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êx, êy, êz Orthonormal triad of element coordinate system
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′
ζ Orthonormal triad of deformed curvilinear coordinate

system
Ex,Eη,Eζ Basis vectors of deformed elastic axis
Ei Global error metric corresponding to the ithsurrogate
Eavg Average of the global error metrics for all surrogates
EIF Expected improvement function
f = 0 Function that describes the moving surface generating sound
fij Strain tensor in curvilinear coordinates
f(x) Assumed polynomials which account for the ‘global’ behav-

ior in kriging
fx Vector of basis functions associated with assumed polyno-

mials in kriging
F Matrix of basis functions associated with assumed polyno-

mials in kriging
f Generalized load vector
fp Generalized pressure vector
fb(·) Blade motion equations
ft(·) Trim equations
F Load vector in equations of motion
FT Vertical force
FH Instantaneous hub shear
FHX , FHY , FHZ Components of hub shear
F4X , F4Y , F4Z 4/rev hub shears, non-dimensionalized by m0Ω2R2

F̂4X , F̂4Y , F̂4Z Surrogates for the non-dimensional 4/rev hub shears
FNbcH,FNbsH cos and sin components of Nb/rev vibratory loads of hub

shears
FRk Resultant blade root forces for the kth blade
g Green’s function
g(D) Constraints
gx,gη,gζ Basis vectors of undeformed beam
Gx,Gη,Gζ Basis vectors of deformed beam
ga(·) Aerodynamic (RFA) state equations
gaR(·) Reduced form of the aerodynamic (RFA) state equations
gdR(·) Reduced form of the aerodynamic (ONERA) state equations
G Laplace transform of f

xx



GMSEi Generalized mean square error corresponding to the ith

surrogate
h Plunge displacement at 1/4-chord, expressed in semi-chords
he Offset of beam element in-board node from blade root
H Horizontal force
Hm Sectional hinge moment
h Generalized motion vector = [W0,W1, D0, D1]

H Laplace transform of the generalized motion vector
NH06, . . . , NH17 Noise levels of the 6th - 17th harmonics of blade passage

frequency
i =

√
−1
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ȳ Factor used to normalize errors
zk Vector of quantities to be reduced by active control
Zt Vertical offset of tail rotor center from hub
Z(x) Realization of a stochastic process in kriging
α Amplitude of warping
α Angle of attack of the airfoil
αA Blade local angle of attack
αcr Critical angle of attack of the airfoil (ONERA)
αr Control algorithm relaxation factor
αR Rotor shaft angle of attack

xxv



βp Blade precone angle
β(x) Pretwist angle distribution along the blade
βββ Vector of coefficients used in kriging

β̂ββ Generalized least squares estimate of βββ
β0, βi, βij Fitting coefficients in polynomial regression
γηζ , γxζ , γxη Shear strain components
γ̄xη, γ̄xζ Transverse shears at elastic axis
δ Dirac delta function
δf Flap deflection angle
δmax Maximum flap deflection
δij Kronecker delta
δu Virtual displacement vector of elastic axis
δΘ Virtual rotation vector of elastic axis
∆CL,∆CM ,∆CD Empirical quantities used in Petot’s dynamic stall model
∆τ Dynamic stall nondimensional delay
εpr Approximation error in polynomial regression
ε Absolute percent error of surrogate predictions
εxx, εηη, εζζ Normal strain components
ε̄xx Axial strain at elastic axis
λx, λy, λz Induced velocity components
λk Hover stability eigenvalue for the kth mode
φ Elastic twist about the elastic axis
φw Wake age
φR Lateral roll angle
φden Normal density function
Φdist Normal distribution function
ρ Air density, also mass density of beam
ρfiller Material density for non-structural filler mass
ρstruct Material density for the structural member of the blade
γ Lock number
γi Rational approximant poles
γn Poles for RFA
γs Strength of shed vorticity
γt Strength of trailed vorticity
Γj2 States associated with dynamic stall
Γ(r) Circulation distribution
ΓI ,ΓO Inboard and outboard circulation peaks, in dual wake model
η, ζ Curvilinear coordinates

xxvi



ηc, ζc Coordinates in the flap attached coordinate system
µ Advance ratio = V∞ cosα/ΩR

κη, κζ Curvatures of the deformed beam
[κ] Transformation matrix between (ê′x, ê
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Chapter I

Introduction and Literature Review

Due to their unique capacity for low speed maneuverability and vertical takeoff, heli-

copters fulfill a variety of military and civil missions which are beyond the capabilities of

fixed wing aircraft. However, high vibration and noise levels limit the helicopter’s com-

munity acceptance and mission effectiveness. While many sources, including the main

rotor, tail rotor, engine, and gearbox, contribute to the overall vibration levels and noise

generation, the dominant source of vibration and noise is the main rotor. Since the state

of rotorcraft technology is relatively mature, design improvements are achieved through

“evolution, not revolution [146]”, of current configurations. Therefore, improved main

rotor blade designs are critical to the development of advanced rotorcraft.

Vibratory loads transferred from the main rotor to the fuselage, at harmonics that are

predominantly Nb/rev, have been a critical concern from the earliest days of rotorcraft de-

velopment [54, 97, 127]. In addition to passenger comfort, reliability and fatigue life of

components are adversely affected by vibration. Although significant levels of vibration

reduction have been achieved over the past 50 years, modern helicopters still do not meet

the ultimate goal of a “jet smooth” ride. Depending on the flight regime, different phenom-

ena will be responsible for significant vibratory loads on the blades. At low advance ratios,
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(a) BVI (b) Dynamic stall
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Figure 1.1: Illustrations of BVI and dynamic stall

i.e. low speed forward flight, and descending flight, relatively high vibration levels are

produced by blade-vortex interaction (BVI) effects which occur when the rotating blades

encounter the tip vortices shed by the preceding blades, as illustrated in Fig. 1.1(a). At high

advance ratios, the dominant source of vibratory loads is dynamic stall, which is charac-

terized by flow separation on the retreating side of the rotor plane as shown in Fig. 1.1(b).

Therefore, effective design aimed at vibration reduction needs to address vibration char-

acteristics throughout the entire flight envelope. Furthermore, significant increases in op-

erational costs due to active and/or passive vibration reduction approaches would prevent

implementation in production helicopters. Therefore, vibration reduction approaches must

not increase the power consumption associated with the main rotor. This is important at

higher advance ratios since the helicopter is likely to spend most of its mission profile in

cruising flight.

The physical sources and characteristics of rotor noise vary with flight speed, maneuver,

and descent condition. At high speed level forward flight, compressibility and transonic
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effects at the tip produce high-speed impulsive (HSI) noise, which is beyond the scope of

this study. The focus of this study is on high noise levels associated with helicopters in

low speed approach flight conditions, which significantly limit the community acceptance

of civilian rotorcraft, and may affect the likelihood of detection during military missions.

In order to meet FAA flyover noise level requirements as well as military specifications,

a substantial body of research has been aimed at modeling and reduction of low speed

noise due to BVI effects [172]. Furthermore, since high vibration and noise levels at low

advance ratios are due to the same sources, reduction of BVI induced vibration and noise

must be treated simultaneously in order to eliminate potential penalties associated with

seeking improvement in only one of these effects.

Precise modeling of the blade’s aeroelastic response is critical for accurate vibration

and acoustic predictions. The aeroelastic response of helicopter rotor blades in forward

flight is characterized by the interaction of the rotor blade with the unsteady aerodynamic

environment, and is inherently multidisciplinary [43]. Therefore, comprehensive rotorcraft

analysis codes are necessary for vibratory hubload and noise level predictions. However,

due to the complex rotary wing aerodynamic environment, such analysis codes are com-

putationally expensive, which has limited their use for design optimization applications.

Reviews of the current state of rotorcraft analysis codes and requirements for the next gen-

eration can be found in Refs. 25, 40, and 79.

Substantial effort has been devoted toward improved rotor blade vibration, noise, and

performance characteristics. A review of the relevant studies is provided in order to pro-

vide perspective on the contributions made in this research. Sections 1.1 – 1.3 pertain
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to studies devoted to individual treatment of vibration reduction, BVI noise reduction, or

performance enhancement when considered as single objectives. Multi-objective investi-

gations are documented in Section 1.4. A review of techniques designed for optimization

of expensive objective functions, and the limited number of applications of such methods

to rotor blade design, is provided in Section 1.5. Finally, the objectives and contributions

of this dissertation are presented in Sections 1.6 and 1.7 respectively.

1.1 Review of Vibration Reduction Literature

The focus of this thesis is on vibratory hubloads associated with the main rotor. Thus,

other sources of vibration, such as the engine and gearbox, are not considered.

1.1.1 Passive Vibration Reduction

The earliest and most widely implemented approach to vibration reduction involves the

use of passive and semi-passive devices such as cabin suppressors and isolators. How-

ever, these devices have significant weight penalties and are tuned for particular operating

conditions and payloads [97, 127]. Furthermore, such devices do not decrease vibration at

the source, i.e. the main rotor, as opposed to the use of structural optimization to modify

the mass, stiffness, and geometric properties of the rotor blade. Therefore, structural op-

timization is the passive approach upon which this thesis is focused. In this approach, the

vibration reduction problem is formulated as a mathematical optimization problem subject

to appropriate constraints. The objective function consists of a suitable combination of

the Nb/rev hub shears and moments which are computed by an aeroelastic response code;
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constraints are specified on blade stability margins, frequency, blade geometry, autorota-

tional properties, and blade stresses. The design variables can be dimensions of the blade

cross-section, mass and stiffness distributions along the span, or geometrical parameters.

Survey papers on structural optimization of helicopter rotor blades have been written by

Friedmann, Celi, and Ganguli [13,39,49]; therefore only the key representative studies are

discussed below.

Friedmann and Shanthakumaran [45] were the first to consider minimization of vibra-

tion with aeroelastic stability constraints. The objective function consisted of the peak-to-

peak 4/rev vertical hub shear or rolling moment at an advance ratio µ = 0.30, and behavior

constraints were placed on the blade frequencies and aeroelastic stability margins in hover.

In order to overcome the significant computational cost associated with objective function

evaluations, a local search of the design space was conducted in the vicinity of a single

design point by optimizing Taylor series approximations of the objective function. Vibra-

tion reduction of 15 − 40% was achieved for an isotropic soft-in-plane configuration. The

results demonstrated that non-structural masses are most effective for vibration reduction

when distributed over the outboard 1/3 of the blade. Furthermore, while the blade was

optimized at µ = 0.30 only, it was shown that the optimum design corresponded to re-

duced vibration at other advance ratios. Based on the results from this study, most of the

subsequent vibration reduction studies only considered optimization at µ = 0.30.

Lim and Chopra [93, 94] employed the local search algorithm CONMIN [155], which

is based on the method of feasible directions. As an alternative to numerically calculating

gradients required by CONMIN, Lim and Chopra utilized analytical sensitivity relations in
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which derivatives of the vibration objective function and stability constraints were written

in terms of the design variables. Using this approach, 20 − 50% vibration reduction was

obtained, and an 80% reduction in computer time compared to optimization with finite

difference methods was reported. However, this approach breaks down when using modern

free-wake and unsteady aerodynamic models because it becomes extremely complicated to

obtain analytical, or semi-analytical sensitivity relations [13]. Other contributions from

Refs. 93 and 94 include the use of a coupled trim/aeroelastic response analysis, and the

introduction of a vibration objective function in which the three hub shears and three hub

moments are combined.

Yuan and Friedmann [174,175] studied optimization of composite rotor blades with ad-

vanced geometry tips. The aeroelastic response analysis was based on a relatively simple

quasi-steady, incompressible aerodynamic model with a uniform inflow assumption. Sim-

ilar to Ref. 45, a local search of the design space was conducted using local Taylor series

approximations of the objective function and the DOT optimization package [128]. The

authors concluded that proper combination of composite ply angles and tip sweep/anhedral

can be used to reduce vibrations while improving aeroelastic stability characteristics.

The representative studies discussed above were based on relatively simple aerody-

namic models. Modern rotary wing aeroelastic analyses model unsteady aerodynamics,

dynamic stall, and distortion of the wake geometry due to self-induced velocities. Ganguli

and Chopra [50, 51] examined the effects of using low fidelity aerodynamics in vibration

reduction studies. In Refs. 50 and 51, composite rotor blades were optimized at µ = 0.30

using a quasi-steady aerodynamic model with a linear inflow assumption. Using the opti-
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mum design, a higher fidelity aeroelastic analysis, which included a free-wake model [136]

and an unsteady aerodynamic model with dynamic stall effects [92], was conducted. Al-

though the low fidelity analysis underpredicted the vibration levels, the resulting optimum

design produced similar levels of vibration reduction compared to the analysis based on

free-wake and unsteady aerodynamic models for 0.15 ≤ µ ≤ 0.40. However, the blade

was not optimized using the high fidelity aeroelastic analysis. Thus, there was no compar-

ison between the original optimum design and that which would have been obtained with

the more accurate aerodynamic model.

While the studies described above were purely computational, optimized blade designs

have been experimentally validated in Refs. 26, 164, and 169. Although the analysis codes

employed in the studies did not always accurately predict the experimentally measured

loads, the optimum designs corresponded to reduced vibrations in wind tunnels. These

studies indicate that numerical optimization based on analysis codes is an effective ap-

proach to rotor blade design.

It is important to note that none of the previous studies compared optimum designs

corresponding to different advance ratios. While the results from Refs. 45, 50, and 51

demonstrate that optimizing at one advance ratio can lead to vibration reduction at other

advance ratios, selection of the best design for vibration reduction over the entire flight

envelope was not addressed.
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(a) Dual servo flap configuration
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Rotor Hub

Pitch Link

(b) Single plain flap configuration

Figure 1.2: Helicopter rotor blades with partial span trailing edge flaps

1.1.2 Active Control of Vibration

Similar to the passive approach based on structural optimization, active vibration re-

duction using onboard devices has been extensively investigated. A comparison of the

principal active control approaches is provided in Ref. 44, and more recent reviews of the

applications of such techniques can be found in Refs. 20, 95 and 116. Among the various

techniques, partial span actively controlled flaps (ACF’s), which are depicted in Fig. 1.2,

have emerged as an attractive means of active control due their low power requirement

compared to blade root actuation approaches [44]. Therefore, active control is implemented

with ACF’s in this study. This approach is usually denoted as individual blade control (IBC)

because control inputs are introduced in the rotating system and different control inputs can

be provided to each blade.

Deflecting the ACF effects vibratory loads due to induced time dependent elastic twist,

which results in a redistribution of the unsteady aerodynamic loading. Millott and Fried-

mann [103] conducted the first computational study which demonstrated that active control

with ACF’s was an effective means of vibration reduction. A modified version of quasi-
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steady Theodorsen’s theory was used to model the aerodynamic loads for the blade/flap

combination, and the control algorithm was based on higher harmonic control (HHC) [76].

Using a servo-flap configuration, active control resulted in 80 − 90% reduction of the vi-

bratory loads at µ = 0.30. Although the level of vibration reduction was comparable to

IBC implemented through blade-root actuation, the ACF system required almost an order

of magnitude less power.

Myrtle and Friedmann [108, 109] extended the work in Ref. 103 to include a two-

dimensional, compressible, unsteady aerodynamic model based on a rational function ap-

proximation (RFA) approach. The results indicated that the ACF remained an effective

means of vibration control when including the effects of compressibility and unsteadiness,

even though larger flap deflections are required. A free-wake model was subsequently in-

cluded in the analysis in order to accurately model BVI induced vibration at low advance

ratios [28]. Over 80% vibration reduction under BVI conditions was reported in Ref. 28.

Since dynamic stall is the dominant source of vibration at higher speeds, active control

of vibration due to dynamic stall was investigated by Depailler and Friedmann [30–32]. For

the separated flow regime, unsteady aerodynamic loads were calculated using the ONERA

dynamic stall model [121]. The aerodynamic states associated with the RFA attached flow

and the ONERA separated flow models were combined to produce the time-domain, state

space aerodynamic model. Furthermore, a simple linear drag model which accounts for the

increase in drag due to flap deflection was implemented [31].

In addition to computational studies, the effectiveness of active vibration reduction us-

ing ACF’s has been experimentally validated [27, 33, 47, 87, 102, 150–152]. Although an
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active vibration control system based on ACF’s has yet to be implemented on a production

rotor, the numerous computational and experimental studies have demonstrated the effec-

tiveness of the approach for vibration reduction under BVI and dynamic stall conditions.

Based on the computational and experimental results demonstrating that structural opti-

mization and active control with ACF’s are effective means of vibration reduction, it is clear

that optimum rotor design should take advantage of the benefits associated with active and

passive approaches. Zhang, Smith, and Wang [177, 178] were the first to demonstrate the

value of an active/passive approach to vibration reduction based on structural optimization

and ACF’s. In Refs. 177 and 178, the optimization algorithm was based on the method of

feasible directions [128], which is a local search method. Aerodynamic loads on the blade

were calculated with quasi-steady blade element theory using the UMARC comprehensive

rotorcraft analysis code [6]. The effects of dynamic stall were not modeled. Calculation of

the unsteady loading due to arbitrary motion of the trailing edge flap was based on the indi-

cial concept [63], and the non-uniform inflow distribution was determined by a free-wake

analysis [5]. The blade was modeled as a beam undergoing small strains and moderate de-

flections using the finite element method. The results showed that the active/passive method

can produce much lower vibration levels compared to utilization of only one approach at

µ = 0.15 and µ = 0.30. Furthermore, it was demonstrated that optimizing the blade/flap

combination simultaneously can lead to superior levels of vibration reduction compared

to the sequential approach of adding ACF’s to structurally optimized designs. The effects

on noise levels and the required rotor power were not considered. Thus, the simultaneous

blade/flap optimization approach employed in Refs. 177 and 178 was not formulated for
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multi-objective design applications.

1.2 Review of BVI Noise Reduction Approaches

The physical mechanisms of noise generated by the main rotor are well documented

[135], and significant advances in acoustic modeling have been made over the past 40 years

[11]. At low speeds, and especially during descent, high frequency pressure fluctuations

induced by BVI result in a distinct impulsive sound [172]. Blade-vortex interaction noise is

particularly troublesome because: (1) it is very intense during descending flight, which is

characteristic of a helicopter approaching for landing over a populated area, (2) BVI noise

tends to propagate out of the plane of rotation, which makes it more audible to observers on

the ground, and (3) the impulsive nature produces sound harmonics which are particularly

annoying to the human ear.

1.2.1 Passive Reduction of BVI Noise

Passive methods of noise reduction have focused on modification of the geometric char-

acteristics of the blade, such as planform shape and tip sweep/anhedral. Yu [172] docu-

mented various computational and wind tunnel studies in which taper and sweep of the

blade tip were shown to produce 3 − 6 dB of noise reduction. Although modification of

the blade’s planform geometry has been established as an effective means for BVI noise

reduction, structural optimization of the blade’s mass and stiffness distribution for noise

reduction was never examined in previous studies.
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1.2.2 Active Control of BVI Noise

Trailing edge flap deflections can modify the aerodynamic loading on the blade, which

in turn effects parameters known to have an affect on BVI noise, such as tip vortex strength

and blade-vortex miss distance. As in the case of vibration reduction, the ACF’s have also

been shown to be effective for BVI noise reduction in a variety of computational and exper-

imental studies [172, 173]. Using primarily open-loop control inputs, typical levels of BVI

noise reduction of 4 − 7 dB have been reported in wind tunnel tests [27, 157]. In addition

to computational studies based on approximate aerodynamic models [4,16,119], a study of

the effects of ACF’s on BVI noise using a high fidelity CFD aerodynamic model was pre-

sented in Ref. 3. Based on various open-loop control inputs, up to 5.6 dB noise reduction

was reported, and it was shown that the lowest peak sound pressure levels corresponded

to the largest blade-vortex miss distances. It is worth noting that the significance of the

blade-vortex miss distance has been noted in studies based on approximate aerodynamic

models, such as Refs. 116 and 120.

1.3 Review of Performance Enhancement Studies

For the purposes of this study, helicopter performance is characterized by the required

power to drive the main rotor, which is a function of drag. Modification of the blade design

can lead to power reduction due to the effects on induced drag and profile drag.
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1.3.1 Passive Approaches to Performance Enhancement

Walsh [158] studied structural optimization of the blade’s spanwise variation of chord

and pretwist for power reduction in hover, with a constraint on the drag in forward flight. In

Ref. 158, CAMRAD [74] was used to calculate the required rotor power in forward flight.

The aerodynamic model for both hover and forward flight was based on experimental two-

dimensional airfoil data. The forward flight analysis was conducted with both a uniform

inflow model and a prescribed wake, and the CONMIN local optimization code was used to

search the design space. When optimizing at hover, 5− 7% power reduction was reported.

Although the blade was optimized for hover, the power required by the optimum designs

at µ = 0.30 was 8 − 11% lower than the reference blade. It was concluded that wake

models should be included in the analysis since optimization with and without a wake

model resulted in different blade designs.

He and Peters [64] considered structural optimization of the spanwise chord and pretwist

distribution for performance enhancement at hover, with a constraint on the blade stresses.

Power required by the main rotor was calculated from combined blade element and mo-

mentum theory with Prandtl’s 2-D tip loss factor [75]. The optimum design corresponded

to 4% power reduction. Furthermore, the results indicated that the stress constraint was ac-

tive for this problem. It should be noted that interactions between the airloads and structure

were not modeled in this study.
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1.3.2 Active Control for Performance Enhancement

As in the cases of vibration and noise reduction, active control of the aerodynamic en-

vironment has shown potential for performance enhancement. Performance enhancement

of 4 − 7% has been reported in previous studies which utilized blade root actuation ap-

proaches, i.e. higher harmonic control (HHC) and conventional individual blade control

(IBC) [18, 19, 71, 138, 153]. Use of the ACF for performance enhancement was investi-

gated in Ref. 150, but the results were inconclusive. A preliminary computational study

of performance enhancement under BVI conditions was conducted by Patt, Liu, and Fried-

mann [118]. At µ = 0.15, it was found that power reduction could be achieved with trailing

edge flaps for a modified model of an MBB BO-105 rotor in which the fundamental torsion

frequency was under 2.5/rev.

1.4 Literature Review of Multi-Objective Studies

Since structural design of the blade and active control of the aerodynamic environment

affect vibration, noise, and performance characteristics, active and/or passive approaches

must account for the effects of improving one objective on the other. Furthermore, in order

to design a blade which corresponds to the best trade-offs between the various objectives,

multi-objective function optimization approaches are required. However, while the rotor

blade design problem is inherently multi-objective in nature, there have only been a limited

number of studies that treat it as such.
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1.4.1 Simultaneous BVI Noise and Vibration Reduction

Patt, Liu, and Friedmann [95, 116, 119, 120] established that ACF’s could be used to

simultaneously reduce noise and vibration under BVI conditions. In Ref. 119, the ef-

fect of active vibration control on noise was investigated using a computational aeroe-

lastic/aeroacoustic model which was validated against experimental data from Ref. 147.

Results were generated for a rotor resembling a full-scale MBB BO-105 rotor operating at

µ = 0.15 and a 6◦ descent angle. The controller was based on the HHC algorithm, with

enhancements for stability and robustness [117]. The results indicated that by enforcing

limits on the maximum flap deflections, or saturation limits, the noise increase associated

with vibration control was relatively small compared to the penalties associated with con-

ventional HHC and IBC observed in wind tunnel tests.

In a follow up study to Ref. 119, the effects of noise control on vibration, and the

effectiveness of control for simultaneous noise and vibration reduction was investigated in

Ref. 120. It was observed that vibration levels can increase when controlling for noise with

saturation limits, although the vibration penalty was not considered to be significant. By

employing a control algorithm formulated for simultaneous improvement, up to 5 dB noise

reduction on the advancing side of the rotor plane and about 40% vibration reduction was

achieved.

1.4.2 Simultaneous Vibration and Power Reduction

In Ref. 159, the study in Ref. 158 was extended to consider simultaneous reduction of

rotor power in hover and forward flight, as well as the vertical hub shear in level forward
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flight. The objective function consisted of a weighted sum of these quantities in which

the weights were selected in an ad hoc fashion, and the cross-sectional stiffnesses were

included in addition to the design variables used in Ref. 158. For one set of weights se-

lected by the authors, the rotor power was reduced by 6.5% in hover, and 4.1 − 6.7% in

forward flight. In addition, the vertical hub shear was reduced by 14%. Although the se-

lected weights resulted in a design corresponding to simultaneous vibration reduction and

performance enhancement, no attempt was made to find the best trade-off, or Pareto opti-

mal, designs. In Ref. 160, cross-sectional dimensions were added as design variables in a

“lower-level” optimization problem in which the goal was to recover the optimum set of

cross-sectional stiffnesses. The lower-level problem was subject to a stress constraint.

The potential for simultaneous vibration and power reduction with ACF’s in a servo-flap

configuration was investigated in Ref. 96. The analysis included the ONERA dynamic stall

model [121] and a linear increase in drag with respect to flap deflection [31]. Compared

to a baseline rotor resembling an MBB BO-105, performance was enhanced by 1.73% at

µ = 0.35 using a single flap. However, the vibratory loads were increased by over 100%

when controlling for power reduction. When controlling for simultaneous reduction at

various thrust coefficients, 0.40−1.82% power reduction and 47−68% vibration reduction

was achieved. The results from this computational study indicate that not only can active

control with ACF’s reduce vibration without incurring a penalty in power consumption, but

simultaneous vibration reduction and performance enhancement can be achieved.
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1.4.3 Simultaneous Noise and Power Reduction

Zhao and Xu [179] experimentally investigated the performance and noise characteris-

tics of an advanced geometry blade with a curved and swept tip known as the CLOR (China

Laboratory of Rotorcraft) tip. A computational analysis based on Navier-Stokes, compress-

ible potential flow, and free-wake models was used to design the CLOR tip. Experimental

tests in hover demonstrated that the CLOR blade required less torque to maintain a constant

rotational speed of 1000 RPM compared to a rectangular planform blade. Furthermore, the

CLOR blade corresponded to 1.9 − 2.7 dB less noise at two observer locations below the

rotor. It is worth noting that the CLOR blade was only compared to blades with “conven-

tional” tip shapes. So it is not clear how the CLOR blade compares with rotors resembling

production models, or with other advanced geometry low noise designs.

1.5 Review of Surrogate Based Optimization (SBO) Literature

The aeroelastic response simulations needed for vibratory load, acoustic, and power

calculations are computationally expensive due to the complex rotary-wing aerodynamic

environment, which means that numerous evaluations of the objective functions are costly.

Therefore, direct combination of the objective functions generated by an aeroelastic re-

sponse simulation with traditional optimization algorithms is not computationally tractable.

Moreover, traditional optimization search algorithms can converge to local optima, which

are known to occur for this class of problems.

To overcome these obstacles, approximation concepts have been used. A widely used
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approach in rotor blade optimization studies for approximating the objective function and

constraints is to use Taylor series expansions about local design points [134]. The deriva-

tives needed for the Taylor series are calculated using finite difference formulas, or analyt-

ical sensitivity derivatives. These approximations of the objective function and constraints

are used to replace the actual problem with an approximate one that is used in conjunction

with an optimizer to obtain an optimal design. Representative examples of the application

of this method to the rotor blade optimization problem are provided in Sections 1.1 and 1.3.

The disadvantages of this method are that it utilizes a local approximation in the vicinity

of a design point and a local search procedure. Even when augmenting such methods with

move limits or a trust region strategy [2, 168], convergence is only guaranteed to a local

optima.

An alternative to local search methods is to use computationally efficient global ap-

proximation, or surrogate, concepts; i.e. methods which try to capture the behavior of a

function over the entire design space. While local Taylor series approximations can also

be classified as surrogates, for the purposes of this study surrogates will refer to global

approximations. The advantages of surrogate-based optimization (SBO) with global ap-

proximations are threefold: fewer “true” function evaluations (thus fewer expensive aeroe-

lastic simulations), the formulation is conducive to parallel computing, and the approach

facilitates a more global search of the design space.

Since techniques for constructing the surrogates have been thoroughly reviewed in sev-

eral recent papers [17,123,140,142,161], a review of the numerous approximation methods

is not presented in this thesis. Details pertaining to the various approximation methods em-
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ployed in this study are presented in Section 7.3. A review of the various frameworks for

using surrogates to locate optimum designs is presented in this section so that the methods

employed in this study can be placed in context relative to the modern approaches devel-

oped by optimization researchers, and those which have been used for rotor blade design

applications. Single objective function approaches are reviewed in Sections 1.5.1 – 1.5.3,

and multi-objective function optimization frameworks are discussed in Section 1.5.4. The

studies representing the current state of SBO techniques which have been applied to rotor

blade design are described in Section 1.5.5.

1.5.1 One-shot Approaches

One-shot approaches refer to methods in which the surrogate objective function is op-

timized directly, and the computationally expensive objective function is evaluated at the

predicted optimum to obtain the “actual” characteristics of the design. The predicted de-

sign is accepted as the actual optimum and the surrogate is not updated with information

from the expensive function evaluation regardless of differences between the predicted and

actual responses. One-shot approaches enable the use of global optimization algorithms

which require numerous evaluations of the objective function, such as genetic algorithms

or simulated annealing, since the prediction time associated with surrogates is negligible

compared to the cost of evaluating the expensive analysis code.

Simpson et al. [141] examined the performance of 2nd order polynomial response sur-

faces [107] and kriging surrogates [131] for optimum nozzle design of an aerospike rocket

engine. The nozzle was characterized by 3 design variables and the surrogates were con-
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structed from 25 fitting points generated by an orthogonal array [111]. For both the polyno-

mial and kriging surrogates, the predicted responses at the optimum designs were less than

5% different from the actual values. These results demonstrated that the surrogates were

accurate representations of the objective functions at the optimum designs. The authors

concluded that both approximation methods were equally suited for design optimization.

In another illustrative example of one-shot optimization, Palmer and Realff [114, 115]

considered minimization of an ammonia synthesis plant’s operating costs. The operating

cost consisted of the summation of 8 underlying responses and was a function of 6 design

variables. Latin hypercube sampling [100] was used to generate 16 fitting points and two

methods were considered for creating kriging and 2nd order polynomial approximations of

the objective function: (1) the overall response was directly approximated, and (2) the 8

underlying responses were approximated, which were then summed to form the surrogate

objective function. The kriging models led to superior designs compared to the polynomial

response surfaces when fitting the underlying responses. However, the opposite trend was

observed when directly approximating the objective function. Furthermore, in contrast to

the study described in Ref. 141, the surrogates were not accurate at their predicted optima.

Zerpa et al. [176] applied SBO to the design of an alkaline-surfactant-polymer (ASP)

flooding process for maximum oil production. In addition to 2nd order polynomials and

kriging, a radial basis function (RBF) surrogate [110] was considered. Furthermore, com-

bining the individual surrogates using a weighted sum approach was an important contri-

bution of Ref. 176. The weights associated with each surrogate were based on a pointwise

estimate of the prediction variance associated with each model; i.e. surrogates with lower
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variance were assigned more weight. The ASP was characterized by 4 design variables and

the surrogates were constructed from 66 and 88 point Latin hypercubes. Optimum designs

associated with the 3 individual surrogates and the weighted average model were located

by the DIRECT [80] global optimization algorithm. The kriging surrogate led to the best

design when using the 66 point data set. However, rather than assume that kriging will re-

sult in the best design when using the 88 fitting points, all of the surrogates were optimized

for the larger data set. The results showed that the polynomial response surface based on

88 fitting points led to the best design instead of kriging. For this problem, assuming that

kriging is the best approximation method based on the results with 66 fitting points would

have led to an inferior design when considering 88 fitting points. However, applying a mul-

tiple surrogate approach protected against this. Furthermore, the weighted average models

led to designs which were almost as good as the best designs obtained with the individual

approximation methods. In Ref. 60, the weighted average surrogate approach was extended

to include a global error metric for determining the weights.

1.5.2 Updating Approaches

One-shot optimization of a surrogate objective function may lead to poor designs if the

approximate objective function is not accurate everywhere in the designs space. To protect

against this, an updating approach proceeds as follows:

1. Potential optima are obtained by optimizing the surrogate objective function.

2. The high fidelity simulation is evaluated at the predicted optima in order to obtain

the actual value of the objective function.
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3. The additional sample data is added to the original fitting data and the surrogate is

recalibrated.

4. The process is repeated until a stopping condition is reached.

In an updating approach, the likelihood of being led to a poor design is decreased as the

number of iterations is increased. Note that the one-shot approach does not involve steps 3

and 4. Some recent implementations of updating approaches are described next.

In the approach developed by Wang, Shan, and Wang [162], a global RBF is con-

structed from all available fitting points in the current iteration. Next, a mode-pursuing

sampling (MPS) algorithm [46] identifies additional fitting points in the vicinity of the

RBF’s predicted optimum, or mode. A local 2nd order polynomial response surface is then

constructed in the vicinity of the mode and used to determine whether the global optimum

is within the sub-region. The MPS method successfully located the global optimum cor-

responding to various analytical test functions and design problems ranging from 2 − 16

design variables. However, the performance of the algorithm was not compared to other

SBO approaches.

Won and Ray [167] proposed a genetic algorithm based framework for SBO. The algo-

rithm is initialized with randomly selected design points, which are used to construct RBF

or kriging surrogates. The elite designs from the data set are selected for mating, and the

fitness measure, i.e. the objective function, is evaluated using the surrogates at each child

design. The child designs which the surrogate predicts to be elite are selected for evaluation

by the expensive analysis code, and a new set of “actual” elites is generated. If the stopping

condition is not reached, the surrogates are recalibrated with the additional fitting data, a
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new generation of children are obtained, and the process is repeated. The framework was

tested on problems with 4− 10 design variables and the results demonstrated that superior

designs were obtained compared to a non-surrogate based optimization approach.

Regis and Shoemaker [125] described various improvements over existing updating

approaches based on RBF’s. The methods were designed to improve the convergence to the

global optimum when multiple local optima exist. Sixteen computationally inexpensive test

functions with 2−10 design variables were used to demonstrate the effectiveness of the new

strategies. The results indicated that the improved RBF frameworks outperformed existing

methods for some of the test problems, while maintaining performance for the others. The

proposed optimization algorithms were not tested on a computationally expensive design

problem.

In some design applications, various levels of fidelity are available in the analysis codes.

For instance, low fidelity models can be used for the initial conceptual design, and models

which incorporate the full physics are used for the final analyses. Gano et al. [52, 53]

developed a surrogate framework in which the bulk of the optimizer’s objective function

calls are to the relatively inexpensive low fidelity model. In order to guarantee convergence

to the optimum design corresponding to the computationally expensive high fidelity model,

a correction factor is used to convert the low fidelity analysis outputs to the values predicted

by the high fidelity analysis. The correction factor is evaluated at number of design points

throughout the designs space, and based on the fitting data, a kriging approximation of the

factor is generated. Using the approach proposed in Refs. 52 and 53, convergence can only

be guaranteed to a local optima since the variable fidelity approach is executed within a
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trust-region framework.

1.5.3 Updating Approaches Based on Explicit Measures of Uncertainty

Updating the surrogate represents the conventional method of accounting for uncer-

tainty in the surrogate’s predictions since the optimum design is iterated upon rather than

accepting the first potential optimum returned by the one-shot approach as the “true” opti-

mum. However, if the optimum lies in a region of the design space in which the surrogate is

inaccurate, then a significant number of iterations may be required to locate it since conven-

tional updating approaches only sample designs which the surrogate predicts to be optimal,

regardless of the error in the predictions.

As a more efficient alternative to conventional updating approaches, Jones, Schonlau,

and Welch [82] introduced the Efficient Global Optimization (EGO) algorithm, which in-

cludes an explicit measure of the uncertainty in the surrogate’s predictions as part of the

criteria for selecting additional sample points. The uncertainty measure and a term repre-

senting probability of improvement over the current best design are combined to form the

expected improvement function (EIF). The design space is sampled at points corresponding

to the highest expected improvement. Therefore, the EGO algorithm facilitates a balanced

search of the design space by sampling in regions where the surrogate predicts improved

designs to be located and in regions where there is much uncertainty in the surrogate’s

predictions. By accounting for prediction uncertainty, EGO does not require numerous it-

erations to locate optima which the surrogate cannot accurately predict. It should be noted

that EGO was originally formulated for deterministic computer models, which is the appli-
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cation considered in this research; however, the algorithm has been adapted for computer

models with random errors [70].

Several improvements to the original EGO algorithm were proposed in Refs. 132 and

133, including approaches for handling nonlinear constraints and the use of various sample

criteria. A generalized expected improvement function was suggested for controlling the

balance between searching in regions of high uncertainty and in regions corresponding to

predicted improvement. The user can dictate the emphasis of the search with EGO by

selecting a single integer parameter in the generalized expected improvement function.

However, there is no clear method of selecting the parameter. In Refs. 132 and 133,

different sampling criteria were tested on various test problems and multiple metrics were

used to evaluate their effectiveness. A single sampling criteria did not distinguish itself as

the best in terms of all metrics. It was concluded in Ref. 132 that nonlinear constraints

could be treated effectively by enforcing the constraints when maximizing the sampling

criteria.

Sóbester, Leary, and Keane [143] proposed a parallel updating version of the EGO algo-

rithm in which multiple designs are selected for sampling during each iteration, as opposed

to only selecting the design with the highest expected improvement. The authors proposed

that a number of local optima of the expected improvement function should be identified

during each iteration of EGO. The EGO algorithm is then updated with fitting data cor-

responding to a number of local optima equal to the number of available processors. In

Ref. 143, the parallel updating approach and non-surrogate based optimization methods –

i.e. no approximations of the objective function combined with genetic algorithms or gra-
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dient based search methods – were used to find the optima of closed form five-dimensional

test functions. The test functions were not computationally expensive to evaluate, and were

only used to test the SBO method. Not only did the parallel updating algorithm converge to

the optima in less time, but the optima were superior to those obtained from conventional

optimization algorithms which did not utilize surrogate objective functions.

In addition to the parallel updating scheme, Sóbester, Leary, and Keane [144] intro-

duced the weighted expected improvement function (WEIF), which utilizes a user defined

parameter to control the balance between searching in regions of high uncertainty and in

regions corresponding to predicted improvement. As opposed to the generalized expected

improvement function [133], the relative impact of different values of the weight parame-

ter on the expected improvement function is easy for the user to understand. The results in

Ref. 144 demonstrated that the weight settings which led to the optimum in the fewest ob-

jective function evaluations differed for various test problems. For most of the test problems

considered in Ref. 144, the WEIF outperformed other optimization algorithms, including

EGO based on the conventional EIF.

An algorithm which sequentially improves the global accuracy of a surrogate was pro-

posed in Ref. 36. A measure of uncertainty, or “irregularity,” is used to identify regions in

the design space where additional sampling is likely to produce the greatest gains in model

accuracy. The algorithm places more points in regions where the actual function is likely

to exhibit irregular, i.e. multi-modal, behavior since less points are needed to capture the

behavior in regions where the function is not changing rapidly. The algorithm is only de-

signed to increase the global accuracy of the surrogate, and thus does not account for any
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measures of improvement over the current best design.

It is worth noting that an important limitation of the EIF is that the uncertainty measure

is based on a single approximation method, and EGO may perform poorly if the uncer-

tainty measure is a poor representation of the error in the surrogate’s predictions [81]. As

an alternative, it is possible to generate a measure of prediction uncertainty which is based

on multiple surrogates, and thus less susceptible to potentially deceptive error measures

derived from a single approximation method. The multiple surrogate approach employed

in Ref. 176 was extended by Goel et al. [60] to include a measure of prediction uncertainty.

The variance associated with the predictions from the multiple surrogates was proposed as

an uncertainty measure - i.e. the uncertainty is directly proportional to the amount of dis-

agreement in the surrogates’ predictions. However, combining the multiple surrogate based

uncertainty measure with a predicted improvement metric into an “expected improvement-

like” function has not been studied and is beyond the scope of this thesis.

1.5.4 Multi-Objective Frameworks

The SBO approaches described in Sections 1.5.1 – 1.5.3 have been formulated for

single-objective function optimization. However, design of aerospace vehicles is driven

by multiple objectives, and effective approaches must locate the designs corresponding to

the best trade-offs between the objectives, or the Pareto optimal designs. Therefore, the

future acceptance of SBO as a viable means of aerospace design optimization depends on

the applicability of such approaches to multi-objective function optimization problems.

The most commonly used approach to multi-objective function optimization is to com-
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bine the objectives using a weighted sum approach. Since the multi-objective function

problem is converted into a single objective function problem, the variety of methods which

have been formulated for single objective optimization can be employed. The weighted

sum approach was applied to the design of a high speed civil transport vehicle by Koch

et al. [86] In Ref. 86, 2nd order polynomial response surfaces were used to replace the

objective functions, and various trade-off designs were identified as a result of different

weighting schemes. In addition to the surrogate based multi-objective function optimiza-

tion framework, another important contribution of Ref. 86 was to examine the effects of

large numbers of design variables. To overcome issues associated with size, Koch et al.

presented approaches for eliminating relatively unimportant design variables

Knowles [84] proposed a multi-objective function optimization approach based on EGO

and the weighted sum approach. At each iteration of ParEGO (Pareto/EGO), the weights

corresponding to each objective function were randomly selected to produce a single ob-

jective function. The ParEGO algorithm then proceeded in a manner similar to the con-

ventional EGO algorithm. Therefore, the goal of ParEGO is to gradually locate all Pareto

optima, i.e. the entire Pareto front, by applying EGO to different weighted sum objective

functions for each iteration.

The major limitation of a weighted sum approach is that an evenly distributed set of

weights may not lead to a uniform distribution of designs on the Pareto front [24, 84].

To overcome this limitation, surrogates have been used to facilitate direct identification of

the entire Pareto front. Since surrogate prediction times are usually negligible, approxi-

mate objective functions can be evaluated over a set of designs which are densely spaced

28



throughout the entire design space, and the Pareto optima can be filtered from the predic-

tions. In one such study, Wilson et al. [166] considered 2nd order polynomial and kriging

surrogates for Pareto front exploration. The approximate Pareto fronts compared well with

the actual Pareto fronts for the relatively simple set of test problems considered in Ref. 166.

However, the results also demonstrated that the approximate Pareto front may be a poor

representation of the actual Pareto front if the surrogates are not sufficiently accurate.

Goel et al. [61] demonstrated the benefits of generating surrogate Pareto fronts by ap-

proximating a set of Pareto points in the objective function space. The approximated Pareto

front can be used to aid the designer in visualization of the competing objectives and to

asses trade-offs. In Ref. 61, polynomial response surfaces were used to approximate the

Pareto front and a method was proposed to determine the boundaries of the region within

which the surrogate Pareto front is valid. The approach was applied to a rocket injector

design problem, and led to an increased understanding of the interactions between the ob-

jective functions.

