major clades of living organisms.  Our results 

highlight the danger of applying findings from a single species, even based on a genome-

wide analysis, to distantly related species, and suggest reexamination of the roles of various 

rate determinants across a wide range of species, which is becoming feasible with the rapid 

advance of functional and comparative genomics.    
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Figure 3.1  Nonessential mouse genes evolve faster than essential genes.  Average mouse-
rat (a) dN, (b) dS, and (c) dN/dS values of essential and nonessential genes are shown.  P-value 
from the test of the null hypothesis of no difference between essential and nonessential genes 
is shown above each comparison (Mann-Whitney U test).  Error bars represent the standard 
error of the mean.  All genes: 1,612 essential and 1,341 nonessential.  Non-immune-system 
genes: 1,538 essential and 1,173 nonessential.  Autosomal genes: 1,597 essential and 1,290 
nonessential.  Autosomal, non-immune-system genes: 1,494 essential and 1,129 nonessential. 
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Figure 3.2  Evolutionary rate of mouse genes positively correlates with tissue-specificity 
(τ).  Average mouse-rat (a) dN, (b) dS, and (c) dN/dS values of each bin are shown.  Error bars 
represent the standard error of the mean. 
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Figure 3.3  Mouse genes with longer UTRs (untranslated regions) tend to have lower dN 
and dN/dS values.  Average mouse-rat (a) dN, (b) dS, and (c) dN/dS values of each bin are 
shown.  Error bars represent the standard error of the mean.   
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Figure 3.4  Mouse genes with larger average intron size tend to have lower dN and dN/dS 
values. Average mouse-rat (a) dN, (b) dS, and (c) dN/dS values of each bin are shown.  Error 
bars represent the standard error of the mean.   
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Table 3.1  Spearman’s rank correlation coefficient (ρ) between various factors and dN, dS or 
dN/dS. 
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Table 3.2  Partial rank correlation of various factors and dN, dS or dN/dS.   
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CHAPTER 4 
 

CO-EXPRESSION OF MAMMALIAN LINKED GENES AND ITS IMPACT ON THE 
EVOLUTION OF GENOME ARCHETECTURE 

 

 

4.1 ABSTRACT 

Similarity in gene expression pattern between closely linked genes is known in 

several eukaryotes.  Two models have been proposed to explain the presence of such co-

expression patterns.  The adaptive model assumes that co-expression is advantageous and is 

established by relocation of initially unlinked but co-expressed genes, whereas the neutral 

model asserts that co-expression is a type of leaky expression due to similar expressional 

environments of linked genes, but is neither advantageous nor detrimental.  However, these 

models are incompatible with several empirical observations.  Here, we propose that co-

expression of linked genes is a form of transcriptional interference that is disadvantageous to 

the organism.  We show that even distantly linked genes that are tens of megabases away 

exhibit significant co-expression in the human genome.  However, the linkage is more likely 

to be broken during evolution between genes of high co-expression than between those of 

low co-expression and the breakage of linkage reduces gene co-expression.  These results 

support our hypothesis that co-expression of linked genes in mammalian genomes is 

generally disadvantageous, implying that many mammalian genes may never reach their 

optimal expression pattern due to the interference of their genomic environment and that 

such transcriptional interference may be a force promoting recurrent relocation of genes in 

the genome. 
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4.2 INTRODUCTION 

Nonrandom distribution of genes in a genome, a widespread phenomenon in 

prokaryotes (Lawrence 1999), has also been observed in various eukaryotes (reviewed in 

Hurst, Pal and Lercher 2004).  In mammals, linked genes sharing similar expression patterns 

are often referred to as a gene cluster.  For example, clusters of highly expressed genes 

(Caron et al. 2001), tissue-specific genes (Megy, Audic, and Claverie 2003; Versteeg et al. 

2003), broadly expressed genes (Lercher, Urrutia, and Hurst 2002), and co-expressed genes 

(Fukuoka, Inaoka, and Kohane 2004; Singer et al. 2005; Semon and Duret 2006) have been 

observed in the human genome.  The general phenomenon of co-expression of linked genes 

has also been reported in other model eukaryotes such as the yeast Saccharomyces cerevisiae 

(Cohen et al. 2000; Kruglyak and Tang 2000; Huynen, Snel, and Bork 2001; Fukuoka, 

Inaoka, and Kohane 2004; Lercher and Hurst 2006), nematode Caenorhabditis elegans 

(Lercher, Blumenthal, and Hurst 2003; Fukuoka, Inaoka, and Kohane 2004), and fruit fly 

Drosophila melanogaster (Boutanaev et al. 2002; Spellman and Rubin 2002; Bailey et al. 

2004; Fukuoka, Inaoka, and Kohane 2004; Kalmykova et al. 2005).  

However, it is unclear as to how and why linked genes become co-expressed.  The 

observation that genes involved in the same pathway (Lee and Sonnhammer 2003) or protein 

complex (Teichmann and Veitia 2004) and genes having similar functions (Cohen et al. 2000) 

tend to be linked suggests that co-expression of linked genes may be important to gene 

function (Hurst, Williams, and Pal 2002; Singer et al. 2005).  This view, referred to as the 

adaptive model, assumes that it is beneficial for genes that require co-expression to be 

brought together via chromosomal rearrangement (Miller et al. 2004; Richards et al. 2005; 

Singer et al. 2005).  The model predicts that once a co-expressed gene cluster is established, 
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the linkage of the co-expressed genes should be evolutionarily maintained by purifying 

selection (Hurst, Williams, and Pal 2002; Singer et al. 2005).   

Observations of functional similarity of co-expressed linked genes would support the 

adaptive model.  However, when protein function is defined by Gene Ontology (GO), a study 

of Drosophila did not find functional similarity among co-expressed neighboring genes 

(Spellman and Rubin 2002).  In humans, clusters of co-expressed linked genes that belong to 

the same functional category, as defined by GO, are rare (Fukuoka, Inaoka, and Kohane 

2004).  Furthermore, although the evolutionary conservation of linkage between co-

expressed genes in several yeasts supports the adaptive model (Hurst, Williams, and Pal 

2002), considering the recent discovery of long-range co-regulation (~100 kilobases, 

covering ~30 genes) of linked yeast genes (Lercher and Hurst 2006), the adaptive model 

implies that the gene order in the yeast genome must be highly organized.  However, the high 

plasticity of yeast gene order revealed from a comparison of 11 species (Fischer et al. 2006) 

argues against this view.  In addition, it is well known that chromatin structures control the 

expression of nearby genes, regardless of whether these genes are functionally related or not 

(Hurst, Pal, and Lercher 2004; Sproul, Gilbert, and Bickmore 2005).  For instance, the 

CD79B antigen gene, which is located between the human growth hormone cluster and its 

locus control region on chromosome 17, is expressed in the pituitary, although its function 

appears B-cell-specific (Cajiao et al. 2004).  Thus, it is possible that similar expression of 

linked genes has no adaptive value. 

A recent study on mammalian co-expressed linked genes suggested that co-expressed 

gene clusters are formed by a neutral evolutionary process (Semon and Duret 2006).  That is, 

expression similarity of linked genes is due to transcriptional interference (Eszterhas et al. 
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2002) and is not necessarily advantageous.  Here, transcriptional interference refers to 

influence of transcription of one gene on the transcription of another gene, and can be due to 

shared cis-regulatory elements or chromatin structures, among other things.  Our ad hoc use 

of transcriptional interference is different from a more narrow definition used elsewhere 

(Shearwin, Callen, and Egan 2005).  The neutral model for the formation of co-expressed 

gene clusters (Semon and Duret 2006) implies that gene expression patterns are not 

functionally important and thus can change freely during evolution, which is exactly the 

neutral model of transcriptome evolution (Khaitovich et al. 2004).  Although some early 

studies had favored this neutral model (Khaitovich et al. 2004; Yanai, Graur, and Ophir 

2004), these studies were later shown to have either technical problems or alternative 

interpretations (Liao and Zhang 2006b).  On the contrary, there is increasing evidence that a 

considerable fraction of genes in a genome are evolutionarily conserved in expression 

(Nuzhdin et al. 2004; Denver et al. 2005; Jordan, Marino-Ramirez, and Koonin 2005; 

Khaitovich et al. 2005; Rifkin et al. 2005; Liao and Zhang 2006b; Whitehead and Crawford 

2006; Xing et al. 2007).  Because co-expression of neighboring genes is a widespread 

phenomenon (Semon and Duret 2006), it is unlikely that such gene clusters can be formed 

without any influence on fitness. 

Hence, neither the adaptive model nor the neutral model can adequately explain the 

existence of co-expressed gene clusters.  Here, we propose that co-expression of linked genes 

is due to transcriptional interference that is detrimental to the organism.  We test our 

hypothesis in humans, exploiting the availability of a comprehensive spatial gene expression 

dataset (Su et al. 2004).  We examined co-expression patterns of closely and distantly linked 

genes in humans and counted evolutionary losses of gene linkage using multiple mammalian 
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genomes.  Lower evolutionary conservation of linkage is found for pairs of genes with high 

co-expression than those with low co-expression, consistent with the predictions of our 

hypothesis.  Based on these findings, we propose a model of the origin and evolutionary 

dynamics of co-expression of linked genes. 

 

 

4.3 MATERIALS AND METHODS 

4.3.1 Genome data and annotations 

The human genome assembly used in the present study is NCBI version 35, in which 

the position and orthology annotation (to mouse, rat, and dog) of 34,404 known or predicted 

genes can be found in Ensembl Archive release v37 (http://feb2006.archive.ensembl.org/).  

Genome annotations were retrieved through BioMart (http://www.biomart.org/).  There were 

several annotated homology relationships between human and other mammalian genes by 

Ensembl.  We only considered homologous gene pairs annotated as UBRH (Unique Best 

Reciprocal Hit, meaning that they were unique reciprocal best hits in all-against-all BLASTz 

searches) to be orthologous.  By this definition, 10,500 human autosomal genes were found 

to have unambiguous orthologs in mouse (NCBI v34), rat (RGSC 3.4) and dog (CanFam 1.0) 

genomes. 

 

4.3.2 Analysis of the microarray data 

We obtained the expression information of human genes and mouse genes from the 

Gene Atlas V2 dataset (http://symatlas.gnf.org/SymAtlas/) (Su et al. 2004).  This dataset 

comprises oligonucleotide microarray data in 73 human and 61 mouse normal tissues.  To 



 98

assign the expression data from probe sets to corresponding Ensembl genes, probe sequences 

of each probe set were aligned to the Ensembl cDNA sequences (human: 

Homo_sapiens.NCBI35.feb.cdna.fa; mouse: Mus_musculus.NCBIM33.feb.cdna.fa; 

http://www.ensembl.org/info/data/download.html) using BLASTn 

(http://www.ncbi.nlm.nih.gov/blast/).  Only those probe sets in which all perfect-match (PM) 

probes perfectly matched to the same Ensembl gene were considered to be valid.  The 

expression level detected by each probe set was obtained as the signal intensity (S) computed 

from MAS 5.0 algorithm (MAS5) (Hubbell, Liu, and Mei 2002).  The S values were 

averaged among replicates.  It should be noted that some genes are represented by more than 

one probe set on the microarray.  Because it was not possible to tell which probe set provides 

the best expression measure of a target gene (Liao and Zhang 2006b), we arbitrarily chose 

the probe set with highest expression level (Jordan, Marino-Ramirez, and Koonin 2005), 

which was defined by the summation of S across all the examined tissues.  As a result, 

16,457 human and 16,134 mouse Ensembl genes were assigned with microarray gene 

expression data. 

 

4.3.3 Removal of duplicate genes 

Duplicated genes are expected to have similar expression patterns by ancestry, and 

such genes, if generated by tandem duplication, are often located in physical proximity to one 

other.  The presence of tandem duplicate genes will artificially generate a negative 

correlation between the expression similarity of two linked genes and the physical distance 

between them.  Furthermore, duplicate genes are subject to the problem of off-target cross-
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hybridization in gene expression measurement; removing duplicate genes further eliminates 

the co-expression pattern artificially generated by cross-hybridization. 

We followed the conventional approach (Lercher, Urrutia, and Hurst 2002; Lercher, 

Blumenthal, and Hurst 2003; Singer et al. 2005) to remove this known artifact:  First, to 

identify proteins belonging to the same gene family, an all-against-all BLASTp search was 

performed on the entire protein dataset of a genome (for genes having more than one isoform, 

the longest peptides were used).  To be conservative in the analysis, pairs of proteins with 

BLAST E-values < 0.2 were considered to be members of the same gene family (Lercher, 

Urrutia, and Hurst 2002).  We then generated a duplicate-free dataset by randomly keeping 

one member of each gene family and removing all other members.  Consequently, a subset of 

4,857 human autosomal genes that have expression data was retained.  By the same approach, 

a set of 5,384 mouse genes without duplicates was obtained. 

