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ABSTRACT

In this thesis, I study the properties of cold neutral atoms, including Bose-Einstein

condensates (BEC), inside periodic light-shift potentials created by optical lattices.

In the first part, a new optical-lattice scheme, employing Raman transitions, hereafter

referred to as a Raman Optical Lattice (ROL), is investigated. This optical lattice

possesses a novel sub-Doppler cooling mechanism and a reduced periodicity. Both

theoretical and experimental results confirm these two characteristics of the ROL.

In the second half of the thesis, instead of thermal atoms, optical lattices are loaded

with condensate atoms. Our BEC apparatus and the procedure towards forming a

BEC are described in detail. After the achievement of the BEC, a 1D far-detuned

optical lattice is applied to the BEC. A number of phenomena are observed, including

Kapitza-Dirac diffraction, thermal atom interference, atom interferometry, Bloch

oscillations, and a superfluid to Mott-insulator transition. Finally a brief discussion

about future work is given.
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CHAPTER I

Introduction

Figure 1.1: Potential wells of a 2-D optical lattice

An optical lattice is a light-shift potential formed by the interference of several

laser beams. The interference leads to a perfect periodic structure of potential wells

where cold atoms can localize, as shown in Fig. 1.1. Optical lattices display many

characteristics associated with solid state crystals, and additionally possess other

unique properties. Unlike most solid state crystals, the parameters of optical lattices

1
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are much easier to vary and manipulate experimentally, by changing the light field pa-

rameters and applying external magnetic fields. In addition, atoms in optical lattices

typically have a much longer coherence time (order of µs) compared with solid state

systems where the coherence time is of the order of ns. These unique properties make

the optical lattice an excellent alternative in studying many solid state phenomena.

Since the first experimental realization in 1987 [1], optical lattices have been used in

a number of such experiments including Bragg scattering [2, 3], Bloch oscillations [4],

Wannier-Stark ladders [5], wavepacket revivals [6], and tunneling [7, 8]. Applications

of optical lattices in quantum information processing have also been proposed [9–11].

More recently, applying optical lattices to Bose-Einstein condensates has led to the

observation of a remarkable quantum phenomenon: the superfluid to Mott-insulator

transition [12]. In applied fields, such as nano-lithography [13], optical lattices are

also of high interest. Although direct deposition is not practical, alkali atoms, nor-

mally used in the optical lattice experiments, can be applied in structured arrays

on a surface treated with photo-resist, i.e., we can use atoms to develop a desired

pattern using lithographic methods.

The origin of the optical lattice comes from the fact that the interaction of a

light field with an atom shifts the energy levels of the atom’s internal states. The

interference of two or more fields can create a spatial modulation of the energy shift,

which forms an optical lattice potential. More detailed discussion is presented in the

first section of this chapter. In the second section, the layout of the thesis is given,

including our motivations for studying a new type of optical lattice and Bose-Einstein

condensates in optical lattices.
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1.1 Light-shift Potential

The Hamiltonian for an atom in a laser field can be written as H(t) = Ho +

H ′(t), where Ho represents a field-free, time-independent atomic Hamiltonian and

H ′ describes the interaction with the laser field. Consider eigenstates of Ho, ψn, with

eigenvalues En ≡ ~ωn, then Hoψn = Enψn. Since the eigenstates ψn form a complete

set, the solution to the Schrödinger equation

H(t)Ψ(~r, t) = i~
∂Ψ(~r, t)

∂t
(1.1)

can be expanded in terms of ψn:

Ψ(~r, t) =
∑

n

an(t)ψn(~r)e−iωnt , (1.2)

where ~r is the electron position. Substituting Eq. 1.2 back into the Schrödinger

equation, we get

H(t)Ψ(~r, t) = i~(
∂

∂t
)
∑

n

an(t)ψn(~r)e−iωnt . (1.3)

Eq. 1.3 can be simplified by multiplying ψ∗n on the left and integrating over the

spatial coordinate ~r. The final equations take the form

i~(
dam

dt
) =

∑
n

an(t)H ′
mn(t)e−iωmnt . (1.4)