Keane [83] extended the EGO algorithm for multi-objective optimization by employ-

ing a modified version of the expected improvement function in which “improvement” is

achieved if a design is predicted to augment or dominate the designs in the current Pareto

set. The statistical metrics derived by Keane provided more diversely populated Pareto

fronts than a genetic algorithm based updating scheme known as NSGA-II [29] for the

problems considered. While the approach in Ref. 83 represents a statistically consistent

manner of extending the single objective EIF for application to multiple objectives, the

formulation was not compared to other methods of using the EIF for Pareto front explo-
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ration. Therefore, it is not clear if Keane’s formulation would outperform other EIF based

methods, such as ParEGO [84] or the approach described in Section 7.4 of this thesis.

Messac and Mullur [101] proposed a Pareto front exploration scheme based on a se-

quence of RBF surrogates. The framework is initialized by identifying the optimum cor-

responding to one of the objective functions, which is referred to as an anchor point. A

locally accurate RBF surrogate is constructed within the vicinity of the anchor point and

used to find the next design on the Pareto front. Another locally accurate RBF is con-

structed about the new Pareto point, and the process repeats. Therefore, the Pareto front

is gradually identified by conducting a sequence of local searches in the vicinity of known

Pareto points. However, if the next Pareto point is not located in the vicinity of a current

Pareto design, then numerous local searches in sub-optimal regions may be required before

the correct region of the design space is located. Therefore, the sequential local search

approach described in Ref. 101 may not be as effective as global search algorithms, such as

EIF-based methods, for locating designs on the Pareto front which are much different than

a current set of Pareto points.

1.5.5 Helicopter Applications

Although global optimization of helicopter rotor blades is an application which requires

SBO techniques, there has only been a limited amount of study on the benefits of such

approaches for optimum rotor blade design. Furthermore, the SBO methods which have

been considered in the helicopter literature typically lag behind the approaches described

in Sections 1.5.1 – 1.5.4, which have been developed by the optimization and statistics
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communities. The studies which characterize the state of SBO of helicopter rotor blades

are described below.

Ganguli [48] used a 2nd order polynomial global approximation of the vibration objec-

tive function and obtained 30% vibration reduction using a one-shot approach at µ = 0.30.

The 2nd order polynomial was found to be accurate only in the vicinity of the baseline

design. Murugan and Ganguli [105] extended the work described in Ref. 48 to include an

unsteady aerodynamic model, and to enhance lag mode damping. The optimum vibration

design corresponded to 18% vibration reduction, while optimization for stability enhance-

ment led to a 125% increase in the lag mode damping and a 59% increase in vibration

levels. However, designs corresponding to simultaneous vibration reduction and stabil-

ity enhancement were obtained by constraining the level of vibration increase. For future

work, the authors noted the importance of including a free-wake model in the analysis and

treating the problem in a multi-objective manner.

Lee and Hajela [90] employed a decomposition approach to optimization for vibra-

tion reduction. In Ref. 90, the blade was characterized by 42 design variables. In order

to conduct a global search of the design space with genetic algorithms, the overall prob-

lem was decomposed into more tractable sub-problems which were functions of design

variable subsets. The genetic algorithm is able to operate on each sub-problem in a rea-

sonable amount of time since each sub-problem is a function of a smaller set of design

variables. Neural network surrogates were used to maintain sub-problem coupling since

the constraints associated with each sub-problem are not independent of the design vari-

ables assigned to the other sub-problems. The neural network predictions of the objective
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function and constraints exhibited maximum errors of less than 10%, and thus were able to

accurately maintain sub-problem connectivity. The decomposition approach outperformed

an all-in-one approach in which the full 42 design variable problem was optimized with a

genetic algorithm.

In Ref. 7, surrogate based methods were applied to minimization of helicopter vibra-

tion, using 31 design variables to characterize the rotor blade. The cross-sectional design

variables were mass, center of gravity offset from the elastic axis, and the blade stiffnesses.

The analysis code Tech01 [139] was used to generate hub shears and moments, and the

stochastic process based method known as kriging interpolation was used to approximate

the objective function. The results showed that kriging could be used to find reduced vibra-

tion designs in an efficient manner. However, it is important to note that the principal focus

of Booker et al. was on the effectiveness of the SBO framework, and therefore accurate

modeling of the aerodynamic environment of a rotor blade during flight was not considered

to be important. Consequently, accurate free-wake models were sacrificed for a computa-

tionally less expensive prescribed wake model. Furthermore, no constraints were placed

on the aeroelastic stability of the blade. Thus, the model of the helicopter vibratory loads

was not sufficiently reliable to produce a realistic blade design.

A multi-objective optimization approach to blade design for reduced noise and power

consumption was studied in Ref. 21. Six design variables were used to characterize the

tip sweep and anhedral as well as the spanwise chord and pretwist distributions. The four

objective functions consisted of a noise and power objective for hover and µ = 0.28. Con-

straints on the blade design were not included in the analysis. The objective functions were
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replaced with 2nd order polynomial response surfaces which were evaluated over 4 million

random designs. The Pareto optima were filtered from the 4 million surrogate predictions,

and one Pareto design was selected for further analysis. The selected design corresponded

to 5.6% power reduction and a 0.2 dB decrease in the noise objective function at hover;

3.9% and 1.1 dB power and noise reduction respectively was observed for the forward

flight objective functions. Although optimum designs corresponded to simultaneous noise

and power reduction, the vibratory loads were significantly higher than the baseline.

1.5.6 Global Sensitivity Analysis

In addition to replacing computationally expensive objective functions in optimization,

the surrogates can also be used to replace expensive global sensitivity analysis (GSA) [145]

function evaluations. Global sensitivity analysis is used to rank the design variables in

terms of influence on the objective function over the entire design space, as opposed to

partial derivatives which estimate the local sensitivity of a function in the vicinity of a

design point. The GSA based on Ref. 145 has been used in various applications [69, 123,

154], however identification of the most important design variables using surrogates and

GSA has not been considered in previous helicopter vibration studies.

1.6 Objectives of this Dissertation

Based on the literature review, it is clear that a comprehensive examination of ac-

tive/passive rotor blade optimization, subject to multiple objectives, has not been inves-

tigated. Furthermore, the effectiveness of multi-objective SBO techniques for engineering
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design applications characterized by a large number of design variables and computation-

ally expensive function evaluations has received limited attention. Therefore, the overall

objectives of this dissertation are to (1) develop active/passive rotor blade optimization

approaches based on SBO and ACF’s, and to (2) apply the approaches to previously un-

examined multi-objective function optimization problems involving vibration, noise, and

performance characteristics. The specific objectives of this research are to:

1. Examine the applicability of several global approximation methods to the rotor blade

vibration reduction problem in forward flight by considering a flight regime subject

to significant BVI effects.

2. Illustrate the advantages of utilizing a multiple surrogate approach, including a weighted

average model, by applying such methods to the helicopter vibration reduction prob-

lem.

3. Perform surrogate based GSA to identify the most significant design variables for

helicopter vibration reduction using structural optimization.

4. Demonstrate the superiority of EGO to optimization approaches which do not ex-

plicitly account for prediction uncertainty, when employed for vibration reduction at

low advance ratios, where BVI induced vibrations dominate, as well as high advance

ratios where dynamic stall induced vibrations are critical.

5. Examine optimal blade designs for vibration reduction at these two regimes of the

flight envelope in order to determine whether these impose conflicting requirements

on the blade design.
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6. Develop multi-objective function optimization techniques based on EGO in order to

identify Pareto optimal designs which can be used for selection of the “best” design

for vibration reduction over the entire flight envelope.

7. Demonstrate the effectiveness of EGO for structural optimization of the rotor blade

to minimize BVI induced noise and identify the designs corresponding to the best

trade-offs between BVI noise and vibration characteristics.

8. Demonstrate the effectiveness of an active/passive approach based on ACF’s and

SBO for vibration and noise reduction, as well as simultaneous noise and vibration

reduction.

9. Identify the designs corresponding to the best trade-offs between vibration and per-

formance characteristics at high advance ratios in which dynamic stall effects are

significant.

10. Examine the benefits of augmenting structurally optimized designs with ACF’s and

controlling for power and vibration reduction.

11. Develop a combined active/passive optimization approach in which the blade/flap

combination is optimized simultaneously for the best trade-offs between vibration

and power reduction.
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1.7 Key Contributions Made in this Dissertation

Accomplishing the stated objective will make substantial contributions toward improv-

ing advanced blade design methodologies, and toward an increased understanding of the

effectiveness of SBO techniques for engineering design applications. The following con-

tributions are unique to this study:

1. A hover stability analysis which accounts for the aerodynamic states associated with

the RFA aerodynamic model was developed.

2. The performance of various approximation techniques for modeling helicopter vibra-

tions and leading to improved blade designs was thoroughly investigated.

3. This study represents the first application of the EGO algorithm for rotor blade design

optimization, as well as the first application of a modified EGO algorithm based on

the WEIF which is suitable for multi-objective function optimization.

4. Structural optimization of the blade’s mass and stiffness distribution for noise reduc-

tion was considered.

5. The blade optimization problem was formulated in a multi-objective manner in or-

der to locate the designs corresponding to the best trade-offs between (a) vibration

reduction throughout the entire flight envelope, (b) noise and vibration reduction at

low advance ratios, and (c) vibration reduction and performance enhancement at high

advance ratios.
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6. A combined approach, in which the blade/flap combination is optimized simultane-

ously, was developed for active/passive multi-objective optimization.
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Chapter II

Model Description and Coordinate Systems

The basic assumptions, coordinate systems, and coordinate transformations which form

the basis of the aeroelastic response model are similar to those presented in Refs. 95 and

174, and are included here for the purpose of completeness and convenience. Thorough

validation studies of the aeroelastic analysis components can be found in Refs. 28, 30, 95,

108, 116 and 174.

2.1 Modeling Assumptions

The basic assumptions used to develop the aeroelastic analysis for the blade are as

follows:

2.1.1 Structural and Kinematic Assumptions

1. The rotor blade is cantilevered at the hub, with a root offset e1 from the axis of

rotation (see Fig. 2.1).

2. The blade has a precone angle βp (see Fig. 2.2) and a built-in pretwist distribution τ0

about the reference axis of the blade.
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3. The blade has no sweep, droop or torque offset.

4. The blade is modeled by beam type finite elements along the reference axis of the

blade.

5. The blade cross section can have arbitrary shape with distinct shear center, aerody-

namic center, tension center and center of mass.

6. The blade feathering axis coincides with the reference axis of the blade.

7. The effects of transverse shear deformations and out-of-plane warping are included.

8. The blade undergoes moderate deflections, which implies small strains and moderate

rotations.

9. The blade has completely coupled flap, lead-lag, torsional, and axial dynamics.

10. The mass and stiffness properties of the blade, and its chord and pretwist, are allowed

to vary along the span of the blade.

11. Although the blade model can account for generally anisotropic materials, only isotropic

cross-sections are treated in this study.

12. The leading edge of the actively controlled flap (ACF) is attached to the trailing

edge of the blade with a series of hinges located at a number of discrete points,

constraining the flap to rotate only in the plane of the blade cross section.

13. The ACF cross section is assumed to be symmetric with respect to its major principal

axes.
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Figure 2.1: Nonrotating and rotating hub-fixed coordinate systems

14. The ACF is assumed to be inextensible.

15. The ACF is assumed to have the same pretwist distribution as the blade.

16. The structural effects of the ACF are neglected.

2.1.2 Aerodynamic Modeling Assumptions

1. The distributed aerodynamic loads in the attached flows regime are modeled using the

rational function approximation (RFA) approach, which accounts for compressibility,

unsteady free stream effects, and the presence of trailing-edge flaps.

2. The separated flow aerodynamic loads are calculated by the ONERA dynamic stall

model, which does not include the effects of flap deflection. Therefore, separated

flow loads are not modeled for blade sections with flaps.
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Figure 2.2: Preconed, pitched, blade-fixed coordinate system

3. The induced inflow is nonuniform and is obtained by a free wake analysis included

in the aeroelastic model.

4. Reverse flow effects are included by setting the lift and moment equal to zero and by

changing the sign of the drag force inside the reverse flow region (see Fig. 4.7).

5. The rotor shaft is assumed to be rigid and the speed of rotation Ω of the rotor is

constant.

6. The helicopter is in trimmed, steady, level or descending flight. Either propulsive or

wind tunnel trim can be implemented.
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Figure 2.3: Undeformed element coordinate system

2.2 Coordinate Systems

Several coordinate systems are required to fully describe the geometry and deformation

of the blade. Each coordinate system is symbolically represented by a set of orthonormal

triad. The first three systems, namely, the nonrotating, hub-fixed system (̂inr, ĵnr, k̂nr),

the rotating, hub-fixed system (̂ir, ĵr, k̂r), and the preconed, pitched, blade-fixed system

(̂ib, ĵb, k̂b), respectively, are used to position and orient the blade relative to the hub through

rigid-body motions, as shown in Figs. 2.1 and 2.2. The next two systems, (êx, êy, êz) and

(êx, êη, êζ), respectively, are used to position and orient each beam finite element relative

to the (̂ib, ĵb, k̂b) system in the undeformed configuration of the blade, as shown in Figs. 2.3

and 2.4. Another system, (ê′x, ê
′
η, ê
′
ζ), is used to represent the orientation of the local blade

geometry after deformation. A flap attached system (êx cs, êη cs, êζ cs) is used to position and

orient the control surface. These coordinate systems are similar to those used in Ref. [103].
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Nonrotating, Hub-fixed Coordinate System

The (̂inr, ĵnr, k̂nr) system, shown in Fig.2.1, is an inertial reference frame and has its

origin at the hub center. The vector înr points toward the helicopter tail; ĵnr points to

starboard; and k̂nr coincides with the rotation vector of the rotor. înr and ĵnr are in the

plane of rotation. Hub shears and moments are defined in this coordinate system.

Rotating, Hub-fixed Coordinate System

The (̂ir, ĵr, k̂r) system, shown in Fig. 2.1, also has its origin at the hub center but rotates

with a constant angular velocity Ωk̂r. The vector it coincides with the azimuth position of

the blade, while k̂r is coincident with the vector k̂nr; îr and ĵr are also in the plane of

rotation of the rotor.

Preconed, Pitched, Blade-fixed Coordinate System

The (̂ib, ĵb, k̂b) system, shown in Fig. 2.2, rotates with the blade and has its origin at

the blade root, offset from the hub center by e1îr. The vector îb coincides with the pitch

axis, which is also the undeformed reference axis of the straight portion of the blade. The

(̂ib, ĵb, k̂b) system is oriented by rotating the (̂ir, ĵr, k̂r) system about −ĵr axis by the pre-

cone angle βp, and subsequently introducing a second rotation about the rotated îr axis by

the geometric pitch angle θp. In the finite element model of the blade, the (̂ib, ĵb, k̂b) system

is the global coordinate system.
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Undeformed Element Coordinate System

The (êx, êy, êz) system, shown in Fig. 2.3, has its origin at the inboard node of the finite

element. The vector êx is aligned with the beam reference axis; while the vectors êy and

êz are defined in the cross section of the beam. For the straight portion of the blade, the

(êx, êy, êz) system has the same orientation as the (̂ib, ĵb, k̂b) system. For the swept tip

element, the (êx, êy, êz) system is oriented by rotating the (̂ib, ĵb, k̂b) system about −k̂b by

the sweep angle Λs and then about −ĵb by the anhedral angle Λa. The (êx, êy, êz) system

is also the local coordinate system for the blade finite element model. The displacement

components and the applied loads of the beam finite element are defined in this coordinate

system.

Undeformed Curvilinear Coordinate System

In the (êx, êη, êζ) system, the vectors êη and êζ are defined parallel to the modulus

weighted principal axes of the cross section; and the pretwist angle β(x) is defined as the

change in the orientation of êη, êζ with respect to êy, êz, respectively, at any location along

the beam element, as shown in Fig. 2.4. The strain components, the material properties,

and the cross section warping function are all derived in this coordinate system.

Deformed Curvilinear Coordinate System

The (ê′x, ê
′
η, ê
′
ζ) system represents the orientation of the local blade geometry after de-

formation. The orientation of the (ê′x, ê
′
η, ê
′
ζ) system is obtained by rotating the (êx, êη, êζ)

system through three Euler angles in the order of θzeta,θη and θx about êζ , rotated êη and
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Figure 2.4: Undeformed curvilinear coordinate system

rotated êx, respectively. The vector ê′x is chosen to be tangent to the local deformed refer-

ence axis.

Preconed, Blade-fixed Coordinate System

The (̂ip, ĵp, k̂p) system is identical to the preconed, pitched, blade-fixed system (̂ib, ĵb, k̂b)

when the pitch angle θp is equal to zero. The (̂ip, ĵp, k̂p) system is oriented by rotating the

(̂ib, ĵb, k̂b) about −îb by the pitch angle θp, thereby canceling the pitch rotation inherent in

the definition of the (̂ib, ĵb, k̂b) system. Blade response and blade root loads are expressed in

this coordinate system because they can be more conveniently compared to similar results

available in the literature.
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Flap Attached Coordinate System

The (êx cs, êη cs, êζ cs) system has its origin at the hinge point of the control flap, located

a distance XH behind the blade reference axis. The (êx cs, êη cs, êζ cs) system rotates with

control flap deflection δ such that the vector êx cs remain parallel to ê′x, and the vectors

êη cs and êζ cs remain aligned with the principal axes of the control surface cross-section

(Fig. 2.4)

2.3 Coordinate Transformations

The coordinate transformations between the various coordinate systems described above

are presented in this section.

Rotating to Nonrotating Transformation


îr

ĵr

k̂r


= [Trn]


înr

ĵnr

k̂nr


(2.1)

the transformation matrix [Trn] is given by

[Trn] =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.2)
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Blade-fixed to Hub-fixed Transformation


îb

ĵb

k̂b


= [Tbr]


îr

ĵr

k̂r


(2.3)

the transformation matrix [Tbr] is given by

[Tbr] =


1 0 0

0 cos θp sin θp

0 − sin θp cos θp




cos βp 0 sin βp

0 1 0

− sin βp 0 cos βp

 (2.4)

Element to Blade Transformation


êx

êy

êz


= [Teb]


îb

ĵb

k̂b


(2.5)

where

[Teb] =


1 0 0

0 1 0

0 0 1

 (2.6)

for a straight blade. The transformation for a swept tip can be found in Ref. 174
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Undeformed Curvilinear to Undeformed Element Transformation


êx

êη

êζ


= [Tce]


êx

êy

êz


(2.7)

the transformation matrix [Tce] is given by

[Tce] =


1 0 0

0 cos β sin β

0 − sin β cos β

 (2.8)

Differentiating Eq. (2.7) with respect to x gives


êx,x

êη,x

êζ,x


=


0

τ0êζ

−τ0êη


(2.9)

where

τ0 = β,x (2.10)

Deformed to Undeformed Curvilinear Transformation


ê′x

ê′η

ê′ζ


= [Tdc]


êx

êη

êζ


(2.11)
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the transformation matrix [Tdc] is given by

[Tdc] =
1 0 0

0 cos θx sin θx

0 − sin θx cos θx




cos θη 0 sin θη

0 1 0

− sin θη 0 cos θη




cos θζ sin θζ 0

− sin θζ cos θζ 0

0 1 0


(2.12)

Deformed Curvilinear to Undeformed Element Transformation


ê′x

ê′η

ê′ζ


= [Tde]


êx

êy

êz


(2.13)

the transformation matrix [Tde] is given in terms of the displacement variables u, v,

w and φ

[Tde] = [Tdc][Tce] =


1 v,x w,x

−v,xcβφ− w,xsβφ cβφ sβφ

v,xsβφ− w,xcβφ −sβφ+ τ ′ccβ cβφ+ τ ′csβ

 (2.14)

where

τ ′c = (v,x sin β − w,x cos β)(v,x cos β + w,x sin β)

and the notations cβφ, sβφ, cβ and sβ used in Eq. (2.14) are defined as

cβφ ≡ cos(β + φ), cβ ≡ cos β, sβφ ≡ sin(β + φ), sβ ≡ sin β
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Preconed, Blade-fixed to Preconed, Pitched, Blade-fixed Transformation


îp

ĵp

k̂p


= [Tpb]


îb

ĵb

k̂b


(2.15)

the transformation matrix [Tpb] is given by

[Tpb] =


1 0 0

0 cos θp − sin θp

0 sin θp cos θp

 (2.16)

Deformed Curvilinear to Flap Attached Transformation


êx cs

êη cs

êζ cs


= [Tfd]


ê′x

ê′η

ê′ζ


(2.17)

the transformation matrix [Tfd] is given by

[Tfd] =


1 0 0

0 cos δ − sin δ

0 sin δ cos δ

 (2.18)
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Chapter III

Structural Dynamic Model

The structural dynamic model is based on an analysis developed by Yuan and Fried-

mann [174, 175] which is capable of modeling composite blades with transverse shear

deformations, cross-sectional warping, and swept tips. This study is limited to the behavior

of straight isotropic blades with spanwise varying properties. The finite element model was

modified by de Terlizzi and Friedmann [28] to include the effects of trailing edge flaps.

In the structural dynamic analysis, the rotor blade is modeled as an elastic rotating beam

with constant angular velocity Ω. Precone, control pitch setting, pretwist, and root offset are

included in the model. The blade is discretized by a series of straight beam finite elements

along the reference axis of the blade. Nonlinear strain-displacement relations are derived

assuming a moderate deflection theory (small strains and finite rotations), and the equations

of motion are formulated using a finite element discretization of Hamilton’s principle. The

moderate deflection simplification is justified since helicopter rotor blades are designed

from low stress and long-cycle fatigue considerations, while large displacements imply

larger strains and thus higher stresses and increased fatigue. Therefore, it is unlikely that a
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well designed rotor blade will be subject to large displacements.

3.1 Beam Kinematics

The nonlinear kinematics of deformation is based on the mechanics of curved rods

[163, 165]. The strain components are first derived in a curvilinear coordinate system so

that the effects of pretwist is properly accounted for. These strain components are then

transformed to a local Cartesian coordinate system which the stress-strain relations are

assumed to be defined in. The kinematical assumptions used in the derivation are:

1. The deformations of the cross section in its own plane are neglected; i.e. no in-plane

warping;

2. The strain components are small compared to unity and no assumption is made re-

garding the relative magnitude between the axial and shear strains;

3. Higher order warping terms are neglected.

The position vector of a point P (x, η, ζ) on the undeformed beam is written as

r(x, η, ζ) = e1îr + heîb + xêx + ηêη + ζêζ . (3.1)
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The corresponding undeformed base vectors at point P are defined by

gx = r,x = êx − ζτ0êη + ητ0êζ (3.2a)

gη = r,η = êη (3.2b)

gζ = r,ζ = êζ (3.2c)

where the derivatives of the orthonormal triad (êx, êη, êζ) are related to the initial twist, τ0,

of the undeformed beam by


êx,x

êη,x

êζ,x


=


0 0 0

0 0 τ0

0 −τ0 0




êx

êη

êζ


(3.3)

and

τ0 = β,x (3.4)

Since the in-plane deformations of the beam cross-section are neglected, the position vector

of the point P in the deformed configuration can be written as

R(x, η, ζ) = R0(x) + ηEη + ζEζ + α(x)Ψ(η, ζ)ê′x (3.5)

where

R0(x) = R(x, 0, 0) (3.6)
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is the corresponding position vector of a point on the deformed reference axis; and

Ei(x) = R,i(x, 0, 0), i = x, η, ζ (3.7)

are the basis vectors of a point on the deformed reference axis. In Eq. 3.5, the first three

terms represent translations and rotations of the cross-section, and the last term is the out-

of-plane cross-sectional warping. The unknown warping amplitude is given by α(x) and

Ψ(η, ζ) is the out-of-plane warping shape function, with

Ψ(0, 0) = Ψ,η(0, 0) = Ψ,ζ(0, 0) = 0 (3.8)

The warping shape functions are based on the St. Venant solution of a tip-loaded prismatic

beam [88] and thus are known for a given cross-section.

With the assumption that in-plane deformations of the beam cross-section are neglected,

the deformed reference axis basis vectors are expressed as [165]

Ex = (1 + ε̄xx)ê
′
x (3.9a)

Eη = γ̄xηê
′
x + ê′η (3.9b)

Eζ = γ̄xζ ê
′
x + ê′ζ (3.9c)

where ε̄xx, γ̄xη and γ̄xζ can be shown to be the axial and the transverse shear strains, respec-

tively, at the reference axis. Equations 3.9a – c imply that cross sections, which are normal

to the reference axis before deformation (e. g. ê′η − ê′ζ plane), will no longer be normal to
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the reference axis after deformation (e. g. Eη−Eζ plane) due to the presence of transverse

shear strains. The deformed basis vectors at point P are defined as

Gx = R,x, Gη = R,η, Gζ = R,ζ (3.10)

where the derivatives of the orthonormal triad (ê′x, ê
′
η, ê
′
ζ) are related to the curvatures,

κη, κζ , and twist, τ , of the deformed beam by


ê′x,x

ê′η,x

ê′ζ,x


=


0 κη κζ

−κη 0 τ

−κζ −τ 0




ê′x

ê′η

ê′ζ


(3.11)

3.2 Strain Components and Strain-Displacement Relations

In general, the set of coordinates (x, η, ζ) are non-orthogonal curvilinear coordinates

since the basis vector gx, expressed in Eq. 3.2a is neither a unit vector nor orthogonal to gη

and gζ for an arbitrary point on the beam with nonzero initial twist τ0. In the description that

follows, the notations (x1, x2, x3) will be used in place of (x, η, ζ) whenever convenient.

The components of the strain tensor in the curvilinear coordinates are defined by [163]

fij =
1

2
(Gi·Gj − gi·gj), i, j = x, η, ζ (3.12)

One can define a system of local Cartesian coordinates (y1, y2, y3) at point P with its unit

vectors parallel to the orthonormal triad (êx, êη, êζ) of the cross section. The stress-strain
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relations of the beam are assumed to be given in the local Cartesian coordinate system.

The transformation relation between the curvilinear coordinates (x1, x2, x3) and the local

Cartesian coordinates (y1, yx, y3) is given in matrix form by

[
∂xi
∂yj

]
= [gk·gi]−1[gk·êj] =


1 0 0

ζτ0 1 0

−ητ0 0 1

 (3.13)

The strain tensor defined in the local Cartesian coordinates, εij , is obtained from the trans-

formation

εij =
3∑

k=1

3∑
l=1

∂xk

∂yi

∂xl

∂yj
fkl (3.14)

Combining Eqs. 3.2, 3.5, and 3.9 – 3.14, the strain components in the local Cartesian

coordinates become

εxx = ε̄xx − ηκη − ζκζ + α,xΨ + ατ0(ζΨ,η − ηΨ,ζ) (3.15a)

+
1

2
(η2 + ζ2)(τ − τ0)2 + η(γ̄xη,x − τ0γ̄xζ) + ζ(γ̄xζ,x + τ0γ̄xη)

γxη = γ̄xη + αΨ,η − ζ(τ − τ0) (3.15b)

γxζ = γ̄xζ + αΨ,ζ + η(τ − τ0) (3.15c)

εηη ' εζζ ' γηζ ' 0 (3.15d)

where

γxη ≡ 2εxη, γxζ ≡ 2εxζ , γηζ ≡ 2εηζ
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The strain components in Eqs. 3.15a – c are valid for small strains and large deflections

and are expressed in terms of seven unknown functions of the axial coordinate x : ε̄xx, γ̄xη,

γ̄xζ , κη, κζ , τ and α. The first three are the axial and transverse shear strains, respectively,

at the reference axis; the next three are curvatures and twist, respectively, of the deformed

beam; α is the amplitude of warping.

In developing an aeroelastic model, it is desirable to express the strain components in

terms of the displacement components – u, v, w – of the reference axis and the elastic twist

φ so that the structural model can be more conveniently combined with the inertial and

aerodynamic models. After applying an ordering scheme [174] which is consistent with a

moderate deflection theory (small strains and moderate rotations), the strain components

can be expressed in terms of u, v, w and φ as follows:

εxx = u,x +
1

2
(v,x)

2 +
1

2
(w2

,x)− v,xx[η cos(β + φ)− ζ sin(β + φ)] (3.16a)

−w,xx[η sin(β + φ) + ζ cos(β + φ)] +
1

2
(η2 + ζ2)(φ,x)

2

+α,xΨ + ατ0(ζΨ,η − ηΨ,ζ) + η(γ̄xη,x − τ0γ̄xζ) + ζ(γ̄xζ,x + τ0γ̄xη)

γxη = γ̄xη + αΨ,η − ζ(φ,x + φ0) (3.16b)

γxζ = γ̄xζ + αΨ,ζ + η(φ,x + φ0) (3.16c)

The seven unknown functions of the axial coordinate, x, in the strain-displacement rela-

tions, Eqs. 3.16a – c, become: u, v, w, φ, α, γ̄xη and γ̄xζ . The strain components in

Eqs. 3.16a – c are valid for moderate deflection analysis, which is suitable for accurately

modeling blade displacements up to 10−−15% of the blade’s radius.
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3.3 Constitutive Relations

The constitutive relations are defined based on the assumptions that the material proper-

ties are linear elastic and generally orthotropic (anisotropic behavior) and that the in-plane

stress components within the cross section are set to zero (σηη = σζζ = σηζ = 0). The

anisotropic stress-strain relations for a linearly elastic body are written as



σxx

σηη

σζζ

σηζ

σxζ

σxη



=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





εxx

εηη

εζζ

γηζ

γxζ

γxη



(3.17)

Setting in-plane stresses equal to zero and applying back substitution, the constitutive rela-

tions are 
σxx

σxζ

σxη


=


Q11 Q15 Q16

Q15 Q55 Q56

Q16 Q56 Q66




εxx

γxζ

γxη


(3.18)

where

[Q] = [Cbb]− [Cbs][Css]
−1[Csb]

[Cbb] =


C11 C15 C16

C15 C55 C56

C16 C56 C66


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[Css] =


C22 C23 C24

C23 C33 C34

C24 C34 C44



[Cbs] = [Csb]
T =


C12 C13 C14

C25 C35 C45

C26 C36 C46



3.4 Equations of Motion

The nonlinear equations of motion and the corresponding finite element matrices are

derived for each beam element using Hamilton’s principle

∫ t2

t1

(δU − δT − δWe)dt = 0 (3.19)

where δU , δT and δWe represent the strain energy variation, kinetic energy variation, and

virtual work of external loads, respectively.

3.4.1 Strain Energy

The variation of the strain energy for each beam element is

δU =

∫ le

0

∫ ∫
A


δεxx

δγxζ

δγxη



T 
Q11 Q15 Q16

Q15 Q55 Q56

Q16 Q56 Q66




εxx

γxζ

γxη


dηdζdx (3.20)
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Integrating Eq. 3.20 over the cross section yields three sets of modulus weighted section

constants, which are presented in Ref. 174. These section constants can be calculated by

a separate linear, two-dimensional analysis which is decoupled from the nonlinear, one-

dimensional global analysis for the beam. The cross sectional analysis as developed in

Ref. 88, 89 is based upon the solution of Saint Venant’s flexure and torsion problems. It

uses the principle of minimum potential energy and two-dimensional finite element analy-

sis to solve for the displacement and stress distribution in an anisotropic composite blade

cross section. This two-dimensional cross sectional analysis has undergone modifications

to account for differences in kinematic assumptions, resulting in a set of cross-sectional

constants that are provided in Ref. 174.

It should be noted that the analysis described in Ref. 88 is subject to limitations which

are overcome by the VABS composite cross-section analysis code [15]. The compatibility

between VABS and the beam model described in Ref. 174, as well as the advantages of

using VABS are demonstrated in the Appendix A.

3.4.2 Kinetic Energy

The variation of the kinetic energy for each beam element is

δT =

∫ le

0

∫ ∫
A

ρV·δVdηdζdx (3.21)

where the velocity vector, V, is obtained by

V = Ṙ + Ωk̂r ×R (3.22)
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with the position vector, R, of a point P on the deformed beam written in the form

R = e1îr + heîb + (x+ u)êx + vêy + wêz + ηEη + ζEζ + αΨê′x (3.23)

All the terms in the expressions of the velocity vector, V, in Eq. 3.22 were transformed

to the (êx, êy, êz) system before carrying out the algebraic manipulations. Integrating Eq.

3.21 over the cross section yields mass weighted section constants about the shear center,

which are also presented in Ref. 174.

3.4.3 External Work Contributions

The effects of the nonconservative distributed loads are included using the principle of

virtual work. The virtual work done on each beam element is

δWe =

∫ le

0

(P·δu + Q·δΘ)dx (3.24)

where P and Q are the distributed force and moment vectors, respectively, along the elastic

axis; δu and δΘ are the virtual displacement and virtual rotation vectors, respectively, of a

point on the deformed elastic axis. In the aeroelastic analysis, components of P and Q are

replaced by the corresponding components of aerodynamic forces and moments.
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3.5 Modifications Due to the Presence of Flaps

The modifications to the structural model due to the flaps have been implemented by

De Terlizzi and Friedmann [28]. The control surface is modeled as partial span trailing

edge flaps located on the outboard section of the blade.

It is assumed that the flap does not change the blade structural model. The influence of

the flap dynamics is taken into account through the flap inertial loads, which are formulated

as an additional external work contribution in Eq. 3.24. The detailed expressions are given

in Ref. 28. The aerodynamic model of this study is capable of modeling the aerodynamic

loads of a flapped airfoil, which will be treated in Chap. IV.

3.6 Finite Element Discretization

The spatial discretization of the blade equations of motion is achieved by using the

finite element method. The straight portion of the blade is divided into a number of beam

elements, while the swept tip is modeled as a single beam element. The discretized form

of Hamilton’s principle as given in Eq. 3.19 is written as

∫ t2

t1

n∑
i=1

(δUi − δTi − δWei)dt = 0 (3.25)

Hermite interpolation polynomials are used to discretize the space dependence of the gen-

eralized coordinates: cubic polynomials for v and w; quadratic polynomials for φ, u, α,

γ̄xη and γ̄xζ . The seven unknown generalized coordinates of the beam finite element can be

62



expressed in the following form



v
w
φ
u
α
γ̄xη
γ̄xζ


=



{Φv}T 0 0 0 0 0 0
0 {Φw}T 0 0 0 0 0
0 0 {Φφ}T 0 0 0 0
0 0 0 {Φu}T 0 0 0
0 0 0 0 {Φα}T 0 0
0 0 0 0 0 {Φη}T 0
0 0 0 0 0 0 {Φζ}T





{V }
{W}
{φ}
{U}
{α}
{Γη}
{Γζ}


(3.26)

where {Φv},{Φw},{Φφ},{Φu},{Φα},{Φη},{Φζ} are the Hermite interpolation polynomi-

als, and {V }, {W}, {φ}, {U}, {α}, {Γη}, {Γζ} are time dependent nodal parameters for v,

w, φ, u, α, γ̄xη and γ̄xζ , respectively. Each beam element consists of two end nodes and one

internal node at its mid-point, resulting in a total of 23 nodal degrees of freedom, as shown

in Fig. 3.1. The quadratic polynomial has the capability of modeling a linear variation of

strains along the element length, thus being compatible with the cubic polynomial for trans-

verse deflections v and w. These polynomials also satisfy all inter-element compatibility

requirements associated with the variational principle in this formulation.

3.6.1 Element Matrices Associated with the Strain Energy Variation

Using the interpolation of the generalized coordinates with nodal parameters given by

Eq. 3.26, the variation of the strain energy in Eq. 3.20 can be expressed in the following

form

δU = δqT ([KL] + [KNL(q)])q (3.27)

where

q = [{V }T , {W}T , {φ}T , {U}T , {α}T , {Γη}T , {Γζ}T ]T
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Figure 3.1: Finite element nodal degrees of freedom

and [KL] and [KNL] are the linear stiffness matrix(symmetric) and nonlinear stiffness ma-

trix, respectively. Detailed expressions for the stiffness matrices are presented in Ref. 174.

3.6.2 Element Matrices Associated with the Kinetic Energy Variation

The variation of the kinetic energy in Eq. 3.21 can be expressed in the following form,

utilizing Eq. 3.26

δT = δqT ([M]q̈ + [MC]q̇ + [KCF]q + {FCF}) (3.28)

where [M] is the mass matrix(symmetric), [MC] is a Coriolis damping matrix(anti-symmetric),

[KCF] is a centrifugal stiffening matrix(symmetric when Ω is constant, and {FCF} is a cen-

64



trifugal force vector. Detailed expressions for these matrices are presented in Ref. 174.

3.6.3 Element Matrices Associated with the Virtual Work of External Loads

The virtual work of external loads in Eq. 3.24 has the form

δWe = −δqT ([KI]q + {FI}) (3.29)

where [KI] is a stiffness type matrix associated with applied distributed moments, and {FI}

is an applied force vector. Detailed expressions for these matrices are presented in Ref. 174.

3.6.4 Summary of the Beam Finite Element Equations of Motion

The finite element equations of motion for a single beam element are obtained by sub-

stituting Eqs. 3.27 – 3.29 into the discretized form of Hamilton’s principle, Eq. 3.25

[Mi]q̈ + [Ci]q̇ + [Ki]q + Fi = 0 (3.30)

where

[Mi] = [M]i

[Ci] = [MC]i

[Ki] = [KL]i + [KCF]i + [KI]i + [KNL(q)]i

Fi = {FCF}i + {FI}i
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The global mass, damping, stiffness matrices and force vector can then be assembled us-

ing standard finite element assembly procedure, using the boundary conditions of the can-

tilevered blade.
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Chapter IV

Aerodynamic Model

The attached flow blade section aerodynamics are calculated using a rational function

approach (RFA) developed by Myrtle and Friedmann [108, 109]. The RFA approach is a

two-dimensional unsteady time-domain theory that accounts for compressibility as well as

variations in the oncoming flow velocity. For the separated flow regime, unsteady aerody-

namic loads are calculated using the ONERA dynamic stall model described in Ref. 121.

The aerodynamic states associated with RFA attached flow and ONERA separated flow

are combined to produce the time-domain, state space aerodynamic model. Furthermore,

a simple linear drag model which accounts for increase in drag due to flap deflection is

implemented [31]. The two-dimensional aerodynamic model is linked to an enhanced free-

wake model which provides a non-uniform inflow distribution at closely spaced azimuthal

steps [77, 78, 119, 136].

4.1 RFA Model of the Attached Flow Loads

In the RFA approach, approximate frequency domain transfer functions between the

airloads and the generalized motions of a two-dimensional airfoil-flap combination are
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constructed. These relations are then transformed into the time domain to yield a state-

space aerodynamic model. This method accounts for compressibility and unsteady effects

due to free stream and blade-flap motions. The RFA approach was extended by Patt, Liu,

and Friedmann [95, 116, 119] to calculate the chordwise pressure distribution, which is

required in the acoustic calculation.

4.1.1 Doublet Lattice Method for Oscillatory Airloads

A two-dimensional double lattice method (DLM) [129] is first applied to generate lift,

moment, and hinge moment responses to generalized oscillatory airfoil motions over a

range of reduced frequencies and Mach numbers typical of the rotor environment. Us-

ing the compressible oscillatory response data generated by the DLM, oscillatory response

quantities can be quickly calculated for any combination of reduced frequency, Mach num-

ber, and generalized airfoil motion, including flap motion. A brief description of this pro-

cess follows:

Assume a normal velocity distribution represented by

W (x, t) = Uw̄(x)eiωt, (4.1)

and a surface pressure difference distribution given by

P (x, t) =
1

2
ρU2p̄(x)eiωt, (4.2)

where x represents a location on the chord of the airfoil which coincides with the x-axis,
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with leading and trailing edges located at x = −1 and x = 1, respectively. The functions

w(x) and p(x) represent dimensionless velocity and pressure quantities respectively. The

functions w̄(x) and p̄(x) are related through the Possio integral equation, which is given by

w̄(x) =
1

8π

∫ 1

−1

p̄(ζ)K(M,x− ζ)dζ, (4.3)

with kernel K given by

K(M,x) =
πk

β
e−ikx

{
ekx/β

2

(
M
|x|
x
H

(2)
1 (Mk|x|/β2)−H(2)

0 (Mk|x|/β2)

)
+
i2β

π
log(

1 + β

M
) + iβ2

∫ kx/β2

0

kx

2β2
eiuH

(2)
0 (M |u|)du

}
. (4.4)

The DLM is employed to obtain approximate solutions for p̄ from Eq. 4.3 for a given

normal velocity distribution w̄. In the DLM, the airfoil chord is divided into N equal size

segments, each containing a line of acceleration potential doublets at the segment quarter

chord. Each line of doublets produces a force f per unit span at the quarter chord, acting

normal to the airfoil surface. The doublet line strength corresponding to force f at the

quarter chord of the j-th chord segment is given by fj
4πρ

. The normal velocity induced by

this doublet line at a point xi on the airfoil chord is given by

w̄j(xi) =
fj

4πρ
U2K(M,xi − xj), (4.5)

where xj is the location of the doublet line in the j-th segment. The total normal velocity

induced at point xi is given by the sum of the normal velocities induced by the N doublet
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lines,

w̄(xi) =
N∑
j=1

fj
4πρ

U2K(M,xi − xj). (4.6)

Next, the force on the doublet line can be expressed as a pressure difference across the

surface by taking

fj
4πρ

U2 =
1

8π
p̄j∆x, (4.7)

where ∆x is the length of the chord segment. Using Eq. 4.7, Eq. 4.6 can be rewritten as

w̄i =
N∑
j=1

Dij p̄j, (4.8)

where Dij is given by

Dij =
1

8π
∆xK(M,xi − xj). (4.9)

The downwash w̄i in Eq. 4.8 is taken at a point xi corresponding to the 3/4 chord point of

the i-th chord segment. Taking the downwash at this point causes the Kutta condition to be

satisfied. Equation 4.8 is then inverted, producing

p̄i =
N∑
j=1

Aijw̄j, (4.10)

where Aij is the inverse of Dij . The normal velocity distribution vector w̄ depends upon

the generalized airfoil motion being considered. The oscillatory pressure distribution rep-

resented by p̄i is then used to calculate airfoil oscillatory response quantities corresponding

to a particular generalized airfoil motion.

In summary, the DLM proceeds as follows: (1) The number of airfoil segments is
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selected; (2) A reduced frequency and Mach number are selected; (3) The matrix D, given

in Eq. 4.9, is calculated and then inverted to produce the matrix A; (4) Eq. 4.10 is then

used to calculate the pressure distribution vector p̄ for each generalized airfoil motion being

considered; (5) The steps in this process are repeated until response quantities have been

calculated for a sufficient number of Mach numbers and reduced frequencies.

4.1.2 Roger’s Approximation

The RFA approach, which is based on a least squares method known as Roger’s ap-

proximation [130], is employed to convert the tabulated frequency domain response data

generated by the DLM into the time domain. This process is described below.

Consider an aerodynamic system which is represented in the Laplace domain by the

expression

G(s̄) = Q(s̄)H(s̄), (4.11)

where G(s̄) and H(s̄) represent Laplace transforms of the generalized aerodynamic load

and generalized motion vectors, respectively. Using the Least Squares approach, the aero-

dynamic transfer matrix Q(s̄) is approximated using a rational expression of the form

Q̃(s̄) = C0 + C1s̄+

nL∑
n=1

s̄

s̄+ γn
Cn+1. (4.12)

The nL terms in the summation are aerodynamic lag terms and contain an associated set of

poles γn. These poles are assumed to be positive valued to produce stable open loop roots.