Some of our analyses require the use of human genes and their orthologs in mouse, 

rat, and dog genomes.  This requirement reduces the number of duplicate-free human genes 

for the analysis by ~25% (from 4,857 to 3,681).  To maintain the statistical power and keep 

our dataset representative of the whole genome, we generated a tandem-duplicate-free dataset, 

which contains 7,577 human genes that have expression data and have orthologs in the other 

three mammalian genomes.  This dataset is larger than the above duplicate-free dataset 

because we now allow duplicate genes that are located on different chromosomes.   

 

4.3.4 Expression-profile similarity between linked genes 

Following Gu et al. (2002), we measured the level of co-expression between two 

linked genes (say A and B) by ln[(1+R)/(1-R)], where R is Pearson’s correlation coefficient 
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of signal intensity S across all the tissues examined.  Higher ln[(1+R)/(1-R)] indicates a 

higher level of co-expression.  Using R instead of ln[(1+R)/(1-R)] does not change any of our 

results qualitatively.  The chromosomal distance (D) between linked genes was defined by 

the distance (in nucleotides) between the transcription starting sites of the two genes, as 

annotated by Ensembl. 

In Figs. 3 and S3, the size of each bin was fixed to a certain value.  In Fig. 2, because 

the genomic distance D was log-transformed when the linear regression was applied, we 

gradually increase the bin size as D increases to avoid the overrepresentation of data points 

with large D.  The size of the nth bin is 100/)99(6 210 n+×  nucleotides.  That is, the nth bin 

represents the group of linked genes with D values ranging from ∑
−
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+×
1

1

100/)99(6 210
n
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i  to 

∑
=

+×
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i

i

1

100/)99(6 210 , except for the first bin which is with D from 1 to 2 × 106.  Use of other bin 

sizes did not change our results qualitatively.  

 

4.3.5 Evolutionary conservation of linkage 

When a gene pair is linked in both human and dog genomes, we regard the linkage to 

be old (or ancestral).  Here and elsewhere in this paper, linkage means that two genes are 

located in the same chromosome.  Although it is possible that two previously unlinked genes 

became linked in human and dog independently, such events have low probabilities and can 

be ignored.  We analyzed the subset of human gene pairs with old linkages.  Within this 

subset, if the linkage for a gene pair is maintained in both mouse and rat genomes, the 

linkage is said to be “conserved”; otherwise, it is non-conserved, meaning that the linkage is 

lost in one or both rodents.   
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4.4 RESULTS 

4.4.1 Co-expression of distantly linked human genes 

It is important to first examine whether the phenomenon of co-expression of linked 

genes exists for both closely and distantly linked genes, as such knowledge can help 

understand the relative importance of different molecular mechanisms responsible for the 

phenomenon (Hurst, Pal, and Lercher 2004).  Some studies have attempted to address this 

question by examining the on/off expressional status of linked genes (Lercher, Urrutia, and 

Hurst 2002; Semon and Duret 2006), while other studies examined the correlation of across-

tissue expression-profiles of adjacent genes (Hurst, Williams, and Pal 2002; Singer et al. 

2005).  Adjacent genes are linked genes without any other genes in between.  Since 

chromosomal rearrangements between sex chromosomes and autosomes are rare and sex-

linked genes have special functions and expression profiles (Lahn, Pearson, and Jegalian 

2001; Wang et al. 2001), here we limit our analyses to autosomal genes.  From the 4,857 

duplicate-free human autosomal genes (see Materials and Methods), we obtained 4,835 

adjacent gene pairs.  Let D be the distance in nucleotides between a pair of linked genes in a 

chromosome.  We find a significant correlation between logD and the level of co-expression 

(ln[(1+R)/(1-R)], see Materials and Methods) (Pearson’s correlation coefficient r = -0.1385, 

P < 10-21; Spearman’s correlation coefficient ρ = -0.1364, P < 10-20), indicating that closer 

adjacent human genes have higher similarity in spatial expression-profiles.  Because 

microarray data are known to be noisy, to reduce the effect of stochastic background noise, 

we group linked genes with similar D and calculate average ln[(1+R)/(1-R)] for each group.  

The aforementioned pattern can be seen more clearly with binned data (Figure 4.1A).  In 

comparison, the human genome with permutated expression-profiles, which is generated by 
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randomly assigning gene names to the real expression-profiles (of the 4835 duplicate-free 

genes), shows no obvious pattern between logD and ln[(1+R)/(1-R)] (Figure 4.1B).  Our 

observations are consistent with previous studies in the yeast (Hurst, Williams, and Pal 2002). 

The power to decipher the effect of linkage on gene co-expression is limited if only 

adjacent genes are analyzed, because there are few adjacent genes with large intervening 

distances (e.g. 713 adjacent gene pairs with D > 1 Mb and 10 with D > 10 Mb in our dataset).  

We thus analyze pairs of linked genes, without requiring them to be adjacent to each other.  

From 4,857 duplicate-free human autosomal genes (see above), we obtain 518,133 linked 

gene pairs with the genomic distances ranging up to one hundred megabases.  We then group 

the gene pairs according to their D values (see Materials and Methods) and calculate the 

average ln[(1+R)/(1-R)] for each group.  We observe a strong negative correlation between 

logD and ln[(1+R)/(1-R)] (Pearson’s r = -0.7121, P < 10-80; Spearman’s ρ = -0.6227, P < 10-

56; Fig. 2).  On the contrary, the genome with permutated expression-profiles shows no 

correlation (Pearson’s r = 0.0198, P = 0.654; Spearman’s ρ = -0.0700, P = 0.1122; Figure 

A.8).  Since the correlation observed in the real human genome is computed from the data 

points with D varying from 10 kilobases to 100 megabases (Figure 4.2), it is possible that the 

correlation is solely caused by the data points with small D values (e.g., < 1 Mb).  To 

examine this possibility, we divided our data into five categories based on the value of D: <1 

Mb, 1-5 Mb, 5-25 Mb, 25-50 Mb and 50-100 Mb.  The negative correlation between logD 

and ln[(1+R)/(1-R)] is significant in nearly every category for the real genome (Table 4.1).  

To know the chance probability of observing these correlations, we generate 1,000 

permutated genomes by randomly swapping gene names of the expression profiles.  The 

chance probability is the frequency of the observed correlations in randomly permutated 
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genomes that are more negative than the correlation observed in the real genome.  The result 

shows that the probabilities are <0.001 in categories <1Mb, 1-5Mb and 5-25Mb (Table 4.1), 

indicating that the phenomenon of co-expression of linked genes extends to a distance of tens 

of megabases in humans, which can harbor several hundred genes.  In addition to D, we also 

measure the distance between two linked genes by the number (N) of intervening genes 

between them.  Consistent with Figure 4.2, the correlation between N in log2 scale and 

ln[(1+R)/(1-R)] is significantly negative (Figure A.9), indicating that our observation does 

not depend on how the distance is measured and that linked genes with >100 intervening 

genes are still significantly co-expressed. 

To examine whether the phenomenon of long-range gene co-expression is universal 

in mammals, we apply the same method for generating Table 1 to the mouse data (see 

Materials and Methods).  Although the correlation between logD and ln[(1+R)/(1-R)] is 

significant when D < 1 Mb and 5-25Mb, the negative correlations do not exist for the groups 

of 1-5Mb, 25-50Mb and 50-100Mb in mouse (Table A.5). 

 

4.4.2 Weaker evolutionary conservation of linkage between genes of higher co-

expression 

If the long-range co-expression of linked genes in humans is an outcome of adaptive 

evolution, the gene order in a large part of the human genome must have been highly 

organized and evolutionarily preserved.  An important test of the hypothesis of functional 

relevance and adaptive value of co-expression of linked genes is to measure the evolutionary 

conservation of linkage.  If co-expression of linked genes is favored by natural selection, the 

linkage should be maintained during evolution.  If co-expression of linked genes is a neutral 
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phenomenon without functional consequences, no difference in conservation of linkage is 

expected between gene pairs with high levels of co-expression and those with low levels of 

co-expression.  If co-expression of linked genes is detrimental, the linkage of highly co-

expressed genes should be broken more often during evolution than that of weakly co-

expressed genes.  To test these hypotheses, we utilize the tandem-duplicate-free 7,577 human 

genes that have orthologs in each of the mouse, rat, and dog genomes (see Materials and 

Methods).  Based on the mammalian phylogeny shown in Fig. 3A (Springer et al. 2003; 

Murphy, Pevzner, and O'Brien 2004; Kriegs et al. 2006; Nishihara, Hasegawa, and Okada 

2006), we infer that two linked human genes were also linked in the common ancestor of 

primates, rodents, and carnivores, if their orthologs are linked in the dog genome (see 

Materials and Methods).  Note that although some authors believe that primates and 

carnivores are more closely related to each other than each is to rodents (Cannarozzi, 

Schneider, and Gonnet 2006), the phylogeny we use here has been well established by 

analyses of both irreversible genomic events (Kriegs et al. 2006; Nishihara, Hasegawa, and 

Okada 2006) and DNA sequences from many taxa (Springer et al. 2003; Murphy, Pevzner, 

and O'Brien 2004), and thus is much more reliable than results based on DNA sequences 

from only a few taxa.  In the present study, we only investigate ancestrally linked gene pairs 

because only these genes can be used to unambiguously determine the breakage of linkage 

(Table 4.3A).  Because rodent genomes have gone through extensive rearrangements during 

evolution (Bourque, Pevzner, and Tesler 2004; Mullins and Mullins 2004), current 

organizations of mouse and rat genomes help divide these ancestrally linked genes into two 

groups: genes with conserved linkage and genes with non-conserved linkage.  We then 

compare the level of co-expression between gene pairs with conserved linkage and those 
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with non-conserved linkage.  Since genomic distance D influences expression similarity 

(Table 4.1 and 4.2), we control the effect of D by grouping genes with similar D values, and 

then compare average ln[(1+R)/(1-R)] values of the conservatively linked genes and non-

conservatively linked genes within each group.  The results show that, for nearly every D 

range, non-conservatively linked human genes have a higher degree of co-expression than 

conservatively linked human genes (Table 4.3B and 4.3C).  This finding is inconsistent with 

the adaptive model (Hurst, Williams, and Pal 2002; Singer et al. 2005) and the neutral model 

(Semon and Duret 2006), but is predicted by our hypothesis that co-expression of linked 

genes is generally detrimental and disfavored by natural selection.  We also compare the 

expression similarity between conservatively and non-conservatively linked gene pairs when 

we define non-conservation by a loss of linkage in primates, instead of rodents.  The results 

(Figure A.10) are similar to those in Figure 4.3B and 4.3C, suggesting that the phenomenon 

of weaker evolutionary conservation of linkage between genes of higher co-expression is not 

unique to one particular mammalian lineage, but is likely to be generally true in mammals. 

One interesting question is whether the selection against co-expression (or 

interference) only acts on weakly to moderately co-expressed linked genes but not on 

strongly co-expressed linked genes.  To define strongly co-expressed genes, we plotted the 

distribution of ln[(1+R)/(1-R)] for all 1,521,714 linked gene pairs (from 7,577 tandem 

duplicate-free genes used in Figure 4.3A-C), and considered linked genes with ln[(1+R)/(1-

R)] values falling within the top 5% of the distribution (Figure 4.3D) to be strongly co-

expressed.  Interestingly, we found that the proportion of strongly co-expressed gene pairs is 

lower among those with conserved linkage than with non-conserved lineage (Figure 4.3E and 
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4.3F), suggesting natural selection against the conservation of linkage of strongly co-

expressed gene pairs.   

Our transcriptional interference hypothesis predicts that the breakage of linkage 

between two genes would reduce the degree of their co-expression.  We examine the 

difference between the expression-profile similarity of human linked gene pairs and that of 

their mouse orthologs, by using 26 human-mouse common tissues.  The full list of these 26 

tissues can be found in a previous study (Liao and Zhang 2006a).  Since co-expression of 

linked genes is much weaker in mouse than in human (Table A.5), there is a general trend of 

reduction in expression-profile similarity between a gene pair in mouse compared to that in 

human (Figure 4.4).  However, the reduction is greater for the gene pairs that experienced 

inter-chromosomal rearrangements than those that did not (Figure 4.4).  This finding is 

consistent with the hypothesis that chromosomal rearrangement helps reduce transcriptional 

interference. 

Some authors suggested that reduced recombination can ensure the physical 

proximity of linked genes (Pal and Hurst 2003; Poyatos and Hurst 2006).  Therefore, one 

expects to observe lower recombination rates between highly co-expressed genes than 

between poorly co-expressed genes, if co-expression of linked genes is beneficial.  However, 

our analysis of the human genome shows that highly co-expressed linked genes actually have 

higher recombination rates (cM/Mb) than poorly co-expressed linked genes (Figure A.11).  

