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Abstract

Many customer reported troubles can be prevented if the deterioration of network compo-
nents is recogized early and corrective actions are taken before potential troubles are observed
by customers.

In this note we present a simple model for determination of an optimal “action limit” in
slowly deteriorating repairable system. The performance of such a system is assumed to be
characterized by a single parameter which is continuously being monitored. The underlying
deterioration process is assumed to be governed by a Brownian motion process with a positive
drift. When the measured value of the parameter reaches the so called “action limit,” the
repair/replacement procedure is initiated. The optimal action limit is derived so that the
expected long run average total cost is minimized. Some simple numerical examples illustrate
the model and the optimization.

1 Introduction

In order to provide a high quality and reliable service, many components of today’s complex
systems are continuously monitored to determine if they function properly and to detect malfunc-
tion as soon as possible. For example, in telecommunication networks and/or computer systems
many critical components are constantly being monitored in order to detect any performance
degradations which may later result in a component or system failure and consequently in inter-
ruption of service to the customer. When a faulty condition is detected, evasive actions can be
taken (as, for instance, switching to spare component) to correct the fault well before potential
troubles will be experienced by customers. This research was motivated by the need to develop
effective monitoring strategies to guarantee trouble-free service of a communication/computer
network and enhance its degree of fault tolerance.

Not all the failures can, of course, be predicted by the continuous monitoring. Failures caused
by random phenomena, such as stochastic failure of electronic components, storms, accidents,
malicious acts, careless construction crews and other exogenous sources are typical examples.
On the other hand, many failures may be preventable. For instance, failures of equipment in



which some parts deteriorate slowly over time (such as copper wire pairs or terminal connec-
tions corroding in moist environment) may be prevented if the problem is recognized early and
corrected in time.

In order to detect any possible performance degradations of network components as soon as
possible some relevant parameters of the component will be either continuously or frequently
monitored to make sure that the parameter values are within certain well specified acceptable
limits. When the monitor will detect a significant change in the monitored parameters, net-
work control will be notified and a sequence of corrective actions (such as standby components
activated, traffic rerouted, repair procedure initiated, etc.) will then be undertaken.

This paper develops a methodology for determination of optimal monitoring strategies for a
repairable system whose performance is slowly deteriorating over time. The following monitoring
and repair setting will be assumed: The performance of the system at the time ¢ is characterized
by a single parameter X(¢). This parameter is continuously monitored. If X(t) is bigger than
a certain threshold, say U, customers notice the degradation and complain. Since X(t) is
continuously monitored, some level of degradation can be observed before the customers notice.
If the degradation is caught early, then frequently the system can be fixed before X(t) reaches
U and thus the majority of customer complaints can be eliminated.

Without loss of generality, assume that the smaller the value of X(t), the better is the
system performance, in other words, the system performance is a nonincreasing function of -
X(t). Examples of X(t) include BER (Bit Error Rate), frequency of ARQ (Automatic Repeat
Request) or CRC (Cyclic Redundancy Code) checks. If, in some applications, such as when
we assume that the quality of a telephone connection is measured by signal/noise ratio (the
higher the S/N ratio, the better the quality) we take X(t) to be a negative of the S/N ratio
measurement.

The system is then judged to have a satisfactory performance if the value of X(t) lies below
the threshold U. We will assume that the deterioration process X(t) can be modeled by a
Wiener (Brownian) process with a positive drift.

To correct the degradation, (hopefully before it is observed by a customer) we consider
the following repair scenario: When, for the first time, the process X(t) reaches a certain
predetermined level, called “action limit” (lower than the threshold ), an action “issue a trouble
ticket,” is taken and a repair (overhaul, replacement, etc.) procedure is initiated. Clearly, there
is a cost involved with each repair. The repair cost includes the actual repair cost, cost of spare
parts, administration and dispatching cost, etc. The time to repair completion is assumed to
be a random variable and the service provider will be penalized if the repair is not completed
before the process reaches the threshold. We derive the optimal action limit which will minimize
the expected long run average total cost per unit time.

In the recent years, new approaches for maintenance policies for the control of production
systems which are subject to deterioration over time have been considered by Lee and Rosen-
blatt, (1988), Paté-Cornell, Lee and Targas (1987) among many others. Models for continuous
monitoring of production control with warning signals was considered by Lee, Moinzadeh and
Targas (1986). These three papers contain essentially a complete bibliography on the subject.



Rapid advances in microprocessor technology and data communication networks made effective
and instant monitoring possible for many components of complex and geographically distributed
systems. Today’s network control centers monitor thousands of subsystems and components,
yet, even the traditional statistical quality control routines to detect shifts from “in control” to
"out-of-control” state are not widely implemented.