The accuracy and numerical efficiency of the approximation depend upon an appropriate
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choice of the number of lag terms.

The elements of the coefficient matrices Cn are chosen such that they provide a best

fit, in a least squares sense, to the oscillatory response data obtained using DLM. A high

frequency constraint which constrains the approximation at k = ∞ to the piston theory

response can be implemented. Furthermore, numerical optimization techniques are used

to find the optimal poles such that the fitting error is minimized. The fitting process is

described in detail in Ref. 108.

4.1.3 State Space Model

The arbitrary motions of the airfoil and flap are represented by the four generalized

motions depicted in Fig. 4.1. These motions produce constant and linearly varying normal

velocity distributions on the airfoil and flap, which can be expressed in terms of the classical

pitch and plunge motions α and h, the flap deflection δ, and the freestream velocity U :

W0 = Uα + ḣ, (4.13)

W1 = bα̇. (4.14)

D0 = Uδf , (4.15)

D1 = bδ̇f . (4.16)
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Figure 4.1: Normal velocity distribution corresponding to generalized airfoil and flap mo-
tions

A generalized motion vector h(t) and a generalized force vector f(t) are given by:

h =



W0

W1

D0

D1


(4.17)

f =


CL

CM

CHm


. (4.18)
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In order to capture unsteady freestream effects [108], the derivation of the aerodynamic

model is carried out in terms of reduced time t̄, which is a nondimensional parameter

representing the length in semi-chords that the airfoil has traveled.

t̄ =
1

b

1∫
0

U(τ)dτ (4.19)

The aerodynamic system can then be represented in the form given in Eq. 4.11 by taking

G(s̄) = L[f(t̄)U(t̄)] and H(s̄) = L[h(t̄)].

To simplify the notation, the lag terms in Eq. 4.12 are rewritten in matrix form [108],

nL∑
n=1

s̄

s̄+ γn
Cn+1 = D (Is̄−R)−1 Es̄, (4.20)

where

D =

[
I I . . . I

]
, R = −



γ1I

γ2I

. . .

γnLI


, E =



C2

C3

...

CnL+1


. (4.21)

Using Eq. 4.20, the rational approximant Q̃(s̄) in Eq. 4.12 can be rewritten as

Q̃(s̄) = C0 + C1s̄+ D (Is̄−R)−1 Es̄. (4.22)
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Eq. 4.22 is then substituted into Eq. 4.11, yielding

G(s̄) =
(
C0 + C1s̄+ D (Is̄−R)−1 Es̄

)
H(s̄). (4.23)

The lag terms in Eq. 4.23 are then used to define a vector of aerodynamic states Xa(s̄)

given by

Xa(s̄) = (Is̄−R)−1 Es̄H(s̄). (4.24)

Expressing Eq. 4.23 in terms of Xa(s̄) yields

G(s̄) = C0H(s̄) + C1s̄H(s̄) + DXa(s̄). (4.25)

Equations 4.24 and 4.25 are transformed to the time domain using the inverse Laplace

transform. Converting from reduced time t̄ to time t using the relation
d

dt̄
=

b

U(t)

d

dt
,

yields

ẋa(t) =
U(t)

b
Rxa(t) + Eḣ(t), (4.26)

f(t) =
1

U(t)

(
C0h(t) + C1

b

U(t)
ḣ(t) + Dxa(t)

)
, (4.27)

The aerodynamic loads f(t) are a function of the aerodynamic states x(t), which are gov-

erned by the set of first order differential equations given by Eq. 4.26. Equations 4.27 and

4.26 are functions of the generalized airfoil and flap motions contained in the vector h(t).

To account for the large variations in Mach number encountered in rotary wing appli-

cations, rational approximants are generated at increments of Mach number over the range
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of interest. The resulting coefficient matrices Cn(M) are then functions of Mach number

and replace the original coefficients in Eqs. 4.26 – 4.27, yielding

ẋa(t) =
U(t)

b
R(M)xa(t) + E(M)ḣ(t), (4.28)

f(t) =
1

U(t)

(
C0(M)h(t) + C1(M)

b

U(t)
ḣ(t) + D(M)xa(t)

)
. (4.29)

4.1.4 Extension for Chordwise Pressure Calculation

In the extension of the RFA model for chordiwse pressure calculation described in Ref.

119, the oscillatory pressure distribution p̄i given in Eq. 4.10 is saved prior to integration to

obtain sectional airloads; a separate RFA procedure similar to what is described in Sections

4.1.2 and 4.1.3 for sectional airloads computation is then carried out at each chordwise

location, using the corresponding oscillatory pressure data.

A generalized pressure vector fp(t) is introduced:

fp =



CP1

CP2

...

CPi

...

CPn



. (4.30)

This pressure vector represents the pressure coefficients on panels in the chordwise direc-

tion of the airfoil as shown in Fig. 4.2. The pressure computations introduce new aero-
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Figure 4.2: Airfoil chordwise pressure distribution

dynamic states xpa; however, this computation is performed separately after the aeroelastic

response solution is obtained, thus the additional computational cost for the pressure com-

putations is minimized and the original aeroelastic solution procedure is kept intact. As a

means of validation, the force and moment coefficients obtained by integrating the pressure

vector fp(t) are compared to the generalized force f(t) obtained from the original sectional

RFA computation; typically with forty chordwise panels the sectional lift and moment

coefficients can be reproduced within 5% when integrating pressure distribution over the

chord.

The rational function approximations used to relate fp(t) to h(t) are similar to those

that relate f(t) to h(t). The final state space equations for pressure distribution are:

ẋpa(t) =
U(t)

b
R(M)xpa(t) + E(M)ḣ(t), (4.31)

fp(t) =
1

U(t)

(
Cp

0(M)h(t) + Cp
1(M)

b

U(t)
ḣ(t) + D(M)xpa(t)

)
. (4.32)

These equations can be compared to Eqs. 4.28 and 4.29 for sectional airloads. Note the

difference is that in the sectional airloads computations, the generalized motion vector h
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is unknown and is obtained from the coupled aeroelastic response solution; whereas h is

known from the aeroelastic response solution and is available for the pressure computations

in Eqs. 4.31 and 4.32, representing the fact that the pressure computations are decoupled

from the aeroelastic solution procedure.

4.2 Dynamic Stall Model for the Separated Flow Regime

Dynamic stall effects due to flow separation are modeled by a semi-empirical model

based on a modified version of the ONERA dynamic stall model [32]. The modified aero-

dynamic state vector for each blade section consists of RFA attached flow states and ON-

ERA separated flow states. Previous studies [30] have suggested that dynamic stall is an

important contributor to vibration levels at high advance ratios(µ ≥ 0.35).

In the ONERA model developed by Petot [121], the three second-order differential

equations governing the separated flow states are:

Γ̈j2 + aj.
U

b
˙Γj2 + rj(

U

b
)2Γj2 = −[rj(

U

b
)2V∆Cj + Ej.

U

b
Ẇ0], (4.33)

where j = l,m, d represent lift, moment, and drag respectively. The complete two-

dimensional sectional airloads are given by:

L = LA + LS, M = MA +MS, D = DA +DS, (4.34)

where LA and MA are the attached flow lift and moment calculated by the RFA approach
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(Eq. 4.27). The separated flow quantities and the profile drag are given by:

LS =
1

2
ρcbUΓl2, (4.35)

MS =
1

2
ρc2

bUΓm2, (4.36)

DS =
1

2
ρcbUΓd2. (4.37)

DA =
1

2
ρcbU

2Cd0, (4.38)

The flow separation and reattachment criterion is based on the angle of attack and a

correction similar to Prandtl-Glauert to account for compressibility. The critical angle of

attack for separation and reattachment is αcr = 17o(1−M2). There are three measures of

stall, one for each sectional airload. They can either be zero:

∆CL = ∆CM = ∆CD = 0, (4.39)

or take the following values if the flow has separated [30]:

∆CL = (p0 − 0.1M4)(α− αcr)− 0.7(1−M)[e(−0.5+(1.5−M)M2)(α−αcr) − 1] (4.40)

∆CM = (−0.11− 0.19e−40(M−0.6)2

)[e(−0.4−0.21arctan[22(0.45−M)])(α−αcr) − 1] (4.41)

∆CD = (0.008− 0.3)

[
1−

(
25− α

25− αcr

) 25−αcr
18−2arctan(4M)

−αcr
]

(4.42)
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where

p0 = 0.1
1−M8

√
1−M2

, (4.43)

The separation criterion is based on the angle of attack, and three possible cases can

occur.

1. Case 1: if α < αcr = 17o(1−M2), ∆CL, ∆CM and ∆CD are 0.

2. Case 2: assume that at time t = t0, α = αcr, α̇ > 0; then, ∆CM and ∆CD are given

by Eqs. 4.41 – 4.42, and at time t > t0 + ∆τ , ∆CL is given by Eq. 4.40. The

nondimensional lift delay is ∆τ = 8. As ∆CL is different from zero, separated flow

loads become substantial.

3. Case 3: when α < αcr, the flow has reattached and ∆CL, ∆CM and ∆CD are set to

zero again and the separated flow loads quickly decrease to zero.

The ONERA model features 18 empirical coefficients, 6 each (rj0, rj2, aj0, aj2, Ej2)

associated with lift (j = l), moment (j = m), and drag (j = d). These quantities can be

found in Ref. 30

4.3 Free-Wake Model

This wake analysis is critical for properly capturing BVI effects on vibratory loads and

noise. A detailed description of the characteristics and modeling of rotor wakes can be

found in Ref. 91. The wake analysis has been extracted [28] from the comprehensive rotor
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analysis code CAMRAD/JA [77, 78], and it has undergone significant improvements for

the modeling of BVI noise [95, 116, 119].

The wake analysis consists of two elements: (1) a wake geometry calculation procedure

including a free wake analysis developed by Scully [136], which determines the position

of the vortices; (2) an induced velocity calculation procedure as implemented in CAM-

RAD/JA, which calculates the nonuniform induced velocity distribution at the blades.

4.3.1 Wake Geometry

The rotor wake is composed of two main elements: the tip vortex, which is a strong,

concentrated vorticity filament generated at the tip of the blade; and the near wake, which

is an inboard sheet of trailed vorticity that is much weaker and more diffused than the

tip vortex. The wake vorticity is created in the flow field as the blade rotates, and then

progresses with the local velocity of the fluid. The local velocity of the fluid consists

of the free stream velocity, and the wake self induced velocity. Thus, the wake geometry

calculation proceeds as follows: (1) the position of the blade generating the wake element is

calculated, this is the point at which the wake vorticity is created; (2) the undistorted wake

geometry is computed as wake elements are sent downstream from the rotor by the free

stream velocity; (3) distortion of wake due to the wake self-induced velocity is computed

and added to the undistorted geometry. The position of a generic wake element is identified

by its current azimuth position ψ and its age φw . Age implies here the nondimensional time

that has elapsed between the wake element’s current position and the position where it was

created. By carrying out this procedure, the position of a generic wake element is written

81



as:

rw(ψ, φw) = rb(ψ − φw) + φwVA + D(ψ, φw) (4.44)

where rb(ψ − φw) is the position of the blade when it generates the wake element, VA is

the free stream velocity, and D(ψ, φw) is the wake distortion.

To evaluate the wake self-induced distortion D(ψ, φw), a free wake procedure devel-

oped by Scully [136] is employed. This procedure is used only to calculate the distorted

geometry of the tip vortices, which is the dominant feature of the rotor wake. The inboard

vorticity is determined by a prescribed wake model [77] to save computational cost.

In the free wake geometry calculation, the distortion D is obtained by integrating in

time the induced velocity at each wake element due to all the other wake elements. The

induced velocity q
I

is calculated at all wake elements for a given age φw , and all azimuth

angles ψ. As the wake age increases by ∆ψ, the distortion at time ψ is increased by the

contribution of the induced velocity:

D(ψ, φw) = D(ψ, φw −∆ψ) + ∆ψq
I
(ψ) (4.45)

To start this incremental computation, a value of D(ψ, 0) is required. At age φw = 0, the

wake element has just been generated from the blade tip, so it has no distortion:

D(ψ, 0) = 0 (4.46)
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Figure 4.3: Vortex-lattice approximation for rotor wake model

4.3.2 Induced Velocity Calculation

The induced velocity calculation procedure, developed by Johnson [77], is based on a

vortex-lattice approximation for the wake. The tip vortex elements are modeled by line

segments with a small viscous core radius, while the near wake can be represented by

vortex sheet elements or by line segments with a large core radius to eliminate large induced

velocities. The near wake vorticity is generally retained for only a numberKNW of azimuth

steps behind the blade. In this study,KNW = 4. The wake structure is illustrated in Fig. 4.3.

Conservation of vorticity on a three-dimensional wing requires the bound circulation to

be trailed into the wake from the blade tip and root. The lift and circulation are concen-

trated at the tip of the blade, since larger dynamic pressures are present in the tip region.

83



Figure 4.4: Single peak circulation distribution model and the resulting far wake approxi-
mation

Therefore, a strong concentrated tip vortex is generated. The vorticity in the tip vortex is

distributed over a small but finite region, called the vortex core. The selection of a suitable

value for the strength of the tip vortex is a delicate issue in wake modeling. Two models are

available, depending on the spanwise distribution of the bound circulation. For helicopters

in low speed forward flight, the bound circulation is positive along the entire span of the

blade (Fig. 4.4). This is the single peak case. In the single peak model, the maximum value

of the bound circulation over the blade span, Γmax, is selected for the tip vortex strength.

For helicopters in high speed forward flight or under some means of active control, a span-

wise circulation distribution with two peaks of opposite sign can be encountered. A large

positive peak is generally located inboard and a smaller negative peak on the outboard sec-

tion of blade (Fig. 4.5). The dual peak model is aimed at representing such a situation.

The inboard and outboard peaks ΓI and ΓO, respectively, are identified, and the tip vortex

strength assumes the value of the outboard peak.

Given the blade displacements and circulation distribution, the wake geometry is calcu-

lated. Once the wake geometry has been determined, the procedure calculates the influence
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Figure 4.5: CAMRAD/JA dual peak model and the resulting far wake approximation

coefficients, which are stored in the influence coefficient matrix. The induced velocity dis-

tribution is obtained by conveniently multiplying the influence coefficient matrix times the

circulation distribution:

q
I

=
J∑
j=1

ΓOjCOj +
J∑
j=1

ΓIjCIj +

KNW∑
j=1

M∑
i=1

ΓijCNWij, (4.47)

where ΓIj ,ΓOj are the inboard and outboard peaks, respectively, at the azimuth j; J,M are

the numbers of azimuth and spanwise stations, respectively, at which the induced velocity

needs to be calculated; KNW is the number of azimuth stations on which the near wake

extends; COj ,CIj and CNWij
represent the influence coefficient matrices which are based

on the Biot-Savart law. For the single peak model, ΓOj = Γmax j and ΓIj = 0.

4.3.3 Wake Modeling Improvements

As mentioned earlier, the fidelity of the wake model dictates the accuracy of BVI noise

prediction. Therefore, a number of improvements have been made to the CAMRAD/JA

wake model by Patt, Liu, and Friedmann [95,116,119] in order to obtain better correlation

with the HART experimental data [148].
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Wake Resolution

For accurate prediction of BVI noise, a 5◦ or finer azimuthal wake resolution is re-

quired, as compared to the much coarser 15◦ resolution that is often adequate for vibration

reduction studies. The original CAMRAD/JA wake code which the present study is based

on has a upper limit of 15◦ for the free wake analysis, probably due to the concerns about

computer power at the time when the code was developed. This restriction was removed in

the current wake code to allow for wake resolution of up to 2◦. However, due to some nu-

merical difficulties [136] the free wake model failed to converge for the resolutions higher

than 3◦ and therefore the smallest resolution in the computation carried out in this study

was 5◦ of azimuth, which proved to be adequate for prediction of BVI noise compared to

the HART data [95, 116, 119].

Dual Vortex Roll-up

The free wake model taken from CAMRAD/JA was predicated on the assumption that

the inboard vortices cannot roll up, such that either a vortex-sheet or an equivalent vortex-

line model could be used to model the inboard vortices. This was not compatible with

HART test data where significant increases in BVI noise levels for the “minimum vibra-

tion” case have been attributed to a dual vortex structure [147].

A dual vortex model was therefore incorporated by including a possible second inboard

vortex line. This feature of the wake model becomes active only when the tip loading be-

comes negative, as shown in Fig. 4.6. The release point of this second vortex line is taken

to be at the radial location rI , where blade bound circulation becomes negative, and the
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Figure 4.6: Improved dual peak model, leading to dual concentrated vortex lines

strength of this vortex is assumed to be ΓI − ΓO, where ΓO, the outboard circulation peak,

is negative. Furthermore, the free wake distortion computation routine was also modified

to include the deformation of this second inboard vortex line, including its interaction with

the outer tip vortices. This was realized by evaluating the self-induced velocities by both

tip vortices and secondary vortices. Moreover, a threshold criteria, suggested in Ref. 124,

can be employed to determine whether to have inboard vortex line rolled up. This is ac-

complished by requiring the radial gradient of the bound circulation ∂Γ/∂r at the inboard

vortex release point rI be greater than a specified threshold value that allows for roll-up of

the inboard vortex. This represents the physical requirement that the shear in the wake be

sufficiently strong so as to form a fully rolled-up, concentrated vortex.

4.4 Reverse Flow Model

In forward flight, there exists a reverse flow region on the retreating side of the rotor

disk where the airflow encountered by the blade is flowing from the trailing edge to the

leading edge. The boundary of this region on the blade span as a function of azimuth ψ and
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advance ratio µ is given by

xrev(ψ) = −(e1 + µR sinψ). (4.48)

This is illustrated schematically in Fig. 4.7. In the present analysis, it is assumed that

the aerodynamic lift and moment are zero within the reverse flow region, and that the

aerodynamic drag changes direction inside the reverse flow region, remaining parallel to

the total air velocity. This is accomplished by multiplying the aerodynamic lift and moment

expressions by the reverse flow parameterRLM , and the drag expression by the reverse flow

parameter RD. These parameters are defined as follows:

RLM =


0 for 0 ≤ x ≤ xrev(ψ)

1 for x > xrev(ψ)

RD =


−1 for 0 ≤ x ≤ xrev(ψ)

1 for x > xrev(ψ)

4.5 Sectional Airloads

Final expressions for the sectional airloads are obtained by combining the RFA aero-

dynamic model, the ONERA dynamic stall model, and the reverse flow model. For non-
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Figure 4.7: Reverse flow region

flapped sections, the sectional lift, moment, and drag are given by

L = ρU2b (CLA + CLS)RLM , (4.49)

M = 2ρU2b2 (CMA
+ CMS

)RLM , (4.50)

D = ρU2b (Cd0 + CDS)RD. (4.51)

where CLA and CMA
are obtained from Eq. 4.29, CLS , CMS

, and CDS are based on Eqs.

4.35, 4.36, and 4.37 respectively.
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For flapped sections,

L = ρU2bCLARLM , (4.52)

M = 2ρU2b2CMA
RLM , (4.53)

D = ρU2bCd0RD. (4.54)

Flapped sections have an additional expression for the hinge moment given by

Hm = 2ρU2b2CHm, (4.55)

In addition, the following simple linear model is used to account for the effect of flap

deflection on profile drag [30, 31]:

Cd0 = 0.01 + 0.001 |δf | (4.56)

To incorporate the aerodynamic model into the present analysis, the generalized airfoil

and flap motions W0, W1, D0, and D1, the freestream velocity U , and angle of attack α

need to be expressed in terms of the blade degrees of freedom and model parameters.
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Recall that the generalized airfoil and flap motions are given by

W0 = Uα + ḣ, (4.57)

W1 = bα̇. (4.58)

D0 = Uδf , (4.59)

D1 = bδ̇f . (4.60)

In helicopter applications, α, U , and ḣ are interpreted in the following manner:

α = θG + φ, (4.61)

U = UT , (4.62)

−ḣ = UP , (4.63)

where θG is the geometric pitch angle composed of the control input and blade pretwist at

the particular station, and UT and UP correspond to the components of freestream velocity

approximately tangent and perpendicular to the hub plane, as illustrated in Fig. 4.8.

4.5.1 Blade Velocity Relative to Air

UT and UP can be expressed by (see Fig. 4.8)

UT = U ′η cos θ − U ′ζ sin θ (4.64a)

UP = U ′η sin θ + U ′ζ cos θ (4.64b)
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Figure 4.8: Schematic showing orientation of tangential and perpendicular air velocities

The velocity vector of a point on the elastic axis of the blade relative to air is

U = VEA −VA = U ′xê
′
x + U ′ηê

′
η + U ′ζ ê

′
ζ (4.65)

where VEA is the velocity vector of a point on the elastic axis of the blade and VA is the

velocity vector of air due to forward flight and inflow. VEA is given as [28]

VEA = V EA
x êx + V EA

y êy + V EA
z êz (4.66)

where 
V EA
x

V EA
y

V EA
z


=


u̇+ Ωy(hz + w)− Ωz(hy + v) + Vbx

v̇ + Ωz(hx + x+ u)− Ωx(hz + w) + Vby

ẇ + Ωx(hy + v)− Ωy(hx + x+ u) + Vbz


(4.67)
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The velocity vector due to forward flight and inflow, VA, is

VA = ΩR[µ cosψîr − µ sinψĵr + λx(ψ, r)̂ir + λy(ψ, r)̂jr + λz(ψ, r)k̂r] (4.68)

where λx(ψ, r), λy(ψ, r), λz(ψ, r) are the components of the induced velocity vector λ(ψ, r)

obtained from the wake analysis.

VA can be expressed in the undeformed element coordinate system (êx, êy, êz) using

the following transformation


V A
x

V A
y

V A
z


= ΩR[Teb][Tbr]


µ cosψ + λx(ψ, r)

−µ sinψ + λy(ψ, r)

λz(ψ, r)


(4.69)

Combining Eqs. 4.65, 4.66 and 4.68, U ′η and U ′ζ can be obtained


U ′x

U ′η

U ′ζ


= [Tde]


V EA
x − V A

x

V EA
y − V A

y

V EA
z − V A

z


(4.70)

Subsequently UT and UP can be obtained from Eq. 4.64.

4.5.2 Distributed Aerodynamic Loads

Lift is assumed to act normal to the total air velocity, and drag is assumed to act parallel

to it, as illustrated in Fig. 4.8. The distributed aerodynamic loads are given in the deformed
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curvilinear coordinate system (ê′x, ê
′
η, ê
′
ζ) by

pA = p′ηê
′
η + p′ζ ê

′
ζ (4.71)

qA = q′xê
′
x (4.72)

where

p′η = L sinαA −D cosαA (4.73)

p′ζ = L cosαA +D sinαA (4.74)

q′x = M (4.75)

The blade local angle of attack αA is given by

αA = − tan−1

(
U ′ζ
U ′η

)
(4.76)

The distributed aerodynamic loads can then be transformed to the undeformed element

coordinate system (êx, êy, êz)

pA = pxêx + pyêy + pz êz (4.77)

qA = qxêx + qyêy + qz êz (4.78)
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where


px

py

pz


= [Tde]

T


0

p′η

p′ζ


(4.79)


qx

qy

qz


= [Tde]

T


q′x

0

0


(4.80)
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Chapter V

Acoustic Model

The acoustic formulation for several helicopter noise codes as well as the present study

is based on the Ffowcs Williams-Hawkings (FW-H) equation [37], which is written in an

inhomogeneous wave equation form

1

c2

∂2p′

∂t2
−∇2p′ =

∂

∂t
[ρ0vn|∇f |δ(f)− ∂

∂xi
[li|∇f |σ(f)]− ∂2

∂xi∂xj
[TijH(f)] (5.1)

The FW-H equation is derived by employing the conservation of mass and momentum

for the fluid, which is valid for the entire three-dimensional space surrounding a moving

body with arbitrary shape and motion. The rotational noise (thickness and loading noise)

and BVI noise can be predicted with sufficient accuracy using the FW-H equation and

neglecting the quadrupole source term.

5.1 Solution of the FW-H Equation

There exist a number of solutions to the FW-H equation [37], as documented in Ref. 34.

One of Farassat’s solutions known as Formulation 1A [35] has been implemented in several

helicopter noise prediction codes due to its numerical efficiency.
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Using Green’s function of the wave equation in the unbounded domain δ(g)/4πr, where

g = τ − t+ r/c (5.2)

a retarded time solution to FW-H equation is obtained

4πp′(x, t) =
1

c

∂

∂t

∫
f=0

[
ρ0cvn + lr
r(1−Mr)

]
ret

dS +

∫
f=0

[
lr

r2(1−Mr)

]
ret

dS (5.3)

To improve the speed and accuracy of the solution, mathematical manipulations are carried

out to move the time derivative inside the first integral of Eq. 5.3 by using the following

relation

∂

∂t

∣∣∣∣
x

=

[
1

1−Mr

∂

∂τ

∣∣∣∣
x

]
ret

(5.4)

this yields Formulation 1A

4πp′L(x, t) =
1

c

∫
f=0

[
l̇ir̂i

r(1−Mr)2

]
ret

dS +

∫
f=0

[
lr − liMi

r2(1−Mr)2

]
ret

dS

+
1

c

∫
f=0

[
lr(rṀir̂i + cMr − cM2)

r2(1−Mr)3

]
ret

dS (5.5a)

4πp′T (x, t) =

∫
f=0

[
ρ0vn(rṀir̂i + cMr − cM2)

r2(1−Mr)3

]
ret

dS (5.5b)

p′(x, t) = p′L(x, t) + p′T (x, t) (5.5c)

where p′L, p
′
T , p

′ denotes the loading noise, thickness noise and overall noise, respectively.
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5.2 BVI Noise Prediction

As mentioned in Chapter I, BVI noise dominates the low speed descent flight regime,

and is characterized by its impulsiveness and high intensity. The frequency content of BVI

noise falls mostly in the mid-frequency range, which is most sensitive to human hearing. A

widely accepted definition of BVI noise frequency range is the sum of 6th−40th harmonics

of blade passage frequency [147].

Blade-vortex interaction noise is generated by unsteady pressure fluctuations on the

blade induced by interaction with trailed vortices. More specifically, it originates primarily

from the dipole or loading source term p′L in Eq. 5.5. Because of its impulsiveness, the

prediction of BVI noise requires high fidelity blade surface pressure, with a typical resolu-

tion of less than 5◦ in azimuth. The pressure distribution, both chordwise and spanwise, is

provided by the aeroelastic calculation described in Chapter IV.

5.3 Modified WOPWOP Code

The present study is based on an extensively modified version of the helicopter aeroa-

coustic code WOPWOP [9] developed at NASA Langley and combines it with the pre-

viously described aeroelastic analysis code. The WOPWOP code implements Farassat’s

Formulation 1A(Eq. 5.5), and has been extensively validated [10, 12] for helicopter noise

predictions.

The original version of WOPWOP requires blade harmonics and surface loading as

input, which can be provided by either experiments or a suitable helicopter analysis code.
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Figure 5.1: Rigid and flexible blade representations

A simple blade model based on the assumption of an offset hinged rigid blade has been used

in the original WOPWOP code to generate the acoustic results. However, this simplified

model is incompatible with the more realistic elastic blade described in Chapter III. In order

to take into account the effects of blade flexibility, the blade dynamics in WOPWOP were

replaced by the fully flexible blade model with partial span trailing edge flaps [116, 119].

This was accomplished by discretizing the blade into a number of individual panels as

shown in Fig. 5.1. The acoustic code then calculates the contribution from each panel,

each having its own velocity, normal vector and pressure distribution. The time domain

response of each of these panels was obtained from the aeroelastic response analysis. This

information, together with the unsteady pressure distribution on the panel, serves as the

basis of the acoustic computations. Unlike some computational studies performed with

WOPWOP [8], a surface pressure distribution is used in the acoustic calculation, such

that no reduction to a chordwise compact loading is made. Tail rotor or engine noise was

not considered in this study. Furthermore, aerodynamic effects of the fuselage have been
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excluded, and thus the acoustic results represent the noise generated by the main rotor

only. The combined aeroelastic/aeroacoustic solution methodology will be explained in

Chap. VI.
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Chapter VI

Solution Procedure

The chapter provides a description of the combined aeroelastic and acoustic solution

procedure. The finite element discretized aeroelastic equations of motion described in

Chap. III are solved using modal reduction based on eight modes, including an axial mode.

This procedure has been developed in Ref. 174. Time domain solution of the coupled

trim/aeroelastic equations is obtained following the development in Refs. 30 and 108. In

the present study, a more general set of trim equations are derived which takes into account

descending flight conditions. The acoustics and blade stresses are solved separately after

the coupled trim/aeroelastic solution has been determined.

6.1 Free Vibration Analysis

The first step in the solution procedure is the calculation of the natural frequencies and

mode shapes of the blade. The coupled equations of motion representing the free vibrations

of the rotating blade are a set of nonlinear ordinary differential equations obtained from

the finite element discretization described in Chapter III. The computation of the natural

frequencies and mode shapes of the blade is based on the linear, undamped equations of

motion in vacuum. The equations of motion for the typical element used to model the
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straight portion of the blade are:

[MF
i ]q̈i + [KF

i ]qi = 0, i=1,...,n-1 . (6.1)

The n-1 equations represented by Eq. 6.1 are then assembled using the standard finite

clement assembly procedure. The assembled finite element equations of motion for the free

vibrations of the blade are written as

[MF ]q̈i + [KF ]qi = 0 (6.2)

In Eqs. 6.1 and 6.2, the superscript F denotes matrices used in the free vibration analysis.

The boundary conditions at the blade root for a cantilevered beam are imposed.

6.2 Modal Coordinate Transformation and Assembly Procedure

A preliminary step in the solution of the aeroelastic formulation is the modal coordinate

transformation performed on the blade equations so as to reduce the number of degrees of

freedom, and to assemble the various element matrices into global system mass, damping,

and stiffness matrices as well as the system load vector. For the i-th clement, the modal

coordinate transformation has the form:

qi = [Qi]y (6.3)
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where y is the vector of generalized modal coordinates, which becomes the new unknowns

of the problem and has size Nm which is the number of modes used to perform the modal

coordinate transformation. In this study, the following 8 modes are used: the first 3 flap

modes, first 2 lead-lag modes, first 2 torsional modes, and the first axial mode.

The assembled stiffness, damping and mass matrices of the blade are obtained by sum-

ming the matrices of the individual elements after the modal coordinate transformation has

been performed on each of these elements:

[K] =
n−1∑
i=1

[Qi]
T [Ki][Qi] (6.4)

[C] =
n−1∑
i=1

[Qi]
T [Ci][Qi] (6.5)

[M ] =
n−1∑
i=1

[Qi]
T [Mi][Qi] (6.6)

and the assembled load vector is given by:

F =
n−1∑
i=1

[Qi]
TFi (6.7)

The effects of swept tips are not included in Eqs. 6.4 – 6.7 since only straight blades were

considered in this study. The proper treatment of the local-to-global transformation for the

swept tip element is provided in Ref. 174.

The assembled blade equations of motion in the modal space are a set of nonlinear,
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coupled, ordinary differential equations written as:

[M(y)]ÿ + [C(y, ẏ)] + [K(y, ẏ, ÿ)]y + F(y, ẏ, ÿ) = 0 (6.8)

6.3 Treatment of the Axial Degree of Freedom

In the treatment of the axial degree of freedom, a substitution approach [174] is used to

properly account for the centrifugal force and Coriolis coupling effects. In this approach,

a new expression for the axial strain at the elastic axis, ε̄xx, in terms of the axial inertia

force is used to replace all the terms involving ε̄xx in the flap, lag and torsion equations,

which is equivalent to the proper representation of the centrifugal force effects in these

equations. Both the axial degree of freedom and the axial equation of motion are retained

in the aeroelastic calculations. Also, the modal coordinate transformation should include

an axial mode in order to properly account for the Coriolis coupling effect.

6.4 Coupled Trim/Aeroelastic Response Solution in Forward Flight

As described in Section 6.2, the assembled equations of motion have a total number

of Nm equations to be solved, where Nm is the number of free-vibration natural modes.

Additional equilibrium equations involving a set of trim parameters need to be satisfied for

the helicopter to maintain steady flight conditions. Propulsive trim is considered in this

study. Details on the wind tunnel trim procedure can be found in Ref. 95. These additional

propulsive trim equations are solved with the aeroelastic problem in a fully coupled manner,
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which is described next.

6.4.1 Time Domain Solution

The equations of motion are numerically integrated in time using a general purpose

Adams-Bashforth ordinary differential equation (ODE) solver DE/STEP [137] capable of

handling nonlinear system of equations. In order to use this ODE solver, the equations of

motion must be cast in first-order state space form.

u̇ = F(u; t), (6.9)

The equations of motion for the elastic blade can be represented by the vector expression

fb(y, ẏ, ÿ,xa,qd,qt;ψ) = 0, (6.10)

where y represents the vector of generalized coordinates, or modal participation; xa rep-

resents the vector of RFA aerodynamic states, qd = [Γl2 Γm2 Γd2]T is a vector of dynamic

stall states, and qt represents the trim vector.

To convert Eq. (6.10) to first order form, define a mass matrix M given by

M =
∂fb
∂ÿ

. (6.11)
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This allows Eq. (6.10) to be decomposed into the form

fb = gb(y, ẏ,xa,qd,qt;ψ) + M(y,qt;ψ)ÿ. (6.12)

The values of M and gb are calculated numerically. Solving Eq. (6.12) for ÿ produces

ÿ = −M−1gb. (6.13)

This can be written in first order state-variable form as follows:

ẏb =

 0 I

0 0

yb +


0

−M−1gb

 , (6.14)

where yb is given by

yb =


y

ẏ

 . (6.15)

Next, the attached flow aerodynamic state equations, Eq. 4.28, are provided in the form

ẋa = ga(y, ẏ, ÿ,xa,qt;ψ). (6.16)

The dependence on ÿ is eliminated by substituting Eq. 6.13 into Eq. 6.16, producing the

reduced set of equations

ẋa = gaR(y, ẏ,xa,qt;ψ). (6.17)
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The separated flow governing equations, Eq. 4.33, can be written as

q̈d = gd(y, ẏ, ÿ,qd, q̈d,qt;ψ). (6.18)

Using Eq. 6.13 the reduced set of separated flow equations are

q̈d = gdR(y, ẏ,qd, q̈d,qt;ψ). (6.19)

Equation 6.19 can be written as

ẋd =

 0 I

0 0

xd +


0

gdR

 , (6.20)

where xd =
[
Γl2 Γm2 Γd2 Γ̇l2 Γ̇m2 Γ̇d2

]T
Equations 6.14, 6.17, and 6.20 can be arranged into a system of coupled first order state

variable equations



ẏ

ÿ

ẋa

q̇d

q̈d



=



0 I 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 I

0 0 0 0 0





y

ẏ

xa

qd

q̇d



+



0

−M−1
b gb

gaR

0

gdR


, (6.21)

which can be numerically integrated in time from a given set of initial conditions and trim

variables qt using the ODE solver DE/STEP.
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6.4.2 Rotor Hub Loads and Vibratory Loads

The resultant force and moment at the root of the blades are found by integrating the

distributed inertial and aerodynamic loads [174] over the entire blade span in the rotating

frame, then transforming these loads to the hub-fixed nonrotating system, and summing the

contributions from each blade.

The resultant blade root loads for the k-th blade can be expressed in the (̂ir, ĵr, k̂r)

system

FRk(ψk) = FRkx(ψk )̂ir + FRky(ψk )̂jr + FRkz(ψk)k̂r (6.22)

MRk(ψk) = MRkx(ψk )̂ir +MRky(ψk )̂jr +MRkz(ψk)k̂r (6.23)

where

ψk = ψ +
2π(k − 1)

Nb

. (6.24)

is the azimuth of the k-th blade for an Nb-bladed rotor.

Transforming FRk and FRk to the nonrotating, hub-fixed system (̂inr, ĵnr, k̂nr) and

summing the contributions due to each blade, yields

FH(ψ) = FHX(ψ)̂inr + FHY (ψ)̂jnr + FHZ(ψ)k̂nr (6.25)

MH(ψ) = MHX(ψ)̂inr +MHY (ψ)̂jnr +MHZ(ψ)k̂nr (6.26)

In anNb-bladed helicopter, Nb/rev is the dominant harmonic of vibratory loads transferred

to the hub. Other harmonics of vibratory loads are also present, but these are of lesser
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importance and are not considered in the active reduction problems addressed in this study.

The quantities FNbcH, FNbsH, FNbcH, and FNbsH represent the sin and cos components

of the Nb/rev hub shears and moments, and are found using

FNbcH =
1

π

∫ 2π

0

FH(ψ) cosNbψdψ, (6.27)

FNbsH =
1

π

∫ 2π

0

FH(ψ) sinNbψdψ, (6.28)

MNbcH =
1

π

∫ 2π

0

MH(ψ) cosNbψdψ, (6.29)

MNbsH =
1

π

∫ 2π

0

MH(ψ) sinNbψdψ. (6.30)

The magnitude of the Nb/rev hub shear and moment components are given by

FNbX =

√
(FNbcXH)2 + (FNbsXH)2 (6.31)

FNb Y =

√
(FNbc Y H)2 + (FNbs Y H)2 (6.32)

FNb Z =

√
(FNbcZH)2 + (FNbsZH)2 (6.33)

MNbX =

√
(MNbcXH)2 + (MNbsXH)2 (6.34)

MNb Y =

√
(MNbc Y H)2 + (MNbs Y H)2 (6.35)

MNb Z =

√
(MMbcZH)2 + (MNbsZH)2. (6.36)

The “H” subscripts on the resultants have been dropped for convenience.
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6.4.3 Trim Equilibrium Equations

When enforcing the equilibrium at the rotor hub, the constant parts of the hub forces and

moments are needed. Therefore the equilibrium at the hub results in a set of trim equations

that is fully coupled with aeroelastic response solutions through the averaged hub forces

and moments terms. The trim solution involves the calculation of parameters such as pilot

control inputs (collective and cyclic pitch) and helicopter overall orientation (rotor angle of

attack and roll angle).

The propulsive trim formulation is based on the procedure described in Ref. 28, which

enforces six equilibrium equations of the helicopter in steady level flight, including three

force and three moment equations. A simple tail rotor model has been included which af-

fects the pitching and yawing moment equilibrium. In this study, the trim procedure was

modified so that it can account for descending flight conditions, since BVI is most inten-

sive during descent. The trim equations need to be solved in terms of six trim variables,

represented by the vector qt

qt = {αR, θcoll, θ1c, θ1s, θ0t, φR}T , (6.37)

The equilibrium equations are formulated in the nonrotating, hub-fixed system, as shown

schematically in Fig. 6.1. Note the flight path angle θFP is defined positive for descending

flight, as shown in the figure. The drag Df is assumed to act parallel to the flight path.

When θFP = 0, we recover the set of equations given in Ref. 28 for level flight.

The trim equations are:
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Figure 6.1: Schematic of helicopter used for trim analysis

Pitching Moment

Equilibrium about the ĵnr axis requires:

M
pt

+W
H

[−XFC cosφR cosαR + ZFC cosφR sinαR]

−Df [−XFA sin(αR − θFP) + ZFA cos(αR − θFP)]−Qt = 0. (6.38a)

Rolling Moment

Equilibrium about the înr axis requires:

M
rl − ZFCWH

sinφR + TtZt = 0. (6.38b)
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where Tt is the tail rotor thrust and Zt is the vertical distance between the hub axis and the

center of the tail rotor.

Yawing Moment

Equilibrium about the k̂nr axis requires:

M
yw −XFCWH

sinφR + TtXt = 0. (6.38c)

where Xt is the horizontal distance between the hub axis and the center of the tail rotor.

Vertical Force

Equilibrium about the k̂nr axis requires:

FT −WH
cosαR cosφR −Df sin(αR − θFP) = 0. (6.38d)

Longitudinal Force

Equilibrium about the înr axis requires:

H −W
H

sinαR cosφR +Df cos(αR − θFP) = 0. (6.38e)
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Lateral Force

Equilibrium in the ĵnr direction requires:

Y −W
H

sinαR cosφR + Tt = 0. (6.38f)

Aerodynamic Modifications for Descending Flight

Additional changes in the aerodynamic representation are also required to properly ac-

count for descent. The RFA model itself is valid for descending flight, however the velocity

U must be redefined. To demonstrate the changes necessary, recall the generalized motions

are given by:

h =



W0

W1

D0

D1


=



Uα + ḣ

bα̇

Uδ

bδ̇


. (6.39)

where α, U , and ḣ are defined as follows:

α = θG + ψ

U = UT (6.40)

−ḣ = UP

113



The definition of UT and UP is given in Chap. IV and is based on the flight conditions as

well as blade dynamics. Recall from Eq. (4.65):

U = VEA −VA, (6.41)

The airflow velocity due to blade dynamics, VEA, has the same expression for descend-

ing flight, whereas the airflow velocity due to blade rotation, forward flight and inflow,

VA, should be modified for descending flight. In level flight, VA can be written in the

nonrotating, hub-fixed system:

VA = ΩR(µ̂inr − λk̂nr) (6.42)

where the advance ratio µ and inflow ratio λ are given by

µ =
VF cosαR

ΩR
(6.43)

λ =
VF sinαR + ν

ΩR
(6.44)

For descending flight, these equations must be modified by replacing αR with (αR − θFP).

Thus, the modified expressions for advance ratio µ and inflow ratio λ are:

µ =
VF cos(αR − θFP)

ΩR

λ =
VF sin(αR − θFP) + ν

ΩR
(6.45)
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here ν is the induced inflow velocity. For the free wake analysis, it is replaced by a nonuni-

form inflow distribution. However, the components due to the velocity of flight VA are the

same as shown in Eq. (6.45).

The modified VA due to descending flight is subsequently employed to obtain the def-

initions for UP and UT , as described in Section 4.5.1, which properly take into account

the effects of descending flight. This approach is more general and recovers level flight

formulations when flight path angel θFP = 0.

6.4.4 Solution of the Trim Equations

The trim equations are solved using an iterative procedure similar to an autopilot. The

trim equations, Eqs. 6.38, can be written in the form:

ft(qt) = 0. (6.46)

Let Rti be the vector of trim residuals at the trim condition qti at iteration i:

ft(qti) = Rti. (6.47)

An iterative optimal control strategy is then used to reduce the value of Rti; based on the

minimization of the performance index (see [28], Chap. 6):

J = RT
tiRti. (6.48)
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This algorithm resembles a global feedback controller used for vibration reduction. The

trim parameters at the ith iteration are then given by:

qti = −T−1
i Rti−1 + qti−1

, (6.49)

where Ti is a transfer matrix describing the sensitivities of trim residuals to changes in the

trim variables:

Ti =
∂Rti

∂qt

. (6.50)

Ti is computed using a finite difference scheme.