Although recombination rate and chromosomal rearrangement may not be independent from 

each other (Akhunov et al. 2003; Lindsay et al. 2006), our observation again argues against 

the adaptive model and neutral model, but is consistent with our hypothesis that co-

expression of linked genes is detrimental. 
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4.5 DISCUSSION 

There are generally three molecular mechanisms that could cause the co-expression 

of linked genes (Hurst, Pal, and Lercher 2004).  At the primary level, cis-acting elements 

directly affect the transcription of neighboring genes (Cho et al. 1998; Kruglyak and Tang 

2000).  This mechanism will only affect genes within a few kilobases of one another.  At the 

secondary level, histone modifications spread from a locus control region to co-suppress the 

transcriptional activities of several linked genes until reaching boundary elements (Labrador 

and Corces 2002).  This type of co-regulation affects regions of up to a few hundred 

kilobases.  At the tertiary level, transcriptional co-regulation can happen in two ways.  First, 

genes with certain cis-acting elements can come together to form the node of chromatin loops 

during transcription; such special formation of aggregated cis-elements is called the active 

chromatin hub (ACH); genes close to the ACH are accessible to transcription, whereas genes 

looping out are inaccessible (de Laat and Grosveld 2003).  Second, arrangement of chromatin 

in compact chromosome territories can affect transcription; transcription is largely restricted 

to territory surfaces but suppressed within the interior (Cremer and Cremer 2001).  In both of 

these tertiary-level regulations, effects are expected to range up to several megabases. 

In the present work, we first report the phenomenon of very-long-range (up to tens of 

megabases) co-expression of linked genes in the human genome.  Although this result might 

suggest the importance of tertiary-level transcriptional regulations in humans, to our 

knowledge, there is no mechanism that has been demonstrated to regulate co-expression of 

linked genes at such large distances.  Is it possible that our observation is merely an artifact?  
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One potential caveat is the design of the microarray chip that is used to generate the gene 

expression data.  For example, yeast cDNA arrays are designed with the probes printed in 

genomic order and it has been suggested that previously observed periodicity of expression 

patterns of genes located in a chromosome (Cho et al. 1998; Cohen et al. 2000; Kruglyak and 

Tang 2000) is due to the spatial order of probes on the array (Lercher and Hurst 2006).  Since 

the expression data used here is produced from oligonucleotide microarrays for which the 

probe positions appear random (Su et al. 2004), the spatial bias occurred in the yeast cDNA 

array cannot explain our observation.  Another possible caveat is the potential unequal levels 

of co-expression of linked genes on different chromosomes.  If the level of co-expression is 

higher in small chromosomes than in large chromosomes for a given D, the results of Figure 

4.2 and Table 4.1 may be generated simply by the bias of sampling more gene pairs with 

large D from large chromosomes.  However, we do not find any correlation between the level 

of co-expression and chromosomal size when controlled for D (Figure A.12 and A.13).  

Moreover, the negative correlation between the level of gene co-expression and physical 

distance within a single chromosome is similar to the genome-wide pattern (Figure A.14).  It 

is worth mentioning that one yeast study proposed that the seemingly long-range co-

expression of linked genes is perhaps due to similar expression patterns of genes in 

subtelomeric regions (Lercher and Hurst 2006).  We examine this hypothesis by reproducing 

Figure 4.2 after removing human genes in subtelomeric regions (<5 Mb from chromosomal 

ends).  The result shows a virtually identical correlation between logD and ln[(1+R)/(1-R)] 

(Pearson’s r = -0.7123, P < 10-80; Spearman’s ρ = -0.6408, P < 10-60) as in Figure 4.2, 

suggesting that our results are not due to special genes in subtelomeric regions.  We conclude 

that the long-range co-expression of human linked genes is real, although the underlying 
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molecular mechanism remained to be investigated.  It should be noted that our result does not 

imply that the primary and secondary levels of gene regulation are unimportant.  Rather, the 

patterns observed in Figure 4.1 and 4.2 suggest the existence of these two levels of regulation 

as well.   

Contrary to the hypothesis that co-expressed gene clusters correspond to large 

chromatin domains (Hurst, Williams, and Pal 2002; Roy et al. 2002; Hurst, Pal, and Lercher 

2004; Sproul, Gilbert, and Bickmore 2005), a recent study showed that co-expression of 

mammalian genes is mainly due to the co-regulation of two genes by shared promoters 

(Semon and Duret 2006).  Our result favors the hypothesis of gene co-regulation by large 

domains, which is consistent with the discovery in yeast (Lercher and Hurst 2006).  Different 

from our approach, Semon and Duret (Semon and Duret 2006) followed the method used in 

Lercher et al. (Lercher, Urrutia, and Hurst 2002) to measure the expression-profile similarity 

of two linked genes by calculating how often they are simultaneously “turned on”.  One 

explanation for the inconsistency of our results with that of Semon and Duret (Semon and 

Duret 2006) is the fact that transcriptional background only affects the relative gene 

expression levels across different tissues, but not a change of the on/off status of a gene in a 

particular condition.  In such cases, it is more sensitive to measure co-expression of two 

genes by Pearson’s correlation coefficient R.  Other drawbacks of using the on/off status to 

measure expression-profile similarities from microarray data have been thoroughly discussed 

in an earlier paper (Liao and Zhang 2006a). 

Previous investigators have used evolutionary conservation of linkage to study the 

potential adaptive value of linkage of co-expressed genes, but they did not use outgroups to 

separate the formation of new linkages from the breakage of old linkages (Hurst, Williams, 



 110

and Pal 2002; Singer et al. 2005; Semon and Duret 2006).  Hence, if a pair of highly co-

expressed genes is observed to be linked in one genome (species A) but not in another 

(species B), it is often interpreted as a breakage of linkage in species B.  In fact, this 

observation could also be due to the formation of the linkage in species A since the 

separation of the two species.  These two scenarios cannot be differentiated without the use 

of an outgroup genome.  In the present study, we use the dog as an outgroup to identify those 

gene pairs that were ancestrally linked in the common ancestor of primates, rodents, and 

carnivores.  We found more inter-chromosomal rearrangements during rodent evolution for 

gene pairs with high co-expression in humans than those with low co-expression (Figure 4.3).  

Therefore, co-expression of linked genes appears to be disfavored by natural selection.  To 

examine whether using an outgroup would drastically change the conclusion of previous 

studies that supported the adaptive model, we repeated the analyses of Singer et al. (Singer et 

al. 2005) by counting the inter-chromosomal breakages within clusters (see Figure 4C in 

(Singer et al. 2005)) that occurred in the mouse lineage after the divergence of primates and 

rodents.  The new result (Figure A.15) is opposite of Singer et al.’s result and becomes 

consistent with our findings in Figure 4.3.   

Our observations suggest no adaptive value for clustering of co-expressed genes in 

the human genome in general.  Rather, linked genes are co-expressed simply because they 

share a similar transcriptional background.  The existence of large genomic regions with a 

similar transcriptional background implies that many mammalian genes may never reach 

their optimal expression-profiles because of the interference of the surrounding genomic 

environment.  It should be noted that some authors proposed that the linkage of co-expressed 

genes may represent lineage-specific transient adaptations (Ranz et al. 2007; Poyatos and 
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Hurst 2007).  While this scenario remains possible, it is extremely hard to test by 

comparative approaches.  Furthermore, this scenario is not contradictory to our finding that 

co-expression of linked genes is generally deleterious over long-term evolution. 

Note that we do not suggest that eukaryotic gene order is completely random.  Apart 

from the gene clusters formed by gene duplication or operons (Lercher, Blumenthal, and 

Hurst 2003; Hurst, Pal, and Lercher 2004), many clusters of functionally related genes do 

exist, such as clusters of genes encoding organelle-related proteins (Lefai et al. 2000; Elo et 

al. 2003; Alexeyenko et al. 2006) and genes encoding proteins in the same protein complex 

(Teichmann and Veitia 2004).  However, it should be noted that some of these clusters 

actually do not show high degree of gene co-expression (Alexeyenko et al. 2006).  Together 

with our finding, it is clear that the phenomenon of co-expression and similar function of 

linked genes should be considered separately.  A recent study showed that gene expression-

profile corresponds poorly to gene function (Yanai et al. 2006).  Apparently, there are factors 

other than gene function that determine a gene’s expression.  Because evolutionary changes 

of gene expression may play a more significant role than changes of protein sequence in 

phenotypic evolution (King and Wilson 1975; Carroll 2005), identifying such factors is of 

fundamental importance to our understanding of evolution.  Our result implies that a change 

in gene location can facilitate expression evolution, which is similar to what was previously 

known as the positional effect (Festenstein et al. 1996; Milot et al. 1996; Kleinjan and van 

Heyningen 1998).   

 Our hypothesis that co-expression of linked genes is detrimental raises an important 

question.  That is, if such co-expression is deleterious, how can it be fixed in the first place?  

Here, we propose a model to explain this seemingly dilemmatic phenomenon.  We propose 
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that although co-expression of linked genes is generally detrimental, the “mutation” that 

generates co-expression as a byproduct may initially be advantageous.  Figure 4.5 shows an 

example explaining this model.  For simplicity, only two genes, A and B, are shown.  

Initially, A and B are linked but with distinct expression patterns (Figure 4.5A).  However, 

the expression of B is not optimized.  When a mutation occurs to establish a transcriptional 

background for the two genes, they become co-expressed.  This mutation makes the 

expression pattern of B closer to its optimal, while the co-expression makes the expression 

pattern of A deviate from its optimal (Figure 4.5B).  The overall fitness gain may still be 

positive for these changes and the mutation could be fixed by either positive selection or drift.  

However, because the expression of A is suboptimal, subsequent breakage of the A-B 

linkage and move of A to another genomic location may be advantageous (Figure 4.5C).  It is 

possible that many genes are involved in a similar evolutionary process as shown in Figure 

4.5, since the mechanism creating the transcriptional background have long-range effects.  

The above verbal model lacks many quantitative details, because the molecular mechanism 

responsible for co-regulation of linked genes is poorly known.  In the future, when the 

molecular mechanism of co-regulation is better understood, it would be interesting to study 

the feasibility of the above model using population genetic analysis and computer simulation.  

Chromosomal rearrangement is just one way to remove the transcriptional 

interference of linked genes (Figure 4.3).  Other mechanisms, such as the increase of 

intergenic distance (Byrnes, Morris, and Li 2006) and establishment of insulators (Bell, West, 

and Felsenfeld 2001), have also been reported.  We found the phenomenon of long-range co-

expression of linked genes to be much more prominent in human than in mouse (Table 4.1 

and Table A.5), consistent with the earlier observation that short-range co-expression is also 
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more prominent in human than in mouse (Singer et al. 2005).  A simple explanation of the 

human-mouse difference is that the mouse gene expression data had higher background noise 

compared to the human data, resulting in weaker co-expression signals that are identifiable 

by our method.  However, it is beyond our ability to confirm this explanation.  It is possible 

that the high rate of chromosomal rearrangement in rodents is in part responsible for the less 

significant co-expression of linked genes in the mouse genome, because rearranged mouse 

orthologs of human linked genes have a greater reduction in expression-profile similarity 

than non-rearranged mouse orthologs (Figure 4.4).  However, because large conserved 

syntenic blocks (>50 megabases) still exist between human and mouse and the total number 

of syntenic blocks is no more then 400 (Waterston et al. 2002; Bourque, Pevzner, and Tesler 

2004; Liao et al. 2004), chromosomal rearrangements in rodents are unlikely to be sufficient 

to completely “scramble” the mouse genome.  Hence, assuming no quality difference in 

either genomic sequence or gene expression data between human and mouse, we cannot 

exclude the possibility that other mechanisms exist in rodents to alleviate transcriptional 

interference of linked genes.  As the population size is larger for rodent species than for 

primate species, natural selection promoting the reduction of transcriptional interference may 

be more efficient in rodents than in primates.  It would be interesting to test this hypothesis in 

the future. 

In conclusion, our observations presented in the present study are consistent with 

neither the adaptive nor the neutral model.  The results support our hypothesis that co-

expression of linked genes in the human genome is a form of deleterious transcriptional 

interference.  Because all genes are located in the neighborhood of other genes, such 

interference may be mechanistically inevitable.  As a consequence, the expression-profile of 
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a gene may never be optimized in evolution.  Rather, transcriptional interference may be the 

source creating instability and dynamics of the mammalian gene order.  In light of this 

finding, it will be of great interest to identify those few genes that are tightly linked across a 

large number of mammals or vertebrates, as such exceptional incidences of conserved 

linkage (e.g., Hox clusters) likely indicate gene co-regulations that are beneficial to the 

organisms.   

 

 

4.6 ACKNOWLEDGMENTS 

We thank Xionglei He, Wendy Grus, Ondrej Podlaha, Zhi Wang, and Patricia 

Wittkopp for valuable comments.  This work was supported by research grants from 

University of Michigan Center for Computational Medicine and Biology and National 

Institutes of Health to J.Z. 