In a related problem, Eu and Rollins (1988) consider a sampling strategy to estimate real-time
error performance of digital links and suggest determination of alarm conditions for the purpose
of trouble prevention. Models for effective scheduling of periodic diagnostic tests (monitoring
from time to time) in communications systems were considered by Kubat (1988) and by Rubin
and Zhang (1988).

Models of monitoring and controlling of production processes, based on Brownian motion
were considered by Antelman and Savage (1965) and later also discussed by Ross (1983) under
the assumption that the repair process is instantaneous. The monitoring models considered in
this paper differ from the Antelman and Savage models in both the monitoring strategy and
in the cost function. Lee, Moinzadeh and Targas (1986), consider a deterministic deterioration
function which is zero until a fault develops at a random time.

Although this research was mostly motivated by the monitoring needs in communication
systems, it can be useful in other fields as well. Some examples are: production processes in
which cutting tools are periodically replaced because of the tools wear and tear, jet engines,
materials changing chemical structure over time, lasers slowly loosing power over time, electric
and electronic systems depending on replaceable power source, close pressure systems, etc.

2 Continuous Monitoring Model

Consider a Brownian motion {X(t),t > 0} with positive drift 4 and variance o2, starting at
the origin, i.e., X(0) = 0. Without loss of generality, we set the threshold U = 1, and denote
by p(0 < p < 1) the action limit. Let T,; denote the first passage times for the process to
reach level b starting from level a, (a < b). Specifically, we denote by T, and T the first passage
times for the process to reach p, and 1 respectively starting from the origin (i.e., T, = To, and
T1 = To,); whereas Tp,; denotes the first passage time to reach 1 starting from level p; G(t)
denotes the distribution of Tp,; . Let E[T,] be the expected first passage time from zero to p
(see Figure 1 for details). When the process X (t) reaches level p the repair process is initiated.
The trouble ticket is issued, additional tests are made and finally the repairman is notified and
dispached. Let R be the time from the instant in which the action limit is hit and trouble ticket
issued until the repair is successfully completed. This time, sometimes called a “lead time” is a
random variable and has distribution F(r). Note that the lead time will include all the queueing,
administration, system testing, dispatching, transportation and other delays which may occur
during the repair cycle. We assume that the repair time itself is small and will be included in
R. Furthermore, during the actual repair, the customer will be taken out of service only for a
negligable amount of time and thus all the costs associated with this service interuption can be



neglected as well.
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Figure 1. A typical realization of process Y (t).

From Karlin and Taylor (1975, p. 362), we get that the Laplace transform of T, 5

(2.1) Elexp(-0T, ;)] = exp (_(b;za) (\/uz + 2020 - ,u))

where 6 denotes the argument of the Laplace function. Consequently

(22) E[T)] = —;ld—oE[exp(—OTp)] lo=0= 5‘

Define
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Y(t)‘{1 1> 1

and
- 0 ifR<T, )1

The process Y (2) is called the truncated Brownian motion and 7 can be interpreted as the time
that the truncated process Y(t) spends at the state 1, or equivalently, the time the system will
be in the unacceptable state waiting for the repair completion. The times at which the repair is
just completed, can be considered as regeneration points of the underlying regenerative renewal
process. The time interval between two sucessive regeneration points is called the cycle time.

Suppose that every time a repair is initiated, a fixed cost ¢; is incurred. This cost may be
derived as an average cost of a trouble ticket disposition. During the period when the system
is in the unacceptable state (i.e., Y(t) = 1) addidonal cost is accumulated. This cost is linearly
proportional to the length of that period and ¢, denotes the per unit time cost when the system



is in unacceptable state. This cost may represent the cost of forgone revenues, opportunity loss,
cost of customer inconvenience, etc.

After the repair completion, the process Y(t) is put back at the origin and a new cycle starts.
Clearly,

(2.3) Ellength of a cycle] = E[T,] + E[R]
and

(2.4) Elcost of a cycle] = ¢ + c2E[7],
where

Elr] = /:P(r>a)da

/:P(R—T,l > a)da
(2.5) |
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/: /ooo / : dF(r)dG(t)da

Following the theory of regenerative processes with rewards (Ross (1983), pp. 81-83), we see
that the expected long run average cost per unit time is

2.5 - &1+ Efr]
(2.5) 7(p) §+mm

In the case that R is exponentially distributed with parameter A, E[r] is greatly simplified. Here
we have:
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so that

c1 + 2 E[7]
1(p) = er—r—
PAD
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Our purpose now is to choose an optimal p so as to minimize the expected long run average cost
per unit time (2.8) and we must have that 0 < p < 1.

