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ABSTRACT 
 
 

The metastatic progression of cancer requires multiple steps involving tumor cell-

stromal interaction, which has been demonstrated to be supported by the matrix 

metalloproteineases (MMPs). The ADAMs (a disintegrin and metalloproteinase) are a 

recently discovered family of proteases related to the MMPs. These zinc-dependent 

metalloproteinases are involved in a myriad of normal and pathophysiological functions 

including oocyte fertilization, neurogenesis, inflammation and cancer progression. The 

domain structure of ADAM family members implicate these enzymes in multiple 

functions such as cell adhesion, migration, invasion, and signal transduction. A 

catalytically active member of the ADAM family, ADAM15, has been shown to be 

upregulated in multiple adenocarcinomas including breast and prostate cancer. It is 

thought that ADAM15 plays a role in growth factor shedding to mediate cancer cell 

migration and invasion through its metalloproteinase activity. The ADAM15 disintegrin 

domain supports microenvironment modulation by mediating extracellular matrix 

degradation and angiogenesis. In this thesis work, I demonstrate that ADAM15 supports 

prostate cancer tumorigenesis and metastasis through the regulation of metastatic-

associated markers.  More importantly and for the first time, ADAM15 was implicated in 

soluble E-cadherin (sEcad) ectodomain shedding. The sE-cad fragment bound and 

activated ErbB receptors leading to breast and prostate cancer cell migration, 

proliferation and survival.  
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

The most diagnosed cancer in men and women in the United States is breast and 

prostate cancer, accounting for an average of 27% of all cancers recognized (1). These 

two adenocarcinomas are the second leading cause of cancer related deaths in the male 

and female population, respectively. It is forecasted that 1 in six men and 1 in 8 women 

will develop invasive adenocarcinoma of the prostate or breast during their life time. 

Prostate and breast cancer, as with other cancers, are amenable to treatment when 

detected early; however, if allowed to progress to metastatic disease, survival drops 

precipitously.  In fact, the five year survival for localized prostate adenocarcinoma is 

100%, but metastatic disease has a 33.3% survival rate during the same period of time. 

Similarly, in breast cancer localized cancer has a five year survival of 88.5% but patients 

with distant metastasis have only a 26% survival rate. Both prostate and breast cancer 

have a prevalence to metastasize to the bone, but lymph node, liver and lung have also 

been shown to be sites exhibiting metastatic involvement (2-4).  Cancerous invasion into 

the aforementioned organs can lead to debilitating complications and death.  Despite 

advances in management of cancer, much needed progress is required for alleviation of 

metastatic disease.  If the developments of novel therapeutics to treat this disease are to 

succeed, it is critical that the molecular mechanisms that underlie the metastatic process 

of prostate cancer be elucidated.   
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Metalloproteinases support metastatic progression 

The metastatic cascade includes two essential steps in allowing cancerous 

spread—cell detachment from the surrounding extracellular matrix and stromal invasion 

(5). One family of proteins implicated in supporting metastatic progression comprises the 

zinc-binding matrix metalloproteinases (MMPs). The role of the MMP family in 

metastasis has been intensely studied.  MMP family members, such as stromelysin-1 

(MMP-3), have been implicated in inducing cancer cell migration, invasion, and 

angiogenesis.  MMPs contain an active metalloproteinase catalytic domain characterized 

by the consensus HEXXHXXGXXH sequence (6). The metalloproteinase domain allows 

these proteinases to degrade extracellular matrix (ECM) proteins such as collagen, 

laminin and fibronectin. This activity leads to the destruction of the basement membrane 

allowing cancer cells to invade through the stromal components.  MMPs are also able to 

cleave transmembrane proteins, such as cadherins, on adjacent cells.  MMP-3 cleavage of 

E-cadherin in breast cancer cells was shown to mediate cancer cell detachment and cell 

migration (6).  Because MMP activity underlies fundamental aspects of the metastatic 

process, extensive effort has been placed on developing anti-cancer therapeutics targeting 

the metalloproteinase activity of the MMPs.  To date this research has led to the 

discovery of tissue inhibitors of metalloproteinases (TIMPs), and the development of 

small molecule inhibitors and mimetics (7-9).  

 

The ADAM family 

The ADAM (a disintegrin and metalloproteinase) family is composed of 40 

family members, of which 13 members are catalytically active, as characterized by the 
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consensus amino acid sequence HEXXHXXGXXH (9).  The ADAM proteinases are type 

I glycoproteins that are close relatives of the pIII snake venom metalloproteinases.  Both 

family members contain five extracellular domains; a pro-domain, metalloproteinase, 

disintegrin, and cysteine-rich domains, respectively (Fig. 1-1) (10).  A hydrophobic 

transmembrane domain links the N-terminal extracellular portion of ADAM proteases to 

their cytoplasmic tails. The c-terminal segment of these disintegrin metalloproteinases 

possess SH3 and SH2 recognition sequences that function in signal transduction. The 

ADAMs have been implicated in many biological processes, which include oocyte 

fertilization, neurogenesis, myogenesis, and growth factor shedding (11-13).  More 

importantly this family of disintegrin metalloproteinases has also been shown to be 

involved in cancer progression.  ADAM 10 is overexpressed in pheochromocytomas and 

neuroblastomas, while ADAM 12 is overexpressed in both breast and colon cancers (14-

16).  ADAMs 10,12, and 17 have also been implicated in gastrointestinal carcinoma (17).  

The multiple domains of these proteinases impart several physiological features, 

including ECM degradation and shedding of transmembrane growth factors through the 

active metalloproteinase domain.  ADAMs have been shown to cleave EGFR ligands 

leading to the transactivation of EGFR.  ADAM9, 10, 12 and 17 cleave the EGFR ligand 

HB-EGF, while ADAM17 can also cleave TNF-alpha, TGF-alpha, and amphiregulin 

(18).  Additionally, ADAM15 has been shown to transactivate EGFR by cleaving 

amphiregulin and TGF-alpha in bladder cancer cells (19).  EGFR signaling is implicated 

in many pathophysiological responses such as cell survival, proliferation, and migration 

(20). The ability of ADAMs to transactivate EGFR has been found to support their role in 

neoplastic progression.  Similar to the MMPs, the catalytic activity of ADAM family 
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members is inhibited by both pharmacological inhibitors as well as the endogenous tissue 

inhibitors of metalloproteinases (TIMPs).  ADAM 10 and 17 activity is inhibited by 

TIMP1 and 3 while TIMP2 inhibited ADAM12 catalytic function (21). TIMP inhibition 

of ADAM15 has not been empirically elucidated but studies by Joseph et. al. 

demonstrated supportive evidence for an ADAM15 specific small molecule inhibitor 

(22).   

Another physiological feature of ADAMs utilizes the disintegrin domain, which 

binds to integrins, allowing for cells to detach from their normal ligand, such as 

fibronectin or vitronectin, hence supporting cell invasion.  In fact, eight members of the 

ADAM family have been shown to bind integrins with α9β1 serving as a commonly 

shared ligand (18).  The domain structure of this family of disintegrin metalloproteinases 

impart on it the potential of inducing cell invasion, migration, and proliferation leading to 

neoplastic progression.   

 

Cadherin Structure-function 

 The cadherin superfamily is composed of the protocadherins and the classic 

cadherins, which play a role in a multitude of pathophysiological conditions (23).  

Members of the classic cadherin family includes E (epithelial)- and N (neuronal)-

cadherin are composed of five extracellular domains (EC) that function in calcium-

mediated homo- or heterotypic interactions (Fig. 1-2). The first (N-terminal) extracellular 

domain (EC1) contains a conserved consensus HAV (histadine, alanine, valine) sequence 

that is critical for cadherin functions (24).  Synthetic peptides containing this unique 

HAV sequence mimic the extracellular domain functions of both E- and N-cadherin, 
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respectively (25, 26). The extracellular domains are linked to the c-terminal cytoplasmic 

portions of the cadherin glycoproteins through a transmembrane domain. The c-terminal 

domain is homologous between different cadherins and contains binding sites for 

members of the catenin family (Fig. 1-2).  Both E- and N-cadherin are able to bind to β-

catenin, which in turn interacts with α-catenin to link the cadherin molecules to the actin 

cytoskeleton (27).  These cadherin glycoproteins are also able to interact with the p120ctn 

which directly links these adhesion proteins to the actin filaments (23).  E- and N-

cadherin function similarly but in different tissues and their involvement in the cadherin-

catenin-actin complex is crucial in maintaining the cadherin-dependent adherence 

junction (CAJ) in their respective tissue type.  E-cadherin is known to maintain epithelial 

tissue organization, cell polarity, and adhesion and is also involved in wound healing (28, 

29), while N-cadherin is essential for neurolation, neuronal growth and survival (30). 

Dissolution of the CAJ complex through transcriptional or post-translational modification 

(i.e. cadherin proteolysis, Fig. 1-2) disrupts the biological function that these cadherins 

perform such as synaptic function and epithelial cell polarity (23, 28). 

 

Epithelial to Mesenchymal Transition in Cancer 

 The physiological phenomenon of epithelial to mesenchymal transition (EMT) 

involves the conversion of epithelial cells from a polarized, well differentiated phenotype 

into a fibroblastoid mesenchymal cell.  This transition is critical during the gastrulation 

phase of development when epithelial cells from the outer ectoderm migrate and 

differentiate into mesenchymal neuron, glial cells, and melanocyte (31).  The conversion 

from an epithelial phenotype into a mesenchymal state is not limited to development but 
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has been observed in tumor cell metastasis (32, 33).  EMT is characterized by cadherin 

switching where the epithelial specific cadherin, E-cadherin, is lost and the neuronal 

specific cadherin, N-cadherin, expression is upregulated.  

 Re-expression of N-cadherin in cancer cells supports their metastatic potential by 

aiding tumor-host interaction, stabilizing growth factor receptors and mediating 

transcription of metastasis-associated genes (34, 35).  Outside the actual tumor cell, N-

cadherin is expressed in many components of the tumor microenvironment including 

fibroblasts, endothelial cells and neurons.  Tumor cell surface N-cadherin interaction with 

stromal N-cadherin through heterotypic binding mediate cancer cell invasion through the 

underlying stroma (36).  In prostate cancer, N-cadherin heterotypic ligation supports the 

perineural invasion of prostate cancer tumor cells (37).  Furthermore, N-cadherin can be 

cleaved at the cell surface to release a soluble 90 kDa N-cadherin fragment (soluble N-

cadherin or sN-cad) into the extracellular milieu.  The ectodomain shedding of N-

cadherin allows for the assembly and dissolution of adherence lamillipodia during tumor 

cell invasion through the surrounding stroma.  The soluble N-cadherin fragment, by 

anchoring in the extracellular matrix (ECM), has also been found to serve as a substrate 

for cell migration and invasion through N-cadherin heterotypic binding as well as 

supporting angiogenesis (38).  Derycke et. al. demonstrated that soluble N-cadherin 

supported endothelial migration and neovascularization through FGFR (fibroblast growth 

factor receptor) activation and signaling (39).  In addition, N-cadherin extracellular 

shedding reduces β-catenin interaction with N-cadherin at the cell surface and permits β-

catenin-mediated transcription of metastatic associated genes such as MMP9, cyclin D1 

and c-myc (40, 41).   
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 N-cadherin specific expression also supports cancer cell metastasis through the 

stabilization of different growth factor receptors.  In breast cancer cells, direct N-cadherin 

binding to FGFR stabilizes receptor expression at the cell surface (35).  The N-cadherin-

FGFR complex sensitizes the receptor to FGF-2 activation supporting an increase in the 

amplitude and duration of FGFR signaling which mediates cancer cell invasion through 

MMP9 activation. N-cadherin-growth factor receptor stabilization is not limited to FGFR 

but it is also known to stabilize PDGFRβ expression and signaling to support 

fibrosarcoma cell migration (42).   

 During EMT, N-cadherin re-expression is accompanied by the downregulation of 

E-cadherin levels and the loss of E-cadherin portends a poor prognosis in breast, bladder, 

gastric and prostate carcinoma (32, 33, 43, 44).  E-cadherin inactivation occurs on many 

levels, including chromosomal deletion, promoter hypermethylation, and protein 

cleavage (43).  E-cadherin proteolysis can be extracellular or intracellular and is induced 

by a myriad of stimuli such as serum deprivation, calcium influx, and phorbol-ester 

treatment (45-47).  The metalloproteinase-mediated extracellular release of the 80 kDa 

soluble E-cadherin (sE-cad) is upregulated in multiple adenocarcinomas and is known to 

correlate directly with metastatic prostate cancer (38, 48).  Our laboratory demonstrated 

that a member of the zinc-dependent ADAM (a disintegrin and metalloproteinase) family, 

ADAM15, mediates the shedding of soluble E-cadherin in breast and prostate cancer 

(Fig. 1-3).  Intracellular proteolysis of E-cadherin is also observed to generate a 97 kDa 

(E-cad97) or 100 kDa (E-cad100) membrane bound E-cadherin (Fig. 1-3).  Kuefer et. al. 

found that E-cad97 correlated directly with localized prostate cancer and may serve as a 

predictive marker for prostate cancer treatment failure (49).  Although a specific protease 
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has not been identified to be responsible for E-cad97 generation, Steinhusen et. al. 

provided convincing evidence for a role of caspace-3 in E-cad97 formation (50).  The 

cysteine protease, calpain, was found to cleave the cytoplasmic tail of E-cadherin to 

generate E-cad100 in response to phorbol-ester treatment (47). Both intracellular and 

extracellular proteolysis of E-cadherin liberates β-catenin from the cell surface and 

allows for β-catenin-mediated gene transcription.  Moreover, disruption of the cadherin-

catenin complex liberates p120ctn, which interacts with the transcriptional repressor Kaiso 

to inhibit gene expression (Fig. 1-2) (51).  The process of EMT permits tumor cells to be 

more metastatic by two complementary mechanisms initially through the loss of the 

suppressive E-cadherin-mediated adherence junction and secondly the acquisition of N-

cadherin which supports tumor cell migration and invasion through the tumor 

microenvironment.   

The classic cadherin family members are crucial for tissue maintenance and 

repair.  Inactivation of these proteins has many implications due to the mechanisms they 

regulate.  The stabilization of cell surface growth factor receptors, transcription factors, 

and proteases give this family of adhesion molecules diverse physiological functions.  

Understanding the role that both full length and the less studied soluble cadherin 

fragment is crucial in the treatment of disease. 

 

The role of ADAM15 in cancer 

An understudied member of the ADAM family, ADAM15, is located at 

chromosome 1q21, which is amplified in prostate and breast cancer as well as melanoma 

(52).  This transmembrane metalloproteinase is also known in the literature as MDC15 
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(metalloproteinase/disintegrin/cysteine-rich) or metargidin (a metalloproteinase-RGD-

disintegrin).  ADAM 15 is a transmembrane glycoprotein that contains five extracellular 

domains; prodomain; metalloproteinase, disintegrin, cysteine-rich, EGF-like and 

cytoplasmic domains (Fig. 1-1). The N-terminal prodomain maintains the 

metalloproteinase activity in an inactive state through a cysteine-switch (53). When this 

domain is cleaved by a proprotein convertase, i.e. furin, inhibition of ADAM15 

metalloproteinase activity is relieved and the proteinase is activated. The inactive 

precursor form of ADAM15 is a 110 kDa protein, and when matured it is converted into 

a 90 kDa active protease. ADAM15 catalytic activity degrades both collagen I and IV as 

well as cleaves the inflammatory cytokine CD23 (54, 55). Moreover, this adamalysin has 

been implicated in extracellular matrix remodeling within rheumatoid synovial tissue and 

atherosclerosis (56, 57).  Using its disintegrin domain, ADAM15 is able to interact with 

the integrins αVβ3, α5β1, α9β1, and αIIβ3 supporting its involvement in cell invasion (58-

60). In fact, ADAM15 plays an important role in glomerular mesangial cell and smooth 

muscle cell migration (14, 54, 61). Previous work demonstrated that ADAM15 is able to 

transactivate EGFR by cleaving the EGFR ligands amphiregulin and TGF-α in cancer 

cell lines (19).  Horiuchi et. al. implicated ADAM 15 in neovascularization, which is 

required for metastatic tumor development, potentially through the shedding of pro-

angiogenesis factors by the catalytic activity of ADAM15 (62). The c-terminus of 

ADAM15 contains 2 SH3 recognition sequences that have been shown to interact with 

src family members as well as the vascular transport molecules Endophilin 1 and 

SH3PX1 (63, 64). Interspersed within the cytoplasmic tail are putative kinase recognition 

sites that act as targets for ADAM15 directed phosphorylation. To this end, ADAM15 
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has been demonstrated to be a phosphorylation target of the src family member, hck, and 

this modification supports the interaction of c-abl with ADAM15 (65). The ADAM15 c-

terminus may support its targeting in response to different signals. Based on these 

studies, ADAM15 is thought to serve multiple functions to support cancer progression by 

mediating growth factor shedding, extracellular matrix degradation and signal 

transduction.  

 

Scope of dissertation 

Previously, our lab found that ADAM15 is significantly upregulated during 

prostate cancer progression using cDNA and tumor microarrays, respectively (66). 

ADAM15 was overexpressed in localized prostate cancer compared to normal prostate 

tissue and its expression was even greater in the metastatic lesions.  Within the same 

study, ADAM15 expression was found to be significantly overexpressed in breast cancer 

as compared to matched normal tissue.  ADAM15 levels were significantly upregulated 

in invasive carcinoma and metastatic disease.  Importantly, ADAM15 expression levels 

were higher at sites of breast tumor angioinvasion suggesting a role for ADAM15 in 

cancer metastasis. Using the oncomine database at the University of Michigan 

(www.oncomine.org), we found that ADAM15 levels were not only upregulated during 

the metastatic progression of prostate and breast cancer, but also in ten additional cancer 

types (Table 1-1). Corroborating this evidence was the fact that ADAM family modulated 

proteins (i.e. αVβ3, E-cadherin) were dysregulated during both prostate and breast 

progression. Furthermore, the domain structure of ADAM15 suggests a strong role for 

this active protease in tumor cell migration, invasion, proliferation and 
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neovascularization.  To our knowledge, there is no current work that has implicated 

ADAM15 as a possible mediator of prostate and breast cancer progression.  Based on the 

preliminary data from our lab, my thesis work focused on elucidating the role of 

ADAM15 in prostate and breast cancer progression.  In Chapter 2, I demonstrated that 

ADAM15 mediates prostate cancer metastasis through the modulation of metastatic cell 

surface markers.  ADAM15 was also implicated in soluble E-cadherin (sE-cad) shedding 

which in turn binds to and activates ErbB receptors to support breast cancer cell 

proliferation and migration (Chapter 3).  Finally, my thesis project provided compelling 

evidence for the role of ADAM15 in prostate cancer cell survival (Chapter 4).  
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Table 1-1.  cDNA microarray analysis of ADAM15 in multiple cancers*

0.04↑1Thyroid

1.40E-09↑1Liver

0.025↑1Endometrial

2.9E-04 to .006↑2Pancreatic

.01 to .031↑3Colon

1.2E-07 to .03↑4Renal

.028 to .046↑5Ovarian

4.2E-05 to .04↑6Brain

1.3E-09 to .045↑8Bladder

1.1E-05 to .047↑9Lung

5.6E-05 to .039↑9Prostate

.002 to .041↑10Breast

Range of p-ValueStatusNo. of StudiesTumor Type

0.04↑1Thyroid

1.40E-09↑1Liver

0.025↑1Endometrial

2.9E-04 to .006↑2Pancreatic

.01 to .031↑3Colon

1.2E-07 to .03↑4Renal

.028 to .046↑5Ovarian

4.2E-05 to .04↑6Brain

1.3E-09 to .045↑8Bladder

1.1E-05 to .047↑9Lung

5.6E-05 to .039↑9Prostate

.002 to .041↑10Breast

Range of p-ValueStatusNo. of StudiesTumor Type

*All studies were obtained from the Oncomine database at www.oncomine.org
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Fig. 1-1. ADAM protein structure. The precursor form of the ADAM proteases contains 

five extracellular domains. The first domain is an N-terminal prodomain (PD), which 

maintains the catalytic metalloproteinase (MP) domain inactive through a cysteine-

switch. The removal of the prodomain by proprotein convertases (lightening bolt) 

generates a catalytically active mature protease. The disintegrin domain (Dis) contains 

integrin binding sequences, which is followed by the cysteine-rich (CR) and EGF-like 

(EGF-L) domains. The transmembrane domain links the extracellular domains to the C-

terminal cytoplasmic tail.  
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Fig. 1-2.  Cadherin-dependent adherence junction.  Calcium-mediated homotypic 

interaction links the extracellular environment of the cell to the actin cytoskeleton 

through the catenin family members.  Disruption of the adherence junction by cadherin 

shedding releases the membrane-bound catenins to allow for gene expression or 

repression.     
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Fig. 1-3.  E-cadherin proteolysis.  Extracellular shedding by ADAM15 generates a 

soluble E-cad80 fragment.  E-cadherin intracellular cleavage is mediated by caspase-3 and 

calpain to generate E-cad97 and E-cad100, respectively. 

E
-c

ad
80

E
-c

ad
97

E
-c

ad
10

0

ADAM15

?/Caspase-3

Calpain

N

C

E
-c

ad
80

E
-c

ad
97

E
-c

ad
10

0

ADAM15

?/Caspase-3

Calpain

N

C



 16

BIBLIOGRAPHY 
 
 
1. ACS Cancer Facts and Figures, Vol. 2007. Atlanta: American Cancer Society, 

2007. 
2. Rubin, MA, Putzi, M, Mucci, N, Smith, DC, Wojno, K, Korenchuk, S, and Pienta, 

KJ Rapid ("warm") autopsy study for procurement of metastatic prostate cancer. 
Clin Cancer Res 2000, 6: 1038-1045. 