The field interaction Hamiltonian H ′(t) can be expressed as

H ′(t) = −e~ε(~r, t) · ~r (1.5)

where ~ε(~r, t) is the electric field operator of the laser field. For a plane wave traveling

in the z direction,

~ε(~r, t) = Eoε̂ cos(kz − ωlt) , (1.6)
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In matrix form, the Hamiltonian H ′(t) is written as

H ′(t) = 2~




0 χ cos(kz − ωlt)

χ cos(kz − ωlt) 0


 , (1.7)

where the Rabi frequency χ, defined by

χ ≡ −eEo

~
〈e|r|g〉 (1.8)

is assumed to be real. Note that the electric dipole approximation is made here

to neglect the variation of ~ε(~r, t) over the wavefunction region of the atomic states

|g〉, |e〉. With this matrix form of the Hamiltonian, Eqs. 1.4 becomes

i~
dag(t)

dt
= 2~aeχ cos(kz − ωlt)e

−iωat (1.9a)

i~
dae(t)

dt
= 2~agχ cos(kz − ωlt)e

iωat (1.9b)

where ωa = ωe − ωg is the atomic resonance frequency. Under the rotating wave

approximation (RWA), fast oscillating terms, e±i(ωa+ωl)t, are to be neglected. Equa-

tions. 1.9 then become

i~
dag(t)

dt
= ~ae(t)χei∆t (1.10a)

i~
dae(t)

dt
= ~ag(t)χe−i∆t (1.10b)

Here ∆ is the field detuning from the atomic resonance frequency, ∆ = ωl − ωa. In

a rotating frame where

cg(t) ≡ ag(t) (1.11a)

ce(t) ≡ ae(t)e
i∆t , (1.11b)

Eqs. 1.10 can be further simplified as

i~
dcg(t)

dt
= ce(t)~χ (1.12a)
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Figure 1.2: The energy shifts caused by the atom-light interaction for blue-detuned (∆ > 0) and
red-detuned (∆ < 0) light.

i~
dce(t)

dt
= cg(t)~χ− ce(t)~∆ . (1.12b)

The full Hamiltonian is now expressed in a matrix form by

H = ~




0 χ

χ −∆


 . (1.13)

The eigenvalues of this new Hamiltonian are calculated to be

E± =
~
2
(−∆±

√
∆2 + 4χ2) . (1.14)

The corresponding new eigenstates are called semi-classical dressed states. Note that

in the original interaction representation before diagonalizing the new Hamiltonian,

the ground state has 0 energy, Eg = 0, and the excited state has an energy of −~∆,

Ee = −~∆. When the light field is turned on, the value of the new excited state

energy depends on the sign of the detuning ∆. (The new excited state energy is

always the one that is closer to the original excited state energy −∆.) For ∆ < 0,

Ee′ = E+, Eg′ = E−; For ∆ > 0, Ee′ = E−, Eg′ = E+, as show in Fig. 1.2.

In the limit where |∆| À χ (the rest of this thesis deals with this limit except
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otherwise mentioned), the energies are shifted by

Eg′g ≡ Eg′ − Eg = ~χ2

∆

Ee′e ≡ Ee′ − Ee = −~χ2

∆
.

(1.15)

Since χ2 is proportional to the light intensity, this energy shift is called light shift,

also known as the AC Stark shift. As indicated by Eqs. 1.15, the energy separation

between the ground and excited states becomes larger when the light field is red-

detuned, ∆ < 0, and smaller when blue-detuned, ∆ > 0. When another counter-

propagating light field, with the same frequency and polarization, is added to this

system, a standing wave is formed. The light intensity is no longer homogeneous

spatially. Instead it is periodically modulated with a period of λ/2, where λ is the

wavelength of the light. As a result, the light shift potential of the atom is also

spatially modulated with the same period. This periodic light shift potential is also

called an optical lattice.

When it comes to real atoms, this simple two-level model does not work since

atoms have multiple levels in the ground and excited states. Transitions between

the ground and excited states, in general, involve many sub-levels and become much

more complicated. Nevertheless, the basic physics of optical lattices is as illustrated

here.