6.5 Blade Stresses

After the blade responses are obtained from the coupled trim/aeroelastic response so-

lution, the stresses in the blade at any spanwise location can be recovered by using strain-

displacement and constitutive relations. Solving for the stresses in this manner accounts for

the complicated loading a blade encounters and is consistent with the structural dynamic

model. The procedure for calculating stresses is as follows:

1. For a given azimuth angle, the displacements at any spanwise location are calculated

by the aeroelastic response code.

2. The displacements are then substituted into the nonlinear strain-displacement rela-

tions giving the strains at any spanwise location.

3. Stresses are calculated by substituting Eq. 3.16 into the stress-strain relations given
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by Eq. 3.18.

This calculation provides the blade stresses at any spanwise location and at any azimuth

angle.

6.6 Acoustic Solution

The acoustic solution is obtained using the modified WOPWOP code, which needs the

blade motions and the surface pressure distribution determined from the aeroelastic analysis

as inputs. The theoretical basis for the acoustic calculations is given in Chap. V.

After the acoustic pressure time history at an observer location (such as the noise feed-

back locations on the helicopter or points on the carpet plane) is obtained, the discrete

frequency components of the sound pressure are calculated using Fourier analysis. Blade-

vortex interaction noise is then obtained by summing the frequency components of the

6th − 40th harmonics of the blade passage frequency (BPF). While BVI noise consists of

many harmonics of radiated noise, the 6th−40th harmonics of blade passage are dominant.

6.7 Hover Stability Analysis

In this study, the process for determining the hover stability of the blade is based on an

extension of the method described in Ref. 174 which accounts for the RFA aerodynamic

states [56]. As described in Ref. 174, the hover stability analysis proceeds as follows:

1. The non-linear static equilibrium solution of the blade is found for a given pitch
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setting and uniform inflow, by solving a set of nonlinear algebraic equations. Note

that uniform inflow is used only in the hover stability calculation. The forward flight

analysis employs a free-wake model for inflow calculation.

2. The governing system of ordinary differential equations are linearized about the static

equilibrium solution by writing perturbation equations and neglecting second-order

and higher terms in the perturbed quantities. The linearized equations are rewritten

in first-order state variable form.

3. The real parts of the eigenvalues of the first-order state variable matrix, λk = ζk+iωk,

determine the stability of the system. If ζk ≤ 0 for all k, the system is stable.

However, in Ref. 174, the blade equations of motion were only a function of the blade

response and trim parameters, i.e.,

fb(y, ẏ, ÿ,qt) = 0 (6.51)

where y is the vector of generalized modal coordinates representing the blade response

and qt is the vector of trim parameters which are uniform inflow and collective pitch for

hover. In contrast, the governing equations in this study are given by Eqs. 6.10 and 6.17,

which are functions of blade response and the RFA aerodynamic states. Note that the states

associated with the dynamic stall model can be neglected for hover analysis. Equations 6.10

and 6.17 represent the coupled set of ordinary differential equations that govern the rotor

blade system. Since these equations are coupled, the combined system must be linearized.
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In the linearization process, perturbing Eq. 6.10 about the static equilibrium and ne-

glecting the dynamic stall states and higher order terms gives

[
∂fb
∂ÿ

]
q0

∆ÿ +

[
∂fb
∂ẏ

]
q0

∆ẏ +

[
∂fb
∂y

]
q0

∆y +

[
∂fb
∂xa

]
q0

∆xa = 0 (6.52)

where q0 is the static equilibrium vector and is given by

q0 =


y0

ẏ0

ẋa0

 (6.53)

The “0” subscript denotes static equilibrium solution.

From Eq. 6.12, [
∂fb
∂ẏ

]
q0

=

[
∂gb
∂ẏ

]
q0

(6.54)

[
∂fb
∂y

]
q0

=

[
∂gb
∂y

]
q0

(6.55)

[
∂fb
∂xa

]
q0

=

[
∂gb
∂xa

]
q0

. (6.56)

Substituting Eqs. 6.54 – 6.56 and Eq. 6.11 into Eq. 6.52 gives

[M]q0
∆ÿ +

[
∂gb
∂ẏ

]
q0

∆ẏ +

[
∂gb
∂y

]
q0

∆y +

[
∂gb
∂xa

]
q0

∆xa = 0 (6.57)
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Solving for ∆ÿ yields

∆ÿ = −M−1

[
∂gb
∂ẏ

]
q0

∆ẏ −M−1

[
∂gb
∂y

]
q0

∆y −M−1

[
∂gb
∂xa

]
q0

∆xa. (6.58)

Similarly, Eq. 6.17 can be linearized, yielding

∆ẋa =

[
∂gaR

∂ẏ

]
q0

∆ẏ +

[
∂gaR

∂y

]
q0

∆y +

[
∂gaR

∂xa

]
q0

∆xa. (6.59)

Combining Eqs. 6.58 and 6.59 with the trivial perturbation equation ∆ẏ = ∆ẏ into first-

order state space form gives

ż = [A(q0)]z (6.60)

where

[A(q0)] =


0 I 0

−M−1
[
∂gb
∂y

]
q0

−M−1
[
∂gb
∂ẏ

]
q0

−M−1
[
∂gb
∂xa

]
q0[

∂gaR

∂y

]
q0

[
∂gaR

∂ẏ

]
q0

[
∂gaR

∂xa

]
q0

 (6.61)

and

z ≡ ∆y =


∆y

∆ẏ

∆xa

 (6.62)

As mentioned, the stability of the system is determined by the eigenvalues of A. A compar-

ison of aeroelastic stability results obtained with the approach described above, and those
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obtained with the original analysis described in Ref. 174 is provided in Appendix B.
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Chapter VII

Active/Passive Optimization

From the review in Chapter I, it is clear that a judicious combination of passive and

active methods are necessary for optimum rotor blade design. In this study, the passive

approach is based on structural optimization of the rotor blade, and active control is im-

plemented with ACF’s. Given the significant computational cost associated with the aeroe-

lastic response computations, and that a global search of the design space is desired, SBO

methods are used to facilitate a global search of the design space [55, 56, 59]. Active con-

trol is based on the variant of the HHC algorithm described in Ref. 96, 117, and 120. The

passive optimization problem formulation, the various SBO approaches employed in this

study, the active control algorithm, and the integration of the active and passive approaches

into an active/passive optimization framework are described in this chapter.

7.1 Passive Optimization Problem Formulation

The formulation of the blade optimization problem in forward flight consists of several

ingredients: the objective function, design variables, and constraints. The mathematical

formulation of the optimization is stated as: Find the vector of design variables D which

minimizes the objective function, i.e. J(D)→ min, subject to appropriate constraints.
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7.1.1 Objective Functions

Vibration

The vibration objective function consists of a combination of the Nb/rev oscillatory hub

shears and moments. For a four bladed rotor, the vibration objective function is given by

J
V

= KS

√
(F4X)2 + (F4Y )2 + (F4Z)2 +KM

√
(M4X)2 + (M4Y )2 + (M4Z)2 (7.1)

where KS and KM are appropriately selected weighting factors, and F4X – M4Z are given

by Eqs. 6.31 – 6.36 with Nb = 4.

Noise

The noise objective function used in this study is given by [57]

J
N

=
∑

SPLi, ∀i such that 20 log

(
SPLi
P0

)
≥ T

NL
(7.2)

where SPLi is the sound pressure calculated at the ith grid point on the carpet plane de-

picted in Fig. 7.1, P0 is a reference pressure, and T
NL

is a threshold noise level in decibels.

The sound pressure levels correspond to the 6th− 40th harmonics of the blade passage fre-

quency since they are the most critical harmonics for BVI noise. Thus, the noise objective

function represents the sum of all sound pressure levels which correspond to at least T
NL

dB of noise. Equation 7.2 was formulated to capture the effects of high noise levels, i.e.

≥ T
NL

, radiated over the entire far-field, while ensuring that less critical low noise levels
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Figure 7.1: Carpet plane

do not dominate the objective function.

Power

The power, or performance, objective function is given by

J
P

=
Ω

2π

∫ 2π

0

−MHZ (ψ) dψ , (7.3)

where MHZ is the total yawing moment about the hub. Equation 7.3 represents the instan-

taneous power required to drive the rotor at a constant angular velocity Ω averaged over

one revolution. The effects of unsteadiness, compressibility, dynamic stall (if applicable),
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Figure 7.2: Simplified model of the blade’s structural member

and the additional drag due to flap deflection are included in the calculation of MHZ . The

engine must provide a torque equal to −MHZ in order to maintain a constant angular ve-

locity. The relation for J
P

is a general expression which is valid for rotor blades with or

without ACF’s.

7.1.2 Design Variables

The vector of design variables D consists of the thicknesses t1, t2, t3, and the non-

structural mass mns located at the shear center, as shown in Fig. 7.2.

The following design variable configurations were considered in this study:

Configuration 1

The three thickness design variables were defined at the 0%, 25%, 50%, 75%, and

100% stations, while the non-structural mass design variable was defined at the 68% and

100% blade stations, resulting in a total of 17 design variables. These two blade stations
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were chosen for the non-structural mass because previous studies have shown that non-

structural masses are most effective for vibration reduction when they are distributed over

the outboard 1/3 of the blade [45, 93]. The cross-sectional design variables were assumed

to vary linearly between stations. The non-structural mass at the elastic axis inboard of the

68% station was set to zero for all configurations.

Configuration 2

The design variables were defined at two nodal locations – the 68% and 100% stations

– resulting in a total of 8 design variables. The cross-sectional thicknesses at the root were

fixed at baseline values, and the design variables varied linearly between the stations.

Configuration 3

The three thickness design variables were defined as constant within 4 equally sized

spanwise sections, while the non-structural mass design variable was defined as constant

between the 68% and 100% blade stations. Thus there were a total of 13 design variables

in the passive optimization formulation based on Configuration 3.

Configuration 4

Configuration 4 is similar to the previous configuration, except that design variables

representing the pretwist at the 50% and 100% stations – θ1 and θ2 respectively – are in-

cluded. The pretwist at the root is fixed at a baseline value θ0 , and the twist is assumed to

vary linearly between blade stations. Thus there are a total of 15 structural design variables.
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The first configuration, which corresponds to the largest number of design variables,

was used to evaluate the accuracy and effectiveness for optimization of the surrogate ob-

jective functions in Sections 8.1 and 8.2. In general, the larger the number of design vari-

ables, the more difficult it is to accurately approximate a function and to thoroughly search

the design space for the optimum. Thus, among the various design variable configura-

tions, Configuration 1 facilitates the most conservative evaluation of the performance of

surrogate based optimization techniques. Configuration 2, which corresponds to the fewest

design variables, is similar to that employed in Ref. 14 and was selected in order to con-

duct an initial evaluation of the EGO algorithm in Section 8.3. Configuration 3 represents

a more realistic alternative to Configuration 1 since the design variables are assumed to

be constant within several equally sized spanwise sections, as opposed to linearly inter-

polating between spanwise stations. The effectiveness of optimizing the spanwise mass

and stiffness distribution for BVI noise reduction is demonstrated in Chapter X using this

configuration. Finally, pretwist design variables were added in Configuration 4, which was

used to generate the results in Chapter XI, since geometric parameters have been shown to

affect the rotor power consumption.

7.1.3 Constraints

The design variables have side constraints to prevent them from reaching impractical

values; these are stated as

D
(L)
j ≤ D ≤ D

(U)
j , j = 1, 2, . . . , Ndv. (7.4)
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In addition, four types of behavior constraints, given by

gi(D) ≤ 0, i = 1, 2, . . . , Nc, (7.5)

are placed on the design variables. The first type of behavior constraints are frequency

placement constraints, which are prescribed upper and lower bounds on the fundamental

flap, lag, and torsional frequencies of the blade. The frequency placement constraints on

the fundamental flap frequency are written as

gflap(D) =
ωF1

ωU
− 1 ≤ 0 (7.6)

and

gflap(D) = 1− ωF1

ωL
≤ 0 (7.7)

where ωU and ωL are the prescribed upper and lower bounds on the fundamental flap fre-

quency. Similar constraints are placed on the lag and torsional frequencies, i.e. glag and

gtorsion. In addition, all blade frequencies must differ from integer multiples of the angular

velocity – 1/rev, 2/rev, 3/rev, . . . , etc. – to avoid undesirable resonances.

Another behavior constraint is an autorotational constraint, which ensures that mass

redistributions produced during the optimization do not degrade the autorotational proper-

ties of the rotor. Several indices can be used to represent the autorotational properties of

the blade; the one selected for this study is the requirement that the mass polar moment of
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inertia of the rotor be at least 90% of its baseline value [14], which implies:

g(D) = 1− IP
0.9IP0

≤ 0 (7.8)

where IP is the mass polar moment of inertia of the rotor when it is spinning about the

shaft, and IP0 is the baseline value.

The third type of behavior constraints are aeroelastic stability margin constraints that

can be stated as:

gk(D) = ζk + (ζk)min ≤ 0, k = 1, 2, . . . , Nm (7.9)

where Nm is the number of normal modes, ζk is the real part of the hover eigenvalue for

the kth mode, and (ζk)min is the minimum acceptable damping level for the kth mode. It

should be noted that the most critical modes for stability are usually the first and second

lag modes.

The final behavior constraint is a stress constraint obtained by substituting the blade

stresses into Von Mises’ criterion, which is expressed mathematically as

2σ2
xx + 6(σ2

xη + σ2
xζ)

6
− σ2

allowable

3
≤ 0 (7.10)

where σxx, σxη, and σxζ are the axial and shear stresses, and σallowable is the material yield

stress divided by a factor of safety. At discrete values of the azimuth angle, Eq. 7.10 is

evaluated at spanwise locations corresponding to the finite element nodes. The maximum
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evaluation of Eq. 7.10 is used for the constraint, and is given as

g(D) = MAX

[
2σ2

xx + 6(σ2
xη + σ2

xζ)

6
− σ2

allowable

3

]
≤ 0 (7.11)

where MAX[ ] denotes the maximum value of Eq. 7.10 over each set of azimuth angle

and blade stations at which it is evaluated. Therefore the stress constraint is enforced at

the blade station and azimuth angle where the stress condition is most critical. The stress

margin is given by

1−

√
σ2
xx + 3(σ2

xη + σ2
xζ)

σallowable
. (7.12)

A stress margin < 0 would correspond to a design which violates the stress constraint.

7.2 Global Sensitivity Analysis

The global sensitivity analysis (GSA), as proposed by Sobol [145], is used to estimate

the effect of different design variables on the total variability of the objective function. The

variability is a measure of how much the function changes due to changes in the design

variables. In Sobol’s approach, the significance of a design variable is quantified by cal-

culating the contribution of the variable to the total variance of a function. The higher the

variance caused by a variable, the more significant the variable is. The GSA separates the

total variability in the objective function into contributions from main effects, i.e. variability

due to each design variable alone, as well as contributions from interactions between all of

the design variables. The advantages of conducting such an analysis include assessment of

the importance of design variables and fixing non-essential variables during optimization,
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thus reducing the dimensionality of the problem. A brief overview of the GSA is given

below.

A function, p(x), of a vector of independent input variables, x in domain [0, 1], is

assumed and modeled as uniformly distributed random variables. The function can be

decomposed into the sum of functions of increasing dimensionality given by

p(x) = p0 +

Ndv∑
i=1

p
i
(xi) +

Ndv∑
1≤i<j≤Ndv

p
ij

(xi, xj) + . . .+ p
1,2,...,Ndv

(x1, x2, . . . , xNdv) (7.13)

where

p0 =

∫ 1

0

p(x) dx . (7.14)

It was shown in Ref. [145] that by enforcing the condition
∫ 1

0
p
i,...,m

dxk = 0 for k =

i, . . . ,m, the decomposition given by Eq. 7.13 is unique and the total variance of p(x),

V (p), can be decomposed in a similar fashion:

V (p) =

Ndv∑
i=1

V
i
+

Ndv∑
1≤i<j≤Ndv

V
ij

+ . . .+ V
1,2,...,Ndv

, (7.15)

where V (p) = E[(p−p0)2], and E[ ] denotes the expected value operator. It can be shown

that the partial variances in Eq. 7.15 are given by the following expressions:

Vi = V (E[ p | xi ])

Vij = V (E[ p | xi,xj ])− Vi − Vj (7.16)

Vijk = V (E[ p | xi,xj ,xk ])− Vij − Vik − Vjk − Vi − Vj − Vk ,
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and so on. In this notation, V (E[ p | xi ]) represents the expected value of p given the values

of xi. The contribution of xi alone to the total variance is accounted for with Vi, while Vij ,

Vijk, and so on account for the variance due to interactions among xi and the other design

variables. Note that

E[ p | xi ] =

∫ 1

0

p
i
dxi = 0 (7.17)

and

V (E[ p | xi ]) =

∫ 1

0

p2
i
dxi . (7.18)

The total contribution of the ith design variable to the total variance is given as

V total
i = V

i
+

Ndv∑
j,j 6=i

V
ij

+

Ndv∑
j,j 6=i

Ndv∑
k,k 6=i,j

V
ijk

+ . . . . (7.19)

Following Sobol’s suggestion to reduce the computational complexity of calculating the

global sensitivity of the function with respect to xi, the set of design variables is divided

into two subsets – the first subset contains only xi, while the second contains all of the

remaining design variables and is denoted as B. The total variance due to xi can now be

rewritten as

V total
i = Vi + Vi,B (7.20)

where Vi,B is the measure of the variance that is dependent on interactions between xi

and all of the other design variables. The total variance due to the effects from all design

variables is calculated from the following relation,

V (p) = Vi + VB + Vi,B (7.21)
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where VB is the partial variance corresponding to B.

Finally, sensitivity indices are calculated in order to quantify the significance of a design

variable. For example, the first and second order sensitivity indices are given by

Si =
Vi
V (p)

(7.22)

and

Sij =
Vij
V (p)

. (7.23)

The first order sensitivity index accounts for the main effects of a design variable. The

effects of interactions among design variables are captured by the higher order sensitivity

indices. For the ith design variable, the total sensitivity index is given by

Stotali =
V total
i

V (p)
. (7.24)

The relative significance of each design variable can be obtained by ranking each vari-

able according to its respective total sensitivity index, with the most significant variables

corresponding to higher indices.

7.3 Global Approximation Methods

In order to conduct a global search of the design space in a reasonable amount of time,

it is necessary to use global approximation, or surrogate methods, in which the “true”

objective function and expensive constraints are replaced with continuous functional rela-
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tionships that can be evaluated quickly. To construct the surrogates, the objective function

and constraints must first be evaluated over a set of design points. The surrogate is then

generated by fitting the initial design points. Although function evaluations, which come

from the expensive helicopter simulations, are needed to form the approximation, this ini-

tial investment of computer time is significantly less compared to global searches using

non-surrogate based optimization methods. Once the surrogates have been obtained, they

are used to replace the more expensive “true” objective function and constraints in the

search for the optimum. As in the case of optimization, the GSA is also based on numerous

evaluations of the objective function. Therefore, a surrogate must be used in place of the

true objective function in the GSA; i.e. p(x) from Eq. 7.13 is replaced with a surrogate.

The surrogate vibration objective function can be generated in two ways: (a) the vi-

bratory hub shears and moments in Eq. 7.1 are replaced by surrogates which are used to

build the surrogate objective function, as in Eq. 7.25, and (b) the overall output, J
V

, is

approximated directly. Six responses need to be approximated in the first approach, and 1

response needs to be approximated in the second approach. Both methods were considered

in this study.

Ĵ
V

= KS

√
(F̂4X)2 + (F̂4Y )2 + (F̂4Z)2 +KM

√
(M̂4X)2 + (M̂4Y )2 + (M̂4Z)2. (7.25)

The surrogate noise and power objective functions are constructed by fitting the overall

responses.

The stress constraint is the only constraint which requires a forward flight simulation,

and is therefore the only computationally expensive constraint. Consequently, a surrogate
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constraint is used in place of Eq. 7.11 during optimization. Descriptions of the methods

for constructing the global approximations are given below.

7.3.1 Design of Computer Experiments

When the initial data set is produced by a deterministic computer code (as is the case

in the vibration reduction problem), the term “design of computer experiments,” is more

appropriate than design of experiments [131, 140]. The distinction is necessary because in

physical experiments there is measurement error and other random sources of noise that

cannot be controlled, which affect the choice of the design point. However, in computer

experiments, there is no random error; i.e., for a deterministic computer code, a given input

will always yield the same output. Thus, the design of computer experiments need only be

space-filling. Figure 7.3 illustrates the difference between a conventional design of experi-

ment and a space-filling design. In the figure, locations of design points where experiments

are to be conducted, which in this case represent design points where aeroelastic response

simulations are performed, are shown for a design space which has two design variables.

A commonly used space-filling design is Latin hypercube sampling (LHS) [100]. In

LHS, each design variable is partitioned into Nsp equally spaced sections, or strata. Every

design variable Di, where i = 1, 2, ..., Ndv, is sampled once in each strata, which forms

Ndv vectors of size Nsp. The components of the Ndv vectors are then randomly combined

to form an Nsp×Ndv matrix known as a Latin hypercube, where each row corresponds to a

design point at which a computer experiment is performed. A major disadvantage of Latin

hypercube sampling is that design points can cluster together due to the random process
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Figure 7.3: Design of physical experiment vs. design of computer experiment

by which design points are created. To prevent this, optimal Latin hypercube (OLH) [123]

sampling is used in this study to ensure a more uniform (or space-filling) design of com-

puter experiment. Optimal Latin hypercube sampling creates a more uniform design than

conventional LHS by maximizing a spreading criteria, rather than randomly creating de-

sign points from the samples. Figure 7.4 illustrates the difference between a conventional

Latin hypercube and an optimal Latin hypercube. In this study, the OLH algorithm from

the iSIGHT software package was used [73, 85]. The OLH algorithm described in Ref. 73

is initialized with a conventional LH. An optimization algorithm is then employed in order

to search over the various combinations of fitting points for the combination which results

in the maximum of the minimum distance between any two points. Methods for fitting the

data points in the OLH are described next.
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Figure 7.4: Conventional LH vs. Optimal LH in two dimensional design space

7.3.2 Polynomial Response Surfaces

Suppose a deterministic function of Ndv design variables needs to be approximated and

has been evaluated at Nsp sample points. Sample point i is denoted x(i) = (x
(i)
1 , ..., x

(i)
Ndv

)

and the associated response is given by y
i

= y(x(i)) for i = 1, ..., Nsp. A polynomial

regression approximation to y(x) can be written as

y(x) = ŷ(x) + εpr (7.26)

where ŷ(x) is the function chosen to approximate the true response y(x), and εpr is the error

associated with the approximation. It is important to note that the errors are assumed to be

independent: i.e. the errors at two points close together will not necessarily be close. This

assumption will be revisited when considering kriging. In this study, 2nd order polynomials
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are used for ŷ(x). The least squares regression approximation is given as [72]

ŷ
poly

= β0 +

Ndv∑
i=1

βixi +

Ndv∑
i=1

Ndv∑
j=1,i<j

βijxixj +

Ndv∑
i=1

βiix
2
i . (7.27)

In addition to Eq. 7.27, a reduced term polynomial surrogate in which statistically

insignificant terms are removed is considered. The t-statistic corresponding to a coefficient

determines whether the coefficient is significantly different than zero, and thus statistically

significant. The t-statistic for the coefficient βij is given by

tstat =
βij − 0

SE (βij)
, (7.28)

where SE (βij) is the standard error for the coefficient [107]. If βij − 0 < SE (βij), i.e. a

t-statistic less than 1, then the coefficient is not considered to be significantly different than

zero. Thus, the reduced term polynomial is obtained by sequentially removing coefficients

with t-statistics less than 1 from the full term polynomial.

7.3.3 Kriging

Kriging is based on the fundamental assumption that errors are correlated, which is

in contrast to the assumption of independent or uncorrelated errors made in polynomial

regression. This implies that one assumes the errors at two points close together will be

close. In fact, the assumption that the errors are uncorrelated is only appropriate when the

sources of error are random, such as in the case of measurement error or noise. In the case

of deterministic computer simulations, there is no source of random error. Therefore, it is
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more reasonable to assume that the error terms will be correlated and that this correlation

is higher the closer two points are to each other. In kriging, the unknown function y(x) is

assumed to be of the form

y(x) = f(x) + Z(x) (7.29)

where f(x) is an assumed function (usually polynomial form) and Z(x) is a realization of

a stochastic (random) process which is assumed to be a Gaussian process with zero mean

and variance of σ2
var (i.e. Z(x) follows a normal, or Gaussian, distribution) [82, 132]. The

function f(x) can be thought of as a global approximation of y(x), while Z(x) accounts

for local deviations which ensure that the kriging model interpolates the data points exactly.

The covariance matrix of Z(x), which is a measure of how strongly correlated two points

are, is given by

Cov[Z(x(i)), Z(x(j))] = σ2
varRkrg (7.30)

where each element of the Nsp ×Nsp correlation matrix Rkrg is given by

(Rkrg)ij = Rkrg(x(i),x(j)) (7.31)

andRkrg(xi,xj) is a correlation function which accounts for the effect of each interpolation

point on every other interpolation point. This function is called the spatial correlation

function (SCF) and is chosen by the user. The most commonly used SCF is the Gaussian

correlation function,

Rkrg(x(i),x(j)) = exp

[
−

Ndv∑
k=1

ϑk|xk(i) − xk(j)|pk
]
, (7.32)
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which is also employed in this study. The Gaussian SCF is dependent on the distance

between two points. As two points move closer to each other, |xk(i) − xk(j)| → 0, and Eq.

7.32 approaches unity which is the maximum value of the Gaussian SCF. In other words,

the Gaussian SCF recovers the intuitive property that the closer two points are to each other,

the greater the correlation between the points.

The fitting parameters ϑk and pk are unknown correlation parameters which need to be

determined. In order to determine these parameters, the form of f(x) needs to be chosen.

Constant Trend Function

The most common choice for f(x) is f(x) = βββ where βββ is a constant. Previous studies

have found that modeling with the SCF is so effective, that using a constant for the global

behavior results in little loss of fidelity [82,131,132,142]. Another common simplification,

is to fix all pk = 2. When this simplification is combined with the constant global approx-

imation, the approximation method is known as ordinary kriging. In the present study,

kriging models where pk are not fixed at 2 will be compared with ordinary kriging models.

In order to find ϑk and pk, the generalized least square estimates of βββ and σ2
var, denoted

by β̂ββ and σ̂2
var respectively, are employed [82, 132]:

β̂ββ = (1T(Rkrg)−11)−11T(Rkrg)−1y (7.33)

and

σ̂2
var =

(y − 1β̂ββ)T(Rkrg)−1(y − 1β̂ββ)

Nsp

(7.34)
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where 1 is a vector populated by ones and y is a vector of observed function outputs at

the interpolation points; both vectors are of length Nsp. With σ̂2
var and β̂ββ known, ϑk and pk

are found such that a likelihood function is maximized [82, 132]. The likelihood function,

given in Eq. 7.35, is a measure of the probability of the sample data being drawn from

a probability density function associated with a Gaussian process. Since the stochastic

process associated with kriging has been assumed to be Gaussian, one seeks the set of ϑk

and pk that maximize the probability that the interpolation points have been drawn from

such a process.

− [Nsp ln(σ̂2
var) + ln |Rkrg|]

2
(7.35)

The maximum likelihood estimates (MLE’s) of ϑk and pk represent the “best guesses” [141]

of the fitting parameters. Any values of ϑk and pk would result in a surrogate which inter-

polates the sample points exactly, but the “best” kriging surrogate is found by optimizing

the likelihood function. This auxiliary optimization process can result in significant fitting

time depending on the size of the system. Due to the optimization process needed to create

the kriging surrogate, kriging is only appropriate when the time needed to generate the in-

terpolation points is much larger than the time to interpolate the data – which is the case in

the helicopter vibration problem. With all parameters known, the kriging approximation to

a function y(x) can be written as [82, 131, 132, 142]

ŷkrg = β̂ββ + rkrg(x)T(Rkrg)−1(y − 1β̂ββ) (7.36)
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where

rkrg(x) =
[
Rkrg(x,x(1)), Rkrg(x,x(2)), ..., Rkrg(x,x(Nsp))

]T
(7.37)

The column vector rkrg(x) of length Nsp is the correlation vector between an arbitrary

point x and the interpolation points, x(1), ... , x(Nsp).

Linear Trend Function

In addition to a constant trend function, kriging with a linear polynomial trend was

considered; i.e.

f(x) = fx
Tβββ (7.38)

where fx
T is a 1 × Nbasis vector, Nbasis is the number of basis functions associated with

the linear polynomial, and βββ is a Nbasis × 1 vector of coefficients. Similarly, F(x) can be

defined as an Nsp × Nbasis matrix where the ith row corresponds to the evaluation of the

Nbasis functions at the ith sample point. The generalized least square estimates of βββ and

σ2
var based on a linear trend function are given by:

β̂ββ = (FT(Rkrg)−1F)−1FT(Rkrg)−1y (7.39)

and

σ̂2
var =

(y − Fβ̂ββ)T(Rkrg)−1(y − Fβ̂ββ)

Nsp

(7.40)
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The linear trend kriging approximation is

ŷkrg = fx
Tβ̂ββ + rkrg(x)T(Rkrg)−1(y − Fβ̂ββ) (7.41)

7.3.4 Radial Basis Function Interpolation

Radial basis function (RBF) interpolation is similar to kriging in the sense that they are

based on Gaussian correlation functions. However, in this study RBF interpolation refers

to an approximation method based on Gaussian correlation functions that does not include

a constant global approximation term, unlike kriging. The method of RBF interpolation

used in this study is based on the method employed in Ref. 143. A brief description of the

methodology for generating the RBF surrogate is described next.

In RBF surrogates, the approximate response is a weighted sum of basis functions:

ŷ =

Nsp∑
i=1

wiRRBF

(∥∥x− x(i)
∥∥) (7.42)

where RRBF(∗) is typically a non-linear function depending on the Euclidean distance (de-

noted by
∥∥x− x(i)

∥∥) between two design points. The coefficients, wi, are found such that

the surrogate interpolates the initial data points. Thus, the following condition must be

satisfied for j = 1, ..., Nsp:

y
(
x(j)
)

=

Nsp∑
i=1

wiRRBF

(∥∥x(j) − x(i)
∥∥) (7.43)

By defining the vectors w = [w1, w2, ..., wNsp ]
T,
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y = [y1, y2, ..., yNsp ], and the Nsp × Nsp spatial correlation matrix RRBF with elements

(RRBF)ij = RRBF

(
|x(i) − x(j)|

)
, Eq. 7.43 can be rewritten as

RRBFw = yT (7.44)

If the inverse of RRBF exists, then the weighting coefficients are

w = (RRBF)−1yT (7.45)

and the RBF surrogate is

ŷRBF (x) = rRBFw = rRBF(RRBF)−1yT (7.46)

where

rRBF =
[
RRBF

(∥∥x− x(1)
∥∥) , ..., RRBF

(∥∥x− x(Nsp)
∥∥)] . (7.47)

As stated above, Eq. 7.46 shows that the RBF surrogate does not include a constant

global approximation term, unlike Eq. 7.36 which includes β̂ββ. Gaussian correlation func-

tions of the form given by Eq. 7.48 are used for the basis functions in Eq. 7.42.

RRBF(η) = exp(−η2/2τ 2
RBF

) (7.48)

In this case, the dummy variable η would be
∥∥x− x(i)

∥∥. The fitting parameter τ
RBF

is found
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by a process denoted as leave-one-out cross validation, which proceeds as follows:

1. The design variables are scaled to vary from 0 to 1. The possible values of τ
RBF

are

then spread over the domain [10−1, 101] on a logarithmic scale. This domain was

used because the spatial correlation matrix did not become ill-conditioned during the

fitting process with these bounds on τ
RBF

.

2. For each value of τ
RBF

, Nsp RBF models are created, leaving one interpolation point

out each time, as if only (Nsp − 1) interpolation points exist. Therefore, for each

value of τ
RBF

, Nsp evaluations of Eq. 7.46 are required and each evaluation involves

the inversion of the Nsp ×Nsp matrix RRBF. Since a large set of τ
RBF

can lead to an

excessive number of evaluations of Eq. 7.46, only 15 values for τ
RBF

were considered

so that the RBF remains computationally tractable.

3. The difference between the true response at the left out point and the response pre-

dicted at the left out point by the RBF model based on (Nsp− 1) points is computed.

4. The value of τ
RBF

that minimizes the sum of these residuals is selected as the fitting

parameter.

7.3.5 Radial Basis Neural Networks

Radial basis neural networks (RBNN’s) approximate a function as a weighted sum of

radial basis functions, also known as neurons.

ŷ
RBNN

=

NRBF∑
i=1

αiRRBNN
(x) (7.49)

145



where RRBNN(x) is the response of the radial basis function at x, and αi is the weight as-

sociated with the radial basis function. In this study, the MATLAB routine newrb was used

to construct the RBNN. Gaussian function’s given by Eq. 7.50 are used for the neurons.

R
RBNN

(η) = exp(−η2) (7.50)

In this case, the dummy variable η would be
(
τ

RBNN

∥∥x− x(i)
∥∥). The parameter τ

RBNN
is

inversely related to the user defined spread parameter, which controls the radius of influ-

ence for each neuron. Specifically, the radius of influence is the distance at which the output

of a neuron reaches a certain small value corresponding to half of the spread parameter. A

high spread would cause the neuron responses to be smooth, and a low spread would result

in highly non-linear responses. The spread is set to 0.5 in this study. The number of radial

basis functions and associated weights are determined by satisfying the user defined error

goal for the mean square error in the approximation. The goal parameter is set to the square

of 5% of the mean response in this study.

7.3.6 Weighted Average Surrogates

In addition to the individual surrogates described above, a weighted average surrogate

based on the implementation described in Ref. 60 was employed. The weighted average

model is formulated as a weighted sum of the polynomial, kriging, and RBNN surrogates,

i.e.

ŷ
WTA

= w
poly
ŷ

poly
+ w

krg
ŷ

krg
+ w

RBNN
ŷ

RBNN
(7.51)
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where w
poly

, w
krg

, and w
RBNN

are the weights associated with each surrogate. Note that

any number of the individual approximation methods could have been combined into a

weighted average surrogate. The reasons for employing 2nd order polynomials, kriging,

and RBNN surrogates in the weighted average approach are as follows: (1) these are com-

monly used surrogates in engineering applications, (2) they offer a variety of parametric

and non-parametric approaches [123], and (3) they differ in how the fitting parameters are

selected. The weights are calculated in such a way that they (a) reflect the confidence in

each individual surrogate and (b) filter out adverse effects associated with individual sur-

rogates which represent the sample data well, but predict poorly at designs not included

in the sample data. Furthermore, the weights in Eq. 7.51 are constrained to sum to 1 so

that if all of the individual surrogates give the same output at some input, then the weighted

surrogate will also recover this output. A weight scheme which satisfies these requirements

is given below [60].

w
i

=
w∗
i

Nsm∑
i

w∗
i

(7.52)

where

w∗
i

= (Ei + d1Eavg)
d2 , d1 < 1, d2 < 0 (7.53)

Eavg =
Nsm∑
i

E
i
/Nsm (7.54)

and Nsm is the number of surrogate models. The weights are based on a global data based

error measure for each surrogate, denoted by Ei. In this study, the generalized mean square

error (GMSE) based on leave-one-out cross-validation (also known as PRESS in the poly-
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nomial response surface approximation terminology) is used as the error measure, and thus

Ei =
√
GMSEi . (7.55)

and

GMSEi =
1

Nsp

Nsp∑
i=1

(
y
i
− ŷ(−i)

i

)2
(7.56)

where ŷ(−i)
i

represents the prediction at x(i) using the surrogate constructed with all sample

points except (x(i), y
i
). The advantage of cross-validation is that it provides a nearly un-

biased estimate of the generalized error and the corresponding variance is reduced, when

compared to split-sample, considering that every point gets to be in a test set once, and in a

training set (k − 1) times, regardless of how the data is divided.

In Eq. 7.53, d1 and d2 are user defined parameters which control the relative influence

of the individual surrogate error, Ei, and the average of the individual errors, Eavg, on the

weight. Small values of d1 and large negative values of d2 result in high weights for the

best individual surrogate, which satisfies the first goal mentioned above for determining

the weights. Large values of d1 and small negative values of d2 result in more emphasis on

the average of the error, which would protect against surrogates which may predict well at

sample data points, but give poor predictions at unsampled locations in the design space.

Based on a parametric study conducted in Ref. 60, setting d1 = 0.05 and d2 = −1, or

d1 = 0.5, d2 = −1 has little effect on the weights. Since similar behavior was observed

in this study, the results are presented for d1 = 0.05 and d2 = −1. Note that the intuitive

property that the higher the error, the lower the weight corresponding to a surrogate is
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recovered since d2 < 0. It is worth noting that the optimum settings of d1 and d2 as well as

the optimum choice of surrogates for use in the weighted average approach are important

issues which are the subject of ongoing research and thus are beyond the scope of this

thesis.

7.4 Passive Design Using Surrogate Based Optimization

In order to examine the effectiveness of surrogate based optimization (SBO) for rotor

blade optimization, two approaches to utilizing the approximate objective functions were

considered: (1) the one-shot approach was considered in order to compare the effectiveness

of the surrogates without the benefit of updating search algorithms, and (2) an updating

approach based on the EGO algorithm was used for single and multi-objective function

optimization. Descriptions of these SBO approaches are given below.

7.4.1 One-shot Optimization

In the one-shot approach, the surrogate objective function is optimized directly. The

predicted optimum design is then evaluated by the expensive aeroelastic response code in

order to obtain the actual objective function value. There is no updating of the surrogate,

regardless of the error in the predictions.
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Multiple Surrogate Approach

Most research dealing with surrogate modeling and optimization has been concerned

with choosing among different surrogates. However, the choice of the “best” surrogate

model is determined by a number of factors, and once selected the choice of the “best”

surrogate model is seldom reviewed. These factors include: the number of points used to

construct the surrogate model (sampling density), the scheme used to select points (design

of experiments), and parameters/nature of the surrogate model. Different surrogate models

have been shown to perform well under different conditions and for different objectives.

For instance, some studies have found that polynomials perform as well or better than

other approximation methods, while others have concluded that radial basis function (RBF)

interpolation or kriging are the best methods [38, 72, 114, 115, 141, 149]. Furthermore,

the most accurate approximation method may not necessarily lead to the optimum design.

Thus, a single approximation method has not distinguished itself as the most suitable for

engineering applications.

As an alternative to seeking the “best” approximation method, there has been recent

work on the collaborative use of an ensemble of surrogates [60]. The combination of mul-

tiple surrogates is motivated by our inability to find a unique solution to the non-linear

inverse problem of identifying the model from a limited set of data [123] and essentially

serves as an approach to account for the uncertainty in the choice of the appropriate approx-

imation methods. Typically, the cost of obtaining data required for developing surrogates is

high, so it is desirable to extract as much information as possible from the data. Although

selecting the fitting parameters may require substantial effort for certain approximation
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methods, surrogates can often be constructed without significant expense compared to the

cost of acquiring data. Therefore, use of an ensemble of surrogates can prove to be a rela-

tively inexpensive method of distilling correct trends from the data while protecting against

poor surrogate models.

A multiple surrogate approach, including the weighted average model, is employed in

this study in order to demonstrate some of the pitfalls associated with only using a single

approximation method. The multiple surrogate approach is employed in a one-shot opti-

mization framework. However, as noted in Section 1.5.3, this approach could be adapted

into an updating scheme which explicitly accounts for prediction uncertainty.

7.4.2 EGO Algorithm

Once the surrogates are obtained, the one-shot approach is the simplest method for

finding the optimum. However if the surrogate is not accurate everywhere in the design

space, the optimization may lead to a poor design. Therefore, it is desirable to account for

the uncertainty in the surrogate’s predictions since promising designs could lie in regions

where the surrogate is inaccurate. The Efficient Global Optimization (EGO) algorithm

proposed by Jones et al. [82] is an alternative to the one-shot approach which accounts

for uncertainty in the surrogate and is more efficient. In EGO, a small number of initial

design points are used to fit kriging approximations of the objective function and expensive

constraints. Based on the stochastic process nature of kriging, an expected improvement

function (EIF) is created in order to facilitate the selection of additional sample points

(infill samples) where expensive computer simulations are to be conducted. These sample
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points are chosen to be where there is a high probability of producing a superior design

over the current best design and/or where the predictions of the surrogate are unreliable

due to a high amount of uncertainty. The infill samples represent a balance between the

local consideration of finding an optimal design based on the surrogate’s predictions, and

the global consideration of sampling where there is much uncertainty in the surrogate’s

predictions.

Expected Improvement Based Search of the Design Space

Before forming the EIF it is necessary to derive an estimation of the error, or uncer-

tainty, in the kriging model. The mean squared error (MSE) [82], at any point in the design

space, of the kriging predictor can be written as

s2(x) = σ̂2
var

[
1− rT

krgR
−1
krgrkrg +

(1− 1TR−1
krgrkrg)2

1TR−1
krg1

]
. (7.57)

Equation 7.57 represents an approximation of the error in the kriging prediction at any

design point. The advantage of Eq. 7.57 is that an estimate of the error, or uncertainty, in

the kriging surrogate can be obtained without additional expensive function evaluations.

With the kriging model and the MSE defined, the EIF can be derived. For a minimiza-

tion problem, the improvement over the current best design is written as

I = max(ymin − y(x), 0) (7.58)

where ymin is the best feasible design out of all of the sample points used to create the
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surrogate. The expected improvement is simply the expected value of Eq. 7.58 [81], and

can be written as

EIF (x) =


χ1 + χ2 if s > 0

0 if s = 0

(7.59)

where

χ1 = (ymin − ŷkrg)Φdist

(
ymin − ŷkrg

s

)
(7.60)

and

χ2 = sφden

(
ymin − ŷkrg

s

)
. (7.61)

The functions Φdist(∗) and φden(∗) represent the standard normal distribution function and

the standard normal density function respectively.

The first term in the EIF, χ1 , is the difference between the current best objective function

value and the predicted response at an arbitrary design, x, multiplied by the probability

that y(x) is better than ymin. This term is large where ŷkrg is likely to be better than ymin.

The second term, χ2 , is large where the error metric s(x) is large and thus where there is

much uncertainty in the surrogate’s prediction. The design points with the highest expected

improvement represent a balance between finding promising regions in the design space

based on the surrogate’s predictions (local search) and finding regions of high uncertainty

in the surrogate’s predictions (global search).
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Weighted Expected Improvement Function

It is possible to control the balance between the local and global search characteristics

of the EIF by weighting the two terms with a user defined parameter,w [144]. The weighted

expected improvement function (WEIF) is given as

WEIF (x) =


wχ1 + (1− w)χ2 if s > 0

0 if s = 0

(7.62)

where 0 ≤ w ≤ 1. Setting w = 0 would place more emphasis on searching in regions

of the design space where there is much uncertainty in the surrogate’s predictions, while

w = 1 would emphasize locating designs which are predicted to be optimal. A value of

w = 0.5 results in the same characteristics as the balanced search based on the EIF.

