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CHAPTER 1

Introduction

At the end of a massive star’s life, the collapse of its core to a compact object, i.e.,

a neutron star or black hole, drives a shockwave into its outer layers, thereby heating

and ejecting them into the interstellar medium (ISM) in a supernova (SN) explosion.

Subsequently, the shockwave overtakes the ejecta and expands into the ISM forming

a supernova remnant (SNR). Typically, a SN releases ∼1051 erg of mechanical energy

that drives expansion of the SNR, sweeping up ISM material, heating it to X-ray

temperatures and infusing it with metals (fusion products beyond Lithium), which

are available for the formation of new stars and planetary systems, and the evolution

of life.

In a subclass of SNRs, for progenitor masses between 10 and 25 solar masses

(e.g., Heger et al., 2003), the compact object formed in the SN explosion is a rapidly-

spinning, highly-magnetized neutron star surrounded by a magnetosphere of charged

particles. The combination of the rotation and the magnetic field gives rise to ex-

tremely powerful electric fields that accelerate charged particles to high velocities.

The magnetic field interacts with the charged particles resulting in the spin-down

of the neutron star and the release of spin-down energy. A relatively small fraction

of this energy is converted into beamed emission manifest as an apparent pulse if

the neutron star’s rotation sweeps the beam across the Earth; hence the designation

“pulsar”. The bulk of the spin-down energy is converted into a pulsar wind (Michel,

1969) which is terminated at a strong shock, downstream of which the flow is indistin-
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Figure 1.1: Multi-band images of the Crab nebula. Clockwise from the upper
left are X-ray, optical, infrared, and radio images. Note that the images are
not to scale. Credits: NASA/CXC/SAO (X-ray), Palomar Observatory (optical),
2MASS/UMass/IPAC–Caltech/NASA/NSF (infrared), NRAO/AUI/NSF (radio).

guishable from being spherically symmetric (e.g., Chatterjee & Cordes, 2002, see §1.2

for a detailed discussion). The wind particles interact with the magnetic field causing

them to emit synchrotron radiation, forming a pulsar wind nebula (PWN). The Crab

Nebula (see Fig. 1.1), formed in the SN explosion of 1054 CE, is the canonical object

of this type. The Crab exhibits pulsations from the radio, all the way up to X-rays,

and is a prodigious source of γ-rays.

The wind in the immediate vicinity of the pulsar is a diffuse, relativistic gas un-

likely to be directly observable. However, the classic structure of forward and reverse
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shocks separated by a contact surface (Weaver et al., 1977) arises from the interaction

of the wind with the SNR or ISM. A probe of this interaction is provided by opti-

cal emission from the swept-up ambient ISM, thermal X-ray emission from the SNR

and/or the shocked ISM, and X-ray synchrotron emission from the shocked wind.

Furthermore, the high space velocity that is typical of pulsars (Cordes & Chernoff,

1998) implies an asymmetric ram pressure on the pulsar wind from the denser am-

bient medium. The details of the morphology and of the distribution of the density,

pressure, and velocity within the PWN depend upon the density, speed, momentum,

and energy flux of the pulsar wind. Thus, comparison of PWN simulations with ob-

servational data can provide an unparalleled method for investigating pulsar winds

and, therefore, how the surrounding medium taps the rotational energy of the pulsar.

Pacini & Salvati (1973) and Rees & Gunn (1974) pioneered the basic model of

PWNe; a model further developed by Kennel & Coroniti (1984a,b) and Emmering

& Chevalier (1987). An excellent observational review of PWNe studies is Gaensler

& Slane (2006); Bucciantini (2008) is the theoretical counterpart. For a number of

reasons, a detailed, quantitative study of PWNe is now particularly timely. First,

there is a cornucopia of high quality data from space-born observatories such as the

Chandra X-ray Observatory and XMM-Newton. Second, even recent hydrodynamic

simulations (e.g. Bogovalov et al., 2005; van der Swaluw et al., 2004) do not incor-

porate cooling, and, as stressed by Bucciantini (2002), the development of realistic

models is crucial to the interpretation of observational PWNe data. Third, the total

energy radiated by PWNe accounts for only a small fraction of the spin-down en-

ergy, leaving a large energy reservoir available for interaction with the SNR and the

acceleration of ions, the partitioning of which is not well understood.
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1.1 Evolution of Pulsar Wind Nebulae

The evolution of PWNe can be broken into four broad phases: 1) free-expansion, 2)

SNR reverse shock interaction, 3) expansion inside a Sedov SNR, and 4) bow shock

formation. In what follows, I briefly discuss these stages. For a detailed treatment,

see Gaensler & Slane (2006), and references therein.

1.1.1 PWN in freely expanding SNR

The blastwave generated by a SN explosion initially expands freely at speeds of order

103 km s−1. In general, the explosion is not perfectly symmetric, giving the newly

formed pulsar a space or “kick” velocity with typical values in the range 4–5 × 102

km s−1, but with known examples exceeding 103 km s−1. The pressure in the SNR

is much lower than that of the pulsar wind and the wind expands freely and rapidly.

During this stage, and for the spherically symmetric case, van der Swaluw et al.

(2001) showed that the time dependence of the nebula radius is given by:

Rpwn(t) ≃ 0.889
(

L0t

E0

)1/5

V0t ∝ t6/5, (1.1)

where E0 is the total mechanical energy of the SN explosion, L0 is the pulsar’s me-

chanical luminosity, V0 ≡
√

(10E0/3Mej), and Mej is the mass of the SN ejecta,

while noting that Chevalier (1977) and Reynolds & Chevalier (1984) had previously

obtained the t6/5 relation. In this stage, the PWN is observationally quite symmet-

ric as exemplified by the case of G21.5–0.9 (e.g., Matheson & Safi-Harb, 2005, see

Fig. 1.2). One can readily show that the magnitude of the expansion velocity from

Eqn. 1.1 far exceeds the sound speed in the SNR.

1.1.2 PWN–SNR reverse shock interaction

During the free expansion stage, the reverse shock generated in the SN explosion

travels outward with the blastwave due to the ram pressure of the outwardly streaming

stellar ejecta (see Fig. 1.2 for a schematic). As the radius of the SNR increases, the
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Figure 1.2: Gaensler & Slane (2006) Fig. 2. Left: a Chandra image of G21.50.9
(Matheson & Safi-Harb, 2005), an example SNR housing a symmetric PWN. Right:

illustrative PWN schematic. Note that this picture does not directly correspond to
G21.50.9 as it is unlikely that the reverse shock has detached from the boundary
shock in this young SNR.

ram pressure decreases while the blastwave sweeps up increasing amounts of ISM

material. Once the blastwave has swept up a few times the ejecta mass the reverse

shock “detaches” (van der Swaluw, 2005, and references therein), travels back toward

the center of the remnant, and interacts with the PWN. The free expansion of the

nebula lowers its internal pressure to a value far below that in the SNR. The reverse

shock collides with the nebula in a time given by Reynolds & Chevalier (1984):

tcol = 1 × 104

(

Mef

15M⊙

)5/6 (
E0

1051 erg

)−1/2 (
n0

1 cm−3

)−1/3

yr, (1.2)

where n0 is the number density of the ambient material. This is the onset of the

reverberation stage of the SNR during which time the PWN is compressed until the

internal pressure is increased to the point where the nebula is able to push back and

suddenly expand, causing the pressure to drop and the whole process to repeat (e.g.,

van der Swaluw et al., 2001). This is a complicated, three-dimensional interaction

that can leave the nebula with a crumpled, asymmetric shape.
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Figure 1.3: A Parks 2.4 GHz image (Duncan et al., 1996) of G263.93.3 (Vela) showing
the SNR and central PWN. The cross marks the position of the pulsar while the arrow
shows its direction of motion (Dodson et al., 2003). The reverse shock interaction
scenario is strongly supported by the distorted shape of the PWN, as well as by the
location and motion of the pulsar. Source: Gaensler & Slane (2006).
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This interaction will, in general, depend on both the structure of the ISM, into

which the SNR forward shock expands, and the space motion of the pulsar (van

der Swaluw, 2005). As further discussed by van der Swaluw (2005), simulations by

Blondin et al. (2001) and van der Swaluw et al. (2004) show that a two-component

PWN structure results with 1) a relic nebula containing the majority of the particles

supplied by the pulsar since its formation and 2) a new, smaller nebula associated

with the active injection of wind particles. The new nebula will be X-ray bright and

dimmer in the radio, relative to the relic nebula, which will be X-ray dim. This is due

to the fact that the magnetic field in the relic nebula is intensified by the crushing

event, and that the synchrotron lifetime of radio-emitting particles is much longer

than their X-ray emitting counterparts.

The timescale for this crushing event is comparable to that for the previous free

expansion stage (van der Swaluw, 2005, and references therein) implying that a signif-

icant number of observed PWNe should be experiencing this interaction. The classic

example of such a system is the Vela SNR (see Fig. 1.3) and I argue in Chap. 2 that

the hitherto mysterious SNR MSH 11–62 is another.

1.1.3 PWN in a Sedov-Taylor SNR

After the reverberations of the reverse shock die down, which happens quickly com-

pared to the time in Eqn. 1.2, the reverse shock has traveled all the way back to

the center of the SNR, re-energizing the interior of the remnant, and bringing the

PWN into pressure equilibrium with the thermal SNR. This results in a large in-

crease in the sound speed, and the nebula subsequently expands subsonically into

the remnant. During this phase, for a constant pulsar luminosity, the evolution of

the remnant can be approximated by the analytical Sedov-Taylor solution (Taylor,

1950a,b; Sedov, 1959) and the radius of the nebula evolves as (van der Swaluw et al.,
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2001, and references therein):

Rpwn(t) ≃ 0.421

(

L0t

pi(t)

)1/3

∝ t11/15, (1.3)

where, if Rpwn ≪ Rsnr (the radius of the remnant), pi(t) can be taken to be the

central pressure from the Sedov-Taylor solution with 5/3 for the adiabatic index of

the ambient medium (van der Swaluw et al., 2001):

pi(t) ≃ 0.074

(

E0

R3
snr

)

∝ t−6/5. (1.4)

As discussed by van der Swaluw et al. (2001), the result immediately above is not

very realistic by the time the reverse shock interaction stage is complete because the

luminosity of the pulsar is more realistically governed by the luminosity evolution of

a rotating magnetic dipole:

L(t) =
L0

(

1 + t
τ

)2 . (1.5)

The initial pulsar spin-down timescale, τ , is given by:

τ ≡ P0

(n − 1)

(

dP0

dt

)−1

, (1.6)

where P0 is the initial period of the pulsar and n is the breaking index (equal to

3 for a dipole). This necessitates a numerical solution to the PWN energy-balance

equation. Neglecting the initial free-expansion stage, van der Swaluw et al. (2001)

found:

Rpwn ∝ t3/10, (1.7)

in agreement with the pressure equilibrium result of Reynolds & Chevalier (1984).

Gaensler & Slane (2006) note that the realm of applicability of Eqns. 1.3 & 1.7 is

quantitatively distinguished by whether t < τ or t > τ .
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1.1.4 PWN bow shock formation

The time it takes for the pulsar to cross the SNR was obtained by van der Swaluw

et al. (2003):

tcr = 1.4 × 104

(

E0

1051 erg

)1/3 (
vpsr

103 kms−1

)−5/3 ( n0

1 cm−3

)−1/3

, (1.8)

where vpsr is the velocity of the pulsar. Once the PWN-SNR system has evolved to

the Sedov-Taylor stage, the time elapsed is sufficiently large that it is possible for the

pulsar to have reached the edge of the nebula, or even beyond (van der Swaluw et al.,

2001). Thus, the pulsar escapes its original wind bubble, leaving behind a “relic”

PWN, and traverses the SNR while inflating a new PWN. As the pulsar moves away

from the center of the remnant, the sound speed decreases. Following van der Swaluw

et al. (1998), van der Swaluw et al. (2004) calculated the Mach number of the pulsar,

Mpsr, and found that Mpsr exceeds unity after a time t = 0.5tcr, at which point the

pulsar has traveled a distance Rpsr ≃ 0.677Rsnr, and the nebula is deformed into a

bow shock. The condition on the pulsar velocity for this transition to occur while the

remnant is in the Sedov-Taylor phase is given by (van der Swaluw et al., 2004, and

references therein):

vpsr ≥ 325

(

E0

1051 erg

)1/17 (
n0

1 cm−3

)2/17

km s−1, (1.9)

a relation showing a strikingly weak dependence on the physical parameters. A

significant fraction (30–40% depending on the velocity distribution model) of the

pulsars compiled by Arzoumanian et al. (2002) satisfy this condition. As shown by

van der Swaluw et al. (2003), once the pulsar reaches the edge of the remnant, its

Mach number is Mpsr ≃ 3.1. Subsequently, the pulsar moves through the ISM where

its velocity corresponds to a hypersonic Mach number typically on the order of 102.

The most famous example of a PWN in this stage is the Guitar nebula (Cordes

et al., 1993, see Fig. 1.4), so named because of its cometary neck connecting to a
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Figure 1.4: A 1995 Hale Telescope Hα image of the Guitar Nebula (20 at 6564
angstroms; Chatterjee & Cordes, 2002). The cometary neck connecting to a spherical
bubble is clearly evident.

bubble. Fig. 1.5 shows numerous other examples. A case of particular import to this

work is that of the X-ray emission associated with PSR1929+10 (see Fig. 1.6). Wang

et al. (1993) posited that the morphology is due to a relativistic backflow behind

the pulsar, a suggestion that has gone unconfirmed for realistic wind Lorentz factors

and pulsar velocities, and was a prime motivator for this project. The simulations in

Chap. 5 directly probe the morphology and interior structure of PWNe during this

phase, motivate how the shape of the Guitar nebula persists, without resorting to

tailored ISM geometry, and confirm the interpretation of Wang et al. (1993).

1.2 The Current State of Pulsar Wind Nebulae Studies

The last decade has seen an explosion in the depth and breadth of the PWNe field.

Observations from the Chandra X-ray Observatory and XMM-Newton have fleshed

out structures of the inner nebula that, due to advances in computing, simulations
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Figure 1.5: X-ray images where the morphology of PWNe is influenced by the pulsar
motion. The numbers on each image correspond to entries in tables found in the
paper. Credit: Kargaltsev & Pavlov (2008).
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Figure 1.6: ROSAT X-ray surface brightness in the field of PSR1929+10 showing the
X-ray tail. Wang et al. (1993) suggested that the X-ray morphology is due to the
acceleration of particles behind the pulsar forming a relativistic backflow. North is
up and East is left. Credit: Wang et al. (1993).

have been able to reproduce. For the first time, detailed, realistic models of PWNe

from bow-shock systems, such as the Guitar, to young, energetic systems like the

Crab seem to be within reach.

1.2.1 Observations

PWNe exhibit a non-thermal spectrum continuous from the radio to the X-ray band.

The model has long been synchrotron emission arising from the helical motion of

charged particles in the nebular magnetic field. This model clearly explains why the

Crab appears smaller at higher frequencies (e.g., Bucciantini, 2008) due to the fact

that the higher energy emitting particles radiate their energy at preferentially higher

rates. However, not all PWNe exhibit this size difference. A notable example is 3C

58, where the lack of a size difference has been attributed to the lower magnetic field

(e.g., Gaensler & Slane, 2006).
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Figs. 1.1 & 1.7 show amazingly detailed images of the Crab nebula revealing

the inner structures of the nebula. Clearly evident are the torus arising from the

toroidal magnetic field, and collimated polar emission (see §1.2.2 for a discussion of

the physics behind these features). Also present is a bright inner ring that has been

interpreted as marking the location of the wind termination shock. This “jet/torus”

morphology has been observed in other PWNe, e.g., 3C 58 (see Fig. 1.8) and has

become the standard picture for the interior regions of young PWNe (see Fig. 1.9

for additional examples). In order to explain the dynamics and emission properties

of PWNe, the bulk wind Lorentz factor has been estimated to be on the order of

106 (e.g., Bucciantini, 2008). The toroidal magnetic field model explains why many

young PWNe, such as the Crab and 3C 58, have ellipsoidal shapes, as the field exerts

more pressure along the poles than on the equator (Bucciantini, 2008, and references

therein). A classic question that remains, however, is what happens to the pulsar’s

magnetic field? As renewed by Arons (2002), simple arguments conclude that the

magnetization, σ ≡ (Poynting flux)/(kinetic energy flux), should be invariant and,

unless the current pulsar paradigm is completely wrong, σ ≫ 1 must hold near the

pulsar (Arons, 2002). However, observations indirectly imply σ ≪ 1 for the post-

termination-shock flow. This is the long-standing “σ problem”, the solution to which

remains an active research issue (e.g., Arons, 2002; Contopoulos & Kazanas, 2002;

Kirk & Skjæraasen, 2003; Lyutikov, 2003; Vlahakis, 2004).

There is an apparent contradiction between the toroidal magnetic field and the

essentially spherically symmetric shape typical of PNWe (recall G21.50.9 in Fig. 1.2).

Indeed, the Poynting flux near the pulsar goes as sin2(θ), while Chatterjee & Cordes

(2002) used Hα observations of bow shock nebulae to argue that the post-termination-

shock flow is indistinguishable from being isotropic. The resolution lies in the fact the

wind undergoes a violent change as it transitions from an order 106 Lorentz-factor

flow to an order unity flow across the termination shock. This sets up large pressure
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Figure 1.7: A Chandra X-ray image of the Crab nebula showing the core jet/torus
structure. The bright, inner ring has been identified as marking the termination shock
of the wind. Credit: NASA/CXC/SAO.
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Figure 1.8: A Chandra X-ray image of 3C 58 that strongly suggests an inner jet/torus
structure. Credit: NASA/SAO/CXC/Slane et al. (2004).

Figure 1.9: X-ray images of PWNe with a toroidal component. The numbers on
each image correspond to entries in tables found in the paper. Credit: Kargaltsev &
Pavlov (2008).
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gradients that smear out the toroidal geometry and produce the essentially spherically

symmetric post-shock flow. This is the justification for the radial wind flow used for

the simulations presented in Chap. 5.

1.2.2 Simulations

Efforts to model PWNe span three decades (with seminal papers Rees & Gunn, 1974;

Kennel & Coroniti, 1984a,b; Emmering & Chevalier, 1987). While the case for a non-

isotropic pulsar wind energy flux has long been made (Michel, 1973), only recently has

a theoretical explanation of the mechanism behind the jet/torus structure has been

put forward and have the predictions of Michel (1973) been confirmed (Bucciantini,

2008). In particular, Bucciantini (2008) highlighted that a detailed description has

been made possible by the increase in the efficiency and robustness of relativistic,

numerical MHD codes, citing Komissarov (1999), Del Zanna et al. (2003) and Gammie

et al. (2003).

Fig. 1.10 depicts simulations by Del Zanna et al. (2004) showing that jet formation

in PWNe is intimately related to the magnetization inside the nebula. In particular,

these results show that jet formation is tied to where the magnetic field attains

equipartition. Once equipartition is reached, the magnetic field can no longer be

compressed. If this happens close to the termination shock, then, due to the mildly

relativistic nature of the post-shock flow, hoop stresses can become efficient, and most

of the flow is diverted back toward the axis and collimated. The magnitude of the

magnetization is key: if it is too small, equipartition is reached outside the nebula,

hoop stresses remain inefficient, and no collimation is produced.

While higher levels of magnetization are required to produce collimation, they

inhibit the formation of the torus because the equatorial flow is diverted back toward

the axis. How then does the torus arise? The simulation results of Del Zanna et al.