  

 

 

 
 



 115

Figure 4.1  Low co-expression for closer human adjacent genes. Expression-profile 
similarities between adjacent human genes, measured by ln[(1+R)/(1-R)], is negatively 
correlated with logD, their log10-transformed genomic distance in nucleotides, in (A) the real 
human genome, but not in (B) the permutated human genome.  Average ln[(1+R)/(1-R)] (± 
standard error) are shown for each group of adjacent genes categorized by logD.  The number 
of gene pairs per category is 213, 488, 966, 1343, 1111, and 714, respectively, for the six 
categories. 
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Figure 4.2  Low co-expression for closer human linked genes. Linear regression of 
average expression-profile similarity of linked genes, measured by ln[(1+R)/(1-R)], versus 
their log10-transformed genomic distance in nucleotides (logD), where D is set to be the 
median of each X-axis bin.  In the real human genome, average ln[(1+R)/(1-R)] is strongly 
negatively correlated with logD.  The bin size ranges from 20 kilobases (the 1st bin) to ~ 715 
kilobases (the last bin) (see Materials and Methods for details on bin sizes).  The figure is 
further divided into five areas by gray shading.  These fives areas are <1Mb, 1-5Mb, 5-25M, 
25-50Mb and 50-100Mb, respectively.  The correlations between ln[(1+R)/(1-R)] and logD 
of these five areas are shown in Table 4.1. 
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Figure 4.3  Linked human genes with non-conserved linkage have higher expression-profile 
similarity than those with conserved linkage.  (A) Phylogeny of human, rat, mouse, and dog.  
Only human ancestrally linked genes, determined by the linkage in dog, are included in the 
analysis.  Pink and green bars represent two genes. Average ln[(1+R)/(1-R)] (± standard error) for 
genes with conserved linkage and genes with non-conserved linkage, at (B) short physical 
distances and at (C) short physical distances.  (D) Distribution of ln[(1+R)/(1-R)] for all linked 
(duplicate-free) gene pairs.  Strongly co-expressed linked genes are those that fall in the 5% right-
tail of the distribution.  They have a minimal ln[(1+R)/(1-R)] of 1.25.  Average ln[(1+R)/(1-R)] (± 
standard error) for strongly co-expressed genes with conserved linkage and genes with non-
conserved linkage, at (E) short physical distances and at (F) short physical distances. P values 
(paired t-test) for the hypothesis of no difference in mean expression-profile similarity between 
genes with conserved linkage and those with non-conserved linkage are 6.37×10-2, 7.91×10-6, 
9.70×10-3, and 2.99×10-4 for (B), (C), (E) and (F), respectively. 
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Figure 4.4  Co-expression of linked genes is reduced by inter-chromosomal 
rearrangements.  Only human linked genes that are ancestrally linked, determined by the 
linkage in dog, are included in the analysis.  Mouse orthologs of these ancestrally linked 
genes can be either linked on the same chromosome (white bars) or separated on different 
chromosomes (black bars).  Y-axis shows the difference in expression-profile similarity (± 
standard error), measured by ln[(1+R)/(1-R)], of two human linked genes and that of their 
mouse orthologs.  The P value (paired t-test) for the hypothesis of no difference in average 
reduction of expression-profile similarity between the two groups of genes is 7.83×10-4. 
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Figure 4.5  The birth and breakdown of co-expression of linked genes.  (A) The initial 
expression status of gene A and B.  Gene A and B are linked but not co-expressed.  The expression-
profiles of A and B are shown above the boxes representing the genes.  Solid lines represent the 
current expression-profiles, whereas dashed gray lines represent the optimal expression-profiles for a 
gene to carry its functions.  I, II, II, and IV represent different conditions or tissues.  (B) The birth of 
the co-expression of gene A and gene B.  The establishment of the transcriptional background 
suppresses the gene expression under condition III.  Pink arrows show the directions of suppression 
from the initiation site.  This mutation drives the expression-profile of B closer to, but makes that of 
A away from, its optimal expression-profile.  This mutation also causes co-expression of A and B as 
a byproduct.  Although this mutation is detrimental to the function of A, the net fitness gain for the 
organism is positive, and thus the mutation establishing the transcriptional background can be fixed.  
The contribution to an organism’s fitness gain by the expression-profile change is marked below the 
box representing the gene.  (C) The breakdown of the co-expression of A and B.  A chromosomal 
rearrangement disrupts the linkage between A and B, terminating the interference of transcriptional 
background on the expression of A.  A and B are no longer co-expressed.  Because the 
rearrangement increases the overall fitness, this mutation can be fixed. 
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Table 4.1  Correlation between chromosomal distance (logD) and average expression-
profile similarity, measured by ln[(1+R)/(1-R)], between human linked gene pairs.  
Correlations are calculated from subsets of gene pairs with different ranges of genomic 
distances (D).  The chance probability of observing a correlation as strong as observed is 
determined from 1,000 permutated genomes.  The original data points for the real human 
genome are shown in Fig. 2. 
 
 

Genomic 
distance (D) Pearson's r             Chance probability 

<1Mb -0.5808 < 0.001 
1-5Mb -0.4523 < 0.001 
5-25Mb -0.4416  < 0.001  
25-50Mb -0.2693    0.069 
50-100Mb -0.2391    0.119 
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CHAPTER 5 
 

EFFECT OF GENE EXPRESSION EVOLUTION ON THE EVOLUTION OF NULL 
MUTATION PHENOTYPES 

 

 

5.1 ABSTRACT 

One-to-one orthologous genes of relatively closely related species are widely 

assumed to have similar functions and cause similar phenotypes when deleted from the 

genome.  Although this assumption is the foundation of comparative genomics and the basis 

of using model organisms to study human biology and disease, its validity is known only 

from anecdotes rather than from systematic examination.  Comparing documented 

phenotypes of null mutations in humans and mice, we find that over 20% of human essential 

genes have nonessential mouse orthologs.  These changes of gene essentiality appear to be 

associated with adaptive evolution at the protein-sequence level while gene expression 

evolution plays a negligible role in such changes.  Proteins localized to the vacuole, a cellular 

compartment for waste management, are highly enriched among essentiality-changing genes.  

It is probable that the evolution of the prolonged life history in humans required enhanced 

waste management for proper cellular function until the time of reproduction, which rendered 

these vacuole proteins essential and generated selective pressures on the coding sequence for 

their improvement.  If our gene sample represents the entire genome, our results would mean 

frequent changes of phenotypic effects of one-to-one orthologous genes even between 

relatively closely related species, a possibility that should be considered in comparative 
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genomic studies as well as in making cross-species inferences of gene function and 

phenotypic effect.   

 
 
 
5.2 INTRODUCTION 

When a species diverges into two separate species, the divergent copies of a single 

gene in the resulting species are said to be orthologous (Fitch 1970; Koonin 2005).  Although 

genome-wide patterns of conservation between orthologous genes have been extensively 

studied at the DNA and protein sequence levels (Li 1997; Nei and Kumar 2000; Koonin and 

Galperin 2003) and have started to be investigated at the gene expression level (Ranz et al. 

2003; Jordan, Marino-Ramirez, and Koonin 2005; Khaitovich et al. 2006; Liao and Zhang 

2006a), little is known about the evolutionary conservation at the levels of gene function and 

phenotypic effect upon gene deletion.  This lack of knowledge is in part due to the widely 

held presumption that orthologous genes from different species are similar in function and 

phenotypic effect (Koonin 2005), which probably originated from a few reports that 

orthologous genes from distantly related species can be swapped without causing apparent 

phenotypic defects (Quiring et al. 1994; Lutz et al. 1996; Acampora et al. 1998; Nagao et al. 

1998).  Because this presumption is fundamental to comparative genomics (Koonin and 

Galperin 2003; Mushegian 2007) and is the basis for using model organisms such as mice to 

study human biology and disease (Fox 1986; Austin et al. 2004), it deserves a systematic 

verification.  

Two model organisms, the bacterium Escherichia coli (Baba et al. 2006) and the 

yeast Saccharomyces cerevisiae (Winzeler et al. 1999), have been subject to genome-wide 

gene deletion experiments with available information on the fitness of each gene-deletion 
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strain, and thus could be compared in terms of the phenotypes of orthologous deletions at the 

genomic scale.  However, these two organisms belong to prokaryotes and eukaryotes, 

respectively, and are so different even in basic cellular processes that the comparison is 

neither feasible nor meaningful.  We thus choose to compare human (Homo sapiens) and 

mouse (Mus musculus), which are both placental mammals and have overall similar biology.  

Our comparison also has practical value due to the common use of mouse as a model 

organism for studying human biology and disease.  In fact, to facilitate the use of mouse 

models in human biomedical research, the international genetics community recently 

initiated the Knockout Mouse Project (KOMP) to individually knockout every gene in the 

mouse genome and acquire phenotypic data (Austin et al. 2004).  Our analysis will be 

valuable in guiding the proper use of the KOMP data.   

In the present study, we focus on one of the most dramatic types of change in a gene’s 

phenotypic effect, namely, a change in gene essentiality.  A gene is said to be essential to an 

organism if the loss of its function renders the fitness of the organism zero; otherwise, the 

gene is said to be nonessential.  We show that over 20% of human essential genes have 

nonessential mouse orthologs and elucidate the mechanisms underlying the changes of gene 

essentiality in evolution. 

 

 

5.3 MATERIALS AND METHODS 

5.3.1 Genomic data and annotations 

Human genome version NCBI36 and mouse genome version NCBIM36 were used.  

Annotations of 31,545 human and 28,390 mouse known or predicted genes by Ensembl 
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(release 44) (http://www.ensembl.org/) were retrieved through BioMart 

(http://www.biomart.org/).  We considered 14,423 pairs of human-mouse orthologous genes 

that were annotated as “ortholog_one2one”.  This annotation was not based on reciprocal 

best BLAST hits, but was based on phylogenetic analysis 

(http://www.ensembl.org/info/about/docs/compara/homology_method.html).  The number of 

synonymous nucleotide substitutions per synonymous site (dS) and the number of 

nonsynonymous substitutions per nonsynonymous site (dN) between human and mouse 

orthologs, estimated by the likelihood method, were retrieved from BioMart.  The paralog 

information, including percent sequence identity, was also obtained from BioMart.  Because 

retroduplicates are expected to have unrelated expression patterns from their mother genes 

and thus are not expected to compensate the loss of the mother genes, we did not consider 

retroduplicate copies as paralogs of a gene.  Retroduplicates were recognized by the absence 

of introns that are present in their mother genes.  Our results remained unchanged when 

retroduplicates were not excluded.   

 

5.3.2 Human essential genes  

1,716 human genes in Ensembl are associated with heritable human diseases in 

OMIM (http://www.ncbi.nlm.nih.gov/omim/).  Among them, 1,450 have unambiguous 

mouse orthologs and 756 have phenotypic descriptions from gene knockout mice.  Following 

Jimenez-Sanchez and colleagues (Jimenez-Sanchez, Childs, and Valle 2001), we categorized 

essentiality of a gene by the most life-threatening disease that the gene is associated with.  Of 

the 162 human essential genes that have corresponding mouse knockout phenotypes, 24 are 

immunity related (MP:0005387 in MGI) and were excluded in further analysis, as the 
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sterilized laboratory environment may underestimate the fitness reduction associated with the 

deletion of immunity genes in mice.  To compare with mouse knockout phenotypes, we 

require that human diseases considered here are due to null (or at least not gain-of-function) 

mutations.  Null mutations are defined as nonsense or frameshift mutations or the absence of 

gene products in patients as determined by biochemical assays.  Eighteen genes were 

removed because of the lack of evidence for the association between human diseases and null 

mutations.  We manually verified the human and mouse phenotypes for the remaining 120 

orthologous genes by reading relevant literature, especially ensuring that the mouse abnormal 

reproductive system phenotypes annotated in MGI are infertility. 

 

5.3.3 Mouse essential and nonessential genes 

Mouse phenotypic data were downloaded from MGI version 3.53 

(http://www.informatics.jax.org/).  We limited our analysis to null mutants generated by 

random gene disruption, gene trap mutagenesis, and targeted deletion, together referred to as 

gene knockout here.  Only those genes with one-to-one matches between MGI symbol names 

and Ensembl gene IDs were kept for subsequent analysis.  Genes with phenotypes of 

embryonic lethality (MP: 0002080), prenatal lethality (MP: 0002081), survival post-natal 

lethality (MP: 0002082), abnormal reproductive system morphology (MP: 0002160), or 

abnormal reproductive system physiology (MP: 0001919) were grouped as essential genes.  

Genes with phenotypes of premature death or induced morbidity (MP: 0002083) were 

manually inspected and classified according to literature.  If the mutant has a lifespan of 

shorter than 50 days, the gene is considered to be essential.  Genes associated with all other 
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phenotypes (at least MP: 0000001), including the normal phenotype, were grouped as 

nonessential genes.  The dataset included 2,022 essential and 1,655 nonessential mouse genes.  