Implementation of the EGO Algorithm

In this study, the implementation of EGO, which is depicted in Fig. 7.5, proceeds as

follows:

1. A small number of initial fitting points are generated using optimal Latin hypercube

(OLH) sampling.

2. The initial fitting data is generated by evaluating the expensive objective function and

constraints at each design in the OLH. This entails conducting a number of aeroelas-

tic response simulations equal to the number of points in the OLH. Since each sim-

ulation corresponds to an independent rotor blade design, a number of simulations
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Figure 7.5: Efficient Global Optimization (EGO) algorithm

equal to the number of available processors are conducted in parallel until fitting data

is generated for all designs in the OLH.

3. Kriging surrogates for the expensive objective function and constraints are generated

from the fitting data.

4. The WEIF corresponding to the surrogate objective function is formed.

5. The WEIF, which is a continuous function of the design variables, is optimized to find

the set of designs corresponding to the highest weighted expected improvement in the

objective function. In this study, the Multi-Island Genetic Algorithm in iSIGHT [1]

is used to optimize the WEIF while enforcing the constraints on the blade design.
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6. From the genetic algorithm output file, the Np best designs in terms of weighted

expected improvement are selected, where Np is the number of available processors.

Simulations at each of the Np best designs are run on individual processors in order

to take advantage of parallel computation [143].

7. The stopping condition is checked. In this study, the algorithm is stopped if the best

design from the current iteration is not better than the best design from the previous

iteration. Other possible stopping criteria could be when a predefined amount of

computer time elapses, or when the weighted expected improvement is low.

8. If the stopping condition is not reached, the kriging surrogates are refit after the

additional fitting data is added to the initial data set, and the process of choosing ad-

ditional sample points is repeated until the user defined stopping criterion is reached.

The advantages of such a method over the one-shot approach are (1) the chances of

being led to a poor design due to errors in the surrogates are reduced by sampling in regions

where there is much uncertainty in the surrogate’s predictions, and (2) fewer expensive

function evaluations are required since a smaller initial sample set is used and the EIF

is used to select additional sample points in a more “intelligent” manner, as opposed to

starting with a relatively large initial data set.

7.4.3 Surrogate Based Multi-objective Optimization

Since multiple objective functions are considered in this study, it is desirable to locate

blade designs corresponding to the best trade-offs between the objective functions. The best
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trade-off designs are Pareto optimal if no other designs can be found which correspond to

superior objective function values for all objective functions. Each multi-objective prob-

lem considered in this study consists of two objective functions. To locate a set of Pareto

optimal designs, two approaches were employed to extend EGO for multi-objective func-

tion optimization. The first approach is a weighted sum approach in which both objective

functions are combined into a single objective function, i.e.

Jsum = WJ1 + (1−W )J2 . (7.63)

Various values of 0 ≤ W ≤ 1 are selected in order to convert the multi-objective function

optimization problem into multiple single-objective function optimization problems. Thus,

for each value of W , EGO is applied to Jsum . This approach is similar to ParEGO [84]

except that W is not randomly selected for each iteration.

In the second approach, EGO is modified to locate the Pareto designs associated with

the WEIF’s. The modified EGO algorithm, which is depicted in Fig. 7.6, proceeds as

follows:

1. A small number of initial fitting points are generated using optimal Latin hypercube

(OLH) sampling.

2. As in the single objective EGO algorithm, the initial fitting data is generated by

evaluating the expensive objective function and constraints at each design in the OLH

using parallel computation.

3. Kriging surrogates for each of theNOF expensive objective functions and constraints
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Figure 7.6: Multi-objective EGO algorithm

are generated from the fitting data, where NOF is the number of objective functions.

4. Weighted expected improvement functions corresponding to all NOF objective func-

tions are generated.

5. Using genetic algorithms available in iSIGHT, the Pareto optima of the WEIF’s are

obtained; i.e. the designs corresponding to the best combinations of weighted ex-

pected improvement in the objective functions. The approach to employing genetic

algorithms in order to identify the Pareto optima of the WEIF’s is illustrated in Sec-

tion 9.2.2.
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6. Additional fitting data is generated by conducting simulations at each of the Pareto

designs in parallel.

7. The stopping condition is checked. The algorithm is stopped if the additional sample

points do not improve upon or add to the Pareto optima corresponding to the objective

functions from the previous iteration.

8. If the stopping condition is not reached, the kriging surrogates are refit after the

additional fitting data is added to the initial data set, and the process of choosing ad-

ditional sample points is repeated until the user defined stopping criterion is reached.

In contrast to the method developed in Ref. 83, the approach described above is not

based on a multi-objective extension of the EIF which was derived from statistical princi-

ples. However, it has two advantages over the approach proposed in Ref. 83: (1) it is a

more straight forward extension since the EIF’s derived in the single objective approach

are used, and (2) the capability to control the balance of the search is maintained since the

WEIF is used. It should be noted that a thorough comparison of the various approaches

to applying EGO for multi-objective optimization, namely parEGO [84], Keane’s formula-

tion [83] and the approaches employed in this study has never been conducted; thus, it is

unclear how well these methods perform relative to each other.

7.5 Active Control Algorithm

Active control of vibration and rotor power is based on the higher-harmonic control

(HHC) algorithm [76]. The stability, robustness, and convergence properties of the algo-
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rithm and a number of variants were explored in Ref. 117. The relaxed adaptive HHC

variant detailed in Ref. 96 is employed in this study. The algorithm is based on a linear,

frequency domain representation of helicopter response to control inputs. The input har-

monics to the ACF consist of a combination of flap deflection angles having frequencies of

2, 3, 4 and 5/rev. Thus, the total flap deflection is a combination of these contributions:

δf (ψ) =
5∑

N=2

[δNc cos(Nψ) + δNs sin(Nψ)] , (7.64)

where δNc and δNs are the control amplitudes.

The control strategy is based on the minimization of a performance index which is

a quadratic function of the quantities that are being reduced, zk, and the control input

amplitudes uk [76, 117]:

J
ACF

(zk,uk) = zT
kQzk + uT

kWuuk . (7.65)

In the case of vibration reduction,

zk,VR = [F4X F4Y F4Z M4X M4Y M4Z ]T . (7.66)

For noise reduction, zk consists of the 6th – 17th harmonic components of BVI noise,

zk,NR = [NH06 NH07 NH08 . . . NH17]T . (7.67)
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Although BVI noise is made up of the 6th – 40th harmonics, the 6th – 17th harmonics

dominate the overall sound pressure level. Using only this range shortens the length of

the vector zk,NR, which reduces the computational cost associated with the active control

algorithm considerably. This implementation has been found to work well for BVI noise

reduction [120]. The noise components are measured at a microphone installed at the right

rear landing skid, as shown in Fig. 7.1. Note that the objective function used for active noise

reduction is measured at a microphone on a landing skid, as opposed to the carpet plane

where the passive optimization objective function is calculated. The passive reduction

objective function is based on noise levels in the carpet plane because the overall goal is

to reduce far-field noise since this is what the observer hears. However, active on-blade

controllers can only receive feedback information from a location on the helicopter.

For rotor power reduction,

zk,PR = [J
P

] . (7.68)

The optimal flap deflections are determined according to the control law described in

Refs. 116 and 117, and can be written as

uk+1 = −
(
TTQT + Wu

)−1
TT (Qzk −QTuk) (7.69)

The relationship between the flap deflections and the quantities which need to be re-

duced is quantified by the transfer matrix T given by T = ∂zk/∂uk. The subscript k refers

to the kth control update, reflecting the discrete-time nature of the controller; i.e. zk and
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uk are recalculated at specific times tk = k∆tk where ∆tk is the time interval between

updates. In this study, ∆tk is set to 8 rotor revolutions, or settling revolutions, so that the

system can reach a steady state. If the helicopter system cannot be perfectly represented by

a linear model, the optimum control input will not be reached in a single step, and thus uk

must be updated in order to converge to the optimal control input [117]. Based on the im-

plementations employed in Refs. 96 and 120, 8 control updates are used when considering

BVI noise and vibration reduction, and 15 updates for vibration and power reduction.

Traditionally, Eq. 7.69 is rewritten in iterative form as

uk+1 = uk + ∆uk (7.70)

In the relaxed HHC variant described in Ref. 117, a relaxation factor αr is introduced,

resulting in

uk+1 = uk + αr∆uk (7.71)

where 0 < αr < 1. This range has been shown to enhance the robustness of the control

algorithm at the expense of convergence speed [117]. In addition, the transfer matrix T is

identified online following the adaptive HHC variant described in Ref. 117.

The Wu matrix in Eq. 7.65 is used to enforce saturation limits on the flap deflections

of |δfmax| ≤ 4◦, and is given by

Wu = cwuI (7.72)

where cwu is a scalar used to control the penalty on flap deflections and I is the identity

matrix. If the flap deflections are overconstrained, then cwu is reduced and a new optimal
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control input is calculated. Similarly, cwu is increased if the flap deflections are undercon-

strained. Using the algorithm described in Ref. 22, cwu is automatically iterated upon until

the flap deflections converge to within ±5% of δfmax.

In this study, active control for BVI vibration and noise reduction, and vibration and

power reduction at high advance ratios were considered.

BVI Induced Vibration and Noise Reduction

The vector zk is obtained by combining zk,VR and zk,NR as

zk =

 zk,VR

zk,NR

 . (7.73)

In Eq. 7.65, Q is a diagonal weighting matrix. The weight matrices associated with vibra-

tion and noise reduction, QVR and QNR, are combined as

Q =

 (Wα) · [QVR] 0

0 (1−Wα) · [QNR]

 , (7.74)

where 0 ≤ Wα ≤ 1 is a user defined parameter which controls the emphasis of the con-

troller.

Vibration and Power Reduction at High Advance Ratios

The vibration and power active control algorithm is formulated in a similar manner to

the noise and vibration problem. The only differences are that zk,NR and Qk,NR would be
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replaced with zk,PR and Qk,PR in Eqs. 7.73 and 7.74 respectively.

7.6 Active/Passive Approaches

Two approaches to integrating multi-objective passive optimization approaches based

on EGO and active control techniques into an active/passive optimization framework were

employed in this study: the sequential approach and the combined approach. In the se-

quential approach, structurally optimized blades are augmented with trailing edge flaps.

While the structurally optimized designs correspond to the best passive objective function

values without the benefits of active control, these designs will not necessarily result in

the best possible objective function values when combined with active control. This was

demonstrated in Ref. 178 for the case of vibration reduction. Therefore, as an alterna-

tive to sequential active/passive optimization, a combined approach is considered in which

the blade/flap combination is optimized simultaneously. The optimum designs from the

combined approach correspond to the best overall values of the passive objective functions

when utilizing active control.

7.6.1 Sequential Active/Passive Approach

The sequential approach is implemented in two steps – (1) first, the blade is structurally

optimized using the EGO algorithm, and (2) then partial span actively controlled trailing

edge flaps (ACF’s), in either dual servo-flap or single plain flap configurations, are added to

the optimized designs. Based on the Wα setting, the control algorithm described in Section

7.5, which operates in a closed-loop mode, determines the flap deflections required for a
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Figure 7.7: Combined active/passive optimization algorithm

combination of vibration and noise reduction, or vibration and power reduction. Thus, in

the sequential approach, active control is used to augment the characteristics of passively

optimized blades.

7.6.2 Combined Active/Passive Approach

In this study, the combined active/passive approach employed in Ref. 178 was extended

for application to multi-objective function optimization [58]. First, it is useful to understand

how the single objective combined active/passive approach proceeds. For vibration reduc-

tion, the approach based on Ref. 178 is depicted in Fig. 7.7a and is characterized by the

following steps:

1. The optimization algorithm selects a set of trial blade designs at which the passive
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objective function needs to be evaluated. These designs are characterized by the

structural design variables.

2. For each trial design, the active control algorithm determines the optimal control

input for vibration reduction; i.e. the flap deflections which minimize J
ACF

.

3. For each trial design, the flap is deflected according to the optimal control input δf (ψ)

and the passive vibration objective function is evaluated.

4. The stopping condition is checked.

5. If the stopping condition has not been reached, the resulting values of the passive

objective function are returned so that the optimization algorithm can determine the

next set of trial designs, and step 1 is repeated.

In the single objective combined active/passive approach outlined above, an optimiza-

tion algorithm is used to search the design space for the blade design such that the passive

vibration function is reduced to the lowest possible value when the ACF’s are deflected

according to the optimal control law. For noise or power reduction, the passive vibration

objective function would be replaced by the noise and performance objective functions

given by Eqs. 7.2 and 7.3, and Wα would be set to 0.

Since vibration reduction was the only objective considered in Ref. 178, the control

algorithm always selected the optimal control inputs for maximum vibration reduction; i.e.

the flap deflections corresponding to Wα = 1. However, in this study it is necessary to

search the design space for the blade designs and the corresponding flap deflections which

result in the best trade-offs between vibration and noise reduction, or vibration and power
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reduction. Therefore, Wα is treated as an additional design variable since it affects how the

flap is deflected. The multi-objective combined active/passive approach depicted in Fig.

7.7b proceeds as follows:

1. The multi-objective implementations of the EGO algorithm described in Section

7.4.3 are used to select a set of trial blade designs and corresponding Wα settings

at which the passive objective functions need to be evaluated. In addition to the

structural design variables, Wα is also treated as a design variable by the EGO al-

gorithm. Each blade design and its corresponding Wα setting represents a potential

Pareto optimal active/passive configuration.

2. For each blade design and its corresponding Wα setting, the active control algorithm

determines the optimal flap deflections in order to minimize J
ACF

.

3. For each trial design, the flap is deflected according to the optimal control input δf (ψ)

and all of the passive objective functions are evaluated.

4. The stopping condition is checked. As described in Section 7.4.3, the algorithm is

stopped if the trial active/passive configurations do not improve upon or add to the

Pareto optima corresponding to the passive objective functions from the previous

iteration.

5. If the stopping condition has not been reached, the resulting values of the passive

objective function are returned so that the optimization algorithm can determine the

next set of trial Pareto optimal active/passive configurations, and step 1 is repeated.
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Thus, the multi-objective combined active/passive approach proceeds in a similar man-

ner as the single objective method, except thatWα is treated as an additional design variable

by the optimization algorithm and the algorithm is stopped if the current iteration fails to

produce an active/passive configuration corresponding to a best trade-off combination of

the passive objective functions.
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Chapter VIII

Assessment of SBO Techniques for Vibration Reduction
Under BVI Conditions

In order to evaluate the performance of SBO for passive blade design, the problem of

vibration reduction under BVI conditions is considered. The accuracies of various approx-

imation methods are compared. In addition, the surrogates were used to generate a vibra-

tion objective function which was used for optimization using a one-shot approach and the

EGO algorithm. All optimized designs are compared to a baseline rotor blade which re-

sembles an MBB BO-105 blade. This chapter is organized as follows: (1) in Section 8.1,

the effectiveness of kriging, radial basis function interpolation, and polynomial regression

surrogates are thoroughly investigated in order to determine if one method significantly

outperforms the other, (2) the advantages of using a multiple surrogate approach are fur-

ther investigated in Section 8.2, including their collaborative use in forming a weighted

average model, and (3) the superiority of EGO over the one-shot approach is demonstrated

in Section 8.3.
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Table 8.1: Rotor and helicopter parameters

Dimensional Data
R = 4.91 m Ω = 425 RPM

m0 = 5.57 kg/m
Non-Dimensional Data
Nb = 4 cb = 0.05498R
βp = 0.0◦ Cdo = 0.01
θpt = 0◦ θFP = 6.5◦

µ = 0.15 CW = 0.005
σ = 0.07 Cdf = 0.01
XFA = 0.0 ZFA = 0.3
XFC = 0.0 ZFC = 0.3
MBB BO-105 Baseline Fundamental Frequencies
ωL1 = 0.729 ωF1 = 1.125
ωT1 = 3.263

8.1 Evaluation of Various Approximation Methods

This section presents accuracy and robustness measures of the approximation methods

that have been described, as well as vibration reduction results using surrogate objective

functions. The blade is characterized by 17 design variables based on Configuration 1 (see

Section 7.1.2). The helicopter configuration used in all computations is given in Table 8.1.

The simulations are conducted at an advance ratio of 0.15 and descent angle of 6.5◦, where

high vibration levels due to strong blade vortex interaction (BVI) are encountered.

In addition to the information provided in Table 8.1, additional information that is

needed for the fixed cross sectional parameters, objective function, constraints, and the

finite element discretization of the blade is presented in the following pages. The material

properties and the chordwise locations of the vertical walls are given in Table 8.2.

The weighting factors in the objective function, KS and KM , are selected to be 1.

These weighting factors result in an objective function which represents the sum of the
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Table 8.2: Fixed parameters defining the blade cross section

Aluminum Material Properties
E = 70.7 GPa
ν = 0.33
ρstruct = 2700 kg/m3

σ
Y

= 324 MPa

Non-structural Filler Mass Density
ρ

filler
= 237.4 kg/m3

Locations of the Vertical Walls
x1 = 65.4 mm x2 = 111.6 mm

4/rev oscillatory hub shear resultant and the 4/rev oscillatory hub moment resultant in the

hub-fixed non-rotating frame. For this study, the following side constraints are enforced:

1.0 mm ≤ t1 ≤ 8.0 mm (8.1)

1.0 mm ≤ t2, t3 ≤ 12.0 mm (8.2)

0.0 ≤ mns/m0 ≤ 0.25 (8.3)

The upper and lower bounds used for the frequency placement constraints, /rev, are given

below.

0.60 ≤ ωL1 ≤ 0.80 (8.4)

1.05 ≤ ωF1 ≤ 1.20 (8.5)

2.50 ≤ ωT1 ≤ 6.50 (8.6)
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Figure 8.1: Finite element node locations

In the aeroelastic stability constraints given by Eq. 7.9, the minimum acceptable damping

for all modes, (ζk)min, is chosen to be 0.01. Additionally, the constraints are modified for

the 2nd lag mode, which can sometimes be slightly unstable. To prevent this situation, a

small amount of structural damping is added to this mode. For this study, 0.5% structural

damping is added to stabilize the 2nd lag mode of the baseline blade. For the stress con-

straint, a factor of safety of 1.5 is used. The rotor blade was discretized by 6 finite element

segments shown in Fig. 8.1.

8.1.1 Practical Implementation Details Associated with the Surrogates

Four approximation methods were compared: 2nd order polynomials, RBF interpola-

tion, ordinary kriging, and kriging where all pk are not fixed at 2. Note that all kriging

results in this section are based on a constant global trend function. The surrogates were fit

to the sample data using MATLAB programs on a 3.2 GHz Xeon processor. The ordinary

kriging surrogates were created with a freely available MATLAB kriging toolbox [98]. In

the parameter estimation, a local optima of the likelihood function (Eq. 7.35) is sought.
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Since this algorithm is only configured for ordinary kriging, a different MATLAB package

is used for the more general kriging. The MATLAB package used for the more general

kriging utilizes the global search algorithm DIRECT [80,132] for optimization of the like-

lihood function. Since the DIRECT algorithm results in a more global optimization, the

more general kriging algorithm requires more fitting time than the ordinary kriging algo-

rithm.

Two sets of fitting points were used to build the surrogates – a 300 point optimum Latin

hypercube (OLH) and a 500 point OLH. From the 300 point OLH, 283 points had con-

verged trim solutions and were used to build the surrogates; while out of the 500 point

OLH, 484 points had converged trim solutions. An unconverged trim solution is one in

which the elements of the trim solution vector (Eq. 6.49) vary erratically with each itera-

tion, which causes the trim residual vector (Eq. 6.47) to increase during the autopilot trim

algorithm. The fitting times for each approximation method are given in Table 8.3. For the

kriging surrogates, the majority of the fitting time is devoted to the maximum-likelihood

parameter estimation, while for the RBF’s, the leave-one-out cross validation method of

finding the fitting parameter is responsible for most of the fitting time. The prediction time

was much less than one second for each approximation method.

One of the advantages of surrogate based optimization with design of computer ex-

periments is that each simulation corresponding to a design point in the OLH can be run

independently of the others, and therefore the simulations can be run in parallel. The heli-

copter simulations were run on a Linux cluster of 1.8 – 2.4 Ghz Opteron processors. Using

40 processors, the 283 point data set required 53 hours to generate, while the 484 point data
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Table 8.3: Surrogate fitting times

Surrogate Sample Size Fitting Time

Poly. 283 < 1 s
RBF 283 1.5 – 2 min.

Ord. krg. 283 15 – 20 s
Krg. 283 4 – 5 min.

Poly. 484 < 1 s
RBF 484 8 – 9 min.

Ord. krg. 484 50 s – 1 min.
Krg. 484 14 – 15 min.

set needed 82 hours.

8.1.2 Surrogate Accuracy Results

The predictive capabilities of the 2nd order polynomial response surfaces, kriging with

the constant trend function, and radial basis function interpolations, were compared using

the two sets of fitting points. In order to quantify the accuracy of the surrogates, two meth-

ods for calculating error were considered. The first method requires conducting additional

simulations at test points which are independent of the fitting points, in order to test the pre-

dictions of the surrogates. The second method is based on leave-one-out cross validation

and seeks to represent the error in the surrogate without conducting additional expensive

simulations.

Errors Based on Additional Test Points

The first method for quantifying the error in the surrogates utilizes simulation data

at test points which are not included in the optimum Latin hypercubes used to create the
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surrogates. The predicted responses from the surrogates were then compared to the “actual”

responses at the test points. The test points came from a 200 point OLH, of which 197

had converged trim solutions. None of the blade designs from the 197 test points were

coincident with the blade designs from the two OLH’s used to create the surrogates. Using

the test points, the absolute percent error is given by

ε
(tp)

i
=
|y(i) − ŷ(i)|

ȳ
(8.7)

where y(i) is the “actual” response computed by the helicopter simulation, ŷ(i) is the re-

sponse predicted by the surrogate at the ith test point, and ȳ is the mean of the absolute

values of the responses from the 197 test points. Based on Eq. 8.7, the average percent

error, maximum percent error, and minimum percent error are:

ε
(tp)

avg
=

∑Ntp

i=1
ε

(tp)

i

Ntp

(8.8)

ε
(tp)

max
= Max

{
ε

(tp)

1
, . . . , ε

(tp)

Ntp

}
(8.9)

ε
(tp)

min
= Min

{
ε

(tp)

1
, . . . , ε

(tp)

Ntp

}
(8.10)

where Ntp is the number of test points. The minimum and maximum percent errors repre-

sent the best and worst predictive errors respectively. These error measures are localized

since they only represent one point of the 197 test points, while the average percent error

represents the surrogate’s predictive capability over the entire design space since all 197

test points are included.

The average and maximum percent errors in the approximations of the hub shears and
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Figure 8.2: Average errors of the underlying vibratory loads, relative to mean responses

moments are given in Figs. 8.2 – 8.3 respectively. The minimum errors are very low – under

1% for each approximation method – and are not shown for the sake of brevity. Figure 8.2

shows that one of the kriging surrogates was the most accurate for every shear and moment

in terms of average error, while the polynomial response surface generally had the highest

average errors. Typically, the more general kriging surrogate had the lowest average errors,

which ranged from 11−51% with 283 sample points and 11−42% with 484 sample points.

Figure 8.2 shows that the kriging models are superior in terms of accurately modeling the

hub shears and moments over the entire designs space, and that the kriging model which

includes pk in the maximum likelihood estimation generally outperformed the ordinary

kriging model. Even though the more general kriging model typically has lower average

errors than ordinary kriging, the differences are not large. The largest difference in error

between the two kriging models occurred in the case of the M4X surrogate based on 484

sample points, and was only 5.5%.

With the exception of the polynomial response surfaces, increasing the number of sam-
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Figure 8.3: Maximum errors of the underlying vibratory loads, relative to mean responses

ple points did not always reduce the average errors in the approximate vibratory loads. In

fact, for some surrogate vibratory loads, higher average errors were observed with the 484

sample set. The most drastic case is associated with the M4Y surrogate in which the error

for the more general kriging surrogate was 3.9% higher when using 484 sample points as

opposed to 283. These results indicate that for the 17 dimensional design space, increasing

the number of fitting points from 283 to 484 was not sufficient to significantly enhance the

accuracy of the surrogates over the entire design space.

Figure 8.3 shows that all of the approximation methods are susceptible to high maxi-

mum errors, which range from 40 − 385% for 283 sample points, and 46 − 324% for 484

sample points. These results suggest that there are local regions in the design space where

the surrogates are not reliable. Furthermore, increasing the number of sample points did

not always reduce the maximum error, just as with average error.

The average and maximum errors in the surrogate objective function are given in Figs. 8.4

– 8.5. The surrogate objective functions were generated by two approaches: (a) combin-
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Figure 8.4: Average errors in the surrogate objective function, relative to mean responses

ing the surrogate hub shears and moments to form the approximate objective function as

in Eq. 7.25 and (b) by directly fitting the outputs for J
V

at the sample points. Figure 8.4

shows that constructing the surrogates from the approximate underlying responses results

in slightly lower average errors for both sample sizes. The largest difference in average

error between the two methods for creating the surrogate objective function was only 3.2%

and occurred when using polynomials with 283 sample points.

Figure 8.5 shows that both methods of approximating the vibration objective function

result in maximum errors above 100%, and thus both methods are susceptible to very high

errors in local regions of the design space. However, in contrast to the results in Fig. 8.4

for average error, generating the surrogate objective function from the underlying vibratory

hub loads did not always result in lower maximum errors. So approximating the underlying

responses offered a small advantage for modeling the objective function over the entire

design space, but neither method offered a clear advantage in terms of maximum error.

The errors in the approximate stress constraint (Eq. 7.11) are given in Figs. 8.6a and
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Figure 8.5: Maximum errors in the surrogate objective function, relative to mean responses

b. The ordinary kriging surrogate best approximates the constraint over the entire design

space, with average errors of 35% using 283 sample points and 31% using 484 sample

points. There are large maximum errors (over 300%) with all the approximation methods,

thus the surrogate constraints may not be reliable in certain regions of the design space.

The more general kriging surrogate has the highest average and maximum errors when

using 484 sample points. This is because during the maximum-likelihood estimation of

the fitting parameters, the correlation matrix (Eq. 7.31) became ill-conditioned, which has

been known to occur [99], so the auxiliary optimization process used to find the fitting

parameters could not be completed.

A comparison of the final fitting parameters for the two kriging models is given in

Tables 8.4 – 8.7. The difference in fitting parameters shows that the two methods of kriging

resulted in completely different surrogates.
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Figure 8.6: Errors in the surrogate stress constraint, relative to mean responses

Table 8.4: Fitting parameters for the ordinary kriging surrogates (283 sample points)

Parameter F4X F4Y F4Z M4X M4Y M4Z J Stress
Constraint

ϑ1 0.354 0.354 0.300 0.354 0.317 0.329 0.317 0.057
ϑ2 0.258 0.258 0.216 0.258 0.235 0.235 0.219 0.030
ϑ3 0.188 0.188 0.087 0.188 0.175 0.175 0.151 0.028
ϑ4 0.137 0.137 0.130 0.177 0.139 0.130 0.112 0.028
ϑ5 0.100 0.100 0.145 0.100 0.096 0.096 0.078 0.009
ϑ6 0.073 0.073 0.035 0.073 0.072 0.072 0.055 0.020
ϑ7 0.079 0.079 0.100 0.079 0.549 0.059 0.122 0.018
ϑ8 0.039 0.039 0.030 0.039 0.039 0.044 0.099 0.017
ϑ9 0.028 0.028 0.060 0.028 0.029 0.033 0.039 0.015
ϑ10 0.035 0.024 0.232 0.035 0.556 0.540 0.065 0.100
ϑ11 0.015 0.015 0.011 0.015 0.016 0.019 0.010 0.019
ϑ12 0.011 0.011 0.187 0.011 0.012 0.534 0.042 0.013
ϑ13 0.016 0.016 0.259 0.016 0.531 0.010 0.034 0.100
ϑ14 0.010 0.010 0.030 0.013 0.010 0.011 0.019 0.028
ϑ15 0.010 0.010 0.060 0.010 0.010 0.010 0.019 0.009
ϑ16 0.010 0.010 0.019 0.012 0.010 0.010 0.019 0.016
ϑ17 0.010 0.010 0.013 0.010 0.036 0.036 0.011 0.094
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Table 8.5: Fitting parameters for the ordinary kriging surrogates (484 sample points)

Parameter F4X F4Y F4Z M4X M4Y M4Z J Stress
Constraint

ϑ1 0.354 0.354 0.289 0.354 0.317 0.538 0.289 0.056
ϑ2 0.258 0.258 0.216 0.258 0.235 0.187 0.216 0.025
ϑ3 0.188 0.188 0.161 0.188 0.175 0.134 0.161 0.022
ϑ4 0.137 0.137 0.121 0.172 0.139 0.161 0.121 0.035
ϑ5 0.100 0.100 0.090 0.100 0.096 0.070 0.090 0.025
ϑ6 0.073 0.073 0.067 0.073 0.072 0.050 0.067 0.017
ϑ7 0.079 0.079 0.097 0.079 0.059 0.075 0.201 0.022
ϑ8 0.039 0.039 0.078 0.039 0.044 0.112 0.121 0.016
ϑ9 0.028 0.028 0.028 0.046 0.029 0.045 0.028 0.005
ϑ10 0.035 0.035 0.250 0.035 0.540 1.000 0.269 0.084
ϑ11 0.015 0.015 0.016 0.015 0.016 0.010 0.016 0.011
ϑ12 0.011 0.011 0.032 0.011 0.014 0.161 0.032 0.015
ϑ13 0.016 0.016 0.482 0.016 0.531 0.145 0.216 0.100
ϑ14 0.010 0.013 0.072 0.013 0.071 0.014 0.021 0.029
ϑ15 0.010 0.010 0.034 0.010 0.010 0.058 0.031 0.015
ϑ16 0.010 0.010 0.013 0.012 0.010 0.014 0.015 0.007
ϑ17 0.010 0.010 0.040 0.010 0.036 0.030 0.040 0.037

Errors Based on Leave-One-Out Cross Validation

The second approach for quantifying the error is based on leave-one-out cross valida-

tion. In this procedure, the error is calculated as follows:

1. A single design point is removed from the OLH data used to fit the surrogate.

2. The surrogate is created using the remaining (Nsp − 1) sample points.

3. The surrogate is evaluated at the left out design and compared to the actual response.

Thus, the cross validation error is given by

ε
(cv)

i
=
|y(i) − ŷ(−i)|

ȳ
(8.11)
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Table 8.6: Fitting parameters for the more general kriging surrogates (283 sample points)

Parameter F4X F4Y F4Z M4X M4Y M4Z J Stress
Constraint

ϑ1 0.009 0.043 0.890 0.195 0.691 1.899 1.475 0.152
ϑ2 0.006 0.006 0.006 0.012 0.071 0.026 0.016 0.152
ϑ3 0.007 0.055 0.152 0.016 0.007 0.071 0.152 0.016
ϑ4 0.691 1.475 0.152 1.475 2.445 0.251 1.475 0.152
ϑ5 0.016 0.118 0.417 0.071 0.071 0.324 0.152 0.016
ϑ6 0.033 0.043 0.006 0.118 0.417 0.071 0.152 0.152
ϑ7 1.899 3.149 0.417 1.475 4.054 0.324 1.475 0.152
ϑ8 0.152 0.251 0.055 0.071 0.016 0.152 0.152 0.016
ϑ9 0.152 0.251 0.152 0.118 0.091 0.152 0.152 0.016
ϑ10 0.152 0.324 1.899 0.324 4.054 1.475 1.475 1.475
ϑ11 0.007 0.006 0.007 0.007 0.007 0.007 0.016 0.152
ϑ12 0.016 0.007 0.324 0.007 0.091 0.324 0.152 0.016
ϑ13 0.691 0.890 1.899 1.146 1.899 0.071 1.475 1.475
ϑ14 0.016 0.055 0.091 0.033 0.152 0.007 0.152 0.152
ϑ15 0.033 0.033 0.251 0.007 0.055 0.152 0.152 0.016
ϑ16 0.016 0.071 0.033 0.152 0.033 0.009 0.016 0.152
ϑ17 0.152 0.152 0.195 0.152 0.417 0.007 0.152 0.152
p1 1.660 1.953 1.073 1.880 1.953 1.220 1.000 1.000
p2 0.780 1.953 0.120 0.120 0.927 1.000 1.660 1.660
p3 1.880 1.880 1.880 0.340 1.440 1.880 1.000 1.000
p4 1.880 1.953 0.340 1.953 1.880 1.880 1.660 1.000
p5 1.220 1.000 1.440 1.880 1.220 0.340 1.000 1.000
p6 0.340 1.953 1.220 1.880 1.953 0.340 1.000 1.000
p7 1.880 1.880 1.953 1.953 1.953 1.880 1.660 1.660
p8 1.880 1.953 1.220 1.293 1.880 1.953 1.000 1.660
p9 1.880 1.733 1.293 1.000 0.633 1.660 1.000 1.000
p10 1.220 1.147 1.000 1.220 1.953 1.440 1.000 1.000
p11 0.120 1.293 1.513 1.220 1.000 1.880 1.660 1.000
p12 1.220 1.953 1.953 1.220 1.880 1.073 1.000 1.000
p13 1.660 1.953 1.293 1.880 1.733 0.340 1.000 1.660
p14 1.880 1.953 1.953 1.880 1.953 0.120 1.000 1.000
p15 0.120 1.220 1.953 1.000 1.880 1.880 1.000 1.000
p16 1.000 0.267 0.780 1.880 1.880 0.120 1.000 1.000
p17 1.953 0.780 1.953 0.120 1.880 1.880 1.660 1.000
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Table 8.7: Fitting parameters for the more general kriging surrogates (484 sample points)

Parameter F4X F4Y F4Z M4X M4Y M4Z J Stress
Constraint

ϑ1 0.016 0.016 0.890 0.537 0.417 4.054 1.475 0.016
ϑ2 0.016 0.016 0.043 0.043 0.537 0.007 0.016 0.152
ϑ3 0.152 0.152 0.152 0.033 0.071 0.417 0.016 0.016
ϑ4 1.475 1.475 0.537 2.445 4.054 0.417 0.152 0.152
ϑ5 0.152 0.152 0.118 0.071 0.006 0.152 0.152 0.152
ϑ6 0.152 0.152 0.007 0.043 0.055 0.152 0.152 0.016
ϑ7 1.475 1.475 0.691 3.149 1.475 0.691 1.475 0.152
ϑ8 0.152 0.152 0.043 0.118 0.033 0.417 0.152 0.016
ϑ9 0.152 0.152 0.152 0.324 0.043 0.152 0.152 0.152
ϑ10 0.152 0.152 2.445 1.475 4.054 4.054 1.475 0.152
ϑ11 0.016 0.016 0.118 0.033 0.007 0.071 0.152 0.152
ϑ12 0.016 0.016 0.007 0.071 0.091 0.251 0.152 0.152
ϑ13 0.152 0.152 1.899 0.890 1.475 0.691 1.475 0.016
ϑ14 0.152 0.152 0.417 0.152 0.324 0.016 0.152 0.152
ϑ15 0.016 0.152 0.324 0.026 0.016 0.006 0.152 0.152
ϑ16 0.016 0.016 0.324 0.043 0.091 0.016 0.016 0.152
ϑ17 0.016 0.152 0.152 0.033 0.020 0.043 0.152 0.152
p1 1.000 1.660 1.440 0.340 1.293 1.807 1.000 1.000
p2 1.000 0.340 1.953 1.880 1.660 1.953 0.340 1.000
p3 1.000 1.000 1.807 0.340 0.707 1.880 1.660 1.000
p4 1.660 1.660 0.560 1.953 1.733 1.953 1.000 1.000
p5 1.000 1.660 1.660 1.440 1.660 1.880 1.000 1.000
p6 1.660 1.660 1.880 0.780 0.927 0.120 1.660 1.000
p7 1.660 1.660 1.293 1.880 1.293 1.953 1.000 1.000
p8 1.000 1.000 1.733 1.880 1.367 1.880 1.000 1.000
p9 1.000 1.660 1.953 1.880 1.880 0.340 1.000 1.000
p10 1.000 1.000 1.880 1.733 1.953 1.953 1.000 1.000
p11 1.000 1.660 0.487 1.513 1.880 0.633 1.000 1.000
p12 1.000 1.660 1.880 1.880 1.953 1.293 1.000 1.000
p13 1.660 1.000 1.660 1.953 1.953 1.587 1.660 1.000
p14 1.000 1.000 1.807 0.707 1.000 1.293 1.000 1.000
p15 1.000 1.660 1.880 1.220 1.220 1.440 1.660 1.000
p16 1.660 1.000 0.340 1.880 1.807 1.807 1.000 1.000
p17 1.000 1.000 1.880 1.880 1.880 1.953 1.000 1.000
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where ŷ(−i) is the surrogate’s prediction at the left out sample point when the surrogate is

fit to the (Nsp− 1) remaining points. The average, maximum, and minimum leave-one-out

cross validation errors can be written as:

ε
(cv)

avg
=

∑Nsp

i=1
ε

(cv)

i

Nsp

(8.12)

ε
(cv)

max
= Max

{
ε

(cv)

1
, . . . , ε

(cv)

Nsp

}
(8.13)

ε
(cv)

min
= Min

{
ε

(cv)

1
, . . . , ε

(cv)

Nsp

}
(8.14)

The advantage of using leave-one-out cross validation is that a measure of the error can be

obtained using only the simulated data used to create the surrogates, as opposed to conduct-

ing expensive simulations at additional test points which are only used to quantify error.

However, leave-one-out cross validation errors represent the sensitivity of the surrogate to

the left out designs, and may not adequately represent the error in the surrogate. Therefore,

the purpose of comparing leave-one-out cross validation error with error based on addi-

tional test points is to determine whether the magnitude of error can be predicted without

using additional test points. Note that the cross validation error in Eq. 8.11 is normalized

by the mean responses from the 197 test points as in Eq. 8.7 so that errors based on Eqs. 8.7

and 8.11 can be directly compared.

The ratio of the leave-one-out cross validation errors to the errors based on test points

are given in Tables 8.8 and 8.9 for the 6 surrogate hub shears and moments, the directly

approximated objective function, and the surrogate stress constraint. Table 8.8 shows that

the magnitude of the average error can be captured using leave-one-out cross validation,

184



Table 8.8: Ratio of average leave-one-out cross validation errors to average errors based on
test points

Surrogate Sample F4X F4Y F4Z M4X M4Y M4Z J Stress
Size Constraint

Poly. 283 1.12 1.20 1.19 1.07 1.24 1.25 1.18 1.20
RBF 283 1.01 1.13 0.98 1.06 1.15 1.01 1.00 1.01

Ord. krg. 283 1.10 1.08 1.18 1.01 1.15 1.06 1.09 1.01
Krg. 283 1.06 1.16 0.96 1.15 1.40 1.01 1.05 1.00

Poly. 484 1.18 1.01 1.01 1.14 1.06 1.04 0.96 1.00
RBF 484 1.15 1.02 0.98 1.11 1.11 0.99 0.94 1.04

Ord. krg. 484 1.04 1.04 1.11 1.03 1.22 1.12 1.02 1.13
Krg. 484 1.07 0.98 1.06 1.31 1.15 1.12 1.04 0.96

with the largest difference occurring for the M4Y kriging surrogate with 283 sample points

where the cross validation error was 1.4 times larger than the error based on test points.

Furthermore, the average cross validation error generally gave a more conservative (i.e. a

ratio > 1.0) estimate of the error over the entire design space.

Table 8.9 shows that leave-one-out cross validation also captured the magnitude of the

maximum error, with the largest difference corresponding to the M4X kriging surrogate

with 484 sample points where the cross validation error was 3.22 times higher than the

error based on test points. The maximum leave-one-out cross validation error was typically

more conservative for the vibratory surrogates, but tended to underpredict the error in the

stress constraint for the 484 point surrogates. So for the stress surrogate, whether or not the

maximum cross validation error was a conservative measure of error was dependent on the

number of sample points used to create the surrogate.
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Table 8.9: Ratio of maximum leave-one-out cross validation errors to maximum errors
based on test points

Surrogate Sample F4X F4Y F4Z M4X M4Y M4Z J Stress
Size Constraint

Poly. 283 1.38 1.47 1.84 1.08 1.74 1.11 1.31 1.10
RBF 283 1.29 1.21 1.55 1.45 1.33 1.08 1.25 1.08

Ord. krg. 283 1.18 1.08 1.31 1.75 1.38 1.05 1.35 1.26
Krg. 283 1.14 1.21 1.29 1.31 1.56 1.02 1.44 1.46

Poly. 484 1.04 0.90 1.02 1.33 0.89 1.03 0.94 0.60
RBF 484 1.35 1.08 1.04 3.07 1.36 1.28 1.23 0.68

Ord. krg. 484 1.07 1.08 1.16 1.62 1.33 1.41 1.37 0.76
Krg. 484 1.29 1.17 1.17 3.22 1.45 1.65 1.53 0.79

8.1.3 Robustness

In addition to the accuracy, another metric for quantifying the effectiveness of the sur-

rogates is robustness, i.e. the capability of the approximation methods to accurately model

different responses. The robustness measure indicates how sensitive the performance of an

approximation method is to the type of response being modeled. The variance of the aver-

age and maximum error measures based on test points is used to quantify robustness [72].

The lower the variance, the more robust the approximation method. Figure 8.7 gives the

variance of the errors for the 8 responses considered in this study: the 6 hub shears and mo-

ments, the overall objective function, and the stress constraint. Ordinary kriging is the most

robust approximation method, and thus its performance fluctuates the least when modeling

the responses in this study. Furthermore, the variance of each surrogate method, except

the more general kriging, is lowered by increasing the number of sample points from 283

to 484. Therefore, for the responses considered in this study, increasing the number of

sample points increases the robustness of the surrogates. This conclusion does not hold for
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Figure 8.7: Variance of the average and maximum error measures (based on test points)

the more general kriging due to the ill-conditioned correlation matrix encountered when

approximating the stress constraint.

8.1.4 Optimization Results

The surrogate based optimization (SBO) conducted in this study is non-updating, oth-

erwise known as the one-shot approach, which means that the surrogate is not updated

with objective function evaluations as the optimization progresses. While it is important to

use an updating method so that optimization does not lead to regions of high uncertainty

in the surrogate, the focus of this portion of the study was on the effectiveness of the ap-

proximation techniques and not on the search algorithm. Optimization of the surrogate

objective functions was conducted with the Multi-Island Genetic Algorithm in iSIGHT [1].

It was necessary to include the surrogate stress constraint since optimizing without it led

to designs for which stresses exceeded the Von Mises failure condition at the blade root.

Helicopter simulations were conducted at the predicted optimum designs in order to obtain

the “actual” amount of vibration reduction.
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Table 8.10 gives the optimization results when using the underlying hub shears and

moments to build the surrogate objective function. Note that vibration reduction is com-

puted relative to the vibration levels of a baseline blade resembling an MBB BO-105 blade.