Differentiating v(p) with respect to p and putting ¥'(p) = 0, we obtain the equation
c2A (\/uz + 202\ - u) p+ecr (m/uz + 202\ — p? - 02/\)
)\/;ﬂ + 202\ - u}
02

(2.9)

= 02\%¢; exp {(1 -p

First note that

(2.10) c2A (\/;ﬂ + 202\ - u) >0

and

@A+ p2)? = oA+ (# /_#2+202’\)2
> (p\/p,2+202/\)2

(2.11)

implies that

(2.12) 2 (/‘\“‘2 4202\ - p? - 02/\) <0

i.e. the left hand side of equation (2.9) is a straight line with positive slope and negative intercept,
whereas the right hand side of (2.9) is an exponential function decreasing as p increases and it
intercepts the positive y-axis. Thus the straight line and the exponential function must intersect
at a point, this gives us the solution of equation (2.9) and it must be greater than 0 (see Figure 2).
This solution is less than or equal to 1 if and only if the intersection happens at p less than or
equal to 1, this is equivalent to the following constraint on the parameters:

(2.13) 129 (\/uz + 202\ - p) +c; (#\/#2 + 202\ — p? - 02A> > 02\,

It remains to show that the solution is indeed the minimum of our objective function, this can
be done by showing that our function is convex. Differentiating 7'(p) with respect to p again to
obtain

1 2
7'(p) = w {ch [(p/\ + u) <\/u2 + 202\ - u> - /\02] + couANia? + 2c1,u/\3}

> 0



where

Vit +20%) - p
(1 -P) o?

A =exp {—

The convexity of the objective function further implies that if constraint (2.13) is not satisified,
then the objective function is minimized at the point p = 1.

c,l( A/p? +20%2 -p) p+c3( y«/ u? +20% -p'-c’k)

1/;1’ +20°A -

Figure 2. Solution of the equation (2.9).

3 Sensitivity Analysis

It is of interest to study not only the change of the expected long run average cost per unit time
as the action limit p changes, it is also important to see how the other parameters affect the long
run average cost per unit time. For instance, ) is the rate at which the repairman responds,
it is therefore reasonable to expect that the long term cost increases as A decreases. Direct
differentiation shows that in the case when ¢; > 0, ¥ does increase as A decreases, however in
the case when ¢; > 0, the behavior of 4 as A changes is much more complicated. When we set
the action limit p = 1, i.e. the repairman is only called at the moment when the system is in the
unacceptable state, then 7 increases as A decreases if and only if the ratio of the per unit time
cost for the system to be in the unacceptable state to the fixed cost for the repairman to come is
greater than u, the deteriorating percentage rate of the system. Strict forward differentiations
also shows that, as expected, v increases as ¢y, ¢z, 4 or o increase.

Special case when ¢, =0. When ¢; = 0, i.e. the fixed cost of the repair is equal to 0, the
right hand side of equation (1) is identically equal to 0 and the optimal p can be solved as an



explicit function of the other parameters. In this case, the solution p* is

o = p? 4+ %X = p/u? + 202
A (VAT 2070 - 1)

(3.1)

Note that p* is independent of ¢y, this is because when ¢; = 0,c2 becomes a scaling factor
for the objective function. In this case, p* lies in the range [0,1] if and only if 0% — 2u < 2.
Direct differentiations of p* with respect to o, u or A allow us to find out how we should set our
action limit p* as other parameters change. As expected, p* decreases as either A or u increase,
i.e. when either the deteriorating percentage rate of the system or the rate of arrival of the
repairman increase, we should set a lower action limit so as to minimize the long term average
cost per unit time. However, as the diffusion coefficient o2 increases, p* increases. This means
that when the variability of the deteriorating percentage of the system increases, a higher action
limit is required.

4 Numerical Examples

Example 1. Consider s = 0.01, this means that on average it takes 100 days before the system
reaches the threshold and let us choose o = 0.05. We take A = 1,0.5 and 0.25, i.e., the mean time
for the repairman to come ranges from 1 day to 4 days. We select the repair cost ¢; = 100($),
a typical cost of average repair call (with overhead) in the outside plant, and select c; = 2,000

(8/day).

The optimal action limit p* is given for the above mentioned values of A are:

A p*

1 0.75
0.5 |0.65
0.25 | 0.45

The corresponding long run expected cost per day is plotted as a function of p and is shown in
Figure 3.

Example 2. Here we select A = .5 and we will investigate the effect of the failure rate p on
the long run average cost. We take u = 0.001,0.005 and 0.01, i.e., the mean time to failure
ranges from 100 days to 1,000 days. As in the previous example we set ¢ = 0.05,¢; = 100($)
and ¢z = 2,000 ($/day). The optimal action limit p* is given for the above mentioned values of
i are:

| 1 pt
0.01 | 0.65
0.005 | 0.65
0.001 | 0.75




The corresponding long run expected cost per day is plotted as a function of p and is shown in
Figure 4.

