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Chapter I   Introduction 

1. Background knowledge about the event-related potential technique 

1.1 A bit of history 

When two electrodes are placed on the human scalp, a pattern of variation in voltage 

over time will be revealed through an appropriate amplifier. This electrical activity of 

the brain, called electroencephalography (EEG), results from ionic currents generated 

by biochemical processes at the cellular level. The scalp EEG specifically measures 

summated activity of post-synaptic currents; its amplitude varies between 

approximately -100 and +100 µV and its frequency ranges to 40 Hz or more (Coles & 

Rugg, 1995). In 1929, Hans Berger published the first report on human EEG (Berger, 

1929). 

In the following decades, EEG has been proved to be very useful in both scientific 

research and clinical applications. However, EEG, in its raw form, reflects thousands 

of simultaneous ongoing brain processes, making it difficult to isolate the brain 

responses to a certain stimulus or event of interest. It is possible to extract the neural 

responses specific to researchers’ interest from the overall EEG, and get a set of voltage 

changes within an epoch of EEG that is time-locked to some event, which is called the 

event-related potential (ERP).The most commonly used signal extraction technique is 

averaging, in which the digital EEG voltage values for each time-point in the epoch 

were averaged to yield a single vector of values representing the average activity at 

each time point, as shown in the grand average waveforms of the most ERP research 

publications. The ERP amplitude, on the order of microvolts, is much smaller than the 

EEG amplitude. The first unambiguous sensory ERP recordings from awake human
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were published in 1939 (Davis et al., 1939; Davis, 1939) 

The computer revolution of the 1940s brought profound influences to the ERP research 

field. In one aspect, the computer revolution led to a ‘cognitive revolution’ in 

psychology during the 1950s and 1960s, with the focus upon internal mental processes 

in the information processing framework as opposed to the focus on overt behavior 

proposed by behaviorism. As cognitive processes are implemented by the brain, it is 

quickly recognized that ERPs or measures of brain activity might index or provide 

insights into psychological processes. In another aspect, the computer revolution 

allowed the EEG signals to be recorded and analyzed with great efficiency. 

Furthermore the advanced sampling and amplifying technique and hardware enabled 

high quality EEG signals recordings with lower noise levels. Galambos and Sheatz 

published the first computer-averaged ERP waveforms in 1962 (Galamobos & Sheatz, 

1962).  

1.2 Advantages and disadvantages of the ERP technique 

Comparing to reaction time, the ERP technique is appealing because it can provide 

on-line measurement of cognitive processing. It records brain activity at a temporal 

resolution on the order of milliseconds, allowing measurements as the process of 

interest unfolds so that stage of processes could be monitored. In addition, ERPs are 

multidimensional (varying in polarity, latency, amplitude and scalp distribution), and 

can be recorded without explicit behavioral responses. The functional significance of 

the ERP results, however, is not always as clear as that of a behavioral response. 

Researchers should be very cautious when they make psychological inference when 

they use the ERP technique (see Rugg and Coles, 1995). Furthermore, the small 

amplitude of the ERPs requires a larger number of trials in order to measure them 

accurately. Thus the ERP method is not good for studies in which large number of trials 

could not be implemented either because of the task characteristics or the participant 

populations. 

The advent of positron emission tomography (PET) in the 1980s, and subsequently 
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functional magnetic resonance imaging (fMRI) in the 1990s triggered an explosion of 

interest in relating cognitive function to human brain activity. While these 

hemodynamic measures have a spatial resolution in the millimeter range, the spatial 

detail of conventional ERP recordings has been coarse and hard to define, because of 

the inverse problem (i.e., the estimation of intracerebral sources responsible for a given 

scalp potential has no unique solution.) and skull conductor effect (the distortion of 

neuronal potentials as they are passively conducted through the highly resistive skull). 

To some extent, the popularity of these new neuroimaging tools moved researchers’ 

interest away from electroencephalography for research and clinic uses. Nevertheless, 

ERPs have a temporal resolution of 1 ms or better, which hemodynamic measures 

cannot match due to the sluggish nature of the hemodynamic responses.  

In summary, the ERP technique has its own significant advantages and disadvantages 

compared to reaction times and hemodynamic measures. Some research questions are 

suited for using the ERP technique, others are not. For example, if someone is 

interested in the brain localization of a given cognitive function, the ERP measurement 

would not be recommended.  However, “knowing where” is not equal to “knowing 

how.”  ERPs can be very useful in elucidating cognitive mechanisms and their neural 

substrates even when there is no knowledge about the neural generation (Luck, 2006). 

1.3 ERPology and ERP components 

There are two lines of ERP research. One line of research has been focused on 

discovering and understanding ERP components (e.g., the contingent negative 

variation or CNV, the P300 and the N2); the other line of research is to use those 

identified ERP components to address scientific questions. The former line of research 

is called the ERPology (Luck, 2006). The popularity of ERPology in the 1970-80s 

resulted in a better refinement and understanding of the ERP components. It is 

apparent that the other line of the ERP research has to be built on ERPology, since it 

is necessary to know the characteristics of a specific ERP component before one can 

use it as an index (like the role of reaction time in cognitive psychology) to study 

research questions in psychology and related fields.  On the other hand, the focus 

upon the study of specific components made ERP research not very interesting, 
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popular and easy to use among cognitive psychologist and neurologist. In the recent 

three decades, more and more ERP research has been devoted to elucidating the 

cognitive processes that underlie observed behaviors, and ERP methods have 

prospered in today’s psychological research.  

ERP components are manifestations of the brain activities invoked by the underlying 

mental activity.  An ERP component could be defined by a combination of its 

polarity (i.e., a positive peak or negative trough), its characteristic latency (i.e., the 

temporal relationship between the feature of the waveform and the stimulus or event 

of interest), its distribution across the scalp (i.e., relative amplitude at different 

recording sites on the scalp), and its sensitivity to characteristic experimental 

manipulations (e.g., early attention selection or memory process). There are two 

general classes of ERP components (Hillyard & Kutas, 1983): exogenous components, 

which occur within around 100 ms after stimulus onset, and are believed to reflect the 

peripheral sensory processing to physical parameters of the stimulus; and endogenous 

components, which occur 100 ms or more after stimulus onset, and are believed to 

reflect the cognitive process of perception, attention, memory, decision, response 

preparation, and so on. Cognitive psychologists are mostly concerned with the 

endogenous components. 

The first cognitive ERP component to be discovered was the Contingent Negative 

Variation or CNV, reported by Grey Walter and his colleagues (Walter et al., 1964).  

Their paradigm consisted of the presentation of pairs of stimuli (e.g., a click warning 

signal followed by a flickering light target), separated by a time interval (e.g., 1 

second), and the establishment of a contingency between the stimuli (e.g., press a 

button upon detecting the flickering light which followed the click). In their study, 

during the interval between the warning signal and the target stimulus, a large 

negative voltage was observed at frontal electrode sites. This negative voltage is the 

CNV, which has a ramp-like shape and tends to reach its maximum at around the time 

of the target onset. It was originally suggested to reflect the subject’s preparation for 

the upcoming target. Inspired by the finding of this first cognitive ERP component, 

more and more researchers have devoted themselves to ERP research, leading to the 

discovery of more cognitive ERP components. Some of them are introduced in the 
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following section as they are related to this dissertation research. 

2. Relevant ERP components 

2.1 The P300 

As the most studied ERP component, the P300 component is usually identified as a 

parieto-central positive voltage deflection in the ERP waveform that varies with the 

probability of the eliciting stimulus or event (Fabiani et al., 1987; Picton, 1992). It 

was first reported by Sutton and his colleagues (Sutton et al., 1965). In their 

experiment, they presented a series of pairs of stimuli (a cueing stimulus and a test 

stimulus), and participants were instructed to respond to the test stimulus.  For some 

pairs the cueing stimulus was always followed by the same test stimulus; for others 

the cueing stimulus could be followed by two different test stimuli.  On the trials 

participants could not predict their response according to cueing stimulus, a large 

positive voltage deflection was elicited, and peaked around 300 ms after stimulus 

onset, based on which the P300 component got its name. However, the peak latency 

of the P300 component may range widely, from 250 ms and extending to 900 ms, 

depending on various experimental manipulations. The P300 has also been called the 

P3 wave, because it is the third major positive peak in the late sensory potential 

(Ritter et al., 1968).  

In subsequent research, the standard paradigm adopted to elicit the P300 is the 

“oddball” task, in which a series of events, which comprise a frequent type and a rare 

type, are presented, and participants are required to in some way respond to the rarer 

of the two event types. At least two ERP components, called P3a and P3b, have been 

identified in the time range of the P3 wave. The P300 or P3 found by most ERP 

researchers in the classical oddball task actually refers to the P3b component.  In 

other studies, where a third event is introduced into the oddball task, e.g., a ‘dog bark’ 

in the context of high and low tones, the novel stimuli elicited a positive voltage 

deflection as large as the P3b, but with an earlier peak latency and a more 

frontally-oriented topography (Courchesne et al, 1984; Knight, 1984). This early 

positive component has been referred to the P3a (Coursechene et al., 1975; Squire, 
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Squire, & Hillyard, 1975), or labeled as the frontal P3, and has been linked to 

processes involved in the involuntary capture of attention by a salient event (Knight, 

1991).  

The usual interpretation of P300 latency is that it is a metric of stimulus evaluation 

time (Kutas et al., 1977; Magliero et al., 1984), and is unrelated to response selection 

and execution processes (Duncan-Johnson, 1981; McCarthy & Donchin, 1981; Ritter 

et al., 1983, but see Pfefferbaum et al., 1986; Ragot, 1984). For example, the P300 

latency varied with the ease of categorizing events in one class or the other—the more 

difficult the categorization processes, the longer the P300 latency.  In normal 

subjects, P300 latency is correlated negatively with cognitive performance (Polich et 

al., 1983; Johnson et al., 1985).  In patients with decreased cognitive ability, the 

P300 is later than in age-matched normal subjects (Brown et al., 1982; Homberg et al., 

1986; O’Donnell et al., 1987). 

The hallmark of the P300 amplitude is that it was inversely proportional to the target 

probability, which has been observed in every type of task from simple counting 

(Duncan-Johnson & Donchin, 1977; Johnson & Donchin, 1980, 1982; Kutas, 

McCarthy, & Donchin, 1977; Picton & Hillyard, 1974) and reaction time paradigms 

(Duncan-Johnson & Donchin, 1982; Kutas et al., 1977), to prediction (Friedman et al., 

1973; Tueting, Sutton, &Zubin, 1970) and feedback tasks (Campbell et al., 1979). 

When the probability of the task-defined stimulus class gets smaller, the P300 

amplitude gets larger.  Moreover the P300 amplitude varied with the sequential 

expectancies subjects developed during the experiment. Repetitive stimuli elicited a 

smaller P300 than non-repeated stimuli (Squires et al., 1976; Duncan-Johnson & 

Donchin, 1977; Johnson & Donchin, 1980, 1982; Tueting et al., 1970). In addition, 

P300 amplitude is sensitive to the amount of attentional resources engaged during 

dual-task performance. As the primary cognitive task is more difficult and demands a 

lot of cognitive resources, P300 amplitude from the secondary oddball task decreases 

(Isreal et al., 1980; Kramer et al., 1985). Furthermore, when the task of discriminating 

the target stimulus from the standard stimulus is too difficult, participants become 

uncertain of whether a given stimulus is a target or non-target, and the amplitude of 

the P300 wave becomes smaller. 
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Johnson (1984, 1986) proposed a triarchic model to explain the P300 amplitude 

changes induced by various experimental manipulations: P300 amplitude = f [T × (1/P 

+ M)], where P denotes subjective probability, M denotes stimulus meaning and T 

denotes amount of information transmitted. Subjective probability appears to combine 

both global and local expectancies (Picton, 1992).  Stimulus meaning is composed of 

three dimensions: task complexity (the extent to which a stimulus must be processed), 

stimulus complexity (perceptual demand to discriminate the stimulus features), and 

stimulus value (significance of the event to be detected).  Amount of information 

transmitted depends on equivocation in the stimulus evaluation and attention paid to 

the task.  In this model, the subjective probability and the stimulus meaning are 

independent of one other; both are modulated by a third factor that represents the 

proportion of the stimulus information received. The P300 process may not be unitary 

but represents the sum of several different cognitive processes. 

In addition, P300 amplitude and latency are correlated negatively (Polich, 1986, 1992).  

This is partly due to the issue of “the latency jitter” (i.e., variation in single trial 

latencies reduce the amplitude of an ERP component when using the signal averaging 

method), and could also result from other cognitive processes related to the task that 

precede P300 generation.  Several studies have shown that the latency and the 

amplitude of the P300 may be differentially affected by experimental variables 

(Picton et al., 1978; Johnson, 1986; Kutas et al., 1977).  Therefore researchers 

should be cautious in interpreting the amplitude and latency of the P300 in any 

experiment in which a large amount of latency variability is expected (Johnson, 

1986). 

A major theoretical interpretation of the P3 wave is that it is related to “context 

updating” (updating one’s representation of the current experiment) in working 

memory (Donchin, 1981; Donchin & Coles, 1988).  It has been suggested that after 

initial sensory processing, an attention-driven comparison process evaluates the 

representation of the previous event in working memory (Heslenfeld, 2003; Kujala & 

Naatanen, 2003). An update is necessary when a new stimulus is detected. The P300 

may represent the control of this updating process (Metcalfe, 1992). The most direct 

supporting evidence for this theory has come from the observation that larger P300 
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amplitudes are associated with superior memory performance (e.g., Fabiani et al., 

1990; Noldy et al., 1990). However, not all studies have observed this effect (see 

Verleger, 1988 review). While the context updating theory remains popular in the 

P300 research field, some new theories with different emphases have emerged as well 

(e.g., Nieuwenhuis et al., 2005a; Verleger et al., 2005).  

With more and more knowledge gained from the thousands of published P3 

experiments, the ERPology of the P3 research has been beneficial to the development 

of several other disciplines. For example, it has been widely used as a dependent 

index in studies of cognitive aging (e.g., Fjell & Walhovd, 2001), pharmacological 

research (e.g., Sanz et al., 2001), studies of clinical disorders (e.g., Mathalon et 

al.,2001; Polich et al., 1986) and even criminal psychology (e.g., Kiehl et al., 1999); 

the P300 latency has been used to demonstrate the cognitive dysfunction occuring in 

early dementia or in metabolic disorders (in Polich review, 1995); and the P300 

amplitude has been used with the guilty knowledge techinque to investigate crimes 

and exonerate innocent suspects (Farwell & Donchin, 1991; Farwell & Richardson, 

1993; Farwell & Smith, 2001).  

2.2 The N2 family 

2.2.1 Early classifications 

The N2 is a negative voltage deflection peaking between 200 and 350 ms following 

the presentation of a specific visual or auditory stimulus. The label ‘N2’ reveals that it 

is the second major negative peak in the ERP average waveform. It is often observed 

in combination with the P300 but with smaller amplitude and earlier latency. In early 

research, the N2, together with the P300, was sometimes referred to as the ‘N2-P3’ 

complex (Squires et al., 1977; Squires et al., 1976). As with the P300, the initial 

paradigm to study the N2 component is the oddball task in which the presentation of 

the rarer event elicits the N2.  

Several distinct N2 potentials have been characterized (reviewed by Pritchard et al., 

1991). The mismatch negativity (the MMN, sometime referred to as the N2a), a 
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difference wave obtained by subtracting the ERP wave for the frequent standard event 

from the ERP wave for the rarer deviant signal, peaks at around 200 ms with an 

anterior cortical distribution and is typically found in auditory oddball paradigms (for 

MMN reviews, see Näätänen, 2001; Näätänen & Alho, 1997; Ritter et al., 1995). 

Visual mismatches do not seem to elicit exactly the same sort of the N2a, so the 

MMN is modality-specific. MMN is present even when the auditory stimuli are 

unattended or task-irrelevant. Furthermore, the MMN amplitude was illustrated to be 

sensitive to the degree of physical deviance of the current stimulus from the 

prevailing context. Therefore Näätänen and his colleagues suggested that the MMN 

likely represents an automatic novelty-detection process (Näätänen et al., 1978).  

A second N2 component (N2b) peaks a little later and its presence depends on the 

event being attended. N2b is larger for rarer events than for frequent events (Ritter et 

al., 1982; Ritter et al., 1983; Simson et al., 1977). It has also been shown to be larger 

in response to nontargets than in response to targets (Näätänen et al., 1982; Sam et al., 

1983). N2b is largely centered on the vertex (Cz) with some variation along the 

anterior-posterior axis in different experiments in both auditory and visual modalites 

(in Pritchard et al., 1991 review). 

Sometimes another N2 component, called the N2c, was categorized as reflecting the 

conscious perception of the stimuli as well; however, it was larger for targets than for 

non-targets in categorization tasks (reviewed by Pritchard et al., 1991), and its scalp 

distribution was modality specific, being more lateral and posterior in the visual 

modality and frontal/fronto-central in the auditory modality. 

2.2.2 Recent developments 

In the last two decades, special attention has been given to an anterior N2 component, 

referred to as the negative-going wave with a frontal or central scalp distribution, and 

mostly corresponding to the N2b in Pritchard et al.’s (1991) classification. Folstein 

and van Petten (2008) have recently given a thorough review on this topic.  In their 

review, two types of anterior N2 have been discussed: one is the anterior mismatch 

N2, which likely reflects the attended mismatch between a stimulus and a mental 
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template; the other is the cognitive control N2, which may be related to mental 

processes related to response inhibition, conflict detection, error detection, or strategic 

performance monitoring. 

2.2.2.1 Anterior mismatch N2 

The most straightforward task to demonstrate an anterior mismatch N2 is the 

sequential matching task, in which subjects are asked to judge whether a second 

stimulus is the same or different from an initial stimulus. When the second stimulus 

does not match the first one, the anterior N2 elicited by the second stimulus is larger 

compared to when the second stimulus matched the first one (Wang et al., 2003; Cui 

et al., 2000; Kong et al., 2000). Furthemore, Wang and colleagues (2004) found that 

partial mismatch yielded an N2 that is intermediate between complete matches and 

complete mismatches, as expected from a template-matching process. This N2 effect 

is eliminated when mismatch is task irrelevant (Fu, Fan & Chen, 2003). 

In addition, the anterior mismatch N2 has been observed in revised versions of the 

oddball paradigm. For example, Breton and colleagues (Breton et al.,1988) recorded a 

larger anterior N2 to the rare letter as compared to the frequent stimulus when 

participants were asked to make RT responses to the rare letter.  Furthermore, this 

anterior N2 effect was larger when the rare target could be any other letter of the 

alphabet except the frequent standard letter (e.g., X), compared to when the rare target 

was always a specific letter (e.g., O).  In either condition, the standard/rarer rate for 

the oddball task was 80/20. Furthermore, complex rare novel stimuli elicited a larger 

anterior N2 than simple rare novel stimuli when both were equally rare (Courchesne 

et al., 1975; Czigler & Balazz, 2005; Daffner et al., 2000). Compared to the simple 

novel stimuli, complex novel stimuli are meaningless, and are more deviant from 

long-term memory representations.  Therefore the N2 novelty effect elicited by the 

complex novel stimuli was larger at the beginning of experiments (Daffner et al., 2000; 

Folstein & van Pettern, 2008). However, it decreased rapidly with habituation when 

stimuli were repeated (Courchesne et al., 1975). 

Overall, the experimental results reviewed above are consistent with the claim that the 
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anterior N2 is sensitive to the perceptual mismatch between the current stimuli and a 

mental template. This mental template could be formed by both long-term memory 

and the short-term task situation (see in Folstein & van Pettern, 2008 review). 

2.2.2.2 Cognitive control N2 

Cognitive control is used to describe a variety of cognitive processes (e.g., response 

inhibition, conflict detection or strategic performance monitoring) that the brain uses 

to guide thought and behavior. In the following sections, several cognitive tasks 

commonly used in the study of these cognitive control processes, as well as the 

N2-like ERP components evoked in these task, are reviewed, including No-go N2 in 

the Go/No-go task, conflict N2 in the flanker task and error-related negativity in 

general speeded reaction time tasks. 

2.2.2.2.1 The No-go N2 in Go/No-go task 

The Go/No-go task is frequently used in cognitive psychology and cognitive 

neuroscience research to evaluate the processes and mechanisms related to response 

inhibition. Its history can be traced back to Donders (1868/1969). The classic task 

usually involves only two stimuli: a Go stimulus and a No-go stimulus. Subjects are 

required to make a quick response to the Go stimulus but withhold their response to 

the No-go stimuli. Typically Go stimulus is set to be more frequent in order to build 

up a prepotent tendency to respond, therefore increasing the inhibitory effort 

necessary to successfully withhold response to No-go stimuli.  A larger anterior N2 

is elicited by No-go than by Go stimuli.  This No-go N2 is sensitive to speed 

pressure, the amplitude being larger when subjects were required to respond quickly 

(Jodo & Kayama, 1992).  The No-go N2 is also larger in participants with lower 

false alarm rates, suggesting its association with successful response inhibition 

(Falkenstein, Hoorman,& Hohnsbein, 1999).  Furthermore, a larger N2 was observed 

for No-go stimuli that look more like the Go stimulus (Azizian et al., 2006), probably 

because the shared features between No-go and Go stimuli increased the tendency to 

respond in No-go trials, requiring greater effort for inhibition.  These studies 

provided strong support that the observed No-go N2 indexes cognitive control rather 
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than perceptual mismatch. 

2.2.2.2.2 The conflict N2 in Eriksen flanker tasks 

The Eriksen flanker task (Eriksen & Eriksen, 1974) is another task which is often 

used in cognitive control research. In the classical Eriksen flanker letter task, subjects 

carry out a speeded response to a target letter which is closely surrounded by 

non-target letter or flankers. Typically two conditions are involved in this task: a 

congruent condition, in which the central letter is surrounded by four identical flanker 

letters (e.g., HHHHH), and an incongruent condition, in which the central letter is 

surrounded by four flanker letters indicating the opposite response (e.g., SSHSS). 

Reaction time is invariably found to increase in the incongruent condition compared 

to the congruent condition.  In addition, an enhanced frontocentral N2, together with 

a delayed parietal P3, have been observed in the incongruent condition compared to 

the congruent condition (Gehring et al., 1992; Kopp et al., 1996). 