 

5.3.4 Estimating branch-specific dN/dS values 

Coding sequences (CDS) of HeMn genes from human and mouse and their “one2one” 

orthologs from chimpanzee (Pan troglodytes), macaque (Macaca mulatta), rat (Rattus 

norvegicus), cow (Bos taurus), and dog (Canis familiaris) were obtained from BioMart and 

NCBI (http://www.ncbi.nlm.nih.gov/).  If multiple transcripts were annotated for one gene, 

the longest CDS was chosen.  The sequences were aligned by MEGA4 (Tamura et al. 2007) 

with manual adjustment.  Alignment gap sites were subsequently removed.  With the known 

phylogeny of the seven mammals (Figure 5.2) (Murphy, Pevzner, and O'Brien 2004), the 

program "codeml" in PAML (Yang 2007) was used to estimate dN/dS for the HeMn orthologs 

in each branch of the tree, with the option of “model=1” chosen in the control file.  We then 

compared the dN/dS values of the five branches (a to e in Figure5.2) that connect human and 

mouse in the tree.  Rodents are known to have intrinsically low dN/dS compared to primates 

(Gibbs et al. 2007).  To make a fair comparison of dN/dS among branches, we multiplied the 

dN/dS estimates for branches d and e by 1.23, which is the mean dN/dS value for 5,286 primate 

genes relative to that for their one-to-one rodent orthologs (1.28/1.04, see Figure S6 of ref. 

(Gibbs et al. 2007)).  

 

5.3.5 Microarray data analysis 

The GeneAtlas v2 dataset (http://symatlas.gnf.org/) contains the expression data 

obtained by hybridization of RNAs from 73 human non-pathogenic tissues and 61 mouse 
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tissues onto the Affymetrix microarray chips (human: U133A/GNF1H; mouse: GNF1M) (Su 

et al. 2004).  We assigned the probe sets to the human and mouse genes following a previous 

study (Liao and Zhang 2006b).  The expression level detected by each probe set was obtained 

as the signal intensity (S) computed from the MAS 5.0 algorithm.  The dataset contains 26 

common tissues between the two species.  They are adipocyte, adrenal gland, amygdala, 

bone marrow, cerebellum, dorsal root ganglion, heart, hypothalamus, kidney, liver, lung, 

lymph node, ovary, pancreas, pituitary, placenta, prostate, skeletal muscle, spinal cord, testis, 

thymus, thyroid, tongue, trachea, trigeminal ganglion, and uterus.  Mouse lower spinal cord 

was used as the homologous tissue of human spinal cord.  We measured the expression-

profile divergence between a pair of orthologs by 1- R, where R is Pearson’s correlation 

coefficient between human S and mouse S across the 26 common tissues.  We also used 

another parameter, 1-ICE, to measure the expression-profile divergence between orthologous 

genes.  ICE (index of co-expression) between two genes is defined as the number of tissues 

in which both genes are expressed divided by the geometric mean of the number of tissues 

where each gene is expressed (Lercher, Urrutia, and Hurst 2002).  Following convention (Su 

et al. 2004), we used a cutoff of S = 200 to determine whether a gene is expressed in a tissue 

or not when estimating 1-ICE.    

The ExonArray data were generated using a microarray platform with over six 

million probes targeting all annotated and predicted exons in a genome and were obtained 

from Xing et al. (Xing et al. 2007).  The data include six common tissues between human and 

mouse (heart, kidney, liver, muscle, spleen, and testis).  We used the expression signals S 

computed from GeneBASE (http://biogibbs.stanford.edu/~kkapur/genebase/).  The S values 

were averaged among the three replicated experiments performed for each tissue.  Because 
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the quality of the ExonArray data is higher than that of GeneAtlas (Xing et al. 2007), a cutoff 

of S =150 was used to determine whether a gene is expressed in a tissue or not in the 

estimation of 1-ICE.  

 

 

5.4 RESULTS AND DISCUSSION 

5.4.1 Many human essential genes have nonessential mouse orthologs  

From Online Mendelian Inheritance in Man (OMIM) (McKusick 1998), we identified 

1,716 human genes with clear gene-disease associations, in which 1,450 genes have 

unambiguous one-to-one orthologs in the mouse genome (see Methods).  This set contains 

756 human genes whose mouse orthologs have been experimentally deleted with the 

resulting phenotypes cataloged in the database of Mouse Genome Informatics (MGI).  For 

the 594 human genes associated with mild diseases, we cannot infer gene essentiality, 

because mild diseases may be due to mild mutations in essential genes or null mutations in 

nonessential genes.  From the remaining 162 potentially essential genes, we removed 24 

immunity-related genes, because the essentiality of their mouse orthologs may not have been 

adequately assessed in lab.  We further removed 18 genes for which there is no evidence that 

the human disease is due to null mutations.  We thus focused on the remaining 120 human 

genes with clinical features of death before puberty (Jimenez-Sanchez, Childs, and Valle 

2001) or infertility when null mutations occur, and considered them to be essential in human.  

We determined the essentiality of the mouse orthologs of these human genes, based on MGI 

and relevant literature.  Specifically, a mouse gene is considered essential if the knockout 

mice cannot survive to reproductive age (50 days) or are infertile.  
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To our surprise, 27 (22.5%) of the 120 mouse orthologs of human essential genes are 

nonessential (Table 5.1).  Furthermore, except for reduced survival or fecundity for Mthfr, 

Smpd1 Hexb, and Neu1-knockout mice, the other 23 knockout mouse strains (19.2%) are able 

to breed as successfully as the wild-type at least up to the age of 6 months (Table 1).  For 

convenience, we term these 27 human-essential-mouse-nonessential orthologs as HeMn 

orthologs and the other 93 human-essential-mouse-essential orthologs as HeMe orthologs, 

where H and M indicate human and mouse, respectively, and the subscripted “e” and “n” 

indicate essential and nonessential genes, respectively.   

 

5.4.2 Gene duplication is not the cause of gene-essentiality changes 

What caused the dramatic change in essentiality between human and mouse in over 

20% of the examined genes?  Previous studies in yeast (Gu et al. 2003) and nematode 

(Conant and Wagner 2004) suggested that when a gene is deleted, its paralogous gene(s) can 

often provide functional compensation such that an otherwise essential gene would appear to 

be nonessential.  The HeMn and HeMe orthologs studied here are one-to-one orthologs and 

hence do not have paralogs that were generated since the human-mouse separation.  

Nevertheless, it is possible that a paralog that was generated before the human-mouse 

separation is retained in mouse but lost in human, rendering the effect of functional 

compensation present in mouse but absent in human.  We thus examined whether HeMn-type 

mouse genes tend to have (i) more paralogs and (ii) closer paralogs in the mouse genome 

than HeMe-type mouse genes, which could explain why some orthologs of human essential 

genes are nonessential in mouse.  We found that the proportion of mouse genes that have 

paralogs is not significantly different between the HeMn group (18/27=66.7%) and the HeMe 
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group (55/93=59.1%) (P=0.512, Fisher’s exact test).  Among the mouse genes that have 

paralogs, HeMn-type mouse genes do not have significantly more paralogs (average number 

of paralogs = 4.33) than HeMe-type mouse genes have (average = 3.78) (P=0.415, Mann-

Whitney U test).  Moreover, HeMn-type mouse genes are not more similar to their closest 

paralogs (average protein sequence identity = 56.2%) than HeMe-type mouse genes are to 

their closest paralogs (average = 58.3%; P=0.568, U test).  Because divergent paralogs are 

unlikely to compensate one another, we repeated our analysis by considering only paralogs 

with relatively high protein sequence identities, but our results remain unchanged (Table A.6).  

These observations, consistent with recent reports of a general lack of functional 

compensation between paralogs in mammals (Liang and Li 2007; Liao and Zhang 2007), 

indicate that the dramatic changes of gene essentiality between human and mouse orthologs 

are not due to differential functional compensation from paralogs.  Rather, it is more likely 

that the evolutionary changes of gene essentiality have resulted from alterations of the genes 

themselves. 

 

5.4.3 Gene essentiality changes are associated with accelerated protein sequence 

evolution 

 Were changes of gene essentiality more frequently caused by alterations of protein 

function or gene expression?  To address this question, we first estimated the 

nonsynonymous distance (dN) between each pair of human and mouse orthologs.  We found 

that dN of the HeMn group is significantly greater than that of the HeMe group (P = 5.04×10-5, 

U test) (Figure 5.1a), whereas the synonymous distances (dS) are not significantly different 

between the two groups (P = 0.697, U test) (Figure 5.1b).  For comparison, let us also define 
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an HaMn group, which includes any human-mouse orthologous pair in which the mouse gene 

is known to be nonessential.  Our HaMn group comprises 864 nonessential non-immune-

system mouse genes and their human orthologs.  The relatively large dN of the HeMn group 

compared to that of the HeMe group must be due to accelerated nonsynonymous substitutions 

caused by (i) weaker purifying selection in the mouse lineage on HeMn genes than on HeMe 

genes, because mammalian nonessential genes are subject to weaker purifying selection and 

consequently have higher dN than essential genes (Liao, Scott, and Zhang 2006), and/or (ii) 

positive selection associated with the change of function and essentiality of HeMn genes.  If (i) 

is the primary reason, the dN of the HeMn group should be lower than that of the HaMn group, 

because the latter is composed of HnMn and HeMn genes.  However, we found that the dN of 

HeMn genes is significantly greater than that of HaMn genes (P = 1.62 ×10-4, U test; Figure 

5.1a), suggesting that (i) cannot be the primary reason of greater dN for HeMn genes than for 

HeMe genes.  Consequently, (ii) must have contributed to a large degree.  As expected, there 

is no significant difference in dS between HeMn and HaMn genes (P =0.770, U test) (Figure 

5.1b).   

To reconfirm (ii), we used a maximum-likelihood method (Yang 1998) to estimate 

branch-specific dN/dS values in a phylogeny of seven placental mammals for each of the 27 

HeMn genes (Figure 5.2).  Besides human and mouse, five additional mammals (chimpanzee, 

macaque, rat, dog, and cow) were chosen because they can divide the evolutionary path 

linking human and mouse and because they have publicly available high-quality (i.e., at least 

6× coverage) genome sequences so that the orthologous sequences of the HeMn genes can be 

retrieved.  We then compared the dN/dS values for the five branches connecting human and 

mouse (Figure 5.2).  An earlier genomic study showed that orthologous genes have on 
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average lower dN/dS in rodents than in primates, likely due to a larger population size and 

consequently increased efficacy of purifying selection in rodents than in primates (Gibbs et al. 

2007).  To make a fair comparison here, we multiplied the estimated dN/dS values for the two 

rodent branches (d and e in Figure 5.2) by 1.23, which is the mean dN/dS value for 5,286 

primate genes relative to that for their one-to-one rodent orthologs analyzed in an earlier 

study (Gibbs et al. 2007).  Under no positive selection, HeMn genes are expected to exhibit 

relatively low dN/dS values in branches closer to human and relatively high dN/dS values in 

branches closer to mouse, along the evolutionary path connecting human and mouse, because 

essential genes tend to have lower dN/dS than nonessential genes (Liao, Scott, and Zhang 

2006).  We, however, observed the opposite pattern.  That is, the fraction of HeMn genes that 

have their highest dN/dS values in the two branches closest to human (a and b in Figure 5.2) is 

significantly greater than the chance expectation of 2/5 (P=0.014, binomial test).  A recent 

analysis of a high-exchangeability group of amino acid changes suggests that dN/dS > 0.5 

likely indicates positive selection (Tang and Wu 2006).  Again, we found that the fraction of 

incidences where dN/dS of an HeMn gene is larger than 0.5 in branch a or b is greater than the 

chance expectation (P=0.004, binomial test; Figure 5.2).  The same is true when both highest 

dN/dS in a branch and dN/dS >0.5 are considered (P=0.015, binomial test; Figure 5.2).  Taken 

together, these results suggest that accelerated protein sequence evolution driven by positive 

selection was associated with changes of gene essentiality in at least an appreciable fraction 

of HeMn genes and that most HeMn genes had their gene essentiality changed during primate 

evolution.   

 

5.4.4 Gene expression evolution is not the cause of gene essentiality changes  
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Next, we measured the expression-profile divergence between human and mouse 

orthologous genes by 1-R, where R is Pearson’s correlation coefficient between their 

expression levels across homologous tissues of the two species (see Methods).  Two 

independent microarray gene expression datasets were used.  The ExonArray dataset has a 

higher accuracy in interspecific comparisons (Xing et al. 2007), while the GeneAtlas v2 

dataset contains more homologous tissues between the two species (Su et al. 2004).  Neither 

dataset shows a significant difference in 1-R between HeMn genes and HeMe genes (P = 0.230 

and 0.140 in Figure 5.1c and 5.1d, respectively, U test).  Furthermore, 1-R is not significantly 

different between HeMn and HaMn genes in these datasets (P = 0.433 and 0.420 in Figure 5.1c 

and 1d, respectively, U test).  In short, we did not find accelerated gene expression evolution 

to be associated with the essentiality changes of HeMn genes.  Use of other measures of gene 

expression divergence gave similar results (Figure A.16).   