(2004) provide a suggestion. The key lies in the fact that pulsars are almost certainly
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Figure 1.10: MHD simulations by Del Zanna et al. (2004) addressing the formation of
the polar flow responsible for the beamed emission for an aligned rotator. Left: the
nebula magnetization. Right: the flow velocity. The magnetization is higher in the
equatorial regions, and so equipartition is reached sooner at lower latitudes. Once
this occurs, magnetic pressure prevents further compression of the magnetic field and
hoop stresses are able to set up collimation. If the magnetization is high enough,
then equipartition is reached within the nebula, and most of the plasma is diverted
back toward the poles and a collimated flow is produced. Credit: Bucciantini (2008).
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oblique rotators. The misalignment of the spin axis and the magnetic poles results

in a folded current sheet, and dissipation of the magnetic field can lead to a null

magnetization at the equator (Bucciantini, 2008, and references therein). This results

in the equatorial flow achieving equipartition outside the nebula and an equatorial

channel persists far into the post-shock flow (see Fig. 1.11). At higher latitudes,

however, magnetic field dissipation is far weaker, allowing equipartition to be reached

much sooner, resulting in the diversion of the flow and collimation (as discussed

above). As stressed by Bucciantini (2008), results about the details of the stripped

wind region show a direct link to the strength of the collimated flow and the size

of the termination shock (Del Zanna et al., 2006), both of which are observable.

Photon-index maps present another observable test for PWNe. Fig. 1.12 shows a

simulated map by Bucciantini (2008) compared to an observed map by Mori et al.

(2004). While the main features are well simulated, the spectrum of the jet was

not able to be reproduced without wiring in assumptions about the physics of the

collimated flow. Bucciantini (2008) suggests that this failure might be due to effects

not captured by axisymmetric simulations. This result highlights the fact that there

are still many important pieces left to solve.

The discussion above applies to the central engine that powers young PWNe, and

the modeling involved addresses the inner jet/torus structures. Other modeling is

concerned with the global structure of PWNe such as, for example, that presented in

Chaps. 5 & 6. In particular, recall the bow-shock PWNe representing the later stages

of PWN evolution discussed in §1.1.4. Bucciantini et al. (2005) and Vigelius et al.

(2007) are two recent examples of simulations addressing such a system. Bucciantini

et al. (2005) were the first to apply a fully-relativistic MHD code (Del Zanna et al.,

2003; Del Zanna & Bucciantini, 2002), and, for an axisymmetric geometry, obtained

a relativistic backflow behind the pulsar, as predicted by Wang et al. (1993) for

PSR1929+10. However, the pulsar velocity and the wind Lorentz factor were 9000
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Figure 1.11: MHD simulations by Del Zanna et al. (2004) addressing the formation of
the polar flow responsible for the beamed emission and the torus as observed in, e.g.,
the Crab. Left: the nebula magnetization. Right: the flow velocity. These simulations
differ from those in Fig. 1.10 in that the pulsar is modeled more realistically as a
misaligned rotator. This produces a folded current sheet in the equatorial region that
is possibly able to extend to higher latitudes. This can lead to a null magnetization
in this “stripped” wind region, allowing an equatorial flow to persist far from the
pulsar. Bucciantini (2008) suggested this model to explain the inner-ring/outer-torus
structure observed in many PWNe. Credit: Bucciantini (2008).
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Figure 1.12: Left: a Crab nebula photon-index map from Mori et al. (2004). Right:
axisymmetric simulation of the photon index (Bucciantini, 2008) showing that the
major features are represented. Bucciantini (2008) further discussed the fact that
simulations are not able to produce the correct jet spectrum without assuming some
form of dissipation and re-energization due to heavy synchrotron losses, and posited
that this might be due to toroidal magnetic field instabilities (citing Begelman, 1998)
that are not captured by axisymmetric simulations. Credit: Bucciantini (2008).

km s−1 and 10, respectively, which are far from the typical values of 500 km s−1

(recall that the Guitar pulsar, the fastest known, has a transverse velocity of ∼1700

km s−1) and 106. In addition, the paper does not address the “bubble” in the Guitar.

Vigelius et al. (2007) performed non-relativistic, hydrodynamic simulations with a

relaxation of cylindrical symmetry. The full 3-D FLASH code (Fryxell et al., 2000)

was employed and an anisotropic pulsar wind, cooling of the shocked ISM, ISM density

gradients, and ISM walls were considered. While the authors employed a realistic

pulsar velocity of 400 km s−1, the non-relativistic nature of the simulations limits

the Lorentz factor to order unity. In Chaps. 5 & 6, I present 2D, fully-relativistic,

hydrodynamic simulations for bow-shock PWNe for a realistic pulsar velocity and

wind Lorentz factor both with and without wind cooling. In particular, I address the

origin of relativistic backflows leading to a persistent bubble.
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1.2.3 Trends for the future

While substantial recent progress has been made, there are many avenues for future

improvement. As stressed by Bucciantini (2008), all (relativistic) simulations to date

have been axisymmetric and observed time-variability is not well understood. The

fact that the Crab exhibits non-axisymmetric time variability in the jet clearly shows

that full 3-D simulations are needed. In addition, the PWN/SNR interaction has

not been studied from within the context of the new models of the PWN core region

discussed in the previous section. In particular, the interaction between the PWN and

SNR reverse shock is 3-dimensional and complex, and current observational results

(see, e.g., Chap. 2 of this work) are, for the first time, making possible a detailed

probe of such crushed PWNe. Last, but not least, is the need for full-blown PWNe

simulations including realistic Lorentz factors for the pulsar wind and both wind and

ambient-medium cooling. I present simulations of bow-shock PWNe for wind Lorentz

factors up to 105 in Chap. 5. Given the magnetized and ionized nature of pulsar winds,

synchrotron losses are bound to have an important impact on the morphology and

dynamics of PWNe. Chap. 6 of this work details the initial stages of simulations to

address this issue.
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CHAPTER 2

Observations of MSH 11-62

In the simplified model of the demise of a massive star via a supernova explosion,

the collapse of the star’s core drives a shockwave into its outer layers, thereby heating

and ejecting them into the ISM. Thus, the spectrum of the SNR is expected to show

the thermal signatures of a high-temperature plasma.

There exists, however, a class of SNRs that does not conform to this scenario, ex-

hibiting a non-thermal, centrally-peaked X-ray spectral component. The most well-

known example is the Crab Nebula, in which the dominant X-ray emission mechanism

is synchrotron radiation arising from a relativistic ion wind and magnetic field pow-

ered by the spin-down energy of the compact object, a neutron star, created in the

SN explosion. The emission from this PWN is the signature of the neutron star and

is the smoking gun of a Type Ib/c or Type II SN (i.e., the core collapse of a massive

star). Relativistic electrons and positrons streaming along polar magnetic field lines

are thought to give rise to highly beamed emission.1 In the case of the Crab Nebula,

pulsed emission has been detected at all wavelengths, confirming the nature of the

compact object. However, there are many examples, including MSH 11–62 , in which

the pulses escape detection. In such cases, X-ray analysis provides a superior method

for 1) demonstrating the presence of a compact object via detection of its synchrotron

nebula and 2) gathering information about the energetics of the system.

1There is a competing model, however, that places the origin of the high-energy emission in the
outer gaps of the neutron star’s magnetosphere (Cheng & Zhang, 1999); while the viability of this
model remains open for debate, it currently faces serious challenges (e.g., Hui & Becker, 2007).
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The Chandra X-ray Observatory (Weisskopf et al., 1996) ushered in a new era of

X-ray analysis for objects such as PWNe with an improvement in spatial resolution

of more than two orders of magnitude as compared to its predecessor, the Advanced

Satellite for Cosmology and Astrophysics (ASCA, Inoue, 1993). This increase in

resolution allows Chandra to directly image PWNe (e.g., Wang et al., 2001). The

Advanced CCD Imaging Spectrometer (ACIS) aboard Chandra has arcsecond spatial

resolution and is sensitive to X-rays in the 0.2-10.0 keV energy band with an energy

resolution of 0.1 keV at 1 keV. Recent examples of Chandra’s X-ray prowess being

brought to bear on SNRs containing PWNe include: G11.2-0.3 (Roberts et al., 2003),

G292.0+1.8 (Hughes et al., 2003), and G292.2-0.5 (Gonzalez & Safi-Harb, 2003) in

the Galaxy and B0453-685 (Gaensler et al., 2003) in the Large Magellanic Cloud.

Previous ASCA results for MSH 11–62 show the presence of an unresolved non-

thermal source (Harrus et al., 1998) within the larger thermal SNR. In what follows,

I present the results and interpretation of Chandra X-ray data on MSH 11–62 and

its putative PWN. In §2.1 – §2.4, I detail the data reduction techniques and spatial

and spectral analyses. In §2.5, I discuss the results.

2.1 Data Reduction

A 50 kilosecond Chandra ACIS-S3 observation of MSH 11–62 (I. M. Harrus, principle

investigator) was performed on 2002 April 8 with pointing 11h11m55s,-60◦39′40′′. Jack

Hughes reduced the data following CIAO 3.2.2 prescriptions. I employed XSPEC

v11.3 (Arnaud, 1996) to analyze spectra. The incidence of high-energy particles gives

rise to the “particle background” which is manifest as 1) a spectral rise and plateau

above ∼ 8 keV due to the direct impact of high-energy particles on ACIS, and 2) bona

fide X-ray lines below ∼1 keV due to the fluorescence of detector hardware impacted

by high-energy particles near ACIS. To protect against contamination by the particle

background, I restricted the analysis energy range to 0.7-7 keV.
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2.2 Spatial Analysis

Fig. 2.1 shows a MSH 11–62 1.4 GHz radio image taken with the Australian Telescope

Compact Array (ATCA; data courtesy Bryan Gaensler, David Moffett, and Richard

Dodson). The image clearly shows the central region and overall elongated shape

of the SNR. The brightening of the emission along the South-East and North-West

boundaries of the SNR, but not along the South-West and North-East strongly sug-

gests that MSH 11–62 is a member of the class of bilateral SNRs (Gaensler, 1998),

which are also known as “barrel” (Kesteven & Caswell, 1987) or “bipolar” (Fulbright

& Reynolds, 1990) SNRs. Fig. 2.2 shows the Chandra ACIS X-ray image of MSH 11–

62 , the ATCA radio contours, and an overlay of the two showing that essentially the

entire ACIS-S3 chip is covered by SNR emission and that the X-ray peak is located

at the South-West end of the radio bar. I defined large SNR source regions (hereafter

“SNR S2” and “SNR S3”, respectively) on the S2 and S3 chips far from the hard

emission region for the analysis of the SNR (see Fig. 2.3). These definitions allow

an exploration of the thermal emission in two different parts of the remnant; e.g.,

variation in ionization timescales would indicate different ionization states.

I defined two regions for the analysis of the non-thermal emission. First, I defined

a 2′′-radius region containing 700 net counts centered on the X-ray peak (located

at 11h11m48s.62,-60◦39′26′′.2) to be the compact-component region (“cc” region) for

analyzing the hard emission from the putative pulsar. Fig. 2.4 shows the radial profiles

(I generated these using CIAO’s SHERPA package) for the cc region and for the

Chandra point-spread function from which I conclude that the central X-ray source

is consistent with a point source. Second, I defined the nebula region (“neb” region)

from the extent of the hard emission in the 2–6 keV energy range. This resulted

in the elliptical region in Fig. 2.3 with radii 100′′×30′′ containing 5950 net counts.

Using HI absorption data, collaborators Gaensler, Moffett, and Dodson determined

the near-distance to MSH 11–62 to be ∼3.5 kpc. Using the results from an updated
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Figure 2.1: A 1.4 GHz ATCA image of MSH 11–62 with DS9 “A” false-color coding
clearly showing the overall elongated shape of the central region of the SNR, enhanced
brightening along the SE and NW boundary, and lack of boundary emission to the
SW and NE. This morphology strongly suggests that MSH 11–62 is a member of
the class of bilateral (or “barrel”) SNRs (Gaensler, 1998). It is noteworthy that
such SNRs are typically oriented with their symmetry axis parallel to the Galactic
plane, consistent with the orientation of the Galactic magnetic field (Gaensler, 1998).
However, the symmetry axis of MSH 11–62 is nearly perpendicular to the plane, a
fact which lends itself to a dynamical interpretation of the barrel morphology, as
opposed to a magnetic field argument.
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Figure 2.2: A Chandra ACIS X-ray image of MSH 11–62 (left), ATCA radio contours (center), and X-ray image with radio
contours overlaid (right). Credit: Jack Hughes.
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Figure 2.3: Chandra ACIS X-ray image with the spectral analysis regions overlaid:
nebula (magenta ellipse), SNR S2 source (blue polygon), SNR S2 background (green
polygon), SNR S3 source (blue circle), and SNR S3 background (green triangle). Not
shown is the 2′′-radius circular compact-component region centered on the X-ray peak
(near the center of the nebula region) due to the scale of the image.
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Figure 2.4: Radial profile of the MSH 11–62 compact component (points) and the
Chandra point-spread function (line) showing that the central X-ray source is consis-
tent with a point source.

statistical study of the spiral structure of the Galaxy (Vallée, 2005), I estimated that

MSH 11–62 is located in the Carina arm with a far-distance ∼7.5 kpc (see Fig. 2.5).

Thus, I adopt a distance of 5.5 kpc for MSH 11–62 .

Fig. 2.6 and 2.7 show three-band and “true-color” X-ray images for MSH 11–62

created by Jack Hughes. For the latter, red, green, and blue correspond to the 0.75-

1.45, 1.45-2.6, and 2.6-6.0 keV energy bands. The low-energy contribution from the

SNR is clearly visible. In agreement with the previous ASCA results (Harrus et al.,

1998), this emission dominates outside the nebula region, which is clearly visible in

white, along with the compact component which marks the location of the putative

neutron star. A striking feature is the elongated appearance of the nebula along the

same axis as the radio bar.
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Figure 2.5: Spiral structure of the Galaxy from Vallée (2005). My overlaid triangle
shows the direction to MSH 11–62 (hypotenuse) and suggests that the SNR is located
in the Carina arm within 7.5 kpc.

2.3 Spectral Models

As mentioned previously, MSH 11–62 exhibits both thermal and non-thermal emis-

sion necessitating a two-component model. In this section, I discuss the models

selected for analysis of MSH 11–62 .

2.3.1 Thermal modeling

The thermal models currently available for fitting SNR spectra cover a broad range

of complexity. In general, SNR spectra cannot be fit with standard X-ray models

because they are not in ionization equilibrium (e.g., Borkowski, 2000). Rather, a

non-equilibrium ionization (NEI) model is required. In what follows, I discuss a

simple, single-temperature, single ionization timescale model, a single-temperature

plane-parallel shock model, and a Sedov model (called NEI, PSHOCK, and SEDOV,

respectively, in XSPEC; see Borkowski et al., 2001, for a detailed discussion).
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Figure 2.6: Smoothed Chandra ACIS X-ray images of MSH 11–62 in, from left to right, the 0.75-1.45 keV, 1.45-2.6 keV, and
2.6-6.0 keV energy bands. Credit: Jack Hughes.
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Figure 2.7: Chandra ACIS X-ray true-color image of MSH 11–62 . The diffuse emis-
sion and point sources for the 0.75-1.45 keV, 1.45-2.6 keV, and 2.6-6.0 keV energy
bands were smoothed with separate Gaussians and recombined. Credit: Jack Hughes.
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The NEI model assumes an impulsively heated, uniform gas with the following

parameters:

• kT = the plasma temperature in keV.

• abund = Metal abundances (He cosmic value): C, N, O, Ne, Mg, Si, S, Ar, Ca,

Fe, Ni using the Anders & Grevesse mixtures.

• τ = Ionization timescale ≡ net in s cm−3 (ne = electron density, t = shock age).

• z = redshift (fixed to 0 for this work).

• NT = 10−14

4π(DA∗(1+z))2

∫

nenHdV where DA is the angular size distance to the source

(cm) and nH is the hydrogen density (cm−3).

This model is not physical; rather, it characterizes the spectrum. It approximates

the ionization distribution versus emission measure as a delta function leading to

significant error in fitting SNR spectra in most cases (Borkowski et al., 2001, and

references therein).

The PSHOCK model assumes a plane-parallel shock with a constant post-shock

temperature, but offers an improvement over the NEI model as it includes a linear

distribution of ionization timescales. The parameters are as follows:

• kT = the plasma temperature in keV.

• abund = Metal abundances (He cosmic value): C, N, O, Ne, Mg, Si, S, Ar, Ca,

Fe, Ni using the Anders & Grevesse mixtures.

• τ l = Lower limit on ionization timescales in s cm−3.

• τu = Upper limit on ionization timescales in s cm−3.

• z = redshift (fixed to 0 for this work).

• NT = 10−14

4π(DA∗(1+z))2

∫

nenHdV .

The admission of varying τ results in a much better approximation to SNR spectra,

but still leaves much to be desired, particularly at lower energies (Borkowski et al.,

2001).

The SEDOV model assumes a spherical blastwave governed by Sedov dynam-
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ics with Coulomb and collisionless electron heating. This model provides the most

realistic approximation to SNR spectra as it includes separate ion and electron tem-

peratures in addition to a range in τ :

• kTa = mean shock temperature in keV.

• kTb = electron temperature immediately behind the shock front in keV.

• abund = Metal abundances (He cosmic value): C, N, O, Ne, Mg, Si, S, Ar, Ca,

Fe, Ni using the Anders & Grevesse mixtures.

• τ l = Lower limit on ionization timescales in s cm−3.

• τu = Upper limit on ionization timescales in s cm−3.

• z = redshift (fixed to 0 for this work).

• NT = 10−14

4π(DA∗(1+z))2

∫

nenHdV .

This is the model for routine use in fitting SNR spectra (Borkowski, 2000). It is

noteworthy that this model is computationally intensive and requires extended time

to obtain fits.

2.3.2 Non-thermal modeling

As previously mentioned, the model for the non-thermal emission in SNRs such as

the Crab is synchrotron emission arising from the gyration of charged wind particles

in the nebular magnetic field. It is well known that the ensemble spectrum from a

broad population of synchrotron emitting particles is a simple power-law. Thus, I

selected the XSPEC model POWERLAW to analyze the non-thermal emission in

MSH 11–62 with the following parameters:

• Γ = dimensionless photon index.

• NΓ = photons keV−1 cm−2 s−1 at 1 keV.

2.3.3 Modeling absorption

I opted for the Tuebingen-Boulder ISM absorption model (TBABS XSPEC model)

to account for absorption along the line of site to MSH 11–62 . The sole parameter
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is the equivalent hydrogen column, NH, in units of 1022 atoms cm−2. I selected this

model because it calculates the ISM X-ray absorption cross-section via the summation

of the cross-sections due to gas, grains, and molecules. Shielding by the grains is

accounted for while only molecular hydrogen is considered. The gas cross-section is

the abundance-weighted sum of the elements’ photoionization cross-sections including

grain depletion and updated ISM abundances (see Wilms et al., 2000).

2.4 Spectral Analysis

I used the XSPEC models NEI, PSHOCK, and SEDOV to elucidate the thermal

nature of MSH 11–62 using the SNR regions defined above. Fitting a thermal model

to the nebula region required a temperature of 13 keV, more than an order of mag-

nitude too high for a thermal SNR. Thus, I used the XSPEC model POWERLAW

to probe the spectral nature of the inner regions of MSH 11–62 because, if they are

indeed powered by a pulsar, the high energy spectrum can be approximated by a

simple power-law resulting from the synchrotron emission mechanism. I accounted

for absorption by employing the XSPEC model TBABS.