This anterior N2 is largest for highly probable stimuli (Bartholow et al., 2005), which 

makes it difficult to account for within a mismatch-based theory. Furthermore, this N2 

appears to be sensitive to response conflict but not stimulus conflict: stimuli that 

present incongruent information but require the same responses do not enhance the 

N2 (van Veen & Carter, 2002). A recent conflict monitoring theory (Yeung, Cohen, & 

Botvinick, 2004) proposed that the N2 elicited in the flanker task reflected the 

detection of response conflict in correct trials before the response; in contrast the 

error-related negativity (the ERN, see below) reflected the detection of a response 

conflict in the error trials after the response. 

2.3 The error-related negativity 

The error-related negativity (ERN or Ne) is a negative voltage deflection peaking 

within 100 milliseconds (ms) of error commission, observed in speeded choice reaction 

time tasks (Falkenstein et al., 1990, 1991; Gehring et al., 1990, 1993). Different from 

the other ERP components, the ERN waveform is response-locked rather than stimulus 

locked, that is, the epoch used for signal averaging was extracted based on the temporal 
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location when a response occurred, and the time zero in the waveform indicated an 

erroneous response execution rather than the onset of a stimulus presentation (as in the 

stimulus-locked waveform).  Studies have shown that the ERN has a frontocentral 

scalp distribution, and dipole modeling and fMRI evidence points to a likely generator 

in the anterior cingulate cortex (ACC) or adjacent supplementary motor area (Dehaene 

et al. 1994; Kiehl et al., 2000; van Veen & Carter, 2002; Hermann et al., 2004).  The 

ERN amplitude is larger when accuracy is emphasized by instruction, than when speed 

is emphasized (Gehring et al., 1990, 1993; Falkenstein et al., 1990, 2000). Together 

with the findings that the ERN is larger when correct trials have high monetary value or 

when subjects believe that their performance is being evaluated by others (Hajcak et al., 

2005b), this suggests that ERN is sensitive to the motivational significance of the errors 

( Gehring et al., 1993).  

2.3.1 Error-detection theory  

The response-locked ERN was originally interpreted as a correlate of error detection on 

the basis of response representations (Falkenstein et al., 1991; Gehring, 1993). 

Specifically, in speeded-response tasks, the neural representation of an erroneous 

pre-mature response was compared with the representation of the correct response 

which is derived from the continuous stimulus processing even after response 

execution. A discrepancy between these two representations gives rise to a mismatch or 

error signal, which is manifested in the ERN. This error detection hypothesis was 

directly supported by the finding that the ERN is smaller on errors in which the 

mismatch between required and executed response is smaller (e.g. finger errors versus 

hand errors) (Falkenstein et al, 2000; Bernstein, Coles, & Schefferes, 1995, but see 

Gehring & Fencsik, 2001).  The finding that the ERN occurs even after partial errors 

when the exerted force is not sufficient to produce overt errors (Scheffers et al., 1996), 

together with the finding that ERN-like negativity was also elicited on the correct 

response in some studies (Vidal et al., 2000), suggest that the ERN could reflect the 

operation of the comparison process itself (Falkenstein et al., 2000). 

2.3.2 Conflict monitoring theory  



 

 14

The conflict-monitoring theory was proposed as an alternative to the error-detection 

theory (Carter et al., 1998; Botvinick et al., 2001). It asserts that the ERN reflects the 

detection of larger response conflict on error trials than on correct trials after response 

execution. In order to generate a conflict signal, the monitor or comparator does not 

need to know which response is correct.  Instead, the error could be detected through 

detecting two competing responses which are simultaneously active. The 

computational model of the conflict monitoring theory has mimicked the time-course 

of the ERN and its sensitivity to a variety of experimental manipulations (Yeung et al., 

2004). For example, a change in attentional focus and an application of a stricter 

response criterion can produce effects similar to accuracy emphasis on the ERN. 

However, it is hard for the current conflict monitoring model to explain the 

response-locked ERN activity on correct trials, since according to their computational 

model, conflict-related activity on correct trials should be observed before the response 

as manifested by the stimulus-locked anterior conflict N2 in high conflict trials (Yeung 

et al., 2004)), but not after the response in the latency range of the ERN.  

3. Feedback-related negativity and its related research 

Similar to the response-locked ERN, a stimulus-locked negativity was enhanced when 

people receive feedback indicating that they have made an incorrect choice or judgment. 

It was first observed by Miltner and his colleague (1997) in a time-estimation task, in 

which subjects had to estimate a certain period of time (e.g., one second) before they 

received accuracy feedback about their estimation.  Like the response-locked ERN, 

this negativity is maximal over medial frontal scalp locations, and source localization 

analyses suggested the anterior cingulate cortex as the likely generator (Miltner et al., 

2003; Ridderinkhof et al., 2004). Miltner et al. (1997) originally proposed that the 

feedback negativity, similar to the ERN, reflected the operation of an error-processing 

system, so sometimes the error-related negativity after error feedback is also called the 

feedback ERN, comparable to the classic response-locked ERN. Moreover this 

feedback negativity has been also observed in gambling tasks when people make a 

choice and then receive a loss rather than gain feedback about their choice (Gehring & 

Willoughby, 2002; Hajcak et al., 2005a; Yeung et al., 2005; Yeung & Sanfey, 2004). 

This negativity, together with the feedback-related ERN, is called the feedback-related 
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negativity (FRN).  

3.1 Reinforcement learning theory of the ERN  

Building upon the error-detection theory, Holroyd and Coles (2002) proposed the 

reinforcement-learning theory of the ERN (abbreviated RL-ERN) to incorporate both 

the FRN and the response-locked ERN into a unified theoretical framework. 

Specifically the RL-ERN theory proposed a motor control system, involving the 

anterior cingulate cortex, generating behavior appropriate to the task situation, and a 

monitoring system, located in the basal ganglia, evaluating the discrepancy between the 

efference copy of the response and the expectation which could be developed according 

to the history of prior reinforcement associated with a response. Error signals are 

produced when the basal ganglia find that events are ‘worse’ than expected, and then 

further carried by the mesencephalic dopamine system to the anterior cingulate cortex 

to adjust the task performance, and back to the basal ganglia to improve the predictions.  

An important prediction of the RL-ERN theory is that the monitoring system responds 

to the earliest predictor of error information. Hence in choice reaction time tasks, the 

ERN was elicited immediately following an erroneous response, and in feedback tasks 

as the time-estimation paradigm of Miltner et al. (1997), the FRN was observed after 

the onset of the negative feedback.  Furthermore, it has been observed that the FRN 

amplitude varies inversely with response ERN amplitude as a function of learning in 

the probabilistic learning paradigm where subjects are required to learn 

stimulus-response mapping using external feedback (Holroyd & Coles, 2002; 

Nieuwenhuis et al., 2002; Nieuwenhuis et al., 2005b). During the initial stages of 

learning, the error signal tends to be elicited by feedback stimuli since subjects have not 

learned the stimulus-response mappings; as learning progresses, the error signal  is 

slowly “propagated back” from the feedback to the response when the contingencies 

between stimuli and response are learned. However, the idea that FRN reflects a 

process of performance monitoring and/or learning about recently executed actions has 

been challenged by research findings that an FRN was observed following negative 

outcomes even in a task context in which participants made no overt response (Yeung, 

Holroyd & Cohen, 2005). Instead, the amplitude of the feedback negativity was 
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correlated with participants’ subjective ratings of involvement in the tasks, suggesting 

that the FRN may reflect the evaluation of the motivational significance of ongoing 

events (cf. Gehring & Willoughby, 2002).  

The RL-ERN theory asserted that the FRN represents the detection of unexpected, 

unfavorable outcomes (Holroyd & Coles, 2002). Therefore it would predict (1) the 

FRN effect should be larger for unexpected outcomes than for predicted outcomes; (2) 

the FRN following unfavorable feedback should be larger for favorable feedback. 

Empirical studies are reviewed in next section in the light of these two predictions.  

3.2 The FRN and the reward expectancy  

Several lines of research have been devoted to testing the contention that the FRN 

reflects a reward prediction error signal. For example, in the probabilistic learning 

paradigm introduced above, the largest FRN was associated with the most unexpected 

penalty on trials where participants receive feedback that was inconsistent with learned 

stimulus-response mappings (Nieuwenhuis et al., 2002; Nieuwenhuis et al., 2005b). 

Furthermore, by analyzing sequential effects in the random stimulus-response mapping 

condition, a larger FRN was observed on trials when a feedback stimulus disconfirms a 

prediction induced by a previous feedback stimulus compared to when the feedback 

stimulus confirms the prediction (Holroyd & Coles, 2002), suggesting that the FRN 

amplitude tracks the prediction error on a trial-trial basis. 

In addition, Holroyd et al. (2003) manipulated feedback frequency in a gambling task, 

and found that the FRN amplitude was larger when the negative outcomes (e.g., 

absence of reward in that study) were infrequent (25%) compared to when they were 

frequent (75%). According to the RL-ERN theory, the monitoring system in the basal 

ganglia expects reward when the reward is frequent, and thus the non-reward feedback, 

inconsistent with this expectation, led to large FRNs; in contrast, the non-reward 

feedback in the condition when the non-reward feedback is frequent elicited small 

ERNs because these non-rewards were consistent with the system’s expectation. 

However, Hajcak et al. (2005a) failed to find an influence of reward frequency on the 

FRN amplitude in their experiments. 
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A recent study (Hajcak et al, 2007) by the same group of researchers suggested that in 

order to observe the expectancy effect on the FRN amplitude, subjects’ 

prediction/expectation and their received outcome have to be closely coupled.  The 

reason that the FRN amplitude was not found to be sensitive to the reward probability 

manipulation may be that the objective probability corresponded too loosely to the 

subjects’ actual expectation. In their 2007 study, they manipulated the reward 

probability information on a trial-by-trial basis as in Experiment 1 of their 2005 study. 

They observed a larger FRN upon violations of subjects’ reward prediction, when the 

predictions were made following their gambling choice and right before the feedback, 

rather than when the predictions were made prior to their gambling choice. Furthermore, 

it was observed that the predictive cue influenced subjects’ predictions regarding the 

subsequent feedback. However, it differed substantially from objective probability.  In 

general subjects overestimated rewards on 2- (50% predictive) and 3-cue (75% 

predictive) trials by subjectively predicting rewards around 74% and 95% of trials 

respectively in one experiment and around 69% and 95% of trials respectively in the 

other experiment. 

3.3 The FRN and feedback favorability 

The RL-ERN theory proposed that the FRN reflects an evaluation of events along a 

general good-bad dimension (Holroyd et al., 2002).  The theory is nonspecific about 

what actually constitutes a good or bad outcome.  In fact, Holroyd and colleagues 

(2004) found that in the gambling task the favorability of each outcome was determined 

by the context in which the outcome was delivered.  For example, feedback indicating 

that participants received nothing generated a larger FRN in a task situation where 

participants were supposed to win money, but the same feedback did not generate an 

FRN in a task context where participants were expecting to lose money.  

While the RL-ERN theory does not distinguish between "utilitarian” feedback (e.g., 

financial rewards and punishment) and “performance” feedback (e.g., performance 

correctness or error), Gehring and Willoughby (2002) reported that the FRN was 

sensitive to feedback stimuli indicating monetary gain or loss rather than performance 

correctness or error. Participants in that study performed a gambling task, in which they 
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were asked to choose one of two squares containing 5 and 25, indicating US cents.  

Then they received the feedback on both the monetary gain/loss that resulted from the 

choice, and the monetary gain/loss that would have resulted from making the other 

choice.  Gain or loss information was indicated by color, e.g., red indicating a gain and 

green indicating a loss.  Correctness was defined as whether the chosen outcome was 

better or worse than the unchosen one, for example, a gain of 5 indicated an incorrect 

choice if the unchosen alternative was a gain of 25 and a loss of 5 indicated a correct 

choice if the unchosen alternative was a loss of 25. In addition to these “gain-and-error” 

and “loss-and-correct” conditions, there were “gain-and-correct” and “loss-and-error” 

conditions.  The ERP waveforms showed that the FRN was not enhanced by error 

feedback. 

Nieuwenhuis et al. (2004b) argued that in Gehring and Willoughby (2002)’s study, the 

gain-loss information was easier to extract from the feedback display than the 

correct-error information because the reward information was directly indicated by 

salient colors but the correctness status was computed by comparing the two numbers 

and their related colors, which was more attention demanding and time consuming.  

Thus it is possible that the human monitoring system only responds to the most salient 

information in the environment about whether the outcomes are good or bad.  In their 

first experiment, they adopted the paradigm used in Gehring & Willoughby (2002), that 

is, gain-loss information was denoted by colors (e.g., one color indicated gain and the 

other color indicated loss) and correct-error information was computed by comparing 

the two numbers and their related colors.  In their second experiment, correct-error 

information was emphasized by color (e.g., one color indicated correct choices and the 

other color indicated error choices) and gain-loss information was only indicated by 

plus (+) or minus (-) symbol.  They repeated the findings of Gehring & Willoughby 

(2002) in their first experiment; that is, the FRN was sensitive to the gain-loss 

information rather than the correct-error information.  However, in their second 

experiment where correctness was indicated by more salient information, the FRN was 

found to be sensitive to correct-error rather than gain-loss information, suggesting that 

the FRN may reflect the activity of a single monitoring system that rapidly evaluates 

outcomes along a good-bad dimension on the basis of the most salient evaluative 

information in the environment. 
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3.4 The FRN and binary versus scale evaluation 

In the past  4-5 years, increased interest has been devoted to investigating how the 

system that generates the FRN evaluates outcomes with intermediate values when a 

range of outcomes is possible.  RL-ERN theory would predict that FRN scales with the 

goodness of ongoing events—intermediate outcomes should be associated with 

intermediate-sized ERN amplitudes (Holroyd & Coles, 2002; Nieuwenhuis et al., 

2004a review).  However, an apparent discrepancy with this prediction was found in 

Holroyd and colleagues (2004)’s study which included a worst, middle and good 

reward information.  In that study, the FRN amplitude elicited by the worst and middle 

outcomes were not significantly different from each other.  The researchers suggested 

two possible interpretations: (1) the study lacked sufficient statistical power to detect 

the difference between worse and middle outcomes; (2) the evaluation system that 

produced the FRN is non-linear, weighing the worst and middle outcomes equally.  

The latter possibility has been supported by a series of subsequent studies.  

Yeung and Sanfey (2004) used a gambling task in which subjects could gamble a small 

or large amount of money on each trial.  They found that loss feedback elicited a larger 

FRN than gain feedback, however, the amplitude of the FRN was not affected by the 

magnitude of reward, suggesting that the FRN is related to a simple bad versus good 

binary appraisal.  Nieuwenhuis et al. (2004a) argued that in Yeung & Sanfey’s 

experiment, subjects knew they gambled on a small or large outcome before they made 

a choice and received the feedback, so their monitoring system may scale its response 

to the negative feedback by normalizing the extreme outcome.  Hajcak and colleagues 

(Hajcak et al., 2006) avoided this issue by presenting several identical doors for 

subjects to choose and simply manipulating the reward valence (gain vs. loss) and 

magnitude (5 vs. 25) of the delivered feedback stimuli in two gambling tasks.  

Consistent with Yeung and Sanfey’s (2004) observation, the FRN amplitude was found 

insensitive to the graded value of feedback.  However, Hajcak et al. (2006) had its own 

problem, which will be addressed a little later. 

Holroyd, Hajcak and Larsen (2006) presented a series of five experiments (four 

gambling tasks and one estimation task) to investigate the FRN response to neutral 
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feedback stimuli. There were two types of neutral feedback stimuli: one indicated that 

participants did not receive the potential reward or punishment; the other is 

uninformative about the feedback outcome although subjects could be either successful 

or unsuccessful on those trials. Across the five experiments, neutral feedback had 

consistently elicited an FRN about as large as that elicited by negative feedback stimuli, 

suggesting that the evaluative system that yielded the FRN classified outcomes works 

in a binary manner—there are two discrete categories: outcomes indicating the task 

goal has been satisfied, and everything else. Furthermore, they incorporated these 

results into the RL-ERN theory by adding a cognitive preprocessing system before the 

monitoring system in the basal ganglia. The cognitive system establishes the task goal 

(e.g., earn as much money as possible), and produces output to the monitoring system 

about whether or not the goal has been satisfied. Correspondingly, the adaptive critic 

model in the monitoring system computes a binary value which is further 

communicated to the control system. When the negative and neutral feedback stimuli 

are grouped into a single category by the cognitive system, the RL-ERN theory would 

predict equally larger FRNs to the negative and neutral feedback.  

4. The FRN and the perceptual mismatch hypothesis 

As reviewed before, the FRN got its name because it is a negative voltage deflection 

often observed following unfavorable feedback stimuli. It has also been called a variety 

of other names such as the ERN (e.g., Holroyd et al., 2004), the feedback ERN (Miltner 

et al., 1997) or the medial frontal negativity (e.g., Gehring & Willoughby, 2002). It may 

also be called an N2, since it is the second negative component on the ERP grand 

average waveform elicited by the feedback stimuli, and peaks around 200-300 ms after 

the onset of the feedback stimuli like other N2 components. In particular it may be a 

part of anterior N2, considering that it has a medial frontal scalp distribution and may 

originate from the ACC and its neighboring brain regions. 

The history of the FRN’s discovery (from the ERN) and its extant theoretical 

framework (RL-ERN theory) have naturally led researchers to make connections 

between the FRN and general cognitive control functions embodied by the anterior 

cognitive control N2. In the following paragraph, special review is given to a handful of 
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studies investigating the relationship between the FRN and the perceptual mismatch 

hypothesis.  

Very few studies have investigated the role of perceptual mismatch in the FRN, with 

some exceptions like the Donkers, Nieuwenhuis and van Boxel (2005) study. In their 

study, they used a slot-machine task, in which participants were asked to watch three 

digits presented successively on a computer screen. Three trial types were defined 

according to the order that those digits appear: type XXX, in which all three digits were 

identical (e.g., 2 2 2), type XXY, in which the last digit was different from the first two 

(e.g., 2 2 3), and type XYZ, in which all digits were different (e.g., 2 0 8). The task was 

run in two conditions: a gain condition, in which participants won a small amount of 

money if (and only if) the three digits were identical, and a loss condition, in which 

participants lost a small amount of money when the three digits were identical. For type 

XXY and XYZ, participants did not win or lose any money. This design was designed 

to study brain activity associated with both averted gains and averted losses in the 

complete absence of responding. However, the results, by comparing the ERP 

waveforms elicited by the last digit of the sequence among the three trial types, 

revealed that an FRN-like negativity was elicited whenever a stimulus was different 

from the preceding stimulus, regardless of relative gain or loss. A further investigation 

(Donkers & van Boxtel, 2005) in which overall frequency of obtaining gains or losses 

were manipulated, replicated the experimental finding. For example, a larger anterior 

negativity was still observed in XXY trial type than in XXX trial types in both the gain 

and loss conditions, although this mismatch effect was larger in the loss condition than 

in the gain condition. It appears that both the perceptual mismatch and the reward 

valence affected the FRN observed in this type of study.  

In many previous FRN studies, investigators tended to assume that the perceptual 

properties of the feedback stimuli were not important in determining these feedback 

effects (Holroyd et al., 2002; Holroyd et al., 2003; Miltner et al., 1997; Hajcak et al., 

2006). Indeed, in many ERP and fMRI studies the perceptual properties of the feedback 

stimuli were confounded with reward valence effect. Considering the evidence that the 

perceptual salience of the feedback stimuli affect the FRN elicitation (Nieuwenhuis et 

al., 2004b), as well as the research finding that feedback stimuli whose perceptual 
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attributes mismatch the prepared/primed representation affect the FRN amplitude 

(Donkers et al., 2005, 2005), it seems that the perceptual attributes of the feedback 

stimuli may play an important role in the elicitation of the FRN. Research findings from 

studies which ignored such perceptual attributes may need to be reevaluated. For 

example, Hajcak et al. (2006)’s study used “++”, “+”, “-”, and “--” to indicate large gain 

(gain 25 cents), small gain (gain 5 cents), small loss (lose 5 cents) and larger loss (lose 

25 cents) feedback respectively, and found a larger FRN after the loss feedback than 

after the gain feedback, but there was no FRN difference between large and small 

reward values either in the gain or loss condition. They used these results to support the 

binary view on the evaluation system that elicits the FRN. The arrangement of their 

feedback stimuli (the two feedback stimuli indicating large and small outcomes were 

similar to each other), however, may pose problems for their conclusion in that (1) the 

perceptual similarity between the two reward stimuli may mask the magnitude effect on 

the FRN, or (2) all of their FRN findings may be based on the detection of perceptual 

mismatch from the gain-related feedback, rather than on the detection of “worse than 

expected” signal as RL-ERN theory claimed.  

As Folstein and van Pettern (2008) pointed out, the RL-ERN theory could be a kind of 

mismatch detection hypothesis, except that the mismatch is occurring between an 

internal expectation and an external event, rather than between two external events as 

seen in a typical sequential matching task (Wang et al., 2003). In particular, several 

studies (Hajcak et al., 2007; for a review, see Krizan & Windschitl, 2007) have shown 

that subjects in gambling tasks have a positive bias, expecting positive outcomes about 

their choice. So it is possible that in the gambling task the human perceptual system is 

tuned for the perceptual attributes of the gain stimuli (e.g. certain gain-related 

feature(s)), and the feedback outcome that is actually delivered is compared with this 

primed/prepared gain-related perceptual representation; and any violation of or 

mismatch from this tuning would trigger the monitoring system to elicit the error signal. 

Under this perceptual mismatch hypothesis, the monitoring system could produce the 

error signal very efficiently, consistent with the early latency (200-300 ms) of the FRN 

following the onset of the feedback stimuli. It is also reasonable to assume that the 

monitoring system is only responsive to the most salient dimension of the feedback 

stimuli as shown in Nieuwenhuis et al. (2004b)’s study, because the detection of the 
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salient feedback and its possible mismatch from the perceptual-tuning in the perceptual 

system will be very fast and the FRN may be sensitive to this fast operation. Indeed, it is 

doubtful that the human brain could always compute so fast that it knows the outcome 

is “worse than expected” within 200-300 ms after the feedback. The brain, instead, may 

use this simpler and faster perceptual mismatch comparison mechanism.  

5 Current Research  

In this dissertation research, a series of experiments was designed to investigate the role 

of perceptual mismatch in the elicitation of the FRN. In all seven ERP experiments, 

simple gambling tasks were used, in which participants made choices among two, three 

or four boxes, doors or chips presented on the screen, and then received the reward 

feedback about their choice. Perceptual properties of the feedback stimuli were 

manipulated. 