3. Shah, RB, Mehra, R, Chinnaiyan, AM, Shen, R, Ghosh, D, Zhou, M, Macvicar, 
GR, Varambally, S, Harwood, J, Bismar, TA, Kim, R, Rubin, MA, and Pienta, KJ 
Androgen-independent prostate cancer is a heterogeneous group of diseases: 
lessons from a rapid autopsy program. Cancer Res 2004, 64: 9209-9216. 

4. Sleeman, JP and Cremers, N New concepts in breast cancer metastasis: tumor 
initiating cells and the microenvironment. Clin Exp Metastasis 2007, 24: 707-715. 

5. Polette, M, Nawrocki-Raby, B, Gilles, C, Clavel, C, and Birembaut, P Tumour 
invasion and matrix metalloproteinases. Crit Rev Oncol Hematol 2004, 49: 179-
186. 

6. Lochter, A, Sternlicht, MD, Werb, Z, and Bissell, MJ The significance of matrix 
metalloproteinases during early stages of tumor progression. Ann N Y Acad Sci 
1998, 857: 180-193. 

7. Amour, A, Knight, CG, English, WR, Webster, A, Slocombe, PM, Knauper, V, 
Docherty, AJ, Becherer, JD, Blobel, CP, and Murphy, G The enzymatic activity 
of ADAM8 and ADAM9 is not regulated by TIMPs. FEBS Lett 2002, 524: 154-
158. 

8. Moss, ML and Bartsch, JW Therapeutic benefits from targeting of ADAM family 
members. Biochemistry 2004, 43: 7227-7235. 

9. Seals, DF and Courtneidge, SA The ADAMs family of metalloproteases: 
multidomain proteins with multiple functions. Genes Dev 2003, 17: 7-30. 

10. White, JM, Bigler, D., Chen, M., Takahashi, Y., Wolfsberg, T.G. In: Cell 
Adhesion, pp. 189-216. New York: Oxford University Press, 2001. 

11. Primakoff, P and Myles, DG The ADAM gene family: surface proteins with 
adhesion and protease activity. Trends Genet 2000, 16: 83-87. 

12. McCulloch, DR, Harvey, M, and Herington, AC The expression of the ADAMs 
proteases in prostate cancer cell lines and their regulation by dihydrotestosterone. 
Mol Cell Endocrinol 2000, 167: 11-21. 

13. Lum, L, Reid, MS, and Blobel, CP Intracellular maturation of the mouse 
metalloprotease disintegrin MDC15. J Biol Chem 1998, 273: 26236-26247. 

14. Wu, E, Croucher, PI, and McKie, N Expression of members of the novel 
membrane linked metalloproteinase family ADAM in cells derived from a range 
of haematological malignancies. Biochem Biophys Res Commun 1997, 235: 437-
442. 

15. Iba, K, Albrechtsen, R, Gilpin, BJ, Loechel, F, and Wewer, UM Cysteine-rich 
domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J 
Pathol 1999, 154: 1489-1501. 



 17

16. Yavari, R, Adida, C, Bray-Ward, P, Brines, M, and Xu, T Human 
metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in 
development and neoplasia. Hum Mol Genet 1998, 7: 1161-1167. 

17. Roy, R, Wewer, UM, Zurakowski, D, Pories, SE, and Moses, MA ADAM 12 
cleaves extracellular matrix proteins and correlates with cancer status and stage. J 
Biol Chem 2004, 279: 51323-51330. 

18. White, JM ADAMs: modulators of cell-cell and cell-matrix interactions. Curr 
Opin Cell Biol 2003, 15: 598-606. 

19. Schafer, B, Gschwind, A, and Ullrich, A Multiple G-protein-coupled receptor 
signals converge on the epidermal growth factor receptor to promote migration 
and invasion. Oncogene 2004, 23: 991-999. 

20. Fischer, OM, Hart, S, Gschwind, A, and Ullrich, A EGFR signal transactivation 
in cancer cells. Biochem Soc Trans 2003, 31: 1203-1208. 

21. Mochizuki, S and Okada, Y ADAMs in cancer cell proliferation and progression. 
Cancer Sci 2007, 98: 621-628. 

22. Trochon, V, Li, H, Vasse, M, Frankenne, F, Thomaidis, A, Soria, J, Lu, H, 
Gardner, C, and Soria, C Endothelial metalloprotease-disintegrin protein 
(ADAM) is implicated in angiogenesis in vitro. Angiogenesis 1998, 2: 277-285. 

23. Junghans, D, Haas, IG, and Kemler, R Mammalian cadherins and protocadherins: 
about cell death, synapses and processing. Curr Opin Cell Biol 2005, 17: 446-452. 

24. Pokutta, S and Weis, WI Structure and mechanism of cadherins and catenins in 
cell-cell contacts. Annu Rev Cell Dev Biol 2007, 23: 237-261. 

25. Noe, V, Willems, J, Vandekerckhove, J, Roy, FV, Bruyneel, E, and Mareel, M 
Inhibition of adhesion and induction of epithelial cell invasion by HAV-
containing E-cadherin-specific peptides. J Cell Sci 1999, 112 ( Pt 1): 127-135. 

26. Skaper, SD, Facci, L, Williams, G, Williams, EJ, Walsh, FS, and Doherty, P A 
dimeric version of the short N-cadherin binding motif HAVDI promotes neuronal 
cell survival by activating an N-cadherin/fibroblast growth factor receptor 
signalling cascade. Mol Cell Neurosci 2004, 26: 17-23. 

27. Vallorosi, CJ, Day, KC, Zhao, X, Rashid, MG, Rubin, MA, Johnson, KR, 
Wheelock, MJ, and Day, ML Truncation of the beta-catenin binding domain of E-
cadherin precedes epithelial apoptosis during prostate and mammary involution. J 
Biol Chem 2000, 275: 3328-3334. 

28. Masterson, J and O'Dea, S Posttranslational truncation of E-cadherin and 
significance for tumour progression. Cells Tissues Organs 2007, 185: 175-179. 

29. Nawrocki-Raby, B, Gilles, C, Polette, M, Bruyneel, E, Laronze, JY, Bonnet, N, 
Foidart, JM, Mareel, M, and Birembaut, P Upregulation of MMPs by soluble E-
cadherin in human lung tumor cells. Int J Cancer 2003, 105: 790-795. 

30. Williams, G, Williams, EJ, and Doherty, P Dimeric versions of two short N-
cadherin binding motifs (HAVDI and INPISG) function as N-cadherin agonists. J 
Biol Chem 2002, 277: 4361-4367. 

31. Chaffer, CL, Thompson, EW, and Williams, ED Mesenchymal to epithelial 
transition in development and disease. Cells Tissues Organs 2007, 185: 7-19. 

32. Bussemakers, MJ, Van Bokhoven, A, Tomita, K, Jansen, CF, and Schalken, JA 
Complex cadherin expression in human prostate cancer cells. Int J Cancer 2000, 
85: 446-450. 



 18

33. Tomita, K, van Bokhoven, A, van Leenders, GJ, Ruijter, ET, Jansen, CF, 
Bussemakers, MJ, and Schalken, JA Cadherin switching in human prostate cancer 
progression. Cancer Res 2000, 60: 3650-3654. 

34. Hulit, J, Suyama, K, Chung, S, Keren, R, Agiostratidou, G, Shan, W, Dong, X, 
Williams, TM, Lisanti, MP, Knudsen, K, and Hazan, RB N-cadherin signaling 
potentiates mammary tumor metastasis via enhanced extracellular signal-
regulated kinase activation. Cancer Res 2007, 67: 3106-3116. 

35. Suyama, K, Shapiro, I, Guttman, M, and Hazan, RB A signaling pathway leading 
to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2002, 
2: 301-314. 

36. Symowicz, J, Adley, BP, Gleason, KJ, Johnson, JJ, Ghosh, S, Fishman, DA, 
Hudson, LG, and Stack, MS Engagement of collagen-binding integrins promotes 
matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian 
carcinoma cells. Cancer Res 2007, 67: 2030-2039. 

37. De Wever, O and Mareel, M Role of tissue stroma in cancer cell invasion. J 
Pathol 2003, 200: 429-447. 

38. De Wever, O, Derycke, L, Hendrix, A, De Meerleer, G, Godeau, F, Depypere, H, 
and Bracke, M Soluble cadherins as cancer biomarkers. Clin Exp Metastasis 
2007. 

39. Derycke, L, Morbidelli, L, Ziche, M, De Wever, O, Bracke, M, and Van Aken, E 
Soluble N-cadherin fragment promotes angiogenesis. Clin Exp Metastasis 2006, 
23: 187-201. 

40. Reiss, K, Maretzky, T, Ludwig, A, Tousseyn, T, de Strooper, B, Hartmann, D, 
and Saftig, P ADAM10 cleavage of N-cadherin and regulation of cell-cell 
adhesion and beta-catenin nuclear signalling. Embo J 2005, 24: 742-752. 

41. Zi, X, Guo, Y, Simoneau, AR, Hope, C, Xie, J, Holcombe, RF, and Hoang, BH 
Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, 
in human androgen-independent prostate cancer PC-3 cells suppresses tumor 
growth and cellular invasiveness. Cancer Res 2005, 65: 9762-9770. 

42. Theisen, CS, Wahl, JK, 3rd, Johnson, KR, and Wheelock, MJ NHERF links the 
N-cadherin/catenin complex to the platelet-derived growth factor receptor to 
modulate the actin cytoskeleton and regulate cell motility. Mol Biol Cell 2007, 
18: 1220-1232. 

43. Frixen, UH, Behrens, J, Sachs, M, Eberle, G, Voss, B, Warda, A, Lochner, D, and 
Birchmeier, W E-cadherin-mediated cell-cell adhesion prevents invasiveness of 
human carcinoma cells. J Cell Biol 1991, 113: 173-185. 

44. Tran, NL, Nagle, RB, Cress, AE, and Heimark, RL N-Cadherin expression in 
human prostate carcinoma cell lines. An epithelial-mesenchymal transformation 
mediating adhesion withStromal cells. Am J Pathol 1999, 155: 787-798. 

45. Damsky, CH, Richa, J, Solter, D, Knudsen, K, and Buck, CA Identification and 
purification of a cell surface glycoprotein mediating intercellular adhesion in 
embryonic and adult tissue. Cell 1983, 34: 455-466. 

46. Maretzky, T, Reiss, K, Ludwig, A, Buchholz, J, Scholz, F, Proksch, E, de 
Strooper, B, Hartmann, D, and Saftig, P ADAM10 mediates E-cadherin shedding 
and regulates epithelial cell-cell adhesion, migration, and beta-catenin 
translocation. Proc Natl Acad Sci U S A 2005, 102: 9182-9187. 



 19

47. Rios-Doria, J, Day, KC, Kuefer, R, Rashid, MG, Chinnaiyan, AM, Rubin, MA, 
and Day, ML The role of calpain in the proteolytic cleavage of E-cadherin in 
prostate and mammary epithelial cells. J Biol Chem 2003, 278: 1372-1379. 

48. Kuefer, R, Hofer, MD, Gschwend, JE, Pienta, KJ, Sanda, MG, Chinnaiyan, AM, 
Rubin, MA, and Day, ML The role of an 80 kDa fragment of E-cadherin in the 
metastatic progression of prostate cancer. Clin Cancer Res 2003, 9: 6447-6452. 

49. Kuefer, R, Hofer, MD, Zorn, CS, Engel, O, Volkmer, BG, Juarez-Brito, MA, 
Eggel, M, Gschwend, JE, Rubin, MA, and Day, ML Assessment of a fragment of 
e-cadherin as a serum biomarker with predictive value for prostate cancer. Br J 
Cancer 2005, 92: 2018-2023. 

50. Steinhusen, U, Weiske, J, Badock, V, Tauber, R, Bommert, K, and Huber, O 
Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 
2001, 276: 4972-4980. 

51. Andl, CD, Mizushima, T, Oyama, K, Bowser, M, Nakagawa, H, and Rustgi, AK 
EGFR-induced cell migration is mediated predominantly by the JAK-STAT 
pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest Liver 
Physiol 2004, 287: G1227-1237. 

52. El Gedaily, A, Bubendorf, L, Willi, N, Fu, W, Richter, J, Moch, H, Mihatsch, MJ, 
Sauter, G, and Gasser, TC Discovery of new DNA amplification loci in prostate 
cancer by comparative genomic hybridization. Prostate 2001, 46: 184-190. 

53. Becker, JW, Marcy, AI, Rokosz, LL, Axel, MG, Burbaum, JJ, Fitzgerald, PM, 
Cameron, PM, Esser, CK, Hagmann, WK, Hermes, JD, and et al. Stromelysin-1: 
three-dimensional structure of the inhibited catalytic domain and of the C-
truncated proenzyme. Protein Sci 1995, 4: 1966-1976. 

54. Martin, J, Eynstone, LV, Davies, M, Williams, JD, and Steadman, R The role of 
ADAM 15 in glomerular mesangial cell migration. J Biol Chem 2002, 277: 
33683-33689. 

55. Fourie, AM, Coles, F, Moreno, V, and Karlsson, L Catalytic activity of ADAM8, 
ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in 
ectodomain cleavage of CD23. J Biol Chem 2003, 278: 30469-30477. 

56. Bohm, BB, Aigner, T, Blobel, CP, Kalden, JR, and Burkhardt, H Highly 
enhanced expression of the disintegrin metalloproteinase MDC15 (metargidin) in 
rheumatoid synovial tissue. Arthritis Rheum 2001, 44: 2046-2054. 

57. Al-Fakhri, N, Wilhelm, J, Hahn, M, Heidt, M, Hehrlein, FW, Endisch, AM, 
Hupp, T, Cherian, SM, Bobryshev, YV, Lord, RS, and Katz, N Increased 
expression of disintegrin-metalloproteinases ADAM-15 and ADAM-9 following 
upregulation of integrins alpha5beta1 and alphavbeta3 in atherosclerosis. J Cell 
Biochem 2003, 89: 808-823. 

58. Nath, D, Slocombe, PM, Stephens, PE, Warn, A, Hutchinson, GR, Yamada, KM, 
Docherty, AJ, and Murphy, G Interaction of metargidin (ADAM-15) with 
alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci 
1999, 112 ( Pt 4): 579-587. 

59. Zhang, XP, Kamata, T, Yokoyama, K, Puzon-McLaughlin, W, and Takada, Y 
Specific interaction of the recombinant disintegrin-like domain of MDC-15 
(metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem 1998, 273: 
7345-7350. 



 20

60. Langer, H, May, AE, Bultmann, A, and Gawaz, M ADAM 15 is an adhesion 
receptor for platelet GPIIb-IIIa and induces platelet activation. Thromb Haemost 
2005, 94: 555-561. 

61. Lu, D, Xie, S, Sukkar, MB, Lu, X, Scully, MF, and Chung, KF Inhibition of 
airway smooth muscle adhesion and migration by the disintegrin domain of 
ADAM-15. Am J Respir Cell Mol Biol 2007, 37: 494-500. 

62. Horiuchi, K, Weskamp, G, Lum, L, Hammes, HP, Cai, H, Brodie, TA, Ludwig, T, 
Chiusaroli, R, Baron, R, Preissner, KT, Manova, K, and Blobel, CP Potential role 
for ADAM15 in pathological neovascularization in mice. Mol Cell Biol 2003, 23: 
5614-5624. 

63. Howard, L, Nelson, KK, Maciewicz, RA, and Blobel, CP Interaction of the 
metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-
containing proteins, endophilin I and SH3PX1. J Biol Chem 1999, 274: 31693-
31699. 

64. Tanaka, M, Nanba, D, Mori, S, Shiba, F, Ishiguro, H, Yoshino, K, Matsuura, N, 
and Higashiyama, S ADAM binding protein Eve-1 is required for ectodomain 
shedding of epidermal growth factor receptor ligands. J Biol Chem 2004, 279: 
41950-41959. 

65. Poghosyan, Z, Robbins, SM, Houslay, MD, Webster, A, Murphy, G, and 
Edwards, DR Phosphorylation-dependent interactions between ADAM15 
cytoplasmic domain and Src family protein-tyrosine kinases. J Biol Chem 2002, 
277: 4999-5007. 

66. Kuefer, R, Day, KC, Kleer, CG, Sabel, MS, Hofer, MD, Varambally, S, Zorn, CS, 
Chinnaiyan, AM, Rubin, MA, and Day, ML ADAM15 disintegrin is associated 
with aggressive prostate and breast cancer disease. Neoplasia 2006, 8: 319-329. 

 
 



 21

 

 
 
 

CHAPTER 2 
 
 

ADAM15 SUPPORTS PROSTATE CANCER METASTASIS BY MODULATING 
TUMOR CELL-ENDOTHELIAL INTERACTION 

 
 

Abstract 

Using human tumor and cDNA microarray technology, we have recently 

demonstrated that the ADAM15 disintegrin is significantly overexpressed during the 

metastatic progression of human prostate cancer. In the current study, we utilized 

lentiviral-based shRNA technology to downregulate ADAM15 in the metastatic prostate 

cancer cell line, PC-3.  ADAM15 downregulation dramatically attenuated many of the 

malignant characteristics of PC-3 cells in vitro and prevented the subcutaneous growth of 

PC-3 cells in SCID mice. By inhibiting the expression of ADAM15 in PC-3 cells we 

demonstrated decreased cell migration and adhesion to specific extracellular matrix 

(ECM) proteins. This was accompanied by a reduction in the cleavage of N-cadherin by 

ADAM15 at the cell surface. FACS analysis revealed reduced cell surface expression of 

the metastasis-associated proteins αv integrin and CD44. Furthermore, MMP9 secretion 

and activity were abrogated in response to ADAM15 reduction. In an in vitro model of 

vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through 

vascular endothelial cell monolayers. Using a SCID mouse model of human prostate 

cancer metastasis, we found that the loss of ADAM15 significantly attenuated the 

metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a 
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functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium 

and the metastatic progression of human prostate cancer. This manuscript was published 

in Cancer Research 68(4):1092-1099. 
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Introduction 

The dissemination of localized prostate cancer to distant tissues such as the bone, 

lung and liver represents a prominent healthcare burden in the aging adult male 

population (1). The underlying mechanisms that promote and support the metastatic 

spread of prostate cancer remain vague. It is clear that fundamental processes, such as 

cellular detachment, suppression of apoptosis, vascular intravasation and angiogenesis 

are essential to the spread of cancer cells and their growth at distant sites (2). One family 

of proteins supporting malignant progression is the zinc-binding matrix 

metalloproteinases (MMPs) that degrade components of the extracellular matrix, such as 

collagen, laminin and fibronectin (3). However, the MMPs are not the only 

metalloproteinases implicated in human tumorigenesis.   

The less studied ADAM (A Disintegrin and Metalloproteinase) family of 

membrane metalloproteinases may also support tumor progression by modulating key 

physiologic cell surface proteins such as membrane anchored growth factors and their 

complementary receptors, cell adhesion molecules and integrins (4). The ADAM family 

is composed of 40 members, of which 13 members are catalytically active. These 

catalytically active members contain a metalloproteinase domain that is implicated in 

growth factor shedding and ECM degradation. ADAM17 has been reported to process 

pro-TNF-α, TNF receptors, interleukin-6 receptor and amphiregulin (5, 6) and ADAMs 9, 

10, 12 and 17 are believed to cleave the EGFR ligand, HB-EGF, leading to the 

transactivation of EGFR (7). ADAM family members have also been shown to cleave 

different cell adhesion molecules such as N-cadherin (8). Expression of N-cadherin in 

human tumor cells is usually associated with malignant progression (9). Cell surface N-
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cadherin supports heterotypic interaction between migrating cancer cells and other cells 

of the tumor microenvironment such as fibroblasts and endothelial cells to support cancer 

cell migration, invasion and metastasis.  

Another physiological feature of ADAMs utilizes the disintegrin domain to 

mediate integrin-ECM interactions. Several ADAM family members, including 

ADAM15, have been shown to bind to specific integrin molecules suggesting roles in 

cellular adhesion and tumor cell-ECM interactions (10). While the ADAMs have been 

the focus of rigorous research in many biological processes, such as oocyte fertilization, 

neurogenesis, myogenesis, and growth factor shedding (11, 12), they have only recently 

been studied in the context of human tumorigenesis (13-15). For example, ADAM 9 

expression has been associated with the incident of low grade prostate cancer formation 

in mice (16), however, the precise role of the ADAMs in malignant processes remains 

largely unknown. 

A number of proteases including members of the ADAM family are thought to 

play regulatory roles in the processes of angiogenesis and neovascularization. ADAMs 

have been implicated in the processing of several key signaling components of 

inflammation and angiogenesis as well as adhesion molecules that comprise endothelial 

adherens junctions including vascular endothelial (VE)-cadherin, PCAM-1, and integrins 

(17). A novel role for ADAM15 in endothelial adhesion was suggested by the 

observation that ADAM15 co-localized in endothelial cell junctions with VE-cadherin 

(18). Additionally, Blobel and colleagues provided a compelling argument for the role of 

ADAM15 in pathological neovascularization using a model of prematurity of retinopathy 

in mice (19). Further supporting ADAM15 function in endothelial regulation is the 
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evidence that ADAM15 binds the endothelial integrins α5β1 and αvβ3 via an RGD motif 

contained within its disintegrin domain (20, 21). Taken together these studies suggest that 

ADAM15 is a potential but unexplored component of tumor cell-endothelial cell 

interaction that may play a role in tumor angiogenesis and/or metastasis. 