While the PWN emission contributes the non-thermal component, if present, in

a SNR, I expected the spectra for the SNR regions to be thermal and modeled it as

TBABS×NEI, TBABS×PSHOCK, and TBABS×SEDOV. The salient parameters of

these combined models are NH (frozen to the value from the nebula fit; see below),

the plasma temperature, the ionization age, τ , and normalization, NT. Fig. 2.8 and

Table 2.1 show the spectra and fit parameters, respectively. In particular, the lower

ionization timescale for the SNR S3 region, at a few times 1010 to 1011 s cm−3, as

compared to SNR S2 suggests that the former is further from ionization equilibrium.

I fit the XSPEC model TBABS×POWERLAW to the compact and nebula region

spectra (see Fig. 2.9 and Table 2.2) using the SNR S3 region spectrum as background

with hydrogen column frozen to the value from the nebula fit (see below). I divided
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Figure 2.8: Chandra ACIS X-ray thermal spectra for the SNR S2 (black) and SNR S3
(red) regions. The top, middle, and bottom panels are for the NEI, PSHOCK, SEDOV
models, respectively.
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Table 2.1: Chandra thermal spectral fit parameters for MSH 11–62 . The column
density was fixed to the value from the non-thermal fit. The fit parameters show
non-trivial variation between the two regions. In particular, the ionization timescales
suggest that different parts of the remnant are in different ionization states. For
this reason, I take the range of pressures implied by the fits for the pressure-balance
calculations in §2.5. The lower temperatures for the SEDOV model are to be expected
since it is a multi-temperature model and, thus, it can fit the same data as the
other two models with lower temperatures. Note that the S2 and S3 regions were fit
simultaneously for each model.

Region Model NH kT τ NT χ2
ν dof

(1022 cm−2) (keV) (1010 s cm−3) (10−5) (10−5)

S2 NEI 1.06 (fixed) 0.50+0.03
−0.06 30+60

−9 270+100
−40 1.1 299

PSHOCK⋆ 1.06 (fixed) 0.54+0.04
−0.05 60+330

−19 250+950
−35 1.1 300

SEDOV♦ 1.06 (fixed) 0.37+0.05
−0.02 49+27

−15 350+110
−74 1.0 300

S3† NEI 1.06 (fixed) 0.35+0.12
−0.10 1.7+4.2

−0.7 380+580
−210 1.1 299

PSHOCK⋆ 1.06 (fixed) 0.33+0.08
−0.08 2.9+2.4

−2.1 580+910
−350 1.1 300

SEDOV♦ 1.06 (fixed) 0.16+0.06
−0.04 17+16

−17 1200+3400
−800 1.0 300

†: Γ = 1.8 power-law added with fitted norms 8.3+1.6
−2.2 (NEI), 7.9+2.1

−1.8 (PSHOCK), 5.3+1.9
−1.9 (SEDOV)

⋆: quoted τ is τu; τ l was fixed at 0

♦: quoted kT is the fit with the shock and electron temperatures linked
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Figure 2.9: Chandra ACIS X-ray compact component (black) and nebula (red) spec-
tra with absorbed power-law fit.

the nebula region into 20′′ and 15′′-wide slices (the “non-thermal sequence”) along

the long and short axes, i.e., “NE-SW” and “SE-NW”, respectively, with overlapping

slices at the position of the compact component. I linked the value of NH for the

slices (in order to obtain a global fit of 1.06+0.08
−0.07×1022 cm−2 ) and let the power-law

spectral indexes and normalizations vary freely, again using the SNR S3 region for

background. Fig. 2.10 shows the variation of the spectral index of the hard emission

with increasing distance from the compact component once again showing that the

hard emission is asymmetric. The spectral index increases with distance, consistent

with the expected shorter synchrotron lifetime of the higher energy emitting particles.

2.5 Discussion

As mentioned above, no pulses have been detected from MSH 11–62 . I employed the

results of the X-ray analysis to infer properties of the supposed neutron star and its

synchrotron nebula. Using the model fit, I calculated the unabsorbed X-ray fluxes
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Table 2.2: Chandra non-thermal spectral fit parameters for MSH 11–62 . For the
compact-component and nebula regions, the data were fit jointly with the spectral
index and normalization free to vary for each data set and the column density was
fixed to the global fit value for the non-thermal sequence. For the sequence itself,
the data were fit jointly with all parameters free. The regions numbered “0” and
“6” represent the box covering the compact component and those farthest from it,
respectively. “NE-SW” and “SE-NW” denote which nebula axis is being sampled
and the single ordinates, e.g. “NE” denote which direction the box is displaced from
the center.

Region NH Γ NΓ χ2
ν dof

(1022 cm−2) (10−5)

compact 1.06 (fixed) 1.51+0.14
−0.13 4.24+0.79

−0.54 0.9 248
nebula 1.06 (fixed) 1.78+0.05

−0.05 42.7+2.4
−2.4 0.9 248

non-thermal sequence
0NE-SW 1.06+0.08

−0.07 1.52+0.11
−0.09 11.9+1.71

−2.1 1.0 665
1NE * 1.86+0.17

−0.14 6.81+1.29
−0.88 * *

2NE * 1.97+0.20
−0.15 5.22+1.13

−1.44 * *
3NE * 1.65+0.24

−0.21 3.04+0.81
−0.29 * *

4NE * 2.03+0.25
−0.13 3.38+0.90

−0.63 * *
5NE * 2.40+0.32

−0.28 4.18+1.25
−0.94 * *

6NE * 2.22+0.38
−0.18 2.65+0.97

−0.72 * *
1SW * 1.85+0.17

−0.15 7.13+1.34
−0.93 * *

2SW * 1.88+0.18
−0.16 5.98+1.21

−0.95 * *
3SW * 1.96+0.20

−0.09 5.83+1.23
−0.96 * *

4SW * 2.06+0.25
−0.22 4.09+1.06

−0.82 * *
5SW * 1.78+0.41

−0.37 1.95+0.82
−0.62 * *

6SW * 2.97+0.64
−0.52 2.87+1.41

−1.02 * *
0SE-NW * 1.58+0.12

−0.10 12.0+1.76
−1.34 * *

1SE * 1.67+0.17
−0.08 5.74+1.12

−0.89 * *
2SE * 2.20+0.38

−0.33 2.96+1.04
−0.77 * *

3SE * 3.64+1.00
−0.76 4.55+1.48

−1.73 * *
4SE * 3.41+0.53

−0.66 3.01+1.69
−1.14 * *

1NW * 1.82+0.17
−0.15 6.25+1.18

−0.82 * *
2NW * 1.73+0.24

−0.22 2.82+0.78
−0.48 * *

3NW * 1.86+0.19
−0.33 1.55+0.63

−0.49 * *
4NW * 1.78+0.53

−0.23 0.83+0.51
−0.38 * *

*: simultaneous fit
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Figure 2.10: Spectral indices from the nebula non-thermal sequence showing the
variation with increasing distance from the compact component (located at “0 arcsec”
in all four plots).

(see Table 2.3). Assuming a distance of 5.5 kpc, I used the 2.0-10.0 keV flux to

calculate the non-thermal X-ray luminosity for the compact component and nebula:

LX,cc = 8.7+3.9
−2.7×1032 erg s−1, and LX,neb = 55.0+8.0

−7.2×1032 erg s−1, respectively. I make

use of three empirical relationships relating the spin-down luminosity of the putative

neutron star, Ė, to observable properties of the non-thermal emission (Becker &

Truemper, 1997; Possenti et al., 2002; Gotthelf, 2003):

log(LX,0.1–2.4) = −3 + log(Ė), (2.1)

log(LX,2–10) = −14.36 + 1.34log(Ė), (2.2)

ΓPSR = 2.08 − 0.029(Ė/1040ergs−1), (2.3)

where I took ΓPSR to be Γcc, and “0.1–2.4” (note for the Chandra flux, I used 0.2–2.4)

and “2–10” refer to the energy band in keV. These three relations give estimates for

Ė of 6×1036, 8×1035, 3×1037 erg s−1 , respectively. While these values are rough
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Table 2.3: Unabsorbed non-thermal model X-ray fluxes for MSH 11–62 .

Region Energy Band Unabsorbed Flux
(keV) (10−13 erg cm−2 s−1)

compact
0.2-2.4 1.5+0.3

−0.2

0.2-4.0 2.1+0.5
−0.3

2.0-10 2.4+1.1
−0.7

nebula
0.2-2.4 15.9+1.2

−1.1

2.0-10 15.4+2.2
−2.0

estimates only, they are all strongly supportive of rotation-powered emission.

The apparent asymmetry of the hard emission and the structure of the SNR

boundary suggest that the nebula is being (or has been) crushed by the reverse

shock of the SNR. The presence of two bright limbs opposite from each other suggest

that MSH 11–62 is a member of the class of bilateral (also called “barrel”) SNRs,

or “BSNRs” (Gaensler, 1998). In order to investigate this possibility, I assess the

pressures within the SNR as, if this is the case, pressure balance between the SNR

and the nebula is expected (see §1.1.2). I begin by writing down the pressure inside

the SNR:

P SNR =
∑

i

Pi ≈ 1.85nekT e, (2.4)

where the index i is over the particle species present in the SNR, ne and T e are the

electron density and temperature, respectively, and I have assumed solar abundances.

The fit electron temperature and normalization allow an estimation of the electron

density in MSH 11–62 as an average of the values for all three thermal models for

both the SNR S2 and SNR S3 regions: ne ≈ 5.6+7.9
−1.8× 10−1 f−1/2 cm−3, where I

have approximated the product of the electron and hydrogen densities to be the

product of their average values multiplied by a filling factor f (generally categorized

as “unknown” in the literature, though there are examples of quoted values on the
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order of a few tenths, e.g., Jackson et al., 2008). This is consistent with the value

reported by Harrus et al. (1998). This allows the calculation of the SNR pressure via

Eqn. 2.4. The average value for both SNR regions and all three models is:

P SNR ≈ 5.8+8.0
−1.8 × 10−10f−1/2 erg cm−3. (2.5)

Next, I calculate the pressure inside the nebula assuming pressure balance of the

SNR and a pulsar wind (Rees & Gunn, 1974):

P bal =
Ė

4πr2
tsc

(2.6)

where rts is the radius of the wind termination shock and c is the speed of light.

As Fig. 2.4 shows a smooth fall-off, I can only assume a lower limit on the angular

radius of the termination shock θts < 2′′ (rts < 0.05 pc at 5.5 kpc). Thus, using

the estimates of the spin-down luminosity above, I obtain a range for the lower limit

of the nebula pressure of 8×10−11 – 3×10−9 cgs. This range is consistent with the

range of pressures for the SNR supporting the interpretation that the synchrotron

nebula has been crushed by the reverse shock of the SNR. The asymmetry of the

nebula can be explained by a non-uniform distribution of the local ambient medium.

Suppose that MSH 11–62 is evolving inside an elongated cavity of lower density with

its long axis oriented parallel to the symmetry axis of the remnant, as is the case

for G320.4-1.2, a bilateral SNR harboring an X-ray pulsar that Dubner et al. (2002)

concluded had a morphology influenced by the local ISM. In this case, the boundary

shock would reach the walls first in the direction perpendicular to the symmetry

axis, more material would be swept up along those directions causing those limbs to

brighten earlier, and the reverse shock would detach sooner and propagate back to

the synchrotron nebula resulting in an asymmetric crushing event. Assuming an ISM

number density of 1 cm−3, a 9:1 number ratio of hydrogen to helium, a distance of 5.5

kpc, and a spherical blastwave geometry, the ∼8 arcmin radio extent of MSH 11–62

implies ∼35 solar masses have been swept up. Such a mass is more than sufficient for
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the reverse shock to have detached (e.g., Heger et al., 2003). In total, this scenario

would provide additional affirmation for the dynamical model for some bilateral SNRs

invoked by Gaensler (1998).

There are other possible models to explain the features of MSH 11–62 . A com-

peting model for bilateral SNRs ascribes the morphology to the Galactic magnetic

field geometry (e.g., Gaensler, 1998). In this scenario, the SNR is oriented with the

symmetry axis parallel to the Galactic plane, which is in stark contrast to the case of

MSH 11–62 . Orlando et al. (2007) show via 3D MHD simulations that a gradient in

the local magnetic field or ISM density that increases in the direction opposite to the

direction of the global magnetic field could produce a radio map similar to that for

MSH 11–62 (see panels C & D of Fig. 2.11). However, these scenarios would require

an additional explanation of the morphology of the putative PWN. Bilateral SNRs

have been observed with an orientation of the symmetry axis similar to MSH 11–62

(e.g., Gaensler, 1998, and references therein), suggesting two classes of barrel SNRs

exist: those that are magnetically produced and those that are dynamically produced.

Orlando et al. (2007) preferred a magnetic origin for bilateral SNRs, but noted that

they can result from variations in the local magnetic field or ISM density. The pref-

erence for a magnetic field origin is consistent with the fact that bilateral SNRs with

symmetry axes highly inclined to the galactic plane are relatively rare (e.g., Gaensler,

1998).

There are still other possible scenarios. Willingale et al. (1996) suggests that the

brightened NE and SW limbs seen in the remnant of SN 1006 are due to relativistic

electrons beamed from an unseen central compact object. While this model remains

a possibility for SN 1006 (e.g., Dyer et al., 2004), it is unlikely that such an expla-

nation applies to MSH 11–62 as the position of the presumed pulsar is not on a

line connecting the brightened limb regions. In addition, this scenario would require

further explanation of the asymmetry of the synchrotron nebula. Another possible
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Figure 2.11: Synthesized synchrotron radio maps from 3D MHD simulations of bilat-
eral SNRs by Orlando et al. (2007). Panels C& D are relevant to alternate scenarios
discussed for MSH 11–62 . Credit: Orlando et al. (2007).
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interpretation is that the geometry of the nebula is due to a bow-shock morphology

oriented such that the pulsar is moving along the line of sight. This is problematic for

two reasons. First, the displacement of the compact object from the peak of the radio

emission implies a velocity vector largely perpendicular to the line of sight, which is

inconsistent with the observed position of the compact object in the center of the

X-ray nebula (see Fig. 1.5) in the context of a bow-shock interpretation. Second,

simulations have shown that, in general, for a pulsar within a SNR (as is the case

here), the space velocity of the pulsar is subsonic with respect to the SNR sound

speed until the pulsar is 2/3 of the way to the edge of the remnant (van der Swaluw

et al., 2004). The displacement of the compact object from the center of the radio

remnant is not consistent with this picture given the extent of the remnant. Another

argument could be made based on the fact, as previously discussed, that the magnetic

field geometry of pulsars is toroidal, leading to elliptical PWN. However, such a sce-

nario would have difficulty explaining the 3:1 aspect ratio of the PWN in MSH 11–62

given typical ellipticity of PWNe (see Figs. 1.1, & 1.8, & 1.9). In addition, both of

these last two scenarios would require an additional argument to explain the barrel

morphology of the remnant.

Via spectral and spatial analysis, I have constructed a strong and consistent case

for the existence of a pulsar in MSH 11–62 . This leaves the question of why pulses

are not detected. The most obvious cause is the viewing angle. The pulsed emisan

SNRsion from energetic, young neutron stars is highly beamed and MSH 11–62 might

simply be a case of a SNR harboring a pulsar whose beams do not sweep across the

Earth (e.g., Brazier & Johnston, 1999). In fact, the Pulsar Wind Nebula Catalog

(Roberts, 2004) lists MSH 11–62 as one of approximately 43% of PWNe (24 of 56)

for which no pulsar has been detected.
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2.6 Summary

I have presented the results of a Chandra analysis of the SNR MSH 11–62 which

was previously shown to be a composite remnant with an unresolved synchrotron

component. While MSH 11–62 exhibits this non-thermal spectral component, and

thus breaks with the typical scenario of a thermal SNR formed out of the core-collapse

of a massive star, it shows no evidence of the pulses that are the direct signature of

the pulsar expected to be the engine driving the synchrotron emission. The current

analysis provides overwhelming evidence for the presence of a compact object and

the absence of pulses may be readily explained by a misalignment of our line of sight

and the beamed emission responsible for pulsations.

The superior capabilities of Chandra as compared to ASCA located the compact

component to within ∼ 2′′. From the spectral fit to the nebula emission, I inferred

a spin-down luminosity for the putative pulsar that is consistent with the scenario

of a rotationally powered PWN. I have tightly constrained the spatial extent of the

synchrotron nebula and its spectral properties. The ACTA radio image of the SNR

strongly suggests that MSH 11–62 is a so-called “barrel SNR” and shows a striking

asymmetry in the non-thermal nebula, which is roughly elliptical with a 3:1 aspect

ratio and a long axis that is nearly perpendicular to the galactic plane. The asymme-

try is mirrored in the X-ray images and the SNR and nebula are consistent with being

in pressure balance, strongly supporting an argument for the interpretation that the

SNR reverse shock has asymmetrically crushed the synchrotron nebula. I discussed

numerous other possible arguments and showed that all have noticeable deficiencies.

Thus, MSH 11–62 provides evidence that, in this case, the density of the ISM has

had a clear dynamical effect on the morphology of the SNR and its PWN. In the

chapters that follow, I further explore the dynamical effect of the ISM in the context

of bow-shock PWNe via simulations produced with a fully-relativistic, hydrodynamic

code of an ultra-relativistic pulsar wind interacting with a slow, dense ambient flow.
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CHAPTER 3

A Relativistic, Hydrodynamic Code

Hydrodynamic simulations have been widely used to model a broad range of

physical systems. When the velocities involved are a small fraction of the speed

of light and gravity is weak, the classical Newtonian approximation to the equations

of motion may be used. However, these two conditions are violated for a host of

interesting scenarios, including, for example, heavy ion collision systems (Hirano,

2004), relativistic laser systems (Delettrez et al., 2005), and many from astrophysics

(Ibanez, 2003, and references therein), that call for a fully relativistic, hydrodynamic

(RHD) treatment. The methods of solution of classical hydrodynamic problems have

been successfully adapted to those of a RHD nature, albeit giving rise to significant

complications; in particular, the physical quantities of a hydrodynamic flow (the

rest-frame mass density, n, pressure, p, and velocity, v) are coupled to the conserved

quantities (the laboratory-frame mass density, R, momentum density, M , and energy

density, E) via the Lorentz transformation. Modern RHD codes typically evolve

the conserved quantities necessitating the recovery of the physical quantities (often

referred to as the “primitive variables”) from the conserved quantities in order to

obtain the flow velocity. Thus, the calculation of the primitives from the conserved

variables has become a critical element of modern RHD codes (Mart́ı & Müller, 2003).

I present the application of an existing adaptive-mesh, axisymmetric, RHLLE (the

relativistic extension by Schneider et al., 1993, of the solver introduced by Harten,

Lax, van Leer, 1983, and refined by Einfeldt, 1988) hydrodynamic code to the sim-
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ulation of a light, fast pulsar wind interacting with a slow, dense ambient medium.

Duncan & Hughes (1994) & Hughes et al. (2002) extensively used the code to simu-

late galactic jets, in both 2D and 3D, with Lorentz factors (γ ≡ (1 − v2)−1/2, where

v is the bulk flow velocity normalized to the speed of light) up to 50. The code was

validated via the comparison of relativistic shock-tube simulations to the analytical

solutions of Thompson (1986). Admitting flows with such ultra-relativistic Lorentz

factors as 106 required significant refinement to the method used to calculate the flow

velocity from the conserved quantities. In particular, such extreme Lorentz factors

lead to severe numerical problems such as effectively dividing by zero and subtractive

cancellation. In Chap. 4, I elucidate the details of the refinement and present the

refined primitives algorithm (see §4.1 & §4.2).