Table 8.10 shows that all approximation methods lead to significant vibration reduction of

over 50% and ordinary kriging leads to the best designs, with vibration reduction of 67.4%

with 283 sample points and 66.1% with 484 sample points.

Table 8.11 shows that significant vibration reduction can also be achieved when di-

rectly approximating the objective function, however the amount of reduction was generally

smaller than what is indicated by the results in Table 8.10. This is because by approximat-

ing the underlying responses, the behavior of the vertical shear F4Z is captured, which is

important since much of the reduction in the objective function is due to reduction of the

vertical shear. The importance of approximating the vertical shear is illustrated in Fig. 8.8,

in which the optimal vibratory loads from ordinary kriging surrogates using 283 sample

points are compared with the MBB BO-105 baseline values. Figure 8.8 shows that approx-

imating the underlying responses leads to 77% reduction of F4Z , while approximating the

overall objective function results in 67% reduction of the vertical shear. It is also clear

from Fig. 8.8 that approximating the underlying responses results in higher values for the

five other shears and moments compared to direct approximation of the objective function.

Thus, approximating the underlying responses led to a superior design because capturing

the behavior of the individual shears and moments leads to a more effective reduction of

the vertical shear F4Z .

Tables 8.10 and 8.11 also show that increasing the number of fitting points did not al-
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Table 8.10: Comparison of predicted and “actual” vibration reductions using approximate
underlying responses

Surrogate Sample Predicted Actual ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

Size Reduction Reduction

Poly. 283 100.0 % 66.4 % 0.664 1.067 5.032
RBF 283 100.0 % 55.2 % 0.605 1.064 3.783

Ord. krg. 283 92.6 % 67.4 % 0.611 1.060 4.583
Krg. 283 95.3 % 51.0 % 0.617 1.064 4.136

Poly. 484 100.0 % 58.9 % 0.602 1.059 3.953
RBF 484 100.0 % 57.7 % 0.600 1.059 4.165

Ord. krg. 484 94.9 % 66.1 % 0.616 1.061 4.483
Krg. 484 94.2 % 64.5 % 0.624 1.063 4.383

Table 8.11: Comparison of predicted and “actual” vibration reductions when directly ap-
proximating the objective function

Surrogate Sample Predicted Actual ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

Size Reduction Reduction

Poly. 283 394.4 % 64.4 % 0.605 1.061 4.325
RBF 283 132.8 % 51.9 % 0.600 1.060 4.054

Ord. krg. 283 144.4 % 63.8 % 0.615 1.061 4.404
Krg. 283 105.6 % 52.8 % 0.602 1.060 4.314

Poly. 484 222.4 % 45.0 % 0.622 1.063 3.956
RBF 484 136.4 % 52.2 % 0.602 1.061 3.958

Ord. krg. 484 162.8 % 54.7 % 0.613 1.061 4.283
Krg. 484 124.0 % 53.2 % 0.600 1.060 4.234
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Figure 8.8: Comparison of the optimum vibratory loads when using surrogate underlying
responses and when directly approximating the objective function

ways improve the optimum designs, and in some instances resulted in worse designs. This

is probably due to the 283 sample set having a best feasible design with 52% vibration re-

duction, which was better than the 48% reduction associated with the best feasible design in

the 484 data set. The polynomial surrogates were the most adversely affected by increasing

the number of sample points. Furthermore, optimizing the surrogate did not always lead to

a better design than the best design in the set of fitting points used to create the surrogates.

This occurs because all of the surrogates are inaccurate at the optimum designs. For in-

stance, Table 8.10 shows that optimizing the more general kriging surrogate based on 283

sample points led to 51% actual reduction, while the surrogate predicts 95.3% reduction.

The discrepancy between the predicted reduction and the actual reduction shows that the

surrogate is not accurate at the optimum design. Moreover, the optimum design is worse

than the best feasible design from the OLH, which produced 52% reduction. So optimizing

190



the surrogate led to a region of the design space where the surrogate was not accurate, and

the optimum design happened to be worse than the best feasible design from the fitting

data. Although none of the surrogates accurately predict the amount of vibration reduction

at the optimum designs, optimizing the surrogates generally led to superior designs than

the best feasible designs in the optimum Latin hypercubes.

The fundamental rotating frequencies corresponding to the optimum designs are also

given in Tables 8.10 and 8.11. No two optimum blade designs have the same set of fun-

damental frequencies, which means that each surrogate led to a different optimum blade

design. These results suggest that, at the flight condition characterized by BVI induced

vibrations, there are many local optima in the design space. Table 8.12 gives the predicted

vibration reduction from each surrogate at all of the optimum designs from Table 8.10. The

results from Table 8.12 show that every surrogate is capable of identifying designs with

reduced vibration levels. Therefore, all of the surrogates are able to capture the fact that the

objective function has many local optima, which would be important if it were desirable to

obtain many prospective optimum designs in addition to the global optimum.

The optimum designs were checked for robustness to small perturbations by perturbing

each design variable by ±3% from the optimum value, as done in Ref. 105. None of the

perturbed designs resulted in more than 5% difference from the original objective function

value, and there was an average change in objective function values of only 1.2% over all

the perturbed designs. So the optimum designs were robust to small perturbations in the

designs, which indicates that the regions around the optimum designs are reliable regions

of reduced vibration designs.
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Table 8.12: Predicted vibration reduction by each of the surrogates at all of the optimum
designs from Table 8.10

Optimum Sample Predicted Predicted Predicted Predicted
Size Reduction Reduction Reduction Reduction

by Poly. by RBF by Ord. krg. by Krg.

Poly. 283 100.0 % 83.3 % 15.5 % 95.2 %
RBF 283 69.3 % 100.0 % 24.4 % 72.7 %

Ord. krg. 283 21.5 % 40.9 % 92.6 % 70.7 %
Krg. 283 93.2 % 83.7 % 71.6 % 95.3 %

Poly. 484 100.0 % 84.1 % 61.3 % 74.5 %
RBF 484 63.2 % 100.0 % 34.1 % 58.0 %

Ord. krg. 484 74.1 % 62.7 % 94.9 % 72.5 %
Krg. 484 33.8 % 89.6 % 38.6 % 94.2 %

8.2 A Multiple Surrogate Approach

It is clear that none of the surrogates was the best in terms of all the evaluation metrics

considered in Section 8.1. Therefore, the advantages of the collaborative use of multiple

surrogates, including a weighted average model, as well as some pitfalls associated with

only using a single surrogate, are explored in more detail in this section. The helicopter

parameters are the same as those used to generate the results in Section 8.1. In this section,

the following approximation methods were considered: (1) full and reduced term polyno-

mial response surfaces, (2) kriging with a linear trend function and all pk = 2, and (3)

radial basis neural networks (RBNN).

The fitting times associated with each of the approximation methods are presented in

Table 8.13. Note that the abbreviation “(red.)” indicates the use of reduced term polyno-

mial surrogates (see Section 7.3.2). The individual surrogates were generated on 3.2 Ghz

Xeon processors, while the 40 processors from the Linux cluster were used to generate the
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Table 8.13: Fitting times associated with the approximation methods

Surrogate Sample Size1 Fitting Time

Poly. 283 < 1 s
Poly(red.) 283 < 1 s

KRG 283 15 – 20 s
RBNN 283 30 – 50 s

Wtd. Avg. 283 7 – 10 min.
Wtd. Avg.(red.) 283 7 – 10 min.

Poly. 484 < 1 s
Poly(red.) 484 1 – 2 s

KRG 484 50 s – 1 min.
RBNN 484 1.5 – 2 min.

Wtd. Avg. 484 30 – 40 min.
Wtd. Avg.(red.) 484 30 – 40 min.

1The 283 and 484 sample points required 53 and 82 hours to generate respectively.

weighted average models. The leave-one-out cross validation error needed to generate the

weighted models is suitable for parallel computation since the error at left out points can

be calculated independently of the errors at the other points. These results demonstrate that

constructing the surrogates in this study, including weighted average models, required little

additional time compared to the time needed to generate the fitting data.

8.2.1 Weighted Average Surrogate Construction

The weight coefficients necessary to define the weighted average surrogates, which are

determined according to Eq. 7.52, are given in Tables 8.14 – 8.15. The weight coefficients

obtained when using the full term polynomial response surface are given in Table 8.14.

Generally, the kriging surrogate has the highest weight for all responses and both sample

sizes in Table 8.14. When the reduced term polynomial is used in place of the full term

polynomial, as shown in Table 8.15, the polynomial is weighted the most for all responses
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Table 8.14: Weight coefficients for the weighted average surrogates, with full term polyno-
mial

Weight Sample F4X F4Y F4Z M4X M4Y M4Z J Stress
Coefficient Size Constraint

w
poly

283 0.407 0.395 0.322 0.374 0.306 0.291 0.333 0.353
w
krg

283 0.478 0.473 0.458 0.460 0.449 0.412 0.461 0.443
wRBNN 283 0.115 0.132 0.219 0.167 0.245 0.297 0.206 0.205

w
poly

484 0.422 0.436 0.360 0.378 0.340 0.333 0.379 0.400
w
krg

484 0.449 0.422 0.425 0.448 0.405 0.381 0.419 0.424
wRBNN 484 0.129 0.142 0.215 0.175 0.255 0.286 0.203 0.176

Table 8.15: Weight coefficients for the weighted average surrogates, with reduced term
polynomial

Weight Sample F4X F4Y F4Z M4X M4Y M4Z J Stress
Coefficient Size Constraint

w
poly

283 0.497 0.493 0.431 0.472 0.406 0.401 0.443 0.433
w
krg

283 0.406 0.396 0.385 0.388 0.385 0.349 0.385 0.388
wRBNN 283 0.097 0.110 0.183 0.140 0.209 0.250 0.172 0.179

w
poly

484 0.465 0.474 0.409 0.427 0.384 0.377 0.424 0.436
w
krg

484 0.415 0.394 0.393 0.413 0.378 0.356 0.388 0.399
wRBNN 484 0.120 0.132 0.199 0.161 0.238 0.267 0.188 0.165

and sample sizes. The RBNN generally has the lowest weight. Since the RBNN corre-

sponds to the highest leave-one-out cross validation errors, their responses are the most

sensitive to the individual data points used to fit the model. This suggests that the poor

performance of the RBNN is due to over-fitting of the data. Note that the reduced term

polynomial could have been included with the other 3 surrogates in a single weighted av-

erage model. However, this would have introduced bias toward 2nd order polynomials,

while the focus of this study was to demonstrate the effectiveness of the weighted average

approach using sufficiently distinct approximation methods.
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8.2.2 Surrogate Accuracy Results

The predictive capabilities of the individual and weighted average surrogates were

quantified using a set of data points not included in the construction of the surrogates.

The predicted responses from the surrogates were then compared to the “actual” responses

at the test points. The test points came from a 200 point OLH, of which 197 had converged

trim solutions. None of the blade designs from the 197 test points were coincident with the

blade designs from the two OLH’s used to create the surrogates. Using the test points, the

absolute percent error is given by

ε
i

=
|y(i) − ŷ(i)|

ȳ
(8.15)

where y(i) is the “actual” response computed by the helicopter simulation, ŷ(i) is the re-

sponse predicted by the surrogate at the ith test point. For the vibratory load errors, ȳ is the

mean of the absolute values of the responses from the 197 test points, while for the errors

in the surrogate stress constraint,

ȳ =
σ2
allowable

3
. (8.16)

The average and maximum errors are given in Figs. 8.9 and 8.10 respectively for 7

responses – 6 underlying hub shears and moments and the stress constraint. Among the

individual surrogates for each response, the lowest average errors range from 2− 53% and

the highest average errors range from 5 − 69% for the 283 sample set. By comparison,

the average errors of the weighted average surrogates range from 2 − 53% and always
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correspond to lower errors than the worst approximation method. These results demonstrate

that the weighted average surrogates performed as well as the best individual surrogates,

while protecting against the poor performance of the worst approximation method for all

7 responses. A similar result is obtained for the 484 point sample set where the lowest

average errors in Fig. 8.9(b) range from 3− 55% while the average errors of the weighted

average surrogates range from 2− 52%.

For the 283 point sample set, the kriging surrogate has the lowest average error of

the individual surrogates for each response, while for some responses with the 484 point

sample set, the polynomials correspond to the lowest average errors. So the choice of the

“best” surrogate in terms of approximating over the entire design space is dependent on

the sample size for the responses considered in this study. However, the weighted average

surrogates performed as well as the best approximation methods regardless of sample size,

which exemplifies the advantage of this approach: by using the weighted average surrogate

approach, it is unnecessary to reconsider the identification of the most accurate approxi-

mation method each time a factor associated with the surrogates, such as sample size, is

changed.

Similar to the results for average error, Fig. 8.10 shows that the weighted average surro-

gates typically perform as well as the best individual surrogate in terms of maximum error.

For the 283 and 484 point sample sets, the lowest maximum errors among the individual

surrogates are 32 − 331% and 30 − 313% respectively, while the weighted average surro-

gate maximum errors range from 37 − 368% and 40 − 339%. It is worth noting that even

though the weighted average surrogates are constructed using a global error measure – see
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(a) 283 Sample Points (b) 484 Sample Points

Figure 8.9: Average errors of the underlying vibratory loads and stress constraint

(a) 283 Sample Points (b) 484 Sample Points

Figure 8.10: Maximum errors of the underlying vibratory loads and stress constraint

Eq. 7.55 – they still perform well compared to the individual surrogate models in terms of

maximum error, which is a local error measure.

The errors in the surrogate objective function are given in Figs. 8.11 and 8.12 for both

methods of forming the approximate objective function. In terms of average error, krig-

ing is the best individual approximation method, with 19 − 24% errors for both sample

sizes. For both methods of approximating the objective function and both sample sizes, the

weighted average surrogates perform as well as the kriging surrogates in terms of average

error. The largest difference in average error between the weighted average surrogates and

the kriging surrogate is only 2% and occurs in the case of the 484 point data set when
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(a) 283 Sample Points (b) 484 Sample Points

Figure 8.11: Average errors in the surrogate objective function

(a) 283 Sample Points (b) 484 Sample Points

Figure 8.12: Maximum errors in the surrogate objective function

combining the underlying responses to form the approximate objective function. In terms

of maximum error, the weighted surrogates never produce an error more than 24% above

the error from the best individual surrogate, and always perform better than the worst sur-

rogate. So regardless of the method used to form the approximate objective function, the

weighted average surrogates performed as intended.

A comparison of the errors in Figs. 8.9 through 8.12 with the weight coefficients in

Tables 8.14 – 8.15 shows that the surrogate with the highest weight is not necessarily the

most accurate when using test points to measure error. For example, consider the case of
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approximating the overall objective function directly. The results in Table 8.15 indicate

that reduced term polynomials are more accurate than kriging surrogates when using the

GMSE as the global error measure. However, Fig. 8.11 shows that the kriging surrogates

are more accurate than the reduced term polynomials in terms of the average error based

on test points. This example illustrates a major issue with attempting to identify the most

accurate individual surrogate for a given application: the most accurate approximation

method may be dependent on the metric used to quantify error. This is not an issue with

weighted average surrogates since they generally predict as accurately as the best individual

surrogate, regardless of the metric used to quantify error.

It is interesting to note that increasing the sample size from 283 to 484 generally had

little effect on the accuracy of the surrogates. This indicates that for the 17 dimensional

design space, increasing the number of fitting points from 283 to 484 was not sufficient to

significantly enhance the surrogates’ predictions for the responses considered in this study.

8.2.3 Optimization Results

Optimization results based on surrogate objective functions and constraints are pre-

sented in this section. Optimization of the surrogate objective functions was conducted

with the Multi-Island Genetic Algorithm in iSIGHT [1]. The genetic algorithm was set

to run for 200,000 total objective function evaluations. This number was determined by

numerical experimentation. Optimization of all surrogate objective functions for a given

sample set were conducted in parallel since they can be optimized independently.

Table 8.16 gives the optimization results when using the underlying hub shears and
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Table 8.16: Optimization results using surrogate underlying responses
Surrogate Sample Optimization Predicted Actual Actual ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

Size1 Time (hours) Reduction Reduction Stress Margin

Poly. 283 3 100.0 % 66.4 % 0.017 0.671 1.062 5.036
Poly(red.) 283 3 100.0 % 67.3 % 0.014 0.641 1.059 4.679

KRG 283 3.5 94.2 % 59.0 % 0.008 0.613 1.059 4.176
RBNN 283 5 94.9 % 53.7 % 0.016 0.624 1.059 4.334

Wtd. Avg. 283 7 95.4 % 61.3 % 0.003 0.601 1.055 4.285
Wtd. Avg.(red.) 283 7 96.7 % 63.9 % 0.008 0.604 1.057 4.120

Poly. 484 3 100.0 % 58.9 % 0.006 0.608 1.056 3.958
Poly(red.) 484 3 100.0 % 62.2 % 0.007 0.603 1.056 3.919

KRG 484 4 87.0 % 68.7 % 0.008 0.621 1.058 4.560
RBNN 484 5 98.7 % 52.4 % 0.006 0.603 1.056 4.018

Wtd. Avg. 484 8 88.3 % 68.1 % 0.003 0.618 1.059 3.866
Wtd. Avg.(red.) 484 8 89.5 % 70.2 % 0.003 0.615 1.059 3.796

1The 283 and 484 sample points required 53 and 82 hours to generate respectively.

moments to build the surrogate objective function. Note that vibration reduction results are

presented relative to the vibration levels of a baseline blade resembling an MBB BO-105

blade. The best individual surrogate differs with the sample size. For the 283 point sample

set the reduced term polynomial produced the best design, with 67.3% vibration reduction,

while for 484 points, kriging produced the best design, with 68.7% reduction. Significant

vibration reduction is also obtained with the weighted average surrogates, which produce

up to 63.9% vibration reduction with 283 sample points and up to 70.2% reduction with

484 sample points. The average of the Euclidean distances between all of the optimum

designs corresponding to 283 sample points is equal to 40% of the distance between the

two furthest corners of the design space. The maximum and minimum distances among

the optimum designs are 56% and 13% of the distance between the two furthest corners

respectively. Similarly, for the 484 point sample set, the average, maximum, and minimum

Euclidean distances relative to the maximum dimension of the design space are 33%, 53%,

and 8% respectively. These results indicate that optimization of the various surrogates led

to designs in different regions of the design space.
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Since optimization was conducted in parallel, 7 hours were needed to optimize all

objective functions corresponding to 283 sample points in Table 8.16. By comparison,

optimization of a single surrogate required at least 3 hours. So optimization of all surro-

gates required 4 additional hours, which is relatively insignificant compared to the 53 hours

needed to generate the 283 sample points. Similar results for the 484 sample set are clear

from Table 8.16.

Optimization results corresponding to direct approximation of the overall objective

function are given in Table 8.17. The full term polynomial led to the best design among the

individual surrogates for the 283 sample set, while the RBNN, which is the least accurate

surrogate, led to the best design for the 484 point sample set. Furthermore, the full term

polynomial is the worst single surrogate with 484 sample points. These results represent

extreme examples in the sense that the best individual surrogate for one sample set is the

worst surrogate for another sample set, and the least accurate surrogate led to the best de-

sign in one instance. Thus, optimizing the least accurate surrogate proved to be beneficial,

especially considering it was relatively inexpensive to optimize all surrogates. The aver-

age, maximum, and minimum Euclidean distances relative to the maximum dimension of

the design space are 33%, 51%, and 18% respectively for the 283 point data set, and 33%,

43%, and 18% respectively for the 484 point sample set.

Tables 8.16 and 8.17 show that among the individual surrogates, the approximation

method which led to the best design depended on the sample size. Therefore, if the best

individual approximation method based on one sample set were the only method used with

the other sample set, inferior designs would be obtained compared to those found by op-
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Table 8.17: Optimization results when directly approximating the objective function
Surrogate Sample Optimization Predicted Actual Actual ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

Size Time (hours) Reduction Reduction Stress Margin

Poly. 283 2 394.4 % 64.4 % 0.005 0.610 1.058 4.330
Poly(red.) 283 2 512.3 % 60.1 % 0.005 0.605 1.057 4.231

KRG 283 2 120.0 % 54.1 % 0.006 0.600 1.055 4.252
RBNN 283 4 93.9 % 57.4 % 0.009 0.602 1.055 4.420

Wtd. Avg. 283 4 234.9 % 70.5 % 0.008 0.604 1.055 4.538
Wtd. Avg.(red.) 283 4 221.7 % 65.0 % 0.000 0.604 1.059 3.871

Poly. 484 2 222.4 % 45.0 % 0.001 0.627 1.060 3.960
Poly(red.) 484 2 207.1 % 50.0 % 0.000 0.600 1.058 3.710

KRG 484 2 145.1 % 55.8 % 0.000 0.606 1.057 3.981
RBNN 484 4 97.4 % 67.5 % 0.000 0.631 1.057 4.670

Wtd. Avg. 484 4 116.7 % 67.6 % 0.010 0.620 1.057 4.602
Wtd. Avg.(red.) 484 4 129.2 % 58.8 % 0.008 0.625 1.056 4.380

timizing multiple surrogates. In addition, optimization of the weighted average surrogates

produced superior designs than any of the individual approximation methods in some in-

stances. So, given that optimization of multiple surrogates results in a small additional

cost compared to the cost of generating the fitting data, optimization of multiple surrogates

including weighted average models is superior to only considering a single surrogate.

The different fundamental blade frequencies presented in Tables 8.16 and 8.17, along

with the Euclidean distances between optimum designs, demonstrate that optimization of

multiple surrogates was useful for locating various reduced vibration designs in the BVI

flight condition. Although all of the optimum designs in Tables 8.16 and 8.17 are differ-

ent, they all result in significant reduction of the vertical shear, F4Z , which is the primary

mechanism for reducing the objective function corresponding to this flight condition. This

is illustrated in Fig. 8.13, where the best and worst designs – 70.5% and 45.0% vibration

reduction respectively – from Tables 8.16 and 8.17 are compared with the MBB BO-105

baseline vibratory loads. For these two designs, the vertical shear is reduced by 74% and

41% respectively. While the other vibratory loads are also reduced, the vertical shear is the
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Figure 8.13: Comparison of the best and worst optimum designs

largest component and therefore its reduction is most critical for minimizing the objective

function. Furthermore, all of the designs in Tables 8.16 and 8.17 correspond to stress mar-

gins < 0.02, which implies that the stresses in the optimum blades are relatively close to

the allowable stress.

The significant differences in predicted and actual amounts of vibration reduction in

Tables 8.16 and 8.17 indicate that the surrogates are inaccurate at their respective optimum

designs. Furthermore, the surrogates were susceptible to predicting impractical amounts

of vibration reduction, i.e. ≥ 100%. Thus it was critical for this problem to conduct

simulations at each optimum design in order to obtain the actual amount of reduction. It

is important to note that while the surrogates were not accurate everywhere in the design

space, they still led to reduced vibration designs.

In order to illustrate the effects of errors in the individual surrogate constraints on op-

timization results, the predicted vibration reduction from each surrogate at all of the opti-

mum designs from Table 8.17 are given in Table 8.18, along with predicted stress margins
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Table 8.18: Predicted vibration reduction and stress margins by each of the surrogates
Optimum Sample Predicted Predicted Predicted Predicted Predicted Predicted

Size Reduction & Reduction & Reduction & Reduction & Reduction & Reduction &
Stress Margin Stress Margin Stress Margin Stress Margin Stress Margin Stress Margin

w/ Poly. w/ Poly(red.) w/ KRG w/ RBNN w/ Wtd. Avg. w/ Wtd. Avg.(red.)

Poly. 283 394% (0.0147) 341% (0.0080) 99% (0.0761) 91% (0.0001) 196% (0.0383) 205% (0.0324)
Poly(red.) 283 571% (-0.0002) 512% (0.0001) 115% (0.0083) 94% (-0.0191) 262% (-0.0003) 287% (-0.0002)

KRG 283 298% (-0.0180) 283% (-0.0098) 120% (0.0840) 91% (0.0005) 173% (0.0298) 187% (0.0275)
RBNN 283 427% (-0.0515) 300% (-0.0482) 90% (0.1141) 94% (0.0001) 203% (0.0295) 184% (0.0207)

Wtd. Avg. 283 484% (-0.0263) 417% (-0.0640) 119% (0.0407) 93% (0.0000) 235% (0.0083) 247% (-0.0130)
Wtd. Avg.(red.) 283 387% (0.0464) 378% (0.0435) 99% (0.0620) 92% (0.0002) 193% (0.0436) 222% (0.0427)

Poly. 484 222% (0.0076) 200% (0.0077) 72% (0.0074) 93% (-0.0386) 133% (-0.0007) 130% (-0.0002)
Poly(red.) 484 215% (0.0047) 207% (0.0045) 82% (0.0056) 93% (-0.0379) 135% (-0.0025) 137% (-0.0022)

KRG 484 108% (0.0001) 104% (0.0003) 145% (0.0068) 90% (-0.0426) 120% (-0.0044) 118% (-0.0043)
RBNN 484 48% (-0.0149) 37% (-0.0012) 104% (0.1076) 97% (0.0004) 81% (0.0380) 75% (0.0410)

Wtd. Avg. 484 154% (-0.0286) 146% (-0.0223) 102% (0.0625) 78% (0.0060) 117% (0.0152) 116% (0.0154)
Wtd. Avg.(red.) 484 185% (-0.0002) 185% (0.0005) 86% (0.0045) 91% (-0.0108) 124% (-0.0001) 129% (0.0002)

in parentheses. While all surrogate objective functions predict that each optimum design is

a reduced vibration design, some designs were missed due to errors in the surrogate con-

straints. For example, among the individual approximation methods based on 283 sample

points, the full term polynomial surrogate objective function predicts that the optimum de-

sign corresponding to the RBNN results in 427% reduction, which is superior to the 394%

predicted reduction corresponding to its own optimum. However, as indicated by the stress

margin, the full term polynomial surrogate stress constraint incorrectly predicts that the

RBNN optimum design yields. Thus, inaccuracies in the surrogate constraints may lead

away from designs which are predicted to have better objective function values.

Table 8.18 also illustrates how the errors in the surrogate objective functions may lead to

inferior designs. For example, the kriging surrogate stress constraint based on 283 sample

points correctly predicts that the full term polynomial design, which is superior to the

kriging optimum in terms of actual vibration reduction, is feasible. However, the kriging

surrogate objective function predicts that the superior design corresponds to 99% vibration

reduction, while predicting 120% reduction for the inferior kriging optimum. Therefore,
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the kriging surrogate objective function led to an inferior design compared to the full term

polynomial because it incorrectly predicted that the kriging optimum was better than the

full term polynomial optimum.

8.2.4 Global Sensitivity Analysis Results

The variability in the surrogate objective functions due to the most significant design

variables are presented in this section. All results in this section are based on direct ap-

proximation of the overall objective function. Figures 8.14 – 8.18 shows the contributions

to the total variability from main effects and interactions among design variables. Design

variables which are predicted to account for less than 3% of the total variability are con-

sidered to be relatively unimportant, and therefore are not shown. In addition, Figs. 8.14

– 8.18 also give the total variability from all of the depicted design variables, as well as the

total variability from the remaining design variables which individually account for less

than 3% of the variance. Note that results generated with RBNN’s are not depicted because

all design variables were predicted to account for 5 − 9% of the total variability. Thus,

the GSA based on RBNN’s predicts that all of the design variables essentially have equal

importance. However, this does not preclude the use of weighted average surrogates in

GSA since they are different functions than the RBNN’s given that relatively little weight

is placed on the RBNN’s.

From Figs. 8.14 – 8.18 it is clear that the GSA predicts t1 at the 25%, 50%, and 100%

blade stations are the three most important design variables, no matter what sample size

or approximation method is used in the analysis. However, beyond this observation, the
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Figure 8.14: Contribution to the variability in the objective function from the most signifi-
cant design variables using full term polynomial surrogates
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Figure 8.15: Contribution to the variability in the objective function from the most signifi-
cant design variables using reduced term polynomial surrogates
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Figure 8.16: Contribution to the variability in the objective function from the most signifi-
cant design variables using kriging surrogates
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Figure 8.17: Contribution to the variability in the objective function from the most signif-
icant design variables using weighted average surrogates with the full term
polynomial
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Figure 8.18: Contribution to the variability in the objective function from the most signifi-
cant design variables using weighted average surrogates with the reduced term
polynomial
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results of the global sensitivity analysis are highly dependent on the sample size and the

approximation method. For instance, using the kriging surrogate and 283 sample points, t1

at the 50% station is predicted to be the second most important variable. In contrast, this

variable accounts for the third most variability in the objective function when using 484

sample points to create the surrogate. Furthermore, increasing the number of sample points

changes which variables the GSA determines to be the most important for each surrogate.

Comparing the results corresponding to the kriging surrogate with the other surrogates in

Figs. 8.14 - 8.18 with 283 sample points illustrates the effect of using different surrogates.

The kriging surrogate predicts that only 4 variables are significant and account for 89.5%

of the total variability, while GSA with the other surrogates predicts that 7 – 10 design

variables are significant.

In order to verify that the unimportant variables according to the GSA have little ef-

fect on the predictive capabilities of the surrogates, the surrogates were reconstructed after

eliminating the unimportant design variables and the errors using the 197 test points were

compared to the errors when all of the design variables were included in the fitting pro-

cess. The results of this comparison are summarized in Table 8.19, which gives the ratios

of the reconstructed surrogates’ errors to the errors obtained when using all of the design

variables. The most extreme application of the GSA occurs in the case of kriging with 283

sample points, in which 13 of the 17 design variables were considered unimportant. In this

case, the average error of the 4 dimensional kriging surrogate was 13.9% higher than the 17

dimensional kriging surrogate, while the maximum error was essentially the same. Other

than the case of kriging with 283 sample points, the reconstructed surrogates after the GSA
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Table 8.19: Ratio of errors after unimportant design variables are eliminated

Surrogate Sample Number of Ratio of Ratio of
used in Size Eliminated Average Maximum
GSA Variables Errors Errors

Poly 283 7 0.822 1.025
Poly(red) 283 8 0.787 0.971

KRG 283 13 1.139 1.023
Wtd. Avg. 283 10 1.030 0.878

Wtd. Avg.(red) 283 10 1.014 0.880

Poly 484 9 0.917 0.980
Poly(red) 484 8 0.930 1.015

KRG 484 10 0.951 0.896
Wtd. Avg. 484 10 1.043 0.811

Wtd. Avg.(red) 484 10 1.048 0.838

were only slightly less accurate or even more accurate – i.e. ratios less than 1 – than the

original surrogates. For example, the reduced term polynomial based on 283 sample points

is 21.3% more accurate than the original surrogate in terms of average error. Instances

in which the reconstructed surrogates are more accurate suggest that the eliminated vari-

ables are unimportant since they impair the predictive capabilities of the surrogates when

included.

The GSA was also utilized to refine the search for the optimum with each surrogate.

After the unimportant design variables were removed, the reconstructed surrogates were

optimized. The unimportant variables were fixed at their original optimum values from

optimization when all variables were included in the surrogate construction. The results

of this analysis are given in Table 8.20. Using the GSA to refine the optimization search

generally resulted in superior designs to the original optimal designs. The most significant

improvement occurred in the case of kriging surrogates based on 484 sample points, where

the refined search led to an additional 13.8% vibration reduction. The weighted average
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Table 8.20: Optimization results after GSA
Surrogate Sample Actual Actual Actual ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

Size Reduction Reduction Stress Margin
(all variables) (after GSA) (after GSA)

Poly. 283 64.4 % 70.4 % 0.005 0.623 1.058 4.521
Poly(red) 283 60.1 % 66.9 % 0.003 0.621 1.057 4.454

KRG 283 54.1 % 58.0 % 0.017 0.640 1.058 5.139
Wtd. Avg. 283 70.5 % 60.2 % 0.004 0.602 1.057 4.071

Wtd. Avg.(red) 283 65.0 % 64.8 % 0.003 0.613 1.059 3.952

Poly. 484 45.0 % 52.4 % 0.006 0.626 1.057 4.346
Poly(red) 484 50.0 % 60.7 % 0.008 0.618 1.056 4.512

KRG 484 55.8 % 69.6 % 0.001 0.606 1.055 4.569
Wtd. Avg. 484 67.6 % 63.9 % 0.006 0.608 1.056 4.395

Wtd. Avg.(red) 484 58.8 % 65.1 % 0.004 0.616 1.056 4.497

surrogates were the only models in which the refined optimization did not always produce

a better design. The failure of the refined search based on GSA to lead to better designs

in the case of some of the weighted average surrogates does not necessarily mean that the

GSA led to the removal of important design variables. Rather, this suggests that the original

optimization over all 17 design variables found the best design based on the weighted

average surrogates’ responses, and refining the search is unlikely to lead to better designs.

8.3 Efficient Global Optimization of Helicopter Rotor Blades

In this section, optimization results using EGO with a weighted expected improvement

function are compared to one-shot optimization results. The results are based on the heli-

copter parameters and BVI flight condition described in Section 8.1. Since the purpose of

this section is to evaluate the performance of EGO, a simplified helicopter model consisting

of the reduced design variable Configuration 2 (see Section 7.1.2) and no stress constraint

was considered. Ordinary kriging (see Section 7.3.3) was used since the results in Section
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8.1 indicate that the more general kriging offers no clear advantage. To start the EGO algo-

rithm, an optimum Latin hypercube (OLH) of 100 design points was generated. Since the

computational cost of evaluating the actual constraints is low, the constraints at each point

in the OLH were evaluated first. Designs that violated the constraints were removed from

the data set so that expensive forward flight simulations would not be wasted. From the 100

point OLH, 53 blade designs were feasible and had converged trim solutions. In addition,

OLH’s of 250 and 500 points, resulting in 143 and 284 feasible designs respectively, were

used to obtain one-shot optimization results.

For each iteration of the EGO algorithm, the 25 best designs from the genetic algorithm

optimization of the WEIF were selected for parallel computation; i.e Np = 25 in Fig. 7.5.

In addition, a variation of the EGO algorithm was considered in which the infill sample

points for each iteration were the 25 best designs from direct optimization of the surrogate

objective function using a genetic algorithm; these results are referred to as “GA updat-

ing”. In order to ensure that each of the 25 designs were different, the following criterion

was used: a design was considered to be different from another if there was at least a 0.5

mm difference in any of the thickness design variables or if there was a difference of at

least 5% of the baseline cross-sectional mass in any of the non-structural mass design vari-

ables. Each simulation took about 6 hours to complete on a Linux cluster with 1.8 GHz

Opteron processors. The EGO algorithm was run for at least 2 iterations and was stopped

if the best design from the current iteration was not better than the best blade design from

previous iterations. Optimization of the WEIF and the surrogate objective function was

conducted with the Multi-Island Genetic Algorithm in the iSIGHT [85] software package.
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Table 8.21: One-shot optimization results

# of feasible designs Best % Vibration Actual % Vibration Reduction
from the OLH Reduction from the OLH at the One-shot

Optimum Design

53 18.52% 4.50%
143 41.60% 17.47%
284 53.39% 33.58%

All optimization results are compared to a baseline blade with cross-sectional properties

resembling an MBB BO-105 blade, which is considered to have good vibration character-

istics.

Table 8.21 shows the results for one-shot optimization of kriging surrogates built from

OLH’s with 53, 143 and 284 design points, compared to the best design in each OLH. For

all three kriging models in Table 8.21, the optimum design returned by the genetic algo-

rithm optimization is worse than the best design in the OLH used to create the surrogate.

This is because at certain designs, the kriging surrogates predict a negative value for the

vibration objective function, which is not realistic given Eq. 7.1. So when the surrogates

are minimized directly, the optimization algorithm will move toward regions with negative

objective function values, even though the surrogates are inaccurate in these regions. This

illustrates the danger of directly optimizing a surrogate for a function with behavior that is

difficult to capture: if the surrogate is not accurate everywhere in the design space, direct

optimization may lead to a region in the design space with inferior designs.

Efficient Global Optimization results based on updating the surrogate model with ad-

ditional blade designs selected by the WEIF and the genetic algorithm are shown in Ta-

ble 8.22 and Fig. 8.19. Table 8.22 summarizes the amount of vibration reduction achieved,
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Table 8.22: Vibration Reduction using EGO

EGO Setting Number of Function Evaluations % Vibration Reduction

w = 0.0 72 55.15%
w = 0.2 128 65.18%
w = 0.4 128 45.00%
w = 0.5 153 54.55%
w = 0.6 128 44.09%
w = 0.8 178 64.53%
w = 1.0 153 54.35%

GA updating 178 54.68%

while Fig. 8.19 shows the best value of the vibration objective function after each iteration

of the EGO algorithm. The results presented in Table 8.22 and Fig. 8.19 were generated by

applying EGO to the vibration objective function with the user defined parameter w set to

0.0, 0.2, 0.4, 0.5, 0.6, 0.8, or 1.0. For each application of EGO, w was held fixed and the

algorithm was run until the stopping condition was reached.

The results for w = 0.5 would also be the results if an unweighted expected improve-

ment function were considered. For w = 0.5, the maximum amount of vibration reduction

is 54.55%, and the algorithm finishes after 153 objective function evaluations. This is

clearly superior to the 53.39% vibration reduction obtained with 284 objective function

evaluations. This comparison indicates that the expected improvement function is effective

in reducing the number of function evaluations needed to find optimum designs compared

to using a relatively large number of sample points from a space-filling scheme. Other

than w = 0.4 and w = 0.6, every weight setting resulted in vibration reduction greater

than 53.39%, and with less function evaluations than the 284 in Table 8.21. Therefore,

other than at w = 0.4 and w = 0.6, the WEIF was superior to the one-shot approach.

Furthermore, settings of w = 0.2 and w = 0.8 resulted in the best designs with 65.18%
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Figure 8.19: Change in the objective function during EGO

and 64.53% reduction respectively. The problem considered in this study is an example of

a situation in which a promising design was located in a region of high uncertainty, and

with a more global setting of w = 0.2, the EGO algorithm was able to locate it. Note

that in the results for w = 0, the surrogate is not updated with 25 additional sample points

each iteration because only 10 out of the 25 designs returned from the genetic algorithm

optimization of the WEIF in the first iteration had converged trim solutions, while only 9

designs had converged trim solutions in the second iteration. Thus for w = 0, only 19 total

sample points were added to the initial 53 points from the OLH, resulting in a total of 72

complete objective function evaluations.

The importance of accounting for uncertainty is further illustrated by comparing the

results in Fig. 8.19 for w = 0.8 and 1.0 with the results corresponding to genetic algorithm
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(GA) updating. For w = 0.8, a superior design is found compared to the best design

from GA updating. Thus even a small weighting on the global search characteristics was

beneficial compared to a purely local search. The setting of w = 1.0 results in essentially

the same amount of vibration reduction as the GA updating, but in 1 less iteration of EGO.

Therefore, the w = 1.0 setting resulted in a more efficient optimization algorithm than GA

updating. This can be explained by examining the normal distribution term (which is an

explicit function of the uncertainty measure s(x)) in Eq. 7.62, since this term accounts for

the only difference between optimization of the WEIF withw = 1.0 and direct optimization

of the surrogate objective function ŷkrg. For an amount of predicted reduction given by

ymin − ŷkrg, the normal distribution function will be high for low values of s(x) and vice

versa. Therefore, maximization of (ymin − ŷkrg)Φdist(
ymin−ŷkrg

s
) will favor blade designs

which are predicted to lower vibrations and at which the uncertainty in the surrogate’s

predictions is low. In contrast, direct optimization of the surrogate objective function using

the genetic algorithm will favor designs which are predicted to lower vibration, but the

uncertainty in the surrogate’s predictions is not explicitly accounted for. Thus the inclusion

of the uncertainty measure during optimization accounted for the improved efficiency of

the EGO algorithm when using a setting of w = 1.0 compared to the GA updating.

Figures 8.20a – h show the design variables corresponding to the best designs as EGO

progresses. These results show that for this problem, the change in design variables during

EGO is different for each weight setting, and thus the performance of EGO is sensitive to

the weight setting. Even though all weight settings resulted in significant vibration reduc-

tion, each setting led to a different optimum design. This suggests that there are numerous
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local optima in the vibration objective function at this flight condition.

Figures 8.21a – f show the variation of the vibratory shears and moments correspond-

ing to the best designs as the EGO algorithm progresses. Every weight setting resulted in

designs with significant reduction (over 70%) in the vertical shear F4Z , while other vibra-

tory components increased for some weight settings. Figure 8.22 compares the baseline

hubloads with those corresponding to the best design from EGO. In Fig. 8.22 it is clear that

the vertical shear is the dominant vibratory component of the baseline blade, and therefore

the majority of the reduction in the objective function comes from the significant reduction

in the vertical shear.

The errors in the surrogates are given after each iteration of EGO in Fig. 8.23. The

errors were calculated by comparing the predicted response of the surrogates to the actual

response at 427 test points, which were obtained by combining the sample data of the

143 point and 284 point OLH’s from Table 8.21. The errors in the surrogates tend to

increase as additional sample points were added during the optimization. This is because

only regions of high expected improvement are sampled in EGO, which led to a decline

in the predictive capabilities of the surrogate in regions of low expected improvement.

Although the accuracies diminished slightly, the more global weightings of w = 0.0 and

w = 0.2 had negligible effects on the accuracy of the surrogates, which is not surprising

since the goal of using more global weightings is to reduce the uncertainty, or error, in the

surrogate.
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Figure 8.20: Change in the best blade design during EGO
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Figure 8.21: Change in the vibratory loads at the best designs during EGO
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Figure 8.23: Errors in the surrogates after each iteration of EGO
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Chapter IX

Vibration Reduction Over the Entire Flight Envelope

In this chapter, SBO was used to optimize the blade at low advance ratios, where BVI

induced vibrations dominate, as well as high advance ratios where dynamic stall induced

vibrations are critical. These flight regimes are the most critical in terms of helicopter vi-

brations. Therefore, it is imperative that advanced rotor blade designs address vibration

characteristics at both flight conditions. The two objective functions given by Eq. 7.1

evaluated in the BVI regime, and the dynamic stall regime, are denoted J
BV I

and J
DS

re-

spectively. All multi-objective function optimization results in this study were generated

using the EGO-based approaches described in Section 7.4.3. The goal in treating this prob-

lem in a multi-objective manner, which had not been considered in previous studies, was

to identify a Pareto optimal design suitable for vibration reduction over the entire flight

envelope. The helicopter configuration and flight condition parameters used in all the com-

putations are given in Table 9.1, and the 17 design variables based on Configuration 1 were
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Table 9.1: Rotor and helicopter parameters for both flight conditions
Rotor Data
R = 4.91 m Ω = 425 RPM

Nb = 4 cb = 0.05498R
βp = 2.5◦ Cdo = 0.01
θpt = −8◦ CW = 0.005
σ = 0.07 CT/σ = 0.0714
XFA = 0.0 ZFA = 0.3
XFC = 0.0 ZFC = 0.3
Cdf = 0.01

BVI Flight Condition
µ = 0.15 θFP = 6.5◦

Dynamic Stall Flight Condition
µ = 0.35 θFP = 0◦

MBB BO-105 baseline blade
ωL1 = 0.729 ωF1 = 1.125
ωT1 = 3.263

used to generate the results.