 

5.4.5 Gene essentiality changes and the vacuole  

To better understand the biological reasons behind the changes of gene essentiality, 

we compared the Gene Ontology of the human genes in the HeMn group and the HeMe group 

using FatiGO (Al-Shahrour, Diaz-Uriarte, and Dopazo 2004).  There is only one category 

that is significantly different between the two groups after the control for multiple testing.  A 

much greater fraction of HeMn genes (12/27 = 44.4%) than HeMe genes (4/93 = 4.3%) have 

their protein products localized to the vacuole (false discovery rate q = 5.52×10-5), a cellular 

compartment primarily responsible for containing and degrading wastes and toxins.  The 

absence of vacuole proteins in humans tends to cause the accumulation of cellular wastes and 

toxins that often leads to fatal neurological diseases (Table 1).  The mass-corrected basal 



 139

metabolic rate in human is ~12% of that in mouse (Tolmasoff, Ono, and Cutler 1980), but 

human reproductive age is ~150 times that of mouse (Table A.7).  Consequently, the total 

amount of waste produced till reproduction for every gram of body mass is ~18 times higher 

for human than for mouse.  Hence, waste management is much more important in human 

than in mouse for maintaining proper cellular functions until the time of reproduction.  This 

may have rendered the orthologs of many nonessential mouse vacuole proteins essential in 

humans.  Consistent with this idea, deficiencies of vacuole proteins tend to cause defects at a 

later life stage in mouse than in human (Table 1).  Furthermore, the evolution of the 

prolonged life history of humans probably generated selective pressures for better vacuole 

proteins, which may be part of the reason behind the accelerated protein sequence evolution 

observed in HeMn genes.  Comparison of the product of the metabolic rate and the starting 

reproductive age among primates suggests that the importance of vacuole functions gradually 

increased in the primate lineage leading to humans, beginning from the common ancestor of 

all extant primates (Table A.7).  Consistent with this pattern, HeMn vacuole proteins show 

accelerated sequence evolution in the three primate branches (a, b, and c) in Figure 5.2.  

However, due to the small sample size, only one comparison yielded statistically significant 

enrichment in the three branches.  That is, for HeMn vacuole proteins, incidences of branch-

specific dN/dS >0.5 occurs more frequently in these three branches than expected by chance 

(P=0.028, binomial test).  

About 55% of HeMn genes are not vacuole proteins.  We confirmed that the results in 

Figure 5.1 remain qualitatively unchanged after the removal of vacuole proteins (Figure 

A.17).  Although the biological reason behind the change of gene essentiality of these non-

vacuole proteins is unclear, the association between the essentiality change and accelerated 
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protein sequence evolution may be similarly caused by an increase in the importance of a 

particular biological process during human evolution since the human-mouse split, which 

rendered a nonessential gene essential and at the same time generated selective pressures for 

the improvement of the gene function.  Consistent with this idea, analysis of branch-specific 

dN/dS indicates that non-vacuole HeMn proteins are significantly more likely to have rapid 

evolution and highest dN/dS in branch a or b of Figure 5.2 than expected by chance (P=0.002, 

0.019, and 0.019, respectively, for the three properties shown in Figure 5.2, binomial test). 

 

5.4.6 Final remarks   

It is possible that the frequency and direction of gene essentiality changes are not the 

same among evolutionary lineages.  For example, the proportion of essential genes in a 

genome is much greater in mouse than in yeast, which is in turn much greater than that in E. 

coli (Liao and Zhang 2007).  In the present work, although only HeMn genes are 

systematically examined, anecdotes of HnMe genes are known.  For example, humans with 

homozygous RECQL null alleles display viable and fertile Bloom’s syndrome, while targeted 

deletion of the ortholog in mouse causes embryonic lethality (Chester et al. 1998).  

Unfortunately, it is not possible to identify HnMe genes systematically, owing to the difficulty 

in proving the non-essentiality of human genes.  This obstacle notwithstanding, it is almost 

certain that the prevalence of distinct null phenotypes of human and mouse orthologs is 

underestimated here.  The first reason is that genes with unaltered essentiality could still have 

altered phenotypic effects.  For instance, Adamts2, Acox1, and Fancg are considered essential 

for human due to the mutant phenotype of premature death (Jimenez-Sanchez, Childs, and 

Valle 2001; Suzuki et al. 2002), but they are essential for mouse due to the knockout 
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phenotype of infertility of adult mice (Fan et al. 1996; Li et al. 2001; Yang et al. 2001).  

Second, the phenotypes associated with nonessential genes are probably more labile in 

evolution than those associated with essential genes, because changes of nonessential genes 

are expected to be more tolerable than changes of essential genes.  Therefore, it is likely that 

significantly more than 20% of one-to-one orthologs between human and mouse have 

different phenotypic effects when deleted.  However, we caution that the gene sample 

analyzed here is relatively small and thus our results should be reconfirmed when more data 

become available.  In the future, it may also be possible to verify our results by comparing 

the essentiality of one-to-one orthologous genes from several bacterial species that have been 

subject to genome-wide gene deletion experiments (Akerley et al. 2002; Baba et al. 2006; 

Gallagher et al. 2007).  However, due to high incidences of horizontal gene transfer 

(Doolittle 1999) and non-orthologous gene replacement (Koonin, Mushegian, and Bork 1996) 

in prokaryotes, caution should be taken in such comparisons.  When studying functional 

changes in orthologous gene evolution, it is important to distinguish among changes of 

molecular function, changes of involved biological processes, and changes of physiological 

importance.  By comparing gene essentiality, we are addressing the physiological importance 

of a gene.  A careful examination of Table 1 suggests that the molecular functions and the 

involved biological processes are likely to be unaltered for the majority of the 27 HeMn genes, 

while their physiological importance has changed dramatically.         

Potential implications of our findings are manifold.  First, gene annotation based on 

mutant phenotypes in other species may often be wrong, especially about gene essentiality.  

Second, comparative and evolutionary analysis dependent on the assumption of conservation 

of gene function or importance between orthologs should be interpreted carefully.  Third, 
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alteration of gene essentiality between species could be a cause of the observation that some 

mutations pathogenic to one species are nevertheless fixed in other species (Kondrashov, 

Sunyaev, and Kondrashov 2002; Gao and Zhang 2003).  Fourth, it is possible that mouse 

models of a large number of human diseases will not yield sufficiently accurate information, 

although they might provide some basic knowledge.  The scientific community may need to 

strategically and systematically consider establishing a primate model organism for studying 

many human diseases.  In this regard, it is particularly important to choose appropriate 

animal models for the study of human neurological disorders that involve malfunctioning 

vacuole proteins, due to the opposite essentiality of many vacuole proteins between human 

and mouse.  Finally, the association between changes of gene essentiality and the prolonged 

life history of humans sheds light on the mechanisms of some human-specific disorders that 

accompany apparently beneficial human traits.  

Although a recent literature survey found otherwise (Hoekstra and Coyne 2007), 

many believe that changes of gene expression are more important than changes of protein 

function in generating phenotypic differences between species (King and Wilson 1975; 

Carroll 2005).  We found that changes of gene essentiality were accompanied by accelerated 

evolution that was likely driven by positive selection at the protein sequence level, but did 

not find such a signal at the gene expression level.  Although we cannot exclude the 

possibility that our result regarding expression evolution is caused by the relatively large 

noise of microarray expression data or the lack of relevant tissues in the datasets analyzed, 

we can conclude that protein sequence and function changes are important in the change of 

gene essentiality in evolution.  It remains possible, however, that gene expression changes 
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are more important for phenotypic evolution that does not involve a change in gene 

essentiality.  
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Figure 5.1  Sequence divergence and expression divergence of human-mouse orthologs.  
The quartile-plots of sequence divergence (a: dN, b: dS) and expression-profile divergence (c: 
ExonArray, d: GeneAtlas v2) between human and mouse one-to-one orthologous genes.  
Values of upper quartile, median, and lower quartile are indicated in each box.  The bars 
indicate semi-quartile ranges.  H and M indicate human and mouse, respectively, and the 
subscripts e, n, and a indicate essential, nonessential, and any genes, respectively.  The P-
vales are determined by two-tail Mann-Whitney U tests. 
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Figure 5.2  Natural selection one the branches leading to human and mouse.  Variation 
of branch-specific dN/dS values among the five branches (marked a to e) that connect human 
and mouse in the mammalian phylogeny.  The branch lengths are not drawn to scale.  The 
dN/dS values for branches d and e have been adjusted to correct for the intrinsically low dN/dS 
in rodents (see Methods).   
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Table 5.1. One-to-one orthologous genes that are essential in human but nonessential in mouse 

 
 

Human gene name  Human disease name Mouse gene knock-out phenotypes 

Arylsulfatase A (ARSA) a Metachromatic 
leukodystrophy b 

normal fertility and litter size; impaired balance and spatial learning 
ability; sulfatide accumulation in the white matter of the brain; reduced 
myelin sheath thickness in the corpus callosum & optic nerves; a low 
frequency head tremor develops > 2 years of age 

Alpha-mannosidase , class 2B, 
member 1 (MAN2B1) 

Mannosidosis, alpha-, types I 
and II b 

normal development , fertility; no elevated mortality; mild form of human 
alpha-mannosidosis 

Dystrophia myotonica protein 
kinase (DMPK) a Myotonic dystrophy-1 b 

normal fertility and litter size; abnormal sodium channel gating in cardiac 
myocytes; cardiac conduction defects; late-onset progressive skeletal 
myopathy 

Lysosomal acid lipase (LIPA) Wolman disease normal development and fertility; accumulation of triglycerides and 
cholesteryl esters occurs in several organs 

Axonemal heavy chain dynein 
type 11 (DNAH11) 

Primary ciliary dyskinesia; 
Kartagener syndrome c normal fertility; abnormal left-right axis patterning 

Sialyltransferase 9 (ST3GAL5) Amish infantile epilepsy 
syndrome b 

normal viability and fertility; hypoglycemia; increased insulin sensitivity; 
abnormal lipid level 

Patched homolog 2 (PTCH2) Medulloblastoma; Basal cell 
carcinoma b 

normal viability and fertility; normal cell proliferation or differentiation in 
the cerebellum; abnormal dermal morphology in some males 

Granulocyte colony-stimulating 
factor (CSF3R) Kostmann neutropenia b normal development and fertility; reduced numbers of peripheral 

neutrophils; fewer hematopoietic progenitors in bone marrow 

5,10-methylenetetrahydrofolate 
reductase (MTHFR) 

Homocystinuria due to 
MTHFR deficiency b 

reduced survival rate but fertile; delayed development; elevated plasma 
levels of homocysteine 

Transforming growth factor-beta 
interacting factor (TGIF1) Holoprosencephaly-4 b normal growth, behavior and fertility 

Aacid phosphatase-2 (ACP2) a Acid phosphatase deficiency b normal development and fertility; skeletal defects in mutants greater then 6 
months of age; a small percentage of mutants exhibit tonic-clonic seizures 

Cathepsin A (CTSA) a Galactosialidosis b 
normal fertility; death occurs at ~12 months; aberrant lysosomal storage; 
enlarged spleen and liver; abormally flat face; reduced body size; 
generalized edema, ataxia and tremors 

N-acetylglucosaminidase 
(NAGLU) a 

Sanfilippo syndrome,  
type B b 

appear normal, healthy, and fertile up to 6 months of age; survive to 8-12 
months; reduced open field activity; massive accumulation of heparan 
sulfate in kidney and liver; elevated gangliosides in brain; vacuoles in 
macrophages, epithelial cells, and neurons. 