In the following sections, I delve further into the 2-D RHLLE method and adap-

tive mesh refinement (AMR), and continue with a discussion of two modifications to

the code necessitated by the application to pulsar winds. First, I present the initial

and boundary conditions necessary for simulating a spherical pulsar outflow stream-

ing into a cross-flowing ambient medium. Second, I preview the refinement to the

hydrodynamic solver necessitated by the ultra-relativistic nature of the pulsar wind.

At the conclusion of this chapter, I discuss the formalism of recovering the primitive

variables from the conserved quantities, within the context of the Euler equations,

representing special relativistic, hydrodynamic (SRHD) flows.

3.1 The 2-D RHLLE Scheme

The code employs the RHLLE solver introduced by Schneider et al. (1993) as the

relativistic extension of the HLLE method (Harten et al., 1983; Einfeldt, 1988). Mo-

tivation for this extension involved admitting heavy ion collisions with energies greater

than 100 GeV (γ ∼ 10). For collisions below this energy, experimental results were

well reproduced by the hydrodynamic model of Graebner (1985). However, diffi-
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culties such as violations of the relativistic conditions R, M ≤ E and v < 1 arose

upon taking γ ≥ 10. Schneider et al. (1993) note that, while Norman & Winkler

(1986) contended that a fully implicit treatment is required to obtain a consistent

solution to the relativistic, hydrodynamic equations for large Lorentz factors1, and

that adaptive, co-moving meshes should be used to combat numerical diffusion, this

combination was too computationally expensive to be practical. This provided the

motivation to consider explicit schemes, such as HLLE.

The HLLE method is a Godunov-type scheme (Godunov, 1959) for systems of

conservation laws. In Godunov’s original scheme, the conservative variables are con-

sidered to be piecewise-constant over a mesh of computational cells, and time evo-

lution is calculated by finding either the exact or approximate solution to the local

Riemann problem at the cell boundaries. The discontinuities that initially separate

the constant states break down leading to rarefaction waves or shockwaves. The

numerical fluxes of the conserved variables that form the basis of the technique de-

pend explicitly on the maximum and minimum wave (or signal) velocities, making

the accuracy of their estimation critical to the success of the method (e.g., Mart́ı

& Müller, 2003). Einfeldt (1988) proposed a way to calculate the signal velocities

(for the non-relativistic case). The HLLE scheme is a positively conservative, robust,

upwind method for solving the Euler equations.

A major advantage of the RHLLE scheme is that special relativistic effects are

included within the scheme itself by internally using the relativistic expressions for

the estimates of the minimum and maximum signal velocities. When the conserved

quantities are taken as piecewise-constant, the HLLE solver is highly diffusive, leading

to unsatisfactory results (e.g. Duncan & Hughes, 1994). The RHLLE method obtains

2nd-order accuracy in space, based on the approach of van Leer (1979), by taking

1Also noteworthy is the fact that implicit schemes, unlike explicit schemes, are not subject to
the CFL condition (Courant et al., 1928).

48



the conservative variables to be piecewise-linear. In addition, fluxes are calculated at

both the half and full time steps resulting in 2nd-order time accuracy. As discussed in

§3.4, for the relativistic case, the Euler equations are strongly coupled via a Lorentz

transformation leading to a quartic equation for the flow velocity. Schneider et al.

(1993) presented a numerical root-finder to solve the quartic that is sufficiently fast

and efficient to be preferable to the analytical method. As I introduce in §3.3.2, this

numerical technique breaks down for γ larger than ∼ 102.

3.2 Adaptive Mesh Refinement

Spatial resolution plays a critical role in computational hydrodynamics involving su-

personic flows due to the fact that shockwaves, being discontinuities, are thin by

nature. However, for a uniform computational grid, computational expense increases

rapidly with increased resolution. This is especially true for relativistic simulations

that evolve the conserved quantities due to the large overhead of the Lorentz trans-

formations required each time the physical quantities are calculated. Implementing

a series of fixed grids of varying grid spacing offers a useful improvement if the areas

requiring refinement are known from the onset, e.g., simulations of galaxy clusters

where the majority of the action is in the central regions of the cluster. However,

for a host of interesting systems, e.g., galactic jets and pulsar winds, features such

as shocks travel from one side of the computational domain to the other. In these

situations, adaptive mesh refinement (Berger, 1982; Berger & Colella, 1989) alleviates

this problem by dynamically refining the computational grid in areas of interest and

removing resolution when it is no longer needed, thereby minimizing computational

expense.

The hydrodynamic code harnessed for this study employs the AMR framework

developed by Quirk (1991) from the work of Berger (1982) and Berger & Colella

(1989). The algorithm discretizes the computational domain via a hierarchy of grids
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comprised of embedded, rectangular meshes with uniform spacing within a given mesh

in the coordinate directions. The user sets the number of cells in the coarse grid, Nc,

the number of levels of refinement, Lmax, and the refinement factor, Nr, for each coor-

dinate direction, by which each cell-dimension is subdivided at level L in constructing

the grid at L+1. Grid cells are continually monitored and when specified conditions,

e.g. a sudden jump in mass density and pressure, are detected, the cells involved are

flagged for refinement and grouped into meshes. The variable controlling flagging is

the density change threshold, FTOL, for the application discussed in Chap. 5. The

value of FTOL is integral in determining if the density gradient between cells is large

enough to warrant refinement. Boundary zones are constructed to ensure that a given

mesh at a given grid level contains only flagged cells; i.e., there are no unflagged cells

within a mesh of flagged cells. The algorithm further manages processes for sweeping

over all meshes in all refinement levels to update the physical variables while ensur-

ing that flow conservation is maintained. The flagging routine allows for a few buffer

cells so that shocks are completely contained within refined meshes ensuring that no

accuracy is lost due to shock leakage. In addition to employing spatial refinement,

the code refines temporally. The time step at level L+1 is smaller than that at level L

by a factor equal to the larger of the refinement factors for the coordinate directions.

A mismatch in the advancement of the flow solution at adjacent levels could degrade

accuracy. In order to avoid this, integration is interleaved at different levels so that

the flow solution is synchronized.

3.3 Code Modifications for PWN Simulations

3.3.1 Initial and boundary conditions

As mentioned previously, the code has been extensively tested and used for simulating

extragalactic jets. A fixed ambient flow enters the domain along the West (left when

“looking down”) side of the computational domain and the boundary conditions on
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Figure 3.1: Schematic diagram of the computational domain as modified for pulsar
wind simulations. Note that the size of the on-axis hemisphere is exaggerated for the
sake of clarity.

the North and East sides are extrapolating and on the South side (the flow axis)

they are reflecting. Applying the code to pulsar winds required the definition of a

wind outflow region. Philip Hughes implemented the modification as follows (see

Fig. 3.1 for a schematic). The ambient flow was extended to cover the entire Western

boundary and represents the ISM flow resulting from the space motion of the pulsar.

The pulsar wind is introduced by imposing an outflow, within the ISM crossflow,

from an on-axis hemisphere at every call of the boundary routines. This leads to

“cut cells”, i.e., those that are partially inside and outside the hemisphere. This is

mitigated by averaging the outflow and crossflow variables weighted by the fraction of

the cell internal and external to the hemisphere. An initial state for the pulsar-wind

problem is specified via the ambient-flow (i.e., crossflow) velocity normalized to the

speed of light, va, Mach number, M, and mass density, na, of the ambient medium,

and the Lorentz factor, γo, pressure, po, and mass density, no, of the pulsar-wind

outflow. Numerical values are discussed in §5.1.2.
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3.3.2 Ultra-relativistic Lorentz factors

Applying the code above to ultra-relativistic flows required refinement of the hydro-

dynamic solver. This became apparent via an investigation of the solver’s behavior

when wind Lorentz factors (γ) are large. Beyond γ ∼102, the solver failed due to

the break down of the Newton-Raphson iteration routine involved in the laboratory-

frame to rest-frame transformation. The problem lies in the fact that the quartic,

Q(v), used to calculate the hydrodynamic flow velocity, exhibits dual roots leading

to root confusion as γ increases, as detailed in the next chapter. A simple, highly

effective solution, allowing the recovery of Lorentz factors up to 106, is to 1) rewrite

Q(v) as Q(γ), and 2) to use a hybrid method to solve the quartic equation wherein

Newton-Raphson iteration and an analytical solution are employed for lower and

higher Lorentz factors, respectively. See Chap. 4 for details.

3.4 Recovering the Primitive Variables from R, M , and E

In general, recovering the primitives from the conserved quantities reduces to solv-

ing a quartic equation, Q(v) = 0, for the flow velocity in terms of R, M , and E.

Implementation typically involves a numerical root finder to recover the velocity via

Newton-Raphson iteration which is very efficient and provides robustness because it is

straightforward to ensure that the computed velocity is always less than the speed of

light. This is a powerful method that is independent of dimensionality and symmetry.

The latter point follows directly from the fact that symmetry is manifest only as a

source term in the Euler equations and does not enter into the derivation of Q(v) (see

the axisymmetric example below). Dimensional generality arises because regardless

of the coordinate system, one may always write M =
√

∑

M2
xi

, where the Mxi
are

the components of the momentum-density vector along the orthogonal coordinates

xi (Mρ and Mz in the axisymmetric example below). In the case of magnetohy-

drodynamic (MHD) flows, there are, of course, additional considerations. However,
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non-magnetic (RHD) simulations still have a significant role to play in astrophysics,

e.g., from simulations of extragalactic jets (Hughes et al., 2002; Hughes, 2005) and

pulsar wind nebulae (van der Swaluw et al., 2004; Vigelius et al., 2007), to theories of

the generation of gamma-ray bursts (Zhang et al., 2003) and the collapse of massive

stars to neutron stars and black holes (Shibata, 2003).

As an example, consider the case of the axisymmetric, relativistic Euler equations,

which I apply to pulsar winds. In cylindrical coordinates ρ and z, and defining the

evolved-variable, flux, and source vectors

U = (R, Mρ, Mz, E)T ,

F ρ = (Rvρ, Mρv
ρ + p, Mzv

ρ, (E + p)vρ)T ,

F z = (Rvz, Mρv
z, Mzv

z + p, (E + p)vz)T ,

S = (0, p/ρ, 0, 0)T , (3.1)

the Euler equations may be written in almost-conservative form as:

∂U

∂t
+

1

ρ

∂

∂ρ
(ρF ρ) +

∂

∂z
(F z) = S.

The pressure is given by the ideal gas equation of state p = (Γ−1)(e−n), where e and

Γ are the rest-frame total energy density and the adiabatic index. Note that the veloc-

ity and pressure appear explicitly in the relativistic Euler equations, in addition to the

evolved variables, and that pressure and rest density are needed for the computation

of the wave speeds that form the basis of Godunov-type numerical, hydrodynamic

solvers. These values are obtained by performing a Lorentz transformation where the
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rest-frame values are required:

R = γn,

Mρ = γ2(e + p)vρ,

Mz = γ2(e + p)vz,

E = γ2(e + p) − p,

γ = (1 − v2)−1/2, (3.2)

where v2 = (vρ)2 +(vz)2 and M2 = γ4(e+p)2[(vρ)2 +(vz)2] = γ4(e+p)2v2. When the

adiabatic index is constant, combining the above equations with the equation of state

creates a closed system which yields the following quartic equation for v in terms of

Y ≡ M/E and Z ≡ R/E:

Q(v) = (Γ − 1)2(Y 2 + Z2)v4 − 2Γ(Γ − 1)Y v3

+
[

Γ2 + 2(Γ − 1)Y 2 − (Γ − 1)2Z2
]

v2

− 2ΓY v + Y 2 = 0. (3.3)

Component velocities, and the rest-frame total energy and mass densities are then

given by:

vρ = Mρ
v

M
,

vz = Mz
vρ

Mρ
,

e = E − Mρv
ρ − Mzv

z,

n =
R

γ
.

3.5 Summary

This dissertation project was motivated by the desire to understand asymmetric pul-

sar wind nebulae. Toward this end, along with Advisor Philip A. Hughes, I undertook

simulations of bow-shock PWNe (see Chap. 5). Given the highly-relativistic nature
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of pulsar winds, a relativistic treatment of the computational flow dynamics is es-

sential to obtaining realistic results for the interaction of the wind with the ambient

medium. I have applied (see Chap. 5) an existing fully-relativistic, 2D-hydrodynamic

code employing the Adaptive Mesh Refinement (AMR) framework of Quirk (1991).

AMR locally refines the computational mesh in areas of interest, allowing for high

resolution while minimizing computational expense. I discussed how the code was

modified to satisfy the initial and boundary conditions for simulating the interaction

of pulsar winds with the ambient flow. The code has been previously applied to stud-

ies of galactic jets with Lorentz factors up to 50 (Duncan & Hughes, 1994; Hughes

et al., 2002).

Application to pulsar wind nebulae with bulk Lorentz factors ∼ 106 necessitated a

substantial modification to the hydrodynamic solver. As with many modern solvers,

the evolved quantities are the conserved variables (R, M , and E). I discussed the

formalism of recovering the physical quantities (n, p, and v) in the context of the

Euler equations which, for a constant adiabatic index, involves the solution of a

quartic equation for the flow velocity. I previewed the problem, noted that the shape

of this velocity quartic leads to a confusion of roots at higher Lorentz factors, and

advertised that the solution is to recast the quartic in terms of the Lorentz factor.

The following chapter deals with this subject in detail.
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CHAPTER 4

Refining a Hydrodynamic Solver to Admit

Ultra-relativistic Flows

I have applied (Chap. 5) a proven, robust astrophysical code (see Chap. 3) with

previous application to relativistic galactic jets with γ ≤ 50 (Duncan & Hughes, 1994;

Hughes et al., 2002) to a study of pulsar wind nebulae. The ultra-relativistic nature of

pulsar winds necessitated an investigation of the behavior of the primitives algorithm

upon taking γ >> 1. I found that beyond γ ∼ 102 the algorithm suffers a severe

degradation in accuracy that worsens with increasing Lorentz factor until complete

breakdown occurs due to the failure of the Newton-Raphson iteration process used

to calculate the flow velocity.

The problem lies in the shape of the quartic, Q(v), one must solve to calculate the

primitive variables. The quartic equation as derived using the velocity as a variable

exhibits two roots for typical physical parameters of the flow (see Fig. 4.1). In general,

for γ < 102, the two roots are sufficiently separated on the velocity axis such that the

Newton-Raphson (N-R) iteration method converges to the correct zero very quickly

and accurately (for M/E < 0.9 and R/E > 10−5, corresponding to γ < 2, the roots

approach each other sufficiently such that the incorrect root is selected; see §4.3). In

fact, N-R iteration can be so efficient that it is more desirable to use this method

than it is to calculate the roots of the quartic analytically (see §4.2). However, as

the Lorentz factor of the flow increases, the roots move progressively closer together

and the minimum in Q(v) approaches zero. Eventually, the minimum equals zero

to machine accuracy which causes dQ/dv = 0 to machine accuracy resulting in a
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divide by zero and the Newton-Raphson method fails (see Fig. 4.2). I present the

solution below. I show that the use of an analytical quartic root finder is required for

Lorentz factors above 102, but that an iterative quartic root finder, which is known

to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage.

I demonstrate the existence of a simple diagnostic allowing for a hybrid primitives

recovery algorithm that includes an automatic, real-time toggle between the iterative

and analytical methods. I further determine the accuracy of the iterative and hybrid

algorithms for a comprehensive selection of input parameters.

4.1 Refinement of the Root Finder

Rewriting the velocity quartic, Q(v) (Eqn. 3.3), in terms of the Lorentz factor (i.e.,

make the substitution v2 = 1 − γ−2) to obtain the quartic equation in γ (recall

Y ≡ M/E and Z ≡ R/E):

Q(γ) = Γ2(1 − Y 2)γ4 − 2Γ(Γ − 1)Zγ3

+
[

2Γ(Γ − 1)Y 2 + (Γ − 1)2Z2 − Γ2
]

γ2

+ 2Γ(Γ − 1)Zγ − (Γ − 1)2(Y 2 + Z2) = 0, (4.1)

paves the way for a simple and highly effective solution (see §4.3 for details) to the

above problem. As Fig. 4.1 exemplifies, Q(γ) exhibits a single root for the physical

range γ ≥ 1. However, Newton-Raphson iteration also fails in this case at high

Lorentz factors because of the steepness of the rise in Q(γ) through the root. Thus,

I choose to use an analytical method of solving a quartic, but note that there are

other ways to mitigate the problems that arise in high-γ primitives recovery (e.g., the

appendix in Mignone & McKinney, 2007). Below, I discuss the implementation.

4.1.1 Solving a quartic equation

I use the prescription due to Bronshtein & Semendyayev (1997) in order to analytically

solve for the roots of a quartic. I chose this method because it provides equations
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Figure 4.1: The left-hand plots show the shape of the Lorentz factor quartic over a run
of Lorentz factors for a mildly relativistic flow (γrad = 1.5) and an ultra-relativistic
flow (γrad = 106). The right-side plots show the shape of the velocity quartic over a
run of velocity for a mildly relativistic flow (vrad = 0.75 or γrad ≈ 1.5) and a highly
(but not ultra-) relativistic flow (vrad = 0.99995 or γrad ≈ 102). The crosses mark the
location of the physical root. From the plot in the lower right, one can see the onset
of the zero derivative problem as the roots are not distinguishable from each other or
the local minimum even on a scale of 10−13, which begins to encroach on the limit of
8-byte accuracy.
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Figure 4.2: The accuracy (estimated as δE/E) of the Newton-Raphson (N-R) it-
erative primitives algorithm where white, light grey, medium grey, dark grey, and
hatched regions correspond, respectively, to an accuracy of order at least 10−4, at
least 10−3, worse than 10−3, failure, and unphysical input (R2/E2 ≥ 1 − M2/E2).
Note that the Lorentz factor varies from order 1 at the far left to order 106 at the far
right. There is a sizable white region representing M/E < 0.999999 (γ < 500) and
R/E > 5 × 10−8 within which accuracy is generally significantly better than 10−4.
N-R iteration is unreliable due to sporadic failures for all M/E and R/E such that
R/E < 5 × 10−8 and for an ever increasing fraction of R/E > 5 × 10−8 as M/E
increases until accuracy becomes unacceptable or the code fails outright for M/E
and R/E such that M/E > 0.999999. Failures are due to divide by zero (see §4.1) or
nonconvergence within a reasonable number of iterations.
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for the roots of the quartic that are the most amenable (of the methods surveyed) to

integration into a computational environment. In order to provide a complete picture

of the method, which includes steps not found in Bronshtein & Semendyayev (1997),

I reproduce some sections of that text. I proceed as follows.

Given a quartic equation in x:

a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0, an ∈ ℜ, a4 6= 0, (4.2)

normalizing the equation (dividing by a4) and making the substitution y = x + a3

4a4

results in the reduced form:

y4 + Py2 + Qy + R = 0,

where, defining ãn ≡ an/a4:

P ≡ −3

8
ã2

3 + ã2,

Q ≡
(

ã3

2

)3

−
(

ã3

2

)

ã2 + ã1,

R ≡ −3
(

ã3

4

)4

+
(

ã3

4

)2

ã2 −
(

ã3

4

)

ã1 + ã0.