9.1 Single Objective Function Optimization Results

Efficient Global Optimization results using the weighted expected improvement func-

tion are given in this section. For each iteration of the EGO algorithm, the 20 best designs

from the genetic algorithm optimization of WEIF were selected for parallel computation.

Twenty designs were selected based on the number of available processors; i.e. Np = 20.

Each BVI simulation required about 6 hours to complete on a Linux cluster with 1.8 - 2.4

GHz Opteron processors, while each dynamic stall simulation required 8 hours. The EGO

algorithm was used for 2 iterations with w = 0.2, followed by iterations with w = 0.8. The

algorithm was terminated once the iterations with w = 0.8 failed to improve upon the best

221



design from the previous iteration. This weight scheme was selected for two reasons: (1) so

that the EGO algorithm would focus on a more global search initially and then switch to a

more local search within regions of high probability of improvement, and (2) because these

weights were shown to be effective for BVI vibration reduction in Section 8.3. Optimiza-

tion of the WEIF was conducted with the Multi-Island Genetic Algorithm from iSIGHT.

All optimization results are compared to a baseline blade with cross-sectional properties

resembling an MBB BO-105 blade.

To start EGO for the BVI objective function, an optimum Latin hypercube (OLH) of

100 design points was generated. From the 100 point OLH, 95 blade designs had converged

trim solutions. Figure 9.1 shows the best feasible value of the vibration objective function

after each EGO iteration when optimizing under the BVI flight condition. In addition,

Fig. 9.1 depicts the objective function corresponding to vibration levels in the dynamic

stall regime that result from the best designs for the BVI flight condition. Using EGO,

73.9% vibration reduction was achieved for the BVI flight condition. The best design

under BVI conditions also corresponds to 10.7% vibration reduction in the dynamic stall

regime. These results indicate that it is possible to design a blade with reduced vibrations

under both intense blade-vortex interaction and dynamic stall.

Two OLH’s were considered for initializing the optimization of the dynamic stall ob-

jective function. The first was the same OLH used for optimization of the BVI objective

function. However, the best blade design from the 100 point OLH corresponded to a 17%

increase of the dynamic stall objective function. Thus, in the dynamic stall regime, regions

in the design space corresponding to reduced vibration were not sampled with the 100 point
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Figure 9.1: Changes in the objective functions corresponding to optimization for the BVI
flight condition

OLH. Therefore, a 200 point OLH was considered for initialization of the EGO algorithm

in order to increase the chance of sampling in regions of reduced vibration. Although more

of the design space was sampled than with the 100 point OLH, the best design from the

200 point OLH corresponded to a 19% increase of the objective function.

The best values of the dynamic stall regime objective function after each iteration of

EGO are shown in Fig. 9.2a and b. The best design in the dynamic stall regime corre-

sponds to 27.6% vibration reduction with the 100 point OLH, and 29.2% reduction with

the 200 point OLH. In the BVI regime, the 100 and 200 point OLH’s lead to 28.3% and

36.9% vibration reduction respectively. So the 200 point OLH led to minimal improvement

of the dynamic stall objective function compared to the 100 point OLH, and moderate im-

provement of the BVI objective function.

Figures 9.1 and 9.2 show that the space-filling nature of OLH’s results in significant

223



(a) 100 point OLH (b) 200 point OLH

Figure 9.2: Changes in the objective function corresponding to optimization for the dy-
namic stall flight condition

vibration reduction in the BVI regime. Under BVI conditions, 57% vibration reduction

was achieved using the best design of the initial 95 sample points from the space-filling

OLH. However, the same design from the OLH corresponds to a 17% increase of vibra-

tion levels in the dynamic stall regime. In contrast to the BVI flight condition, the EGO

algorithm is not initialized with a reduced vibration design in the dynamic stall regime.

Therefore, the dynamic stall optimization results show that the EGO algorithm is capable

of finding reduced vibration designs even when initialized with poor designs. Furthermore,

the dynamic stall objective function was more difficult to optimize in the sense that one

more EGO iteration with the 100 point OLH compared to the BVI objective function was

required.

In order to demonstrate the superiority of EGO to the one-shot optimization approach

for the dynamic stall regime, a kriging surrogate based on a 400 point OLH – 372 had

converged trim solutions – was constructed and optimized directly. One-shot optimization

led to a design corresponding to a 10% increase in the dynamic stall objective function.

Because of the error in the surrogate’s predictions, one-shot optimization led to a design
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which is predicted to be a low vibration design, but in reality is a poor design. By com-

parison, Fig. 9.2b shows that EGO led to 29% vibration reduction with 253 objective func-

tion evaluations. Thus, in the dynamic stall regime, EGO led to a better design with 119

fewer expensive objective function evaluations compared to the one-shot approach. By

emphasizing regions in the design space where there is much uncertainty in the surrogate’s

predictions, i.e. a setting of w = 0.2, EGO was able to locate a design which one-shot

optimization failed to because of errors in the surrogate objective function. These results

illustrate that (a) beginning with a relatively small number of function evaluations com-

pared to the one-shot approach and using the WEIF to update in an “intelligent” manner

results in the superior efficiency of EGO, and (b) accounting for the uncertainty in the sur-

rogate during optimization results in a more global search which can lead to designs that

the one-shot approach misses. Similar results demonstrating the superiority of the EGO

algorithm for optimization in the BVI regime are provided in Section 8.3.

9.2 Multi-objective Function Optimization Results

The results in Figs. 9.1 and 9.2 indicate that it is possible to find designs which reduce

vibrations in both flight conditions. However, the best design for one flight condition was

not the best design for the other. In order to find the “best” design for both flight conditions,

multi-objective function optimization techniques are necessary. Therefore, the weighted

sum and modified EGO approaches described in Section 7.4.3 are employed to locate the

Pareto optimum designs. A design is considered to be Pareto optimal, or non-dominated,

if no design exists which has superior objective function values for all objective functions.
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9.2.1 Weighted Sum Approach

The following values of W were considered: 0.0, 0.25, 0.50, 0.75 and 1.0. Setting

W = 0 corresponds to optimization of the BVI objective function, and W = 1 emphasizes

the dynamic stall vibration objective. The surrogate dynamic stall objective function based

on the 200 point OLH was used in the multi-objective function optimizations. Note that the

results in Figs. 9.1 and 9.2b correspond to W = 0 and W = 1 respectively. Similar to the

results in Figs. 9.1 and 9.2, 20 local optima of the WEIF were selected for updating after

each iteration of EGO. However, for values of W other than 0 or 1, helicopter simulations

in both flight regimes must be conducted for each of the 20 local optima. Therefore, for

each iteration of EGO with W 6= 0, 1, 40 expensive objective function evaluations were

necessary. Among all of the designs which were located after conducting EGO at the

various W settings, the “best” designs were selected by identifying the Pareto optima.

The amount of vibration reduction corresponding to the Pareto optimal designs are

given in Table 9.2. It is clear from Table 9.2 that a single design which is best for both

flight conditions does not exist, and trade-offs are necessary in order to select the “best”

design among the Pareto points. There is relatively little difference in the BVI objective

function for the 5 Pareto optimal designs corresponding to 44.4 − 48.1% BVI vibration

reduction. In contrast, the differences in the dynamic stall objective function are larger for

these 5 designs, which vary between 19.6 – 31.9% reduction of the dynamic stall objec-

tive function. Furthermore, these 5 designs have similar fundamental frequencies which

suggests that these designs are in the same region of the design space. These results in-

dicate that within this region of the design space, larger amounts of vibration reduction
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Table 9.2: Pareto optimal designs from the weighted sum approach

Vibration Reduction in Vibration Reduction in ωL1ωL1ωL1 ωF1ωF1ωF1 ωT1ωT1ωT1

BVI Regime Dynamic Stall Regime
73.9% 10.7% 0.614 1.065 4.849
48.1% 19.6% 0.600 1.056 4.189
47.9% 20.3% 0.600 1.057 4.090
45.0% 22.0% 0.601 1.057 4.076
44.8% 29.1% 0.601 1.058 3.999
44.4% 31.9% 0.601 1.057 3.997

in the dynamic stall regime can be achieved with relatively little increase in BVI induced

vibrations.

It is interesting to note that the optimum design corresponding to W = 1.0 is not a

Pareto optima. With W = 1, a design corresponding to 36.9% vibration reduction in the

BVI regime and 29.2% reduction in the dynamic stall regime was found. However, this

design is dominated by the design in Table 9.2 corresponding to 44.4% reduction in the

BVI regime and 31.9% reduction in the dynamic stall regime. This occurs because of the

error in the approximate objective function. While the design corresponding to W = 1 is

predicted to be the best blade design for the dynamic stall flight condition, it is not actually

the best design.

9.2.2 Modified EGO approach

The WEIF Pareto front was obtained using two genetic algorithms available in iSIGHT

– the Neighborhood Cultivated Genetic Algorithm (NCGA) and the Multi Island Genetic

Algorithm (MIGA) [1]. The NCGA, which is based on the approach described in Ref. 180,

is a multi-objective algorithm which is formulated to locate the entire Pareto front. How-
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Figure 9.3: Weighted expected improvement Pareto front

ever, it was found that the NCGA was not as effective as MIGA, which is a single objective

algorithm, for locating designs on the ends of the Pareto front. This is depicted in Fig.

9.3, in which the Pareto optimal designs corresponding to both WEIF’s are shown for one

iteration of the modified EGO approach. The output data from the NCGA approach, and

the MIGA approach which was used to optimize each WEIF individually, were combined

and filtered for the overall expected improvement Pareto front. It is clear from Fig. 9.3 that

both approaches contributed to the Pareto front. Therefore, for all multi-objective results in

this thesis, NCGA and MIGA were applied to the WEIF’s corresponding to each iteration,

and the Pareto points from the combined output data were selected. This adds no additional

cost to the problem since the three individual optimizations – (1) NCGA applied to both

WEIF’s, (2) MIGA applied to the BVI WEIF, and (3) MIGA applied to the dynamic stall

WEIF – can be conducted in parallel.

As in the previous results, the first two iterations of the modified EGO algorithm were

228



run with a WEIF setting of w = 0.2. A setting of w = 0.8 was used for subsequent

iterations, and the algorithm was stopped once it could not find additional Pareto optimal

designs. The modified EGO approach located a single Pareto optimum corresponding to

71.1% and 26.3% reduction of the BVI and dynamic stall objective functions respectively,

and fundamental frequencies of ωL1 = 0.601, ωF1 = 1.055, ωT1 = 4.671. This design

represents an excellent trade-off since it corresponds to vibrations which are only 2.8%

higher than the best design for the BVI regime, and 5.6% higher than the best design for

the dynamic stall regime. These results illustrate the importance of treating this problem

in a multi-objective manner since this design would have been overlooked if the blade was

optimized for only one flight condition. In general, the modified EGO approach will return

multiple Pareto designs, just as in the weighted sum approach. However, only a single

Pareto point was returned in this case because the design is such an excellent trade-off

design that it dominated all other designs located by the modified algorithm.

The Pareto designs from the two approaches are compared in Fig. 9.4, in which the

designs returned by both multi-objective function optimization approaches are plotted in

the objective function space. It is clear from Fig. 9.4 that three of the designs located by

the weighted sum approach are not actual Pareto points since they are dominated by the

design located by the modified EGO approach. Figure 9.4 also provides an approximate

representation of the Pareto front which was obtained by connecting the 4 actual Pareto

designs from both approaches. The Pareto front shows that neither method of utilizing

EGO for multi-objective function optimization distinguished itself as the best, since both

methods located designs on the Pareto front which the other was unable to find. Therefore,
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Figure 9.4: Pareto optimal designs plotted in the objective function space

the results in this study indicate that the most effective way in which to utilize EGO for

locating Pareto designs is to use both the weighted sum approach and the modified EGO

approach.

9.3 Vibratory Loads Corresponding to the Best Designs

The vibratory loads corresponding to the best designs in the BVI and dynamic stall

regimes, as well as the “best” trade-off design, are shown in Figs. 9.5a and b. The design

identified by the modified EGO approach was selected as the “best” trade-off design since

its vibration characteristics are similar to the best designs for both flight conditions. Fig-

ure 9.5a shows that the baseline vertical shear is the most significant vibratory load in the

BVI regime. Therefore, the reduction of the vertical shear is the dominant mechanism for

reducing the overall BVI objective function. By optimizing the BVI objective function, the
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Figure 9.5: Vibratory loads in the BVI and dynamic stall flight regimes

vertical shear is reduced by 88%. On the other hand, the best design from optimizing the

dynamic stall objective function results in 46% reduction of the vertical shear in the BVI

regime, while the trade-off design results in 81% reduction of the vertical shear.

Figure 9.5b shows that no single vibratory load dominates the dynamic stall objective

function. Rather, all three hub shear components make substantial contributions to the

objective function. The best design in the dynamic stall regime alleviates vibration by

reducing all three shears by 17−60%. In contrast, the best design from optimizing the BVI

objective function lowers vibrations in the dynamic stall regime by reducing the vertical

shear by 63%. Similar to the best design for the dynamic stall regime, the trade-off design

alleviates vibration by reducing the three shears by 12 − 85%. So in both flight regimes,

the BVI optimum blade design achieves vibration alleviation by significantly reducing the

vertical shear, while the dynamic stall optimum and trade-off design reduce all three shears.
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Chapter X

Active/Passive BVI Vibration and Noise Reduction

Vibration and noise reduction results using the EGO and active control algorithms are

presented in this chapter. The helicopter parameters given in Table 9.1 corresponding to

the BVI flight condition were used for all results. The blade was characterized by the 13

design variables described in Configuration 3. Furthermore, a relaxed autorotational con-

straint was employed in which the blade must maintain 80% of the mass polar moment of

inertia of the baseline blade, and the lower bound on the fundamental lead-lag frequency

constraint was set to 0.50/rev. For all noise reduction results, P0 = 20 µPa and the thresh-

old noise level was set to T
NL

= 110 dB since the highest noise levels in the carpet plane

corresponding to the baseline blade were greater than 110 dB.

10.1 Passive Optimization Results

Efficient Global Optimization results using the WEIF are given in this section. The

EGO algorithm was initialized with 200 data points and the initial iterations were run with

a weight setting of w = 0.2. Once EGO failed to improve upon the best design from the

previous iteration, the weight setting was changed to w = 0.8. The EGO algorithm was

stopped once the iterations with w = 0.8 failed to improve upon the best design from the
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previous iteration. The weighted sum approach to multi-objective function optimization

was conducted with the following values of W : 0.0, 0.25, 0.50, 0.75 and 1.0. All optimiza-

tion results are compared to a baseline blade with cross-sectional properties resembling an

MBB BO-105 blade. The best trade-off designs from both multi-objective function op-

timization approaches described in Section 7.4.3 were combined into a data set which is

filtered for the final Pareto optimal designs.

The amount of vibration and noise reduction for the best trade-off, or Pareto optimal

designs are given in Table 10.1 along with the fundamental frequencies which characterize

the blade designs. The best vibration design corresponds to 66.8% reduction of the vibra-

tion objective function and 37.6% noise reduction, while the best noise design corresponds

to a 3.7% increase in vibration levels and a 62.6% reduction in noise relative to the baseline

blade. Among the best trade-off designs, the maximum noise levels in the carpet plane are

1.3 − 2.8 dB lower than the baseline design. These results indicate that it is possible to

passively design a blade for simultaneous vibration and noise reduction, although the best

design for vibration is not the best design for noise. Therefore, as in many multi-objective

function optimization problems, there is no single best design.

The Pareto front, which is obtained by plotting the 20 Pareto optimal designs from

Table 10.1 in the objective function space, is shown in Fig. 10.1. Figure 10.1 illustrates

that, among the Pareto optimal designs, a significant reduction in one objective function is

associated with a significant increase in the other objective function. These results indicate

that passive reduction of BVI induced vibration and noise is characterized by strong trade-

offs between the two objectives.
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Table 10.1: Best trade-off designs

Design Vibration Noise Reduction of Max. ωωωL1 ωωωF1 ωωωT1

Identifier Reduction Reduction Noise Level in (/rev) (/rev) (/rev)
Carpet Plane (dB)

P1 66.8% 37.6% 1.3 0.609 1.054 4.675
P2 66.3% 38.7% 1.4 0.632 1.058 4.694
P3 65.9% 39.3% 1.6 0.577 1.050 4.677
P4 65.4% 39.3% 1.8 0.593 1.051 4.855
P5 65.0% 41.0% 1.8 0.597 1.052 4.828
P6 63.4% 44.4% 1.7 0.634 1.057 4.852
P7 61.9% 44.5% 1.6 0.638 1.057 4.858
P8 57.1% 47.4% 1.9 0.656 1.061 4.603
P9 22.8% 47.5% 2.1 0.553 1.048 4.640

P10 15.4% 51.1% 2.5 0.704 1.066 5.602
P11 14.8% 52.0% 2.4 0.609 1.054 4.675
P12 10.1% 52.6% 2.7 0.655 1.062 5.054
P13 9.6% 54.0% 2.4 0.751 1.072 5.750
P14 9.1% 54.1% 2.6 0.662 1.063 5.348
P15 8.3% 54.4% 2.6 0.696 1.066 5.120
P16 6.1% 57.3% 2.8 0.683 1.066 5.522
P17 1.3% 58.5% 2.4 0.698 1.067 5.451
P18 0.3% 59.4% 2.5 0.703 1.068 5.488
P19 -2.9% 59.8% 2.7 0.766 1.073 5.860
P20 -3.7% 62.6% 2.6 0.669 1.062 5.048

The vibratory loads corresponding to the best vibration and noise designs are shown in

Fig. 10.2. The baseline vertical shear, F4Z , is the most significant vibratory load in the BVI

regime. Therefore, the significant reduction in the overall objective function associated

with the best vibration design is due to a 70% decrease in the vertical hub shear. The best

noise design results in a 58% reduction of the vertical shear. However, in contrast to the

best vibration design, F4X , F4Y , and M4Z are increased by 191 − 592%. Because of this,

the overall vibration objective function associated with the best noise design is increased

by 3.7% in spite of the significant alleviation of the vertical hub shear.
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Figure 10.2: Vibratory loads corresponding to the best vibration and noise designs
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Figure 10.3: Noise levels corresponding to the best passive designs

The noise levels in the carpet plane associated with the baseline, best vibration, and

best noise designs are shown in Fig. 10.3. Figure 10.3 shows that the best vibration and

noise designs both correspond to decreased noise levels throughout the carpet plane. The

best vibration design results in a 1.3 dB reduction of the maximum noise level on the

advancing side, and a 1.4 dB decrease on the retreating side. Similarly, the best noise design

corresponds to a 2.6 dB and 1.6 dB reduction of maximum noise levels on the advancing

and retreating sides respectively. These results demonstrate that the noise objective function

introduced in this study is effective for locating designs which correspond to lower noise

levels on the advancing and retreating sides of the carpet plane.

10.2 Sequential Active/Passive Optimization Results

The active/passive results given in this section were generated by adding actively con-

trolled flaps (ACF’s) to the best trade-off designs. Active control was implemented for

vibration reduction, noise reduction, and simultaneous reduction. The dual servo-flap con-
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Table 10.2: Dual servo-flap configuration

cc = 0.25cb mc = 0.0625m0

Inboard flap
xc = 0.72R Lc = 0.06R

Outboard flap
xc = 0.92R Lc = 0.06R

figuration (see Fig. 1.2a) employed for all active/passive results is given in Table 10.2.

For active control of vibration, the weighting matrix QVR employed in Refs. 120 and 41

was used,

QVR =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 10 0 0

0 0 0 0 10 0

0 0 0 0 0 10



. (10.1)

The active/passive results associated with vibration control are given in Table 10.3. The

vibration and noise reduction results correspond to the passive objective functions so that

direct comparisons can be made with the results obtained with only passive reduction. De-

signs P13, P14, and P16 are omitted from Table 10.3 since these blades, when combined

with the flaps, produce infeasible designs. These designs were on the boundary of the

hover stability constraint and addition of the flaps was sufficient to result in a violation of

the constraint. The active/passive configurations set for vibration control result in an addi-
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Table 10.3: Active/passive results associated with vibration control

Design Identifier Vibration Reduction Noise Reduction Change in Max.
Noise Level due to

Active Control (dB)
P1 91.2% 60.7% -1.0
P2 90.0% 66.7% -1.3
P3 90.5% 53.6% +0.1
P4 89.7% 60.9% -0.1
P5 90.8% 57.9% -0.3
P6 86.9% 57.7% -0.4
P7 83.9% 54.3% -0.5
P8 89.1% 62.5% +0.2
P9 51.0% 59.3% -0.8

P10 52.8% 56.0% +0.7
P11 49.4% 62.2% -0.5
P12 44.2% 69.9% -0.3
P15 38.6% 60.1% +0.4
P17 21.7% 73.7% -0.6
P18 20.7% 71.8% -0.7
P19 32.4% 80.0% -0.5
P20 12.3% 75.6% -0.2

MBB 76.1% 25.2% -1.0

tional 16−37% vibration reduction compared to the Pareto optimal designs without ACF’s.

In the case of the lowest vibration active/passive design P1, which corresponds to a 91.2%

decrease in vibration, the controller provides an additional 24.4% vibration reduction com-

pared to the original passive optimum. Although the 76.1% vibration reduction associated

with the MBB baseline blade with ACF’s is significant, it is still inferior to P1. These

results demonstrate that ACF’s can significantly augment the vibration characteristics of

structurally optimized blades, and that an active/passive approach to vibration reduction is

superior to only passive or only active approaches.

For each of the active/passive designs, an additional 5−28% noise reduction compared

to the passive designs was observed when controlling for vibration. Although the noise
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objective function, which represents high noise levels over the entire carpet plane, was

decreased by the presence of the flaps, maximum noise levels in the carpet plane were

not decreased for every design. For instance, adding flaps to design P10 and controlling

for vibration resulted in a 0.7 dB increase in the maximum noise level compared to P10

without flaps.

Note that for some of the active/passive designs, controlling for vibration increased

the active control noise objective function, i.e. the noise level at the microphone located

on the skid increased, despite a reduction in the passive noise objective function. A good

example of this is design P6 where the noise at the microphone was increased by 1.1 dB

when controlling for vibration, yet the passive noise objective function and maximum noise

level in the carpet plane were reduced by 13% and 0.4 dB respectively when compared to

P6 without flaps. This indicates that the noise levels at the microphone are not strongly

correlated to noise levels in the carpet plane for all of the blade designs.

For noise reduction, equal weighting was placed on each SPL harmonic, thus the di-

agonal components of QNR were identical. Active/passive results representing control for

noise reduction are given in Table 10.4. An additional 7−46% noise reduction compared to

the passive optimum designs was achieved by adding flaps and controlling noise. Although

the passive noise objective function was decreased by adding flaps to each of the optimized

designs, the maximum noise levels were not always reduced. For instance, adding flaps to

case P15 and controlling for noise increased the maximum noise level by 0.3 dB compared

to the maximum noise level associated with design P15 without flaps. Therefore, for some

designs, controlling noise produced noise reduction over the entire carpet plane at the cost
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Table 10.4: Active/passive results associated with noise control

Design Identifier Vibration Reduction Noise Reduction Change in Max.
Noise Level due to

Active Control (dB)
P1 67.7% 76.9% -1.4
P2 64.5% 73.6% -1.4
P3 37.8% 63.5% 0.0
P4 62.5% 71.7% -0.1
P5 65.5% 65.9% -0.2
P6 71.8% 63.6% -1.0
P7 66.1% 64.5% -0.8
P8 64.2% 66.5% -0.1
P9 16.9% 61.4% -0.7

P10 5.8% 60.1% +0.1
P11 -8.5% 71.2% -0.8
P12 -4.4% 74.7% -0.2
P15 1.68% 64.9% +0.3
P17 -22.5% 72.7% -0.8
P18 -12.3% 71.0% -0.5
P19 -25.9% 74.8% -0.1
P20 -20.5% 70.0% +0.2

MBB 23.0% 91.2% -2.9

of slight increases in the maximum noise level.

Actively controlled flaps combined with the baseline blade produced the most signifi-

cant noise reduction, despite the fact that the baseline blade without flaps has higher noise

levels than all of the passively optimized blades. It should be noted that the flaps reduce

noise at the microphone location by 0.1 − 1.1 dB when combined with the Pareto optimal

designs. By comparison, the controller reduced noise at the microphone by 3.8 dB with

the MBB BO-105 baseline blade. This behavior can be attributed to the fact that the Pareto

optimal designs presented in Table 10.1 are all much stiffer in torsion than the baseline

blade. Therefore the flaps have a smaller effect on the blade responses of the optimized de-

signs compared to the baseline blade, and thus less influence on noise levels. These results
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suggest that in order to obtain the best active/passive configuration for noise reduction, the

blade/flap combination has to be optimized simultaneously. This would likely result in a

design which is softer in torsion.

In order to further understand the cause of the additional noise reduction when flaps

are added to the optimized designs, noise levels were calculated for the active/passive con-

figurations with flap deflections set to zero. These results are presented in Table 10.5. In

addition to the noise reduction associated with zero flap deflection, Table 10.5 also provides

the change in the noise objective function due to non-zero flap deflections associated with

control for vibration and noise. The change in noise attributed to non-zero flap deflections

was calculated by subtracting the noise objective function corresponding to zero flap de-

flection from the noise objective function values associated with non-zero flap deflections.

It is clear from Table 10.5 that non-zero flap deflections contribute relatively little to noise

reduction for the optimized designs. For instance, adding flaps to design P1 with δf = 0◦

results in a 58.3% decrease in the noise objective function compared to the baseline blade,

and an additional 18.6% noise reduction was obtained by deflecting the flaps for noise re-

duction. So most of the total noise reduction was due to the aerodynamic contributions

from the extra chord length added by the undeflected flaps. The effect of non-zero flap

deflections for the other optimized designs was less than what was observed in the case

of P1. In contrast to the optimized designs, the flap deflection is the dominant source of

noise reduction for the torsionally softer baseline blade. These results show that although

the high torsional stiffnesses of the optimum designs limit the ability of the controller to

reduce noise, the presence of the flaps still contribute to noise reduction due to the extra
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Table 10.5: Effect of flap deflection on noise reduction

Design Noise Reduction Change in Noise due to Change in Noise due to
Identifier with δδδf = 0◦ Control of Vibration Control of Noise

P1 58.3% -2.4% -18.6%
P2 62.5% -4.2% -11.1%
P3 49.5% -4.2% -14.1%
P4 58.3% -2.5% -13.3%
P5 59.5% +1.5% -6.5%
P6 50.7% -7.0% -12.9%
P7 55.0% +0.7% -9.4%
P8 64.1% +1.6% -2.5%
P9 56.4% -2.9% -5.0%

P10 58.3% +2.3% -2.4%
P11 66.4% +4.2% -4.8%
P12 70.6% +0.7% -4.1%
P15 60.8% +0.7% -4.1%
P17 72.0% -1.7% -0.7%
P18 69.3% -2.5% -1.7%
P19 72.8% -7.1% -2.0%
P20 66.1% -9.5% -3.9%

MBB 26.7% +1.4% -64.5%

chord length with δf = 0◦. It should be noted that the extra chord length associated with

the undeflected flaps essentially represents a modification of the planform geometry. The

resulting noise reduction is consistent with the studies documented in Ref. 172 in which

modification of the planform geometry has been shown to be effective for reducing noise.

If a plain flap configuration were used, instead of the servo-flap configuration employed in

this study, the beneficial noise characteristics associated with the modified blade planform

would not be present.
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For simultaneous reduction,

QNR =


100 . . . 0

... . . . 0

0 0 100

 . (10.2)

and Wα = 0.5. The weights in QNR were set to higher values compared to QVR so as

to avoid a controller dominated by vibration reduction. It was found that without placing

higher weights on QNR compared to QVR, the controlled simultaneous reduction would be

dominated by vibration reduction.

The results corresponding to controlled simultaneous vibration and noise reduction are

given in Table 10.6. For each design, simultaneously controlled reduction led to supe-

rior vibration reduction compared to the results presented in Table 10.4 corresponding to

control for noise. However, control for simultaneous reduction did not always produce su-

perior reduction of the passive noise objective function compared to the results associated

with control for vibration. For instance, control for simultaneous reduction with design

P2 resulted in 62.8% reduction of the passive noise objective function, while control for

vibration decreased noise by 66.7%. However, the simultaneous reduction controller re-

duced noise at the skid microphone by 0.8 dB while control for vibration resulted in a 0.6

dB increase at the feedback location. Similar results were observed for each of the designs

for which control for simultaneous reduction failed to produce superior noise reduction

compared to control for vibration. Therefore, the simultaneous reduction control algorithm

did not fail. Rather, reduction of the active control noise objective function, i.e. noise at

243



Table 10.6: Active/passive results associated with control for simultaneous reduction

Design Identifier Vibration Reduction Noise Reduction Change in Max.
Noise Level due to

Active Control (dB)
P1 74.8% 67.5% -1.1
P2 73.0% 62.8% -1.2
P3 77.6% 62.7% -0.1
P4 67.1% 58.9% +0.1
P5 75.1% 67.1% -0.3
P6 73.3% 59.2% -0.9
P7 72.7% 67.2% -1.0
P8 65.7% 66.7% -0.1
P9 24.8% 60.7% -0.8

P10 15.7% 57.0% -0.8
P11 14.8% 67.4% +0.4
P12 6.3% 72.2% -0.7
P15 8.1% 67.1% -0.1
P17 5.5% 75.2% +0.2
P18 -0.6% 68.5% -0.7
P19 4.2% 71.4% -0.6
P20 -6.4% 68.8% -0.3

MBB 54.2% 75.8% -2.6

the skid microphone, did not always correlate with reduction of noise levels over the entire

carpet plane.

The Pareto optimal active/passive designs from Tables 10.3, 10.4, and 10.6 are pre-

sented in Table 10.7. The designs in Table 10.7 correspond to the best trade-offs with

respect to the passive vibration and noise objective functions. Although there is no single

blade/flap configuration which corresponds to the lowest vibration and noise levels, P1 is

the most versatile design since one can control for vibration, noise, or simultaneous reduc-

tion and the results would be Pareto optimal. A blade/flap configuration with the versatility

exhibited by P1 would be an attractive choice for a blade designer.

The noise levels in the carpet plane corresponding to P1 are shown in Fig. 10.4. From
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Table 10.7: Best active/passive designs

Design Identifier Control for Vibration Reduction Noise Reduction
P1 Vibration 91.2% 60.7%
P2 Vibration 90.0% 66.7%
P5 Simult. 75.1% 67.1%
P1 Simult. 74.8% 67.5%
P1 Noise 67.7% 76.9%

P19 Vibration 32.4% 80.0%
MBB Noise 23.0% 91.2%
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Figure 10.4: Noise levels corresponding to the P1 active/passive configurations

comparison with Fig. 10.3a it is clear that the P1 blade/flap combination results in lower

noise levels relative to the baseline design without flaps. The maximum noise levels on the

advancing side for each active/passive variation of P1 are reduced by 2.3−2.7 dB compared

to the baseline design, while 3.2− 3.8 dB reduction is observed on the retreating side.

Figure 10.5 displays the vibratory loads associated with the P1 active/passive combina-

tions. The vertical shear is reduced by 73 − 97% compared to the baseline. These results

along with those in Fig. 10.4 demonstrate that the P1 active/passive design would have ex-

cellent vibration and noise characteristics relative to the baseline design in the BVI flight
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Figure 10.5: Vibratory loads corresponding to the P1 active/passive configurations

regime, regardless of whether one chooses to control for vibration, noise, or simultaneous

reduction.
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Chapter XI

Active/Passive Vibration Reduction and Performance
Enhancement

The helicopter configuration and flight condition parameters used to generate all of the

results in this section are given in Table 11.1. The simulations are conducted at a level flight

condition with an advance ratio of µ = 0.35. High vibration levels due to dynamic stall are

encountered at this flight condition. The blade was characterized by the 15 structural design

variables described in Configuration 4 (see Section 7.1.2). The relaxed autorotational and

lead-lag frequency constraints described in the opening paragraph of Chapter X were used.

The active/passive results were generated by employing a single plain flap, as depicted in

Fig. 1.2b.

11.1 Passive Optimization Results

Efficient Global Optimization results using the weighted expected improvement func-

tion are given in this section. The EGO algorithm was initialized with 200 data points

and the initial iterations were run with a weight setting of w = 0.2. Once EGO failed to

improve upon the best design from the previous iteration, the weight setting was changed

to w = 0.8. The EGO algorithm was stopped once the iterations with w = 0.8 failed to
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Table 11.1: Rotor and helicopter parameters for µ = 0.35

Rotor Data
R = 4.91 m Ω = 425 RPM

Nb = 4 c = 0.05498R
βp = 2.5◦ Cdo = 0.01
θ0 = 5.6◦ CW = 0.005
σ = 0.07 CT/σ = 0.0714
XFA = 0.0 ZFA = 0.3
XFC = 0.0 ZFC = 0.3
Cdf = 0.01 m0 = 5.57 kg/m

Flight Condition
µ = 0.35 θFP = 0◦

MBB BO-105 baseline blade
ωL1 = 0.729 ωF1 = 1.125
ωT1 = 3.263
θ1 = 1.6◦ θ2 = −2.4◦

improve upon the best design from the previous iteration. The weighted sum approach to

multi-objective function optimization was conducted with the following values of W : 0.0,

0.25, 0.50, 0.75 and 1.0. All optimization results are compared to a baseline blade with

cross-sectional properties resembling an MBB BO-105 blade.

The amount of vibration and power reduction for the best trade-off, or Pareto optimal

designs are given in Table 11.2 along with the fundamental frequencies and pretwist design

variables which characterize the blade designs. The best vibration design corresponds to

34.2% reduction of the vibration objective function and a 13.9% increase in power con-

sumption, while the best power design corresponds to a 30.4% increase in vibration levels

and 3.30% performance enhancement relative to the baseline blade. These results demon-

strate that there are strong trade-offs between the two objectives at this flight condition.
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Table 11.2: Best trade-off designs

Design Vibration Power ωωωL1 ωωωF1 ωωωT1 θθθ1 θθθ2

Identifier Reduction Reduction (/rev) (/rev) (/rev)
P1 34.24% −13.91% 0.776 1.074 5.997 −2.36◦ 1.15◦

P2 9.82% 2.64% 0.589 1.052 4.163 3.62◦ −2.36◦

P3 −27.00% 2.95% 0.705 1.068 5.503 3.24◦ −0.41◦

P4 −30.06% 3.08% 0.658 1.062 5.548 4.00◦ −0.98◦

P5 −30.36% 3.26% 0.657 1.062 5.530 4.00◦ −0.91◦

P6 −30.43% 3.30% 0.655 1.061 5.540 4.00◦ −0.91◦

Despite the strong trade-offs, the multi-objective function optimization approach based on

EGO led to a design corresponding to 9.8% vibration reduction and 2.64% performance en-

hancement. The trade-off design P2, which corresponds to simultaneous reduction of the

two objectives, would not have been located without employing multi-objective function

optimization techniques.

The vibratory loads corresponding to the best vibration and power designs, as well as

the trade-off design P2, are shown in Fig. 11.1. It is clear from Fig. 11.1 that the three

hub shears are the dominant components of the overall vibration objective function. The

best vibration design reduces the overall objective function by decreasing F4X and F4Y by

48% and 32% respectively. In contrast, there is little difference between the baseline values

of F4X and F4Y and those corresponding to P2. For P2, the overall vibration objective

function is decreased due to the 20% reduction of the vertical shear F4Z . In the case of the

best power design, the 23 − 64% increase in the hub shears along with the 277% increase

in M4Z result in the significant vibration penalty associated with optimization for power

reduction.
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Figure 11.1: Vibratory loads corresponding to the passively optimized designs

11.2 Sequential Active/Passive Optimization Results

The active/passive results were generated by adding a single plain flap, as depicted in

Fig. 1.2b, to the six trade-off designs. The flap is centered at the 75% blade station and has

a total spanwise dimension of 0.12R and a chordwise dimension of 0.20cb. The diagonal

components of QVR and QPR were set to 1. For each of the Pareto optimal designs, active

control was implemented for Wα settings of 0.0, 0.25, 0.50, 0.75 and 1.0. Thus, there were

a total of 30 active/passive configurations in the sequential approach.

The results associated with the best trade-offs from the 30 active/passive configurations

are given in Table 11.3. Compared to the best vibration design from passive optimization,

up to 22.8% additional vibration reduction was obtained by using active control. How-

ever, even when augmenting P1 with active control, the high power consumption could

not be significantly reduced and remained substantially higher than the baseline value. By

augmenting P5 with active control, up to 0.25% additional power reduction was achieved
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Table 11.3: Best trade-off configurations obtained from the sequential approach

Design Identifier WWWα Vibration Reduction Power Reduction
P1 1.00 57.07% −14.12%
P1 0.75 51.37% −14.07%
P1 0.50 50.20% −13.77%
P1 0.25 41.24% −13.64%
P2 1.00 27.62% 3.06%
P2 0.50 27.45% 3.09%
P2 0.25 27.35% 3.13%
P2 0.00 0.76% 3.24%
P5 0.25 −27.33% 3.39%
P5 0.00 −56.04% 3.55%

compared to the best power design without active control. However, the P5 active/passive

configurations correspond to a 27.3− 56.0% increase in vibration levels.

Although the performance characteristics of the best vibration design could not be sig-

nificantly augmented by using active control, and vice versa, the sequential approach re-

sulted in increased levels of simultaneous reduction with P2. The active/passive P2 configu-

rations withWα settings of 1.0, 0.50, and 0.25, resulted in an additional 17.5−17.8% vibra-

tion reduction and 0.42− 0.49% performance enhancement. Note that P2 with Wα = 0.75

was not among the best trade-offs because setting Wα = 1.0 resulted in lower vibration

and power levels. Although a setting of Wα = 0.75 emphasizes rotor power reduction

compared to Wα = 1.0, the control algorithm may not always result in the optimal control

input [96].
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Table 11.4: Active/passive results associated with the combined approach
Design WWWα Vibration Power Vibration Power ωωωL1 ωωωF1 ωωωT1 θθθ1 θθθ2

Identifier Reduction Reduction Reduction Reduction (/rev) (/rev) (/rev)
(controlled) (controlled) (uncontrolled) (uncontrolled)

C1 0.51 25.55% −0.96% −4.34% −0.53% 0.782 1.077 5.568 −1.61◦ −3.06◦

C2 0.25 19.10% 1.46% 2.30% 1.61% 0.747 1.070 5.998 2.68◦ 1.48◦

C3 0.75 16.49% 2.70% −6.02% 1.76% 0.603 1.053 4.279 1.73◦ −2.80◦

C4 0.60 −11.86% 3.17% −44.36% 3.59% 0.652 1.062 5.539 3.52◦ 0.18◦

C5 0.45 −53.04% 5.97% −81.35% 5.93% 0.570 1.054 4.852 3.43◦ 2.17◦

11.3 Combined Active/Passive Optimization Results

The best trade-off configurations from the combined active/passive approach are given

in Table 11.4. In addition to the total amounts of vibration and power reduction obtained

with active control, the uncontrolled levels are also provided. Note that C5 corresponds

to 5.93% uncontrolled power reduction, which is superior to P6. Therefore, a design that

should have been located with the passive approach was missed. This indicates that con-

ducting additional EGO iterations in the passive approach would lead to improved designs.

Other than C5, the designs in Table 11.4 are inferior in terms of vibration and power

compared to at least one of the configurations found from the sequential approach. There-

fore, as in the case of the passive approach, additional iterations with the combined ap-

proach were necessary to locate the best designs. Since it was apparent that optimal ac-

tive/passive configurations were missed, Wα settings of 0.0, 0.25, 0.50, 0.75 and 1.0 were

considered for each of the blade designs corresponding to C1 – C5. This is equivalent to

conducting a local search of the design space in the vicinity of the best designs returned

from a global search.

The resulting 25 active/passive configurations from the combined approach were com-

pared to those from the sequential approach and the Pareto optimal configurations were
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Table 11.5: Best trade-off designs obtained from both active/passive approaches

Design Identifier WWWα Vibration Reduction Power Reduction
P1 1.00 57.07% −14.12%
P1 0.75 51.37% −14.07%
P1 0.50 50.20% −13.77%
P1 0.25 41.24% −13.64%
C1 1.00 36.85% −1.40%
C2 1.00 36.50% 1.17%
C2 0.75 30.49% 1.28%
P2 1.00 27.62% 3.06%
P2 0.50 27.45% 3.09%
P2 0.25 27.35% 3.13%
P2 0.00 0.76% 3.24%
C4 0.50 −24.65% 3.36%
P5 0.25 −27.33% 3.39%
C4 0.25 −32.98% 3.49%
C5 0.75 −52.03% 5.94%
C5 0.50 −52.99% 5.99%
C5 0.00 −83.68% 6.09%

identified. These results are provided in Table 11.5. The presence of C1, C2, C4, and

C5 among the best trade-offs in Table 11.5 demonstrates that the combined approach led

to useful configurations which would have been overlooked if only sequential optimiza-

tion were employed. For instance, C2 corresponds to a 2.30% and 1.61% reduction in

vibration and power respectively without the benefits of active control. By comparison,

P2 corresponds to 9.82% and 2.64% reductions in vibration and power respectively, and

thus is superior to C2 in terms of passive characteristics. Therefore, when employing the

sequential approach, C2 would have been eliminated because it is not Pareto optimal in

terms of the passive vibration and power objectives. However, when using active control

with Wα = 1, an additional 34.2% vibration reduction relative to the uncontrolled design

is obtained, compared to 17.8% with P2. Thus, C2 is superior to P2 in terms of the total

amount of vibration reduction which can be achieved with active control.
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Figure 11.2: Vibration and power Pareto front

The active/passive configurations from the sequential and combined approaches, along

with the active control results corresponding to the baseline design with Wα settings of 0.0,

0.25, 0.50, 0.75 and 1.0, are plotted in the objective function space in Fig. 11.2. The Pareto

front is obtained by connecting each of the best trade-off points in Table 11.5.

The following design options are apparent when moving from left to right on the Pareto

front:

Option 1: The designer can select design C5, which would result in 5.94− 6.09% perfor-

mance enhancement. However, depending on Wα, there is a 52 − 84% increase in

vibration levels associated with the lowest power option.

Option 2: Significant levels of vibration reduction and performance enhancement can be

obtained by selecting the C2 or P2 trade-off designs. While the Pareto optimal ac-
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tive/passive configurations based on C2 correspond to 2.9 − 6.0% more vibration

reduction than P2, P2 results in 1.8−2.1% less power consumption. Note that the P2

configurations appear as a single point in Fig. 11.2 because there is little difference

in the vibration and performance characteristics when setting Wα = 0.25, 0.5, or 1.0

for this design. Furthermore, it is unlikely that one would set Wα to 0 with P2 since

this would result in only an additional 0.11% power reduction at the expense of a

26.6% increase in vibration compared to using Wα = 0.25.