Beta-mannosidase (MANBA) a Beta-Mannosidosis b normal appearance, growth, and fertility to 1 year of age; cytoplasmic 
vacuolation in central nervous system and visceral organs 

Ubiquitin-protein ligase e3 
component n-recognin 1 (UBR1) 

Johanson-Blizzard syndrome 

b 

normal viability and fertility; 20% lower body weight; reduced muscle 
and adipose tissue; abnormal metabolism; enhanced non-spatial learning; 
impaired spatial learning 

von Willebrand factor-cleaving 
protease (ADAMTS13) 

Congenital thrombotic 
thrombo-cytopenic purpura b

normal development, viability, and fertility; prolonged vWF-mediated 
platelet-endothelial interactions 

Acid sphingomyelinase 
(SMPD1) a 

Niemann-Pick disease, type 
A and B b 

males could breed until 20 weeks of age and females until 10 weeks of 
age with normal litter size; lifespan of 4-8 months; impaired coordination; 
decreased body weight 

Beta-glucosidase-1 (GLB1) a GM1-gangliosidosis; 
Mucopolysaccharidosis IVB b

normal fertility and litter size; lifespan of 7-10 months; progressive 
spastic diplegia; emaciation; accumulation of ganglioside GM1 and asialo 
GM1 in brain tissue 
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Table 5.1. (continued) 
 

 

Human gene name  Human disease name Mouse gene knock-out phenotypes 

Alpha-1,4-glucosidase (GAA) a Glycogen storage disease II b
normal growth and fertility; reduced mobility and strength; impaired 
coordination, hindlimb paralysis and muscle weakness for the mutants older 
than 8 months of age 

Cytochrome p450, family 7, 
subfamily b, polypeptide 1 
(CYP7B1) a 

Giant cell hepatitis, neonatal b

normal survival, physical appearances, and behaviors; normal bile acid 
metabolism, plasma cholesterol and triglyceride levels; sterol biosynthetic 
rates were unaffected in multiple tissues with the exception of the male 
kidney, which showed a ~40% decrease 

Coagulation factor VIII (F8) Hemophilia A b 
females exhibit normal fertility and pregnancy; males show reduced ability 
to clot blood; no spontaneous bleeding into joints or soft tissues is observed 
up to 12 weeks of age 

Hexosaminidase B (HEXB) Sandhoff disease b 
normal growth and fertility; mutants exhibit spasticity, muscle weakness, 
rigidity, tremors, and ataxia beginning around 4 months of age and resulting 
in death about 6 weeks later 

GM2 activator protein (GM2A) a GM2-gangliosidosis, AB 
variant b 

normal growth, survival and fertility; abnormal accumulation of glycolipid 
and ganglioside in various brain regions with impaired balance, 
coordination, and learning 

Very long-chain acyl-CoA 
dehydrogenase (ACADVL) 

Deficiency of Acyl-CoA 
dehydrogenase, VL b 

normal gross appearance, survival, behavior and fertility; normal body and 
heart weight at 2 months of age. 

Alanine:glyoxylate 
aminotransferase (AGXT) 

Hyperoxaluria, primary, type 
1 b 

normal growth and development; no histological differences between 
mutants and wild types in multiple tissues; increased oxalate urine levels and 
higher chance to develop bladder stones for males. 

Neuraminidase 1 (NEU1) a Sialidosis, type I and type II b
27% of the pups in the NMRI background and 10–15% in the C57BL/6 
background died suddenly around weaning age; mice that survived past the 
21 days were fertile, but stopped producing offspring by the age of 10 
weeks; death occurred between the ages of 8 and 12 months. 

Galactose-1-phosphate 
uridylyltransferase (GALT) Galactosemia b normal embryonic survival; normal fertility in both sexes; abnormal 

galactose metabolism, but lack symptoms of acute toxicity. 

 a Protein product localized to vacuole 
 b Death before puberty 
 c Infertility     
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CONCLUSIONS 

 

Comparing the transcriptomes of humans and mice, I address fundamental questions 

about mammalian gene expression.  In the first section of my dissertation (Chapter 1-2), I 

confirm the presence of evolutionary constraint on gene expression and study the 

evolutionary patterns of mammalian gene expression.   

In Chapter 1, contrary to what the neutral model of transcriptome evolution asserts, I 

demonstrate that over 80% of human-mouse orthologous genes are evolutionarily conserved 

in their expression-profiles, highlighting the importance of proper gene expression to fitness.   

If gene expression is generally constrained by natural selection, genes with different 

properties may have experienced different selective constraints.  In Chapter 2, I show that the 

expression-profiles of highly expressed and tissue-specific genes tend to evolve slowly, 

implying that the expression pattern is of particular importance to highly expressed and 

tissue-specific genes.  Comparison of the rate determinants for protein evolution and that for 

expression-profile evolution shows that different rules apply to the evolution of protein 

sequences and that of expression-profiles. 

Considering several technical issues related to the analysis of microarray data in 

cross-species comparisons, the conclusions made in the first two chapters are contradictory to 

those of many previous studies.  The inconsistency of results between my studies and 

previous studies highlights the importance of choosing proper indices and developing new 

statistical approaches for comparative transcriptomics.  My thesis specifically addresses the 

evolution of gene expression profiles rather than the evolution of gene expression levels.  
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The main reason is that, compared to sequencing-based gene expression profiling, 

hybridization-based methods are less reliable in measuring absolute quantities of transcripts 

(see Chapter 1).  In the coming years, methods of sequencing-based gene expression 

profiling (e.g. MPSS, Massively Parallel Signature Sequencing) (Brenner et al. 2000) will 

mature and become more affordable for generating comprehensive datasets.  At that time, 

mammalian gene expression can be understood from both aspects of expression level and 

expression profile such that a comprehensive picture of gene expression evolution may be 

revealed. 

In the second section of my dissertation (Chapter 3-5), I investigate the potential roles 

gene expression plays in protein sequence evolution, dynamics of genome organization, and 

the evolutionary changes of gene essentiality.   

Studies based on yeast species suggested that the level of gene expression is the most 

important factor determining the rate of protein sequence evolution.  In Chapter 3, analysis of 

mammalian genes, however, shows that tissue-specificity, a characteristic of gene expression 

found only in multicellular organisms, is a stronger determinant of protein evolutionary rate.  

When compared to gene compactness, gene essentiality and tissue-specificity, gene 

expression level is the least important factor in mammals.  Thus, there is a great difference in 

rate determinants of protein evolution between unicellular and multicellular organisms.  It 

should be noted that although yeast proteins doe not have tissue-specificity, some proteins 

are heterogeneously expressed under different conditions.  In the future, it would be 

interesting to examine whether condition-specific yeast genes, as mammalian tissue-specific 

genes, also evolve rapidly if other confounding factors are controlled for. 
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In Chapter 4, I study the impact of gene expression on genome organization.  It has 

been reported in various eukaryotes that genes with physical proximity in a chromosome tend 

to have similar expression patterns.  Previous authors assumed that this phenomenon is a 

result of adaptive relocation of initially unlinked but co-expressed genes, but this assumption 

is incompatible with several observations.  I propose that co-expression of linked genes is a 

form of transcriptional interference that is disadvantageous to the organism.  My hypothesis 

is supported by genome-wide analyses of co-expression, recombination, and chromosomal 

rearrangements in mammalian genomes.  My model suggests that transcriptional interference 

is the main cause of co-expressed gene clusters and may promote recurrent relocations of 

genes in the genome.  

In Chapter 5, I compare documented phenotypes of null mutations in humans and 

mice and find that over 20% of human essential genes have nonessential mouse orthologs.  

These changes of gene essentiality appear to be associated with adaptive evolution at the 

protein-sequence level, while gene duplication and gene expression evolution plays a 

negligible role.  In light of the finding that the proteins localized to the vacuole are highly 

enriched among essentiality-changing genes, I hypothesize that the evolution of the 

prolonged life history in humans may have rendered these vacuole proteins essential and 

generated selective pressures on the coding sequence for their improvement.   

Results from the second part of my dissertation have special implications for genomic 

studies using bioinformatic approaches.  Chapter 3 reveals an unexpected diversity in the 

rules governing protein sequence evolution among different organisms.  From an 

evolutionary perspective, any two organisms may share certain biological similarities, 

including rules of evolution, due to ancestry.  My results suggest the necessity of confirming 
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the existence of such similarities between organisms, especially before one applies the 

empirical observations from a distantly-related model organism to the species of interest.  

The conclusions from Chapter 5, which investigates the phenotypes of human-mouse 

orthologs, further strengthen this argument.   

What causes the variation in general rules governing molecular evolution between 

two types of organisms (e.g. unicellular vs. multicellular eukaryotes) is an important question 

that requires further investigation.  Our results clearly indicate that lineage-specific properties 

can have stronger impact than ancestral properties on protein sequence evolution, and 

perhaps organismal evolution as well.  For instance, tissue-specificity, a property present in 

mammals but not yeasts, was shown to be a stronger rate determinant of mammalian protein 

evolution than expression level (see Chapter 3).  Also, the primate-specific trait of elongated 

life history may underlie the positive selection in primate vacuole proteins (see Chapter 5).  

Do the processes selecting biological novelties also change the previously established “rules” 

for organismal evolution?  How flexible are such rules during the evolution?  It would be 

interesting to know how lineage-specific properties emerged and how much impact they have 

on the molecular evolution of genomes compared to ancestrally derived shared properties.  

As more phylogenetically comprehensive genomic, transcriptomic and phenomic data 

become available, such studies can be initiated by comparing closely related species and then 

expanding the investigations to a phylogenetically larger scale.  

The abundance of mRNA is determined by levels of transcription and mRNA 

degradation.  MicroRNAs (miRNAs) can facilitate the degradation of targeted mRNA (Tolia 

and Joshua-Tor 2007).  Although Chapter 4 suggests that co-expression of linked genes 

likely occurs at the transcriptional level, in light of recent discoveries that miRNAs are a 
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factor determining organismal complexity (Heimberg et al. 2008), the important role of 

miRNAs in the evolution of gene expression cannot be neglected.  In the future, mechanisms 

driving the divergence of gene expression can be studied when additional empirical data on 

mRNA production and degradation become available.  Because most nucleotides in 

mammalian genomes are non-coding (Venter et al. 2001; Waterston et al. 2002) and 

potentially contain the information required for gene regulation, there is a pressing need for 

understanding the molecular function and evolutionary dynamics of non-coding sequences.   
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APPENDIX  
 

SUPPLEMENTARY FIGURES AND TABLES 
 
 
 