While a role for ADAM15 in tumor vasculature may be emerging, very little is 

known concerning the contribution of ADAM15 to tumor initiation and progression. 

Located on chromosome 1q21, the gene encoding ADAM15, maps to a region of 

documented amplification associated with the metastatic progression of human cancers 

including: prostate, breast, ovarian, colon and melanoma (22-24). We have recently 

completed the first comprehensive expression profile of ADAM15 in human prostate 

cancer by utilizing both cDNA microarray and multi-tumor array technology. This study 

demonstrated significant increases of ADAM15 expression in multiple adenocarcinomas 

and a highly significant correlation with the metastatic progression of human prostate 

cancer (25). Based on previous work characterizing the catalytic metalloproteinase and 

disintegrin domains of ADAM15, we anticipated that ADAM15 may serve multiple 

functions in the metastatic progression of prostate tumors through disruption or 

degradation of the extracellular matrix, via its disintegrin domain, as well as proteolytic 

processing of key membrane-bound molecules via the metalloproteinase domain.  

To specifically elucidate the role of ADAM15 in prostate cancer progression, we 

developed a stable shRNA-mediated knockdown of ADAM15 in the highly malignant 

prostate cancer line PC-3. We have established that the reduction of ADAM15 expression 

abolishes the malignant characteristics of this cell line in vitro and in vivo and is 

associated with alterations of metastatic-associated cell surface proteins. To our 
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knowledge, this study is the first to provide functional evidence that ADAM15 plays an 

important role in the metastatic progression of human prostate cancer.  
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Materials and Methods 

Cell lines and cell cultures. 

LNCaP and PC-3Luc (26) cells were maintained in RPMI (Bio Whittaker, Walkersville, 

MD) with either 8% or 5% fetal bovine serum (HyClone, Logan, UT ), respectively, and 

supplemented with 2 mmol/L L-glutamine (Life Technologies, Grand Island, NY), 100 

units/mL penicillin (Life Technologies), 100 µg/mL streptomycin (Life Technologies), 

and 0.25 µg/mL Fungizone (Life Technologies). Cells were incubated at 37°C and 

subcultured weekly. 

 

Generation of shADAM15 PC-3 and ADAM15 overexpressing LNCaP cell lines. 

ADAM15 specific knockdown in PC-3Luc cells and the vector control which features a 

scrambled sequence that is designed to control for off-target effects were generated as 

described previously (27). The forward and complementary targeting sequences for 

ADAM15 were 5’-AACCCAGCTGTCACCCTCGAA-3’ and 5’-

TTCGAGGGTGACAGCTGGGTT-3’.  The shRNA cassette also featured a 

TTCAAGAGA loop situated between the sense and reverse complementary targeting 

sequences and a TTTTT terminator at the 3’ end.  

To generate ADAM15 overexpressing LNCaP cells, ADAM15 cDNA was tagged with 

HA (hemagglutinin) at the C-terminus and transfected into LNCaP cells lines as 

described previously (25)  

 

Protein isolation and Western blotting. 
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Cells were harvested by mechanical disruption with cell scrapers followed by gentle 

centrifugation. Cell pellets were then lysed in appropriate volumes of lysis buffer 

[50mmol/L Tris (pH 8), 120 mmol/L NaCl, .5% NP40, 1 mmol/L EGTA, 100 µg/mL 

phenylmethysulfonyl fluoride, 50 µg/mL aprotinin, 50 µg/mL leupeptin, and 1.0 mmol/L 

sodium orthovanidate] for 1 hour on ice. Tissues were briefly washed in PBS and 

homogenized in lysis buffer on ice for 20 seconds with a Tissue Tearor. Cellular debris 

was then pelleted by centrifugation, and supernatants were collected and quantitated 

using a Bradford protein assay (Bio-Rad, Hercules, CA). Equal amounts of protein were 

then separated on precast Tris-glycine SDS-polyacrylamide gels (Novex, Carlsbad, CA) 

and transferred to Hybond nitrocellulose membrane (Amersham Pharmacia Biotech, 

Piscataway, NJ). Membranes were then blocked, probed, and developed as previously 

described (28). Primary antibodies were obtained as follows:  actin, luciferase, GFP, and 

N-cadherin (Sigma, St. Louis, MO); ADAM10, ADAM15 and αv integrin (Chemicon, 

Temecula, CA); ADAM17 and CD44 (R&D Systems, Minneapolis, MN). 

 

In vivo Tumorigenesis Assay. 

PC3Luc cells were trypsinized, washed twice with PBS, collected and resuspended in 

PBS; the viability of collected cells was tested by staining with trypan blue. To establish 

PC3Luc tumor xenografts in mice, 6-week-old C57BL/6 SCID mice were injected 

subcutaneously in the right flank with 1 X 107 vector or shADAM15 PC3Luc cells in 100 

µL of PBS. Tumor volume was monitored weekly by external measurements with a 

caliper and calculated as V = (L2 X l) / 2, where L and l represent the smaller and the 

larger tumor diameter. The observations were ended for ethical reasons after 8 weeks due 
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to large tumor burden in vector control mice. Animals were maintained under specific 

pathogen-free conditions with ad libitum food and water in the University of Michigan 

animal housing facilities.  At this time, animals were euthanized by CO2 inhalation 

followed by induction of a bilateral pneumothorax and tumors were immediately frozen 

in dry ice or fixed in formalin. 

 

In vitro migration assay. 

Cell migration was evaluated by using the scratch wound assay; vector or shADAM15 PC-

3Luc cells were cultured for 2–3 days to form a tight cell monolayer. Cells were then 

serum starved for 16 hours. Following the serum starvation, the cell monolayer was 

wounded with a 10 µL plastic pipette tip. The remaining cells were washed twice with 

culture medium to remove cell debris and incubated at 37°C with normal serum-

containing culture media. At the indicated times, migrating cells at the wound front were 

photographed using a Nikon inverted microscope (Thornwood, NY). The cleared area at 

each time point was measured as a percentage of the cleared area at time 0 hours using 

NIH Image J software. 

 

Cell adhesion assay. 

Collagen I, collagen IV, fibronectin, vitronectin, laminin, or BSA coated 96-well plates 

were obtained from (Chemicon, Temecula, CA) and adhesion was performed per 

manufacturer’s instructions. Briefly, cells were detached using a cell dissociation buffer 

(Sigma), washed, and plated at 2.5 X 104 cells/well in culture media. Adhesion was 

allowed to occur for 1 hour.  Nonadherent cells were removed by gentle washing with 
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warm PBS. Cells were fixed, stained and solubilized for absorbance reading at 550 nm 

using a VersaMax microplate reader (Molecular Devices, Sunnyvale, CA) and Softmax 

Pro Software. 

 

Fluorescent-activated cell sorting (FACS) analysis. 

Cell surface integrin and CD44 receptor expression was monitored by FACS.  Briefly, 

cells were detached using cell dissociation buffer (Sigma) and resuspended in PBS. After 

washing twice with PBS, cells were incubated with primary antibodies (αv and CD44) for 

1 hour on ice. Cells were washed twice with PBS and incubated with Phar Red-

conjugated secondary antibodies (Molecular Probe, Carlsbad, CA) for 1 hour at 4oC.  

Cells were washed twice with PBS and fixed in 7.5% formaldehyde for 5 minutes at 4oC.  

Cells were then washed twice and resuspended in PBS and analyzed using a 

FACSVantage SE three-laser High-Speed Cell Sorter (BD Biosciences, San Jose, CA) 

with CellQuest Pro Software. Isotype IgG and secondary antibodies alone were used as 

controls. 

 

Substrate gel electrophoresis. 

MMP9 secretion and activity was assessed using gelatin zymography.  Vector or 

shADAM15 PC-3Luc cells were grown up to subconfluency and then serum starved in 

serum-depleted media for 0, 24, and 48 hours. At each time point, conditioned media was 

collected by spinning the samples at 2,000 RPM for 15 minutes to pellet any cell debris.  

The supernatant was collected and 3 mL of it was concentrated using Amicon Ultra 

concentrators (Millipore, Billerica, MA) according to manufacturer’s directions.  Equal 
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volume of the retentate was loaded on a gelatin zymogram and developed according to 

manufacturer’s protocol (Invitrogen, Carlsbad, CA).       

 

Transendothelial interaction and migration. 

The endothelial-epithelial interactions assay was performed as previously described (29).  

Briefly, HDME or HUVE cells were grown to full confluence in 6-well dishes. 2 X 105 

vector or shADAM15 PC-3Luc epithelial cells were added in 1.8 ml of 50/50 mixture of 

the EGM-2/RPMI 1640 culture media in triplicate. The unbound fraction were collected 

at 0, 5 and 20 minutes and cells counted. Data was calculated as the percent of bound 

epithelial cell fraction by subtracting the unbound fraction from the total cells (at the zero 

time point calculated for each cell line).  

The transendothelial migration (TEM) assay was performed as previously described (30). 

Briefly, HUVE cells were plated on 3 µm transwells to confluency.  3.8 X 104 vector or 

shADAM15 PC-3Luc cells were added onto the confluent HUVEC monolayer for 4 and 

8 hours. Nonadherent PC-3Luc cells and endothelial cells were removed by Q-tip swab 

from the top filter. The transwell filter was stained with crystal violet, solubilized in 10% 

acetic acid and quantified by fluorometric analysis using a VersaMax microplate reader 

(Molecular Devices) and Softmax Pro Software.  

 

N-cadherin proteolysis. 

For the in vitro proteolysis of N-cadherin, ADAM15 was isolated through 

immunoprecipitation using an HA specific antibody (Millipore) from LNCaP whole cell 

lysates.  Similarly, N-cadherin was isolated through immunoprecipitation using an N-
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cadherin specific antibody (Sigma) from whole cell lysates of N-cadherin expressing PC-

3Luc cells.  Isolated ADAM15 and N-cadherin were resuspended in equal amounts of ice 

cold PBS (calcium and magnesium free, Gibco), then mixed together at a 1:1 (volume-to-

volume) ratio and incubated for the designated time points at 37oC.  At the end of each 

time point, the reaction was stopped with the addition of reducing loading buffer and 

boiling.  Samples were then loaded on SDS-PAGE for protein analysis. Levels of soluble 

N-cadherin in conditioned media were monitored via N-cadherin immunoprecipitation 

from dilute conditioned media samples generated using the MMP9 zymography protocol. 

Isotype IgG was also used for the immunoprecipitation control. 

 

Intracardiac metastasis model. 

Six to seven week old C57BL/6 SCID mice were anesthetized with 1.75% isofluorane/air 

anesthesia. 2 X 105 cells in a volume of 100 µL of sterile PBS were injected into the left 

ventricle utilizing a 25 gauge needle. The animals were then monitored daily. Mice were 

imaged utilizing the University of Michigan Small Animal Imaging Resource facility.  

Images were collected on a cooled CCD IVISTM system with 50 mm lens, (Xenogen 

Corp., Alameda, CA). The LivingImage R software was utilized for analysis of all 

animals (Xenogen Corp). Prior to imaging, each mouse received an intraperitoneal 

injection containing 100 µL of a solution containing 40 mg/mL Luciferin dissolved in 

PBS. These mice were imaged at the indicated time intervals to assess the growth and 

metastasis of the luciferase-positive cells. At the termination of each experiment, mice 

were anesthetized, sacrificed and a full necropsy was carried out. Organs of interest were 

dissected out, weighed and utilized for histological analysis. 
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Results 

Increased expression of ADAM15 correlates with prostate cancer progression. 

Members of the ADAM family have been suggested to play a role in human angiogenesis 

and cancer progression. We have focused on one member of this family, ADAM15, 

which we determined was transcriptionally and translationally upregulated during the 

progression of several types of adenocarcinoma including metastatic prostate cancer (25). 

To further evaluate ADAM15 expression in human prostate cancer, we examined the 

Oncomine database1 to search published cancer cDNA expression arrays. Table 2-1 is a 

compilation of six independent and published cDNA microarray studies that revealed 

significantly increased ADAM15 expression during prostate cancer progression.  

 

shRNA-mediated knockdown of ADAM15 reduces PC-3 tumorigenicity. To assess 

the role of ADAM15 in prostate cancer progression, we inhibited the expression of 

ADAM15 using a shRNA-mediated approach in the malignant prostate cancer cell line, 

PC-3. Three stable ADAM15 shRNA-mediated knockdown lines, shADAM15-1, 2, 3 

(Fig. 2-1A), were established using a lentiviral construct to transduce the shRNA into the 

luciferase-tagged PC-3 cells (PC-3 Luc). The shRNA construct eliminated both the 

precursor and mature form of ADAM15 protein in the PC-3Luc shADAM15 cells in 

comparison to the parental and vector control cells. Off-target effects of the shRNA on 

other genes, including relatives of ADAM15, ADAM10 and ADAM17, were assess and 

were shown to be unaltered in the ADAM15 knockdown lines confirming the specificity 

of the shRNA for ADAM15. 

                                                 
1 www.oncomine.com 
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To investigate whether the loss of ADAM15 reduced the tumorigenic capacity of 

PC-3 cells, vector or shADAM15 PC-3Luc cells were injected subcutaneously into the 

flanks of male SCID mice and monitored for 8-weeks in live animals using 

bioluminescent imaging and caliper measurements (Fig. 2-1B and C). Vector control 

cells exhibited rapid growth as measured by bioluminescence and tumor volume. In stark 

contrast, the shADAM15 PC-3Luc cells had a significantly reduced tumor growth rate and 

its tumor volume plateaued between 5 and 6 weeks. At 8-weeks post injection, mice were 

euthanized and tumors were extracted for final tumor volume measurements. We found 

that the vector control mice had an approximate 6-fold increase in tumor volume 

compared to the shADAM15 PC-3Luc cell line (Fig. 2-1B, C). H&E histology and anti-

luciferase immunohistochemistry verified the presence of prostate-derived PC-3Luc cells 

(Fig. 2-2A and B).  

 

Reduction of ADAM15 in PC-3 cells attenuates cell migration and adhesion. Cellular 

migration is a characteristic of metastatic tumors. To assess whether ADAM15 

downregulation in PC-3Luc cells reduces cell migration, we performed a wound-healing 

migration assay (31). Vector or shADAM15 PC-3Luc cell monolayers were abraded with a 

pipette tip, stimulated with serum containing growth media and monitored over 24 hours. 

Microscopic examination at 3 and 6 hours revealed a significant delay in the wound 

closure rate of shADAM15 PC-3Luc cells in comparison to the vector control cell line 

which had completely closed the wound channel by 3 hours (Fig. 2-3A). This finding was 

corroborated by use of a colloidal gold assay, which demonstrated a decrease in random 

motility of the shADAM15 PC-3Luc cells compared to the vector control PC-3Luc cells 



 35

(Fig. 2-4).  Interaction between cell adhesion molecules (CAM) and their complementary 

ECM targets support cell migration.  ADAM15 has been shown to interact with several 

integrins which in turn bind their complementary ECM substrates to mediate cellular 

adhesion and migration (20, 21).  To assess the role of ADAM15 in cell adhesion to ECM 

substrates, vector or shADAM15 PC-3Luc cells were plated on plastic coated with 

collagen I, collagen IV, fibronectin, laminin, and vitronectin. The shADAM15 cell line 

had a significant reduction in their ability to adhere to fibronectin, laminin, and 

vitronectin compared to vector control (Fig. 2-3B).  Both vector and shADAM15 cells 

adhered equally unto collagen I and IV (data not shown).  

 

N-cadherin proteolysis is reduced in shADAM15 PC-3 cells. Tumor cell migration, 

invasion and metastasis require continuous membrane interactions with the surrounding 

microenvironment through surface adhesion molecules (i.e. N-cadherin) onto and from 

the underlying stroma.  Members of the ADAM family have been shown to mediate 

proteolysis of several CAMs including N-cadherin, to support cell migration. Since PC-3 

cells express high levels of N-cadherin but very little, if any, E-cadherin, we assessed the 

catalytic activity of ADAM15 in full length N-cadherin processing into the soluble 90 

kDa fragment. We first looked at the levels of solubilized N-cadherin in the conditioned 

media of vector and shADAM15 PC-3Luc cells.  Soluble N-cadherin was dramatically 

decreased in PC-3Luc cells in the shADAM15 cells (Fig. 2-5A).  To directly test whether 

ADAM15 cleaves N-cadherin, we co-incubated purified ADAM15 and N-cadherin to 

allow for ADAM15-mediated proteolysis over time and found that ADAM15 processed 

N-cadherin into a soluble fragment (S N-cad) by 6 hours (Fig. 2-5B).   
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Attenuation of ADAM15 levels decrease CD44 and MMP9 expression.  Integrins and 

CD44 receptors have also been shown to play an important role in facilitating cell 

migration and adhesion (32, 33). To assess whether these cell surface receptors are 

affected by reduced ADAM15 expression, we performed FACS and Western blot 

analysis on vector and shADAM15 PC-3Luc cells. FACS analysis demonstrated that the αv 

integrin and the CD44 receptor are significantly downregulated at the cell surface in 

response to ADAM15 knockdown (Fig. 2-6A). Unlike cell surface integrins, whose 

expression is difficult to assess by Western blot analysis, CD44 protein expression was 

nearly depleted in shADAM15 PC-3Luc cells as well as in the shADAM15 derived 

tumors, shown in Figure 1, in comparison to vector control (Fig. 2-6B). This finding is 

supported by a previous study showing a correlation between the tumorigenicity of 

prostate cancer cell lines and CD44 expression (34). Due to CD44 regulation of MMP9 

secretion and activity (35), we evaluated the levels of MMP9 in vector and shADAM15 

PC-3Luc cells using gelatin zymography and found dramatic reduction in both MMP9 

secretion and activity in response to ADAM15 loss (Fig. 2-6C).  To rule out the 

involvement of ADAM15 in gelatin degradation, purified wild type and catalytic-dead 

ADAM15 were analyzed for gelatinase activity using gelatin zymography.  Neither wild 

type nor the catalytic-dead mutant ADAM15 digested the gelatin substrate (data not 

shown). 

 

ADAM15 supports epithelial-endothelial interaction and transmigration. In order for 

cancer cells to metastasize, they must interact with the surrounding microvasculature and 
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intravasate through the vascular endothelium to gain access to the blood stream. To 

assess the potential role of ADAM15 in tumor cell-endothelial interaction, we performed 

a tumor cell-endothelial cell adhesion assay. Vector or shADAM15 PC-3Luc cells were 

plated on two types of primary human endothelial cell (HUVEC or HDMEC) monolayers 

for 0, 5, and 20 minutes and bound cells calculated as described in the materials and 

methods. We observed that shADAM15 PC-3Luc cells had a significantly reduced ability 

to adhere to the endothelial cell monolayers in comparison to the vector control (Fig. 2-

7A). Both vector and shADAM15 epithelial cells attached more effectively on HUVEC 

monolayer than the HDMEC monolayer. To assess whether ADAM15 reduction would 

also affect epithelial cell intravasation in vitro, we performed a transendothelial migration 

(TEM) assay. Vector or shADAM15 PC-3Luc cells were seeded on top of a confluent 

HUVEC monolayer in a transwell chamber and stimulated for 4 or 8 hours. Nearly 3-fold 

fewer shADAM15 PC-3Luc cells were found to have migrated through the endothelial 

monolayer at the 8 hour time point in comparison to the vector control (Fig. 2-7B).   

 

Loss of ADAM15 reduced the metastatic spread of PC-3 cells in vivo. We have 

demonstrated that the targeted knockdown of ADAM15 reduces PC-3 cellular motility, 

ECM binding, endothelial binding, transendothelial migration, and growth in vivo. 

Coupled to the fact that ADAM15 significantly correlates with the metastatic progression 

of human prostate cancer, these findings strongly support a functional role for ADAM15 

in prostate cancer metastasis. To examine this possibility, we injected vector or 

shADAM15 PC-3Luc cells into the left ventricle of male SCID mice to establish systemic 

metastasis (26).  The growth of metastatic lesions was monitored by bioluminescent 
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imaging over a 6-week time course in live animals. Bioimaging 24-hours post injection 

showed equal distribution of both cell lines inside the mice (data not shown). Over the 6-

week time course, mice injected with vector control PC-3Luc cells exhibited an increasing 

accumulation of bioluminescence at disseminated sites indicative of increased metastatic 

development compared to the shADAM15 PC-3Luc cells, which exhibited weak 

luminescent signals at distant sites (Fig. 2-8A and B). Animals injected with vector 

control developed secondary metastasis in the lungs (arrow head), tibia (arrow) and spine 

(Fig. 2-8A and C). Animals injected with shADAM15 PC-3Luc cells developed few to no 

metastatic lesions. Tissues exhibiting highly elevated bioluminescence were dissected 

and prepared for histological analysis. H&E histology and anti-luciferase 

immunohistochemistry verified the presence of substantial metastatic deposits of vector 

PC-3Luc cells within the lung, tibia and spine of vector cell injected mice (Fig. 2-8C). 