In some experiments (Experiment 1, 5, 6 and 7), the flanker letter string used in the 

classical Eriken flanker letter task (Eriken & Eriksen, 1974) was used to indicate the 

reward information. As in the classic response-time flanker task, this flanker gambling 

task consists of both congruent and incongruent letter strings. In the congruent letter 

string, the central target letter and its surrounding flanker letters are identical, 

conveying consistent reward information (gain, neutral or loss); in the incongruent 

letter string, the central target letter and its surrounding flanker letters are different, and 

they convey inconsistent reward information. Participants were instructed that only the 

reward information conveyed by central target letter was valid. The flanker gambling 

task defines two types of mismatch: external mismatch, which is present in the external 

feedback stimuli, specifically the incongruent flanker string (e.g., HHSHH) of the 

classical Eriksen letter flanker task; and internal mismatch, which is occurring between 

an external event and a mental template, i.e. the feedback representation actually 

delivered to the participants versus the perception-tuning prepared in their perceptual 

system. 

By using this flanker letter string, (1) it is possible to investigate whether the presence 

of the flanker letters (especially in the incongruent flanker letter string) may affect the 
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detection of the reward information and the elicitation of the FRN. For example, the 

perceptual mismatch hypothesis would predict that the incongruent gain feedback may 

elicit a larger FRN than congruent gain feedback for two reasons— the increased 

internal mismatch because of the presence of the loss-related perceptual features and 

the external mismatch between the gain target and loss flankers in the feedback 

stimulus itself. The original RL-ERN theory would not predict an enhanced FRN for 

the incongruent gain because it would still be categorized as a favorable outcome. 

Furthermore through manipulating the perceptual similarity between the gain and loss 

information, it is possible to investigate how the FRN may be affected (2) by the degree 

of the perceptual mismatch between the actual outcome and the prepared mental 

template in the perceptual system (internal mismatch), and (3) by the degree of the 

perceptual mismatch existing in the external feedback stimuli (external mismatch). For 

example, according to the perceptual mismatch hypothesis, the reward information 

indicated by perceptually very different feedback stimuli would generate a larger FRN 

reward effect than the reward information indicated by perceptually very similar 

feedback stimuli (corresponding to purpose 2); the incongruent letter string composed 

of perceptually very different letters would generate a larger FRN congruency effect 

than that composed of perceptually very similar letters (corresponding to purpose 3). 

The current RL-ERN theory would not predict any effect described above.  

In other experiments (Experiment 2, 3, 4), a single color or shape or letter was used to 

indicate the reward information. By using these single objects, first, it is possible to 

evaluate the contribution of perceptual salience to the FRN (for example, red and blue 

colors are perceptually more salient than letter E and F when indicating gain or loss 

feedback information), second, it is possible to directly examine how the FRN may be 

modulated by the ease of detecting the perceptual mismatch(for example, the 

processing of a single feature is automatic and fast and the processing of conjoined 

features is slow and requires attention, so that the FRN elicited by the conjoined 

features may be later and smaller), and third, it is possible to investigate the 

contribution of perceptual mismatch between the actual outcome and the expected 

mental template (internal mismatch) by manipulating the similarity of these single 

object stimuli which may indicate different reward information (equivalent to purpose 

2 in above paragraph), e.g., E and F are more similar to each other than S and T to each 
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other. 

The seven experiments formed three sets described in the following three chapters. In 

the three experiments that comprise Chapter II, the perceptual attributes of gain and 

loss feedback stimuli were manipulated to provide the basic evidence that the FRN 

could be affected by the perceptual salience of the feedback stimuli, by the internal 

perceptual mismatch between the actual outcome and the prepared mental template in 

the perceptual system, and by the external perceptual mismatch existing in the feedback 

stimuli. In the three experiments that comprise Chapter III, the perceptual attributes of 

the neutral feedback stimuli were manipulated to further investigate how both the 

internal and external perceptual mismatches may affect the FRN elicited by this 

non-reward or intermediately reward feedback. In the last experiment, comprising 

Chapter IV, a task-irrelevant feedback condition was included to evaluate the nature of 

the external perceptual mismatch existing in the feedback stimuli. 

Additionally in all seven experiments, the effects of all the experimental manipulations 

described above have also been evaluated with regards to the P300, as it has been 

shown to be sensitive to expectancies in numerous tasks (Courchesne, Hillyard, 

&Courchesne, 1977; Duncan-Johnson & Donchin, 1977; Johnson & Donchin, 1980). 

Furthermore, some studies have reported that feedback stimuli indicating the outcome 

of monetary gambles elicited a P300 that was sensitive to the amount of money won or 

lost rather than the reward valence (Yeung & Saney, 2004; Sato et al., 2005). Other 

studies showed that the P300 was enhanced by gain feedback in the simple gambling 

task (Hajcak et al., 2005a, 2007).  Still another study (Ito et al., 1998a) reported that a 

larger P300 was observed in response to affectively negative images than in response to 

positive images that were matched according to subjective rating of arousal, suggesting 

that the P300 was sensitive to the negative emotional content of stimuli. It remains 

undetermined whether the enhancement of P300 amplitude in gambling tasks is due to 

increased attention or motivation, or whether it encodes some specific information 

related to reward magnitude or valence. 
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Chapter II   Experiment 1-3 

 

Through the three experiments in this chapter, it is expected to establish the basic 

evidence on whether the FRN can be affected by the perceptual salience of the feedback 

stimuli, the perceptual similarity between gain and loss outcomes, and the presence of 

interference information in the feedback stimuli 

Experiment 1: EFST flanker gambling task 

Design and Rationale 

In Experiment 1, the perceptual properties of the feedback stimuli were manipulated to 

investigate how the perceptual mismatch between the actual outcome and the prepared 

mental template in the perceptual system could contribute to the elicitation of the FRN, 

and how the perceptual mismatch existing in the feedback stimulus itself may 

contribute to the elicitation of the FRN. 

A flanker gambling task was developed and used. In the task, participants made a 

choice, and then received a classical five-letter flanker string (e.g., TTSTT) as the 

reward feedback about their choice. In the five-letter flanker string, only the central 

letter conveyed the reward information about participants’ choice. The four 

surrounding letters were the same to each other, being either identical to (i.e., congruent 

condition) or different from (i.e., incongruent condition) the central letter. In this way 

four types of reward feedback existed: congruent-gain feedback, in which the central 

letter indicated a gain, and the flanker letters were identical to the central letter (e.g., 

TTTTT); incongruent-gain feedback, in which the central letter indicated a gain, and 
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the flanker letters were different from the central letter (e.g., SSTSS); congruent-loss 

feedback, in which the central letter indicated a loss, and the flanker letters were 

identical to the central letter (e.g., SSSSS); and incongruent-loss feedback, in which the 

central letter indicated a loss, and the flanker letters were different from the central 

letter, e.g., TTSTT. The inclusion of the incongruent-gain and incongruent-loss 

feedback provides a way to test whether the FRN may be affected by the external 

perceptual mismatch exisiting in the feedback stimuli.

Furthermore, the similarity of letters indicating gain or loss feedback was manipulated. 

In one condition, gain and loss were indicated by two perceptually very similar letters 

(e.g., E or F); and in the other condition, gain and loss were indicated by two 

perceptually dissimilar letters (e.g., S or T). By comparing the reward effect (gain vs. 

loss) in these two conditions, it is possible to test whether the FRN may be affected by 

the degree of the perceptual mismatch between gain- and loss-related feedback 

representations. In addition, by comparing the congruency effect (congruent vs. 

incongruent) in these two conditions, it is possible to test whether the FRN may be 

affected by the degree of perceptual mismatch in the feedback stimuli. 

Methods 

Participants 

There were twelve participants (six males and six females) aged between 18 and 23. All 

were right-handed, had normal or corrected-to-normal vision, and normal color vision. 

Prior to the test, participants provided written informed consent in accordance with the 

Institutional Review Board of the University of Michigan. They received a monetary 

payment for their participation. 

Procedure 

The participants were seated comfortably 60 cm in front of a fourteen-inch CRT 

computer monitor in a dimly lit, sound-attenuating and electromagnetically shielded 

room.  They were instructed to remain as still as possible and to minimize eyeblinks 
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throughout the experiment. Materials were presented using E-prime (Psychological 

Software Tools, Pittsburgh, PA). On each trial of the experiment (see Figure 2.1 for an 

example), the participants were presented with four identical red doors shown on the 

screen following a 500 ms central fixation, and were instructed that the reward 

information was hidden behind those doors. Doors remained on the screen until the 

participants selected one of them by pressing its corresponding button with their left or 

right index or middle finger. One thousand milliseconds after their response, the reward 

information indicating whether they won or lost on the trial came up and was present 

for 1000 ms. The inter-trial interval (ISI) was 1000 ms. 

 
Figure 2.1. A schematic representation of Experiment 1. 

The reward information was a letter string in the form of the flanker stimuli— one 

target letter (e.g., letter S) at the center was surrounded by identical (e.g., SSSSS; 

congruent condition) or different letters (e.g., TTSTT; incongruent condition) and only 

the central letter conveyed the reward information. The perceptual similarity between 

target and flanker letters was manipulated. In half of the trials, gain and loss 

information were indicated by two perceptually similar letters: E vs. F; in the other half 

of the trials, gain and loss information were indicated by two perceptually dissimilar 

letters: S vs. T. Participants completed five sets of EF feedback (‘SIM’ sets) and five 

sets of ST feedback (‘DIS’ sets) with 120 trials in each set. For half of the participants, 

SIM sets were presented first; and for the other half, DIS sets were presented first. Each 
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set started with 50 cents as the initial allotment, and for each trial participants won or 

lost 25 cents. They were given summary information about the bonus they had earned 

every twelve trials. The reward information each letter indicated was revealed to the 

participants at the beginning of the experiment and was counterbalanced among the 

participants. The feedback stimuli used in Experiment 1 are shown in Table 2.1. The 

feedback was randomly chosen from a set of equal numbers of congruent and 

incongruent as well as gain and loss feedback. On average, the percentage of gain or 

loss was approximately 50% and the ratio of congruent-to-incongruent trials was 

roughly 1:1.  

 Reward 
Valence  

Congruency Type name Feedback 
Stimuli 

Gain Congruent Sim_Gain_con EEEEE 
Gain Incongruent Sim_Gain_inc FFEFF 
Loss Congruent Sim_Loss_con FFFFF 

Similar 

Loss Incongruent Sim_Loss_inc EEFEE 
Gain Congruent Dis_Gain_con SSSSS 
Gain Incongruent Dis_Gain_inc SSTSS 
Loss Congruent Dis_Loss_con TTTTT 

Dissimilar 
 

Loss Incongruent Dis_Loss_inc TTSTT 

Table 2.1. Experiment 1 example of the feedback stimuli.  

Electrophysiological Methods 

The electroencephalogram (EEG) was recorded from 26 scalp electrode sites with 

Ag/AgCl electrodes embedded in a nylon mesh cap (Easy-Cap, Falk Minow Systems, 

Inc., http://www.easycap.de). The electrode locations consisted of FP1, AFz, FP2, F7, 

F3, Fz, F4, F8, FC3, FCz, FC4, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, 

O1 and O2. EEG data were recorded with a left mastoid reference and a forehead 

ground. An average mastoid reference was derived off-line using right mastoid data. 

The electro-oculogram (EOG) was recorded from Ag/AgCl electrodes above and below 

the left eye and external to the outer canthus of each eye. Impedances were kept below 

10 KΩ. EEG and EOG were amplified by SYNAMPS DC amplifiers (Neuroscan Labs, 

Sterling, Virginia, USA) and filtered on-line from .01 to 100 Hz (half-amplitude 

cutoffs). The data were digitized at 500 Hz. 
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EEG epochs of 1100 ms (100 ms baseline) were extracted off-line from the continuous 

data file for analysis. Ocular artifacts were corrected using the algorithm described in 

Gratton, Coles and Donchin’s paper (Gratton, Coles & Donchin, 1983). Statistical 

analyses were performed on the data without any additional filtering. The data 

presented in the figures were filtered with a nine point Chebyshev II low-pass digital 

filter with a half-amplitude cutoff at 12 Hz (Matlab 7.04; Mathworks, Natick, MA). For 

all analyses, p values in all main and interaction effects were corrected using the 

Greenhouse-Geisser method for violations of the sphericity assumption in 

repeated-measures effects. 

Results 

The FRN 

Figure 2.2 presents the ERPs for congruent-gain, congruent-loss, incongruent-gain 

and incongruent-loss feedback for the similar and dissimilar sets at electrode FCz 

where the FRN is frequently maximal. The FRN is characterized by the negative 

deflection that peaked about 300 ms following the feedback. 

 
Figure 2.2. Experiment 1 ERP waveforms at electrode FCz. Similar (left, E/F) and dissimilar 

sets (right, S/T) are displayed separately. 

Figure 2.3 and Figure 2.4 present the topographic maps of the FRN between 250 ms 

and 350 ms following the feedback onset respectively for the loss-minus-gain 
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difference waveforms and the incongruent-minus-congruent difference waveforms, 

suggesting a medial-frontal distribution of the FRN.  The FRN mean amplitude 

between 250 ms and 350 ms following the feedback was measured at FCz. A 2×2×2 

three-way repeated-measures ANOVA with factors set type, reward valence and 

congruency revealed main effects in the reward valence (gain vs. loss; F (1, 11) = 19.31, 

p< 0.01) and the congruency (congruent vs. incongruent; F (1, 11) = 9.83, p< 0.01), in 

addition to an interaction between reward valence and congruency (F (1, 11) = 8.11, p< 

0.05) as well as between reward valence and set type (F (1, 11) = 5.10, p< 0.05). 

However, no other main effect or interaction effects were found. In general, loss 

feedback elicited a larger FRN than gain feedback, and incongruent feedback elicited a 

larger FRN than congruent feedback. Simple-effect analyses showed that the 

congruency effect was evident only in the gain feedback (F (1, 11) =14.44, p<0.01), but 

not in the loss feedback (F (1, 11) =2.57, p>0.10). The reward effect was larger in the 

DIS sets than that in the SIM sets.  

 

Figure 2.3. Experiment 1 topographic maps of difference waveforms between congruent loss 
and congruent gain feedback conditions. Similar (left, E/F) and dissimilar sets (right, S/T) are 

displayed separately. 
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Figure 2.4. Experiment 1 topographic maps of difference waveforms between incongruent gain 
and congruent gain feedback conditions. Similar (left, E/F) and dissimilar sets (right, S/T) are 

displayed separately. 

Inspection of the ERP waveforms in Figure 2.2 suggested that the mean amplitude 

analysis using 250-350 ms as the time window may not best catch the late enhancement 

of the FRN in the incongruent-loss feedback condition, so a baseline-to-peak 

measurement was conducted at FCz as well. The peak amplitude of the FRN was 

defined as the most negative value of the ERP waveforms between 200 ms and 400 ms 

following the feedback, and the peak latency of the FRN was defined as the time when 

the most negative peak occurred. For the peak amplitude analysis, a 2×2×2 three-way 

repeated-measures ANOVA with factors set type, reward valence and congruency 

revealed main effects in reward valence (gain vs. loss; F (1, 11) = 10.12, p<0.01) and 

congruency (congruent vs. incongruent; F(1, 11) =9.52, p<.01), which were consistent 

with the findings in the mean amplitude analysis. The two interactions that were 

significant in the mean amplitude analyses became marginally significant in the peak 

amplitude analyses (reward valence by set type: F (1, 11) =4.66, p =0.053; reward 

valence by congruency: F (1, 11) =4.65, p=0.054). Nevertheless, the interaction 

between set type and congruency, which was not significant in the mean amplitude 

analysis, became significant in the peak amplitude analysis (F (1, 11) =6.21, p<0.05). 

Consistent with the analysis of the mean amplitude data, simple-effect analyses of the 

peak amplitude data showed that the congruency effect was evident only in the gain 

feedback (F (1,11) =19.60, p<0.01) but not in the loss feedback (F(1,11) =1.70, p>0.10), 

and the reward effect was significant in the DIS sets (F (1, 11) =10.28, p<0.01), and 
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marginally significant in the SIM sets (F (1,11) =4.31, p=.06). In addition, the 

congruency effect was found significant in the DIS sets (F (1, 11) =9.79, p<0.01) but 

not in the SIM sets (p>0.10).  

For the peak latency analysis, the omnibus ANOVA revealed a main effect of 

congruency (F (1, 11) =8.32, p<0.05). Incongruent feedback had a later FRN peak than 

congruent feedback. There were no other main effects or interaction effects (p>0.10) 

The P300 

The P300 was characterized by the positive waveform enhanced between 300 ms and 

500 ms following the feedback as shown in Figure 2.5. 

 

Figure 2.5. Experiment 1 ERP waveforms at electrode Pz. Similar (left, E/F) and dissimilar sets 
(right, S/T) are displayed separately. 

The mean amplitude between 300 ms and 500 ms after the onset of the feedback 

stimulus was measured at electrode Pz (where the P300 is frequently maximal). A 

2×2×2 three-way repeated-measures ANOVA with factors set type, reward valence and 

congruency revealed main effects in the reward valence (gain vs. loss; F (1, 11) = 14.58, 

p< 0.01) and the congruency (congruent vs. incongruent; F (1, 11) = 11.52, p< 0.01). 
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Gain feedback elicited a larger P300 than loss feedback, and congruent feedback 

elicited a larger P300 than incongruent feedback. There were no other statistically 

significant main effects or interactions.  

The baseline-to-peak measurement was also conducted: the peak amplitude of the P300 

was defined as the most positive value between 300 ms and 600 ms after the onset of 

the feedback, and the peak latency was defined as the time when the most positive peak 

occurred. Statistical analyses on the peak amplitude and the peak latency data showed 

that gain feedback elicited a larger (F (1, 11) =11.09, p<0.01) and an earlier P300 (F (1, 

11) =5.36, p<0.05) than loss feedback. Congruent feedback elicited a larger P300 than 

incongruent feedback (F (1, 11) =15.26, p<0.01). There were no other main effects or 

interaction effects found in these analyses. 

Experiment 1 Summary 

Experiment 1 results obtained by manipulating the reward valence, congruency and 

perceptual similarity of the feedback stimuli in a gambling task are summarized as 

follows. First, consistent with previous research reports (Gehring & Willoughby, 2002; 

Yeung & Safney, 2004; Hajack et al., 2005a), loss feedback elicited a larger FRN than 

gain feedback. A second and rather unanticipated result according to the RL-ERN 

theory was that the incongruent gain feedback elicited a greater and delayed FRN-like 

negativity than the congruent gain feedback. Third, dissimilar-letter feedback had both 

a larger FRN reward valence effect (i.e., loss minus gain feedback) and a larger FRN 

congruency effect (i.e., incongruent minus congruent feedback) than similar-letter 

feedback. Fourth, gain feedback elicited a larger and earlier P300 than loss feedback, 

and congruent feedback elicited a larger and earlier P300 than incongruent feedback. 

The perceptual mismatch hypothesis could interpret the three FRN results as follows. 

First, the perceptual system is tuned for gain-related perceptual attributes, and the 

delivery of the loss feedback mismatches this tuning and leads to an enhancement of the 

FRN in the general loss condition. Second, the external mismatch presented in the 

incongruent feedback stimuli could lead to a larger FRN-like negativity in the 

incongruent feedback than in the congruent feedback. Third, the larger FRN reward 
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effect and congruency effect shown in the dissimilar letter feedback compared to the 

similar letter feedback confirm that it is respectively the internal and external 

perceptual mismatches that lead to the FRN effects rather than other kinds of 

mismatches, for example, semantic mismatch between gain and loss feedback or 

between target and flanker letters. 
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Experiment 2: Single object gambling task 

Design and Rationale 

In Experiment 2, the perceptual properties of the feedback stimuli were manipulated to 

investigate how the FRN may be affected by the perceptual salience of the feedback 

stimuli and the perceptual similarity between gain and loss outcomes. In the experiment, 

gain and loss reward information were indicated by several pairs of single objects with 

different perceptual properties, including a pair of colored squares, a pair of irregular 

shapes, a pair of similar letters and a pair of dissimilar letters. Color and shape were 

considered as more salient than letters because people can recognize color and shape 

early before they learn to read. Experimental results found that color is recognized 

faster than letters (Flowers et al., 2004). Thus it was expected to see an earlier and/or 

larger FRN effect in response to the salient color and shape feedback than to 

non-salient letter feedback, because salient information could be processed more 

efficiently by the monitoring system. Meanwhile, as in Experiment 1, a larger FRN 

reward effect was expected to be observed on dissimilar letter feedback trials than on 

similar letter feedback trials because the internal mismatch between the actual outcome 

and the perceptual tuning in the perceptual system would be larger in the dissimilar 

letter feedback than in the similar letter feedback. 

Methods 

Participants 

There were twenty-four participants (twelve males and twelve females) aged between 

18 and 23. All were right-handed, had normal or corrected-to-normal vision, and 

normal color vision. Prior to the test, participants provided written informed consent in 

accordance with the Institutional Review Board of the University of Michigan. They 

received three-hours-worth of course credit and a three-to-five dollar bonus for their 

participation. The data from six participants (two males) were excluded from the 

analyses due to excessive artifacts in the raw EEG data. 
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Procedure 

The participants were seated comfortably 60 cm in front of a fourteen-inch CRT 

computer monitor in a dimly lit, sound-attenuating and electromagnetically shielded 

room.  They were instructed to remain as still as possible and to minimize eyeblinks 

throughout the experiment. Materials were presented using E-prime (Psychological 

Software Tools, Pittsburgh, PA). On each trial of the experiment (see Figure 2.6 for an 

example), the participants were presented with two identical round chips displayed at 

the center of the screen following a 500 ms central fixation, and were instructed that 

one chip included a gain and the other one included a loss. Chips remained on the 

screen until the participants selected one of them by pressing a button with their left or 

right index finger, corresponding to the location of the chosen chip. One thousand and 

eight hundred milliseconds after their response, the reward information indicating 

whether they won or lost on the trial came up and was present for 1000 ms. The 

inter-trial interval (ISI) was 1000 ms. 

 

Figure 2.6. A schematic representation of Experiment 2. 