 
Figure A.1  Pairwise comparison of expression profiles of two probe sets of the same 
human genes.  The 3,762 genes in group A contain both optimal and suboptimal probe 
sets, whereas the 1,097 genes in group B contain only optimal probe sets.  The 
distributions show that the expression profiles detected by two probe sets of the same 
gene are more similar for group A genes than for group B genes (P<10-27, Mann-Whitney 
U test), implying that “suboptimal” probe sets produce more consistent expressional 
profiles than “optimal” probe sets. 
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Figure A.2  Net distances (D) of expressional profiles between human and mouse 
orthologs and Euclidean distances (d) of random human-mouse gene pairs.  The 
distribution of the random pairs represents the neutral expectation of expressional 
divergences.  The black area left to the vertical dashed line (d5%=0.0089) shows the 5% 
smallest d values.  86.6% of 4,564 human-mouse orthologous genes have D smaller than 
d5%, suggesting that the detectable expression-profile divergence of 86.6% of genes is 
lower than the neutral expectation at the 5% significance level.  In this figure, we 
computed the values of dH and dM by averaging the Euclidean distances of all possible 
combinations of probe sets of the same gene, instead of using two randomly picked probe 
sets as in Figure 1.4. 
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Figure A.3  Correlation between two measures of expression divergence between 
human-mouse orthologous genes.  10,607 pairs of orthologs are used. 
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Figure A.4  Tissue-specificity (τH) and the coefficient of variation in expression level 
across tissues (CV) are highly correlated (Spearman’s rank correlation coefficient = 
0.693, P<10-300; Pearson’s correlation coefficient = 0.690, P<10-300).  The data are from 
10,607 human genes. 
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Figure A.5  Highly expressed genes have higher expression-profile similarity 
between human-mouse orthologs than lowly expressed genes (MAS5 dataset).  The 
expression level is measured by either the mean expression level or the maximum 
expression level across the 26 common tissues between humans and mice.  The error bar 
shows 95% confidence interval of the mean, estimated by 10,000 bootstrap replications 
for each bin.  The numbers of genes in each bin are: (a) 0-200: 2788, 200-400: 2809, 400-
800: 2968, 800-1600: 1441, >1600: 601; (b) 0-200: 4441, 200-400: 3166, 400-800: 1977, 
800-1600: 730, >1600: 293; (c) 0-400: 1762, 400-800: 2599, 800-1600: 2895, 1600-3200: 
1777, 3200-6400: 903, >6400: 671; (d) 0-400: 3339, 400-800: 2816, 800-1600: 2271, 
1600-3200: 1190, 3200-6400: 581, >6400: 410. 
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Figure A.6  Highly expressed genes have higher expression-profile similarity 
between human-mouse orthologs than lowly expressed genes (GC-RMA dataset).  
The expression level is measured by either the mean expression level or the maximum 
expression level across all tissues (i.e., 73 human normal tissues or 60 mouse tissue).  
The error bar shows 95% confidence interval of the mean, estimated by 10,000 bootstrap 
replications for each bin.   The numbers of genes in each bin are: (a) 0-200: 4756, 200-
400: 1755, 400-800: 1556, 800-1600: 1247, 1600-3200: 775, >3200: 497; (b) 0-200: 
3823, 200-400: 1512, 400-800: 1581, 800-1600: 1547, 1600-3200: 1118, >3200: 1026; (c) 
0-400: 2858, 400-800: 1144, 800-1600: 1324, 1600-3200: 1434, 3200-6400: 1432, >6400: 
2415; (d) 0-400: 2314, 400-800: 883, 800-1600: 1089, 1600-3200: 1365, 3200-6400: 
1574, >6400: 3382. 
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Figure A.7  Greater expression-profile similarities between human-mouse orthologs 
for genes of high tissue-specificity than genes of low tissue-specificity (GC-RMA 
dataset).  Tissue-specificity is measured using all available tissues (i.e., 73 human 
normal tissues or 60 mouse tissue).  The error bar shows 95% confidence interval of the 
mean, estimated by 10,000 bootstrap replications for each bin.  The numbers of genes in 
each bin are: (a) 0.00-0.05: 1275, 0.05-0.10: 921, 0.10-0.15: 1203, 0.15-0.20: 1539, 0.20-
0.25: 1571, 0.25-0.30: 1403, 0.30-0.35: 990, 0.35-0.40: 724, >0.40: 981; (b) 0.00-0.05: 
1155, 0.05-0.10: 940, 0.10-0.15: 1425, 0.15-0.20: 1497, 0.20-0.25: 1312, 0.25-0.30: 1140, 
0.30-0.35: 910, 0.35-0.40: 787, >0.40: 1441. 
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Figure A.8  Expression-profile similarity vs. genomic distance in a randomly 
permutated genome.  Linear regression of average expression-profile similarity of 
linked genes, measured by ln[(1+R)/(1-R)], versus their log10-transformed genomic 
distance in nucleotides (logD), in a randomly permutated genome.  In comparison with 
the real human genome (Fig 2), there is no correlation between average ln[(1+R)/(1-R)] 
and logD.  The bin size ranges from 20 kilobases (the 1st bin) to ~ 715 kilobases (the last 
bin) (see Materials and Methods for details on bin sizes). 
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Figure A.9  Expression-profile similarity vs. genomic distance measured by the 
number of intervening genes.  Linear regression of average expression-profile similarity 
of linked genes, measured by ln[(1+R)/(1-R)], versus their log-transformed genomic 
distance measured by the number of intervening genes (log2(N)), where N is set to be the 
median of each X-axis bin.  ln[(1+R)/(1-R)] is strongly negatively correlated with log2N.  
Same as in Fig 3, the bin size gradually increases when N becomes larger.  The figure is 
further divided into three areas by gray shading.  These three areas are N<10, 10<N≤100, 
and 100<N≤500, respectively. 
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Figure A.10  Linked mouse genes with non-conserved linkage have higher 
expression-profile similarity than those with conserved linkage.  (A) Phylogeny of 
mouse, human, and dog.  Only mouse linked genes that are ancestrally linked, determined 
by the linkage in dog, are included in the analysis.  Black and gray bars represent two 
genes.  Average expression-profile similarity (± standard error), measured by 
ln[(1+R)/(1-R)], for genes with conserved linkage and genes with non-conserved linkage 
are shown in (B).  The P value (two-tailed paired t-test) for the hypothesis of no 
difference in mean expression-profile similarity between genes with conserved linkage 
and those with non-conserved linkage is 2.1×10-2 for (B).  
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Figure A.11  Higher recombination rates between highly co-expressed genes than 
poorly co-expressed genes are observed in the human genome after controlling for 
the chromosomal distance between linked genes by grouping gene pairs with similar 
D.  The bin sizes for (A) and (C) are 0.1Mb and 1Mb, respectively.  Highly co-expressed 
genes are defined by gene pairs with the 10% highest values of ln[(1+R)/(1-R)], whereas 
poorly co-expressed genes are those with 10% lowest ln[(1+R)/(1-R)], when ln[(1+R)/(1-
R)] of every pairs of genes of are computed for each group.  Average recombination rates 
(± standard error) for highly co-expressed genes (black solid circle with black dashed line) 
and poorly co-expressed genes (empty circle with gray solid line) are shown in (A) and 
(C).  (B) and (D) show the difference in average recombination rates between highly and 
poorly co-expressed genes (highly minus poorly co-expressed) for (A) and (C), 
respectively. P values (two-tailed t-test) for the hypothesis that the difference equals to 
zero are 3.76×10-2 and 2.94×10-4 for (B) and (D), respectively.  The analysis is based on 
4,857 duplicate-free human autosomal genes.  The data of recombination rates across the 
human genome is based on the map produced by the deCODE project (Kong et al. 2002).  
The recombination rate (cM/Mb) between two human linked genes was computed by 
averaging the recombination rates between their positions of transcription starting sites 
(the genomic regions without recombination data were omitted). 
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Figure A.12  No correlation between human chromosomal size and average 
expression-profile similarity of linked genes, measured by ln[(1+R)/(1-R)].  Each dot 
represents a chromosome.  Error bar indicates the standard error.  For each panel, the 
range of distance (size = 2 megabases) between a gene pair (D) is shown on the top left 
corner, while the Spearman’s correlation coefficient ρ and associated P value are shown 
on the top right corner.   
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Figure A.13  No correlation between human chromosomal size and average 
expression-profile similarity of linked genes, measured by ln[(1+R)/(1-R)].  Each dot 
represents a chromosome.  Error bar indicates the standard error.  For each panel, the 
range of distance (size = 5 megabases) between a gene pair (D) is shown on the top left 
corner, while the Spearman’s correlation coefficient ρ and associated P value are shown 
on the top right corner. 
 
 
 

 
 



 169

Figure A.14  Expression-profile similarity vs. genomic distance in a single 
chromosome.  Linear regression of average expression-profile similarity of linked genes, 
measured by ln[(1+R)/(1-R)], versus their log10-transformed genomic distance in 
nucleotides (logD) within a single chromosome (human chromosome 1 as an example 
here), where D is set to be the median of each X-axis bin.  The result shows that average 
ln[(1+R)/(1-R)] is strongly negatively correlated with logD.  The analysis is based on the 
gene set free from tandem duplicates. 
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Figure A.15  Number of chromosomal breakage events and the size of the genomic 
regions covered by co-expressed clusters in the human genome.  Open circles 
represent the numbers from 1,000 randomized human genomes, while the solid triangle 
indicates the observed numbers from the real human genome.  This figure is generated by 
using the same approach described in Singer et al. (Singer et al. 2005), corresponding to 
Figure 4C in Singer et al. (Singer et al. 2005).  Different from Singer et al. (Singer et al. 
2005), we use the updated microarray data (Su et al. 2004), use ln[(1+R)/(1-R)] and 73 
tissues to measure the expression-profile similarity, and most importantly, count the 
chromosomal breakages within co-expressed human clusters that occurred in the mouse 
lineage after the human-mouse separation.  That is, for two consecutive human genes in 
an identified cluster with known mouse and dog orthologs, if the mouse orthologs are on 
different chromosomes and the dog orthologs are on the same chromosome (i.e., ancestral 
linkage), a break event is inferred.  The line is the linear regression of the dots.  The 
observed number of breakage events within the real human genomic regions covered by 
co-expressed gene clusters (triangle) is greater than expected (regression line), suggesting 
higher rates of linkage breakage within co-expressed gene clusters than in other regions, 
contrary to Singer et al.’s finding (Singer et al. 2005). 
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Figure A.16  Expression-profile divergence, measured by 1-ICE, between human 
and mouse orthologous genes (a: ExonArray data, b: GeneAtlas v2 data).  ICE 
(index of co-expression) between two genes is defined as the number of tissues in which 
both genes are expressed divided by the geometric mean of the number of tissues where 
each gene is expressed (see Methods).  Values of upper quartile, median, and lower 
quartile are indicated in each box.  The bars indicate semi-quartile ranges.  H and M 
indicate human and mouse, respectively, and the subscripts e, n, and a indicate essential, 
nonessential, and any genes, respectively.  The P-vales are determined by two-tail Mann-
Whitney U tests. 
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Figure A.17  The quartile-plots of sequence divergence (a: dN, b: dS) and expression-
profile divergence (c: ExonArray data, d: GeneAtlas v2 data) between human and 
mouse orthologous genes, after the removal of vacuole proteins.  Values of upper 
quartile, median, and lower quartile are indicated in each box.  The bars indicate semi-
quartile ranges.  H and M indicate human and mouse, respectively, and the subscripts 1, 0, 
and a indicate essential, nonessential, and any genes, respectively.  The P-vales are 
determined by Mann-Whitney U tests. 
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Table A.1  Spearman’s rank correlation coefficient (ρ) between gene compactness 
and dN, dS, or dN/dS. Gene compactness was calculated based on the shortest isoform 
when a gene is alternatively spliced. P-values show the probabilities of the observations 
under the hypothesis of no correlation. The analysis is based on 2,575 mouse genes and 
their rat orthologs, same as in Table 3.1. 
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Table A.2  Spearman’s rank correlation coefficient (ρ) between gene compactness 
and dN, dS, or dN/dS. P-values show the probabilities of the observations under the 
hypothesis of no correlation.  The analysis is based on 1,955 mouse genes that are not 
alternatively spliced (a subset of genes in Table 3.1). 
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Table A.3  Spearman’s rank correlation coefficient (ρ) between gene compactness 
and dN, dS, or dN/dS. P-values show the probabilities of the observations under the 
hypothesis of no correlation.  The analysis is based on 2,354 mouse genes that are not 
overlapped or nested with any other gene in the mouse genome (a subset of genes in 
Table 3.1). 
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Table A.4  Spearman’s rank correlation coefficient (ρ) between gene compactness 
and dN, dS, or dN/dS. P-values show the probabilities of the observations under the 
hypothesis of no correlation.  The analysis is based on 17,465 mouse-rat orthologous 
genes. 
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Table A.5  Correlation between chromosomal distance (logD) and average 
expression-profile similarity, measured by ln[(1+R)/(1-R)], between mouse linked 
genes. 
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Table A.6  Comparison between the mouse genes from the HeMn group and those 
from the HeMe group.   
 

a The null hypothesis is equal values between the HeMn and HeMe groups.  Two-tail tests are conducted. 
b Only mouse genes that have paralog(s) are counted. 

Minimal protein sequence 
identity in defining paralogs 60% 70%  80% Not required 

Proportion of mouse genes 
that have paralogs (HeMn, 
HeMe; P-value from 
Fisher’s exact test a) 

29.6% (8/27), 
29.0% (27/93); 

P=1.000  

11.1% (3/27), 
16.1% (15/93); 

P=0.568  

3.7% (1/27), 
5.4% (5/93);  

P=1.000  

66.7% (18/27),
59.1% (55/93); 

P=0.512 

Average number of  
paralogs b (HeMn, HeMe;  
P-value from the U test a) 

2.13, 
1.48; 

P=0.787 

2.66, 
1.26; 

 P=0.097 

1.00, 
1.00; 

 P=1.000 

4.33, 
3.78; 

 P=0.415 

Average protein sequence 
identity to the closest 
paralog b (HeMn, HeMe; P-
value from U test a) 

66.8%, 
72.9%; 

P=0.098 

73.7%, 
78.2%; 

P=0.190 

80.0%, 
85.4%; 

P=0.333 

56.2%, 
58.3%; 

P=0.568 
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Table A.7  Basal metabolic rates (BMR) and reproductive ages (T) of primates and 
several other mammals.  BMR × T refers to the relative amount of metabolic waste 
generated per gram of body mass until reproduction.  
 

 

a BMR of young adult males under resting/fasting condition (Tolmasoff et al. 1980. Proc. Natl. Acad. Sci. USA 
77:2777-2781) 
b Age at onset of male reproduction. 
c Fenner. 2005. Am. J. Phys. Anthropol. 128:415-423. 
d Animal Diversity Web (http://animaldiversity.ummz.umich.edu/). 
e Macdonald. 2001. The Encyclopedia of Mammals. Andromeda Oxford Ltd., Abingdon, UK. 
f Strum and Western. 1982. Am. J. Primatol. 3:61–76. 
 
 

Species name 
(common name) 

Mean BMR a  (cal per gram 
body mass per day)  

Reproductive age T b 
(year)   BMR × T 

Homo sapiens 
(human) 23.6 20.0c 472.0 

Pan troglodytes 
(chimpanzee) 27.9 13.5 d 376.7 

Gorilla gorilla  
(gorilla) 19.7 15.0 d 295.5 

Pongo pygmaeus  
(orangutan) 35.1 12.0 e 421.2 

Papio anubis 
(olive baboon) 43.2 8.5 f 267.2 

Macaca mulatta 
(Rhesus monkey) 37.0 4.5 d 166.5 

Chlorocebus aethiops 
(green monkey) 43.4 5.0 d 216.5 

Saguinus mystax 
(mustached tamarin) 88.4 1.5 d 132.6 

Otolemur crassicaudatus 
(greater galago) 68.4 2.0 d 136.8 

Eulemur fulvus  
(brown lemur) 57.6 1.5 d 86.4 

Tupaia glis 
(common tree shrew) 100.0 0.25 d 25.0 

Peromyscus maniculatus 
(deer mouse) 151.0 0.13 d 19.6 

Mus musculus 
(house mouse) 189.0 0.14 d 26.5 