Histological analysis of tissues form the shADAM15 PC-3Luc mice revealed 

micrometastasis only in the lungs (Fig. 2-8D).  
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Discussion 
 

Alterations in the cellular microenvironment contribute significantly to the 

progression of human prostate cancer to metastatic disease. In turn, metastatic 

progression requires multiple steps which involve cell detachment, stromal invasion and 

intravasation into the vasculature (2). The matrix metalloproteinases (MMPs) have been 

demonstrated to catalyze the degradation of the extracellular matrix and are implicated in 

tumor cell migration, invasion, and angiogenesis. However, MMPs are not the only 

metalloproteinases thought to support human tumorigenesis. Another, less studied family 

of metalloproteinases, ADAMs, may also support tumor progression through their ability 

to affect diverse physiologic cell surface proteins such as membrane anchored growth 

factors and their receptors, ecto-enzymes and cell adhesion molecules, including the 

cadherins (4). These disintegrin-metalloproteinases contain the conserved modular 

metalloproteinase motif as well as an integrin-binding domain (disintegrin) in the 

extracellular region of the molecule and a src-homology (SH3) protein binding domain in 

the cytosolic portion of the protein. The ADAMs have been implicated in normal 

biological processes which include oocyte fertilization, neurogenesis, myogenesis, 

growth factor shedding (11, 12) and have recently been studied in the context of human 

tumorigenesis (13-15). ADAM9 expression has been associated with the incident of low 

grade prostate cancer formation in mice (16). Furthermore, ADAM12 expression was 

elevated in the stroma adjacent to tumor cells in mouse models of breast, colon and 

prostate cancer (36). However, the precise role of these proteinases in human malignant 

processes remains largely unknown.   

We have recently completed the first comprehensive study of ADAM15 

expression in human cancer. Utilizing the Oncomine database, we examined the cDNA 
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expression arrays of published studies examining normal tissue verses tumor in a number 

of adenocarcinomas. Using this database and the associated statistical software, we found 

that ADAM15 was upregulated in multiple adenocarcinomas (25). In addition, we have 

examined the expression of ADAM15 in 23 independent adenocarcinoma cell lines 

representing melanoma and tumors of the prostate, breast and colon and in all cases have 

observed high level expression of activated ADAM15 protein (data not shown). The 

chromosomal location of ADAM15 on 1q21, a region of specific and high-level 

amplification in metastatic prostate cancer, makes this disintegrin a strong candidate in 

the malignant progression of this disease. The current study suggests that aberrant 

function of ADAM15 supports tumor growth, endothelial interaction and metastasis of 

prostate cancer cells. Previous research from other laboratories indicated functional roles 

of ADAM15 in vascular endothelial biology with clear implications in endothelial 

interaction and angiogenesis (19, 37, 38). However, the specific actions of ADAM15 in 

tumor epithelium and influences on neighboring endothelial cells in the tumor 

microenvironment have not, until now, been explored.  

To elucidate the function of ADAM15 in prostate cancer, we developed a stable 

shRNA-mediated ADAM15 knockdown in the highly malignant PC-3 prostate cancer 

cell line. We demonstrated in this study a dramatic reduction in the malignant capacity of 

PC-3 cells in the subcutaneous implantation model. In agreement with a tumorigenic role 

of ADAM15 in PC-3 cells, we have seen that an exogenous overexpression of ADAM15 

increased the malignant potential of the minimally invasive LNCaP cells in this same 

model (date not shown). Taken together, the tumor cell implantation experiments using 
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two complementary models to alter ADAM15 levels strongly support the role of 

ADAM15 in the malignant progression of human prostate cancer cells. 

ADAM15 is believed to support cellular adhesion and motility in several systems 

(31, 39).  Here, we demonstrated that the loss of ADAM15 in PC-3 cells attenuated the 

migratory capacity in a wound channel migration assay and decreased PC-3 basal 

adhesion to fibronectin, laminin and vitronectin. Additionally, we showed that shRNA 

knockdown of ADAM15 decreased CD44 and αv integrin surface expression as well as 

MMP9 secretion and activity. This may have significant ramifications as αv – containing 

integrins are known to bind vitronectin while CD44 is considered to encompass laminin 

and fibronectin binding, respectively (32, 33). Since binding to other substrates, such as 

collagen I and IV, were unchanged in response to ADAM15 downregulation, we believe 

that these results are specific to the ADAM15 phenotype.  It has also been reported that 

low αvβ3 (40, 41) and CD44 (34, 42) levels portend to a less aggressive prostate cancer 

cell phenotype. The ECM glycoprotein, osteopontin, using its RGD sequence has been 

shown to interact with the αvβ3 integrin to regulate cell surface CD44 and MMP9 (35).  

ADAM15 is the only member of the ADAM family that has an RGD sequence within its 

disintegrin domain and has been shown to interact directly with the integrins αvβ3 and 

α5β1 (20, 21). Analogous to osteopontin, ADAM15 may regulate CD44, which in turn has 

been shown to regulate MMP9 expression, through this unique sequence. The interaction 

between ADAM15 and specific integrins or other transmembrane receptors may 

coordinate the proteolytic activity of ADAM15 directly to induce ECM degradation and 

cell migration.  Alternatively, ADAM15 could potentially activate downstream substrates 

such as MMP9 in a hierarchical manner to support cancer cell dissemination. 



 42

E (epithelial), N (neuronal), and P (placental)-cadherins function in maintaining 

cell-cell adhesion through homotypic ligation.  The loss of those interactions through a 

variety of aberrant processes such as cadherin gene mutation, loss of heterozygosity, 

promoter methylation or proteolytic cleavage can support cancer cell migration and 

invasion.  In aggressive prostate cancer cells, N-cadherin is highly expressed and has 

been shown to mediate their adhesion and migration (43).  The loss of full length N-

cadherin reduces cell adhesion and may promote cell migration (44).  Furthermore, serum 

levels of soluble N-cadherin are upregluated in multiple cancers including prostate cancer 

and correlated directly with an increase in PSA levels (45).  Within our current study, we 

have made the interesting observation that shADAM15 PC-3Luc cells had significantly 

reduced levels of shed N-cadherin in conditioned media in comparison to vector control.  

These findings were corroborated by the fact that an N-cadherin expressing melanoma 

cell line, Mel147, also had reduced soluble N-cadherin levels in its conditioned media in 

response to ADAM15 downregulation (data not shown).  In addition, reconstitution of 

immunoprecipitated ADAM15 and N-cadherin resulted in the cleavage of N-cadherin 

into the identical 90 kDa fragment observed in the conditioned media. These observations 

support two possible scenarios: 1) that ADAM15 cleaves N-cadherin directly or 2) that 

ADAM15 represents an indirect or upstream event in the shedding of N-cadherin. 

Regardless of a direct or an indirect role, we believe that N-cadherin solubilization may 

support the migratory phenotype observed in ADAM15 expressing PC-3 cells by 

disrupting the homotypic interaction between N-cadherin molecules and increasing N-

cadherin cell surface turnover.   
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The αvβ3 integrin has been shown to support endothelial-epithelial adhesion and 

transendothelial migration (TEM) of tumor cells (29). To assess whether the loss of 

ADAM15 and the associated reduction of αv integrin would hinder PC-3 epithelial-

endothelial adhesion, we examined the adhesive capacity of PC-3 cells to human 

endothelial cells and demonstrated that the loss of ADAM15 resulted in a significant 

reduction in endothelial adhesion. A concomitant reduction in transendothelial migration 

of shADAM15 PC-3 through HUVEC and HDMEC monolayers, not only supports that 

ADAM15 mediates endothelial adhesion of tumor cells but coordinates the 

transmigration of tumor cells through endothelial monolayers. 

The CD44 receptor has been implicated in prostate cancer adhesion, migration, 

invasion and metastasis (34). In this study, we showed that CD44 is downregulated in cell 

culture and in tumors in response to the loss of ADAM15. To investigate whether 

ADAM15 contributes to in vivo prostate cancer metastasis, we utilized an invasive model 

of prostate cancer metastasis. We demonstrated that vector PC-3Luc injected mice 

developed substantial metastatic lesions in the lung, spine and tibia. ADAM15 

downregulation within these cells hindered their ability to form distant metastasis.  

Considering the microarray data, which demonstrates a significant correlation of 

ADAM15 expression with the metastatic progression of human prostate cancer, results 

from the mouse metastasis model, suggests that ADAM15 may support the metastatic 

progression of prostate cancer.  

The current study, which has its foundations on the clinical correlation of 

ADAM15 and the metastatic progression of prostate cancer, provides strong experimental 

support for this disintegrin in prostate cancer progression. Based on the current findings 
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we suggest that ADAM15 plays critical regulatory roles in the malignant progression of 

cancer to metastatic disease. 
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Table 2-1. ADAM15 expression in prostate cancer.

Abbreviations:  N, normal prostate; L, localized prostate cancer; M, metastatic 
prostate cancer

50↑2.60E-05N/L/MYu

49↑0.023N/LMagee

48↑0.012N/LLuo

47↑0.004N/L/MLapointe

24↑0.002Gleason6-9Glinsky

46↑1.40E-05N/L/MDhanasekaran

ReferenceStatusp-ValueClassAuthor

50↑2.60E-05N/L/MYu

49↑0.023N/LMagee

48↑0.012N/LLuo

47↑0.004N/L/MLapointe

24↑0.002Gleason6-9Glinsky

46↑1.40E-05N/L/MDhanasekaran

ReferenceStatusp-ValueClassAuthor
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Fig. 2-1. Knockdown of ADAM15 reduces PC-3 tumorigenicity in vivo. A) Three 

separate shRNA ADAM15 PC-3Luc cell lines were established (shADAM15-1-3). Actin 

was used as loading control. To control for off target effects, ADAM10 and ADAM17 

were also examined. B) Vector or shADAM15 PC-3Luc cells injected subcutaneously into 

male SCID mice were monitored weekly via bioluminescent imaging. The color scale 

indicates the intensity of photon emissions. C) Gross examination of tumors at 8 weeks 

revealed significantly larger vector PC-3Luc tumors (T) in comparison to shADAM15 PC-
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3Luc tumors. Tumor volume was monitored by caliper measurements weekly for weeks 5-

8. Two independent experiments were performed with five animals per cell line that were 

injected on the right flank and the average tumor volumes were plotted; the bars 

represent the SEM. 
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Fig. 2-2 Tumor weight and histology of ADAM15 PC-3 tumors. A) Vector and 

shADAM15 PC-3Luc tumors were extracted and tumor weight was measure. B) H&E 

histology and anti-luciferase immunohistochemistry were used to verify the presence of 

epithelial derived PC-3Luc cells. Magnifications were 400X. 

 



 49

 
 

 

 

Fig. 2-3. Knockdown of ADAM15 attenuates PC-3Luc cell migration and adhesion in 

vitro. A) Monolayers of vector or shADAM15 PC-3Luc cells were abraded and then 

monitored at 0, 3, and 6 hours for wound channel closure. The cleared area was measured 

and plotted as the percentage of the original time point (0 hrs); bars represent the SD. 

Magnifications were 200X. B) Vector or shADAM15 PC-3Luc cells were plated on 

fibronectin (FN), laminin (LM), or vitronectin (VN) coated plastic dishes and adhesion 

measured by absorbance at 550 nm. The columns represent mean values of three 

independent experiments measured in sextuplets; the bars represent the SD.  
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Fig. 2-4 Gold colloid migration assay of PC-3Luc cells. Vector or shADAM15 PC-3Luc 

cells were plated on gold-coated coverslips and allowed to attach. Cells were then 

stimulated to migrate with serum-containing media for 48 hours. Photographs of 

migratory tracks (clear area) around the migrating cell (dashed circle) were collected and 

analyzed. Columns represent the average area of the migratory track; bars represent the 

SD. Magnifications were 200X.   
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Fig. 2-5.  ADAM15 mediates N-cadherin proteolysis. (A) Vector and shADAM15 PC-

3Luc cells were serum starved for 0, 24, and 48 hours and soluble N-cadherin (S N-cad) 

was assessed in the conditioned media. (B) ADAM15 was purified and incubated 

together with purified N-cadherin for 1 or 6 hours.  Purified N-cadherin was used as a 

size control and purified ADAM15 was used as a control for non-specific binding of the 

soluble N-cadherin fragment. ADAM15 mediated the processing of the 130 kDa full 

length N-cadherin (FL N-cad) into 90 kDa soluble N-cadherin (S N-cad).   
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Fig. 2-6.  Loss of ADAM15 disrupts cell surface receptors levels.  The αv and CD44 cell 

surface receptors were assessed via FACS (A) or Western blot (B) analysis in vector and 

shADAM15 PC-3Luc cells and tumor lysates.  (C) Vector and shADAM15 PC-3Luc cells 

were serum starved for 0, 24, and 48 hours and conditioned media was analyzed for 

MMP9 activity using a gelatin zymogram. Purified MMP9 (pMMP9) was used as a 

positive control. 
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Fig. 2-7. The loss of ADAM15 reduces PC-3-endothelial interaction and transendothelial 

migration. A) Vector or shADAM15 PC-3Luc cells were incubated on top of confluent 

HUVEC or HDMEC monolayers. The number of bound cells was determined at 0, 5 and 

20 minutes. B) Transendothelial migration of vector or shADAM15 PC-3Luc cells through 

a confluent endothelial monolayer grown on a 3 µm transwell. The relative migration rate 

was monitored at 4 and 8 hours via colorimeteric analysis. The columns represent mean 

values of independent experiments measured in duplicates and repeated three times; the 

bars represent the SEM.  
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Fig. 2-8. Loss of ADAM15 attenuates PC-3 metastasis in an intracardiac dissemination 

assay. A) Vector or shADAM15 PC-3Luc cells were injected into the left ventricle of male 

SCID mice and metastasis monitored via bioluminescent imaging for the duration of the 

6-week study. Vector control PC-3Luc cells were visualized in the tibia (arrow) and lung 

(arrow head) while the shADAM15 PC-3Luc exhibited very low signals in the thoracic 
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cavity representing a lung micrometastasis (arrow head). B) Total bioluminescence was 

graphed for both cohorts and the columns represent mean values of bioluminescence 

imaging (photons/sec); the bars represent the SEM. C) Metastatic tissues representing 

sites of strong bioluminescence were extracted for histological evaluation.  Lung, tibia 

and spine metastasis were observed in vector control sites as indicated by H&E histology 

and anti-luciferase immunohistochemistry. Magnifications were 400X. B, bone. T, tumor. 

D) shADAM15 PC-3Luc cells formed micrometastatic tumors (T) in the lungs (L) in 

comparison to the large lung tumors observed in vector control.  The inset is a 400X 

magnification of the 40X tumor image in each animal. 
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CHAPTER 3 

 
 

THE ECTODOMAIN SHEDDING OF E-CADHERIN BY ADAM15 SUPPORTS 
ERBB RECEPTOR ACTIVATION 

 
 

Abstract 

The zinc-dependent disintegrin metalloproteinases (ADAMs) have been implicated in 

several disease processes including human cancer. Previously, we demonstrated that the 

expression of a catalytically active member of the ADAM family, ADAM15, is 

associated with the progression of prostate and breast cancer. The accumulation of the 

soluble ectodomain of E-cadherin in human serum has also been associated with the 

progression of prostate and breast cancer and is thought to be mediated by 

metalloproteinase shedding. Utilizing two complementary models, overexpression and 

stable shRNA-mediated knockdown of ADAM15 in breast cancer cells; we demonstrated 

that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also 

demonstrated that the extracellular shedding of E-cadherin was abrogated by a 

metalloproteinase inhibitor and through the introduction of a catalytically inactive 

mutation in ADAM15. We have made the novel observation that this soluble E-cadherin 

fragment was found in complex with the HER2 and HER3 receptors in breast cancer 

cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and 

induced receptor activation and signaling through the Erk pathway supporting both cell 

migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes 

the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and 
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stimulates ErbB receptor signaling. This data is currently in press in Journal of Biological 

Chemistry (JBC). 

 



 62

Introduction 

The classic cadherins, E-(epidermal), N-(neuronal), and P-(placental) cadherins, 

are type I transmembrane glycoproteins (1). The epidermal specific cadherin, E-cadherin, 

has five extracellular domain (EC) repeats which are involved in cell binding mediated 

by E-cadherin homotypic interaction (2). The intracellular domain consists of a conserved 

sequence that associates with β, γ, and p120–catenins. The interaction of β or γ-catenin 

with α-catenin links E-cadherin to the cytoskeletal matrix to stabilize the adherens 

junction mediated by the homotypic E-cadherin complex (3). The involvement of E-

cadherin in cell-cell interaction is well established in embryonic development, organ 

morphogenesis, tissue integrity, and wound healing (4). The disruption of E-cadherin by 

genetic mutation, promoter hypermethylation, or proteolytic cleavage leads to the loss of 

cell contact integrity as a consequence of adherens junction dissolution. E-cadherin 

disruption has been observed in multiple pathophysiological conditions including 

inflammation and cancer (5). In fact, E-cadherin is considered to function as a metastasis 

suppressor due to its inhibition of cancer cell migration and invasion (6). Several 

proteases have been implicated in the extracellular cleavage of E-cadherin, including 

MMP3, MMP7, MT1-MMP, plasmin, kallikrein 7, and ADAM10. In addition, the 

cytoplasmic domain of E-cadherin is cleaved by caspace-3 and calpain (7, 8). The 

ectodomain shedding of a stable 80 kDa soluble E-cadherin (sE-cad) fragment has been 

shown to increase in the urine and serum of patients with cancers of the bladder, breast, 

prostate, ovarian, gastric and melanoma and is a marker of poor prognosis (5). At the 

molecular level, sE-cad is disruptive to cell contact inducing cell scattering and eroding 

the adherens junction by antagonizing full length E-cadherin (9). 
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The ADAM (a disintegrin and metalloproteinase) family is composed of 40 

members of which thirteen are catalytically active. These zinc-dependent proteases are 

transmembrane glycoproteins composed of five extracellular domains; prodomain, 

metalloproteinase, disintegrin, cysteine-rich, and EGF-like domains, respectively. The 

ADAMs also possess a cytoplasmic C-terminal tail containing SH2 and SH3 recognition 

sequences that have been shown to interact with different adapter proteins such as Grb2, 

SH3PX1 and endophilin I, which may play a role in protein localization and signal 

transduction (10, 11). The catalytic metalloproteinase domain of the ADAM family has a 

consensus HEXXGXXH sequence and is known to mediate extracellular matrix (ECM) 

protein degradation as well as ectodomain shedding of growth factors, growth factor 

receptors, and adhesion molecules (12). Complementing the metalloproteinase domain is 

the disintegrin domain which has been shown to bind different integrins that may support 

cell migration, adhesion, and ectodomain shedding (13). The presence of these domains 

suggests multiple functional roles for the ADAMs in a variety of normal and 

pathophysiological conditions including cancer progression. To this end, ADAM9 has 

been demonstrated to support lung cancer invasion and metastasis, while ADAM12 is 

upregulated in the serum of breast cancer patients and has been shown to mediate breast 

cancer cell invasion (14, 15). ADAM15 is one of the catalytically active sheddases which 

has been shown to be upregulated in breast, lung, gastric and prostate adenocarcinoma 

and is thought to support the metastatic progression of cancer cells by promoting tumor 

angiogenesis and angioinvasion (16-20). ADAM15 also plays a role in cell migration, 

neovascularization, and chondrocyte survival (21, 22) possibly through its role in EGFR 
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transactivation by cleaving the pro-forms of the EGFR ligands TGFα, HB-EGF, and 

amphiregulin (AREG) (23, 24). 

The ErbB family of receptors are composed of four members; epidermal growth 

factor receptor (EGFR, ErbB1 or HER1), HER2 (ErbB2), HER3 (ErbB3), and HER4 

(ErbB4) (25). When bound by their respective ligands, these receptors undergo homo- or 

heterodimerization that activates their inherent receptor kinase domain leading to receptor 

auto- and trans-phosphorylation and downstream signaling (26). ErbB receptor signaling 

has been demonstrated to support cancer cell migration, proliferation, and invasion (27). 

The dysregulation of this family of receptor tyrosine kinases (RTKs) is found in a myriad 

of pathophysiological conditions including cancer (28). EGFR overexpression and 

hyperactivity have been implicated in several human cancers including non-small cell 

lung cancer (NSCLC), ovarian, and breast cancers (29). Similarly, the HER2 receptor is 

found to be overexpressed in 20-30% of breast cancer and is a marker of poor prognosis 

(4). Interplay between the ErbB family members and their ligands is necessary to induce 

a cell response. EGFR has been shown to interact with all of the seven EGFR ligands, 

while HER3 and HER4 favor binding to the heregulin family of ligands (30). In contrast 

to the other ErbB family members, HER2 has not yet been demonstrated to bind to a 

specific ligand.  

The ADAM family members, including ADAM15, play an important role in the 

transactivation of ErbB family members by releasing the latent transmembrane EGFR 

ligands from their pro-forms on the cell surface (12, 31). Previously, ADAM15 was 

shown to be upregulated during breast cancer progression using cDNA and tumor 

microarrays (18). Based on the role of ADAM15 as a membrane sheddase that is 
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upregulated during breast cancer progression, coupled to the fact that increased sE-cad 

levels also correlates with breast cancer progression, led us to assess the role of 

ADAM15 in E-cadherin shedding in breast cancer cells. We report here that ADAM15 is 

capable of cleaving full length E-cadherin into a soluble, extracellular fragment. We also 

show that the solubilized E-cadherin fragment, in turn, binds to and stabilizes the ErbB 

receptor HER2 and HER3 heterodimerization leading to Erk-dependent signaling. To our 

knowledge, this is the first report demonstrating a potential ligand for the HER2 receptor 

and a role for soluble E-cadherin in stabilizing ErbB receptor dimerization and signaling. 
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Materials and Methods: 

Cell lines and culture.  