These coefficients allow the definition of the cubic resolvent :

u3 + 2Pu2 + (P 2 − 4R)u − Q2 = 0, (4.3)

upon whose solutions the solutions of the original quartic (Eqn. 4.2) depend. The

product of the solutions of the cubic resolvent u1u2u3 = Q2 must be positive by

Vieta’s theorem. The characteristics of the quartic’s roots depend on the nature of

the roots of the cubic resolvent (see Tab. 4.1).

Given the solutions of the cubic resolvent u1, u2, and u3, the solutions of the
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Table 4.1: The dependence of the solutions to the parent quartic on the solutions to
the cubic resolvent.

Solutions of the cubic resolvent Solutions of the quartic equation

all real and positive all real
all real, one positive two complex conjugate (cc) pairs
one real, one cc pair two real, one cc pair

quartic (Eqn. 4.2) are

x1 =
1

2
(
√

u1 +
√

u2 +
√

u3) −
a3

4a4

,

x2 =
1

2
(
√

u1 −
√

u2 −
√

u3) −
a3

4a4
,

x3 =
1

2
(−√

u1 +
√

u2 −
√

u3) −
a3

4a4
,

x4 =
1

2
(−√

u1 −
√

u2 +
√

u3) −
a3

4a4
. (4.4)

4.1.2 Solving a cubic equation

The equations of the previous section reduce the problem of solving a quartic equation

to that of solving a cubic equation (i.e., the cubic resolvent of Eqn. 4.3).

Once again, following Bronshtein & Semendyayev (1997) (note the similarity to

the method in the previous section), given a cubic equation:

b3u
3 + b2u

2 + b1u + b0 = 0, bn ∈ ℜ, b3 6= 0, (4.5)

normalizing the equation and making the substitution v = u + b2/3b3 results in the

reduced form:

v3 + pv + q = 0,

where, defining b̃n ≡ bn/b3:

p ≡ −1

3
b̃2
2 + b̃1,

q ≡ 2

(

b̃2

3

)3

−
(

b̃2

3

)

b̃1 + b̃0.
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Table 4.2: The dependence of the solutions of a cubic equation on the sign of the
discriminant (assuming a real variable).

D Solutions of the cubic equation

positive one real, one complex conjugate pair
negative all real and distinct

= 0 all real, two (one, if p = q = 0) distinct

These coefficients allow the definition of the discriminant :

D ≡
(

p

3

)3

+
(

q

2

)2

, (4.6)

upon which the characteristics of the solutions of the cubic equation depend (see

Tab. 4.2).

Given p, q, and D, Cardando’s formula for the reduced form of the cubic leads to

the solutions of the original cubic (Eqn. 4.5):

u1 = s + t − b2

3b3
,

u2 = −1

2
(s + t) − b2

3b3
+ i

√
3

2
(s − t),

u3 = −1

2
(s + t) − b2

3b3
− i

√
3

2
(s − t), (4.7)

where:

s ≡ 3

√

−1

2
q +

√
D,

t ≡ 3

√

−1

2
q −

√
D,

i ≡
√
−1.

If D ≤ 0, then the cubic has three real roots, subject to the following two subcases,

and the four real roots of the quartic follow directly from Eqn. 4.4. If D = 0, then

s = t and the cubic has three real solutions that follow directly from Eqn. 4.7 from

which one can see that two are degenerate. If D < 0, the cubic has three distinct
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real roots. Obtaining these solutions via Eqn. 4.7 requires intermediate complex

arithmetic. However, this may be circumvented by making the substitutions:

r =

√

−
(

p

3

)3

cos(φ) = − q

2r
,

in which case the solutions of the cubic (Eqn. 4.5) are:

u1 = 2 3
√

r cos

(

φ

3

)

− b2

3b3
,

u2 = 2 3
√

r cos

(

φ

3
+

2π

3

)

− b2

3b3

,

u3 = 2 3
√

r cos

(

φ

3
+

4π

3

)

− b2

3b3
. (4.8)

If D > 0, then the cubic has one real root and a pair of complex conjugate roots and

the quartic has two real roots and a pair of complex conjugate roots (see Tab. 4.1).

Finding the roots of the quartic involves intermediate complex arithmetic which may

be circumvented as follows. Defining:

R ≡ −1

2
(s + t) − b2

3b3
,

C ≡
√

3

2
(s − t),

Eqn. 4.7 may be rewritten as:

u1 = s + t − b2

3b3
,

u2 = R + iC,

u3 = R − iC.

Next, I have u2,3 =
√

R2 + C2e±iC/R. I then obtain the roots of the quartic from

Eqn. 4.4:

x1,2 =

√
u1

2
− a3

4a4
± 4

√
R2 + C2 cos

(

C

2R

)

,

x3,4 = −
√

u1

2
− a3

4a4

± i
4
√

R2 + C2 sin
(

C

2R

)

. (4.9)

Note that x1 and x2 are the two real solutions.
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4.2 The Refined Primitives Algorithm

Using the analytical method above, I created a SRHD primitive algorithm called

“REST FRAME” developed from the non-relativistic algorithm of the same name.

Given the speed advantage of the iterative root finder (see below), it a desirable choice

over the analytical method within its regime of applicability, i.e., for low Lorentz

factors. As Fig. 4.2 shows, the iterative root finder is accurate to order 10−4 (see

§4.3) for a sizable region of parameter space including all R/E above the diagonal

line between the points (0, −7) & (9, 0) in the log(R/E) vs. − log(1 − M/E) plane

(i.e., for log(R/E) ≥ −(7/9) × log(1 − M/E) − 7). Therefore, for a given M/E and

R/E, the code checks if this inequality is true; if so, it calls the iterative root finder

and, if not, it calls the analytical root finder. REST FRAME calculates the primitive

variables given the conservative variables and the adiabatic index as represented in

the pseudo-code in §A.1 of the Appendix (note that it is a 2D example).

Using the Intel Fortran library function CPU TIME, I calculated the CPU time

required to execute 5×107 calls to REST FRAME for Y = 0.9975 & Z = 1×10−4

(γ ∼10) using the Newton-Raphson iterative method with Q(v) and 8-byte arith-

metic, and the analytical method with Q(γ) and both 8-byte & 16-byte arithmetic (I

investigated the use of 16-byte arithmetic due to an issue with subtractive cancella-

tion – see §4.3). The CPU time for each of these scenarios was 29.5, 36.5 (averaged

over ten runs and rounded to the nearest half second), and ∼11650 seconds (one run

only), respectively. This indicates that while using the 8-byte analytical method is

satisfactory, it is advantageous to use the iterative method when Lorentz factors are

sufficiently low, and that the use of 16-byte arithmetic is a nonviable option. This

result is not surprising as the accuracy of Newton-Raphson iteration improves by ap-

proximately one decimal place per iterative step (Duncan & Hughes, 1994) and the

relative inefficiency of 16-byte arithmetic is a known issue (e.g., Perret-Gallix, 2006).
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4.3 Solver Accuracy

The input parameters for our primitives algorithm are the ratios of the laboratory-

frame momentum and mass densities to the laboratory-frame energy density (recall

Y ≡ M/E and Z ≡ R/E) both of which must be less than unity in order for solutions

of Eqn. 3.2 to exist. In addition, the condition Y 2 + Z2 < 1 must be met. Along

with the fact that Y and Z must also be positive, this defines the comprehensive and

physical input parameter space to be 0 < Y, Z < 1 such that Y 2 +Z2 < 1 (I identify a

particular region of parameter space applicable to pulsar winds in the next section).

I tested the accuracy of the iterative and hybrid primitives algorithms within this

space as follows.

First, as I am most interested in light, highly relativistic flows (i.e., Z small and

Y close to unity), to define the accuracy-search space I elected to use the quantities

− log(1−Y ), which for values greater than unity gives 0.9 < Y < 1, and log(Z), which

for values less than negative unity gives Z ≪ 1. I selected 0 < − log(1 − Y ) < 13

and −13 < log(Z) < 0 corresponding to Lorentz factors (γ) between 1 and 2× 106. I

chose a range with a maximal γ slightly above 1 × 106 in order to completely bound

the PWN parameter space defined in the next section.

Choosing a relativistic equation of state Γ= 4/3 and using 1300 points for both

− log(1 − Y ) and log(Z), I tested the accuracy of REST FRAME by passing it Y

and Z, choosing E = 1, and using the returned primitive quantities to derive the

calculated energy density Ec, and calculating the difference |1 − Ec/E| ≡ δE/E. I

chose this estimate of the error because δE/E ∼ δγ/γ and δγ/γ is tied to the accuracy

of the numerical, hydrodynamic technique (see the final paragraph in this section).

The results for the Newton-Raphson (N-R) and hybrid methods are given in

Figs. 4.2 & 4.3 which show where the accuracy is of order at least 10−4, at least

10−3, worse than 10−3, and where failure and unphysical input (Z2 ≥ 1 − Y 2) occur.

I chose an accuracy of order 10−4 as the upper cutoff because N-R iteration returns
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Figure 4.3: The accuracy (estimated as δE/E) of the hybrid primitives algorithm
where white, light grey, and hatched regions correspond, respectively, to an accuracy
of order at least 10−4, at least 10−3, and nonphysical input (R2/E2 ≥ 1 − M2/E2).
Note that the Lorentz factor varies from order 1 at the far left to order 106 at the far
right. The space between the parallel lines represents PWNe input parameter space.
The accuracy degradation at the extreme right is due to subtractive cancellation in
the 4th-order coefficient of the Lorentz-factor quartic as M/E →1.

accuracies on this order for γ < 50 and relativistic, hydrodynamic simulations of

galactic jets by Duncan & Hughes (1994) and Hughes et al. (2002) produced robust

results for Lorentz factors up to 50 using N-R iteration. An additional result of in-

terest is that the ultra-relativistic approximation for v (i.e., taking R = 0 thereby

reducing Q(v) = 0 to a quadratic equation) manages an accuracy of at least 10−4 for

a large portion of the physical Y − Z plane (see Fig. 4.4).

Fig. 4.2 shows the accuracy of the N-R iterative method. There are several note-

worthy features. First is the presence of a sizable region corresponding to γ < 500

within which accuracy is generally significantly better than 10−4. Second is that
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Figure 4.4: The accuracy (estimated as δE/E) of the ultra-relativistic approxima-
tion of the flow velocity where white, light grey, medium grey, and hatched regions
correspond to an accuracy of order at least 10−4, at least 10−3, worse than 10−3,
and unphysical input (R2/E2 ≥ 1 − M2/E2), respectively. Note that the Lorentz
factor varies from order 1 at the far left to order 106 at the far right. The accuracy
degradation at the extreme right is due to the fact that the fractional error in the
Lorentz factor is proportional to the fractional error in the velocity divided by 1− v2

which diverges as v →1.
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N-R iteration is unreliable due to sporadic failures for increasing Lorentz factors un-

til accuracy becomes unacceptable or the code fails outright due to divide by zero

(see §4.1) or non-convergence within a reasonable number of iterations. In addition,

though N-R iteration has been widely established as the primitives recovery method

of choice for flows with Lorentz factors less than order 102, I found that for a subset

of parameters, corresponding to γ < 2, the N-R algorithm suffered an unacceptable

degradation in accuracy. The key to this problem lies in the how the flow velocity

(v) is initially estimated for the first iterative cycle as follows:

1. the established approach (Duncan & Hughes, 1994; Schneider et al., 1993) is to

bracket v with

vmax = min(1, Y + δ),

vmin =
Γ −

√

Γ2 − 4(Γ − 1)Y 2

2Y (Γ − 1)
, (4.10)

where δ ∼ 10−6 and vmin is derived by taking the ultra-relativistic limit (i.e.,

R = 0)

2. the initial velocity is then vi = (vmin+vmax)/2+η, where η = (1−Z)(vmin−vmax)

for vmax > ǫ and η = 0 otherwise (ǫ order 10−9)

3. this method fails due to selection of the incorrect root when the roots converge

4. thus, I make a simpler initial estimate of vi = vmax, which guarantees that vi is

“uphill” from v for all physical Y − Z space and that N-R iteration converges

on v.

Fig. 4.3 shows that the hybrid algorithm REST FRAME is accurate to at least

10−4 for all but a smattering of the highest Lorentz factors. In fact, it is significantly

more accurate over the majority of the physical portion of the Y − Z plane. The

space between the parallel lines represents the PWN input parameters discussed in

the next section. I find that multiplying Q(γ) by (Y 2−Y −2) and rewriting the new a4

(ã4) in terms of the new a2 (ã2) and new a0 (ã0), e.g., ã4 = 1+Y 2− ã0 − ã2, improves
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the accuracy somewhat, but does not entirely mitigate the problem. The issue of

accuracy loss at large Lorentz factors in 8-byte primitives algorithms is a known issue

(Noble, 2003; Mignone & McKinney, 2007) for which I know of no complete 8-byte

solution. Employing 16-byte arithmetic provides spectacular accuracy but introduces

an unacceptable increase in run time (see §4.2).

The issue of what constitutes an acceptable error in the calculated Lorentz factor

is decided by the fact that a fractional error in γ translates to the same fractional

error in p and n which are needed to calculate the wave speeds that form the basis of

the numerical, hydrodynamic technique, a Godunov scheme (Godunov, 1959) which

approximates the solution to the local Riemann problem by employing an estimate of

the wave speeds. While I do not know a priori how accurate this estimate needs to be,

past studies have shown that an accuracy of order 10−4 is sufficient, and so I proceed

with 8-byte simulations of pulsar winds. If future developments so dictate, shock-tube

tests (Thompson, 1986) are available to validate the accuracy of the computation of

well-defined flow structures. It is also noteworthy that while γ = 106 is the canonical

bulk Lorentz factor for pulsar winds, γ = 104 and 105 are still in the ultra-relativistic

regime, and it may very well prove to be that these Lorentz factors are high enough

to elucidate the general ultra-relativistic, hydrodynamic features of such a system.

The hybrid algorithm achieves accuracies of at least 10−6 for γ ∼ 105, which is safely

in the acceptable accuracy regime.

4.4 Summary

I discussed the application of an existing special relativistic, hydrodynamic (SRHD)

primitive-variable recovery algorithm to ultra-relativistic flows (Lorentz factor, γ, of

102–106) and the refinement necessary for the numerical velocity root finder to work

in this domain. The velocity quartic, Q(v), exhibits dual roots in the physical velocity

range that move progressively closer together for larger γ leading to a divide by zero
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and the failure of the Newton-Raphson iteration method employed by the existing

primitives algorithm. The solution was to recast the quartic to be a function, Q(γ),

of γ. I demonstrated that Q(γ) exhibits only one physical root. However, Newton-

Raphson iteration also failed in this case at high γ, due to the extreme slope of the

quartic near the root, necessitating the use there of an analytical numerical root

finder.

The timing analysis indicated that using Q(γ) with the 8-byte analytical root

finder increased run time by only 24% compared to using Q(v) with the 8-byte itera-

tive root finder (based on 10 trial runs), while using Q(γ) with the 16-byte analytical

root finder ballooned run time by a factor of approximately 400. The iterative root

finder is accurate to order 10−4 for a sizable region of parameter space correspond-

ing to Lorentz factors on the order of 102 and smaller. Therefore, I implemented a

computational switch that checks the values of M/E and R/E and calls the iterative

or analytical root finder accordingly, thereby creating a hybrid primitives recovery

algorithm called REST FRAME.

In addition, an exploration of parameter space suggests that the discriminant

of the cubic resolvent (as defined by Eqn. 4.6 in §4.1.1) will always be positive for

physical flows. Therefore, I did not include code for negative discriminants in the

routine. Formal proof remains elusive, however, leaving potential for future work.

I have shown that the refined primitives recovery algorithm is capable of calcu-

lating the primitive variables from the conserved variables to an accuracy of at least

order 10−4 for γ ≤ 106, with significantly better accuracy for γ ≤ 105, and slightly

worse (order 10−3) for a small portion of the space corresponding to the highest

Lorentz factors. I traced the degradation in accuracy for larger Lorentz factors to the

effect of subtractive cancellation. Past studies have shown that an accuracy of order

10−4 is capable of robustly capturing hydrodynamic structures.
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CHAPTER 5

Application to Pulsar Wind Nebulae

In this chapter, I present the application of the relativistic, hydrodynamic code

discussed in Chaps. 3 & 4 to the interaction of pulsar winds with the interstellar

medium. As Bucciantini (2002) discussed for the case of pulsar bow-shock nebu-

lae, the magnetized, relativistic pulsar wind interacts indirectly with the ISM. The

interaction is mediated by the magnetic field which is advected by the wind and

compressed within the head of the nebula. Since the particle cross-sections are very

small, this implies that the gyroradius is the mean free particle path. Blandford &

Rees (1974) give an expression for the gyroradius, rg, of a proton with Lorentz factor

γ subject to a magnetic field B:

rg ∼ 10−12 γ

B
pc ,

where B is measured in Gauss. Taking the Guitar nebula as an example, the angular

extent of the bubble is ∼ 30 arcseconds (see Fig. 1.4). Chatterjee & Cordes (2002)

quote a distance of 2.0±0.5 kpc which implies a minimum bubble diameter of ∼ 0.2

pc. Constraining the gyroradius to be less than 1% of this value, e.g., 10−3 pc, for

γ ∼ 106 thus requires the magnetic field to be greater than 10−3 G. This is clearly

satisfied very close to the pulsar (surface B ∼ 1012−13 G) where the canonical Lorentz

factor of 106 is realized. At the light cylinder γ is ∼ 102 ⇒ B > 10−7 G, which is an

order of magnitude smaller than the ambient Galactic field. Therefore, everywhere

within PWNe the gyroradii of pulsar wind particles are small compared to the nebular

diameter scale and a fluid approach to modeling is valid.
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This leaves the question of why a purely hydrodynamic treatment is warranted.

After all, the theoretical paradigm for pulsar magnetics has long prescribed a strong,

virtually dipole magnetic field. This leads to the conclusion that magnetic fields must

certainly have a significant effect on the energy and transport of particles in a pulsar

wind. However, there is a fundamental weakness in the pulsar paradigm. Near the

light cylinder, pulsar models predict that the ratio of the Poynting flux to kinetic-

energy flux, σ, should be of order of 104 (Arons, 2002). The canonical models for

the Crab nebula (Rees & Gunn, 1974; Kennel & Coroniti, 1984a) require σ << 1

immediately behind the termination shock in order to meet boundary conditions

with the ambient medium, and simple conservation arguments imply that σ should

be constant. This is the long-standing “σ-problem”.

In addition, the magnetic field is largely unknown. First, the field geometry of

the pulsar wind is far from settled (Chevalier, 2000; Melatos, 2004), and the com-

plex polarization structure of PWNe suggests that the magnetic field has no simple

form (Bietenholz & Kronberg, 1991). Second, the production of detailed, synthetic

synchrotron emission maps depends critically on having followed the evolution of the

radiating particle species (Tregillis et al., 2001). Detailed knowledge of the magnetic

field alone leaves one as far from being able to produce a robust estimation of the

flow emissivity as one is with a purely hydrodynamic study. For all these reasons, a

purely hydrodynamical initial study is warranted.

5.1 Setting Up the Pulsar Problem

5.1.1 Adaptive mesh setup

Recall from §3.2 the salient AMR parameters left to the choice of the user: the

number of coarse grid cells, Nc, the number of refinement levels, Lmax, the refinement

factor, Nr for each coordinate direction (in this case, I use grid I & J corresponding to

the axisymmetric coordinates ρ & z ⇒ NrI & NrJ), and the density change threshold
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FTOL. These three quantities are specified in the initial problem setup file. Based

on Philip Hughes’ work on relativistic galactic jets, I selected FTOL = 0.005 for all

levels, meaning that 0.5% of the largest difference in density between adjacent cells

in all meshes at a given level is sufficient to invoke refinement for the cell under

consideration. Initial tests showed that this setting resulted in satisfactory flagging

of areas of physical interest, i.e., shocks, a conclusion borne out by the significance

of the results presented in §5.2. Future, more detailed studies may require a smaller

value of FTOL. I chose Nc = 750×200, and the values of Lmax, NrI, and NrJ as follows.