The reward information was represented by color, shape, similar letter and different 

letter in four types of trial sets respectively. The feedback stimuli used in Experiment 2 
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are shown in Table 2.2. In the color sets, gain and loss information were indicated by 

one red and one blue color square; in the shape sets, gain and loss information were 

indicated by two six-angle Atteneave shapes ( Atteneave, 1957) with medium similarity; 

in the similar letter sets, gain and loss information were indicated by two visually 

similar letters— E and F; and in the different letter sets, gain and loss information were 

indicated by two visually different letters— S and T. Participants completed two 

randomized replicates of four set of trials. Each replicate comprised four trial sets with 

four different types. All participants completed a total of eight sets. Each set started 

with 50 cents as the initial allotment, and for each trial participants won or lost five 

cents. On average the participants received a three-to-five dollar bonus. There were 110 

trials for each set, and the participants were given summary information about the 

bonus they had earned every eleven trials. The reward information each feedback 

stimulus indicated was revealed to the participants at the beginning of the experiment, 

and was counterbalanced among the participants. The feedback was randomly chosen 

from a set of equal numbers of gain and loss feedback. On average, the percentage of 

gain or loss was approximately 50%.  

 

 Reward 
Valence  

Feedback 
Stimuli 

Gain  Color 
Loss  
Gain   

Shape Loss  
Gain E Similar 

Letter Loss F 
Gain S Dissimilar 

Letter Loss T 

Table 2.2. Experiment 2 example of the feedback stimuli. 

Electrophysiological Methods 

The electrophysiological methods in Experiment 2 were identical to those in 

Experiment 1. 
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Results 

Behavioral Results 

Figure 2.7 presents how frequently participants changed their response depending on 

the outcome of previous choices. A paired-sample t-test indicated that participants 

switched their response more frequently when the outcome of their previous choice was 

a loss (68%) compared to when it was a gain (60%, p<0.05), suggesting that 

participants adjusted their behavior according to the feedback. 

 
Figure 2.7. Experiment 2 behavioral results. 
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Electrophysiological Results 

The FRN 

 

Figure 2.8. Experiment 2 ERP waveforms at electrode FCz. (a) color sets; (b) shape sets; (c) 
dissimilar letter sets; (d) similar letter sets. 

Figure 2.8 presents the ERPs for gain and loss feedback for the color, shape, similar 

letter and different letter sets at electrode FCz. The FRN was characterized by the 

negative deflection that peaked about 200-300 ms following negative feedback. The 

FRN mean amplitude between 200 ms and 300 ms following the feedback was 

measured at electrode FCz. A 4×2 two-way repeated-measures ANOVA with factors 

set type(color, shape, dissimilar and similar letter sets) and reward valence(gain vs. 

loss)revealed a main effect in reward valence, F (1, 17) =22.09, p<.001. Loss feedback 

elicited a larger FRN than gain feedback. There was no interaction between set type and 

reward valence (F (3, 51) = 2.29, p>.10). Planned contrasts showed that color and shape 

sets elicited larger FRN reward effects than similar letter sets (F (1, 17) =7.25, p<0.05), 

but not larger than dissimilar letter sets (F<1). In addition a 2×2 two-way 

repeated-measures ANOVA analyses in the letter feedback sets revealed a marginally 

significant interaction between set type (similar vs. dissimilar letter) and reward 

valence (gain vs. loss) (F (1, 17 =3.67, p<0.10), suggesting the FRN in the dissimilar 
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sets tended to be larger than in the similar sets.  

The P300 

The P300 was measured as the mean amplitude between 250 ms and 450 ms after the 

onset of the feedback stimulus at electrode Pz (see figure 2.9). A 4×2 two-way 

repeated-measures ANOVA with factors set type(color, shape, dissimilar and similar 

letter sets) and reward valence(gain vs. loss)revealed a main effect in reward valence  

(F (1, 17) =20.58, p<0.001) and a marginally significant main effect in set type (F (3, 51) 

= 2. 70, p<.10). There was no interaction between set type and reward valence (F < 1). 

Gain feedback elicited a larger P300 than loss feedback. Planned contrasts did not show 

FRN effect difference between salient and less salient sets (F < 1). Similar letter 

feedback elicited a larger P300 than dissimilar letter feedback. 

 
Figure 2.9. Experiment 2 ERP waveforms at electrode Pz. (a) color and shape sets; (b) 

dissimilar and similar letter sets. 

The P300 baseline-to-peak amplitude and the peak latency were measured between 250 

ms and 450 ms after the onset of the feedback. As in the P300 mean amplitude analyses, 

statistics on the P300 peak amplitude revealed a main effect of reward valence (F (1, 17) 

=15.49, p<.01). There was no main effect of set type (F (3, 51) =2.41, p>.10) or 

interaction effect between set type and reward valence (F<1). For the peak latency 

analyses, a 4×2 two-way repeated-measures ANOVA with factors set type and reward 
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valence revealed a main effect in reward valence (F (1, 17) =4.89, p<0.05) and a 

marginally significant main effect in set type (F (3, 51) =2. 95, p=.057). There were no 

interaction effect between set type and reward valence (F (3, 51) = 1, p>.10). Gain 

feedback elicited an earlier P300 than loss feedback. Planned contrasts showed that 

color and shape sets elicited an earlier P300 than similar and dissimilar sets. 

Experiment 2 Summary 

Experiment 2 results obtained by using four pairs of feedback with different perceptual 

properties in a gambling task are summarized as follows. In all the four types of sets, 

loss feedback elicited a larger FRN than gain feedback. Participants switch their 

response choice more often after a loss outcome than after a gain outcome, suggesting 

that they knew whether they won or lost during the trial and that they adjusted their 

behavior on-line according to their received feedback. The FRN reward valence effect 

in color and shape sets was larger than in similar letter sets, suggesting that the FRN 

reward valence effect was affected by the perceptual salience of the feedback 

information. However, the lack of a difference in the FRN effect between color/shape 

and dissimilar letter sets, may suggest that it is not perceptual salience per se but 

perceptual mismatch that is responsible for the FRN difference found between 

color/shape sets and similar letter sets. In addition, consistent with the research finding 

in Experiment 1, dissimilar letter feedback tended to have a larger FRN reward valence 

effect than similar letter feedback, suggesting that the FRN reward valence effect was 

affected by the degree of the perceptual mismatch between the actual outcome and the 

prepared mental template in the perceptual system. However, this similarity effect on 

the FRN was only marginally significant in Experiment 2. One possible reason is that 

perceptually one single letter in this experiment is not as salient as five letters standing 

together in Experiment 1, and the effect of similarity may be modulated by the salience 

level, leading to a weaker FRN effect in this experiment.  

Overall, gain feedback elicited a larger and earlier P300 than loss feedback, consistent 

with Experiment 1 findings. Salient feedback elicited an earlier P300 than non-salient 

feedback. 
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Experiment 3: Single vs. conjoined feature gambling task 

Design and Rationale 

Experiment 3 contributed to examining how the FRN may be affected by the ease of 

detecting perceptual mismatch. In the experiment, either a single feature or a set of 

conjoined features was designated to indicate gain and loss reward information in a 

gambling task. When the reward information was indicated by a single feature, the 

perceptual mismatch between the actual outcome and perceptual tuning in the 

perceptual system is easy to detect because the detection of a single feature may rely on 

the pop-out principle and the comparison between two single features is also very fast. 

When the reward information was indicated by conjoined features, the perceptual 

mismatch may be hard or take a long time to detect because the detection of the 

conjoined feature and the comparison between two conjoined features demand a lot of 

attention resources according to Treisman’s feature integration theory (Treisman & 

Gelade, 1980). Consequently, it was predicted that the FRN reward effect may be 

delayed or diminished in the conjoined feature sets than in the single feature feedback. 

Methods 

Participants 

There were nineteen participants (eight males and thirteen females) aged between 18 

and 23. All were right-handed, had normal or corrected-to-normal vision, and normal 

color vision. Prior to the test, participants provided written informed consent in 

accordance with the Institutional Review Board of the University of Michigan. They 

received three-hours-worth of course credit and a three-to-five dollar bonus for their 

participation. The data from six participants (two males) were excluded from the 

analyses: two participants were excluded because they were too sleepy to conduct the 

experiment; one participant was excluded because of the wrong operation of the 

experimenter; two more participants were excluded because of excessive artifacts  
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Procedure 

The procedure in Experiment 3 was same as that of Experiment 1, except that the 

stimuli used to indicate the reward information were different (see Table 2.3).  

 

 Reward Valence  Feedback Stimuli 
Gain     Single feature 

Color  Loss     
Gain     Single feature 

shape Loss     
Gain     Conjoined 

feature Loss     

Table 2.3. Experiment 3 example of the feedback stimuli.  

In the experiment, four stimuli— red circle, red square, blue circle and blue square, 

served as the feedback. There were three types of sets: single feature color sets, in 

which the reward information was indicated by a certain color (e.g., gain was indicated 

by red circle and square); single feature shape sets, in which the reward information 

was indicated by a certain shape (e.g., gain was indicated by red circle and blue circle); 

conjoined color-shape feature sets, in which the reward information was indicated by 

conjoined features (e.g., gain was indicated by red circle and blue square). Each type of 

sets had three sets presented together, and the presentation sequence of the three types 

of sets was counterbalanced among the participants. All other parameters were identical 

to Experiment 2. 

Electrophysiological Methods 

The electrophysiological methods in Experiment 3 were identical to those in 

Experiment 1. 
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Results 

Behavioral Results 

 

Figure 2.10. Experiment 3 behavioral results. Left, for all sets; right, for conjoined sets. 

Figure 2.10 shows that participants switched their response more frequently after loss 

feedback than after gain feedback (p<0.05). Especially in conjoined feature sets, the 

switch rate after loss feedback was significantly greater than after gain feedback 

(p<0.01), suggesting that participants could discriminate gain from loss even in 

conjoined feature sets.  

Electrophysiological Results 

The FRN 

As in Experiment 2, the FRN mean amplitude between 200 ms and 300 ms following 

the feedback was measured at FCz (see Figure 2.11). A 3×2 two-way 

repeated-measures ANOVA with factors set type and reward valence revealed main 

effects in set type (F (2, 24) =5.01, p<0.05) and reward valence (F (1, 12) =22.70, 

p<0.01), in addition to an interaction between set type and reward valence (F (2, 24) 

=4.14, p<0.05). Subsequent analyses showed that in single feature sets, loss feedback 

elicited a larger FRN than gain feedback (F (1, 12) =34.05, p<0.01), and there was no 

main effect or interaction effect related to set type; in conjoined feature sets, there was 
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no difference between gain and loss feedback (F<1) in the FRN latency window. 

Inspection of the ERP waveforms in Figure 2.11 suggested a later FRN in conjoined 

feature sets. However, a mean amplitude between 400 ms and 500 ms as a possible late 

FRN amplitude was measured for conjoined feature feedback, but there was no 

significant difference found between gain and loss feedback (F (1, 12) =1.60, p>0.1)  

 

Figure 2.11. Experiment 3 ERP waveforms at electrode FCz. (a) color sets; (b) shape sets; (c) 
conjoined sets; (d) difference waveforms in the three types of sets. 

 

The P300 

The P300 was measured as the mean amplitude between 250 ms and 450 ms after the 

onset of the feedback stimuli at electrode Pz (see Figure 2.12). A 3×2 two-way 

repeated-measures ANOVA with factors set type and reward valence revealed a 

marginally main effect in reward valence (F (1, 12) =4.02, p=0.068) and a marginally 

significant main effect in set type (F (2, 24) =3.48, p =0.060), but no interaction effect 

between set type and reward valence (F<1). Overall gain feedback appeared to elicit a 



 

 47

larger P300 than loss feedback. Conjoined feature sets had a smaller P300 than single 

feature sets (F (1, 12) =12.20, p<0.01). 

 
Figure 2.12. Experiment 3 ERP waveforms at electrode Pz. Left, color sets; middle, shape sets; 

right, conjoined sets 

 

Experiment 3 Summary 

Experiment 3 results obtained by using single-feature or conjoined-features reward 

stimuli in a gambling task are summarized as follows. In single-feature sets, loss 

feedback elicited a larger FRN than gain feedback. In conjoined feature sets, there was 

no difference between loss and gain feedback in terms of the FRN amplitude, although 

behaviorally participants switched their response choice more often after a loss 

outcome than after a gain outcome in these sets suggesting that participants know 

whether they won or lost on that trial. Overall gain feedback appeared to have a larger 

P300 than loss feedback. Single-feature feedback elicited a larger P300 than 

conjoined-features feedback. 
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Chapter II Discussion 

In this chapter, three experiments were conducted to investigate how the FRN may be 

affected by the perceptual properties of the feedback stimuli. It was found that in 

general, loss feedback elicited a larger FRN than gain feedback and this FRN reward 

effect was modulated by the perceptual salience of the feedback stimuli and the 

perceptual difference between gain and loss feedback stimuli. Specifically, salient 

feedback stimuli had a larger FRN reward effect than non-salient feedback stimuli. 

When the reward information was indicated by conjoined perceptual features rather 

than single perceptual feature, the FRN reward effect was diminished. One of the most 

interesting results is that the FRN reward effect was larger when the gain and loss 

feedback were indicated by two perceptually different letters compared to when they 

were indicated by two perceptually similar letters, suggesting that the perceptual 

similarity between gain and loss feedback stimuli affected the FRN amplitude. 

Furthermore, the presence of the flanker letters that were different from the target letter 

enhanced the FRN-like negativity in the feedback stimuli especially in the gain 

feedback condition, and this FRN congruency effect was further modulated by the 

similarity between the target and flanker stimuli.  

In the original RL-ERN model, perceptual properties were not considered as a factor 

contributing to the FRN, although Nieuwenhuis et al.(2004b)’s experiments suggested 

that the monitoring system may be only sensitive to the most salient dimension of the 

feedback stimuli. While it is hard for the RL-ERN theory to explain any of the 

experimental findings described above except that the loss feedback elicited a larger 

FRN than the gain feedback, the perceptual mismatch hypothesis can accommodate 

these results in the following ways.  

During the task, the perceptual system was tuned for gain-related perceptual attributes, 

perhaps because participants hoped to win rather than lose money. When gain and 

loss feedback were indicated by single features, mismatch between the actual loss 

feedback and the gain-perceptual-tuning was easy to detect due to the pop-out 

characteristic of the single feature, which enhanced the FRN effect. In contrast, when 

gain and loss feedback were indicated by conjoined features, the conjoined features 

were hard to detect since integration of features requires a lot of attention according to 
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the feature integration theory (Treisman &Gelade, 1980). Correspondingly the 

perceptual mismatch was harder to detect, which led to a delayed or diminished FRN. 

There are two types of mismatch: one is the mismatch in the external stimuli, e.g., 

when the flanker letters and the target letter are different, and the other is the 

mismatch between the actual loss outcome and the gain perceptual tuning in the 

perceptual system. Each type of mismatch would elicit an FRN-like negativity, and 

the FRN effects in both cases were found to be sensitive to the degree of perceptual 

mismatch. 

In addition to the FRN effect, it was found that behaviorally participants switch more 

often after they receive a loss feedback compared to when they receive a gain 

feedback, and the FRN effect does not always correspond to this behavioral switch 

effect. Furthermore, it was observed that a larger P300 was elicited by a gain 

feedback than by a loss feedback, and by a congruent feedback than by an 

incongruent feedback. However both the two P300 effects were not modulated by the 

degree of the perceptual mismatch, suggesting that the P300 may affect some mental 

activity after the perceptual mismatch was detected. It was also found that 

single-feature feedback elicited a larger P300 than conjoined feature feedback. 
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Chapter III   Experiment 4-6 

 

The three experiments in this chapter are dedicated to investigating how the FRN 

elicited by the neutral outcome in gambling tasks may be modulated by its perceptual 

similarity to gain/loss feedback and the presence of interference information in the 

feedback stimuli. 

Experiment 4: Shape gambling task 

Design and Rationale 

In Experiment 4, the perceptual similarity between neutral and gain/loss feedback 

stimuli were manipulated to examine whether the FRN elicited by the neutral feedback 

may be affected by this manipulation. In the experiment, some regular shapes were 

chosen to denote gain, neutral and loss reward information. In some sets, neutral and 

gain feedback were indicated by similar shapes, but loss feedback was different. In 

other sets, neutral and loss feedback were indicated by similar shapes, but gain 

feedback was different. In still other sets, all the gain, neutral and loss feedback were 

indicated by different shapes. If the perceptual attributes of the feedback stimuli 

modulated the FRN activity elicited by the neutral feedback, it would be expected that 

the neutral FRN would be smaller when the neutral feedback was similar to the gain 

feedback compared to when it was different from the gain feedback. If the gain-related 

feedback rather than the loss-related feedback were primed to be compared to the 

sensory analysis outcome of the actual received feedback, it would not make much 

difference in terms of the neutral FRN activity between the sets where neutral and loss 

feedback were similar and the sets where neutral and loss feedback were different.
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Methods 

Participants 

There were seventeen participants (ten males and seven females) aged between 18 and 

30. All were right-handed, had normal or corrected-to-normal vision, and normal color 

vision. Prior to the test, participants provided written informed consent in accordance 

with the Institutional Review Board of the University of Michigan. They received a 

monetary payment for their participation 

Procedure 

The participants were seated comfortably 60 cm in front of a fourteen-inch CRT 

computer monitor in a dimly lit, sound-attenuating and electromagnetically shielded 

room.  They were instructed to remain as still as possible and to minimize eyeblinks 

throughout the experiment. Materials were presented using E-prime (Psychological 

Software Tools, Pittsburgh, PA). On each trial of the experiment (see Figure 3.1 for an 

example), the participants were presented with three identical chips at the center of the 

computer screen following a 300 ms central fixation, and were instructed that each chip 

was associated with gain, neutral or loss feedback information. Chips remained on the 

screen until the participants selected one of them by pressing its corresponding button 

with their right index finger. One thousand milliseconds after their response, the reward 

information came up and was present for 600 ms. The inter-trial interval (ISI) was 300 

ms. 
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Figure 3.1. A schematic representation of Experiment 4. 

The reward information was indicated by different simple shapes. There were three 

types of sets, where the similarity of the shapes indicating gain, neutral and loss were 

manipulated (See Table 3.1). In one type of sets, gain, neutral and loss feedback were 

indicated by three different shapes, e.g., first quarter moon ( ), equilateral triangular 

( ), and cross ( ). In another sets, called L sets, the shape indicating the neutral 

feedback ( ) was similar to that indicating the loss feedback ( ), and the shape 

indicating the gain feedback ( ) was different from that indicating neutral or loss 

feedback. In the G sets, the shape indicating the neutral feedback ( ) was similar to 

that indicating the gain feedback ( ), and the shape indicating the loss feedback ( ) 

was different from that indicating the gain or neutral feedback. Participants completed 

three replicates of the three set types, with 120 trials in each replicate. The three D sets 

were always presented first, followed by the three G sets or the three L sets. The 

sequence of the three G set replicates and the three L set replicates were 

counterbalanced among the participants. Each set replicate started with 50 cents as the 

initial allotment, and for each trial they won or lost five or zero cent(s). For each set 

replicate, participants won or lost a small amount of money (e.g., 0 to 85 cents), but 

overall there were equal numbers of gain, neutral and loss feedback and each 

participant received a six dollar bonus at the end of the experiment.  
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Set Type Reward 
Valence  

Feedback 
Stimuli 

Gain 
 

 
Neutral  

D 

Loss  
Gain  
Neutral  

 
L 

Loss  
Gain  
Neutral  

G 

Loss  

Table 3.1. Experiment 4 example of the feedback stimuli. 

Electrophysiological Methods 

The electrophysiological methods used in Experiment 4 were very similar to those used 

in Experiment 1. All recording and analysis parameters were the same with one 

exception: twenty-two (rather than twenty-six ) scalp electrodes were used, positioned 

at sites Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T7, C3, Cz, C4, T8, CPz, P7, P3, 

Pz, P4, P8, and Oz. 

Results 

Behavioral Results 

As in the analyses in previous experiments, the frequency in which participants 

switched their response depending on the outcome of their previous choice was 

examined and plotted in Figure 3.2. In all the three types of sets, participants switched 

their response more often when their previous choice led to a neutral or loss feedback 

compared to when it led to a gain feedback (D sets: F(1,16)=9.01, p<0.01; L and G sets: 

F(1,16) = 17.82, p=.001), and they switched more often when the outcome was a loss 

feedback compared to when it was a neutral feedback (D sets: F(1,16)=5.78, p<0.05; L 

and G sets: F(1,16) = 8.46, p<0.01). 
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Figure 3.2. Experiment 3 behavioral results. In D sets(left), gain, neutral and loss information 
were indicated by three different shapes; in L sets(middle), neutral is more similar to loss than 

to gain; in G sets(right), neutral is more similar to gain than to loss.  

Electrophysiological Results 

The FRN 

Consistent with Experiment 2 and 3, the FRN mean amplitude between 200 ms and 

300 ms following the feedback was measured at FCz (see Figure 3.3).  

 

Figure 3.3. Experiment 4 ERP waveforms at electrode FCz. (a) D sets; (b) L sets; (c) G sets. 
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A 3×3 two-way repeated-measures ANOVA with factors set type and reward valence 

revealed a main effect in reward valence (F (2, 32) =14.31, p<0.01) and an interaction 

between set type and reward valence (F (4, 46) =3.1, p<0.05). Neutral and loss 

feedback elicited a larger FRN than gain feedback (F (1, 16) =20.7, p<.001), and there 

was no difference between neutral and loss feedback (F<1). Two repeated-measures 

ANOVAs were separately performed on D vs. L set type by reward valence and on D vs. 

G set type by reward valence. The interaction between the two factors was not 

significant for set type (D vs. L) and reward valence (F<1), suggesting that the FRN 

reward valence effect was similar between D and L sets. However the interaction was 

significant for set type (D vs. G) and reward valence (F (2, 32) =5.39, p<0.05). Neutral 

feedback in G sets had a smaller FRN effect than in D sets (F (1, 16) =17.43, p<.001), 

suggesting that the similarity between neutral and gain feedback modulated the FRN 

activity of the neutral feedback in G sets. 

The P300 

The P300 amplitude was measured as the mean amplitude between 250 ms and 350 ms 

at Pz (see Figure 3.4).  