LNCaP and SKBr3 cells were maintained in RPMI (Bio Whittaker, Walkersville, MD) 

with 8% fetal bovine serum (HyClone, Logan, UT). MCF-7GFP
 cells (which were a kind 

gift from Dr. Jacque Nör, University of Michigan Dental School) were maintained in 

DMEM (Gibco, Carlsbad, CA) with 10% fetal bovine serum. All culture media were 

supplemented with 2 mmol/L L-glutamine (Invitrogen, Carlsbad, CA), 100 units/mL 

penicillin (Invitrogen), 100 µg/mL streptomycin (Invitrogen), and 0.25 µg/mL Fungizone 

(Invitrogen). ADAM15 overexpressing cells were grown under selection with 800µg/mL 

of G418 (Cellgro, Manassas, VA). Cells were incubated at 37°C and sub-cultured 

weekly. 

 

Generation of ADAM15 cell lines.  

MCF-7GFPcells were infected with ADAM15 specific knockdown oligonucleotides or 

control oligonucleotides consisting of a scrambled sequence designed to control for off-

target effects. The forward and complementary targeting sequences for ADAM15 were 

5’-AACCCAGCTGTCACCCTCGAA-3’ and 5’-TTCGAGGGTGACAGCTGGGTT-3’.  

The shRNA cassette also featured a TTCAAGAGA loop situated between the sense and 

reverse complementary targeting sequences and a TTTTT terminator at the 3’ end. 

ADAM15 overexpressing MCF-7cells were generated as described by Kuefer et. al. (18). 

To generate ADAM15 mutants, first the ADAM15 cDNA was tagged with HA 

(hemagglutinin) at the C-terminus and transfected into LNCaP cells as described 

previously (18) to establish wild type ADAM15. Catalytically-dead ADAM15 was 
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generated by mutating the glutamic acid residue into an alanine at position 350 (E350A) 

using the QuickChange II Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). 

DNA was sequenced to confirm mutations (University of Michigan Sequencing Core). 

 

Microarray analysis.  

Expression levels of ADAM15 and HER2 in published breast cancer cDNA arrays were 

derived using the Oncomine database available at www.oncomine.org. The terms 

“ADAM15” or “HER2” were used to search the database for differential expression of 

both of these markers in different breast cancer arrays.  

 

Protein isolation, immunoprecipitation and Western blotting.  

Cells were harvested by mechanical disruption with cell scrapers followed by gentle 

centrifugation at 6000 RPM for 3 minutes. Cell pellets were then lysed in appropriate 

volumes of lysis buffer [50mmol/L Tris (pH 7.6), 120 mmol/L NaCl, .5% NP40, 1 

mmol/L EGTA, 100 µg/mL phenylmethysulfonyl fluoride, 50 µg/mL aprotinin, 50 

µg/mL leupeptin, and 1.0 mmol/L sodium orthovanidate] for 1 hour on ice. Cellular 

debris was then pelleted by centrifugation at 12,000 RPM for 8 minutes, and supernatants 

were collected and quantitated using a microtiter Bradford protein assay (Bio-Rad, 

Hercules, CA) with experimental and standard samples were run in triplicate. Equal 

amounts of protein were then separated on precast Tris-glycine SDS-polyacrylamide gels 

(Novex, Carlsbad, CA) and transferred to reinforced .2 µm nitrocellulose membrane 

(Millipore, Temecula, CA). Membranes were then blocked, probed, and developed. 

Primary antibodies were obtained as follows: actin (Sigma, St. Louis, MO); pErk and Erk 
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(Cell Signaling Technology, Danver, MA); ADAM15, tubulin, phospho-tyrosine 

(Millipore); E-cadherin (Zymed, San Francisco, CA); HER2 and HER3 (Lab Vision 

Corporation, Freemont, CA). All appropriate secondary antibodies conjugated with 

horseradish peroxidase (HRP) were purchased from BioRad. 

For immunoprecipitation, cell lysates were precleared with an equal amount of a 

mixture of 2.5% dry milk in TBST/Sephrose Proteins A beads (Zymed) for 30 minutes at 

room temperature, then beads were spun out. Precleared protein was then 

immunoprecipitated with the HER2, HER3 (Lab Vision Corporation) antibody or an 

equal amount of isotype IgG (Santa Cruz Biotechnology, Santa Cruz, CA) for 3 hours at 

4OC with end-over-end rotation. This was followed by incubating the 

immunoprecipitation mixture with 75uL of blocked Sephrose Protein A beads for 90 

minutes at 4OC with rotation. The complex was then centrifuged and washed three times 

with ice-cold PBS. The complex was dissociated from the beads with the addition of 5X 

sample reducing loading buffer and heated for 5 minutes at 100OC. Samples were then 

loaded on SDS-PAGE for protein analysis. An ECL system was used to visualize 

proteins (Millipore). 

 

Immunocytochemistry.  

ADAM15-GFP overexpressing cells were grown to sub-confluency in 2-well chambers 

(BD Falcon, Bedford, MA) then cross linked with 2% formaldehyde in PBS and fixed 

with 100% ethanol for 5 minutes on ice. Fixed cells were washed three times with ice-

cold PBS and blocked with 0.1% milk/FBS solution for 30 minutes. The E-cadherin 

HECD-1 antibody or an isotype matched IgG were incubated on the slides for 1 hour. 
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Following the primary antibody incubation, cells were washed three times as mentioned 

above and incubated for 50 minutes with anti-mouse rhodamine secondary (Invitrogen).  

Slides were mounted with 1 mm coverslip (Fisher Scientific, Hampton, NH) and 

photomicrographs were taken utilizing confocal microscopy at the University of 

Michigan Imaging core.  

 

E-cadherin proteolysis.  

For the in vitro proteolysis of E-cadherin, ADAM15 was isolated through 

immunoprecipitation using an HA specific antibody (Millipore) from LNCaP whole cell 

lysate expressing either wild-type (WT) or catalytic-dead (CD) ADAM15 mutant. E-

cadherin was also isolated through immunoprecipitation using an E-cadherin specific 

HECD-1 antibody (Zymed) from MCF-7 whole cell lysate. Isolated ADAM15 and E-

cadherin were mixed together at the designated ratio and incubated for the chosen time 

points in a 37OC water bath. For the inhibitor assays, 0.05M of 1,10phenanthroline 

[1,10P] (Sigma) was added to each tube. At the end of each time point, the reactions were 

stopped by addition of 5X sample reducing loading buffer and heating to 100OC for 5 

minutes. Samples were then loaded on SDS-PAGE for protein separation and analysis via 

Western blot. 

 

Conditioned media analysis.  

MCF-7 cells were grown up to sub-confluency (~65-70%) and then serum starved in 

serum-depleted media for 24 hours. Conditioned media was collected by centrifugation at 

2,000 RPM for 15 minutes to pellet any cell debris. Levels of soluble E-cadherin in 
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conditioned media were monitored via E-cadherin immunoprecipitation using the HECD-

1 monoclonal antibody (Zymed). 

 

Cell migration assays.  

To assess the affects of endogenous soluble E-cadherin on MCF-7 cell migration, cells 

were plated in 6-well tissue culture dishes until confluency. Cells were then serum 

starved for 16 hours then abraded with a 10µL pipette tip. The cells were washed once 

with warm growth media and incubated in normal growth media. Cell migration was 

monitored through microscopic imaging at the designated time points. Migration was 

quantitated as the percent of remaining cleared area by dividing the cleared area at each 

time point by the original 0 hour time point. Each experiment contained 4 separate 

samples and performed three times.  

 

Cell proliferation assays.  

To assess the affects of endogenous soluble E-cadherin on MCF-7 cell proliferation, 

1X104
 cells were plated in 96-well plates for 24 hours. Cells were then washed once with 

warm serum free media, and then incubated for the appropriate amount of time under 

serum free media. Cell proliferation was assessed using the MTT assay and quantified as 

fold change over time by dividing the OD readings of each time point by the original 

time point at 0 hours. Each experiment contained 8 separate samples and performed three 

times.  

To analyze the exogenous effects of E-cadherin, the E-cadherin null cell line 

SKBr3 was plated at 3X106
 cells for four days then washed once with warm serum free 
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media. Cells were then incubated with either vehicle or 1.5 µg/mL Fc-Ecadherin 

recombinant protein (R&D Systems) in serum free media for the designated time points. 

Cell proliferation was measured using the trypan blue exclusion assay (Gibco) and 

quantified as fold change over time by dividing the number of cells at each time point by 

the cell number at the original time point at 0 hours. Each experiment was ran in 

triplicates and performed three times.  

 

Statistical analysis.  

All statistical work was performed using a Student’s unpaired t-test with a one-tailed 

distribution. P<0.05 was considered statistically significant. 
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Results 

Upregulation of ADAM15 and HER2 during breast cancer progression. The 

ADAM15 chromosomal locus, 1q21.3, is amplified during the metastatic progression of 

multiple adenocarcinomas and melanoma (32, 33). We utilized the oncomine database to 

comprehensively examine ADAM15 expression in published human cDNA microarrays 

of breast cancer. We observed that ADAM15 was significantly upregulated in eight 

different cDNA microarray studies. Seven of the aforementioned arrays also 

demonstrated significant upregulation of the HER2 receptor which is known to be a 

marker of poor prognosis (Fig. 3-1A). One of these studies is graphically presented in 

figure 1B to demonstrate the correlative increase in both ADAM15 and HER2 expression 

in breast cancer tumors over normal tissues (34). Interestingly, ADAM15 expression was 

downregulated in estrogen receptor (ER)-positive breast cancer tumors (data not shown). 

Seven of the eight data sets show that ADAM15 and HER2 transcripts are simultaneously 

and significantly upregulated during breast cancer progression suggesting a role of 

ADAM15 in breast cancer development (Fig. 3-1B).  

 

ADAM15 cleaves E-cadherin in breast cancer cells. Since ADAM15 was found to be 

overexpressed in breast cancer and sE-cad levels have been demonstrated to be 

upregulated during the progression of this disease, we hypothesized that ADAM15 may 

play a critical role in E-cadherin shedding. To evaluate whether ADAM15 mediates E-

cadherin proteolysis, we stably overexpressed an ADAM15-GFP fusion protein in MCF-

7 breast cancer cells (ADAM15-GFP cells, Fig. 3-2A). ADAM15-GFP cells exhibited 

both endogenous and recombinant ADAM15. Two species of endogenous ADAM15 
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were detected by an ADAM15-specific antibody at 110 kDa (inactive precursor) and 90 

kDa (catalytically active). Two species of recombinant ADAM15-GFP were detected at 

136kDa and 116 kDa representing the recombinant precursor and active forms, 

respectively. ADAM15 overexpression exhibited no effects on ADAM15 family 

relatives, ADAM10 or ADAM17, or other assessed targets (data not shown).  

Previously, Damsky et. al. demonstrated that serum deprivation of MCF-7 cells 

for 24 hours led to the release of sE-cad into the conditioned media of these cells (35). 

Vector and ADAM15-GFP MCF-7 cells were serum starved for 24 hours and the 

presence of sE-cad was analyzed in the conditioned media. We found that sE-cad was 

elevated in the ADAM15 overexpressing cells in comparison to vector control (Fig. 3-

2A).  

To substantiate the overexpression findings, we stably downregulated ADAM15 

in our breast cancer cells using an shRNA construct against ADAM15. Both the 

precursor and mature forms of ADAM15 were reduced in response to the shADAM15 

construct in comparison to the scramble shRNA (shScrm) control cells (Fig. 3-2B). 

Analysis of the ADAM15 RNA message also demonstrated significant downregulation in 

response to the shADAM15 inhibitory construct (data not shown). We observed that the 

ADAM15 shRNA construct was specific to ADAM15 and did not affect ADAM15 

relatives, ADAM10 and ADAM17, or other targets (data not shown). Serum starvation of 

scramble control and shADAM15 MCF-7 cells resulted in decreased shedding sE-cad 

into the conditioned media in response to ADAM15 downregulation (Fig. 3-2B).  
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In vitro E-cadherin proteolysis by ADAM15. Immunohistochemistry revealed 

prominent co-localization of ADAM15 and E-cadherin at the junctional cell membrane 

(Fig. 3-3A). To directly implicate ADAM15 in E-cadherin cleavage, we isolated 

ADAM15 and E-cadherin and performed an in vitro cleavage analysis. When ADAM15 

and E-cadherin were co-incubated at equal ratios, ADAM15 cleaved E-cadherin into the 

sE-cad fragment in a time-dependent manner (Fig. 3-3B). This fragment migrated at 80 

kDa on reducing gels and showed immunoreactivity with extracellular domain specific E-

cadherin antibodies. E-cadherin alone was not cleaved and ADAM15 isolation revealed 

no contamination by E-cadherin. E-cadherin was also cleaved by ADAM15 in a dose-

dependent manner (Fig. 3-3C).  

To ascertain that E-cadherin proteolysis is mediated by the metalloproteinase 

activity of ADAM15, we co-incubated isolated ADAM15 and E-cadherin with either 

vehicle control or the metalloproteinase inhibitor, 1,10 phenanthroline (1,10P), which 

reduced ADAM15-mediated cleavage of E-cadherin (Fig. 3-3D). Since 1, 

10phenanthroline is a broad spectrum inhibitor; we complemented this pharmacologic 

approach by mutating the metalloproteinase domain of ADAM15 to directly implicate 

ADAM15 in E-cadherin cleavage. Catalytically-dead (CD) ADAM15 was generated by a 

single conversion of the glutamic acid residue at position 350 into an alanine (E350A) as 

previously described (36). Co-incubation of E-cadherin with the catalytic-dead ADAM15 

inhibited soluble E-cadherin generation as compared to the wild-type (WT) protease (Fig. 

3-3E). Residual sE-cad in the E-cadherin alone lane is a result of non-specific binding of 

sE-cad during the isolation process. 
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Solubilized E-cadherin interacts with ErbB receptors. Full length E-cadherin has been 

shown to interact with EGFR through its extracellular (EC) domain and induce ligand 

independent signaling in keratinocytes (37, 38). MCF-7 cells are known to express 

predominantly HER2 and HER3 (data not shown and (39)). We demonstrated in this 

study that both ADAM15 and HER2 are upregulated during breast cancer progression 

and ADAM15 functions in the extracellular shedding of sE-cad. Following serum 

starvation of scramble control or shADAM15 MCF-7 cells to generate sE-cad, we found 

that HER2 preferentially bound the soluble form of E-cadherin and not the full length E-

cadherin as compared to the input control (Fig. 3-4A). Substantially less sE-cad bound to 

HER2 in the ADAM15 knockdown cells. Interestingly, we also found that HER3 bound s 

sE-cad in an ADAM15-dependent manner. Furthermore, the sE-cad fragment appeared to 

enhance the formation of a HER2/HER3 heterodimer as shown by higher intensity HER2 

and HER3 bands in the scramble control cells compared to the shADAM15 MCF-7 cells 

(Fig. 3-4B). The HER2/HER3 heterodimer complex was only observed when we 

immunoprecipitated with the HER3 antibody. We were not able to detect HER3 with a 

HER2 immunoprecipitation potentially due to allosteric changes within the HER3 

receptor that blocked the antibody from detecting its epitope. These findings were 

validated within the ADAM15 overexpressing MCF-7 model (data not shown). The sE-

cad fragment preferentially bound HER2 over HER3 and the HER2 receptor was 

observed to bind to a sE-cad doublet whereas HER3 only bound the lower band of this 

sE-cad doublet.  

To confirm that sE-cad interaction with HER2 is HER2-specific, we treated MCF-

7 scramble control cells with the humanized HER2 antibody, trastuzumab (Herceptin). 
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We found that this extracellular-domain specific antibody to HER2 completely 

eliminated the interaction of sE-cad with HER2 in MCF-7 cells in comparison to vehicle 

treatment (Fig. 3-4C).  In addition, the trastuzumab treatment also abrogated the sE-cad 

/HER3 complex and the HER2/HER3 heterodimerization mediated by sE-cad within the 

MCF-7 cells (Fig. 3-4D).  

 

Soluble E-cadherin mediates HER2-dependent signaling. The interaction of EGFR 

ligands with their complementary receptors leads to receptor phosphorylation on c-

terminal tyrosine residues and concomitant receptor activation resulting in downstream 

signaling (27). To assess whether endogenous sE-cad interaction with HER2 induces 

receptor phosphorylation, we stimulated E-cadherin shedding by serum starving scramble 

control or shADAM15 MCF-7 cells. We observed increased phosphorylation of HER2 in 

scramble control cells; however tyrosine phosphorylation of HER2 in shADAM15 cells 

was less (Fig. 3-5A). We also monitored HER3 phosphorylation in our MCF7 cells and 

found that, like HER2, scramble control cells demonstrated more receptor 

phosphorylation compared to shADAM15 cells in response to serum deprivation (Fig. 3-

5B). 

The HER2/HER3 dimer has been shown to signal through both the Erk and Akt 

pathway when activated (28). We assessed Erk signaling in the MCF-7 cells at time 

points where we observed soluble E-cadherin-mediated HER2 activation. The scramble 

control cells exhibited increased phosphorylation of Erk in response to serum starvation. 

In contrast, Erk phosphorylation remained at basal levels in the shADAM15 cells (Fig. 3-
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5C). Akt phosphorylation was not detectable in these cells potentially due to a less robust 

activation of the ErbB receptors signaling cascade by sE-cad (data not shown). 

 

ADAM15 mediates soluble E-cadherin-dependent cell migration and proliferation. 

Because Erk signaling is known to mediate cell migration and proliferation (28), we 

assessed whether the MCF-7 scramble control cells possessed a migratory advantage over 

the shADAM15 cells in response to serum starvation. In a wound channel migration 

assay, the MCF-7 scramble control cells exhibited more rapid migration than the 

shADAM15 cells over time (Fig. 3-6A). To analyze if ADAM15 downregulation 

compromised the proliferative potential of MCF-7 cells we performed proliferation 

assays on these cells and found that scramble control MCF-7 cells proliferated more than 

the shADAM15 cells during serum deprivation (Fig. 3-6B). 

 

Exogenous stimulation of HER2 with soluble E-cadherin. Within this study, we 

demonstrated that ADAM15 mediates endogenous generation of sE-cad, which interacts 

with ErbB receptors and induces their transactivation. To verify that sE-cad is responsible 

for HER2 binding and activation, we utilized an extracellular domain of E-cadherin/Fc 

fusion protein (Fc-Ecad). Experiments with this fusion protein were performed in an E-

cadherin negative, HER2 positive cell line to eliminate endogenous soluble E-cadherin 

background. The breast cancer cell line, SKBr3, which is E-cadherin negative and 

expresses copious amounts of HER2, was treated with vehicle or the Fc-Ecad fusion 

protein under serum-free conditions and complex formation between sE-cad and HER2 

was assessed. These experiments demonstrated clear Fc-Ecad interaction with HER2 as 
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compared to vehicle control (Fig. 3-7A), but no Fc-Ecad binding to HER3 was observed. 

Although the HER3/Fc-Ecad complex was not detected in our experiments, we did 

observe that Fc-Ecad treatment mediated HER2/HER3 heterodimerization and HER3 

receptor phoshorylation (Fig. 3-7B). HER2 phosphorylation was unaffected in response 

to Fc-Ecad treatment potentially due to constitutive activation as a result of HER2 

receptor overexpression (data not shown). We monitored Erk phosphorylation in these 

cells and observed an increase in its phosphorylation status in response to Fc-Ecad 

treatment (Fig. 3-7C). Vehicle treated cells exhibited basal Erk phosphorylation, which 

could be due to HER2 hyperactivation resulting from HER2 overexpression in these 

cells. In confirmatory experiments, we utilized a human E-cadherin peptide (huEP) and 

found that Erk phosphorylation was stimulated in response to E-cadherin peptide addition 

(data not shown). To assess whether Erk activation mediated by exogenous stimuli 

affected cell growth, we performed proliferation assays using Fc-Ecad and examined the 

proliferative response in comparison to vehicle control over time (Fig. 3-7D). We 

demonstrated that the Fc-Ecad fusion peptide induced a significant increase in SKBr3 cell 

proliferation as compared to vehicle treatment. 



 79

Discussion 

The cell adhesion molecule, E-cadherin, serves a crucial role in inhibiting tumor 

cell migration and invasion by maintaining the cell-cell adhesion complex and the 

inactivation of E-cadherin by gene deletion, promoter hypermethylation or proteolytic 

cleavage, renders tumor cells prone to a migratory and invasive phenotype due to the loss 

of cellular contact and polarity (40, 41). Ectodomain cleavage of E-cadherin by several 

different proteases has been reported to yield an 80 kDa fragment known as soluble E-

cadherin (sE-cad). Soluble E-cadherin accumulates in the serum or urine of patients 

suffering from multiple types of cancers including prostate, breast, bladder and lung 

cancer (5). Using published cDNA arrays, we report here that a catalytically active 

member of the ADAM family, ADAM15, is upregulated during the progression of breast 

adenocarcinoma. Furthermore, ADAM15 expression was elevated in HER2-positive 

breast cancer tumors and was found to be downregulated in ER-positive breast cancer 

correlating ADAM15 levels with disease progression. To assess the role of ADAM15 in 

sE-cad shedding, we overexpressed or knocked down ADAM15 in the MCF-7 breast 

cancer cell lines and observed an elevation of sE-cad shedding in response to ADAM15 

overexpression and a reduction of the sE-cad in ADAM15 knockdown cells. Previously, 

ADAM10 has been demonstrated to cleave E-cadherin in keratinocytes (42), but in our 

models ADAM10 levels were unaffected by ADAM15 protein modulation and was 

constant throughout the analyses. Based on the data presented here, we believe that 

growth factor deprivation may activate ADAM15 at the cell surface which in turn sheds 

the ectodomain of E-cadherin into the extracellular milieu (Fig. 3-8). 
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MT1-MMP has been shown to activate MMP2 and 9 to support cell invasion 

through ECM degradation (43, 44). To ascertain that ADAM15 is cleaving E-cadherin 

directly and not activating another protease, we isolated both ADAM15 and E-cadherin, 

and then co-incubated them together to induce ADAM15 directed proteolysis. We 

demonstrated that ADAM15 cleaves E-cadherin in a time- and concentration-dependent 

manner. ADAM15 proteolysis was inhibited by introducing an inactivating mutation in 

the catalytic domain thus implicating ADAM15 as a direct sheddase of E-cadherin.  