Option 3: The best vibration option would be to select P1, which would result in 41.2 −

57.1% vibration reduction depending on the Wα setting. However, the 13.6− 14.1%

degradation in performance compared to the baseline design would substantially in-

crease the cost of implementing such a design.

The trade-offs obtained with the MBB BO-105 baseline design are also plotted in Fig.

11.2. All of the baseline active/passive configurations are inferior to those corresponding

to option 2. For example, it is clear that C2 with Wα = 1 corresponds to superior levels of

both vibration reduction (further to the right in Fig. 11.2) and power reduction (higher in

Fig. 11.2) than any of the baseline active/passive configurations.
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Chapter XII

Conclusions and Recommendations for Future Research

Effective means for optimum rotor design subject to multiple objectives are presented

in this study. The primary goal was to demonstrate the effectiveness of active/passive

optimization based on SBO combined with an ACF system. The novel contributions of this

study consist of the application of several SBO approaches to rotor blade design combined

with the treatment of multi-objective optimization applications. Specifically, the results of

this study demonstrated the effectiveness of treating (1) vibration reduction over the entire

flight envelope, (2) BVI induced vibration and noise reduction, and (3) vibration reduction

and performance enhancement in a multi-objective manner. In order to accomplish the

optimization goals of this study, a modified EGO algorithm which proved to be effective for

locating excellent trade-off designs was employed, and a combined active/passive approach

which is suitable for multi-objective optimization was developed.

12.1 Conclusions

The results presented in this study demonstrated the effectiveness of surrogate based

optimization for helicopter rotor blade design. In particular, the EGO algorithm effectively

located optimum designs in terms of vibration, noise, and power reduction. Furthermore,
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the results demonstrated that the vibration, noise, and performance characteristics of struc-

turally optimized blades can be significantly augmented by utilizing actively controlled

trailing edge flaps. The principal conclusions and observations of this study are:

1. Among the individual approximation methods considered, kriging was the most ef-

fective method for approximating BVI induced vibratory loads over the entire design

space, and for locating an optimum blade design. The high maximum errors sug-

gest that none of the approximation methods considered in this study can be used

for precise predictions of vibrations everywhere in the design space, at least without

adding more interpolation points. However, they were still useful in finding improved

designs.

2. Since no single approximation method distinguished itself as the best in terms of the

various metrics considered in this study, optimization of multiple surrogates, includ-

ing the weighted average surrogates, was an effective method for locating reduced

vibration blade designs which would have been overlooked if only a single surrogate

was employed. Feasible designs ranging from 45 − 70.5% BVI induced vibration

reduction were located with this approach.

3. Regardless of the sample sizes considered, and whether the surrogate objective func-

tion was formed by approximating the underlying vibratory loads, or by directly

approximating the overall response, the performance of the weighted average surro-

gates was comparable to the best individual method in terms of average error, and

performed better than the worst approximation method in terms of maximum error.
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4. It is possible to locate superior blade designs and enhance the predictive capabil-

ities of the surrogates by eliminating design variables which are determined to be

unimportant using GSA.

5. The results demonstrate that it is important to explicitly account for the uncertainty

in the surrogate’s predictions during optimization and that the weighted expected

improvement function can lead to superior designs in fewer expensive function eval-

uations for vibration reduction under BVI and dynamic stall conditions.

6. The EGO algorithm can be used effectively for multi-objective function optimization

by considering two approaches: (1) a weighted sum approach in which the two ob-

jective functions are combined into a single objective function, and (2) an approach

in which the EGO algorithm is modified to update the surrogate objective functions

with the Pareto optimal designs corresponding to the expected improvement func-

tions. It was advantageous to utilize both approaches since each method located

Pareto designs that the other did not.

7. The best design for the BVI regime differs from the best design for the dynamic stall

regime. Therefore it is necessary to identify the designs corresponding to the best

trade-offs, i.e. the Pareto optimal designs, which can be used to obtain the “best”

blade design. By treating the problem in a multi-objective manner, an excellent trade-

off design with vibration characteristics similar to the best designs for each flight

condition was located.

8. The results demonstrate that the passive noise objective function introduced in this
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study is effective for locating designs which correspond to lower noise levels on the

advancing and retreating sides of the carpet plane, and that optimization of the blade’s

mass and stiffness distribution is an effective means of BVI induced noise reduction.

9. The characteristics of a structurally optimized blade can be significantly augmented

by adding ACF’s. An active/passive approach based on ACF’s and SBO led to a

versatile active/passive configuration corresponding to 67.7% − 91.2% vibration re-

duction, 60.7 − 76.9% noise reduction over the carpet plane, and a 2.3 − 2.7 dB

decrease in the maximum BVI noise level. Two designs corresponding to significant

levels of vibration and power reduction at µ = 0.35 were identified using the sequen-

tial and combined active/passive approaches: the first decreases vibration and power

levels by 30.5 − 36.5% and 1.2 − 1.3% respectively, and the second corresponds to

27.4− 27.6% vibration reduction and 3.06− 3.13% performance enhancement.

12.2 Recommendations for Future Research

While this study represents the most comprehensive investigation of helicopter rotor

blade multi-objective optimization carried out to date, significant research topics remain

and need to be considered. Continued research on the development of improved models

combined with surrogate based optimization may produce the quiet, “jet smooth” heli-

copters sought after by civilian and military agencies.

Since this study represents the first application of multi-objective active/passive opti-

mization to rotor blade design, a simplified model of an isotropic cross-section was justi-
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fied so as to be able to focus on the effectiveness of SBO. Future studies should examine

more practical blade cross-sections employing composite construction. Composite materi-

als have the potential for aeroelastic tailoring due to composite couplings that are not avail-

able in isotropic materials. To this end, the structural dynamic model used in this study has

been combined with the composite cross-sectional analysis VABS (Variational Asymptotic

Beam Sectional Analysis) [15, 42]. A detailed description of the resulting blade model,

as well as the advantages of using VABS as the cross-sectional analysis, are provided in

Appendix A. Furthermore, geometric design variables, such as tip sweep/anhedral, span-

wise chord distribution, and airfoil shape, should be included in order to explore all of the

options available for advanced rotor blade designs.

In addition to improving the blade model, additional research is required to demonstrate

the effectiveness of active/passive optimization. The present study was limited to passive

vibration reduction over the entire flight envelope, active/passive vibration and noise reduc-

tion at low advance ratios, and active/passive vibration and power reduction at high advance

ratios. However, optimum rotor design must account for all of these objectives over the en-

tire flight envelope. Therefore, active/passive optimization for improved vibration, noise,

and performance characteristics over the entire flight envelope should be considered. To

this end, high-speed impulsive noise modeling capability needs to be addressed. In addi-

tion, an improved model of the unsteady drag due to flap deflection needs to be developed

so that accurate predictions of required rotor power can be obtained.

From the perspective of SBO, focusing on applications in which it is not computation-

ally feasible to obtain accurate surrogates would prove beneficial since many complicated
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engineering design applications are likely to fall under this category. While the EGO al-

gorithm represents a major step in this direction, the question of how best to use EGO for

multi-objective function optimization remains unexplored. A thorough comparison of the

limited number of existing methods [83,84], the modified EGO approach employed in this

study, and any other multi-objective frameworks which account for surrogate prediction

uncertainty, would be extremely beneficial to the engineering design community.

Finally, the multiple surrogate approach could potentially overcome the main drawback

associated with EGO – namely that the measure of the surrogate’s prediction uncertainty

in the expected improvement function is obtained from a single approximation method,

which may not produce an accurate measure of error [81]. As an alternative, regions of

high uncertainty can be identified by using multiple surrogates [60]. Such an uncertainty

measure could then be combined with a metric representing improvement over the current

best design into a function with similar properties as the EIF. Thus a multiple surrogate

approach, with an intelligent updating scheme, may prove to be an extremely effective

optimization algorithm, particularly when surrogates with limited accuracy are used.
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Appendix A

An Improved Cross-Sectional Analysis for the Structural
Dynamic Model

Over the past 25 years, significant advances have been made toward accurate modeling

of composite blades with arbitrary cross-sectional geometry and material distribution. Par-

ticularly, Hodges and coworkers [15, 23, 65, 66, 122] have developed a beam model which

accounts for all of the non-classical effects mentioned above, while requiring significantly

less computational effort than a direct three dimensional (3-D) solution based on a nonlin-

ear finite element discretization of the structure.

In the approach developed by Hodges et al., dimensional reduction of the 3-D elastic-

ity equations representing the slender structure is performed by means of an asymptotic

approximation, which results in a 1-D beam model. The dimensional reduction is based

on the presence of a small parameter associated with the slender structure, namely the in-

verse of the blade’s aspect ratio, which is used to split the 3-D structural dynamic problem

into two independent problems with different spatial scales: a 2-D problem at the cross-

section, and a 1-D problem along the longitudinal dimension. The 1-D problem defines

the beam equations of motion, given in terms of 1-D deformations – i.e. axial, bending,

torsion, and shear deformation – under applied loads, while the solution of the 2-D problem
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provides cross-sectional stiffness and inertia constants which depend on the material dis-

tribution and cross-sectional geometry. Since the 1-D beam equations of motion are based

on geometrically exact kinematics, the formulation is appropriate for large displacement

analysis. The cross-sectional coefficients needed as inputs to the 1-D beam solver come

from the 2-D finite element code VABS (Variational Asymptotic Beam Sectional Analy-

sis), which accounts for arbitrary in and out-of-plane cross-sectional warping. Although

warping displacements are much smaller than the 1-D beam deformations, accurate mod-

eling of the warping is important since the stress field is a function of warping derivatives

which may not be small [65]. The work by Hodges et al. represents the state of the art in

computationally efficient structural modeling of a composite rotor blade.

Although the cross-sectional analysis described in Chapter III can account for arbitrary

cross-sectional geometries and material distributions, in-plane stresses and warping were

neglected. In VABS, the in-plane stresses are not neglected since it has been shown that the

uniaxial stress assumption can lead to significant errors in the torsional rigidity for some

composite cross-sections [171]. Furthermore, the out-of-plane warping deformation asso-

ciated with the structural model from Refs. 88 and 174 is based on the St. Venant solution

of a tip-loaded prismatic beam, as opposed to the more general warping displacements

modeled in VABS. Another advantage of VABS is that the variational-asymptotic approach

provides a powerful tool for extending basic theory, e.g. the solution of the coupled elec-

troelastic beam problem, which is applicable to rotor blades with embedded piezocompos-

ites, and the treatment of non-classical cross-sectional deformations associated with rotor

blades with adaptive airfoils [112, 113]. In both cases, however, the 1-D beam equations
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needed to be modified to account for the additional effects.

Clearly, it is desirable to upgrade the blade model described in Chapter III with VABS.

Although VABS was designed to be used with the geometrically exact formulation de-

scribed in Ref. 65, it has been used to calculate the cross-sectional properties needed as

inputs for other rotorcraft analysis codes [67, 106]. However, there are two differences

associated with the blade model developed by Yuan and Friedmann [174] and the other

models with which VABS has been coupled: (1) the amplitude of the out-of-plane warping

is represented as a spanwise degree of freedom in the Yuan and Friedmann (YF) model, and

(2) there are cross-sectional constants associated with the YF model which are not com-

puted in the VABS formulation. Therefore, the purpose of this appendix is to demonstrate

that VABS can be used as the cross-sectional analysis associated with the YF blade model

in spite of the differences between the formulations.

A.1 Comparison of Cross-Sectional Analyses

In order to determine the compatibility between the cross-sectional properties calcu-

lated by VABS and those needed as inputs to the YF blade model, it is useful to understand

the similarities and differences between the two formulations. Therefore, this section pro-

vides comparisons between the strain relations, constitutive relations, the resulting strain

energy relations, and the kinetic energy relations associated with the two formulations. The

strain and kinetic energy relations are functions of the cross-sectional coefficients associ-

ated with each model. Note that in the following sections, the notation used in Chapter III

is changed to facilitate a convenient comparison with the VABS formulation.
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b3

b2

b1

undeformed reference line

Figure A.1: Undeformed coordinate system

A.1.1 Strain Relations

Consider a beam idealized as a reference line, with a cross-section depicted in Fig. A.1.

A coordinate system parallel to the orthogonal unit vectors b
i

for i = 1, 2, 3 is fixed at each

point along the undeformed reference line, where b1 is tangent to the reference line and b2 ,

b3 are orthogonal to b1 . The coordinates x2 , and x3 correspond to the b2 , b3 unit vectors,

while x1 denotes the axial location of the cross-section.

The non-zero components of the strain tensor in the b
i

system associated with the YF

blade model, i.e. Eqns. 3.15a – c, can be written in a notation consistent with VABS as

follows:

Γ
(Y )

11 = γ11 +w
(Y )

1,1
+ k1

(
x3w

(Y )

1,2
− x2w

(Y )

1,3

)
− x2

(
κ̄3 − 2γ12,1 + 2k1γ13

)
− x3

(
−κ̄2 − 2γ13,1 − 2k1γ12

)
+

1

2

(
x2

2
+ x2

3

)
κ̄

2

1
(A.1)

2Γ
(Y )

12 = 2γ12 + w
(Y )

1,2
− x3κ̄1 (A.2)

2Γ
(Y )

13 = 2γ13 + w
(Y )

1,3
+ x2κ̄1 , (A.3)
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where the (Y ) superscript denotes association with the YF blade model, and ( )
,i

denotes

a derivative with respect to the x
i

coordinate. In Eqs. A.1 – A.3, the 1-D axial and shear

strain measures at the reference line, which are functions of the x1 coordinate only, are

given by γ11 , γ12 , and γ13 respectively. The initial twist is denoted by k1 . The out-of-plane

warping displacements w1 are functions of x1 , x2 , and x3 . In the YF model,

w
(Y )

1
(x1 , x2 , x3) = α (x1) Ψ (x2 , x3) , (A.4)

where α (x1) is the unknown 1-D warping amplitude and Ψ (x2 , x3) is the 2-D warping

shape function. The warping shape functions are based on the St. Venant solution of a

tip-loaded prismatic beam [88] and thus are known for a given cross-section.

The 1-D “moment strains” [65], κ̄
i
, are with respect to a coordinate system parallel to

the T
i

basis vectors shown in Fig. A.2 and represent the differences between the deformed

and initial states of the twist and bending curvatures. The elastic twist is given by κ̄1 , while

κ̄2 and κ̄3 are the moment strains corresponding to bending. Since the helicopter rotor blade

is assumed to have no initial curvature in the YF model, the bending moment strains are

equal to the deformed bending curvatures.

In the VABS formulation, the moment strains are written with respect to the B
i

coor-

dinate system and denoted by κ
i
. The T

i
and B

i
systems differ due to transverse shear

deformation since T1 is tangent to the deformed reference line, while B1 is normal to the

deformed cross-section. With the assumption of no initial bending curvature, the elastic

twist and the deformed bending curvatures in the T
i

system are transformed to the B
i
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B1
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2γ13

deformed reference line

deformed cross-section

Figure A.2: Coordinate systems which differ due to transverse shear deformations

coordinate system by [170]:

κ̄1 = κ1 (A.5)

κ̄2 = κ2 − 2γ13,1 − 2k1γ12 (A.6)

κ̄3 = κ3 + 2γ12,1 − 2k1γ13 . (A.7)

The YF strain relations can be rewritten in a form which is consistent with the VABS

formulation by substituting Eqs. A.5 – A.7 into Eqs. A.1 – A.3, resulting in

Γ
(Y )

11 = γ11 + w
(Y )

1,1
+ k1

(
x3w

(Y )

1,2
− x2w

(Y )

1,3

)
− x2κ3 + x3κ2 +

1
2
(
x2

2
+ x2

3

)
κ

2

1
(A.8)

2Γ
(Y )

12 = 2γ12 + w
(Y )

1,2
− x3κ1 (A.9)

2Γ
(Y )

13 = 2γ13 + w
(Y )

1,3
+ x2κ1 . (A.10)
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Note that Γ
(Y )

22 = Γ
(Y )

23 = Γ
(Y )

33 = 0 since in-plane warping is neglected in the YF model.

From Ref. 65, the strain relations corresponding to VABS’ “Generalized Timoshenko

model” with the “trapeze effect” are given by

Γ
(V )

11 = γ11 +w
(V )

1,1
+ k1

(
x3w

(V )

1,2
− x2w

(V )

1,3

)
− x2κ3 + x3κ2

+
1

2

(
x2

2
+ x2

3

)
κ

2

1
+ H.O.T. (A.11)

2Γ
(V )

12 = 2γ12 + w
(V )

1,2
− x3κ1 + f12

(
w

(V )

2
, w

(V )

3

)
+ H.O.T. (A.12)

2Γ
(V )

13 = 2γ13 + w
(V )

1,3
+ x2κ1 + f13

(
w

(V )

2
, w

(V )

3

)
+ H.O.T. (A.13)

Γ
(V )

22 = f22

(
w

(V )

2

)
+ H.O.T. 6= 0, Γ

(V )

23 = f23

(
w

(V )

2
, w

(V )

3

)
+ H.O.T. 6= 0,

Γ
(V )

33 = f33

(
w

(V )

3

)
+ H.O.T. 6= 0, (A.14)

where the (V ) superscript denotes association with VABS, f
ij

represent the contributions

from the in-plane warping to the strain field, and H.O.T. refers to higher order terms which

are present in the VABS formulation but are not accounted for in the YF strain relations.

In VABS, the warping displacements are discretized over the cross-section using the

finite element approach. The VABS warping displacements can be written as

w
(V )

i
(x1 , x2 , x3) = Sij (x2 , x3)Vj (x1) , i = 1, 2, 3 and j = 1, 2, . . . , NV . (A.15)

In Eq. A.15, S
ij

are 2-D finite element shape functions, V
j

are the nodal values of the
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warping displacement over the cross-section, and N
V

is the number of nodal degrees of

freedom. In contrast to the YF formulation, the VABS warping displacements are not

assumed to be in the shape of the St. Venant warping function Ψ (x2 , x3). Since the shape of

the warping is not assumed, VABS treats warping displacements in a more general manner

than the YF model.

The H.O.T.’s in Eqs. A.11 – A.13 consist of nonlinearities in the 1-D strain measures,

such as γ2
11

and κ2κ3 for example, and couplings between the warping displacements and

the 1-D strain measures. Such H.O.T.’s were neglected in the derivation of the YF strain

equations. However, 1
2

(
x2

2
+ x2

3

)
κ

2

1
was retained in the YF formulation since it accounts

for a higher order extension-torsion coupling known as the “trapeze effect,” which is known

to be important for helicopter rotor blade modeling due to the large centrifugal forces.

From comparison of Eqs. A.8 – A.10 with Eqs. A.11 – A.14, its is clear that there are

three differences in the strain relations associated with the VABS and YF formulations:

1. VABS treats out-of-plane warping in a more general manner, thus w(V )

1
6= w

(Y )

1
.

2. The effects of in-plane warping on the strain field are accounted for in VABS.

3. VABS includes higher order couplings between the 1-D strain measures, and cou-

pling between the 1-D strain measures and warping displacements, which are ne-

glected in the YF formulation.
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A.1.2 Constitutive Relations

The constitutive relation for an anisotropic material given by Eqn. 3.17 can be rewritten

as

σσσ
(V )

= DΓ
(V )

(A.16)

where

σσσ
(V )

= [σ11 σ12 σ13 σ22 σ23 σ33 ]T (A.17)

Γ
(V )

= [Γ11 2Γ12 2Γ13 Γ22 2Γ23 Γ33 ]T , (A.18)

and D is the 6× 6 symmetric compliance matrix. The VABS constitutive relation is based

on Eq. A.16. In contrast, the YF model employs the uniaxial stress assumption, i.e. σ22 =

σ23 = σ33 = 0. After neglecting the in-plane stresses, the constitutive relation associated

with the YF model given by Eq. 3.18 is rewritten as

σσσ
(Y )

= QΓ
(Y )

(A.19)

where

σσσ
(Y )

= [σ11 σ12 σ13 ]T (A.20)

Γ
(Y )

= [Γ11 2Γ12 2Γ13 ]T , (A.21)

and Q is a 3× 3 symmetric matrix. Expressions for Q in terms of the D matrix’s elements

can be found in Ref. 174. Although the uniaxial stress assumption was considered valid

for composite thin-walled structures in Ref. 174, it was demonstrated in Refs. 65 and
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171 that this simplification may lead to significant errors in the torsional rigidity of a thin-

walled composite boxbeam. Therefore, while the uniaxial stress simplification may lead to

acceptable results for some composite cross-sections, the only way to ensure correct results

for all cases is to employ a formulation, such as the one associated with VABS, which does

not neglect in-plane stresses.

A.1.3 Strain Energy Relations

The relation for strain energy, U , is

2U =

∫ L

0

∫∫
A

ΓTσσσ dA dx1 , (A.22)

where L is the length of the beam, and A is the cross-sectional area of the structural mem-

ber. Substitution of Eqs. A.4, A.8, A.9, A.10, and A.19 into Eq. A.22 gives the strain energy

associated with the YF model:

2U
(Y )

=

∫ L

0

εεεT
Y
Yεεε

Y
dx1 , (A.23)

where

εεε
Y

=
[
γ11 2γ12 2γ13 κ1 κ2 κ3 κ

2

1
α α,1

]T
, (A.24)

and Y is a 9 × 9 symmetric matrix containing integrals over the cross-section which are

provided in Ref. 174. The elements of Y are needed as inputs for the YF model, and

are computed by the 2-D finite element cross-sectional analysis described in Ref. 88. To

facilitate a straight forward comparison with the VABS strain energy relation, Eq. A.23 can
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be rewritten as

2U
(Y )

= 2

∫ L

0

(
u

(Y )

1
+ u

(Y )

2
+ u

(Y )

α

)
dx1 (A.25)

where

u
(Y )

1
=

1

2



γ11

2γ12

2γ13

κ1

κ2

κ3



T 

Y11 Y12 Y13 Y14 Y15 Y16

Y12 Y22 Y23 Y24 Y25 Y26

Y13 Y23 Y33 Y34 Y35 Y36

Y14 Y24 Y34 Y44 Y45 Y46

Y15 Y25 Y35 Y45 Y55 Y56

Y16 Y26 Y36 Y46 Y56 Y66





γ11

2γ12

2γ13

κ1

κ2

κ3



(A.26)

u
(Y )

2
= κ

2

1

(
Y17γ11 + 2Y27γ12 + 2Y37γ13 + Y47κ1 + Y57κ2 + Y67κ3 +

Y77

2
κ

2

1

)
(A.27)

u
(Y )

α
=

 α

α,1


 Y18 . . .

Y88

2
Y89

Y19 . . . Y89

Y99

2

 εεεY . (A.28)

The VABS strain energy is a function of the following 1-D parameters: γ11 , 2γ12 , 2γ13 ,

κ1 , κ2 , κ3 and V
j
, i.e.

2U
(V )

= f
(
γ11 , 2γ12 , 2γ13 , κ1 , κ2 , κ3 , Vj

)
. (A.29)

From Eqs. A.23 and A.24, it is clear that U (Y ) is similar in form to U (V ) in the sense that

U
(Y ) is a function of γ11 , 2γ12 , 2γ13 , κ1 , κ2 , κ3 , and the 1-D warping variable α. However,
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in VABS the variational asymptotic method is applied in order to obtain an approximation

of U (V ) which is not a function of the 1-D warping variables, i.e.

2U
(V ) ∼= 2Ũ

(V )

= f̃ (γ11 , 2γ12 , 2γ13 , κ1 , κ2 , κ3) , (A.30)

where Ũ (V ) and f̃ are the approximations of U (V ) . The approximation of U (V ) is obtained

by minimizing the strain energy with respect to warping, which results in warping recovery

relations for the nodal displacements V
j
. The warping recovery relations are functions of

the 1-D strain measures, γ11 , 2γ12 , 2γ13 , κ1 , κ2 , and κ3 .

In the original VABS strain energy U (V ) , the contribution due to warping is associated

with the cross-sectional parameters multiplying V
j
. However, in the approximate VABS

strain energy, Ũ (V ) , the contributions from warping are accounted for by a new set of

cross-sectional parameters which multiply γ11 , 2γ12 , 2γ13 , κ1 , κ2 , and κ3 . Therefore, by

approximating U (V ) with Ũ (V ) , the strain energy associated with warping displacements is

accounted for by the terms multiplying the 1-D strain measures. Details on the application

of the variational asymptotic method and the resulting expressions are given in Chapter 4
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of Ref. 65. From Ref. 65, the VABS strain energy is given by

2Ũ
(V )

=
∫ L

0


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H15 H25 H35 H45 H55 H56

H16 H26 H36 H46 H56 H66





γ11

2γ12

2γ13

κ1

κ2

κ3



dx1

+ 2

∫ L

0



γ11

κ1

κ2

κ3



T

(γ11A + κ1B + κ2C + κ3D)



γ11

κ1

κ2

κ3


dx1 , (A.31)

where A, B, C, and D are symmetric 4 × 4 matrices. Note that the strain energy terms

associated with A, B, C, and D are higher order functions of the 1-D strain measures than

the terms associated with H. The H, A, B, C, and D matrices are output by VABS. In

order to compare with U (Y ) , Eq. A.31 can be rewritten as

2Ũ
(V )

= 2

∫ L

0

(
u

(V )

1
+ u

(V )

2
+ u

(V )

H.O.T.

)
dx1 , (A.32)
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where

u
(V )

1
=

1

2



γ11

2γ12

2γ13

κ1

κ2

κ3



T 

H11 H12 H13 H14 H15 H16

H12 H22 H23 H24 H25 H26

H13 H23 H33 H34 H35 H36

H14 H24 H34 H44 H45 H46

H15 H25 H35 H45 H55 H56

H16 H26 H36 H46 H56 H66





γ11

2γ12

2γ13

κ1

κ2

κ3



(A.33)

u
(V )

2
= κ

2

1
[(A22 + 2B12) γ11 +B22κ1 + (2B23 + C22)κ2 + (2B24 +D22)κ3 ] (A.34)

u
(V )

H.O.T.
=



γ11

κ1

κ2

κ3



T

(γ11A + κ1B + κ2C + κ3D)



γ11

κ1

κ2

κ3


− u(V )

2
. (A.35)

Using the strain energy relations given in Eqs. A.25 – A.28 for the YF formulation, and

Eqs. A.32 – A.35 for VABS, a direct comparison of the cross-sectional parameters asso-

ciated with both models can be made. The comparison is organized into three categories

– (1) terms which are present in both model, (2) terms which are present in VABS’ strain

energy relation, but are not accounted for in the YF model, and (3) terms present in the YF

model, but are not included in the VABS formulation.
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A.1.4 Strain Energy Terms Present in Both Models

A comparison of Eqs. A.26 and A.27 with Eqs. A.33 and A.34 shows that

Y
ij
⇔ H

ij
for i, j = 1, . . . , 6 (A.36)

Y17 ⇔ A22 + 2B12 (A.37)

Y47 ⇔ B22 (A.38)

Y57 ⇔ 2B23 + C22 (A.39)

Y67 ⇔ 2B24 +D22 (A.40)

In Eqs. A.36 – A.40, “⇔” denotes that the cross-sectional parameters multiply the same

1-D strain measures. It is important to use “⇔” instead of “=” because the cross-sectional

parameters will not be equal to one another in general. There are two reasons the cross-

sectional parameters in Eqs. A.36 – A.40 will not be equal:

1. In the constitutive relations associated with the YF model, the in-plane stresses are

neglected; thus Eq. A.19 is substituted into Eq. A.22 in order to derive the strain

energy relation. However, VABS does not make the uniaxial stress simplification.

Therefore, the VABS strain energy relation is obtained by substituting Eq. A.16 into

Eq. A.22.

2. The 1-D warping variables are eliminated from the VABS strain energy formulation,

which results in Ũ (V ) . In effect, VABS accounts for the strain energy due to in an
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out-of-plane warping in the H, A, B, C, and D matrices, which multiply the 1-D

strain measures and are functions of S
ij

. However, the warping strain energy in the

YF model is retained in terms of the 1-D out-of-plane warping amplitude α and the

cross-sectional coefficients Y
i8

and Y
i9

, which are functions of Ψ.

A.1.5 Strain Energy Terms Present in VABS, but not in the YF model

The higher order VABS strain energy terms, u(V )

H.O.T.
, are not accounted for in the YF

model. The strain energy contribution from u
(V )

H.O.T.
is due to the H.O.T.’s retained in the

VABS strain relations.

A.1.6 Strain Energy Terms Present in the YF Model, but not in VABS

A comparison of Eqs. A.27 and A.34 shows that VABS does not output cross-sectional

coefficients which correspond to Y27 , Y37 and Y77 . Such terms were neglected in the VABS

strain energy formulation [65]. In addition, VABS does not calculate cross-sectional prop-

erties which correspond to the Y
i8

and Y
i9

terms present in u(Y )

α
. Instead, VABS accounts

for the strain energy due to warping within the H, A, B, C, and D matrices.

A.1.7 Kinetic Energy Relations

The kinetic energy cross-sectional properties calculated by VABS are given in Eqs. A.41

– A.46,

m ≡
∫∫

A

ρ dA (A.41)
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mx2
≡
∫∫

A

ρx2 dA (A.42)

mx3
≡
∫∫

A

ρx3 dA (A.43)

Im22
≡
∫∫

A

ρx
2

3
dA (A.44)

Im33
≡
∫∫

A

ρx
2

2
dA (A.45)

Im23
≡
∫∫

A

ρx2x3 dA (A.46)

where ρ is the material density. The YF model requires the same kinetic energy cross-

sectional parameters given by Eqs. A.41 – A.46 as inputs. In addition, the YF model

also requires cross-sectional properties associated with the kinetic energy due to warping

velocities [174]. Since warping velocity is neglected in the VABS formulation [65], VABS

will not output cross-sectional properties associated with kinetic energy due to warping.

A.2 The YF/VABS Blade Model

In the previous section, the similarities and differences between the two cross-sectional

analyses were specified. This section provides a description of how the similarities can

be used to couple VABS with the YF model, and justification for why the differences be-

tween the cross-sectional formulations do not prevent the coupling. The capabilities and

limitations of the YF/VABS model will be described in terms of the cross-sectional anal-

ysis, the solution of the 1-D beam displacements, and recovery of cross-sectional warping

displacements and stresses.
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A.2.1 Cross-Sectional Analysis

In order to couple VABS with the YF model, the cross-sectional parameters in the YF

strain energy formulation are replaced with their VABS counterparts. This implies that the

Y
ij

terms in Eqs. A.36 – A.40 are replaced with the corresponding right hand side terms.

The warping cross-sectional properties, Y
i8

and Y
i9

, as well as Y27 , Y37 , and Y77 are set to

zero since there are no VABS counterparts. The YF warping cross-sectional coefficients

need to be set to zero in order to avoid “double counting” of the strain energy due to warping

since VABS already accounts for warping in the H, A, B, C, and D matrices. Even though

strain energy contributions associated with Y27 , Y37 , Y77 and u(V )

H.O.T.
are not accounted for

in the YF/VABS model, the YF/VABS formulation represents an accurate representation

of the “actual” strain energy since the unaccounted for terms are higher order functions of

the 1-D strain measures compared to the terms which are accounted for. For example, Y27

is associated with the shear-twist coupling κ2

1
γ12 , which is higher order than the κ1γ12 term

corresponding to H24 .

This process of replacing appropriate coefficients in the YF model with equivalent

VABS parameters and setting various cross-sectional coefficients equal to zero will re-

sult in a “hybrid” strain energy formulation which will be different from U
(Y ) and Ũ (V ) .

In certain regards, the YF/VABS hybrid strain energy will be more accurate for composite

beam modeling than the original YF formulation based on the cross-sectional analysis from

Ref. 88 since in-plane stresses and warping are accounted for, and out-of-plane warping is

treated in a more general manner by VABS. Furthermore, the loss in accuracy compared to

the original YF and VABS strain energy formulations is due to the neglect of higher order
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terms, and thus is expected to be insignificant.

The YF/VABS kinetic energy cross-sectional parameters are taken directly from the

VABS outputs for Eqs. A.41 – A.46 since the YF model requires these coefficients. The

kinetic energy parameters associated with warping velocities are set to zero since VABS

does not account for warping inertia. However, the kinetic energy contribution from warp-

ing is not expected to be significant. Therefore, since higher order strain energy terms

and warping inertia are not considered to be significant, the differences between the two

formulations do not prohibit coupling of VABS with the YF model.

A.2.2 Solution of 1-D Beam Displacements

Using the VABS cross-sectional outputs as inputs to the YF model based on the proce-

dure described above does not require modification of the 1-D kinematics associated with

the YF model. This implies that the strain-displacement relations employed in Ref. 174

are retained, and the 1-D beam displacements – axial, bending, torsion, and shear defor-

mation – are solved for by the finite element method described in Section 3.6. Since the

strain-displacement relations are based on the ordering scheme described in Ref. 174, the

YF/VABS model is only valid for moderate deflection analysis, which is sufficient for most

helicopter rotor blade applications.

A.2.3 Recovery of Cross-Sectional Warping Displacements

Since Y
i8

and Y
i9

are set to zero in the YF/VABS model, the out-of-plane warping am-

plitude α is eliminated from the finite element discretized equations of motion. Therefore,
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warping must be calculated using the VABS warping recovery relations. The warping re-

covery relations approximate V
j

as functions of γ11 , 2γ12 , 2γ13 , κ1 , κ2 , and κ3 using the

variational asymptotic approach [65]. In the YF/VABS model, warping displacements are

obtained from the VABS warping recovery relations as follows:

1. The beam 1-D displacements are solved for using the finite element approach.

2. The 1-D strain measures are recovered by substituting the displacements into the YF

strain-displacement relations.

3. The 1-D strain measures are substituted into the VABS warping recovery relations,

which yield in and out-of-plane warping displacements.

It is worth noting that by eliminating the 1-D variable α, the capability to model re-

strained warping, i.e. constraining warping displacements at the boundary to be zero, is

lost. Without a 1-D variable associated with warping, there is no way to enforce bound-

ary conditions on the warping displacements at the root. However, accounting for re-

strained warping is generally not considered to be critical for composite closed cross-

sections [65, 156], even though exceptions are known to exist [126]. In the most extreme

example presented by [126], a moderate error of 11% was observed in the prediction of

the tip twist deformation when neglecting restrained warping effects. Furthermore, the

Vlasov-type approach to restrained warping available in VABS is only appropriate for open

cross-sections and may produce errors if used for closed section modeling, e.g. Ch. 7 of

Ref. 65, and therefore is not used with the YF/VABS model. Thus, the YF/VABS model is

suitable for rotor blade analysis since helicopter rotor blades are modeled as closed cross-
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sections. Furthermore, accounting for restrained warping effects associated with closed

sections would likely produce only moderate gains in accuracy at most.

A.2.4 Stress Recovery

The YF/VABS strain field is recovered by substituting the 1-D strain measures and

cross-sectional warping derivatives into Eqs. A.11 – A.14. Note that the contributions

from in-plane warping are included in the YF/VABS strain field since VABS accounts for

in-plane warping. Stresses are obtained by substituting Eqs. A.11 – A.14 into Eq. A.16

instead of Eq. A.19 since VABS accounts for in-plane stresses.

It should be noted that a higher order beam theory would be needed to impose zero

beam strains at the root and therefore the current approach will only provide an accurate

estimation of the cross-sectional stress distributions away from the boundary.

A.3 Validation Results for the YF/VABS Model

In this section, results from the YF/VABS model are compared with experimental data

and other analysis codes. The YF/VABS model was validated by considering displacements

and stresses due to static loading, as well as calculation of vibratory hubloads in forward

flight . Additional validation results can be found in Ref. 42. As in Refs. 67 and 68, the

trapeze effect was treated by setting A22 = H55 + H66 and all other elements of A, B, C,

and D to zero for all results. This is consistent with the YF model, in which Y17 = Y55 +Y66 .
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A.3.1 Displacements and Stresses Under Static Loading

The YF/VABS static analysis capability is validated by considering a prismatic com-

posite cantilevered beam, loaded by a vertical tip force. The YF/VABS results were com-

pared with experimental data from Ref. 104 and results generated by NLABS (Nonlinear

Active Beam Solver, [113]), which is based on the geometrically exact kinematic formu-

lation for which VABS was designed. Details on the experimental setup can be found in

Ref. 15 and 104. The static displacement results in Fig. A.3 correspond to two composite

cross-sections: (1) a symmetric layup, [45◦/0◦]3s which exhibits bending-torsion coupling,

and (2) an anti-symmetric layup, [20◦/− 70◦/− 70◦/20◦]2a which exhibits extension-twist

coupling. The YF/VABS model compares well with the experimental results and NLABS

until the loading is large enough to cause deflections over 10% of the beam length. This

is expected since the ordering scheme used to simplify the YF strain-displacement relation

is based on the assumption that the maximum bending deflections are on the order of 10

– 20% of the beam’s length [174]. These results demonstrate that the YF/VABS model is

valid for moderate deflection analysis, while a geometrically exact formulation is necessary

to accurately model large deflections.

Figure A.4 shows the axial stress distribution at the midspan section calculated by

NLABS, YF/VABS, and a 3-D finite element solution using the MSC.NASTRAN linear

static solver for the symmetric layup and a tip force of 0.0044 N, which is well within

the moderate deflection regime. The NASTRAN model contains over 2 million degrees of

freedom and requires 25 GB of memory and 8 hours of simulation time on a 3.2 Ghz Xeon

processor. By comparison, NLABS and YF/VABS require less than 1 minute of simula-
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Figure A.3: Composite beam displacements, non-dimensionalized by the beam length

tion time. Figure A.4 illustrates that the cross-sectional stress distributions calculated by

YF/VABS and NLABS yield similar agreement with the NASTRAN results for moderate

deflection analysis.

A.3.2 Vibratory Hubloads in Forward Flight

Using the rotor and helicopter parameters from Ref. 175, the 4/rev vibratory hub shears

and moments were calculated for a double-cell composite blade depicted in Fig. A.5 at an

advance ratio of 0.30. The ply angles in the middle vertical wall and the inner half of the

rear vertical wall were oriented at Λv, while ply angles in the remaining walls were set to

zero. The vibratory hubloads calculated by YF/VABS are compared with the YF model

in Fig. A.6 for various values of Λv. It is clear from Fig. A.6 that YF/VABS and the YF

model predict similar trends in vibratory loads as Λv is varied. Furthermore, the differences

in hub shears range from 0.1 − 8.7% relative to the YF values, and 0.01 − 8.2% for the

hub moments. These results suggest that the VABS cross-sectional analysis will result in

small to moderate differences in the vibratory loads compared to the model based on the

284



.

2E +06
1E +06
0E +00

-1E +06
-2E +06-0 015 -0.01 -0.005 0 0.005 0.01 0. 015

-0.0005

0

0.0005

x2

x3

(a) NASTRAN (Pa)

0

-0 015 -0.01 -0.005 0 0.005 0.01 0. 015

-0.0005

0

0.0005

x2

x3

(b) NLABS

-0 015 -0.01 -0.005 0 0.005 0.01 0. 015

-0.0005

0

0.0005

x2

x3

(c) YF/VABS

Figure A.4: Axial stress distributions (σ11) corresponding to the symmetric layup
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Figure A.5: Double-cell cross-section

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

-90 -60 -30 0 30 60 90

Vertical Wall Ply Orientation (deg)

4/
re

v 
H

ub
 S

he
ar

s 
(n

on
-d

im
en

si
on

al
)

YF/VABS: Longitudinal
YF/VABS: Lateral
YF/VABS: Vertical
Yuan and Friedmann (1995): Longitudinal
Yuan and Friedmann (1995): Lateral
Yuan and Friedmann (1995): Vertical

(a) Hub Shears

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

-90 -60 -30 0 30 60 90

4/
re

v 
H

ub
 M

om
en

ts
 (n

on
-d

im
en

si
on

al
)

Vertical Wall Ply Orientation (deg)

(b) Hub Moments

YF/VABS: Pitching
YF/VABS: Rolling
YF/VABS: Yawing
Yuan and Friedmann (1995): Pitching
Yuan and Friedmann (1995): Rolling
Yuan and Friedmann (1995): Yawing

Figure A.6: Comparison of vibratory hubloads as a function of Λv

cross-sectional analysis described in Ref. 88.

A.4 Summary

The results demonstrate that VABS is suitable for coupling with the moderate deflec-

tion composite blade model described in Ref. 174, in spite of the differences between the

formulations. Compared to the original YF blade model, YF/VABS will (1) output a more

accurate stress field due to the more general treatment of warping, and (2) will accurately
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compute the elastic stiffness quantities for composite cross-sections in which the neglect of

in-plane stresses would produce large errors.
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Appendix B

Comparison of Aeroelastic Stability Eigenvalues with RFA
and Quasi-steady Aerodynamic Models in Hover

In this appendix, hover stability eigenvalues calculated with the RFA aerodynamic

model using the approach described in Section 6.7 are presented. The eigenvalues obtained

with the RFA model are compared to those based on a relatively simple quasi-steady, in-

compressible aerodynamic model employed in Ref. 174. The quasi-steady model is based

on Greenberg’s extension of Theodorsen’s theory [62]. The results were generated using

the MBB BO-105 baseline rotor described in Table 8.1 for 0.01 ≤ CT/σ ≤ 0.10.

B.1 Root Locus Eigenvalues

Figure B.1 provides the root loci when using RFA and quasi-steady aerodynamics. It is

clear from Fig. B.1a and b that the presence of unsteadiness and compressibility effects in

the RFA model results in little difference in the real and imaginary parts of the eigenvalues

associated with the 1st and 2nd lead-lag modes. Over the range of CT/σ which was con-

sidered, the relative differences in the lead-lag eigenvalues compared to the quasi-steady

values vary from 0.003− 0.5% for the imaginary parts, and 0.5− 5.3% for the real parts.
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Figure B.1: Root locus eigenvalues as a function of CT/σ
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The real parts of the 1st flap mode eigenvalues calculated with the RFA model are all

within 1% of the values obtained with the quasi-steady model. However, as depicted in

Fig. B.1c, there is a noticeable difference in the imaginary parts. The differences between

the imaginary parts of the 1st flap mode range from 6.5 − 7.4%. In contrast to the 1st flap

mode, there are significant differences of 16 − 17% in the real parts of the 2nd flap mode

eigenvalues. The differences in the 2nd flap mode imaginary parts are all under 2%.

The largest differences between the hover stability eigenvalues correspond to the torsion

modes, which are depicted in Figs. B.1e and f. For each value of CT/σ, there is about 40%

and 30% difference between the real parts calculated by the RFA and quasis-steady models

for the 1st and 2nd torsion modes respectively. The differences in the imaginary parts are

all under 1%.

B.2 Summary

The results in this appendix indicate that the effects of unsteadiness and compressibility

can significantly affect the calculated real parts of the hover stability eigenvalues associated

with the 2nd flap mode and the 1st and 2nd torsion modes. In contrast, there was little

difference between the RFA and quasi-steady models in terms of the imaginary parts of the

eigenvalues.
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