Computational expense scales rapidly with the number of refinement levels due

to the exponential increase in the number of cells: each cell at level L is divided

into NrI×NrJ refined cells at level L+1, and so a level 0 cell will have (NrI×NrJ)L

“daughter” cells at level L. Thus, the challenge is to minimize (NrI×NrJ)Lmax while

still obtaining a sufficiently detailed flow solution. Given its position in the exponent,

minimizing Lmax is of utmost importance. Thus, I selected Nr = NrJ = 4 (based on

Hughes’ experience with relativistic galactic jets), and explored Lmax. As shown in

§5.2, one level of refinement is sufficient to produce sufficiently detailed results. From

the experience of P. A. Hughes, there is known to be a critical resolution at which

key structures of any flow suddenly appear. At lower refinement levels, the flow is

amorphous. At higher levels, details improve somewhat, but the basic rarefactions

and shocks are already captured at the critical level. As the simulation in §5.2 shows,

Lmax = 1 captures the key structures and the extent of the refined region is limited.

It is noteworthy that adding a second level of refinement resulted in the run time

ballooning by a factor of ∼ 8.4 during the beginning stages (0 to 10,000 iterations)

of the simulation shown in §5.2 without significantly changing the overall features of

the flow solution. As the simulation advanced, the number of refined cells increased

significantly, making 8.4 a lower bound (indeed, for the evolution stage of 20,000 to

30,000 iterations, the factor had already increased to 11.7).
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5.1.2 Identifying suitable input parameters

I have implemented the refined primitives algorithm within the context of simulat-

ing the interaction of a light, fast pulsar wind with a dense, slow-moving ambient

medium arising from the space velocity that is typical of pulsars (Cordes & Chernoff,

1998). This interaction gives rise to the classic structure of forward and reverse shocks

separated by a contact surface (Weaver et al., 1977). This inquiry is motivated by

the existence of asymmetric pulsar wind nebulae such as PSR1929+10 (Wang et al.,

1993) and the Guitar nebula (Cordes et al., 1993, recall Figs. 1.4 & 1.6). In particu-

lar, Wang et al. (1993) proposed that the observed X-ray trail is due to a relativistic

backflow opposite the motion of the pulsar. In this picture, the wind particles are

blown behind the pulsar by the ram pressure of the ISM, and flow inside a tunnel

along which pressure decreases rapidly leading to the acceleration of the wind parti-

cles to relativistic, supersonic velocities. As detailed in this chapter, my simulations

have validated this scenario for realistic values of pulsar space velocities and wind

Lorentz factors.

An initial state is specified through the unitless ambient-flow velocity, va, in units

of the speed of light, Mach number, M, and mass density, na, of the ambient medium,

and the Lorentz factor, γo, pressure, po, and mass density, no, of the pulsar wind (or,

more generally, the “outflow”). The ambient velocity flow arises from the space

velocity of the pulsar, which is typically 400–500 km s−1 but is known to be as high

as 1740 km s−1 (Chatterjee & Cordes, 2002). In order to cover typical to nonphysical

yet bounding velocities, I use values in the range 500-5500 km s−1, which implies va on

the order 10−3–10−2. I further select values of M corresponding to ambient-medium

sound speeds in the range 1–100 km s−1. The value of na is arbitrary and no is scaled

accordingly. Pulsar winds have bulk Lorentz factors up to order 106 and I consider

γo = 102–106.
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5.2 Application

5.2.1 Identifying suitable input parameters

The outflow streams relativistically into the ambient medium generating a strong

shock. I derive a value for po from the assumption that the outflow is interacting with

the ambient medium, requiring that the momentum flux be comparable on either side

of this shock; if the fluxes were not comparable, then either the ambient flow or outflow

would dominate and the problem would be uninteresting. The momentum flux of the

non-relativistic ambient medium and ultra-relativistic outflow are, respectively:

FM,a = nav
2
a + pa,

FM,o = γ2
o(eo + po)v

2
o + po.

For an ultra-relativistic outflow, po ≫ no ⇒ eo → 3po, and vo → 1, and, for the

ambient medium, nav
2
a ≫ pa. Applying these conditions, and noting that γ2

opo ≫ po,

gives:

po ∼ na

(

va

2γo

)2

∼ 10−19 for γo = 106, na = 1.

I am then free to pick any no meeting the conditions of a light, relativistic outflow,

i.e., na, po ≫ no. I select no = 10−lpo, 3 < l < 6. This clearly satisfies po ≫ no and

one may verify it satisfies na ≫ no by noting that the equation for po implies na ≫ po

since γ2
o ≫ v2

a for the flows of interest here.

5.2.2 A relativistic backflow

Fig. 5.1 shows a simulation of a γo = 105 outflow interacting with an ambient flow

with velocity va = 0.00583 (1750 km s−1). The outflow pressure was calculated for an

ambient-flow velocity of 500 km s−1 in order to match the typical value for pulsars in

general. The outflow originates inside the circular region to the left of the evolving

structure and the ambient flow streams in along the left edge of the computational
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domain. Fig. 5.3 shows the limited extent of the refined grid, supporting the choice

of Lmax = 1. Recall the Hα image of the Guitar Nebula (see Fig. 1.4), a well-

known pulsar wind nebula with the most rapidly moving pulsar ever observed, with

a transverse velocity of (1.7±0.4)×103 km s−1 (Chatterjee & Cordes, 2002). The

simulation qualitatively resembles the nebula. This result constitutes compelling

motivation for the conclusion that interstellar-medium flows set up by the space

motion of pulsars can indeed produce “cometary” nebulae.

I believe this simulation to be the first demonstrating asymmetry arising from

a spherically-symmetric, light, ultra-relativistic flow interacting with a dense, slow

ambient flow. The lines labeled “1” and “2” on the density map in Fig. 5.1 mark

1-dimensional cuts (hereafter “cut-h1”and “cut-h2”, respectively) made to probe the

state of the simulation. Cut-h1 spans the entire structure while cut-h2 spans the inte-

rior space occupied by the pressure enhancements clearly visible in the pressure map.

Figs. 5.2a & 5.2b show the values of the flow parameters along these cuts. These plots

clearly show the outer bounding shockwave represented by the red boundary in the

density map as well as a series of weaker internal on-axis shocks visible in the pres-

sure map. The x-component of the flow velocity shows that a relativistic back flow

harboring a series of weak shocks has arisen down stream. This validates the inter-

pretation by Wang et al. (1993) of the origin of the X-ray trail behind PSR1929+10,

and demonstrates the ability of the refined solver to elucidate the internal structure

of diffuse, ultra-relativistic pulsar wind nebulae which is often difficult to observe

directly.

It is noteworthy that the termination shock of the wind is not evident in the sim-

ulation discussed above. This is due to numerical shocking of the wind as it emerges

from the on-axis hemisphere, as follows. Consider the cells depicted in Fig. 5.4. Let

the angle of the line connecting the center of the hemisphere and the center of a cell

1, 2, 3, or 4 be θi, i = 1, 2, 3, 4. Since I have taken the pulsar wind to be spherically
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(a) Exponential pressure map.

(b) Linear laboratory-frame mass density map.

Figure 5.1: An 871,200-iteration simulation of a light, ultra-relativistic outflow in-
teracting with a dense, slow ambient flow. The input parameters are: va = 0.00583
(⇒ 1750 km s−1), M = 300, na = 1, γo = 105, po= 7×10−16, and no = 10−3po.
The upper (lower) panel shows an exponential (linear) color map of the rest-frame
pressure (laboratory-frame mass density). Both have been reflected along the sym-
metry axis. The outflow originates within the circular region to the left of the
evolving structure and the ambient flow streams in along the left edge of the do-
main. The lines labeled “1” and “2” are 1-D data cuts (hereafter “cut-h1”and
“cut-h2”, respectively) with flow parameters plotted in Figs. 5.2a & 5.2b. See
http://ustw.info/dissertation/figures for a high-quality electronic version.
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(a) Flow parameters along cut-h1.

(b) Flow parameters along cut-h2.

Figure 5.2: The run of the laboratory-frame mass (R), momentum (M), and total
energy (E) densities, rest-frame mass (n), and total energy (e) densities, and pressure
(p), Lorentz factor (γ), x- and y-components of the flow velocity (vx, vy), the flow
velocity (v), sound speed (cs), and generalized Mach number (M) along (a) cut-h1
and (b) cut-h2 in Fig. 5.1.
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Figure 5.3: Plotted in red overlaying the pressure map for the simulation shown in
Fig. 5.1 is the refined grid at level L=1. The bottom half of the map is a reflection of
the top half and has the same refined grid even though it is not shown. Note that the
red lines trace the outlines of the meshes of refined cells, but not the cells themselves.
While the boundary shock is well-refined, the axial shocks within the nebula are
not refined at all. Flagging is determined by TOL = FTOL(L)*TESTFMAX, where
TESTFMAX is the largest difference in R between adjacent cells for all cells at level
L. I suspect that refinement follows only the boundary shock because R differences
inside the nebula are small compared to the difference between the nebula and the
ambient medium. I will investigate refinement flagging in more detail as a follow-
up to this dissertation. See http://ustw.info/dissertation/figures for a high-quality
electronic version.
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symmetric as it emerges from the hemisphere, I may calculate the relative flow ve-

locities ∆v12 and ∆v34 (normalized to the speed of light) at the centers of cells 1 &

2 and 3 & 4:

∆v12 =

√

√

√

√

(

cos θ1 − cos θ2

1 − cos θ1 cos θ2

)2

+

(

sin θ1 − sin θ2

1 − sin θ1 sin θ2

)2

≈ 0.80,

∆v34 =

√

√

√

√

(

cos θ3 − cos θ4

1 − cos θ3 cos θ4

)2

+

(

sin θ3 − sin θ4

1 − sin θ3 sin θ4

)2

≈ 0.03.

This shows that the relative velocity between vertically adjacent on-axis cells just

outside the hemisphere is supersonic relative to the pulsar outflow sound speed of

0.57 (for the parameters relevant to Fig. 5.1). Thus, the wind near the axis shocks

immediately and is thermalized, producing a post-termination-shock flow. Given that

at early times the wind shows no deviation from spherical symmetry, it is clear that

this asymmetric numerical shocking of the wind is smeared out by the interaction

with the ambient flow and does not impact the global evolution of the simulation.

Additional levels of refinement, perhaps needed only at early simulation times,

will mitigate the numerical shocking issue. However, since tests have shown this

immediate shocking is present for Lmax = 2, and the significant results discussed below

were possible with Lmax = 1, explorations of higher numbers of refinement levels are

left to future studies. When these higher refinement-level studies result in unshocked

wind flows with ultra-relativistic Lorentz factors entering the computational domain,

and the resolution of the termination shock, I will perform new shock-tube tests.

However, while the refined REST FRAME routine is essential for proper handling

of the γ >> 1 outflow, in the simulations presented here, there are no structures

involving Lorentz factors higher than those previously explored by Duncan & Hughes

(1994) & Hughes et al. (2002) with the RHLLE solver. All structures referenced
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Figure 5.4: Schematic showing the geometric layout of the cells discussed in regards
to numerical shocking of the pulsar wind. The arc represents the on-axis hemisphere
with radius 37.5 fine cells. Cell 1 is on-axis and is centered at 41.5 fine cells from the
center of the hemisphere (relative center coordinates (x,y) = (41.5,0.5). The center
coordinates of cells 2, 3, and 4 are (41.5,1.5), (29.5,29.5), and (29.5, 30.5) respectively.

below originated in the computational domain where the the tried-and-true Newton-

Raphson iterative solver was toggled into action (recall §4.2). Therefore, I proceed

with firm confidence rooted in the previous shock-tube tests (recall the introduction

in Chap. 3).

5.3 Discussion

The physics behind the formation of the structure observed in Fig. 5.1 is as follows.

The wind streams outward and sweeps up ambient material which drives pressure

waves (weakly at first) into the shocked wind. As the nebula expands, the pressure

inside decreases. Once enough material has accumulated, an inflection point devel-

ops in the boundary of the nebula along the leading edge at approximately 45◦ from
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the axis as measured from W to N1, intensifying the pressure waves. See Figs. 5.5

& 5.6 for a sequence of pressure maps showing the time development of the simulation

shown in Fig. 5.1 with particular attention given to the inflection point. The pressure

waves propagate to the axis and reflect, leading to the formation of a relativistic back-

flow harboring internal shockwaves reminiscent of shock diamonds (Fig. 5.7 shows an

Earthly example). The fact that the backflow does not develop until after the inflec-

tion point supports this picture. The internal shockwaves, in turn, thermalize energy,

allowing the flow to expand and inflate the trailing spherical bubble. As the bub-

ble inflates, it “pinches” the inflection point enhancing the cuspy shape, maintaining

the pressure-wave influx that sets up the energy-thermalizing backflow responsible for

inflating the bubble. The Guitar pulsar was not born at the center of the trailing bub-

ble: given its proper motion, the pulsar moves a distance corresponding to the entire

nebula in less than 500 yr (Romani et al., 1997), a time orders of magnitude too short

for the age of a pulsar powering a bow-shock nebula. However, such a feedback cycle

is relevant to the Guitar nebula because it explains how the bubble persists. Such a

scenario is analogous to the formation of structure in relativistic galactic jets, where

the evolution is driven by Kelvin-Helmholtz modes along the contact surface that

separates the shocked ambient medium from the shocked jet material (e.g., Hughes

et al., 2002).

In order to closely simulate realistic conditions, I performed the run with a γo =

105 outflow (closer to the canonical value of 106) interacting with an ambient flow with

velocity va = 0.00583 (1750 km s−1; representing the Guitar pulsar). The evolution

of the Guitar-like shape is rather sensitive to the choice of parameters. As Tab. 5.1

shows, the appearance of the inflection point marking the onset of the formation of the

“neck” of the Guitar takes a significantly larger number of computational iterations as

1This is sensible as it is the location where the wind velocity transitions from having its largest
component at 180◦ to the inflow direction to having it at 90◦.
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(a) 10,000 iterations. (b) 120,000 iterations.

(c) 240,000 iterations. (d) 360,000 iterations.

(e) 480,000 iterations. (f) 600,000 iterations.

(g) 720,000 iterations. (h) 840,000 iterations.

Figure 5.5: A time sequence of exponential pressure maps for the simulation shown in
Fig. 5.1. The sequence shows that the appearance of the inflection point is preceded by
a pressure drop inside the nebula. I show a sequence of finer time steps between panels
c) and d) (240K – 360K iterations) in Fig. 5.6. Note that the color map is relative
to the minimum and maximum for each plot individually. However, the minimum is
the same and the maximum is similar for all plots, so the variation is minimal. See
http://ustw.info/dissertation/figures for a high-quality electronic version.
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(a) 240,000 iterations. (b) 260,000 iterations.

(c) 280,000 iterations. (d) 300,000 iterations.

(e) 320,000 iterations. (f) 340,000 iterations.

Figure 5.6: A time sequence of exponential pressure maps for the simulation shown
in Fig. 5.1. This a finer sequence of time steps showing the appearance of the
inflection point in more detail. Note that the color map is relative to the min-
imum and maximum for each plot individually. However, the minimum is the
same and the maximum is similar for all plots, so the variation is minimal. See
http://ustw.info/dissertation/figures for a high-quality electronic version.
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Figure 5.7: Shock diamonds in the exhaust of the SR-71 Blackbird. Credit: NASA.

the ambient-flow velocity decreases. This is expected as the asymmetry of the nebula

should evolve more slowly in this scenario: as the ambient-flow velocity decreases, it

takes more time for enough ambient material to be swept up for the neck to start

forming. Exploratory simulation runs show a similar behavior as the Lorentz factor

of the wind increases: raising γo by a factor 10 means lowering the wind pressure by a

factor of 102 in order to preserve the momentum-balance condition given by Eqn. 5.1.2

Thus, the wind progresses into the ambient medium more slowly and, once again, it

takes longer for sufficient ambient material to be swept up. If a pulsar velocity of

1500 km s−1, 1250 km s−1, or 1000 km s−1 is required for Guitar-like morphology to

arise, then the velocity distribution of Arzoumanian et al. (2002) imply <5%, 7-8%,

or ∼15% of radio pulsars, respectively, have the possibility of developing such features

depending on the nature of their ambient environment.

2The outflow pressure was calculated for an ambient-flow velocity of 500 km s−1.
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Table 5.1: The dependence of the Guitar-like inflection point on the number of iter-
ations. As expected, the higher the ambient-flow velocity, the sooner the inflection
point develops due to the increased rate at which ambient material is swept-up.

Wind Lorentz factor ambient-flow velocity Iterations until inflection
(unitless) (km s−1) (104)

105

1750 30
1500 39
1250 54
1000 81
750 unseen at 90

104

5500 4
4250 6
3000 12
1750 30

5.4 Summary

I have applied the refined solver to an ultra-relativistic problem and have shown that

it is capable of reproducing observed structures. In particular, a γo = 105, va =

0.00583 (1750 km s−1) simulation shows a morphology strikingly reminiscent of the

Guitar nebula. While I have not demonstrated how the Guitar nebula formed, I have

motivated how its morphology persists. The simulation also shows that for a realistic

pulsar velocity, a relativistic, on-axis backflow harboring a series of internal shocks

developed, validating the origin of the X-ray trail behind PSR1929+10 proposed by

Wang et al. (1993). In addition, I have shown that the evolution of observed structures

is rather sensitive to the choice of input parameters. This justifies a concerted future

effort to completely sample input parameter space in order to discover precisely under

what conditions prominent asymmetry forms. Of particular interest will be the lowest

ambient-flow velocity, and most extreme density mismatch between the wind and

ambient medium, for which Guitar-like morphology arises.
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CHAPTER 6

Modeling Shock Acceleration and Synchrotron

Cooling of Particles in Pulsar Winds

The purely hydrodynamic model of pulsar wind nebulae discussed to this point

has been successful in shedding light on the global properties of PWNe. Considerable

advancement of this model is readily attainable, without making the substantial jump

to magnetohydrodynamic simulations, by taking into account two linked effects: 1)

the acceleration of particles, i.e, the generation of cosmic rays at PWNe shocks and

2) the radiative loss of energy, i.e., cooling via synchrotron emission. Taking these

effects into consideration will have a substantial impact on the simulation results as

the strength of the shocks will be modified due to the fact that they will become

radiative. This, in turn, will impact the nebular backflow and the evolution of the

bubble. For example, in the extreme case of dominance of synchrotron losses, the

morphology of the nebula will be radically changed as energy is sapped from the

system. Thus, an interesting test will be how much synchrotron loss the wind can

bear before bubble formation falters.

Understanding the acceleration of particles at shocks within PWNe is important

because it may lead to an explanation of the γ-ray emission now known to be a

ubiquitous feature of these objects. The Crab has long been known to produce γ-

rays (e.g., Jung, 1989), and there has been a recent explosion in the literature of

claims associating other PWNe with γ-ray sources. In fact, Horns et al. (2007) has

characterized PWNe as appearing to be a dominant source population for very high

energy γ-rays. I approach this problem as follows. Cosmic-rays (CRs; Millikan, 1925)
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are charged particles that strike Earth’s atmosphere with energies up to 1021 eV.