Soluble E-cadherin is known to inhibit cell aggregation and induce cell invasion 

through a yet uncharacterized signaling mechanism (45, 46). These same events have also 

been shown to be initiated by ligand interaction to the ErbB family which is composed of 

four members, EGFR (HER1), HER2, HER3 and HER4. When bound to their cognate 

ligands, these receptors mediate cell proliferation, migration, invasion and differentiation 

(4). The EGFR ligands are synthesized as inactive transmembrane precursors, which are 

liberated from their inactive state by metalloproteinases including ADAM family 

members (12). The activation of the ADAM proteases by a G-protein coupled receptor 

(GPCR) signal leads to the shedding of EGFR ligands which in turn bind and 

transactivate their complementary receptors to mediate downstream signaling (31). All of 

the ErbB family members have a specific ligand except HER2, which functions by 

forming heterodimers with the other family members potentiating cell signaling (30). 

ErbB receptor dimerization is accompanied with cross phosphorylation and all the ErbB 

family members have active kinase domains except HER3 which can only be 

phosphorylated by its dimerizing partner. Since MCF-7 cells expressed HER2 and HER3 

which were upregulated in response to growth factor deprivation, we wanted to assess the 



 81

interaction of E-cadherin with these receptors as a potential ligand. We observed that 

HER2 bound a sE-cad doublet in response to growth factor deprivation in an ADAM15-

dependent manner. In addition, HER3 interacted with the lower molecular weight sE-cad 

and this complex mediated HER2/HER3 heterodimerization. Since we used whole cell 

lysates for these experiments, the difference in sE-cad banding observed bound to the 

ErbB receptors maybe due to differential phosphorlyation of this fragment by HER2 as a 

result of receptor internalization. In addition, sE-cad was found to complex preferentially 

with HER2 than with HER3 in our assays. The order of sE-cad binding to HER2 and 

HER3 is yet to be elucidated and is a focus for future wok. Serum deprivation of MCF-7 

cells induced ADAM15-dependent phosphorylation of HER2 and the kinase inactive 

HER3 potentially through the sE-cad -mediated heterodimerization of the kinase active 

HER2 with HER3 (Fig. 3-8).  

The interaction between sE-cad and HER2 or HER3 was inhibited by the HER2 

humanized antibody, trastuzumab (Herceptin), suggesting that this complex is HER2 

dependent. Trastuzumab treatment also abrogated the sE-cad-mediated HER2/HER3 

heterodimerization. Soluble E-cadherin/HER2 complex formation was induced by 

exogenous addition of a purified extracellular E-cadherin fusion protein (Fc-Ecad), the 

binding of which led to HER2 activation and downstream signaling through the Erk 

pathway. Fc-Ecad did not bind to HER3 in our assays potentially due to the abundant 

amounts of HER2 in SKBr3 cells that competed against HER3 binding. However, we did 

observe an increase HER2/HER3 dimerization and HER3 phosphorylation in response to 

Fc-Ecad stimulation suggesting a role for exogenous Fc-Ecad in mediating ErbB receptor 

transactivation. The HER2/HER3 heterodimer is known to signal through the Erk 
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signaling pathway, which support cell survival, proliferation and migration (47, 48). In 

our models, we found that either endogenous shedding of E-cadherin or addition of 

exogenous soluble E-cadherin fusion proteins or peptides supported cancer cell migration 

and proliferation possibly through Erk signaling. Previous studies demonstrated that full 

length cadherin ligation and activation of growth factor receptors activated only Erk 

signaling (49, 50). In our experimental models Akt activation was not detected which 

may be a consequence of E-cadherin specific receptor activation. 

 In this study, we demonstrated that ADAM15 and HER2 are simultaneously 

upregulated during breast cancer progression. Additionally, overexpression of the ErbB 

receptor, HER2, and loss of E-cadherin expression is frequently observed in breast cancer 

and are considered indicators of poor prognosis. However, the functional association 

between all of these molecules has not been investigated (4, 51). ADAM15 mediated sE-

cad shedding which in turn bound to and transactivated both HER2 and HER3. This sE-

cad fragment also enhanced Erk activation to support breast cancer cell migration and 

proliferation. Thus, we have identified a functional interaction between sE-cad and ErbB 

receptors, although, the structural requirements and fine mapping for these interactions 

have yet to be elucidated. Further characterization of this signaling axis is warranted and 

may ultimately lead to novel therapeutic strategies targeting ADAM15, E-cadherin and 

HER2 in breast cancer. 
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Fig. 3-1. ADAM15 and HER2 expression in breast cancer. (A) ADAM15 and HER2 are 

simultaneously overexpressed in seven different breast cancer cDNA microarrays. (B) A 

graphical representation of ADAM15 and HER2 expression in normal and tumor breast 

tissues using the published Richardson_Breast_2 array available at www.oncomine.org. 

Table 1. ADAM15 and HER2 expression in breast cancer cDNA microarray *

*All studies were obtained from the Oncomine database at www.oncomine.org

8.00E-03↑3.30E-02↑Sotiriou_Breast_3

2.10E-02↑2.00E-03↑Richardson_Breast_2

0.002↑0.019↑Perou_Breast

6.00E-04↑0.044↑Minn_Breast_2 

1.50E-14↑0.015↑Hess_Breast

3.10E-02↑2.00E-03↑Ginestier_Breast

2.20E-11↑0.007↑Bild_Breast

p-ValueHER2 Statusp-ValueADAM15 Status Author

8.00E-03↑3.30E-02↑Sotiriou_Breast_3

2.10E-02↑2.00E-03↑Richardson_Breast_2

0.002↑0.019↑Perou_Breast

6.00E-04↑0.044↑Minn_Breast_2 

1.50E-14↑0.015↑Hess_Breast

3.10E-02↑2.00E-03↑Ginestier_Breast

2.20E-11↑0.007↑Bild_Breast

p-ValueHER2 Statusp-ValueADAM15 Status Author

A  
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Fig. 3-2. ADAM15 cleaves E-cadherin in breast cancer cells. (A) GFP-tagged and 

endogenous ADAM15 in MCF-7 cells are indicated (lysate). Due to the intense banding 

pattern observed in ADAM15 overexpressing (ADAM15-GFP) cells, a lower exposure of 

the GFP fusion protein was cropped into the ADAM15 panel. Analysis of soluble E-

cadherin (sE-cad) in the conditioned media (CM) of ADAM15 overexpressing cells. B) 

ADAM15 expression was downregulated in MCF-7 cells using a stable shRNA against 

ADAM15 (lysate) and sE-cad was assessed in the conditioned media (CM).  shScrm, 

scramble shRNA control. Full length E-cadherin (FL/E-cad) remained unchanged in 

these experiments.  
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Fig. 3-3. E-cadherin is a substrate for ADAM15. A) Immunocytochemistry analysis of 

ADAM15 (green) and E-cadherin (red) in MCF-7 cells. Confocal microscopy at 400X. 

Isolated ADAM15 and E-cadherin were co-incubated. ADAM15 cleaves full length E-

cadherin (FL/E-cad) into its soluble fragment (sE-cad) in a time- (B) and concentration-

dependent (C) manner. D) E-cadherin and ADAM15 were co-incubated with vehicle 

(veh) or 1,10 phenanthroline (1, 10P). E) Wild-type (WT) or catalytically-dead (CD) 
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ADAM15 were co-incubated with isolated E-cadherin. Isolated E-cadherin and ADAM15 

alone were loaded as controls on the end lanes. Whole cell lysate (WCL) was used to 

demarcate E-cadherin banding pattern. 
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Fig. 3-4. Soluble E-cadherin mediates HER2/HER3 heterodimerization through ErbB 

receptor binding. Scramble control (shScrm) or ADAM15 knockdown MCF-7 whole cell 

lysates were immunoprecipitated (IP) with HER2 (A), HER3 (B) or isotype IgG. 

Scramble control MCF-7 cells were treated with either vehicle (veh) or trastuzumab 

(TZM) for 24 hours prior to immunoprecipitation either with HER2 (C), HER3 (D) or 

isotype IgG under growth factor depleted conditions. Immunoblotting with E-cadherin 

(E-cad), HER2 or HER3 antibodies were used to assess E-cadherin binding to ErbB 

receptors and receptor dimerization. The input lane (2% the amount of protein used for 

the IP) was used for E-cadherin banding pattern.
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Fig. 3-5. Soluble E-cadherin mediates HER2/HER3 phosphorylation and induces ErbB- 

mediated cell signaling. Phospho-tyrosine (pTyr) status was assessed in scramble 

(shScrm) control or shADAM15 (shA15) MCF-7 cells in response to serum starvation. 

Whole cell lysates were collected and immunoprecipitated with HER2 (A), HER3 (B) or 

isotype IgG prior to immunoblotting with antibodies specific to pTyr, HER2 or HER3. 

(C) An increase in Erk activation (pErk) in MCF-7 cells was observed at 24 and 26 hours 

post growth factor withdrawal. 
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Fig. 3-6. ADAM15 supports cell migration and proliferation. A) Scramble (shScrm) 

control or shADAM15 MCF-7 cells were abraded with a 10uL pipette tip and wound 

closure was monitored over time. Columns represent the mean of 3 separate experiments 

quantitated in four different samples. Bars are the SD. *P<.04 B) Scramble control or 

shADAM15 MCF-7 cells were grown under serum depleted conditions and cell 

proliferation was analyzed as a function of time. Columns represent the mean of 3 

separate experiments quantitated in eight different samples. Bars are the SD. *P<4.6E-05; 

**P<5.5E-04. 
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Fig. 3-7. HER2 stimulation by exogenous soluble E-cadherin. A) E-cadherin negative 

SKBr3 cells were treated with either vehicle (veh) or the extracellular E-cadherin-Fc 

fusion protein (Fc-Ecad) and lysates were then immunoprecipitated with HER2 or isotype 

IgG. Immunoblotting with E-cadherin (E-cad) or HER2 was performed to detect Fc-

Ecadherin binding. B-D) Fc-Ecadherin fusion protein mediated HER2/HER3 

heterodimerization and HER3 phosphorylation as well as increased Erk activation (pErk) 

and cell proliferation in SKBr3 cells. Columns represent the mean of 3 separate 

experiments quantitated in 8 different samples. Bars represent the SD. *P<5E-04; 

**P<.001.
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Fig. 3-8. Model for ADAM15-dependent activation of HER2 by soluble E-cadherin. 

Serum depletion stimulates ADAM15 activation, which in turn cleaves E-cadherin. The 

liberated E-cadherin fragment (sE-cad) mediates ErbB activation. 
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CHAPTER 4 
 
 

THE ROLE OF ADAM15 IN HER2 SIGNALING AND PROSTATE CANCER 
CELL SURVIVAL 

 
 
Abstract 
 
The disruption of the balance between metalloproteinase activity and their inhibitors 

contribute to cancer cell acquisition of a migratory and invasive phenotype. The active 

sheddase, ADAM15, is known to support prostate cancer progression through a yet 

uncharacterized mechanism. In this study we overexpressed ADAM15 in minimally 

malignant prostate cancer cells and found that ADAM15 upregulation supported prostate 

cancer tumorigenesis in vivo. Furthermore, the catalytic activity of ADAM15 was 

increased in prostate cancer cells and was accompanied by a downregulation of the 

metalloproteinase inhibitors TIMP2 and 3. Using overexpression and downregulation 

technology, we demonstrated that ADAM15 mediated the shedding of full length E-

cadherin into the 80kDa soluble E-cadherin (sE-cad) fragment. Importantly, we observed 

that the shed sE-cad fragment bound the ErbB receptor HER2 and mediated its activation 

and downstream signaling through the Akt pathway to support prostate cancer cell 

survival. This report expounds on the role of ADAM15 in ErbB receptor signaling 

through E-cadherin shedding in prostate cancer.  This manuscript is currently in 

preparation for publication. 



 97

Introduction 

 Prostate cancer is the most diagnosed cancer in men in the United States with 

more than 218,000 cases in 2007. Of those cases 27,000 succumb to the diseases as a 

result of metastatic progression into multiple organs (1). Loss of the inhibitory cellular 

cohesion complex supports cancer cell invasion of the underlying stroma and the eventual 

dissemination of these cells to distant sites. The cellular adhesion molecule (CAM), E-

cadherin, plays a critical role in maintaining epithelial cell polarity, tissue integrity and 

suppression of tumor metastasis through adherens junction formation (2). This complex 

involves calcium-mediated cell-cell adhesion supported by the homotypic ligation of E-

cadherin molecules through their five extracellular domains. The complex is further 

strengthened by the interaction of the cytoplasmic domain of E-cadherin with β, γ and 

p120–catenins which link E-cadherin to the actin cytoskeleton (3). Disruption of this E-

cadherin-catenin complex leads to the loss of tissue polarity and differentiation as well as 

an increase in cell migration and invasion (4). E-cadherin inactivation has been 

demonstrated in multiple adenocarcinomas including prostate cancer and is associated 

with a poor prognosis (5, 6). E-cadherin chromosomal deletion, promoter 

hypermethylation, and metalloproteinase mediated cleavage are different mechanisms by 

which E-cadherin in inactivated (4). MMP3, 7, plasmin, kallikrein 7 and ADAM10 

mediate the ectodomain shedding of full length E-cadherin (120 kDa) into the 80 kDa 

soluble E-cadherin (sE-cad) (7). Soluble E-cadherin formation is upregulated in multiple 

adenocarcinomas including gastric, lung, ovarian, and bladder cancer (8). Furthermore, 

Kuefer et. al. demonstrated that sE-cad shedding was significantly upregulated in prostate 

cancer and correlated with metastatic disease (9). 
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  The ADAM family is a group of zinc-dependent disintegrin metalloproteinases 

containing five extracellular domains; prodomain, metalloproteinase, disintegrin, 

cysteine-rich, and EGF-like. This family is composed of 40 members of which thirteen 

are catalytically active as a result of the presence of the conserved catalytic consensus 

sequence HEXXHXXGXXH in their metalloproteinase domain (10). The multiple 

domains of the ADAM family allow for proteolytic activity, integrin binding, and signal 

transduction (11). These disintegrin metalloproteinases are implicated in a myriad of 

normal and pathophysiological functions including oocyte fertilization, neurogenesis, 

inflammation, and cancer (12). ADAM12 is upregulated in breast cancer and plays a role 

in supporting cancer survival (13, 14). Furthermore, ADAM10 and 17 are overexpressed 

in gastric and ovarian cancers (15, 16). Blobel et. al. elegantly demonstrated the role of 

ADAM9 in prostate cancer development using both knock-in and knock-out models and 

our laboratory we reported that ADAM15 mediates prostate cancer progression through 

the modulation of metastatic-associated markers αV, CD44, and N-cadherin (17, 18). 

Through their metalloproteinase domain, the catalytically active ADAM family members 

cleave extracellular matrix (ECM) proteins, cell adhesion molecules, growth factors and 

growth factor receptors to tumor progression (19). Once activated ADAM family 

members transactivate different receptors through the release of inactive cell surface 

growth factors which in turn bind and activate receptor signaling (20). ADAM15 was 

found to transactivate EGFR signaling and support cancer cell migration and invasion 

through the shedding of TGFα and amphiregulin (21). 

 The ErbB family is composed of four members; EGFR (epidermal growth factor 

receptor, HER1), HER2, HER3 and HER4. EGFR binds to all six EGFR ligands while 
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HER3 prefers the heregulin family of ligands. HER4 is known to bind only 2 EGFR 

ligands, HB-EGF and betacellulin, as well as heregulin 1-4 (22). In contrast to other ErbB 

receptors, no ligand has been identified to bind HER2, but its signaling is mediated by 

dimerization with other ErbB members. Ligand binding to ErbB receptors mediates 

homo- and heterodimerization which in turn activates the receptor kinase domain to 

support auto- and transphosphorylation. Once activated, the ErbB family members signal 

through a complex downstream network including Erk and Akt to mediate cell 

proliferation, migration, invasion, and survival (23). ErbB family members are reported 

to be overexpressed in a variety of cancers including non-small cell lung carcinoma and 

breast cancer where EGFR is upregulated (24). In prostate cancer, EGFR and its ligands, 

TGFα and EGF, are upregulated in hormone-refractory cancer to compensate for the loss 

of androgen signaling (25). Although the role of HER2 in prostate cancer remains 

controversial, HER2 has been reported to be upregulated during prostate cancer 

progression (26). HER2-dependent signaling also play a critical role in hormone-

refractory prostate cancer by activating androgen receptor signaling through an androgen 

independent mechanism (27). 

 Since both ADAM15 and HER2 are upregulated during prostate cancer 

progression combined with the fact that sE-cad generation is increased during the 

progression of this disease, we aimed to elucidate the role of ADAM15 in prostate cancer 

tumorigenesis as well as its catalytic functions in HER2 activation and signaling. 
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Materials and Methods 

Cell lines and culture. 

Control sscramble shRNA (shScrm) and shADAM15 LNCaP cells were maintained in 

RPMI (Bio Whittaker, Walkersville, MD) with 8% fetal bovine serum (HyClone, Logan, 

UT).  ADAM15 overexpressing and control LNCaP cells were grown in RPMI with 5% 

FBS supplemented with 800µg/mL of G418 (Cellgro, Manassas, VA) for selection. 

Adam15 +/+ and -/- mouse prostate epithelial cells (msPrEC) and all other prostate 

cancer cell lines were maintained in 5% fetal bovine serum RPMI media. All culture 

media were supplemented with 2 mmol/L L-glutamine (Invitrogen, Carlsbad, CA), 100 

units/mL penicillin (Invitrogen), 100 µg/mL streptomycin (Invitrogen), and 0.25 µg/mL 

Fungizone (Invitrogen). Cells were incubated at 37°C and subcultured weekly. 

 

Generation of ADAM15 overexpressing and shADAM15 LNCaP cell lines. 

ADAM15 overexpressing LNCaP and adam15 +/+ and -/- PrE cell lines were generated 

as described previously (28, 29). ADAM15 specific knockdown in LNCaP cells was 

generated as described previously (17) using the forward and complementary targeting 

sequences for ADAM15 were:  

5’-AACCCAGCTGTCACCCTCGAA-3’ and 5’-TTCGAGGGTGACAGCTGGGTT-3’.  

The shRNA cassette also featured a TTCAAGAGA loop situated between the sense and 

reverse complementary targeting sequences and a TTTTT terminator at the 3’ end. The 

control construct for the shADAM15 LNCaP cells contained a scramble shRNA 

sequence which served to control for off-target effects. 
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cDNA Microarray Analysis.  Prostate tissues were obtained through the University of 

Michigan Rapid Autopsy Program and were used to construct a cDNA microarray as 

described in Kuefer et. al. (29). 

 

In vivo Tumorigenesis Assay. 

LNCaP cells were trypsinized, washed twice with PBS, collected and resuspended in 

PBS; the viability of collected cells was tested by staining with trypan blue. To generate 

LNCaP tumor xenografts in mice, 6-week-old C57BL6 SCID mice were injected 

subcutaneously in the right and left flank with 5 X 105 vector or ADAM15-GFP LNCaP 

cells in 50 µL of PBS + 50 µL matrigel. Tumor volume was monitored weekly by 

external measurements with a caliper and calculated as V = (L2 X l) / 2, where L and l 

represent the smaller and the larger tumor diameter. The observations were ended for 

ethical reasons after 8 weeks due to large tumor burden in vector control mice. Animals 

were maintained under specific pathogen-free conditions with ad libitum food and water 

in the University of Michigan animal housing facilities.  At this time, animals were 

euthanized by CO2 inhalation followed by induction of a bilateral pneumothorax and 

tumors were immediately frozen in dry ice or fixed in formalin.  

 

Protein isolation, immunoprecipitation and Western blotting. 

Cells were harvested by mechanical disruption and lysed as previously described (17). 

Cellular debris was then pelleted by centrifugation at 12,000 RPM for 8 minutes, and 

supernatants were collected and quantitated using a microtiter Bradford protein assay 

where samples were run in triplicate (Bio-Rad, Hercules, CA). Equal amounts of protein 
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were then separated on precast Tris-glycine SDS-polyacrylamide gels (Novex, Carlsbad, 

CA) and transferred to reinforced nitrocellulose membrane (Millipore, Temecula, CA). 

Membranes were then blocked, probed, and developed. Primary antibodies were obtained 

as follows:  actin (Sigma, St. Louis, MO); pAkt and Akt (Cell Signaling Technology, 

Danver, MA); ADAM15, phospho-tyrosine, and tubulin (Millipore, Temecula, CA); E-

cadherin (Zymed, San Francisco, CA); HER2 (Lab Vision Corporation, Freemont, CA).  