 
Figure 3.4. Experiment 4 ERP waveforms at electrode Pz. (a) D sets; (b) L sets; (c) G sets 

A 3×3 two-way repeated-measures ANOVA with factors set type and reward valence 

revealed main effects in set type (F (2, 32) =13.26, p<.001) and reward valence (F (2, 

32) =30.76, p<0.001), in addition to an interaction between set type and reward valence 

(F (4, 64) =3.67, p<0.05). Overall D sets had a larger P300 activity than L and G sets (F 

(1, 16) =19.19, p<0.001), and there was no difference between L and G sets (F<1). Gain 



 

 56

feedback elicited a larger P300 than neutral and loss feedback (F (1, 16) =46.31, 

p<0.001), and the P300 difference between neutral and loss feedback was marginally 

significant (F (1, 16) =3.32, p=0.08).  As the FRN analyses, two ANOVAs were 

conducted separately on set type (D vs. L) by reward valence and on set type (D vs. G) 

by reward valence. The interaction between the two factors was not significant for set 

type (D vs. L) and reward valence (F<1), suggesting that the P300 effect was similar 

between D and L sets. However the interaction was significant for set type (D vs. G) 

and reward valence (F (2, 32) =4.61, p<0.05). Neutral feedback in G sets had a smaller 

P300 effect than in D sets (F (1, 16) =8.53, p<.01), suggesting that the similarity 

between neutral and gain feedback modulated the P300 activity of the neutral feedback 

in G sets.  

 

Experiment 4 Summary 

Experiment 4 results obtained by manipulating the similarity among the gain, neutral 

and loss feedback in a gambling task are summarized as follows. Behaviorally 

participants switch their response choice more often after loss feedback than after 

neutral feedback, and more often after neutral feedback than after gain feedback. In all 

the sets, neutral and loss feedback elicited larger FRNs than gain feedback. However, 

the evoked FRN pattern among the three types of feedback were similar between D and 

L sets, and different between D and G sets, suggesting that in G sets the similarity 

between neutral and gain feedback reduced the perceptual mismatch between the 

received neutral feedback and primed gain feedback and evoked a smaller FRN. P300 

showed effects similar to the FRN.
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Experiment 5: HBS flanker gambling task 

Design and Rationale 

In Experiment 5, a flanker gambling task was used to investigate how the FRN elicited 

by the neutral target may be modulated by the presence of gain or loss flanker 

information along with the neutral target feedback.  

In the flanker gambling task, three letters were designated to respectively indicate gain, 

neutral and loss reward information. As in Experiment 1, the feedback stimulus 

consisted of five letters, and only the central letter conveyed the reward information. 

There were nine types of flanker string: Tgain_Fgain, in which the central letter 

indicated gain feedback, and the flanker letters were identical to the central letter, e.g., 

HHHHH; Tgain_Fneut, in which the central letter indicated gain feedback, and the 

flanker letters indicated neutral feedback; Tgain_Floss, in which the central letter 

indicated gain feedback, and the flanker letters indicated loss feedback; Tneut_Fgain, 

in which the central letter indicated neutral feedback, and the flanker letters indicated 

gain feedback; Tneut_Fneut, in which the central letter indicated neutral feedback, and 

the flanker letters were identical to the central letter; Tneut_Floss, in which the central 

letter indicated a neutral feedback, and the flanker letters indicated loss feedback; 

Tloss_Fgain, in which the central letter indicated loss feedback, and the flanker letters 

indicated gain feedback; Tloss_Fneut, in which the central letter indicated loss 

feedback, and the flanker letters indicate neutral feedback; Tloss_Floss, in which the 

central letter indicated loss feedback, and the flanker letters indicate loss feedback. 

Among the nine types of feedback, Tgain_Fgain, Tneut_Fneut and Tloss_Floss were 

congruent feedback, and Tgain_Fneut, Tgain_Floss, Tneut_Fgain, Tneut_Floss, 

Tloss_Fgain, Tloss_Fneut were incongruent feedback.  

It was predicted that congruent neutral and loss feedback would elicit larger FRNs than 

congruent gain feedback, and there would be no difference between congruent neutral 

and loss feedback. In general, incongruent feedback would elicit a larger FRN than 

congruent feedback. Particularly, in the gain condition, there would not be much 

difference between Tgain_Tneut and Tgain_Floss; in the neutral condition, 
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Tneut_Floss may have a larger FRN than Tneut_Fgain because the appearance of 

gain-related features in the flanker letters may modulate the FRN amplitude evoked by 

the perceptual mismatch between the central neutral target and the prepared 

gain-related feature in the sensory system; for the same reason, in the loss condition 

Tloss_Fneut may have a larger FRN than Tloss_Fgain.   

Methods 

Participants 

There were twelve participants (three males and nine females) aged between 18 and 23. 

All were right-handed, had normal or corrected-to-normal vision, and normal color 

vision. Prior to the test, participants provided written informed consent in accordance 

with the Institutional Review Board of the University of Michigan. They received a 

monetary payment for their participation. 

Procedure 

The procedure in Experiment 5 was similar to that in Experiment 1 with the following 

exceptions. There were three doors of different colors (red, blue and green) rather than 

four red doors apposed on the screen. The participants chose one door using their right 

index finger by pushing a button corresponding to the location of the chosen door. One 

thousand milliseconds after their choice, one of the three types of the reward 

information—gain, neutral and loss—would appear. For the gain or loss feedback, the 

participant won or lost 25 cents on the trial; for the neutral feedback, the participants 

did not win or lose any money on the trial. The three doors’ position (left, middle or 

right) was randomly assigned during each trial. At the beginning of the experiment, H 

and S were assigned to indicate gain or loss feedback (the assignment was 

counterbalanced among the participants) and B always indicate a neutral feedback. 

There were nine types of feedback stimuli which are shown in Table 3.2. Participants 

completed ten sets of experimental material, with 90 trials in each set. Each set started 

with 50 cents as the initial allotment and participants were given summary information 

about the bonus they had earned every ten trials. The feedback was randomly chosen 

from a set of equal numbers of each type of feedback stimuli listed in Table 3.2. On 
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average, there were roughly equal numbers of gain, neutral and loss feedback. The ratio 

of congruent to incongruent trials was 1:2. 

 

Reward 
Valence  

Flanker types Congruency Type name Feedback 
Stimuli 

Gain Gain Congruent Tgain_Fgain HHHHH 
Gain Neutral Incongruent Tgain_Fneut BBHBB 
Gain Loss Incongruent Tgain_Floss SSHSS 
Neutral Gain Congruent Tneut_Fgain HHBHH 
Neutral Neutral Incongruent Tneut_Fneut BBBBB 
Neutral Loss Incongruent Tneut_Floss SSBSS 
Loss Gain Congruent Tloss_Fgain HHSHH 
Loss Neutral Incongruent Tloss_Fneut BBSBB 
Loss Loss Incongruent Tloss_Floss SSSSS 

Table 3.2. Experiment 5 example of the feedback stimuli.  

Electrophysiological Methods 

The electrophysiological methods in Experiment 5 were identical to those in 

Experiment 1. 

Results 

The FRN 

Figure 3.5 presents the ERPs for congruent gain, congruent neutral and congruent 

loss feedback at FCz; and Figure 3.6 presents the ERPs for gain, neutral and loss 

target feedback which was surrounded by gain, neutral and loss flanker letters at FCz. 
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Figure 3.5. Experiment 5 ERP waveforms at FCz for congruent gain, neutral and loss feedback  

  
Figure 3.6. Experiment 5 ERP waveforms at FCz for (a) gain, (b) neutral and (c) loss target 

feedback  

As Experiment 1, the FRN amplitude was measured as the mean amplitude between 

250 ms and 350 ms following the feedback at FCz. A 3×3 two-way repeated-measures 

ANOVA with factors target and flanker revealed a main effect in target (F (2, 22) 

=17.70, p<0.01), a marginally significant main effect in flanker (F (2, 22) =3.36, p<0.1), 

and an interaction between target and flanker (F (4, 44) =6.7, p<0.01). In the congruent 

condition, loss and neutral feedback elicited a larger FRN than gain feedback (F (1, 11) 

=22.22, p<.001) and there was no FRN difference between congruent neutral and loss 

feedback (F<1). Gain target had a larger FRN when it was surrounded by neutral and 

loss flanker letters compared to when it was surrounded by gain flanker letters (F (1, 11) 
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= 11.57, p<0.01). There was no difference between gain target surrounded by neutral 

and that surrounded by loss flanker letters (F<1). Neutral target had a larger FRN when 

it was surrounded by gain and loss flanker letters, compared to when it was surrounded 

by neutral flanker letters (F (1, 11) = 10.09, p<0.01). There was no difference between 

neutral target surrounded by gain and that surrounded by loss flanker letters (F<1). 

When the target was a loss feedback, there was no FRN difference among the three 

types of flankers (F (2, 22) =2.40, p>0.1).  

The baseline-to-peak measurement was also conducted: the peak amplitude of the FRN 

was defined as the most negative value between 200 ms and 400 ms after the onset of 

the feedback, and the peak latency was defined as the time when the most negative peak 

occurred. The FRN peak amplitude analyses revealed the same results as the FRN mean 

amplitude analyses. A 3×3 two-way repeated-measures ANOVA on the FRN peak 

latency with factors target and flanker revealed a main effect of target (F (2, 22) =4.30, 

p<0.05) and an interaction between target and flanker (F (4, 44) =4.55, p<0.01). In the 

loss condition, Tloss_Floss elicited an earlier FRN than Tloss_Fgain and Tloss_Fneut 

(F (1, 11) =9.59, p<0.05); Tloss_Fneut tended to have an earlier FRN than TLoss_Fgain 

(F (1, 11) =3.29, p=0.097). There was no latency difference among different flankers in 

gain or neutral target conditions. 

It was hypothesized that neutral target letter may elicit a smaller FRN when it was 

surrounded by gain flanker letters, compared to when it was surrounded by loss flanker 

letters. However that difference was not observed as described above. In the experiment 

design, letters indicating gain and loss feedback were counterbalanced across the 

participants. For half of the participants, H indicated a gain feedback and S indicated a 

loss feedback, thus HHBHH and SSBSS respectively indicated Tneut_Fgain and 

Tneut_Floss. For the other half of the participants, S indicated a gain feedback and H 

indicated a loss feedback, thus SSBSS and HHBHH respectively indicated 

Tneut_Fgain and Tneut_Floss. B was chosen to be similar to H as to S. However, B 

may be more similar to one letter than to the other letter. If so, the external perceptual 

mismatch between the target and flanker letters became a confounding factor when 

comparing Tneut_Fgain and Tneut_Floss. To investigate this issue, in the following 

analysis, group information was added as a factor to test whether the specific letter 
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assignment may cause some unexpected effect.The initial analyses were focused on 

how flanker letters may affect the processing of the neutral target letter. A 2×3 two-way 

repeated-measures ANOVA with factors group and flanker type was conducted on 

neutral feedback trials, and revealed a main effect of flanker (F (2, 20) =5.79, p<0.05) 

and an interaction between flanker and group (F (2, 20) =6.90, p<0.05). In Group 1 

where H indicated a gain and S indicated a loss, Tneut_Fgain feedback appeared to 

have a larger FRN than Tneut_Fneut and Tneut_Floss feedback (F (1, 10) =3.50, p<.1; 

see Figure 3.7). In contrast, in Group 2 where H indicated a loss and S indicated a gain, 

Tneut_Floss feedback had a larger FRN than Tneut_Fgain and Tneut_ Fneut feedback 

(F (1, 10) =42.33, p<0.01).  

 
Figure 3.7. Experiment 5 ERP waveforms of neutral feedback at FCz displayed by groups. 

 

  
Figure 3.8. Experiment 5 ERP waveforms of loss feedback at FCz displayed by groups. 
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A similar group analysis was done in loss feedback. As shown in Figure 3.8, in Group 1, 

there was no difference among the three types of flanker letters (p>0.10). However in 

Group 2, Tloss_Fneut feedback had a larger FRN than Tloss_Fgain and Tloss_Floss 

feedback (F (1, 10) =5.47, p<0.05), and there was no difference between Tloss_Fgain 

and Tloss_Floss (F<1). Such group-related effect difference was not evident in the gain 

feedback condition. 

The P300 

The P300 was measured as the mean amplitude between 350 ms and 600 ms (see Figure 

3.8).  

 
Figure 3.9. Experiment 5 ERP waveforms at Pz for (a) gain, (b) neutral and (c) loss target       

A 3×3 two-way repeated-measures ANOVA with factors target and flanker type 

revealed a main effect in target type (F (2, 22) =29.04, p<.001). There was no main 

effect or interaction related to flanker type (main effect, F<1; interaction, F (4, 44) 

=2.54, p>0.10). Gain feedback had a larger P300 than loss and neutral feedback, and 

there was no difference between loss and neutral feedback.  

The P300 baseline-to-peak amplitude and the peak latency were measured between 300 

ms and 650 ms after the onset of the feedback. Statistics on the peak amplitude revealed 

the same effects as those on the above P300 mean amplitude analyses. For the peak 

latency analyses, a 3×3 two-way repeated-measures ANOVA with factors target and 
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flanker type revealed a marginally significant target effect (F (2, 22) =3.12, p<0.1), and 

a marginally significant interaction between target and flanker (F (4, 44) =2.54, p<0.1). 

Post-hoc Newman-Keuls analyses showed that gain feedback tended to elicit an earlier 

P300 than neutral and loss feedback (p<0.1).  

 

Experiment 5 Summary 

Experiment 5 results obtained by using three letters indicating gain, neutral and loss 

feedback in a flanker gambling task are summarized as follows. As in Experiment 4, 

neutral and loss feedback elicited larger FRNs than gain feedback in the congruent 

condition, and there was no difference between congruent neutral and loss feedback. 

When the target was a gain or neutral feedback, incongruent letters (i.e., target and 

flanker letters were different) elicited a larger FRN than did the congruent letters (i.e, 

target and flanker letters were same) overall. This congruency effect of the FRN 

amplitude did not appear for the loss targets. However, incongruent loss feedback 

elicited a later FRN than congruent loss letters. 

As predicted, in the incongruent gain condition, there was no difference between 

Tgain_Fneut and Tgain_Floss. In the incongruent neutral and loss conditions, the 

predicted reduced FRN when the neutral or loss target was surrounded by gain flankers 

was only observed in a subset of the participants. From the neutral feedback, it looks 

like the particular letter combination HHBHH elicited a larger FRN than the other 

neutral incongruent letter combination SSBSS regardless of the reward meaning the 

flanker letters carried. One possible interpretation is that the external perceptual 

mismatch in the letter string HHBHH is larger than in the letter string SSBSS, leading 

to a larger FRN congruency effect in the neutral feedback condition. No similar 

patterns were observed that would account for the results for the loss feedback 

condition. 

Consistent with previous experiments, gain feedback elicited a larger P300 than loss 

feedback, and there was no P300 difference between neutral and loss feedback.  



 

 65

Experiment 6: HKCS gambling task 

Design and Rationale 

In the previous experiments where the flanker gambling task was used, incongruent 

feedback usually elicited a larger FRN than congruent feedback. It was hypothesized 

that the perceptual mismatch existing in the external feedback stimuli contributed to 

this FRN congruency effect; however the semantic mismatch between the target (e.g., 

indicating gain information) and the flanker (e.g., indicating loss information) was a 

confounding factor in previous experiments. In Experiment 6, two letters were 

designated to indicate neutral feedback, thereby creating an incongruent condition 

where target and flanker letters were perceptually different but indicated the same 

reward information. If the perceptual mismatch played a role in the elicitation of an 

incongruent FRN, a neutral target letter surrounded by a different neutral target would 

elicit a larger FRN compared to a neutral target letter surrounded by the same neutral 

target.  

Methods 

Participants 

There were twelve participants (five males and seven females) aged between 18 and 23. 

All were right-handed, had normal or corrected-to-normal vision, and normal color 

vision. Prior to the test, participants provided written informed consent in accordance 

with the Institutional Review Board of the University of Michigan. They received a 

monetary payment for their participation. 

Procedure 

The procedure in Experiment 6 was similar to that in Experiment 5 with the following 

exceptions. The neutral feedback was indicated by two letters (i.e., C and K) rather than 

one letter (i.e., B). Participants completed ten sets of experimental material, with 110 
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(rather than 90) trials in each set. The feedback was randomly chosen from a set of 

feedback stimuli according to the probability listed in column 2 of Table 3.3. On 

average, there were roughly equal numbers of gain, neutral and loss feedback.  

 

Reward 
Valence  

Probability Flanker 
types 

Congruency Type name Feedback 
Stimuli 

Gain 1/9 Gain Congruent Tgain_Fgain HHHHH 
Gain 1/18 Neutral Incongruent Tgain_Fneut1 KKHKK 
Gain 1/18 Neutral Incongruent Tgain_Fneut2 CCHCC 
Gain 1/9 Loss Incongruent Tgain_Floss SSHSS 
Neutral 1/18 Gain Incongruent Tneut1_Fgain HHKHH 
Neutral 1/36 Neutral Congruent Tneut1_Fneut1 KKKKK 
Neutral 1/36 Neutral Incongruent Tneut1_Fneut2 CCKCC 
Neutral 1/18 Loss Incongruent Tneut1_Floss SSKSS 
Neutral 1/18 Gain Incongruent Tneut2_Fgain HHCHH 
Neutral 1/36 Neutral Incongruent Tneut2_Fneut1 KKCKK 
Neutral 1/36 Neutral Congruent Tneut2_Fneut2 CCCCC 
Neutral 1/18 Loss Incongruent Tneut2_Floss SSCSS 
Loss 1/9 Gain Incongruent Tloss_Fgain HHSHH 
Loss 1/18 Neutral Incongruent Tloss_Fneut1 KKSKK 
Loss 1/18 Neutral Incongruent Tloss_Fneut2 CCSCC 
Loss 1/9 Loss Congruent Tloss_Floss SSSSS 

Table 3.3. Experiment 6 example of the feedback stimuli.  

Electrophysiological Methods 

The electrophysiological methods in Experiment 6 were identical to those in 

Experiment 1. 

Results 

There were sixteen types of feedback stimuli which were of three different probabilities. 

In the following analyses, comparisons were conducted among the trials which were of 

the same probability information. Consistent with previous experiments, the FRN 

amplitude was measured as the mean amplitude between 250 ms and 350 ms 

following the feedback at FCz 
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The FRN 

Figure 3.10 presents the ERPs for Tgain_Fgain, Tgain_Floss, Tloss_Floss and 

Tloss_Fgain feedback at FCz. These four types of feedback were of the same 

probability around 1/9. The FRN amplitude was measured as the mean amplitude 

between 280 ms and 380 ms following the feedback at FCz. A 2×2 two-way 

repeated-measures ANOVA with factors reward valence and congruency revealed 

main effects in reward valence (F (1, 11) =30.18, p<0.001) and congruency (F (1, 11) 

=17.85, p<0.01). There was no interaction between the two factors. Loss feedback 

elicited a larger FRN than gain feedback. Incongruent feedback elicited a larger FRN 

than congruent feedback. 

  
Figure 3.10. Experiment 6 ERP waveforms at FCz for (a) gain and (b) loss target feedback   

The baseline-to-peak measurement was also conducted: the peak amplitude of the FRN 

was defined as the most negative value between 200 ms and 400 ms after the onset of 

the feedback, and the peak latency was defined as the time when the most negative peak 

occurred. The FRN peak amplitude analyses revealed the same results as the FRN mean 

amplitude analyses. A 2×2 two-way repeated-measures ANOVA on the FRN peak 

latency with factors reward valence and congruency revealed a main effect in 

congruency (F (1, 11) =8.57, p<0.05). Incongruent feedback elicited a later FRN than 

congruent feedback. There was no main effect in reward valence or interaction between 

the two factors (F<1). 
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Figure 3.11 presents the ERPs for congruent neutral (including both Tneut1_Fneut1 

and Tneut2_Fneut2) and incongruent neutral feedback (including Tneut1_Fneut2 and 

Tneut2_Fneut1) at FCz. Incongruent neutral feedback elicited a larger FRN than 

congruent neutral feedback for both the FRN peak and mean amplitude (peak, 

F(1,11)=13.41, p<0.01; mean, F(1,11)=7.87, p<0.05 ). Incongruent neutral feedback 

tended to have a later FRN peak than congruent neutral feedback (F (1, 11) =4.39, 

p=0.06).  

 

Figure 3.11. Experiment 6 ERP waveforms at FCz for congruent (e.g., CCCCC and KKKKK) 
and incongruent (e.g., CCKCC and KKCKK) neutral feedback   

 

The P300 

The P300 was measured as the mean amplitude between 350 ms and 600 ms (see Figure 

3.12). A 2×2 two-way repeated-measures ANOVA with factors reward valence and 

congruency revealed main effects in reward valence (F (1, 11) =15.39, p<0.01) and 

congruency (F (1, 11) =6.83, p<0.05). There was no interaction between the two factors 

(F<1). Gain feedback had a larger P300 than loss feedback. Congruent feedback 

elicited a larger P300 than incongruent feedback.  
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Figure 3.12. Experiment 6 ERP waveforms for congruent and incongruent gain and loss  

feedback at Pz 

The P300 baseline-to-peak amplitude and the peak latency were measured between 300 

ms and 650 ms after the onset of the feedback. Statistics on the peak amplitude revealed 

the same effects as those on the above P300 mean amplitude analyses. A 2×2 two-way 

repeated-measures ANOVA on the FRN peak latency with factors reward valence and 

congruency revealed marginally significant main effects in reward valence (F (1, 11) 

=4.33, p=0.06) and congruency (F (1, 11) =4.53, p=0.057). Incongruent feedback 

tended to have a delayed P300 relative to congruent feedback. Loss feedback tended to 

have a delayed P300 relative to gain feedback. There was no interaction between the 

two factors (F<1). 

Figure 3.13 presents the ERP waveforms for congruent neutral (including both 

Tneut1_Fneut1 and Tneut2_Fneut2) and incongruent neutral feedback (including 

Tneut1_Fneut2 and Tneut2_Fneut1) at Pz. Congruent neutral feedback elicited a larger 

P300 than incongruent feedback for both the peak and mean amplitude (peak 

amplitude, F (1, 11) =17.18, p<0.01; mean amplitude, F (1, 11) =11.00, p<0.01). 

There was no latency difference between the two types of feedback (F (1, 11) =2.30, 

p>0.10).  
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Figure 3.13. Experiment 6 ERP waveforms at Pz for congruent (e.g., CCCCC and KKKKK) 
and incongruent (e.g, CCKCC and KKCKK) neutral target feedback 

 

Experiment 6 Summary 

Experiment 6 results obtained by using two letters indicating neutral feedback in a 

flanker gambling task are summarized as follows. Consistent with Experiment 1 results, 

loss feedback elicited a larger FRN than gain feedback, and incongruent feedback 

elicited a larger FRN than congruent feedback. The most interesting result was that 

when one neutral target letter was surrounded by four different neutral flanker letters, 

the FRN was larger compared to when one neutral target letter was surrounded by four 

identical flanker letters, suggesting that the FRN congruency effect could not be simply 

explained by semantic mismatch between the target and flanker letters.  