The CR spectrum (see Fig. 6.1) is a broken power-law that steepens near 3×1015 eV

and flattens near 3×1019 eV (the so called “knee” and “ankle” representing a shift

to a decrease and increase in the number of particles, respectively, at subsequent

energies). SNRs have long been thought to be sources of CRs (e.g., Chevalier et al.,

1976; Uchiyama et al., 2007) up to the knee. However, direct, convincing evidence

has yet to be obtained (Ellison & Cassam-Chenäı, 2005). Whether or not PWN

shocks are important in CR generation, and play a role in the production of CRs

above the knee, is an open question. If PWN/SNR systems do produce such CRs,

their significantly higher energy relative to CRs below the knee will result in γ-ray

emission.

While elucidating the origin of CRs is certainly of great interest, the primary focus

of this work, at least in the early stages, is the exploration of the effects of cooling on

PWN morphology. The energy invested in CR generation, whether above or below the

knee, is ultimately lost from the system, leading to a direct morphological influence.

Thus, fleshing out the role of PWNe shocks in the acceleration of charged particles

is germane to understanding nebular cooling. But how does the energy loss arise?

Magnetic fields accelerate charged particles giving rise to synchrotron radiation, for

relativistic particle motions, and cyclotron radiation, for non-relativistic motions. In

addition to having relativistic bulk velocities, the particles comprising pulsar winds

have thermal motions that are sufficient to produce synchrotron emission and, given

the presence of the neutron star’s strong magnetic field, synchrotron cooling is un-

doubtedly of importance in pulsar wind systems. The ubiquitous power-law spectrum

exhibited by PWNe validates this picture. Thus, the inclusion of synchrotron cooling

is a critical step in moving toward producing a realistic PWNe model, the develop-

ment of which, as stressed by Bucciantini (2002), is crucial to the interpretation of

observational data (such as the MSH 11–62 observations presented in Chap. 2). By
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Figure 6.1: The spectrum of cosmic rays. Credit: unknown (downloaded from:
http://astroparticle.uchicago.edu).

applying the AMR code to these issues, I can address fundamental questions about

the origin of cosmic rays and PWN cooling and, therefore, the energetics of the ISM.

6.1 Physical Framework

6.1.1 The first-order Fermi process

In order to explain the origin of cosmic rays, Fermi (1949) proposed what has come to

be known as Fermi acceleration. The basic principle is that charged particles can be

reflected by moving interstellar magnetic fields, or “magnetic mirrors”. The relative

motion of the particle and the field determine if the particle gains energy (if the
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particle is approaching the field) or looses it (if receding). Fermi argued that, while

the motion of particles is random, the former scenario is more likely, on average, and

that the net change in energy is positive. One problem with this model is that it is

quite inefficient, so that particles take a long time to reach cosmic-ray energies.

Subsequently, supernova remnants were theorized (Shapiro & Silberberg, 1977)

to house very efficient Fermi acceleration sites because the particle motions are not

random. If a particle crosses a shock it gains energy, is scattered back across the

shock by inhomogeneities in the magnetic field, is scattered again, re-cross the shock,

and so on. Each time the particle crosses the shock, it gains energy, and thus can

be accelerated to cosmic-ray energies very efficiently. This has come to be known as

first-order Fermi acceleration (see, e.g., Rieger et al., 2007; Kato & Takahara, 2003;

Berezhko & Ellison, 1999), as the mean energy gain per bounce is linearly dependent

on the shock velocity. In Fermi’s original mechanism, the mean energy depends on the

square of the mirror velocity, and is therefore called second-order Fermi acceleration.

6.1.2 Physical sink and source terms

In order to model shock acceleration and synchrotron cooling, I define a species of

passive tracer “particles” that are coupled to the hydrodynamic flow. These are

passive particles in the sense that they are introduced via two new evolved variables,

the laboratory-frame tracer mass and total energy density (Rtr and Etr, respectively),

and two new physical source terms, Sshock > 0 and Ssync < 0. With these defined,

the evolved-variable, flux, and source vectors (recall Eqn. 3.1) become:

U = (R, Mρ, Mz, E, Rtr, Etr)
T ,

F ρ = (Rvρ, Mρv
ρ + p, Mzv

ρ, (E + p)vρ, Rtrv
ρ, (Etr + ptr)v

ρ)T ,

F z = (Rvz, Mρv
z, Mzv

z + p, (E + p)vz, Rtrv
z, (Etr + ptr)v

z)T ,

S = (0, p/ρ, 0, 0, 0, Sshock − Ssync)
T , (6.1)
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which are evolved via the Euler equations (recall Eqn. 3.2):

∂U

∂t
+

1

ρ

∂

∂ρ
(ρF ρ) +

∂

∂z
(F z) = S.

The tracer pressure is given by the ultra-relativistic equation of state ptr = (1/3)etr,

where etr is the rest-frame tracer total energy density. This assumes that the tracer

adiabatic index has the relativistic value 4/3 and that etr >> ntr, where ntr is the

rest-frame tracer mass density.

As a simple first approximation, I take the particle energy gain from Fermi ac-

celeration to be a constant: Sshock = ∆Eshock = constant. Such acceleration to a

mono-energetic distribution is overly simplistic. In reality, cooling of pulsar winds is

thought to arise from a population of particles Fermi-accelerated (e.g., Berezhko &

Ellison, 1999) into a power-law distribution, and so I will adopt such a prescription in

future studies. In general, the rate of energy loss via synchrotron radiation increases

as the square of the energy times the magnitude of the magnetic field. Thus, I take

the synchrotron source term to be:

Ssync = Csyn ×
(

etr

ntr

)2

× n2, (6.2)

where Csyn is a tunable proportionality constant, etr/ntr is the energy density per

particle, and I have taken the magnitude of the magnetic field to be proportional to

the hydrodynamic mass density as the field is advected by the hydrodynamic flow

and compressed at shockwaves.

6.2 Implementation in a Relativistic, Hydrodynamic Code

Tracer code is implemented in the problem setup file, the hemispherical pulsar outflow

routine, and in the axisymmetric RHLLE solver as represented in the pseudo-code

shown in §A.2 of the Appendix. In regards to the solver, I show only the coding

relevant to the tracer source terms as the calculation of the tracer quantities for the

91



RHLLE fluxes mirror those for the hydrodynamic flow. I flag shocks by looking for

specific jumps in the hydrodynamic mass density and concomitant pressure:

Rcrit ≡ ∆R

R

pcrit ≡ ∆p

p

=
2Γ

Γ + 1
(M2

crit − 1)

M2
crit =

2(Rcrit + 1)

2 − Rcrit(Γ − 1)
. (6.3)

I use the non-relativistic quantities since the results from Chap. 5 show that the wind

component within the computational domain includes only post-shock flows that are

barely relativistic. The difference, ∆, can be either temporal or spatial. The first

case means comparing the mass density for a given computational cell at a given

time step to the value at the previous time step. The second involves comparing

the mass density for a given cell to the values in the adjacent cells (to the left and

right and above and below). If conditions are met, the cell is flagged if it was not

flagged previously (once a tracer encounters a shockwave, its energy is incremented

only once for that particular shock in order to avoid runaway energization). I only

flag for shocks by comparing the fully updated density and pressure (not half-step

quantities – recall the update is a two-step process – see §3.1). This means checking

either at the beginning of MESH UPDATE before the half-step update or at the end

after the full time-step update. The temporal case has the additional stipulation that

the check must take place before the evolved quantities from two time steps previous

are overwritten by the quantities from the last update. This is necessary because

the evolved quantities for the previous time step are temporary variables and are not

stored in the simulation output files. Thus, MESH UPDATE has to be called before

they are defined.
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6.3 Application

6.3.1 Identifying suitable input parameters

I discussed input parameters for the purely hydrodynamic simulations in §5.2.1. In

this section I consider the tracer case. The primary goal of this subsection of my work

is to explore the interplay of the acceleration of particles at PWN shocks, and the

subsequent loss of the gained energy via synchrotron radiation. Thus, it is important

to match the strengths of these effects such that the timescale for the loss of energy is

long enough to allow the change in the tracer energy to be sampled using a reasonable

time between data output events during the simulation run.

For example, given initial values of n = 1.0, Rtr = 0.01, and Etr = 1.0, the

synchrotron source term has an initial value of Csyn ×104 (recall Eqn. 6.2). Thus, for

a simulation that needs to be run an order of 104 iterations, and for choices of Sshock

= 1.0 and a 103-iteration data output interval, a sensible selection for Csyn is one that

leads to a loss of ∆Etr = 1.0 in 104 iterations. This means Csyn ∼ 1.0/(104)×10−4 =

1.0×10−8. Of course, such an estimate will need to be modified once a cooling enabled

simulation run has progressed sufficiently for a relativistic backflow harboring internal

shocks to developed, and the tracer energy and density changes at these shocks can

be established.

The remaining parameter to set is the critical density change Rcrit. The Mach

number of the shocks that are the object of study determine what value to choose.

Recall the shocks within the relativistic backflow that I discussed in Chap. 5. Fig. 5.2b

shows that the relevant Mach numbers are in the range 1.1 – 1.4 which straddles the

border between transonic and supersonic shocks. This implies 0.175 ≤ Rcrit ≤ 0.725.

6.3.2 Tracer-enabled simulations

Fig. 6.2 shows a 1200-iteration advancement of the simulation state 1200 iterations

before that shown in Fig. 5.1 (i.e., both figures show the same simulation time).
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Fig. 6.3 shows the hydrodynamic density map from Fig. 5.1 and the layout of the

refined grid. Given the months-long time scale to run such a hydro simulation from the

first iteration, I chose to start my investigation of tracer behavior from the evolved

state of the pure hydro simulation. I converted the file by laying down an even

distribution of tracers across the computational domain. Once evolution progresses,

tracers enter with the hydro outflow originating inside the circular region to the left

of the evolving structure and with the ambient flow streaming in along the left edge of

the domain. Recall that the wind Lorentz factor and ambient-flow speed for the hydro

component are γo = 105, and va = 0.00583 (1750 km s−1). For the tracers, I chose Rcrit

= 0.15, initial energy and mass densities of Etr = 1.0 and Rtr = 0.01, respectively,

Sshock = 1.0, and Ssync = 10−13 (constant) meaning cooling was effectively disabled.

Test runs showed that temporal density and pressure checking for tracer acceleration

led to incomplete flagging for shocks. I suspect the cause to be the fact that the

time step is sufficiently fine such that temporal evolution is very slow. Thus, for the

simulations discussed here, I employed spatial density and pressure checking.

I believe these to be the first simulations addressing shock acceleration and syn-

chrotron cooling within the context of ultra-relativistic simulations of bow-shock

PWNe. The lines labeled “1” and “2” on the density map in Fig. 6.2 mark 1-

dimensional cuts (hereafter “cut-t1”and “cut-t2”, respectively) made to probe the

state of the simulation. Cut-t1 spans the entire structure while cut-t2 spans the in-

terior space occupied by the tracer energy enhancements and density enhancements

clearly visible in Fig. 6.2. Fig. 6.4 shows the values of the flow parameters along

these cuts. Recall that while the hydrodynamic flow is not affected, the tracers are

impacted by the hydro flow via the hydrodynamic flow velocity in Eqn. 6.1. The

energization and mass buildup of tracers at shocks is clearly evident. Of particular

note is the fact that the nebular hot spot shown in Fig. 6.2 corresponds to tracer

energization comparable to that occurring at the boundary shock.
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(a) Exponential tracer energy density map.

(b) Linear tracer mass density map.

Figure 6.2: An 1200-iteration run-on from an 870K-iteration, purely hydrodynamic
simulation of a light, ultra-relativistic outflow interacting with a dense, slow ambient
flow. The upper and lower panels show an exponential map of the laboratory-frame
tracer energy density and a linear map of the tracer mass density, respectively (both
reflected along the symmetry axis). The parameters are Rcrit = 0.20 (⇒ Mcrit ≈
1.11, pcrit ≈ 0.28), initial energy & mass densities Etr = 1 & Rtr = 0.01, Sshock = 1.0,
and Ssync = 10−13 (constant; i.e., cooling effectively disabled). The lines labeled “1”
and “2” are the 1-D data cuts (hereafter “cut-t1” and “cut-t2”, respectively) with
flow parameters plotted in Figs. 6.4. See http://ustw.info/dissertation/figures for a
high-quality electronic version.
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(a) Exponential hydrodynamic pressure map.

(b) Exponential tracer energy map with refinement grid overlaid.

Figure 6.3: Plotted are the hydrodynamic pressure map (above) and the refined grid
at level L=1 in red overlaying the energy map (below) for the simulation shown in
Fig. 6.2. The bottom half of the energy map has the same refined grid even though
it is not shown. Note that the red lines trace the outlines of the meshes of refined
cells, but not the cells themselves. See http://ustw.info/dissertation/figures for a
high-quality electronic version.
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Figure 6.4: The run of the laboratory-frame hydrodynamic mass (R), laboratory-
frame tracer mass density (Rtr), and total energy density (Etr) along cut-t1 in Fig. 6.2
(left panels) and the generalized Mach number (M), laboratory-frame tracer mass
density (Rtr), and total energy density (Etr) along cut-t2 in Fig. 6.2 (right panels).
The plots clearly show that tracers are being energized at the boundary shock and
nebular shocks confirming the action of the shock-acceleration source term. The
middle peak in the tracer energy for cut-t1 corresponds to a nebular shock. Note
that the energization is comparable to that associated with the boundary shock.
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Figure 6.5: A 1200-iteration run-on from an 870K-iteration, purely hydrodynamic
simulation of a light, ultra-relativistic outflow interacting with a dense, slow ambient
flow. The 871,200-iteration stage for the hydro flow is shown in Fig. 6.3. Shown is an
exponential map of the laboratory-frame tracer energy density (reflected along the
symmetry axis). The parameters are Rcrit = 0.20, initial energy & mass densities of
Etr = 1 & Rtr = 0.01, Sshock = 1.0, and Ssync = 0.001 (constant). Flow parameters
along the same cuts as cut-t1 & cut-t2 (from Fig. 6.2) are plotted in Fig. 6.6. See
http://ustw.info/dissertation/figures for a high-quality electronic version.

In order to assess the synchrotron source term, I ran a simulation with parameters

matching those for the simulation shown in Fig. 6.2 with the exception that I set

Ssync = 0.001. I chose this value to produce significant energy loss on the order of

1000 iterations. Fig. 6.5 shows a 1200-iteration advancement of the simulation state

1200 iterations before that shown in Fig. 5.1. Fig. 6.6 shows the values of the flow

parameters along the same cuts as cut-t1 and cut-t2. Energy loss from the source

term is clearly evident. So too is the fact that tracers energized by the boundary

and nebular shocks have retained more energy than those in the ambient medium.

Balancing these two effects will be critical to meaningfully probing PWN cooling in

a future series of tracer runs started from the first iteration.
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Figure 6.6: The run of the laboratory-frame hydrodynamic mass (R), laboratory-
frame tracer mass density (Rtr), and total energy density (Etr) along the same cut as
cut-t1 (left panels) and the generalized Mach number (M), laboratory-frame tracer
mass density (Rtr), and total energy density (Etr) along the same cut as cut-t2 (right
panels) for the simulation shown in Fig. 6.5. The plots clearly show that tracer
energization is reduced compared to the non-cooling case (see Fig. 6.4) confirming
the energy-sink action of the synchrotron source term.
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6.4 Discussion

Fig. 6.7 shows additional tracer simulations identical to that shown in Fig. 6.2 except

that they were run with Rcrit = 0.20 and Rcrit = 0.25. These plots clearly show

that tracer energization within the nebula fades as Rcrit increases from 0.15. This is

expected given the range of Mach numbers for the on-axis shocks shown in Fig. 5.1.

Thus, the results to date show that the strength of PWN shocks places them near

the borderline of the transition between transonic and supersonic making their role in

cosmic-ray energization and the subsequent synchrotron energy loss from SNR/PWN

systems uncertain. Thus, the question remains an interesting one that I will devote

significant effort to answering in a future study.

Initial runs have shown that this simple prescription is successful in producing

meaningful physical results. There are significant questions that can be addressed.

A future series of simulations will elucidate how changing the cooling rate effects

the shocked wind. Rough estimates of the X-ray emissivities can be computed by

wrapping an axisymmetric simulation around the symmetry axis and collapsing onto

a plane to obtain a 2-D projection of the flow energy density. Ultimately, the tracer

mass and energy density may be used to generate a sink for the energy density of

the hydrodynamic flow to initiate a study of the effects of energy loss on PWNe

morphology.

The simulations presented in this chapter apply to, e.g., PSR 2224+65. Obser-

vations (Romani et al., 1997) show that the ROSAT HRI surface brightness appears

to follow the limb of the nebula, brightening toward the pulsar, while the area in

the vicinity of the pulsar is X-ray dark. Hα emission is observed around the entire

perimeter of the nebula, with the forward edge possessing the shape of a bow shock

nebula. It is not believed that the shocked ISM can cool sufficiently to produce the

X-rays, and the Balmer-line spectrum of the bow-shock nebula suggests that it is non-

radiative (Cordes et al., 1993). The shocked ISM may cool within the tail, eventually
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(a) Exponential tracer energy density map for Rcrit = 0.20.

(b) Exponential tracer energy density map Rcrit = 0.25.

Figure 6.7: Tracer simulations identical to that in Fig. 6.2 expect Rcrit = 0.45 and 0.70
(⇒ Mcrit ≈ 1.25, pcrit ≈ 0.65 and Mcrit ≈ 1.39, pcrit ≈ 1.06, respectively) for panel (a)
and (b), respectively. The plots clearly show that tracer energization decreases as Rcrit

increases as expected and that energization by nebular shocks remains significant. See
http://ustw.info/dissertation/figures for a high-quality electronic version.
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producing limited thermal emission. Another source for the X-rays is synchrotron

cooling of the swept-back relativistic pulsar wind. ISM cooling, in general, depends

in a complicated way on the plasma state (e.g. Franco et al., 1994). One method of

modeling is to use the collisional ionization cooling function ΛN (T ) from Sutherland

& Dopita (1993). This function is valid over a wide range of temperatures and is

widely used in astrophysics. The calculation requires the gas temperature which the

code does not explicitly follow. However it may be obtained from the rest-frame

energy and mass densities.

The work presented in this chapter may be extended in the future to compute the

physical state of the shocked pulsar wind and shocked ISM to determine whether,

and under what conditions, the former or the latter dominates the X-ray emission.

Thus, the code may be applied to the determination of how the pulsar’s available

power is distributed between radio, optical, and X-ray emission for given values of

the wind speed, density, etc. Such a study, therefore, can provide a fundamental

probe of pulsar energy loss and the interaction of pulsars with their environment.

6.5 Summary

I have implemented a simple model of the shock acceleration of passive tracer parti-

cles. I assume that shock acceleration proceeds via the first-order Fermi process and

1) monitor the mass density and pressure of the hydrodynamic flow and 2) flag tracer

particles that experience a predetermined jump in flow density with a concomitant

pressure jump. I regard flagged particles as having crossed a shock and increment

their energy density. The energy increment and the magnitude of the density trigger

are tunable and set the shock heating strength. The addition of a physical source

term to the Euler equations accomplishes the energization.