From Figure 3 and 4 it is interesting to observe that as A or y increases, p* increases. This
is reasonable because as the failure rate or lead time increases, the action to repair has to be
taken sooner to protect against possible outages. Furthermore, the cost function per unit time
v is rather flat in the neighborhood of the optimal point p*, which indicates that the optimal
action limit is robust.

5 Behavior of p* as a function of ¢; and c,

In examples 1 and 2, we studied how we should set our action limit in terms of the parameters
A, p or o, but keeping ¢; and c; fixed. In this section, the implicit equation (2.9) of p is used to
find out the changes in our action limit for different values of ¢; and c;.

First note, that equation (2.9) can be rewritten as

{ VH2 +202) = p ) p+  py/p? + 202 — p? - o? )}

(5.1) u + 202/\ ,u

= g2)\? exp 1 p)

where

(5.2) py/u? + 2020 - p - a?A < 0

for all choices of u, A and o.

The left hand side of equation (5.1) is again a straight line with positive slope and negative
intercept and the right hand side is a decreasing exponential function intersecting the positive
y-axis, the intersection of these two curves gives the optimal action limit for our problem. Note
that as cy/c; increases, the straight line rotates in a counterclockwise direction about a fixed
point and the optimal p becomes smaller. On the other hand, as cz/¢; decreases, the straight
line rotates in a clockwise direction about the same fixed point, the z-intercept of the straight
line, so that the optimal action limit increases. It is interesting to note that if the ratio cy/¢; is
a constant, then the optimal p is independent of ¢; or ¢;. However, if we hold ¢; fixed, then the
action limit decreases as ¢; increases. This is reasonable because when the per unit time cost
for the system to be in the unacceptable state increases and the other parameters are fixed, we
would want to set a lower action limit so that the repairman can come earlier. If ¢, is now fixed
and ¢; varies, optimal p should increase as ¢; increases, this is because when the fixed cost for
the repairman increases, we do not want to call the repairman as often, in particular, we want
the cycle time to be longer so as to minimize the long run average cost per unit time.



6 Generalization

(a) Lead Time Cost. So far we have assumed that there is a fixed cost ¢; everytime when the
repairman is called, we were looking at

exp {-(1
(4] 2
A

_p)V”2+2‘72)“‘ﬂ}
o2

(6.1) min

b

+

® IS

The second term in the expression above can be thought of as the long run average cost per
unit time due to the system being in the unacceptable state and the first term is the long run
average cost per unit time of the repairman. The sum then gives us the long run average cost
per unit time of maintaining the system. The assumption that there is a fixed cost ¢; everytime
the repairman is called can be generalized. Let ¢()\) be the per unit time cost of maintaining
the cost parameter at level A, our new minimization problem becomes

24202\ -
ool - ETEs)

(6.2) rgi/\n c(A) +

C2
3

> =

+

® I
+
T I

It is reasonable to assume that ¢()) is an increasing function of ), i.e. the per unit time
cost of maintaining the control parameter A increases as the rate of repairs increases. If ¢()) is
assumed to be independent of the other parameters, then the minimization (6.2) is the same as

24202\ -
exp{—(l _p‘) 2 o2 'u}

. 2 €2
(6.3) min c(N)+ T 4+ =2

R

>l

A
I
when p* is the optimal p in the minimization (6.1). Note here that p* depends on A in the
implicit equation (2.9) and so (6.3) is not easy to differentiate.

In the case when ¢; = 0, we want to minimize the function f()) where

" /112 + 202\ -

c exp{_(l-p) - o2 ”’}
(6.4) fO) = e+ 3

> =

Ly
W
and p* is an explicit function of A.

(b) Non-exponential Lead Time Distribution. A close expression for E[r], given by (2.7),
can be also obtained if the distribution of R is a mixture of exponentials, i.e., the density of R

10



is given by
n n
fr(r) = Cdiexp{-Ar}, Y & =1, &> 0.
=1 1=1
Many distributions can be approximated by a mixture of exponentials and thus our problem is

fairly general. In this case, however, the minimization of the expected long run average cost
(2.8) is more complicated, but solvable using standard numerical techniques.

7 Concluding Remarks

In this paper we presented a simple continuous monitoring scheme for a repairable system. The
underlying deterioration process of the system is assumed to be governed by a Brownian motion
process with a positive drift. An optimal action limit has been derived and its sensitivity with
respect to the system parameters and costs have been studied. The model and the derivation of
the action limit have been illustrated on a few simple numerical examples.

In practice it may be impossible or too costly to continuously monitor the system perfor-
mance, it would be useful to extend our model so that the relevant parameters of the systems
are only monitored from time to time. Models for periodic monitoring and action limits are
currently under development.
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