Gain feedback elicited a larger P300 than loss feedback; congruent feedback elicited a 

larger P300 than incongruent feedback in both the gain and loss reward conditions. 

When both the target and flanker letters indicated neutral feedback, congruent feedback 

elicited a larger P300 than incongruent feedback as well. 
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Chapter III Discussion 

In this chapter, another three experiments were conducted to examine how the FRN 

elicited by the neutral feedback may be modulated through manipulating its perceptual 

similarity to gain and loss feedback or presenting interfering information along with the 

neutral target information. It was generally found that neutral and loss feedback 

elicited a larger FRN than gain feedback and there was no difference between neutral 

and loss feedback. However the FRN effect in response to neutral feedback was smaller 

when it was perceptually similar to the gain feedback compared to when it was 

perceptually similar to loss feedback or different from both the gain and loss feedback, 

and there was no FRN effect difference between the neutral feedback that was 

perceptually similar to loss feedback and the neutral feedback that was perceptually 

different from both the loss and gain feedback. These results suggested that (1) the 

perceptual system was tuned for gain-related rather than loss-related perceptual 

attributes; (2) the FRN was increased when the mismatch between the actual outcome 

and the gain perceptual tuning was detected regardless of the delivered feedback being 

a neutral or a loss feedback; (3) the amplitude of the FRN was modulated by the degree 

of perceptual mismatch between the actual outcome and the gain perceptual tuning in 

the perceptual system. 

Consistent with the observation in Chapter II Experiment 1 results, the presence of 

incongruent flanker reward information enhanced the FRN in the gain feedback 

condition in Experiment 5 and 6. In the incongruent gain condition, the presence of the 

loss-related features in the flanker stimuli on one hand induced the internal mismatch 

between the actual outcome and the gain perceptual tuning, and on the other hand 

induced the external mismatch in the feedback stimuli. Both the internal and external 

mismatch led to the enhancement of the FRN as seen in all the incongruent gain 

conditions in the flanker gambling tasks.  

For the loss feedback condition, the FRN congruency effect was very prominent in 

Experiment 6, but not evident in Experiment 5. In the incongruent loss condition, the 

loss target elicited a larger FRN because of the internal mismatch between the central 

loss target in the actual outcome and the gain perceptual tuning in the perceptual system. 
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This FRN effect, however, was reduced by the presence of the gain-related features in 

the flanker stimuli which reduced the internal mismatch between the actual outcome 

and the gain perceptual tuning in the perceptual system. The external mismatch existing 

in the feedback stimuli still evoked a large incongruent FRN. Thus in the incongruent 

loss condition, the FRN reflected the net effect of the internal mismatch induced by the 

loss target and gain flankers as well as the external mismatch between loss target and 

gain flankers. If the modulation effect induced by the presence of gain-related features 

in the flanker stimuli was equal to or larger than the congruency effect induced by the 

external mismatch between loss target and gain flankers, the FRN effect in the 

incongruent loss condition would be comparable to or smaller than that in the congruent 

loss condition. Otherwise, the external mismatch would enhance the FRN effect in the 

incongruent loss condition compared to the congruent loss condition.  

The prominent large FRN effect observed in Experiment 6 is probably because the 

involvement of the various types of letter combinations demanded participants’ special 

attention to the perceptual mismatch involved in the feedback stimulus, which led to the 

enhancement of the incongruent FRN. Meanwhile, the modulation effect induced by 

the presence of the gain-related feature may not have been very strong. Instead in 

Experiment 5, for some reason, the modulation effect induced by the presence of 

gain-related features in the flanker was larger than the congruency effect evoked by the 

external mismatch; thus the incongruent loss did not elicit a larger FRN than the 

congruent loss. Inspection of Group 2 ERP waveforms in the loss condition (see Figure 

3.8 right) showed that they were similar to the ERP waveforms in the loss condition 

using similar letters indicating reward information in Experiment 1 (see Figure 2.2 left). 

In both cases, incongruent loss feedback elicited a later but not larger FRN than the 

congruent feedback loss. It is possible that when the target and the flanker letters were 

similar to each other, for example in the similar letter conditions of Experiment 1, the 

external mismatch may only induce a small FRN congruency effect, which was offset 

by the modulation effect induced by the presence of the gain-related features in the 

flanker stimuli. A similar explanation may be applied for the Experiment 5 results as 

well although details need to be figured out about the factors affecting the modulation 

effect and congruency effect. 
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For the neutral target feedback condition, the FRN congruency effect was evident on 

some letter combinations but not others regardless of the reward information the 

flanker letters indicated, suggesting that the incongruent FRN may be elicited by the 

perceptual mismatch in the stimulus itself rather than the semantic mismatch between 

the reward information the target and flanker letters respectively carried. This assertion 

was supported by the finding that when both the target and flanker letters indicate 

neutral feedback, the incongruent Tneut_Fneut feedback elicited a larger FRN than the 

congruent Tneut_Fneut feedback in Experiment 6. 

In addition to the FRN results, it was found that behaviorally participants switch their 

response more often after loss feedback than after neutral feedback, and after neutral 

feedback than after gain feedback. Gain feedback elicited a larger P300 than neutral and 

loss feedback, and neutral feedback tended to elicit a P300 similar to the loss feedback.  
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Chapter IV   Experiment 7 

Experiment 7: Known vs. unknown gambling task 

Design and Rationale 

Experiment 7 continued to use a flanker gambling task to investigate the factors 

contributing to the FRN effect. In this experiment, in addition to the regular known 

reward trials as previous experiments in Chapter II and III, there included a small 

portion of trials in which the reward valence was not disclosed to the participants until 

the end of the experiment. Unlike the neutral feedback used for gambling tasks in 

Chapter III, the unknown feedback in this design was not connected to certain meaning 

representations. As a typical flanker-gambling feedback letter string, the reward 

unknown feedback consisted of five identical (congruent condition, e.g., BBBBB) or 

different (incongruent condition, e.g., CCBCC) letters. Participants were told that the 

reward information indicated by the central target letter conveyed gain or loss 

information, which would be disclosed to them at the end of the experiment.  

By including these trials, it is possible to clarify the argument that the larger FRN 

congruency effect in incongruent neutral feedback (e.g., “KKCKK”) compared to 

congruent neutral feedback (e.g., “CCCCC”) in Experiment 6 is due to pure bottom-up 

perceptual mismatch or to the perceptual mismatch that has to be modulated by the 

top-down reward representations. If the FRN were sensitive to the bottom-up 

perceptual mismatch, the incongruent unknown feedback (e.g., “CCBCC”) would elicit 

a larger FRN than the congruent unknown feedback (e.g., “BBBBB”) because of the 

perceptual interference from flanker letters. However, if the FRN were sensitive to the 

perceptual mismatch between two reward representations, there would no FRN 

difference between congruent and incongruent unknown feedback since the target (e.g., 

“B”) and flanker letters(e.g., “C”) did not have particular representations to correspond.
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Methods 

Participants 

There were twenty participants (six males) aged between 18 and 33. All were 

right-handed, had normal or corrected-to-normal vision, and normal color vision. Prior 

to the test, participants provided written informed consent in accordance with the 

Institutional Review Board of the University of Michigan. They received a monetary 

payment for their participation. One male participant was eliminated for data analysis 

due to a large slow drift that appeared in the raw EEG data. 

Procedure 

The participants were seated comfortably 60 cm in front of a fourteen-inch CRT 

computer monitor and they were instructed to remain as still as possible and to 

minimize eyeblinks throughout the experiment. Materials were presented using 

Presentation (Neurobehavior System). On each trial of the experiment (see Figure 4.1 

for an example), the participants were presented with two squares ( one red and one 

blue) apposed on the screen following a 500 ms central fixation, and was instructed that 

each one contained gain or loss information. Squares remained on the screen until the 

participants selected one of them by pressing a button with their left or right index 

finger, corresponding to the location of the chosen square. Five milliseconds after their 

response, the reward information indicating whether they won or lost on the trial came 

up and was present for 600 ms. The inter-trial interval (ISI) was 1000 ms. 
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Figure 4.1. A schematic representation of Experiment 7 

The reward information was a letter string in the form of the flanker stimuli— one 

target letter (e.g., letter D) at the center was surrounded by identical (e.g., DDDDD; 

congruent condition) or different letters (e.g., XXDXX; incongruent condition) and 

only the central letter conveyed the reward information. Four letters (i.e., D, X, S and F) 

were used to create the feedback stimuli. Among them the reward valence (gain or loss), 

indicated by two letters (e.g., D and X) were revealed to the participants at the 

beginning of the experiment. This type of trials took around 75% of all the trials. 

Participants knew whether they won or lost during the trial right after they saw the 

feedback letters. The reward valence indicated by the other two letters (e.g., S and F) 

were not disclosed to the participants until the end of experiment. This type of trials 

took around 25% of all the trials. Participants were not aware whether they won or lost 

during the trial when they saw the feedback. In this way eight letter combinations (i.e., 

DDDDD, XXDXX, XXXXX, DDXDD, SSSSS, FFSFF, FFFFF, SSFSS) form six 

experimental conditions (i.e., congruent gain, congruent loss, incongruent gain, 

incongruent loss, congruent unknown, and incongruent unknown) as shown in Table 

4.1. 
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 Reward  
Valence 

Congruency Type name Feedback 
Stimuli 

Gain Congruent Gain_con BBBBB 
Gain Incongruent Gain_inc KKBKK 
Loss Congruent Loss_con KKKKK 

Known 
(75%) 

Loss Incongruent Loss_inc BBKBB 
 Congruent Unkn_con HHHHH 

OOOOO 
Unknown 
(25%) 

 Incongruent Unkn_inc OOHOO 
HHOHH 

Table 4.1. Experiment 7 example of the feedback stimuli. 

Position (left or right) and color (red or blue) of the squares were randomly assigned for 

each trial. Feedback letters were retrieved randomly from a population where the ratio 

of 3:3:3:3:1:1 was assigned to the trial-types “congruent gain”, “incongruent gain”, 

“congruent loss”, “incongruent loss”, “congruent unknown” and “incongruent 

unknown” respectively. The assignment of the letters indicating known information 

and reward information was counterbalanced among participants. There were six sets 

of experimental material with 160 trials in each set. Each set started with 80 points as 

the initial allotment. For each gain participants won five points and for each loss 

participants loss five points. Participants were given summary information about points 

they had earned on known feedback trials every 40 trials; the points received from 

unknown feedback trials were added to the final points at the end of the experiment. 

Then points were transformed into money, and on average, each participant receive a 

three-to-five dollar bonus. 

Electrophysiological Methods 

EEG was collected using a 64-channel Active Two Biosemi system (BioSemi, 

Amsterdam). Eye-movements were recorded with six electrodes placed on the outer 

canthus, supra-orbital ridge, and cheekbone of the left and right eyes. Signals were 

sampled at the rate of 512 points per second and digitized with a 24 bit ADC. All 

electrodes were re-referenced offline to averaged mastoids.  
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For the ERP waveforms, a 1100 ms epoch of data (100 ms baseline) was extracted from 

the continuous data file for analysis. EEG data were corrected for vertical and 

horizontal ocular movement artifacts using the algorithm described in Gratton, Coles 

and Donchin’s paper ( Gratton, Coles & Donchin, 1983). Statistical analyses were 

performed on the data without any additional filtering. The data presented in the figures 

were filtered with a nine point Chebyshev II low-pass digital filter with a 

half-amplitude cutoff at 12 Hz (Matlab 7.04; Mathworks, Natick, MA). For all analyses, 

p values if all main and interaction effects were corrected using the Greenhouse-Geisser 

method for violations of the sphericity assumption in repeated-measures effects. 

Results 

The grand average waveforms were plotted at the midline scalp electrodes (see Figure 

4.2). An inspection of waveforms revealed a negative ERP component enhanced 

between 200 ms and 400 ms for loss feedback as well as incongruent feedback at the 

frontal electrodes, and a positive ERP component enhanced between 300 ms and 500 

ms for loss feedback at the centroparietal electrodes. The early negative component 

corresponds to the FRN, and its amplitude and latency was evaluated at the FCz where 

the negative peak was the most prominent. The later positive waveform corresponds to 

the P300, and its amplitude and latency were evaluated at the Pz where the positive 

peak reached the maximum.  

The FRN 

The FRN amplitude and latency were measured peak-to-peak according to the 

following criterion. First, the most positive value of the ERP waveforms was identified 

within a 160-240 ms window following the onset of the feedback stimuli. Then, the 

most negative value of the ERP waveforms was identified within a 240-380 ms window. 

The amplitude of the negativity was defined as the difference between the most 

negative value retrieved from the 240-380 ms window and the most positive value 

retrieved from the 160-240 ms window. The latency of the negativity was defined as the 

time when the most negative value peaked within the 240-380 ms window.   
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Figure 4.2. Experiment 7 ERP waveforms at midline electrodes. 

Known feedback 

A 2×2 two-way repeated-measures ANOVA with factors reward valence and 

congruency was conducted on both the FRN amplitude and latency. For the amplitude 

analysis, the main effects in both the reward valence and the congruency factors were 

significant (gain vs. loss, F (1, 18) = 17.36, p< 0.01; congruent vs. incongruent, F (1, 18) 

= 7.7, p< 0.05). Loss feedback elicited a larger FRN than gain feedback; incongruent 

feedback elicited a larger FRN than congruent feedback. The interaction between the 

two factors was not significant (F<1). For the latency analysis, again the main effects in 

both the reward valence and the congruency factors were significant (gain vs. loss, F (1, 

18) = 9.17, p< 0.01; congruent vs. incongruent, F (1, 18) = 7.4, p< 0.05). The peak 
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latency of the FRN elicited by loss feedback was later than gain feedback; and the peak 

latency of the FRN elicited by incongruent feedback was later than congruent feedback. 

There was no interaction between the reward valence and the congruency on the peak 

latency of the FRN (F<1). 

Unknown feedback 

No FRN amplitude or latency peak difference was found between congruent and 

incongruent unknown feedback (amplitude, t=.41, p>0.1; peak latency, t =.42, 

p>0.1).

 

Figure 4.3. Experiment 7 congruent ERP waveforms at known vs. unknown conditions at 
midline electrodes. 

Known vs. Unknown feedback 

The knowing effect was evaluated only at the congruent feedback condition since 



 

 81

congruent and incongruent unknown feedbacks have comparable FRN. A one-way 

ANOVA with factor congruent feedback type (congruent gain, congruent loss and 

congruent unknown) was conducted for both the FRN amplitude and peak latency. The 

FRN amplitude analysis revealed a main effect in feedback type (F (2, 36) =15.08, 

p<0.01). Post-hoc Newman-Keuls tests showed that both congruent loss and congruent 

unknown feedback elicited a larger FRN than congruent gain feedback (p<0.01), and 

there was no difference between congruent loss and congruent unknown feedback 

(p>0.1). The FRN peak latency difference was only marginally significant among the 

three types of congruent feedback (F (2, 36) =3.14, p=.06).  

The P300 

The P300 amplitude was measured as the most positive value of the ERP waveforms 

between 300 ms and 600 ms following the onset of the feedback stimuli; and the P300 

peak latency was defined as the time when the most positive peak occurred.  

Known feedback 

A 2×2 two-way repeated-measures ANOVA with factors reward valence and 

congruency was conducted on both the P300 amplitude and peak latency. The analysis 

on the P300 amplitude revealed a main effect in reward information (F (1, 18) =20.63, 

p<0.01). Gain feedback elicited a larger P300 than loss feedback. There was no main 

effect in congruency (F<1) or interaction between reward valence and congruency 

factors (F (1, 18) =2.50, p>.1). For the latency analysis, the main effects in both the 

reward valence and congruency factors were significant (reward valence, F (1, 18) = 

19.08, p<0.01; congruency, F (1, 18) = 5.21, p<0.05). Gain feedback had an earlier 

P300 than loss feedback, and congruent feedback had an earlier P300 than incongruent 

feedback. No interaction was found between these two factors (F (1, 18) =2.36, p>.1). 

Unknown feedback 

There was no FRN amplitude (t =.09, p>0.1) or latency difference (t =.07, p>0.1) 

between congruent and incongruent uncertain feedback. 
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Known vs. Unknown feedback 

As the FRN analysis, the knowing effect was evaluated only at the congruent feedback 

stimuli. One-way ANOVA with feedback types (congruent gain, congruent loss and 

congruent unknown feedback) as factor was conducted on both the P300 amplitude and 

peak latency. The P300 amplitude analysis revealed a significant difference among the 

three types of congruent feedback (F (2, 36) =14.43, p<0.01). Post-hoc Newman-Keuls 

tests showed that congruent gain feedback had a larger P300 amplitude than congruent 

loss (p<0.01) and congruent unknown (p<0.01) feedback, and there was no difference 

between congruent loss and congruent unknown feedback (p>0.1). For the peak latency 

analysis, a significant difference was found among the three types of congruent 

feedback (F (2, 36) =3.67, p<0.05). Post-hoc Newman-Keuls tests showed that 

congruent unknown feedback had a delayed P300 peak latency compared to congruent 

gain (p<0.05), and there was no such difference between congruent unknown and 

congruent loss feedback (p>0.10). 

Experiment 7 Summary 

The results obtained by manipulating the reward valence, congruency and participants’ 

knowledge of the feedback stimuli in a flanker gambling task are summarized as 

follows. Consistent with previous research, in the known reward information condition, 

loss feedback elicited a larger FRN than gain feedback, and incongruent feedback 

elicited a larger FRN than congruent feedback in both the gain and loss feedback. 

Furthermore, congruent unknown feedback elicited a larger FRN than congruent gain 

feedback and its FRN amplitude was comparable to that of the congruent loss feedback 

condition. The most striking result is that there was no FRN difference between the 

congruent and incongruent unknown feedback.  

Consistent with previous experiments in this study, the P300 was larger in the gain 

feedback condition than in the loss feedback condition. However, different from 

previous research, no P300 difference was found between congruent and incongruent 

feedback conditions. In addition, the P300 in the unknown feedback conditions was 

comparable to that in the loss feedback condition. 
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Chapter IV Discussion 

In this chapter, one experiment was conducted to explore the nature of the perceptual 

mismatch that elicited the FRN. Consistent with previous experiments in this study, it 

was observed that loss feedback elicited a larger FRN than gain feedback, and 

incongruent feedback elicited a larger FRN than congruent feedback. These results 

suggest that both the internal and external mismatch contributed to the enhancement of 

the FRN. In addition, the lack of difference between unknown congruent and unknown 

incongruent feedback suggested that the FRN was not responsive to the bottom-up 

external mismatch per se. Instead the mismatch between two reward representations led 

to the enhancement of the FRN. Inconsistent with Experiment 1 results, there was no 

interaction between the reward valence and congruency in Experiment 7. However, 

inspection of the ERP waveforms at FCz in Experiment 7 (Figure 4.2) shows it was 

similar to the ERP waveforms elicited by dissimilar letter feedback in Experiment 1 

(Figure 2.2, right).  

Furthermore, similar to the congruent loss feedback, the unknown feedback elicited a 

larger FRN and a smaller P300 than the known congruent gain feedback. The FRN 

result was consistent with Holroyd et al. (2006)’s Experiment 2 findings in which the 

neutral feedback denoted uninformative information about whether participants won or 

lost during the trial, and the FRN elicited by the neutral feedback was comparable to 

that elicited by the loss feedback, both being larger than that elicited by the gain 

feedback. The enhancement of the FRN in the unknown condition may be explained by 

the infrequency (25% in Experiment 7, and 1/3 in Holroyd et al’s Experiment 2) of the 

unknown feedback, since it is known that the rarer event in the oddball paradigm 

usually elicits a larger N2b component as reviewed in the introduction chapter. 

However, it is unlikely that the probability effect could explain all the ERP variations in 

the unknown feedback considering the evidence that (1) the FRN amplitude is hard to 

manipulate through changing the probability of reward information in gambling tasks 

(Hajcak et al, 2005a, 2007), and (2) the enhancement of the N2 to the probability 

information is usually coupled with the enhancement of the P300 (Squires et al., 1977; 

Squires et al., 1976). The reduction of the P300 amplitude in the unknown feedback 

cast doubts upon whether the FRN was the N2 component which is sensitive to the 
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probability information in the classic oddball paradigms. Instead, the similarity of the 

ERP waveforms between the unknown feedback and the known congruent loss 

feedback suggests that the enhancement of the FRN in these two types of feedback may 

have been induced by the same underlying mechanism. For example, the unknown 

feedback were received and compared with the gain perceptual tuning in the perceptual 

system, and then an FRN was elicited upon the detection of the internal mismatch 

between them. To exclude the influence of the probability information, future studies 

should be designed to include the same number of known and unknown feedback 

stimuli.  

The P300 results in Experiment 7 are quite interesting in that gain feedback elicited a 

larger P300 than loss feedback regardless of the congruency of the feedback stimuli. 

From this result, it may be proposed that it is the P300 rather than the FRN component 

that codes for reward valence information. However, a larger P300 was elicited by the 

incongruent feedback than congruent feedback in Experiment 1 and Experiment 6. 

Similar findings have been obtained in choice reaction time studies, where a reduced 

P300 was observed on incongruent trials (Zhou et al., 2004; Valle Inclan, 1996; Ragot, 

1984; Ilan & Polich, 1999; Sebanz et al., 2006). Various proposals have been suggested: 

(1) the reduced P300 amplitude reflects a response selection conflict (Zhou et al., 2004; 

Ragot, 1984); (2) this effect is a consequence of perceptual interference (Sebanz et al., 

2006); (3) this effect can be attributed to increased variability in P300 latency (Valle 

Inclan, 1996); or (4) this effect is caused by the overlapping of a slow wave activity 

occurring early in the congruent condition (Ilan & Polich, 1999). For the current 

experiment, given that there was no response execution following the feedback, it 

seems unlikely that the reduced P300 in the incongruent trials reflects response conflict, 

but all the other proposals are applicable. In addition, the FRN congruency effect may 

be carried over to the P300 latency window, leading to a reduced P300 in the 

incongruent trials. All types of contributing factors, interacting with particular 

participants and task situations led to the inconsistent P300 congruency effects among 

different experiments.   
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Chapter V   General Discussion 

The FRN and the perceptual mismatch hypothesis  

The main results on the FRN 

In this dissertation study, seven experiments were conducted to investigate how the 

feedback-related negativity may be affected by the perceptual properties of the 

feedback stimuli. It was found that loss feedback elicited a larger FRN than gain 

feedback, and this FRN reward effect was modulated by the perceptual similarity 

between gain and loss feedback. Neutral feedback elicited a larger FRN than gain 

feedback, and there was no FRN difference between neutral and loss feedback. The 

FRN reward effect elicited by the neutral feedback could be modulated by the 

similarity between neutral and gain feedback. When the neutral and gain feedback 

were similar, the FRN reward effect was smaller compared to when the neutral and 

gain feedback were different. Moreover, perceptually salient feedback tended to have a 

larger FRN effect than less perceptually salient feedback, and in particular when the 

reward information was indicated by conjoined features, the FRN reward effect was 

diminished.