I have further implemented a simple model of synchrotron cooling via the addition

of a second physical source term. I assume the synchrotron term is proportional to the
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square of the product of the energy per particle and the magnetic field. The former is

calculable from the mass and energy densities, and the latter I take to be proportional

to the mass density of the hydrodynamic flow. The tunable proportionality constant

sets the cooling strength. Initial runs have confirmed the ability of these simple

models to produce physically meaningful results justifying future work to expand the

models in order to apply the newly developed code to a full exploration of the cooling

of pulsar winds. The future addition of an ISM cooling model can position the code

to be applied to studies of pulsar “calorimetry”.
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CHAPTER 7

Conclusions

7.1 Summary of Results

This work has made substantial progress in the study of asymmetric pulsar wind

nebulae by bringing together techniques of computational fluid dynamics and obser-

vational X-ray astronomy. I have provided the first ultra-relativistic simulations of

bow-shock PWNe for realistic pulsar space motions and wind Lorentz factors. My

results elucidated the evolution of the highly elongated PWN in MSH 11–62 and

the morphology of the Guitar nebula, and validate a long-standing interpretation of

the PSR1929+10 X-ray trail. I have provided the first simulations addressing shock

acceleration and synchrotron cooling within the context of ultra-relativistic backflows

in bow-shock PWNe with the aim of studying PWN morphology and the origin of

cosmic-rays. In summary, my main conclusions are as follows:

• Analysis of X-ray data for the SNR MSH 11–62 supports a model wherein

the reverse shock of the SNR has asymmetrically crushed the PWN leading to

the classification of the remnant as a bilateral SNR that has been dynamically

impacted by the ISM rather than as one produced by the Galactic magnetic

field. This suggests that there are two classes of bilateral SNRs.

• Relativistic, hydrodynamic simulations have shown that the relatively slow,

dense ISM flow resulting from the space motion of a pulsar can set up an

interaction with the extremely light, ultra-relativistic pulsar wind leading to an

asymmetric nebula with a morphology reminiscent of the Guitar nebula.
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• Simulations have validated the interpretation that a relativistic backflow behind

PSR1929+10 is responsible for the X-ray morphology. Results further show

that the backflow can harbor a series of internal shockwaves that inflates a

nebular bubble, and that the bubble provides positive feedback to the backflow,

explaining how the Guitar bubble persists.

• The evolution of the bubble/backflow structure is sensitive to the choice of

input parameters justifying a future series of simulation runs that will deter-

mine what pulsar velocities and wind/ISM density ratios are required for the

bubble/backflow feedback loop to arise.

• Simple code modules for shock acceleration and synchrotron cooling can model

particle energization at shocks and time-dependent cooling within hydrody-

namic, relativistic, axisymmetric simulations of PWNe. Finding a balance of

these two effects such that meaningful results can be obtained over the hundreds

of thousands of iterations required for nebular shocks to develop is challenging.

• Simulations have suggested that the strength of PWN shocks places them in the

transition region between transonic and supersonic regimes obscuring their roll

in nebular cooling and shock-acceleration of particles. Initial results indicate

that PWN shocks retain the ability to energize cosmic-rays as the critical density

change (∆R/R) required to trigger shock acceleration increases from 0.20 to

0.70 (⇒ Mcrit ≈ 1.11–1.39).

• The preceding two points justify a future series of runs in order to identify

optimized input parameters. The goal is to determine if shocks within PWNe

can effectively accelerate charged particles leading to substantial energy loss

via cooling and the generation of cosmic-rays that possibly produce γ-ray emis-

sion and ultimately escape the system. Of further interest is elucidating if the

comparison of simulated emission maps with observational data can distinguish

between particle acceleration to a mono-energetic or power-law distribution.
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7.2 Future Work

This work lays the foundation for a future study to provide important input for

cosmic-ray acceleration models via elucidating the distribution, structure, and strength

of shocks formed in the pulsar wind-SNR/ISM interaction. This will be key in explain-

ing the origin of Gamma-rays observed for a number of PWNe. NASA’s Gamma-ray

Large Area Space Telescope (GLAST, scheduled for a May 2008 launch) will provide

the next generation of data.

An important extension of this work will be the development of an ISM cool-

ing model. The cooling rate will be a complicated function of the plasma’s physical

state, e.g., elemental abundances and the plasma temperature, requiring the use of

a collision-ionization, time-dependent cooling law, ΛN(T), such as that of Sutherland

& Dopita (1993), which is applied widely to astrophysical problems. While the hy-

drodynamic code employed herein does not follow the gas temperature, it is obtained

from the gas density and internal rest energy. Since the cooling function depends on

temperature, an iterative approach will be needed to calculate the rate of cooling in

one computational cycle.

The effects of cooling are germane to understanding PWN morphology; the liter-

ature is replete with examples of asymmetric PWNe. In order to realistically explore

these effects, linking the tracer energy to that of the hydrodynamic flow is critical so

that the synchrotron losses of the latter may be explored. With cooling models for

the ISM and pulsar wind in place, an investigation of the full effects of cooling on the

PWN/SNR system can be undertaken. Wind cooling is likely to dominate morpho-

logical effects since it impacts the driving energy source. ISM cooling, however, will

be an important diagnostic for energy partitioning, i.e., pulsar “calorimetry”. The

performance of spectral and spatial emission models will elucidate pulsar energy loss

and allow for a new attack on the “σ-problem”.
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APPENDIX

A.1 REST FRAME Pseudo-code

PROCEDURE REST FRAME

RECEIVED FROM PARENT PROGRAM: Y , Z

RETURNED TO PARENT PROGRAM: γ, v, C

Comment: recall Y ≡ M/E and Z ≡ R/E.

Comment: C is returned < 0 for code failures.

GLOBAL VARIABLE: Γ

SET VALUE OF munderflow

SET VALUE OF vtol

Comment: determines iterative method velocity accuracy.

Comment: I set vtol = 10−8, 10−10, 10−12, 10−14

Comment: for − log(1 − Y ) < 8.3, < 10.3, < 12.3, otherwise, respectively

SET M =
√

M2
x + M2

y

IF M < munderflow THEN

v = 0, γ = 1

Comment: avoids code failure if v is numerically zero.

ELSE

TEST FOR UNPHYSICAL PARAMETERS

IF PASSED, SET C NEGATIVE AND RETURN

IF log(Z) ≥ −(7/9) × log(1 − Y ) − 7, THEN

Comment: check to see if input parameters are within the acceptable.

Comment: accuracy region of the iterative routine.

CALL ITERATIVE QUARTIC(Y, Z, vtol, v,C)

Comment: updates vn−1 to vn using n cycles of Newton-Raphson iteration.

Comment: returns v = vn when |vn − vn−1| ≤ vtol.
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IF C < 0, THEN

Comment: this means the iteration failed to converge.

RETURN

ELSE

γ =
√

1
1−v2

END IF

ELSE

CALL ANALYTICAL QUARTIC(Y, Z, γ)

Comment: calculates γ using analytical solution – see below.

v =
√

1 − 1
γ2

END IF

END IF

END PROCEDURE REST FRAME

PROCEDURE ANALYTICAL QUARTIC

Comment: see §4.1.1 for equations

RECEIVED FROM PARENT PROGRAM: Y, Z

RETURNED TO PARENT PROGRAM: γ

GLOBAL VARIABLE: Γ

ã3 = 2Γ(Γ − 1)Z(Y −2 + 1)

ã2 = (Γ2 − 2Γ(Γ − 1)Y 2 − (Γ − 1)2Z2)(Y −2 + 1)

ã1 = −a3

ã0 = (Γ − 1)2(Y 2 + Z2)(Y −2 + 1)

ã4 = 1 + Y 2 − a0 − a2

Comment: coefficients recast to counter subtractive cancellation – see §4.3.

NORMALIZE COEFFICIENTS TO a4

Comment: e.g., a3N = a3/a4.
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CALCULATE CUBIC RESOLVENT COEFFICIENTS

CALCULATE DISCRIMINANT, D

IF D ≤0 THEN

WRITE ERROR MESSAGE AND STOP

Comment: exploration suggests D ≤ 0 is unphysical but formal proof is elusive;

Comment: thus, I leave D ≤ 0 uncoded with a error flag just in case.

ELSE

Comment: D > 0 ⇒ Q(γ) has 2 real roots (see Tab. 4.1 & 4.2)

CALCULATE ROOTS OF CUBIC RESOLVENT

Comment: the cubic has one real root and a pair of complex conjugate roots.

IF REAL ROOT < 0, SET REAL ROOT = 0

Comment: the real root cannot be less than zero analytically.

Comment: numerically, however, it can have a very small negative value.

CALCULATE THE TWO REAL ROOTS OF THE QUARTIC

TEST FOR TWO OR NO PHYSICAL ROOTS

IF PASSED, WRITE ERROR MESSAGE, AND RETURN

IF FAILED, SET γ = PHYSICAL ROOT

END IF

END PROCEDURE ANALYTICAL QUARTIC

A.2 Tracer Pseudo-code

PROCEDURE SETUP PROBLEM (TRACER-SPECIFIC CONTENT ONLY)

Comment: non-tracer coding omitted.

IF TRACERS DEFINED THEN INCLUDE TRACER GLOBAL VARIABLES

Comment: non-tracer coding omitted.

IF TRACERS DEFINED THEN
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SET TRACER REST-FRAME MASS DENSITY: ntr = C1 × n, C1 < 1

Comment: n is hydro flow mass density.

SET TRACER REST-FRAME ENERGY DENSITY: etr = C2×ntr, C2 > 1

SET TRACER REST-FRAME PRESSURE: ptr = etr/3

Comment: assumes relativistic species ⇒ tracer adiabatic index is 4/3.

SET MULTIPLIER FOR SYNCHROTRON SOURCE TERM, Csyn

Comment: tunable knob: sets strength of synchrotron cooling.

SET CRITICAL DENSITY CHANGE, Rcrit

Comment: tunable knob sets minimum change for shock acceleration activation.

CALCULATE MACH NUMBER FOR Rcrit

CALCULATE CONCOMITANT PRESSURE CHANGE, Pcrit

SET ENERGY ADDED BY SHOCK ACCELERATION, shockDE

CALCULATE TRACER LAB FRAME MASS DENSITY, Rtr

CALCULATE TRACER LAB FRAME ENERGY DENSITY, Etr

Comment: from rest-frame quantities using hydro flow velocity.

END IF

Comment: non-tracer coding omitted.

END PROCEDURE SETUP PROBLEM

PROCEDURE SET SPHERE (TRACER-SPECIFIC CONTENT ONLY)

Comment: calculates weighted flow variables given the fraction of the area of.

Comment: a cell falling inside the hemispherical outflow boundary.

Comment: non-tracer coding omitted.

IF TRACERS DEFINED THEN INCLUDE TRACER GLOBAL VARIABLES

Comment: non-tracer coding omitted.

IF TRACERS DEFINED THEN

SET REST-FRAME TRACER MASS DENSITY: nave
tr = C1 × nave
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SET REST-FRAME TRACER ENERGY DENSITY: eave
tr = C2 × nave

tr

Comment: C1, C2 are from SETUP PROBLEM above.

Comment: nave is the weighted mass density for hydro the flow.

SET WEIGHTED TRACER PRESSURE: pave
tr = eave

tr /3

Comment: assumes relativistic species.

CALCULATE TRACER LAB FRAME MASS DENSITY, Rave
tr

CALCULATE TRACER LAB FRAME ENERGY DENSITY, Eave
tr

Comment: from rest-frame quantities using hydro weighted flow velocity.

END IF

Comment: non-tracer coding omitted.

END PROCEDURE SET SPHERE

PROCEDURE MESH UPDATE (TRACER-SPECIFIC CONTENT ONLY)

RECEIVED FROM PARENT PROGRAM: LEVEL #, GRID #, & STEP #

RETURNED TO PARENT PROGRAM: none (variables are common)

Comment: updates the flow variables given the RHLLE fluxes.

Comment: STEP = 1 (half time-step) or 2 (full time step – see §3.1).

Comment: non-tracer coding omitted.

IF TRACERS DEFINED THEN

INCLUDE TRACER GLOBAL VARIABLES

INITIALIZE VARIABLE Sphys(K) TO ZERO, K=1,2,...,6

Comment: first call only.

INITIALIZE VARIABLE SHOCKFLAG and SHOCKFLAGo TO ZERO

Comment: first call only.

END IF

Comment: non-tracer coding omitted.

IF TRACERS DEFINED THEN
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SET SYNCHROTRON SOURCE TERM: Ssyn = Csyn × (n × etr/ntr)
2

Comment: n is the hydro flow rest-frame mass density.

SET PHYSICAL SOURCE TERM: Sphys(6) = −Ssyn

Comment: to be distinguished from coordinate source term from axisymmetry.

IF SHOCKFLAG = 1 FOR COMPUTATIONAL CELL

SET Sphys(6) = Sphys(6) + shockDE

SET SHOCKFLAGo = 0

ELSE

SET Sphys(6) = Sphys(6)

END IF

END IF

Comment: non-tracer coding omitted.

IF TRACERS DEFINED THEN

CALCULATE CHANGE IN FLOW VARIABLES INCLUDING SSphys(K)

Comment: Sphys(K) is only non-zero for K = 6.

ELSE

CALCULATE CHANGE IN FLOW VARIABLES WITHOUT Sphys(K)

END IF

Comment: non-tracer coding omitted.

IF TRACERS DEFINED THEN

IF K = 6 THEN

IF Etr < 0 THEN SET Etr = 10−30

Comment: this test is performed after the flow variables are updated.

Comment: given that Ssyn is an energy sink, this protects against negative energy.

END IF

Comment: note that the following density tests are for the lab frame quantity,

Comment: while the pressure tests are for the rest frame – this should not be
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Comment: problematic as I seek unambiguous shocks flagged in both frames.

IF TEMPORAL SHOCK-FLAGGING SELECTED THEN

IF STEP = 2 & NEW & OLD HYDRO MASS DENSITY > 0 THEN

ELSE IF SPATIAL SHOCK-FLAGGING SELECTED THEN

IF STEP = 2 & HYDRO MASS DENSITY > 0 THEN

Comment: density positive for current cell AND those to the N, S, E, and W.

CONTINUE

Comment: one of the above must be selected.

CALL REST FRAME (see §A.1)

Comment: temporal: for both new & old hydro variables in order to obtain pressures.

Comment: spatial: for hydro variables for all 5 cells in order to obtain pressures.

IF DENSITY & PRESSURE CHANGE SUFFICIENT THEN

Comment: checks density & pressure change against Rcrit, Pcrit.

Comment: temporal only one difference to check.

Comment: spatial: only one of N, S, E, OR W needs be have above critical difference.

IF SHOCKFLAGo = 0 THEN

Comment: add energy only if density & pressure tests were not tripped last iteration.

SET SHOCKFLAG = 1

END IF

ELSE

SHOCKFLAG = 0

SHOCKFLAGo = 0

END IF

END IF

END IF

END PROCEDURE MESH UPDATE
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Inoue, H. 1993, Experimental Astronomy, 4, 1

Jackson, M. S., Safi-Harb, S., Kothes, R., & Foster, T. 2008, ApJ, 674, 936

Jung, G. V. 1989, ApJ, 338, 972

Kargaltsev, O. & Pavlov, G. G. 2008, ArXiv e-prints, 801

Kato, T. N. & Takahara, F. 2003, MNRAS, 342, 639

Kennel, C. F. & Coroniti, F. V. 1984a, ApJ, 283, 694

—. 1984b, ApJ, 283, 710

Kesteven, M. J. & Caswell, J. L. 1987, A&A, 183, 118

Kirk, J. G. & Skjæraasen, O. 2003, ApJ, 591, 366

Komissarov, S. S. 1999, MNRAS, 303, 343

Lyutikov, M. 2003, MNRAS, 339, 623

Mart́ı, J. M. & Müller, E. 2003, Living Reviews in Relativity, 6

Matheson, H. & Safi-Harb, S. 2005, Advances in Space Research, 35, 1099

Melatos, A. 2004, in IAU Symposium, Vol. 218, Young Neutron Stars and Their

Environments, ed. F. Camilo & B. M. Gaensler, 143

Michel, F. C. 1969, ApJ, 158, 727

—. 1973, ApJ, 180, L133

Mignone, A. & McKinney, J. C. 2007, MNRAS, 378, 1118

Millikan, R. A. 1925, Science, 62, 445

Mori, K., Burrows, D. N., Hester, J. J., Pavlov, G. G., Shibata, S., & Tsunemi, H.

2004, ApJ, 609, 186

117



Noble, S. C. 2003, ArXiv General Relativity and Quantum Cosmology e-prints

Norman, M. L. & Winkler, K.-H. A. 1986, in NATO Advanced Research Workshop

on Astrophysical Radiation Hydrodynamics, ed. K.-H. A. Winkler & M. L. Norman

(D. Reidel Publishing Co., Dordrecht, Holland), 449

Orlando, S., Bocchino, F., Reale, F., Peres, G., & Petruk, O. 2007, A&A, 470, 927

Pacini, F. & Salvati, M. 1973, ApJ, 186, 249

Perret-Gallix, D. 2006, Concluding remarks: Emerging topics, Proceedings of the

X International Workshop on Advanced Computing and Analysis Techniques in

Physics Research - ACAT 05

Possenti, A., Cerutti, R., Colpi, M., & Mereghetti, S. 2002, A&A, 387, 993

Quirk, J. J. 1991, PhD thesis, Cranfield Inst. Tech.

Rees, M. J. & Gunn, J. E. 1974, MNRAS, 167, 1

Reynolds, S. P. & Chevalier, R. A. 1984, ApJ, 278, 630

Rieger, F. M., Bosch-Ramon, V., & Duffy, P. 2007, Ap&SS, 309, 119

Roberts, M. S. E. 2004, The Pulsar Wind Nebula Catalog (March 2005 version),

WWW: http://www.physics.mcgill.ca/%7Epulsar/pwncat.html

Roberts, M. S. E., Tam, C. R., Kaspi, V. M., Lyutikov, M., Vasisht, G., Pivovaroff,

M., Gotthelf, E. V., & Kawai, N. 2003, ApJ, 588, 992

Romani, R. W., Cordes, J. M., & Yadigaroglu, I.-A. 1997, ApJ, 484, L137

Schneider, V., Katscher, U., Rischke, D. H., Waldhauser, B., Maruhn, J. A., & Munz,

C.-D. 1993, Journal of Computational Physics, 105, 92

Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics (Similarity and

Dimensional Methods in Mechanics, New York: Academic Press, 1959)

Shapiro, M. M. & Silberberg, R. 1977, in International Cosmic Ray Conference, Vol. 2,

International Cosmic Ray Conference, 20

Shibata, M. 2003, Phys. Rev. D, 67, 024033

Slane, P., Helfand, D. J., van der Swaluw, E., & Murray, S. S. 2004, ApJ, 616, 403

118



Sutherland, R. S. & Dopita, M. A. 1993, ApJS, 88, 253

Taylor, G. I. 1950a, Proc. R. Soc. London A, A201, 159

—. 1950b, Proc. R. Soc. London A, A201, 175

Thompson, K. W. 1986, Journal of Fluid Mechanics, 171, 365

Tregillis, I. L., Jones, T. W., & Ryu, D. 2001, ApJ, 557, 475

Uchiyama, Y., Aharonian, F. A., Tanaka, T., Takahashi, T., & Maeda, Y. 2007,

Nature, 449, 576

Vallée, J. P. 2005, AJ, 130, 569

van der Swaluw, E. 2005, Advances in Space Research, 35, 1123

van der Swaluw, E., Achterberg, A., & Gallant, Y. A. 1998, Memorie della Societa

Astronomica Italiana, 69, 1017

van der Swaluw, E., Achterberg, A., Gallant, Y. A., Downes, T. P., & Keppens, R.

2003, A&A, 397, 913

van der Swaluw, E., Achterberg, A., Gallant, Y. A., & Tóth, G. 2001, A&A, 380, 309
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