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Abstract 

 

 

Proteins are the most diverse class of biomolecules, both structurally and 

functionally, and have evolved to accomplish many tasks in living systems.  The 

features of proteins and peptides that contribute to their structure, stability and 

activity have been elucidated through an enormous body of experimental work.  

Central to this research have been protein engineering and design studies.  

Knowledge of the basic principles underlying protein folding, stability, and activity 

provide insight into the fundamental processes in vivo and offer the potential of 

designing protein/peptide based materials and therapeutic agents.  The 

extensive research on protein design and incorporation of non-natural amino 

acids into peptides and proteins forms the basis of the research presented.   

A de novo designed 4-α-helix bundle was employed to study the increased 

stability and potential self-segregating properties imparted by incorporation of the 

highly fluorinated amino acid, L-5,5,5,5’,5’,5’-hexafluoroleucine (hFLeu).  The 

fluorinated peptide was shown to have increased biological stability against 

proteolytic degradation and greater stability toward denaturation by organic 

solvents in comparison to the non-fluorous peptide.  Contrary to the predictions 

of the “fluorous” effect the fluorinated and non-fluorous peptides showed no 

tendency to self-segregate.   



 xx 

 A series of antimicrobial peptides were studied to examine the affects of 

fluorination on the stability and antimicrobial activity of the α-helical MSI-78 

peptide and β-hairpin PG-1 peptide.  The fluorinated α-helical analogs of MSI-78 

exhibited broad spectrum antibacterial activity, and importantly increased stability 

against proteolysis.  However, hFLeu did not improve the antimicrobial activity of 

the β-hairpin PG-1 antimicrobial peptide that was also investigated.  The results 

suggest fluorination may improve the efficacy of AMPs.      

Finally, a α-helical coiled-coil peptide was investigated as a means of 

mediating higher order assembly of the 5-fold symmetric cholera toxin B protein 

(CTXB).  When the α-helical peptide was genetically fused to the N-terminus of 

CTXB the fusion protein self-assembled into higher order assemblies of CTXB 

through dimerization of the N-terminal α-helical peptide domain.   Further 

development of the system could be useful for the development of protein-based 

biomaterials. 

    

 

  