The presence of the flanker reward information modulated the FRN-like negativity 

following the onset of the feedback stimuli. In general incongruent feedback elicited a 

larger FRN than congruent feedback. This FRN congruency effect was affected by the 

perceptual similarity between target and flanker letters—dissimilar incongruent letter 

strings elicited a larger FRN congruency effect than similar incongruent letter strings. 

When the target and the flanker letters both mapped to neutral reward, the incongruent 

neutral feedback elicited a larger FRN than congruent neutral feedback, suggesting that 

the FRN congruency effect could not be attributed to the semantic congruency between 

target and flanker letters. Furthermore, unknown feedback elicited a larger FRN than 
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known congruent gain feedback. The lack of a difference in the FRN between unknown 

congruent and incongruent letter strings, suggests that pure bottom-up perceptual 

mismatch cannot explain the enhancement of the FRN in the incongruent letter string. 

In order to elicit an FRN incongruency effect, the perceptual mismatch has to be 

produced between two reward representations.         

The perceptual mismatch hypothesis 

As discussed in the introduction chapter, the original RL-ERN assumes that the 

monitoring system in the basal ganglia learns through a conditioning process in which 

ongoing events predict a good or bad outcome and the FRN is linearly related to the 

objective value of those events (Holroyd & Coles, 2002; Nieuwenhuis et al., 2004). To 

explain the experimental results that the evaluation system produces the FRN in a 

binary rather than graded manner as reported in several studies (Yeung & Safney, 2004; 

Hajcak et al., 2006; Holroyd et al., 2004; Holroyd et al., 2006), a cognitive 

preprocessing system was added to the model before the monitoring system (Holroyd et 

al., 2006; see Figure 5.1b). 

 
Figure 5.1 An illustration of the standard (left) and modified (right) adaptive critic in the 

monitoring system proposed by the RL-ERN theory. From Holroyd et al. (2006). 
 

The cognitive system produces some function indicating whether or not the goal has 
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been satisfied, and this information is further conveyed to the monitoring system, 

which computes the temporal difference in a binary manner. However the revised 

model did not define what criteria the cognitive system uses to judge whether the goal 

has not been satisfied or not. A perceptual mismatch hypothesis could provide the 

criteria for the cognitive system to produce the appropriate signal to the monitoring 

system. The schematic graph about the perceptual mismatch hypothesis is plotted in 

Figure 5.2.  

 
Figure 5.2. An illustration of the perceptual mismatch hypothesis in a gambling task. This 

model could be placed in the cognitive system in Figure 5.1 b. 

For example, in a gambling task, participants are instructed to make a decision on 

which gamble to choose (e.g., two doors appearing on the screen) and then they receive 

letter feedback indicating whether they won or lost money during that trial (e.g., S 

indicates a gain and T indicates a loss). The feedback stimuli go through sensory 

analysis and the actual sensory outcome is compared to the primed sensory anchor 

outcome. It is hypothesized that in most cases task representation module directs 

gain-related perceptual features serve as the anchor since in the gambling task most 

participants hope to see the gain feedback rather than something else. A mismatch 

signal will be sent to the monitoring system upon the detection of the perceptual 
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mismatch between the actual outcome and the gain perceptual tuning in the perceptual 

system. The monitoring system further interprets the mismatch as an error signal and 

communicates with the ACC to elicit the FRN. Thus this perceptual model could be 

placed in the cognitive system before the monitoring system in the RL-ERN theory (see 

Figure 5.1 b) to serve as a quick mechanism to produce the outcome function to the 

monitoring system. At the same time, it may exist independently of RL-ERN theory, 

and be used by other models in which the detection of the mismatch signal is necessary.  

In addition to the mismatch produced by the comparator in which the actual sensory 

outcome and primed sensory outcome are compared, there is another mismatch 

detection embedded in the model. As Figure 5.3 shows, when the feedback stimuli 

comprises incongruent letters, an external mismatch signal will be produced through a 

second comparator, which could be further conveyed to the monitoring system like the 

internal mismatch and lead to the elicitation of the FRN in the ACC. 

   
Figure 5.3 An illustration of the perceptual mismatch hypothesis in a gambling task including 

both the internal and external mismatch.  

Experiment 7 further showed that the external mismatch that enhanced the FRN has to 

be produced by two reward representations. The task representation module stores the 
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relevant reward information and imposes the top-down modulation on the external 

mismatch. When target and flanker letters connect to certain reward representations, 

the external mismatch will lead to the enhancement of the FRN. In contrast, when target 

and flanker letters have no certain reward representations as in unknown condition in 

Experiment 7, the external mismatch will not contribute to the FRN effect.      

Interpretation of the empirical FRN results 

This model could easily interpret the findings from numerous studies that both the 

neutral and loss feedback elicit a larger FRN than gain feedback but there is no FRN 

difference between neutral and loss feedback (Holroyd et al., 2004, 2006; Hajcak et al., 

2006). According to the perceptual mismatch model, both the neutral and loss feedback 

include non-gain-related features, and the perceptual mismatch between the actual 

neutral/loss feedback and gain-related features in the anchor leads to the elicitation of 

the FRN. The model can also accommodate the result that the FRN amplitude is 

determined by the outcome value relative to the range of possible outcomes rather than 

the absolute value of the outcomes (Holroyd et al., 2004). It could be assumed that 

participants would hope to get the best available outcome and under the perceptual 

mismatch hypothesis, the perceptual attributes related to the best available outcome 

serve as the anchor for comparison, and any other available outcomes elicit larger FRNs 

when the perceptual mismatch from the primed features in the anchor is detected, as 

demonstrated by the experimental findings of Holroyd et al.  

Moreover, the model can explain the results that FRN amplitude is not sensitive to 

reward magnitude, which has been demonstrated by two independent studies so far. As 

mentioned above, for example, in Hajcak et al.’s (2006) paper, “++”, “+”, “-”, and “--” 

were used to indicate large gain (gain 25 cents), small gain (gain 5 cents), small loss 

(lose 5 cents) and larger loss (lose 25 cents) feedback respectively. It is possible that in 

the experiment, the “+” features serve as the anchor for comparison, so that loss 

feedback elicited a larger FRN due to the perceptual mismatch between “+” and “-” no 

matter what magnitude it is of. It may be argued that “--” had larger perceptual 

mismatch from “+” than “-” did; however this difference between the degree of the 

perceptual mismatch may not be strong enough to cause a difference in the FRN 
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amplitude. Future experiments could use “++”, “-”, “+”, and “--” to map large gain 

(gain 25 cents), small gain (gain 5 cents), small loss (lose 5 cents) and larger loss (lose 

25 cents) feedback respectively to test how the FRN amplitude may be modulated by 

the reward magnitude, reward valence and the perceptual attributes of the feedback 

information.  

In Yeung and Safney’s (2004) experiment, participants knew whether they were 

gambling on a big magnitude or small magnitude before they made a choice, and then 

they received gain feedback which was indicated by a “+” and a particular number (e.g., 

“+7”) or loss feedback which was indicated by a “-” and a particular number (e.g., 

“-36”). They found that the FRN was not sensitive to the reward magnitude. According 

to the perceptual mismatch hypothesis, “+” may be used to serve as an anchor and any 

mismatch from the “+” leads to the enhancement of the FRN regardless of the reward 

amplitude the number on the right denotes. In some sense, the feedback stimulus used 

in Yeung and Safney (2004), comprising a “+” (or “-”) and a number, is similar to the 

feedback used in Nieuwenhuis et al. (2004b) and in Gehring & Willoughby’s (2002) 

study, in which the feedback denoted the information from two dimensions— 

correct-error dimension and gain-loss dimension. As Nieuwenhuis et al.’s (2004) 

experiments demonstrated, only the dimension indicated by the salient color 

information was evaluated. Under the perceptual mismatch hypothesis, the anchor was 

the salient color which indicated the positive information (e.g., gain); any mismatch 

from this color would elicit a larger FRN whether it included positive information (e.g., 

correct choice) in another dimension or not. According to the same logic, in Yeung and 

Safney’s experiment, the “+/-” appears to be more salient than miscellaneous numbers 

(6 to 11, 32 to 40). So it is not surprising that “+” serves as the anchor and the FRN 

amplitude was only sensitive to the reward valence information the salient information 

denoted. Future studies could manipulate the salience of the reward magnitude relative 

to the reward valence, and examine whether the FRN may be enhanced by the reward 

magnitude in some experimental conditions. 

According to the RL-ERN theory, the FRN represents the detection of unexpected and 

unfavorable outcomes (Holroyd and Coles, 2002), so one fundamental prediction of the 

theory is that larger FRNs are elicited by unexpected unfavorable outcomes than by 
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expected unfavorable outcomes. This prediction has been confirmed by Holroyd et al.’s 

(2003) findings that infrequent negative outcomes had a larger FRN reward effect than 

frequent negative outcomes. It is not easy for the perceptual mismatch hypothesis to 

explain this result because in its model the gain-related perceptual attributes are 

hypothesized to serve as the anchor since participants hope to receive gain rather than 

loss feedback even in the condition where the loss is frequent. The probability 

information may not induce the change of the perceptual tuning in the anchor as it may 

participants’ expectancy (or prediction). Backing up this idea, Hajcak et al. (2005a) 

failed to observe the effect of probability manipulation on the FRN in their experiments. 

As reviewed in the Introduction chapter, in subsequent research, Hajcak et al. (2007) 

observed the FRN expectancy effect only when participants’ prediction was explicitly 

reported right before the presence of the feedback. Self-report of subjective prediction 

was a confounding factor in the experiment. When participants explicitly reported that 

they predicted a loss, the perceptual tuning in the anchor could be temporarily changed 

to the loss-related perceptual attributes because apparently the loss-related perceptual 

attributes become the center of the attention at that moment. When the self-report 

happened a little earlier, for example, before participants made a choice, no FRN 

expectancy effect was observed (Hajcak et al., 2007 Experiment 1). To summarize, the 

above FRN expectancy studies showed that the probability manipulation may affect the 

subjective prediction/expectancy about the reward information; the change of the 

prediction/ expectancy, however, does not necessarily affect the elicitation of the FRN, 

consistent with the perceptual mismatch hypothesis. 

The P300 and the motivational significance theory 

One consistent finding about P300 amplitude through all the seven experiments is that 

gain feedback elicited a larger P300 than loss feedback, consistent with the 

observations in experiments conducted by Hajcak and his colleagues (2005a, 2007). A 

similar result was also evident in the study by Holroyd et al. (2004), although they did 

not explicitly discuss it. However, contradicting this result, Ito et al. (1998a) reported 

that a larger P300 was observed in response to affectively negative images than in 

response to positive images that were matched according to subjective rating of arousal, 

suggesting that the P300 was sensitive to the negative valence of stimuli. Moreover, 
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Hajcak et al. (2005a Experiment 2) and Yeung et al. (2005) did not observe the effect of 

valence on the P300 amplitude. Instead several studies (Yeung et al., 2004; Sato et al., 

2005) showed that P300 increased in amplitude with reward magnitude (larger vs. small 

amount of gain/loss), irrespective of the reward valence. Taken together, there was no 

consistent evidence in previous studies as to (1) whether the P300 is sensitive to 

feedback valence or not, or (2) whether the P300 amplitude is larger for positive or 

negative outcomes.  

Yeung et al. (2004) proposed that P300 amplitude may reflect an objective coding of 

reward magnitude. It is possible that the P300 is sensitive to reward magnitude, 

however it is hard to justify this through the above seven experiments since no 

manipulation was performed on reward magnitude. However it is hard to explain the 

effect of valence on P300 amplitude with this proposal. Yeung et al. (2004) provided 

another proposal that the larger P300 amplitude with larger reward amplitude may 

reflect increased motivational or affective significance of greater rewards and penalties. 

If this were the case, one may hypothesize that positive feedback is related to increased 

motivation and thus attracts more attention, and the enhanced P300 reflects the 

activation of the positive motivation system. This hypothesis initially seems at odds 

with the findings that increased P300 was observed when pictures with negative 

valence were shown. However, the task difference between their study and the current 

study may explain the differing results. In Ito et al.’s (1998a) study, they asked 

participants to observe and evaluate affectively neutral, positive or negative pictures 

and greater P300 was found for negative than for positive stimuli. They argued that it 

may be related to the negative bias existing in human’s evaluative space (Cacioppo & 

Berntson, 1994; Cacioppo et al., 1997), that is, the negative motivational system tends 

to respond more intensely than the positive motivational system to comparable amounts 

of activation. The negative bias may be related to the evolutionarily adaptive 

fight-or-flight response to threatening stimuli (Cannon, 1929). In another paper, Ito et al. 

(1998b) proposed that when the level of motivational activation is low, the motivation 

to approach exceeds the motivation to withdraw. This tendency that the output from the 

positive motivational system is greater than negative motivational system is called the 

positivity offset. The gambling task used in this dissertation study may be categorized 

as a low motivational task compared to the significant meaning of the threatening 
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stimuli in Ito et al’s (1998a) picture-viewing task. Thus the larger P300 on positive 

valence may be attributed to the higher activation of the positive motivational system. 

According to the motivational significance theory, both the negative bias and the 

positive offset exist in our evaluation space. When the motivational activation is high, 

e.g., seeing threatening stimuli, the negative bias is more dominant and the P300 is 

enhanced by stimuli of negative valence; when the motivational activation is low, e.g, 

receiving positive feedback in our gambling task, positive offset is more dominant and 

P300 is enhanced to stimuli of positive valence. The reason that the effect of valence on 

the P300 is not always observed may be that the motivation activation is in a level 

where the effects of negative bias and positive offset cancel out.  

In addition, Hajcak et al. (2005a) suggested that the inconsistent experimental results 

on the P300 in their two experiments may have to do with subjective expectations 

regarding the frequency of positive and negative feedback. For instance, in their first 

experiment where they did not observe larger P300 on the positive versus negative 

feedback, subjects may have believed that positive feedback was more likely overall 

than negative feedback. Negative feedback was received as infrequent trials so that 

enhanced P300 amplitude to the positive feedback was obscured by the effects of 

expectation on the P300 amplitude to the subjective infrequency of the negative 

feedback.  

As for the congruency P300 results, it is hard to incorporate into the motivational view. 

The relevant discussion was presented in Chapter IV discussion. It appears that 

multiple evaluative processes including reward valence, reward magnitude, stimuli 

frequency and congruency may contribute to the elicitation of the P300. Future research 

will be needed to tease apart these processes and to distinguish the neural mechanisms 

underlying them.  

Evaluation 

Seven experiments have been conducted to investigate perceptual tuning and 
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feedback-related brain activity in gambling tasks. In some experiments, behavioral data 

analyses were conducted, and in all the experiments P300 results were reported. 

However, the focus of this study is on the feedback-related negativity. In other words, 

this study could better be categorized as ERPology of the FRN than anything else (Luck, 

2006). There may be many psychological factors contributing to the elicitation of the 

FRN, and the special interest in this study is the perceptual properties of the feedback 

stimuli. This factor has been ignored by the dominant RL-ERN theory and has been 

assumed unimportant in many FRN experiments (Hajcak et al., 2006; Holoyd et al., 

2003; Miltner et al., 1997; Holroyd et al., 2002) in which various perceptual properties 

were used to indicate the reward information in gambling or guessing tasks.  

Through the seven experiments manipulating the perceptual properties of the feedback, 

converging evidence has been accumulated that the FRN is affected by the perceptual 

salience of the feedback stimuli, the perceptual similarity among the feedback stimuli 

and the perceptual interference existing in the feedback stimuli. A perceptual mismatch 

hypothesis was proposed to explain the role of perceptual properties of the feedback 

stimuli in elicitation of the FRN. This perceptual mismatch model could be placed in 

the cognitive system which communicates with the adaptive critic in the monitoring 

system in the RL-ERN theoretical framework. In this way other parts of the RL-ERN 

theory do not need to be changed in order to accommodate current experimental 

findings. Attempt has been made at interpreting the empirical findings of the FRN 

within the perceptual mismatch hypothesis.   

However there were some conflicting FRN results across the seven experiments. For 

example, while incongruent gain consistently elicited a larger FRN than congruent gain 

feedback across the seven experiments, the congruency effect in the loss feedback was 

shown in some experiments but not other. It was proposed that the inconsistent 

congruency effect in loss feedback may have something to do with the net effect of (1) 

the external mismatch existing in the feedback stimuli, (2) the internal mismatch 

between the target loss in the actual outcome and the gain perceptual tuning in the 

perceptual system, and (3) the modulation effect of the presence of the gain-related 

flanker features in the incongruent loss feedback. The net effect in different 

experiments may be different due to different task representations; thus the inconsistent 
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results may be interpretable but not predictable since it is hard to figure out all the 

details to actually compute a value for the net effect. As stated in Chapter IV discussion, 

there were also conflicting results regarding the P300 congruency effect. These issues 

are further complicated by the problems of component overlap between the FRN and 

the P300. Answers await future related ERP research. 

One thing worth mentioning is that the FRN used in this dissertation study is a general 

term for the negative voltage deflection peaked around 200-400 ms following the onset 

of the feedback. It may comprise two components—the loss-related negativity and the 

interference-related negativity, corresponding to the internal mismatch and the external 

mismatch respectively produced by the two comparators in the perceptual mismatch 

model (see Figure 5.3). As shown in above experiments, these two components have 

similar latency window and scalp distribution, and both are sensitive to similar 

manipulations of perceptual properties and could be explained by the perceptual 

mismatch hypothesis. Thus in this study FRN is the unified name for them.       

Conclusion 

In this dissertation study, the role of perceptual properties of the feedback stimuli was 

evaluated in the elicitation of the FRN. Future studies using the FRN as the dependent 

variable have to consider the influence of the perceptual properties of the feedback 

stimuli. The FRN research is still in its infant stage considering its short history from 

Miltner et al’s (1997) paper. More ERPological research of the FRN is needed to 

systematically examine various potential variables that may affect the elicitation of the 

FRN.   

 

 

 



 

 96

 

 

 

 

 

 

 

Bibliography 

 

 

 

 

 

 

 

 

 



 

 97

Attneave, F.(1957). Physical determinants of the judged complexity of shapes. Journal of 
Experimental Psychology, 53, 221-227. 

Azizian, A., Freitas, A. L., Parvaz, M. A., & Squires, N. K. (2006). Beware misleading cues: 
Perceptual similarity modulates the N2/P3 complex. Psychophysiology, 43, 253–260.  

Bartholow, B. D., Pearson, M. A., Dickter, C. L., Sher, K. J., Fabiani, M., & Gratton, G. 
(2005). Strategic control and medial frontal negativity: Beyond errors and response 
conflict. Psychophysiology, 42, 33–42. 

Berger, H.(1929). Uber das Electrenkephalogramm des Menschen. Archives fur Psychiatrie 
Nervenkrankheiten., 87, 527–570. 

Bernstein, P.S., Scheffers, M.K., Coles, M.G.H.(1995). Where did I go wrong?’ A 
psychophysiological analysis of error detection. Journal of Experimental Psychology: 
Human Perception and Performance, 21, 1312–1322. 

Botvinick, M.M., Cohen, J. D. & Carter, C. S. (2004). Conflict monitoring and anterior 
cingulate cortex: An update. Trends in Cognitive Sciences. 8, 539-546. 

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict 
monitoring and cognitive control. Psychological Review, 108, 624-652. 

Breton, F., Ritter, W., Simson, R., & Vaughan, H. G. Jr. (1988). The N2 component elicited by 
stimulus matches and multiple targets. Biological Psychology, 27, 23–44. 

Brown, W.S., Marsh, J.T., & LaRue, A. (1982). Event-related potentials in psychiatry: 
differentiating depression and dementia in the elderly. Bulletin of the Los Angeles 
Neurological Society, 47, 91-107. 

Cacioppo, J.T. & Bernson,G.G.(1994). Relationship between attitudes and evaluative space : A 
critical view, with emphasis on the separability of positive and negative substrates. 
Psychological bulletin, 115, 401-423. 

Cacioppo, J.T., Gardner, W.L., & Bernson, G.G.(1997). Attitudes and evaluative space: Beyond 
bipolar conceptualization and measures. Personality and Social Psychology Review, 1, 
3-25. 

Cannon, W.B. (1929). Bodily changes in pain, hunger, fear, and rage (2nd ed.). New York: 
Appleton-Century-Crofts. 

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). 
Anterior cingulate cortex, error detection, and the online monitoring of performance. 
Science, 280, 747-749. 

Courchesne, E., Hillyard, S. A., &Courchesne, R. Y. (1977). P3 waves to the discrimination 
of targets in homogeneous and heterogeneous stimulus sequences. Psychophysiology, 
14, 590–597. 

Courchesne, E., Hillyard, S. A., & Galambos, R. (1975). Stimulus novelty, task relevance and 
the visual evoked potential in man. Electroencephalography and Clinical 
Neurophysiology, 39, 131-143. 

Coles, M.G.H., & Rugg, M.D. (1995). Event-related potentials: An introduction. In M.D. 
Rugg & M. G. H. Coles (Eds.), Electrophysiology of Minds (pp, 1-26). New York: 



 

 98

Oxford: Oxford University Press. 

Cui, L.,Wang, Y., Wang, H., Tian, S., & Kong, J. (2000). Human brain sub-systems for 
discrimination of visual shapes. NeuroReport, 11, 2415–2418. 

Czigler, I., & Balázs, L. (2005). Age-related effects of novel visual stimuli in a 
letter-matching task: An event-related potential study. Biological Psychology, 69, 
229–242. 

Daffner, K. R., Mesulam, M. M., Scinto, L. F., Calvo, V., Faust, R., & Holcomb, P. J. (2000). An 
electrophysiological index of stimulus unfamiliarity. Psychophysiology, 37, 737–747. 