For immunoprecipitation; equal amount of protein was precleared with an equal 

amount of a mixture of 2.5% dry milk in TBST/Sephrose Proteins A beads (Zymed, San 

Francisco, CA) for 30 minutes at room temperature, then beads were spun out. Precleared 

protein was then immunoprecipitated with the HER2 (Lab Vision Corporation) antibody 

or an equal amount isotype IgG (Santa Cruz Biotechnology, Santa Cruz, CA) for 3 hours 

at 4OC with end-over-end rotation. This was followed by incubating the 

immunoprecipitation mixture with 75uL of blocked Sephrose Protein A beads for 90 

minutes at 4OC with rotation. The complex was then centrifuged and washed three times 

with ice-cold PBS. The complex was dissociated from the beads with the addition of 5X 

sample reducing loading buffer and heated for 5 minutes at 100OC. Samples were then 

loaded on SDS-PAGE for protein analysis. An ECL system was used to visualize 

proteins (Millipore). 

 

Conditioned media analysis. 

LNCaP or PrE cells were grown up to subconfluency and then serum starved in serum-

depleted media for 24 hours. Conditioned media was collected by centrifugation at 2,000 
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RPM for 15 minutes to pellet any cell debris. Levels of soluble E-cadherin in conditioned 

media were monitored via E-cadherin immunoprecipitation. 

 

Cell viability assay. 

Cell viability was performed as described by Rios-Doria et. al. (30). Briefly, 5 X 105 cells 

were plated in 100-mm dishes. Cells were allowed to grow up to 50-60% confluence 

before treatment with serum-depleted media for the appropriate time points. The attached 

cells which stained with trypan blue (Gibco) were counted.  

To analyze the exogenous effects of E-cadherin, the E-cadherin null cell line SKBr3 was 

plated at 3X106 cells for four days then washed once with warm serum free media. Cells 

were then incubated with either vehicle or 1.5 µg/mL of the Fc-Ecadherin recombinant 

protein  per manufacturer’s recommendation (R&D Systems, Minneapolis, MN) in serum 

free media for 8 hours to assess Akt status and for 0, 1 or 2 days to assess apoptosis. Cell 

viability was measured using the trypan blue exclusion assay (Gibco) and quantified as 

percent apoptosis by dividing the number of cells at each time point by the cell number at 

the original time point at 0 hours. Each experiment was ran in triplicates and performed 

three times. Statistical analyses were performed using a Student’s t-test with a one-tailed 

distribution. P<0.05 was considered as statistically significant.  
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Results 
 
Dysregulation of ADAM15 and the metalloproteinase inhibitors, TIMP2 and 3 in 

prostate cancer. Previously we reported that ADAM15 is upregulated during prostate 

cancer progression (29). To corroborate this finding, we assessed ADAM15 expression in 

a panel of normal and malignant prostate epithelial cells. We found that ADAM15 is 

upregulated in prostate cancer cell lines in comparison to normal prostate epithelial cells 

(PrEC) at the messenger and protein levels (Fig. 4-1A). Interestingly as normal prostate 

cells switch into a malignant phenotype, the precursor form of ADAM15 (110 kDa) is 

matured into the catalytically active form (90 kDa) (Fig. 4-1A). During cancer 

progression, disruption of the balance between metalloproteinase activity and tissue 

inhibitors of metalloproteinases (TIMPs) is observed (31). To examine if TIMPs are 

dysregulated in prostate cancer, we analyzed their expression levels using a prostate 

cancer microarray. We demonstrated that both TIMP2 and 3 are downregulated during 

prostate cancer progression toward metastatic disease while TIMP1 was unaltered in 

these studies (Fig. 4-1B and data not shown). We observed within this study an 

upregulation of the active metalloproteinase ADAM15 in prostate cancer progression 

which is accompanied by a loss of TIMP expression. 

     

Overexpression of ADAM15 increases the tumorigenicity of LNCaP cells in vivo. To 

determine if overexpression of ADAM15 increased malignancy in LNCaP cells, vector 

control or ADAM15-GFP cells were injected subcutaneously into the flanks of male 

SCID mice.  The ADAM15-GFP cells developed tumors 1-2 weeks earlier than vector 

control cells (data not shown) and grew faster developing into larger tumors by 7 weeks. 
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While the ADAM15-GFP tumors grew steadily over seven weeks, the vector control 

tumors reached their maximum volume at 6 weeks and were smaller at the 7 week time 

point (Fig. 4-2A and B).  Due to the large variation in the volume of the ADAM15-GFP 

tumors, statistical significance was not reached; however, these tumors were markedly 

larger than the vector derived tumors.  At the end of the experiment the mice were 

sacrificed and tumors extracted for histological analysis. The ADAM15-GFP tumors 

were grossly larger than the vector control tumors and histology revealed both tumors 

were epithelial in origin as indicated by H&E and staining with a human specific anti-E-

cadherin antibody (Fig. 4-2A). We monitored sE-cad accumulation in the serum of the 

injected mice and found that the larger tumors, produced by the ADAM15 

overexpressing LNCaP cells, generated more sE-cad in comparison to the vector control 

cells (data not shown).   

 

Upregulation of ADAM15 increases soluble E-cadherin levels in prostate cancer 

cells.  To assess the role of ADAM15 in prostate cancer progression, we overexpressed 

ADAM15 in the minimally malignant prostate cancer cell line, LNCaP. The ADAM15 

cDNA was tagged at the C-terminus with the green fluorescent protein (GFP) and stably 

transfected into LNCaP cells. We observed that both E-cadherin and ADAM15 co-

localized at the adherens junction (Fig. 4-3A). A15-GFP cells exhibited both endogenous 

and recombinant ADAM15, where two endogenous species of ADAM15 were detected 

by an ADAM15-specific antibody at 110 kDa (inactive precursor) and 90 kDa 

(catalytically active). Two recombinant species of ADAM15-GFP were detected at 

136kDa and 116 kDa representing the recombinant precursor and active forms, 
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respectively (Fig. 4-3B). ADAM15 overexpression did not exhibit off target effects on 

other genes including the related family member ADAM10 (data no shown).  

Previously, we observed that ADAM15 mediated soluble E-cadherin (sE-cad) 

generation.2 To evaluate whether ADAM15 mediates E-cadherin proteolysis in prostate 

cancer cells, we used the ADAM15 overexpressing LNCaP cells described above (Fig. 4-

3B). We utilized serum withdrawal to induce sE-cad generation in our model system 

which has been demonstrated to support sE-cad release into the conditioned media of 

LNCaP and MCF-7 cells (32). Vector and ADAM15-GFP LNCaP cells were serum 

starved for 24 hours and the presence of sE-cad was analyzed in the conditioned media. 

We found that sE-cad was elevated in the ADAM15 overexpressing LNCaP cells in 

comparison to vector control (Fig. 4-3B). Serum deprivation did not alter full length E-

cadherin levels in these analyses.  

 

E-cadherin cleavage is abrogated in response to ADAM15 Loss. To corroborated the 

overexpression findings, we stably downregulated ADAM15 in LNCaP cells using an 

shRNA construct against ADAM15. Both the precursor and mature forms of ADAM15 

were reduced in response to the shADAM15 construct as compared to control scramble 

shRNA (shScrm) LNCaP cells (Fig. 4-3C). Off-target affects of the shRNA were 

analyzed by looking at different genes including the ADAM15 relative, ADAM10, and 

no affects were observed (data not shown). We serum starved scramble control and 

shADAM15 LNCaP cells as previously described, and found that sE-cad levels in the 

conditioned media were decreased in response to ADAM15 downregulation (Fig. 4-3C).  

                                                 
2 Najy, A. et. al. (submitted manuscript) 
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Our lab generated primary prostate epithelial cells (msPrEC) from Adam15+/+ 

and Adam15-/- mice. We showed that Adam15 is ablated in the Adam15-/- msPrEC in 

comparison to the Adam15+/+ cells at the protein and RNA levels (Fig. 4-3D and data 

not shown). Adam15+/+ and Adam15-/- were subjected to serum withdrawal as done 

with the human cell lines and sE-cad was significantly downregulated in response to 

Adam15 ablation within the msPrEC (Fig. 4-3D). Expression of full length E-cadherin 

was assessed via Western blotting and RT-PCR and was shown to be equally expressed 

in both cell lines independent of Adam15 levels.   

 

The ErbB receptor, HER2, preferentially interacts with soluble E-cadherin. 

Although the phenotypic affects of soluble E-cadherin has been elucidated to a certain 

degree, a signaling cascade mediated by this fragment is yet to be characterized. 

Previously, full length E-cadherin was shown to interact with EGFR to induce ligand 

independent signaling in keratinocytes through the extracellular (EC) domain of E-

cadherin (33, 34). To assess whether the full length or the soluble E-cadherin interacts 

with EGFR family members in our models, we first determined the expression profile of 

EGFR family members in our experiment cell lines. We observed that LNCaP cells 

expressed EGFR and HER2; we decided to focus on the HER2 receptor for our analysis 

since it does not have a known ligand. We serum starved scramble control or shADAM15 

LNCaP cells to stimulate sE-cad generation, then immunoprecipitated the cell lysates 

with HER2. We observed that the HER2 receptor preferentially bound sE-cad as 

indicated by the input control. The interaction between sE-cad and HER2 was reduced in 

response to ADAM15 downregulation (Fig. 4-4A). To elucidate the interaction further, 
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we utilized our ADAM15 overexpressing prostate cancer cells. Vector or ADAM15-GFP 

LNCaP cells were serum starved and lysates were used for HER2 immunoprecipitation. 

We observed that the vector cells demonstrated sE-cad /HER2 interaction but this 

complex was significantly enhanced in response to ADAM15 overexpression (Fig. 4-4B).  

The interaction of EGFR ligands with their cognate receptors leads to receptor 

phosphorylation (22). To assess whether endogenous sE-cad interaction with HER2 

supports receptor activation, we stimulated sE-cad generation by serum starving scramble 

control or shADAM15 LNCaP cells. We observed that HER2 was heavily 

phosphorylated in the scramble control cells but this status was significantly reduced in 

the shADAM15 cells (Fig. 4-4C). HER2 phosphorylation was also upregulated in 

response to ADAM15 overexpressing (Fig. 4-4D).  

 

Soluble E-cadherin mediates HER2-dependent signaling. HER2 has been shown to 

signal through the Akt and Erk pathway when activated (23). Since LNCaP cells do not 

express Erk, we assessed Akt signaling in these cells at time points where we observed 

sE-cad-mediated HER2 activation. We demonstrated that scramble control cells showed 

an increase in Akt phosphorylation in response to serum starvation. In contrast, 

shADAM15 LNCaP cells did not show Akt stimulation but rather maintained basal 

activity (Fig. 4-5A). Analysis of ADAM15 overexpressing LNCaP cells demonstrated 

and increase in Akt phosphorylation when grown under serum-depleted conditions while 

vector control cells maintained basal Akt phosphorylation levels (Fig. 4-5B). 

 The Akt signaling cascade mediates cell survival (23). Furthermore, ADAM15 

has been demonstrated to support chondrocyte survival under serum depleted conditions 
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(35). To assess if the LNCaP scramble control cells possess a survival advantage over the 

shADAM15 cells in response to serum starvation, we performed cell viability assays 

looking at apoptosing cells post serum withdrawal. We observed that the LNCaP 

scramble control cells survived longer than the shADAM15 cells under serum depleted 

conditions, especially as the treatment was prolonged (Fig. 4-5C). Complementing these 

findings were the results found in ADAM15 overexpressing cells which demonstrated an 

increase in cell survival as compared to vector control (Fig. 4-5D).  

To specifically implicated sE-cad in HER2 signaling, we exogenously stimulated 

SKBr3 cancer cells with the sE-cad mimetic Fc-Ecad chimera protein, which contains 

only the ectodomain portion of E-cadherin. We utilized these cells because they are E-

cadherin null and HER2 positive to minimize interference of endogenous E-cadherin. 

Furthermore, previously we have demonstrated that Fc-Ecad binds to and stimulates 

HER2 signaling.1 Treatment of SKBr3 cells with Fc-Ecad enhanced Akt phosphorylation 

(Fig. 4-5E) as well as supported cancer cell survival (Fig. 4-5F). These findings support a 

role for ADAM15 in mediating HER2 signaling through E-cadherin solubilization.  
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Discussion 

 The balance between the metalloproteinases and their natural inhibitors, TIMPs, is 

important in maintaining tissue homeostasis (36). Disruption of this intricate balance 

leads to multiple pathological conditions such as inflammation, rheumatoid arthritis, and 

cancer (37). Overexpression of MMP2 and 9 and the loss of TIMP2 are predictors of poor 

prognosis in breast and prostate cancer (31). A relative of the matrix metalloproteinases 

(MMPs), the ADAM family, is also inhibited by TIMP activity. TIMP1 and 3 inhibit the 

catalytic activity of ADAM10 and 17, while ADAM12 is only inhibited by TIMP3 (38). 

ADAM10, 12, and 17 have been shown to be upregulated in multiple cancers but the 

accompanying expression levels of their inhibitors have not been evaluated. A little 

studied member of the ADAM family, ADAM15, was shown to be upregulated during 

prostate cancer progression and is known to play a role in supporting the metastatic 

dissemination of prostate cancer cells (17). In this report, we demonstrated that ADAM15 

supported prostate cancer tumorigenesis potentially through its catalytic activity. 

ADAM15 is synthesized as an inactive 110 kDa metalloproteinase which is matured by 

proprotein convertase removal of the inhibitory prodomain to generate a catalytically 

active 90 kDa protease. Using a panel of normal and malignant prostate epithelial cells, 

we observed that ADAM15 is activated in the cancer cells in comparison to the normal 

epithelium. Furthermore, we observed that TIMP2 and 3 were downregulated during 

prostate cancer progression and may likely be novel inhibitors of ADAM15. 

 ADAM15 has been shown to cleave extracellular matrix components, growth 

factors, and cellular adhesion molecules to mediate cell migration and proliferation (39, 

40). We report here that ADAM15 cleaves the cellular adhesion molecule, E-cadherin, at 
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the extracellular surface yielding a soluble 80 kDa fragment in response to growth factor 

deprivation. Full length E-cadherin plays an important role in maintaining epithelial cell 

polarity and tissue integrity through cell-cell adhesion supported by E-cadherin 

homotypic dimerization. A loss of this function leads to epithelial cell de-differentiation 

and an increase in cell migration and invasion (4). In fact loss of E-cadherin portends to a 

poor prognosis in multiple epithelial-derived malignancies such as breast and prostate 

adenocarcinomas (8). Although ADAM10 cleaves E-cadherin in human keratinocytes, in 

our prostate models ADAM10 expression was unaltered supporting the role of ADAM15 

in E-cadherin ectodomain shedding in prostate cancer cells. 

 Although multiple groups have shown sE-cad shedding in their respective models, 

to date no one completely understands the function of this shed soluble fragment. 

Damsky et. al. demonstrated that sE-cad disrupts cell-cell adhesion in adult and 

embryonic tissue acting as a dominant-negative to disrupt the full length E-cadherin 

homotypic complex (32). Other studies found that soluble E-cadherin mediates 

downstream signaling through an unknown receptor to support cancer cell invasion (8). 

In this report, we demonstrated that sE-cad bound to and activated the ErbB receptor 

HER2 in an ADAM15-dependent manner. EGFR is expressed in our prostate cancer 

cells, but ADAM15 dependent binding of sE-cad with this receptor was not observed 

suggesting that sE-cad mediates HER2 homodimerization. Furthermore, sE-cad ligation 

with HER2 supported downstream Akt signaling. This novel mechanism is not limited to 

prostate cancer cells; in fact our group demonstrated that sE-cad mediates ErbB 

transactivation and signaling in breast cancer cells as well.1  
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The ADAM family is known to support growth factor receptor transactivation and 

ADAM15 was found to cleave cell surface TGFα and amphiregulin to mediate EGFR 

transactivation (21). In non-small cell lung carcinoma, ADAM-mediated transactivation 

supported chemotherapy evasion and resistance of these cancer cells through a 

compensatory mechanism (41). In prostate cancer, treatment of patients with anti-

androgens eventually leads to the development of androgen refractory disease. It is 

believed that these selected cancer cells have adapted to androgen-independent growth by 

the acquisition of an alternative signaling pathway. Shah et. al. reported that EGFR and 

its cognate ligands, TGFα and EGF, are upregulated during androgen refractory prostate 

cancer development (25). In addition, HER2 mediated signaling also supports androgen 

independent growth of prostate cancer cells (27). Both ADAM15 and HER2 were 

recently reported to be simultaneously upregulated in prostate cancer supporting the role 

of this sheddase in mediating the ligation and activation of HER2 signaling by sE-cad 

(26). This process may serve as an alternative mechanism by which prostate cancer cells 

can survive androgen depletion. Through a compensatory mechanism, ADAM15 was 

also reported to support chondrocyte survival under growth factor depletion (35). The 

HER2/sE-cad complex not only supports a promising potential ligand for the orphan 

receptor HER2 but it may unveil a new mechanism supporting prostate cancer 

progression. 

We reported here that ADAM15 supports prostate cancer tumorigenesis and E-

cadherin shedding. Of importance is the role that this protease plays in mediating HER2 

activation and signaling through sE-cad (Fig. 4-6). We believe that the catalytic activity 

of ADAM15 may serve as a novel target for inhibitor development and study in route to 
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novel therapeutics. 
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Fig. 4-1.  ADAM15 and TIMP profile in prostate cancer. A) A panel of normal (PrEC) 

and malignant prostate cancer cells were assessed for ADAM15 messenger and protein 

expression profile. B) A cDNA microarray of benign, localized, and metastatic prostate 
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cancer tissues was analyzed for tissue inhibitors of metalloproteinases (TIMP)-2 and 3 

expression levels.  
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Fig. 4-2. ADAM15 overexpression increases LNCaP tumorigenicity. A) Subcutaneous 

vector or ADAM15-GFP LNCaP tumors (T) were excised and examined. H&E histology 

and E-cadherin immunohistochemistry at 400X magnification are indicated. Bar = 2 mm. 

B) Tumors of vector or ADAM15-GFP LNCaP cells measured at 6 and 7 weeks post-

injection. Nine animals per cell line were used and average tumor volume plotted. Bars 

represent the SEM. 
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Fig. 4-3. ADAM15-mediates cleavage of E-cadherin in prostate cancer cells. A) 

ADAM15 (green) and E-cadherin (red) co-localize at the adherens junction (overlay). B) 

Vector or ADAM15-GFP LNCaP cells were stimulated and analysis of the conditioned 

media (CM) showed an increase in soluble E-cadherin (sE-cad) in response to ADAM15 

upregulation. C) ADAM15 was downregulated in LNCaP cells using a stable shRNA 

against ADAM15 (lysates). Conditioned media levels of soluble E-cadherin decreased in 
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ADAM15 knockdown LNCaP cells. shScrm, scramble shRNA control. D) Adam15 +/+ 

and -/- mouse prostate epithelial cells (msPrEC) were analyzed for E-cadherin shedding. 

Actin and tubulin were used as loading controls. 
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Fig. 4-4. Binding of sE-cad to HER2 supports receptor activation. A) Scrambled control 

(shScrm) or shADAM15 LNCaP cells were stimulated and lysates were 

immunoprecipitated (IP) with either HER2 or IgG to assess E-cadherin binding to HER2. 

B) Overexpression of ADAM15 supported increased sE-cad/HER2 ligation. The input 

lane was used for E-cadherin banding pattern. sE-cad, soluble E-cadherin. FL/E-cad, full 

length E-cadherin. HER2 phospho-tyrosine (pTyr) status was assessed in shADAM15 (C) 

and ADAM15-GFP (D) LNCaP cells in response to serum deprivation. 
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Fig. 4-5. ADAM15 supports Akt activation and cell survival. Control scramble (shScrm) 

or ADAM15 knockdown (shA15) cells were serum deprived and pAkt (A) and cell 

apoptosis (B) were assessed. *P<0.006; **P<0.0001. Akt phosphorylation (C) and cell 

survival (D) were monitored in ADAM15 overexpressing (A15-GFP) cells. *P<0.005; 
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**P<7.1E-5. SKBr3 cells were stimulated with Fc-Ecad, pAkt (E) and cell survival (F) 

were analyzed. *P<0.05; **P<1.0E-04.  
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Fig. 4-6. Model for ADAM15-mediated HER2 transactivation in prostate cancer cells. 

ADAM15 shedding of sE-cad supports HER2 homodimerization and signaling through 

Akt to enhance cell survival.
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CHAPTER 5 
 
 

SUMMARY 
 
 

ADAM family structure-function 

 The ADAM (a disintegrin and metalloproteinase) family is part of the metzincins 

super-family of metalloproteinases which includes the matrix metalloproteinases (MMPs) 

and is similar to the snake venom metalloproteinases (SVMPs) (1, 2). The ADAMs are 

expressed in Drosophila, C. elegans, Xenopus, and vertebrates. Forty ADAMs have been 

demonstrated to be expressed in humans3 and the majority are expressed in the testes 

where they are involved in fertilization (3). The disintegrin metalloproteinases are also 

expressed in somatic tissue where they are involved in different tissue-specific function 

(see physiological function of the ADAM family). This family of type I transmembrane 

glycoproteins are also known as the MDC (metalloproteinase, disintegrin, cysteine-rich) 

family in reference to their domain structure. 