Davis, H., Davis, P.A., Loomis, A.L., Harvey, E.N., & Hobart, G.(1939). Electrical reactions 
of the human brain to auditory stimulation during sleep. Journal of Neurophysiology, 2, 
500-514. 

Davis, P.A. (1939). Effects of acoustic stimuli on the waking human brain. Journal of 
neurophysiology, 2, 494-499 

Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a Neural System for 
Error-Detection and Compensation. Psychological Science, 5, 303-305. 

Donchin, E. (1981). Surprise!...Surprise? Psychophysiology, 18, 493-513. 

Donchin, E., & Coles, M.G.H. (1988). Is the P300 component a manifestation of context 
updating? Behavioral and Brain Sciences, II, 351-314. 

Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412–431. 
(Original work published 1868) 

Donkers, F. C., Nieuwenhuis, S., & van Boxtel, G. J. (2005). Mediofrontal negativities in the 
absence of responding. Cognitive Brain Research, 25, 777–787. 

Donkers, F. C., & van Boxtel, G. J. (2005). Mediofrontal negativities to averted gains and 
losses in the slot-machine task: A further investigation. Journal of Psychophysiology, 
19, 256–262. 

Duncan-Johnson, C.C. (1981). P300 latency: a new metric of information processing. 
Psychophysiology, 18. 207-215. 

Duncan-Johnson, C.C., & Donchin, E. (1977). On quantifying surprise: the variation of 
event-related potentials with subjective probability. Psychophysiology, 14, 456-467 

Eriksen, B.,  & Eriksen, C. (1974). Effects of noise letters upon the identification of a target 
letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. 

Fabiani, M., Gratton, G., Karis, D., &Donchin, E.(1987) The definition, identification, and 
reliability of measurement of the P300 component of the event-related brain potential. In: 
Ackles P.K., Jennings J.R., Coles, M.G.H.(Eds.), Advances in psychophysiology, vol 2 
(pp, 1-78). Greenwich, FT: JAI Press  

Fabiani, M., Karis, D., & Donchin, E. (1990). Effects of mneumonic strategy manipulation in 
a von Restorff paradigm. Electroencephalography and Clinical Neurophysiology, 75, 
22-35. 

Fjell, A. M., & Walhovd, K. B. (2001)..P300 and Neuropsychological Tests as Measures of 



 

 99

Aging: Scalp Topography and Cognitive Changes. Brain Topography, 14, 25-40. 

Falkenstein, M., Hohnsbein, J., Hoorman, J., &Blanke, L. (1990). Effects of errors in choice 
reaction tasks on the ERP under focused and divided attention. In A. W. K. G. C.H.M. 
Brunia, & A.Kok (Eds.), Psychphysiological brain research (Vol. 1, pp. 192-195). 
Tilburg, The Netherlands: Tilburg University Press. 

Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal 
divided attention on late ERP components. II. Error processing in choice reaction tasks. 
Electroencephalography and clinical Neurophysiology, 78, 447-455. 

Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J.(2000). ERP components on 
reaction errors and their functional significance: a tutorial. Biological Psychology, 51, 
87–107. 

Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999). ERP components in the go/no-go 
tasks and their relation to inhibition. Acta Psychologica, 101, 267–291. 

Farwell, L. A., & Donchin, E. (1991). The truth will out: Interrogative polygraphy (“lie 
detection”) with event-related potentials. Psychophysiology, 28, 531–547. 

Farwell, L. A., & Richardson, D. A. (1993). Detection of FBI Agents with the Farwell MERA 
System: A New Paradigm for Psychophysiological Detection of Concealed Information. 
Technical Report, Human Brain Research Laboratory, Inc. 

Farwell, L. A., & Smith, S. S. (2001). Using Brain MERMER Testing to Detect Concealed 
Knowledge Despite Efforts to Conceal Journal of Forensic Sciences 46, 1-9. 

Flowers, D. L. , Jones, K. , Noble, K. ,VanMeter, J., Zeffiro, T. A., Wood, F. B., & Eden, G.. F. 
(2004). Attention to single letters activates left extrastriate cortex. NeuroImage, 21, 
829-839. 

Folstein, J. R., & van Petten (2008). Influence of cognitive control and mismatch on the N2 
component of the ERP: A review. Psychophysiology, 45, 152-170. 

Fu, S. M., Fan, S. L., & Chen, L. (2003). Event-related potentials reveal involuntary 
processing of orientation changes in the visual modality. Psychophysiology, 40, 
770–775. 

Galambos, R., &Sheatz, G.C. (1962). An electroencephalographic study of classical 
conditioning. American Journal of Physiology, 203, 173-184.  

Gehring, W.J., Coles, M.G.H., Meyer, D.E., Donchin, E. (1990). The error-related negativity: 
an event-related brain potential accompanying errors. Psychophysiology, 27, S34. 

Gehring, W. J., & Fencsik, D. E. (2001). Functions of the medial frontal cortex in the 
processing of conflict and errors. The Journal of Neuroscience, 21, 9430-9437. 

Gehring, W. J., Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Probability effects on 
stimulus evaluation and response processes. Journal of Experimental Psychology: 
Human Perception and Performance, 18, 198-216. 

Gehring, W.J., Goss, B., Coles, M.G.H., Meyer, D.E., &Donchin, E. (1993). A neural system for 
error detection and compensation. Psychological Science, 4, 385–390. 



 

 100

Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing 
of monetary gains and losses. Science, 295, 2279-2282. 

Hajcak, G., Holroyd, C. B., Moser, J. S., & Simons, R. F. (2005a). Brain potentials associated 
with expected and unexpected good and bad outcomes. Psychophysiology, 42, 161-170. 

Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The feedback-related 
negativity reflects the binary evaluation of good versus bad outcomes. Biological 
Psycholology, 71, 148-154. 

Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It’s worse than you thought: 
The feedback negativity and violation of reward prediction in gambling tasks. 
Psychophysiology, 44, 1–8.  

Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005b). On the ERN and the 
significance of errors. Psychophysiology, 42, 151–160. 

Hermann, M., Rommler, J., Ehlis, A., Heidrich, A. & Fallgatter, A. (2004). Source 
localisation (LORETA) of the error-related negativity (ERN) and positivity (Pe). 
Cognitve Brain Research, 20, 294–299. 

Heslenfeld D. (2003). Visual mismatch negativity. In: Polich J, editor. Detection of change: 
event-related potential and fMRI findings (pp. 41-59). Boston, MA: Kluwer. 

Holroyd C.B., &Coles M.G.H (2002). The neural basis of human error processing: 
reinforcement learning, dopamine, and the error-related negativity. Psychological 
Review, 109, 679–709. 

Holroyd, C. B., Coles, M. G., & Nieuwenhuis, S. (2002). Medial prefrontal cortex and error 
potentials. Science, 296, 1610-1611. 

Holroyd, C. B., Hajcak, G., & Larsen, J. T. (2006). The good, the bad and the neutral: 
electrophysiological responses to feedback stimuli. Brain Research, 1105, 93-101. 

Holroyd, C. B., Larsen, J. T., & Cohen, J. D. (2004). Context dependence of the event-related 
brain potential associated with reward and punishment. Psychophysiology, 41, 245-253. 

Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction 
are reflected in the event-related brain potential. Neuroreport, 14, 2481-2484. 

Homberg, V., Hefter, H., Granseyer, G., Strauss, W., Lange, H., & Hennerici, M. (1986). 
Event-related potentials in patients with Huntington’s disease and relatives at risk in 
relation to detailed psychometry. Electroencephalogrqphy and Clinical Neurophysiology, 
63. 552-569. 

Hillyard, S. A., & Kutas, M. (1983). Electrophysiology of cognitive processing. Annual 
Review of PsychoLogy, 34, 33-61. 

Ilan, A.B., & Polich, J. (1999). P300 and response time from a manual Stroop task. Clinical 
Neurophysiology, 110, 367-373. 

Isreal, J.B., Chesney, G.L., Wickens, C.D., &Donchin, E (1980). P300 and tracking difficulty: 
evidence for multiple resources in dual-task performance. Psychophysiology, 17, 
259–73. 



 

 101

Ito, T. A., Larsen, J. T., Smith, N. K.,& Cacioppo, J. T. (1998a). Negative information weighs 
more heavily on the brain: The negativity bias in evaluative categorizations. Journal of 
Personality & Social Psychology, 75, 887–900. 

Ito, T.A & Lang, P.J. (1998b). Eliciting affect using the international affective picture system: 
trajectories through evaluative space. Personality and social psychology bulletin, 24, 
855-879. 

Jodo, E., & Kayama, Y. (1992). Relation of negative ERP component to response inhibition 
in a go/no-go task. Electroencephalography & Clinical Neurophysiology, 82, 477–482. 

Johnson, R., Jr. (1984). P300: A model of the variables controlling its amplitude. Annals of 
the New York Academy of Sciences, 425, 223-229. 

Johnson, R., Jr. (1986). A triarchic model of P300 amplitude. Psychophysiology, 23, 367-384. 

Johnson, R., Jr., & Donchin, E. (1980). P300 and stimulus categorization: Two plus one is not 
so different from one plus one. Psychophysiology, 17, 167–178. 

Johnson, R., Jr., &Donchin E.(1982). Sequential expectancies and decision making in a 
changing environment: an electrophysiological approach. Psychophysiology, 19, 
183-200.  

Johnson, R., Pfefferbaum, A., & Kopell, B.S. (1985). P300 and long-term memory: latency 
predicts recognition performance. Psychophysiology, 22, 447-507. 

Kiehl, K. A., Hare, R. D., Liddle, P.F., & McDonald, J.J.(1999). Reduced P300 responses in 
criminal psychopaths during a visual oddball task. Biological Psychiatry, 45, 1498-1507. 

Kiehl, K. A., Liddle, P. F., & Hopfinger, J. B. (2000). Error processing and the rostral anterior 
cingulate: An event-related fMRI study. Psychophysiology, 33, 282–294. 

Knight, R. T. (1991). Evoked potential studies of attention capacity in human frontal lobe 
lesions. In: Levin, H.S., Eisenberg, H.M., & Benton,A.L. Ed. Frontal lobe function and 
dysfunction ( pp. 139-53. ). Oxford University Press, New York. 

Kong, J., Wang, Y., Zhang, W., Wang, H., Wei, H., &Shang, H., et al. (2000). Event-related 
brain potentials elicited by a number discrimination task. NeuroReport, 11, 1195–1197. 

Kopp, B., Rist, F., & Mattler, U. (1996). N200 in the flanker task as a neurobehavioral tool 
for investigating executive control. Psychophysiology, 33, 282–294. 

Kramer, A.F., Wickens, C.D., Donchin, E.(1985).Processing of stimulus properties: evidence 
for dual-task integrality. Journal of Experimental Psychology: Human Perception and 
Performance, 11, 393–408. 

Krizan, Z., & Windschitl, P. D. (2007). The influence of outcome desirability on optimism. 
Psychological Bulletin, 133, 95–121. 

Kujala A, &Näätänen R. (2003). Auditory environment and change detection as indexed by 
the mismarch gegativity (MMN). In: Polich J, editor. Detection of change: event-related 
potential and fMRI findings (p. 1–22.). Boston, MA: Kluwer.  

Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 
as a measure of stimulus evaluation. Science, 197, 792-795. 



 

 102

Luck, S.J.(2006).An Introduction to the Event-Related Potential Technique (Cognitive 
Neuroscience).Cambridge, MA: Bradford/MIT Press. 

Magliero, A., Bashore, T., Coles, M.G.H., & Donchin, E. (1984). On the dependence of P300 
latency on stimulus evaluation processes. Psychophysiology, 21, 171. 

Mathalon, D.H., Ford, J.M., Rosenbloom, M., & Pfefferbaum, A. (2000). P300 reduction and 
prolongation with illness duration in schizophrenia. Biological Psychiatry, 47, 413-427. 

Metcalfe, J.(1992). Monitoring and gain control in an episodic memory model: relation to the 
P300 event-related potential. In: Colins A., Conwey, M., Gathercole,S., Morris, P. eds. 
Theories of memory. Hillsdale, NJ: Lawrence Erlbaum. 

McCarthy, G., & Donchin, E. (1981). A metric for thought: a comparison of P300 latency and 
reaction time. Science, 211, 77-80. 

Miltner, W. H., Lemke, U., Weiss, T., Holroyd, C., Scheffers, M. K., & Coles, M. G. (2003). 
Implementation of error-processing in the human anterior cingulate cortex: a source 
analysis of the magnetic equivalent of the error-related negativity. Biological Psychology, 
64, 157-166. 

Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-Related Brain Potentials 
Following Incorrect Feedback in a Time-Estimation Task: Evidence for a "Generic" 
Neural System for Error Detection. Journal of Cognitive Neuroscience, 9, 788-798. 

Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by the 
mismatch negativity(MMN) and its magnetic equivalent (MMNm). Psychophysiology, 
38, 1–21. 

Näätänen, R., & Alho, K. (1997). Mismatch negativity—The measure for central sound 
representation accuracy. Audiology & Neuro-Otology, 2, 341–353. 

Näätänen, R., Gaillard, A.W.K., & Mantysalo, S.(1978). The N1 effect of selective attention 
reinterpreted. Acta Psychologia, 42,313-329. 

Näätänen, R., Simpson, M., & Loveless, N.E. (1982).Stimulus deviance and evoked potentials. 
Biolgoical Psychology, 14, 53-98. 

Noldy, N., Stelmack, R., & Campbell, K..(1990). Event-related potentials and recognition 
memory for pictures and words: the effects of intentional and incidental learning. 
Psychophysiology, 27, 417–428. 

Nieuwenhuis, S., Aston-Jones, G., &Cohen, J.(2005a). Decision making, the P3, and the 
locus coeruleus-norepinephrine system.. Psychological Bulletin, 131,510–532. 

Nieuwenhuis, S., Holroyd, C. B., Mol, N., & Coles, M. G. (2004a). Reinforcement-related brain 
potentials from medial frontal cortex: Origins and functional significance. Neuroscience 
and Biobehavioral Reviews, 28, 441–448. 

Nieuwenhuis, S., Nielen, M. M., Mol, N., Hajcak, G., & Veltman, D. J. (2005b). Performance 
monitoring in obsessive-compulsive disorder. Psychiatry Research, 134, 111–122. 

Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D., Coles, M. G., Holroyd, C. B., Kok, A., et al. 
(2002). A computational account of altered error processing in older age: Dopamine and 
the error-related negativity. Cognitive, Affective & Behavioral Neuroscience, 2, 19–36. 



 

 103

Nieuwenhuis, S., Yeung, N., Holroyd, C. B., Schurger, A., & Cohen, J. D. (2004b). Sensitivity 
of electrophysiological activity from medial frontal cortex to utilitarian and performance 
feedback. Cerebral Cortex, 14, 741-747. 

O’Donnell, B.F., Squires, N.K., Martz, M.J., Chen, J-R., & Phay, A. (1987). Evoked potential 
changes and neuropsychological performance in Parkinson’s disease. Biological 
Psychology, 24, 23-37. 

Pfefferbaum, A., Christensen, C., Ford, J., & Kopell, B. (1986). Apparent response 
incompatibility effects on P3 latency depend on the task. Electroencephalography and 
Clinical Neurophysiology. 64, 424-437. 

Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical 
Neurophysiology, 9, 456-479. 

Picton T.W., Campbell, K.B., Baribeau-Braun, J., & Proulx, G. B. (1978). The 
neurophysiology of human attention: a tutorial review. In: Requin J. (Eds). Attention 
and performance VII (pp. 429-467). Hillsdale, NJ: Erlbarum.  

Polich, J. (1986). Normal variation of P300 from auditory stimuli. Electroencephalography 
and Clinical Neurophysiology. 65, 236-240. 

Polich, J. (1992). On the correlation between P300 amplitude and latency. Bulletin of the 
Psychonomic Society, 30, 5-8. 

Polich, J., Ehlers, C.L., Otis, S., Mandell, A., & Bloom, F.E. (1986). P300 latency reflects the 
degree of cognitive decline in dementing illness. Elecrroencephalography and Clinical 
Neurophysiology, 63,138-144. 

Polich, J., Howard, L., & Starr, A. (1983). P300 latency correlates with digit span. 
Psychophysiology, 20, 665-669. 

Polich, J., & Kok, A.(1995) Cognitive and biological determinants of P300: an integrative 
review. Biological Psychology, 41, 103-146. 

Pritchard, W. S., Shappell, S. A., & Brandt, M. E. (1991). Psychophysiology of N200/N400: 
A review and classification scheme. In J. R. Jennings & P. K. Ackles (Eds.), Advances 
in psychophysiology: A research annual (Vol. 4, pp. 43–106). London: Jessica 
Kingsley. 

Ragot, R. (1984). Perceptual and motor space representation: an event-related potential study. 
Psychophysiology, 21, 159- 170. 

Ridderinkhof, K. R., van den Wildenberg, W. P., Segalowitz, S. J., & Carter, C. S. (2004). 
Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action 
selection, response inhibition, performance monitoring, and reward-based learning. 
Brain Cognition, 56, 129-140. 

Ritter, W., Deacon, D., Gomes, H., Javitt, D. C., & Vaughan, H. G. Jr. (1995). The mismatch 
negativity of event-related potentials as a probe of transient auditory memory: A review. 
Ear & Hearing, 16, 52–67. 

Ritter, W., Simson, R., & Vaughan, H. G. Jr. (1983). Event-related potential correlates of two 
stages of information processing in physical and semantic discrimination tasks. 
Psychophysiology, 20, 168–179. 



 

 104

Ritter, W., Simson, R., Vaughan, H. G. Jr, & Macht, M. (1982). Manipulation of event-related 
potential manifestations of information processing stages. Science, 218, 909–911. 

Ritter, W., Vaughan, H.G.Jr., Costa, L.D. (1968). Orienting and habituation to auditory 
stimuli: a study of short-term changes in average evoked responses. 
Electroencephalography and clinical Neurophysiology, 25, 550-556.  

Rugg, M.D., & Coles, M.G.H. (1995). The ERP and cognitive psychology: conceptual issues. 
In M.D. Rugg & M. G. H. (Eds.), Electrophysiology of Minds (pp, 27-39). New York: 
Oxford: Oxford University Press. 

Sams, M., Alho, K., & Näätänen, R. (1983).Sequential effects on the ERP in discriminating 
two stimuli. Biological Psychology, 17, 41-58 

Sanz, M., Molina, V., Martin-Loeches, M., Calcedo, A., & Rubia, F. J. (2001).Auditory P300 
event related potential and serotonin reuptake inhibitor treatment in 
obsessive-compulsive disorder patients. Psychiatry Research, 101, 75-81 

Sato, A., Yasuda, A., Ohira, H., Miyawaki, K., Nishikawa, M., Kumano, H., et al. (2005). 
Effects of value and reward magnitude on feedback negativity and P300. Neuroreport, 16, 
407-411 

Sebanz, N., Knoblich, G., Prinz, W., & Wascher, E. (2003). Twin peaks: An ERP study of 
action planning and control in coacting individuals. Journal of Cognitive Neuroscience, 
18, 859-870. 

Scheffers, M. K., & Coles, M. G. H. (2000). Performance monitoring in a confusing world: 
Error-related brain activity, judgments of response accuracy, and types of errors.Journal 
of Experimental Psychology: Human Perception and Performance, 26, 141–151. 

Simson, R., Vaughn,H.G. Jr,& Ritter, W. (1977). The scalp topography of potentials in 
auditory and visual discrimination tasks. Electroencephalography & Clinical 
Neurophysiology, 42, 528–535. 

Squires,K. C., Petuchowsky, S., Wickens, C., &Donchin, E. (1977). The effects of stimulus 
sequence on even related potentials: A comparison of visual and auditory sequences. 
Perception & Psychophysics, 22, 31–40. 

Squires, N.K., Squires, K., & Hillyard, S.A. (1975). Two varieties of long-latency positive 
waves evoked by unpredictable auditory stimuli in man. Electroencephalography and 
Clinical Neurophysiology, 38,387-401. 

Squires, K. C., Wickens, C., Squires, N. K., & Donchin, E. (1976). The effect of stimulus 
sequence on the waveform of the cortical event related potential. Science, 193, 
1142–1146. 

Sutton, S., Braren, M., Zubin, J., & John, E.R. (1965). Evoked potential correlates of stimulus 
uncertainty. Science, 150, 1187-1188. 

Treisman, A. M. & Gelade, G. (1980). A feature-integration theory of attention, Cognitive 
Psychology, 12, 97-136 

Valle Incla´n, F. (1996). The locus of interference in the Simon effect: An ERP study. 
Biological Psychology, 43,147–162. 



 

 105

van Veen, V., & Carter, C.S. (2002). The timing of action-monitoring Processes in the 
anterior cingulate cortex source. Journal of Cognitive Neuroscience, 14, 593-602. 

Verleger, R. (1988). Event-related potentials and cognition: a critique of the context-updating 
hypothesis and an alternative interpretation of P3. Behavioral Brain Science, 11, 
343–356. 

Verleger, R, Jas′kowskis, P, & Wascher, E. (2005). Evidence for an integrative role of P3b in 
linking reaction to perception. Journal of Psychophysiology, 19, 150-166. 

Vidal, F., Hasbroucq, T., &Bonnet, M. (2000). Is the ‘error negativity’ specific to errors? 
Biological Psychology, 51, 109–128. 

Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., &Winter, A. L. (1964). 
Contingent negative variation: an electrical sign of sensorimotor association and 
expectancy in the human brain. Nature, 230, 380-4. 

Wang, Y., Cui, L., Wang, H., Tian, S., & Zhang, X. (2004). The sequential processing of visual 
feature conjunction mismatches in the human brain. Psychophysiology, 41, 21–29. 

Wang, Y., Tian, S., Wang, H., Cui, L., Zhang, Y., & Zhang, X. (2003). Event-related potentials 
evoked by multi-feature conflict under different attentive conditions. Experimental Brain 
Research, 148, 451–457. 

Yeung, N., Cohen, J. D., & Botvinick, M. M. (2004). The neural basis of error detection: 
conflict monitoring and the error-related negativity. Psychological Review, 111, 931-959. 

Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward 
processing in the presence and absence of response choice. Cerebral Cortex, 15, 
535–544. 

Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in 
the human brain. Journal of Neuroscience, 24, 6258–6264. 

Zhou, B., Zhang, J. X., Han, L. H., & Tan, S. (2004). Spatial congruence in working memory: 
An ERP study. NeuroReport, 15, 2795–2799.  

 

 