 The ADAMs are composed of five extracellular domains, a transmembrane 

domain and a c-terminal cytoplasmic tail (Fig. 1-1). The first of the extracellular domains 

is the prodomain, which has been shown to be a chaperone for protein folding and 

stabilization during protein synthesis (4, 5). The prodomain also functions to inhibit the 

catalytic activity of the adjacent metalloproteinase domain in the precursor form of the 

protease through a cysteine switch which was observed first in the MMPs (6). The 

                                                 
3 http://www.uta.fi/%7Eloiika/ADAMs/HADAMs.htm 
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cleavage of this domain by proprotein convertases (i.e. furin) generates a mature 

catalytically active protease that functions in targeted degradation of cell surface 

molecules and extracellular matrix components (7). An understudied member of the 

ADAM family, ADAM15, is generated as a 110 kDa precursor protein that is matured 

into a catalytically active 90 kDa protease by furin cleavage (8). The second of the 

extracellular domains within the ADAM family protein structure is the metalloproteinase 

domain (Fig. 1-1). Thirteen ADAMs have been shown to contain the metalloproteinase 

consensus sequence HExxHxxGxxH and are able to target different substrates.  

Catalytically active ADAMs can cleave growth factors, growth factor receptors, 

extracellular matrix (ECM) components, and adhesion molecules (9). The catalytically 

active disintegrin metalloproteinase, ADAM15, sheds TGFα, HB-EGF, and amphiregulin 

(AREG) in breast and bladder cancer cells (10, 11). ADAM15 also mediates mesangial 

cell migration in nephropathies through collagen IV and gelatin proteolysis (12). The 

sheddase activity of the ADAM family is known to support cell migration and invasion in 

different pathological conditions (13). 

 Cell adhesion and spreading is also supported by the ADAMs through the 

disintegrin and cysteine-rich domains. The disintegrin domain contains integrin 

recognition sequences that allow for ADAM-integrin ligation. ADAM15 is the only 

ADAM family member that contains an RGD disintegrin sequence involved in RGD-

dependent αvβ3 and α5β1 binding (14, 15). Although cell-cell interaction is supported by 

integrin-ADAM ligation, the cysteine-rich domain of the ADAM family can also mediate 

cell adhesion and spreading through syndecans binding (16). The cysteine-rich and the 

EGF-like domains of the ADAM family have also been proposed to be involved in cell-
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cell fusion. The binding of catalytically active ADAMs to integrins or syndecans may 

target their proteolytic activity for ECM degradation or growth factor shedding (3). The 

regulation of ADAM targeting may also be through the cytoplasmic tail which contains 

SH2 and SH3 recognition sequences and sites for serine, threonine, and tyrosine 

phosphorylation to support inside-out and/or outside-in signaling. ADAM15 interaction 

with the vascular transport proteins SH3PX1, endophilin I and the EGFR-transactivating 

mediator Eve1 support a role of this regulatory mechanism in ADAM15 targeting (17, 

18). Furthermore, ADAM15 cytoplasmic phosphorylation by the src-family member, 

Hck, and its interaction with other non-receptor tyrosine kinases suggests a role of 

ADAM15 in cell signaling (19). The multiple domain structure of the ADAM family 

implicates this disintegrin metalloproteinase group in cell adhesion, migration, invasion, 

and cell signaling. 

 

Physiological function of the ADAM family 

 The first of the ADAM family members, ADAM1 and 2, were discovered in 1992 

and were shown to play a critical role in fertilization. Mice null for either adam1 (also 

known as fertilin α) or adam2 (fertilin β) are viable and develop normally but are infertile 

(1). Further study of these adamalysins revealed that sperm-expressed ADAM2 binds the 

oocyte integrin α6β1 to mediate gamete interaction. Gamete fusion is supported by the 

fusion sequence within the cysteine-rich domain of ADAM1. Cell fusion is also 

necessary for adipogenesis and myogensis and the fusion sequence within the cysteine-

rich domain of ADAM12 is thought to mediate these physiological phenomena (20). In 

fact, re-expression of adam12 in the Duchene muscular dystrophy (mdx) mouse models 
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alleviates the muscular defects due to decreased muscular necrosis (21). ADAM12 is not 

the only ADAM family member known to ameliorate pathological disorders. Adam10 

gene knock-in alleviated neuronal plaque development in Alzheimer’s mouse model. 

ADAM10 has been found to play a critical role in neuronal development through the 

delta-notch axis (9). ADAM10 also acts on the amyloid precursor protein (APP) which is 

involved in neuronal plaque development seen in Alzheimer’s patient. Cleavage of APP 

by the β-secretase, BACE, leads to abnormal plaque development in contrast to α-

secretase cleavage by ADAM10 which not only prevents neuronal plaque build up but it 

alleviates preexisting plaques as is evident by the adam10 knock-in model (22). Another 

ADAM family member that is critical for normal embryonic development is ADAM17. 

Adam17 null mice are embryonic lethal due to cardiac, lung, and ocular defects. These 

phenotypes were attributed to the loss of EGF, HB-EGF, and TGFα shedding by 

ADAM17 (23). Although ADAM15 null mice are fertile and viable, they do exhibit a 

lower neovascularization potential as demonstrated by the prematurity of retinopathy 

model (24). The disintegrin metalloproteinases are important for physiological 

development and their dysregulation is implicated in a myriad of pathological disorders 

including cancer. 

 

The Role of ADAM15 in Cancer 

 The metastatic progression of cancer is an intricate multi-step process involving 

interplay between cell surface molecules and the surrounding stroma. The neoplastic cells 

at the primary growth site must be able to proliferate and acquire an invasive potential to 

allow for basement membrane degradation and migration through the underlying stroma. 
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Once these invasive cells reach stromal blood vessels they must intravasate, survive the 

shear forces of the blood circulation and then extravasate out of the vasculature to 

colonize a distant site for metastasis (Fig. 5-1). The ADAM family, specifically 

ADAM15, has been found to support the metastatic cascade through their versatile 

domain structure (13). 

 ADAM15 in Tumorigenesis 

The ADAM15 chromosomal locus, 1q21.3, is amplified in multiple 

adenocarcinomas including breast and prostate cancer (25, 26). Our lab verified these 

findings by performing cDNA microarray analysis and we found that ADAM15 was 

significantly upregulated in thirteen different cancer types. Furthermore, this catalytically 

active adamalysin was overexpressed in nine different prostate and ten breast cDNA 

microarrays comparing benign, localized, and metastatic disease and these findings were 

verified using prostate and breast cancer tumor microarrays (TMA) (27). To dissect the 

role of ADAM15 in prostate cancer progression, we overexpressed this protease in 

minimally malignant prostate cancer cells (LNCaP) and found that ADAM15 

upregulation enhanced the tumorigenic potential of these cells in a mouse xenograft 

model. Supporting these findings was the knockdown of ADAM15 in highly aggressive 

prostate cancer cells (PC-3) which demonstrated a significant reduction in their 

tumorigenicity using the aforementioned xenograft model (discussed in chapters 2 and 4). 

Supporting the role of ADAM15 in tumorigenesis were the findings of Horiuchi et. al. 

who reported that subcutaneous xenograft implantation of melanoma cells into adam15-/- 

mice demonstrated decreased tumorigenicity (24). ADAM15 may serve as a crucial 
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sheddase of different growth factors to support the tumor development by cancer cells in 

vivo. 

ADAM15 in cancer cell stromal invasion 

 In order for cancer cells to spread, they must be able to disengage from the 

inhibitory cell-cell adherence complex and to acquire a migratory phenotype to traverse 

through the underlying stromal matrix (Fig. 5-1). The classic E-cadherin molecule serves 

as a metastatic suppressor by maintaining cell-cell contact through calcium-mediated 

homotypic binding. Disruption of the E-cadherin molecule by gene mutation, promoter 

hypermethylation, or protein cleavage is associated with an aggressive phenotype (28). 

Extracellular cleavage of full length E-cadherin into its soluble form (sE-cadherin or sE-

cad) is carried out by multiple catalytically active proteases and serum or urine soluble E-

cadherin levels are known to be upregulated during the progression of multiple cancers 

(29). Our laboratory has shown that serum soluble E-cadherin is upregulated during 

prostate cancer progression in a pattern mirroring the catalytically active ADAM15 

upregulation (30). Furthermore, the top four adenocarcinomas (breast, prostate, bladder, 

and lung) demonstrating significant ADAM15 upregulation also have been demonstrated 

to have elevated serum or urine soluble E-cadherin levels. We also have observed that 

ADAM15 co-localized at the cell-cell adherens junction with E-cadherin. Hence, we 

hypothesized that ADAM15 may support cancer progression through the cleavage of the 

E-cadherin molecule. We assessed the serum levels of mice containing ADAM15 

overexpressing prostate cancer cells xenografts and found that soluble E-cadherin levels 

were elevated. This was corroborated by tissue culture findings looking at soluble E-

cadherin in the conditioned media of ADAM15 overexpressing or knockdown prostate 



 132

cancer cells in response to serum starvation (see chapter 4). Soluble E-cadherin was 

elevated in response to ADAM15 upregulation and reduced in ADAM15 downregulated 

cells. Mutation of the catalytic metalloproteinase domain abrogated E-cadherin 

proteolysis. Breast cancer cells were also analyzed for soluble E-cadherin shedding in 

response to ADAM15 overexpression or downregulation and we found results that are 

similar to the prostate cancer cells (see chapter 3). Moreover, breast cancer cells that 

demonstrated less E-cadherin shedding were less migratory and proliferated less.  

E-cadherin is not the only cellular adhesion molecule (CAM) that ADAM15 

modulates to support cancer progression. ADAM15, through its disintegrin domain, has 

been demonstrated to intact with multiple integrins including αvβ3 in an RGD-dependent 

manner (14, 15). Using our PC-3 model, we demonstrated that cell surface stabilization 

of the metastatic markers, integrin αv and CD44 is ADAM15-dependent (discussed in 

chapter 2). ADAM15 expressing PC-3 cells were more migratory and invasion 

potentially due to the presence of these metastatic associated markers which have been 

implicated previously in cancer cell migration and invasion. In addition, the CD44 

receptor is able to target different metalloproteinases, including MMP9, to the migrating 

edge of invasive cancer cells (31). Our findings showed that ADAM15 mediated MMP9 

secretion and activity likely through CD44 stabilization to support the invasive phenotype 

of these cells. ADAM15 expressing PC-3 cells also displayed increased N-cadherin 

shedding which may support the migratory and invasive phenotype observed in these 

cells through ADAM15-mediated cell adhesion molecule turn over at the cell surface to 

allow for cell adhesion and release during migration and invasion. Using its 
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metalloproteinase and disintegrin domain, ADAM15 is able to cleave cell-cell molecules 

and stabilize cell surface metastatic makers supporting its role in stromal invasion.  

ADAM15 and angioinvasion 

 Epithelial-endothelial cell interaction is necessary to allow for cancer cell 

intravasation and extravasation. Different cell surface molecules have been implicated in 

epithelial-endothelial cell interaction including αvβ3 and CD44 (32). Since ADAM15 

was shown to be overexpressed in angioinvasive breast cancer (27) and αvβ3 and CD44 

were stabilized by ADAM15, we assessed the role of ADAM15 in the process of 

angioinvasion. We demonstrated that prostate cancer cells were able to adhere to and 

transmigrate through endothelial cells in an ADAM15-dependent manner (see chapter 2). 

This process may be carried out through the interaction of epithelial ADAM15 disintegrin 

domain with the endothelial αvβ3 integrin. The ADAM15 disintegrin domain was also 

shown to bind to the platelet integrin αIIbβ3 under shear and static conditions (32-34). 

ADAM15 through its disintegrin domain likely plays multiple roles in mediating 

intravasation, survival in the blood stream via platelet binding and finally extravasation 

(Fig. 5-1). 

ADAM15 in cancer metastasis 

 Breast and prostate cancer have a high prevalence to metastasize to the bone (35). 

It has been hypothesized that cancer cells possess different markers to allow for homing 

to secondary sites and the stabilization of cell surface receptors by ADAM15 may serve 

as a homing signal. Using our PC-3 model, we demonstrated that ADAM15 is necessary 

for prostate cancer cells to metastasize to multiple sites including the spine and tibia 

using an intracardiac dissemination model (discussed in chapter 2). Although the bone 
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microenvironment is a harsh environment in comparison to soft tissue, cancer cells have 

developed different adaptations to survive. Activation of the ErbB family of receptor 

tyrosine kinases are essential for cancer cell survival and proliferation (36). Previously, 

the extracellular domain of full length E-cadherin has been shown to support ligand-

independent EGFR activation (37, 38). We demonstrated that the ADAM15 shed soluble 

E-cadherin fragment is able to interact and activate the ErbB family members to mediate 

cell migration, proliferation and survival (see chapter 3 and 4). Therefore, not only can 

ADAM15 mediate the metastatic progression of cancer cells to a secondary site but it 

may also support the propagation of the primary tumor and the colonization of the cells at 

a distant site. By disrupting the cell-cell adherence junction ADAM15 allows cancer cells 

to migrate through the basement membrane and traverse the underlying stromal 

compartment. Furthermore, we believe that ADAM15 plays a novel role in cancer cell 

angioinvasion and colonization at distant sites (Fig. 5-1).  

 

ADAM15 as a therapeutic target and conclusion 

 PSA (prostate specific antigen) and HER2 have been great tumor progression 

markers for prostate and breast cancer, respectively (39), but the need for more precise 

diagnosis and prognosis markers is still necessary. The ADAM family of disintegrin 

metalloproteinases has been used as reporting markers in multiple adenocarcinomas. The 

soluble form of ADAM12 is found to be upregulated during the progression of breast 

cancer and is a precise predictor of tumor progression (40). Serum levels of ADAM8 

have been reported to have potential as markers of renal cell carcinoma and non-small 

cell lung carcinoma (NSCLC) progression (41, 42). Furthermore, ADAM9 and ADAM11 
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are found to predict the outcome of tamoxifen in ER-positive breast cancer (43). Our 

findings that ADAM15 is downregulated in response to neoadjuvant treatment of prostate 

cancer cases and its expression is upregulated in HER2-positive breast cancer support a 

growing role for ADAM15 as a marker of tumor progression and therapy response.  

The multiple extracellular domains of the ADAM family complement each other 

to allow for protein function. Recently, phosphorylation of the ADAM17 cytoplasmic 

domain by PKC in response to phorbol-ester stimulation led to protease activation and 

HB-EGF shedding (44). Other ADAMs utilize their disintegrin and cysteine-rich domains 

to bring growth factors into a complex where these mitogens are shed (3). The domains 

of the ADAM family can serve as targets for therapeutic discovery, especially those of 

ADAM15. As demonstrated previously, the catalytically active metalloproteinase domain 

of ADAM15 plays a role in cell-cell disruption through E-cadherin shedding which in 

turn binds to and activates HER2 to mediate cell proliferation, migration and survival. 

Previously, So et. al. demonstrated that HER2 can stimulate the androgen receptor (AR) 

pathway in androgen refractory prostate cancer (45). In addition, HER2 is amplified in 

20-30% of breast cancer cases and HER2 status is inversely proportional to estrogen 

receptor (ER) expression (46, 47). ADAM15-mediated HER2 activation may compensate 

for a loss of hormone stimulation in hormone refractory prostate and breast cancer. 

Therefore, the inhibition of the metalloproteinase activity of ADAM15 through small 

molecule inhibitors or exogenous application of recombinant ADAM15 prodomain may 

serve as effective inhibitors of ADAM15 proteolytic function.   

The disintegrin domain of ADAM15 is the only ADAM family disintegrin that 

contains an RGD sequence. Purified recombinant ADAM15 disintegrin domain was 
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shown to inhibit xenograft tumorigenesis and metastasis through the inhibition of tumor 

angiogenesis (48). In addition, an ADAM15 specific inhibitor demonstrated an 

abrogation of endothelial cell proliferation, migration, and tube formation in vitro (49). 

Combined with the role that ADAM15 plays in neovascularization (24), these data 

strongly support a growing role for ADAM15 in angiogenesis. Therapeutics targeting 

angiogenesis are vital since they can be applied to multiple tumors and they would 

confine primary tumors to a localized stage where treatment is more efficacious. In 

addition, an RGD small peptide inhibitor targeting ADAM15 disintegrin activity can 

specifically inhibit its role in angiogenesis without interrupting the function of other 

metalloproteinases. 

ADAM family function can be modulated by inside-out signaling cascades. Eve1, 

PKC, and src have been demonstrated to act on the c-terminal tail of different ADAMs, 

including ADAM15, to mediate catalytic activity specifically growth factor shedding (5, 

18, 19). Our findings showed that serum deprivation activates ADAM15 to shed E-

cadherin potentially through inside-out signaling. Although the exact activator is yet to be 

elucidated; an inhibitor to this target would prove valuable in preventing the sheddase 

activity of ADAM15. The multi-functional domains of ADAM15 support the role it plays 

within the metastatic cascade as a sheddase, an adhesion molecule, and a signal 

transducer. These domains present both a challenge to find specific inhibitors but also a 

great opportunity to develop novel therapeutics due to a multitude of targets.     

 



 137

 

 

 

Fig. 5-1. The role of ADAM15 in cancer progression. Cancer metastasis is delineated 

here in four steps. First, normal epithelial cells acquire genetic alterations that permit for 

primary tumorigenesis, cell dissociation and basement membrane degradation. Second, 

invasive epithelial cancer cells traverse the underlying extracellular stroma. These cells 

then intravasate into the blood stream, adhere onto platelets, and finally extravasate into 

distant site. Ultimately, the cells colonize the secondary microenvironment to develop 

metastatic deposits.  
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Future Studies 

Although my thesis work on ADAM15 has contributed greatly to understanding 

its importance in cancer progression, much work detailing its structure-function is 

needed. One of the areas that might be of interest is the function of soluble N-cadherin as 

a potential ligand in aggressive prostate and breast cancer. Previous work demonstrated a 

role for soluble N-cadherin in promoting angiogenesis through FGFR signaling (50). The 

fibroblast growth factor receptor (FGFR) is upregulated in prostate and breast cancer and 

its activity supports cancer cell proliferation and migration (51, 52). One can hypothesize 

that ADAM15-mediated N-cadherin shedding may lead to FGFR transactivation and 

signaling. Supporting this hypothesis is our findings in Chapter 3 which demonstrated a 

role for soluble E-cadherin in the transactivation of the growth receptors HER2/HER3. 

 The metalloproteinase activity of the ADAM family may be targeted or directed 

by other domains on these endopeptidases (3). ADAM15 is known to bind to multiple 

integrins including αVβ3 through an RGD-dependent manner potentially coordinating the 

metalloproteinase activity of ADAM15 (14). Since our laboratory is the first to report 

physiological substrates for ADAM15, N- and E-cadherin, assessing the role of the 

metalloproteinase adjacent domains in mediating ADAM15 ligand shedding is amenable. 

ADAM15 targeting is not limited to the extracellular domains, but may involve the c-

terminal tail. The vascular transport proteins, SH3PX1 and endophilin 1, interact with 
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ADAM15 through its SH3 sequences (17). These trafficking proteins may play a critical 

role in targeting ADAM15 activity in response to an external stimulus. 

 Within my thesis work we generated a catalytic-dead ADAM15 mutant as well as 

demonstrated the sensitivity of ADAM15 to the metalloproteinase inhibitor 

1,10phenanthroline (Chapter 3). Other members of the ADAM family are also inhibited 

by the endogenous tissue inhibitor of metalloproteinases (TIMPs) (13). In our cDNA 

arrays, TIMP2 and 3 were found to be downregulated during prostate cancer progression 

and their expression is inversely proportional to ADAM15 levels (Chapter 4). These 

findings point to a potential function of TIMP2 and 3 as ADAM15 inhibitors.  

Furthermore, inhibitors of ADAM15 can be design and tested using sE-cad as an 

experimental output.  The University of Michigan biochemistry consortium has a library 

of inhibitors that may serve as a starting point for designing ADAM15 specific inhibitors.  

Of course the search may be narrowed utilizing similar protocols used for the 

development of ADAM10 and 17 inhibitors.  Since the prodomain of the ADAM family 

members function in the inhibition of their metalloproteinase activity, the ADAM15 

prodomain could serve as a potent inhibitor to the metalloproteinase activity of 

ADAM15.  In fact, the ADAM prodomain has previously been applied as an inhibitor to 

both ADAM10 and ADAM17.  

 Soluble E-cadherin binding to both HER2 and HER3 supported Erk signaling and 

breast cancer cell migration and proliferation (Chapter 3). The site of E-cadherin and 

ErbB receptor interaction remains to be elucidated. A HAV (histidine, alanine, valine)-

containing 10-mer human E-cadherin peptide, which correspond to a portion of the first 

extracellular (EC1) E-cadherin domain, mediated a phenotype similar to the soluble 80 
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kDa E-cadherin fragment. The HAV sequence within the E-cadherin EC-1 domain has 

been hypothesized to be responsible for the peptide activity (53). These details narrow the 

search for the area of E-cadherin/receptor interaction. The soluble E-cadherin binding to 

HER2 can be inhibited by trastuzumab (Chapter 3). This monoclonal antibody is specific 

for HER2 inhibition and does not act on other ErbB family members. A recently 

characterized monoclonal antibody, pertuzumab, acts on both HER2 and HER3 (54). 

Potentially, a new approach may look into the influence of this monoclonal antibody 

inhibitor on soluble E-cadherin interaction with ErbB family members.   

In addition to elucidating the site of E-cadherin/ErbB receptor binding, further 

characterization of the sE-cad mediated signaling axis is needed.  Tyrosine kinase 

inhibitors (TKIs), such as lapatinib, may serve as great tools in dissecting the signaling 

cascade.  Furthermore, Erk and Akt inhibitors are worthwhile pursuing to clearly 

elucidate the role of sE-cad in ErbB receptor signaling.   

  The studies presented within this work delineated a ligand for ADAM15 and 

uncovered a novel role of ADAM15 in supporting cancer progression as well as a case 

for future pursuit of ADAM15 targeted therapeutics. 
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