1.2 Motivations and Thesis Outline

The importance of optical lattices lies in their ability to create a perfect periodic

structure. As discussed in the previous section, traditionally this structure has a

period of half the wavelength of the laser beams underlying the optical lattice. Since

in some applications, like wave-packet tunneling and atom-lithography, a smaller

period optical lattice may be more useful, an important question arises: can this pe-
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riod be reduced? In our recent work [14], we proposed a new optical lattice geometry

based on the two-photon Raman transition to achieve a λ/4 period optical lattice.

We refer to this optical lattice as a “Raman Optical Lattice” (ROL). In addition to

its reduced periodicity, the ROL also gives rise to a new type of sub-Doppler laser

cooling, which has never previously been explored. In Chapter II, I will first present

the theoretical model of the ROL to show the origin of the reduced periodicity. Then

the sub-Doppler cooling effect will be verified from two approaches: semi-classical

calculations and Quantum Monte Carlo wavefunction simulations (QMCWF). The

experimental realization of the ROL will be described in Chapter III, which includes

demonstrations of both the sub-Doppler laser cooling and the λ/4 periodicity of the

ROL.

In the ROL experiment, the lattice is applied to atoms in a magneto-optical trap

(MOT). Even after an additional molasses cooling, the atoms only reach a tempera-

ture of around 50 µK. Recently, more and more lattice experiments switch to a much

colder and denser atomic ensemble: Bose-Einstein Condensate (BEC). The BEC is

a sample of bosonic atoms that are cooled to such a low temperature that they all

occupy the same lowest quantum state and display macroscopic quantum properties.

The combination of BECs with optical lattices leads to an exciting new frontier of

physics research, which appeals to both atomic and condensed matter physicists.

Therefore, after the ROL experiment, we started our BEC project. In Chapter IV, I

will describe our achievement of the BEC in a dilute 87Rb gas. Observations of many

unique quantum phenomena involving BECs in optical lattices will be presented in

Chapter V.



CHAPTER II

Theory of the Raman Optical Lattice (ROL)

As discussed in the previous chapter, the basic periodicity of an optical lattice

produced by a laser field having wavelength λ is λ/2. However, recently a number

of papers have been published on the possibility to reduce this basic periodicity to

λ/4 or smaller [15–18] by modifying the atom-field geometry. In particular, we point

out that sub-Doppler cooling occurs for one such scheme [14], which we refer to as a

Raman Optical Lattice (ROL). In this chapter, the ROL geometry will be explored

theoretically.

2.1 Theoretical Model of the Raman Optical Lattice

The basic transition diagram of the ROL is shown schematically in Fig. 2.1. Two

pairs of counter-propagating laser fields are involved in driving two-photon Raman

transitions between ground states 1 and 2 through excited state 3. Consider first the

pair of fields E1 and E2, which have propagation vectors k1 = −k2 = k = (2π/λ)ẑ.

An atom initially in state 1 can absorb one photon from field E1, re-emit a photon

into field E2, and end up in state 2. In this process, the atom receives a momentum

kick equal to 2~k. Thus, the transition between states 1 and 2 can be considered to

be driven by an effective Raman field with a propagation vector 2k. The fields E3 and

E4 couple the two states in a similar manner but have directions opposite to those

8
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Figure 2.1: Raman configuration that can be used to produce an effective two-photon standing
wave field on the 1− 2 transition.

of fields E1 and E2, respectively. Thus, the pair of fields E3 and E4 is equivalent to

a Raman field with propagation vector −2k. The two counter-propagating Raman

fields interfere in driving transitions between the states 1 and 2. To lowest order

in the Raman field strength, this leads to a modulation of ground state population

difference and coherence that varies as cos(4kz). In this manner, a density grating

with a period of λ/4 can be created.

It should be pointed out that in order to achieve the results mentioned in the

previous paragraph, we have to neglect any effects related to E1 (E3) driving the 1-3

transition or field E2 (E4) driving the 2-3 transition. It is also assumed that fields

E1 and E3 (or E2 and E4) do not interfere in driving single-photon transitions, nor

do fields E1 and E4 (or E2 and E3) drive two-photon Raman transitions between

states 1 and 2. The first requirement can be met owing to polarization selection

rules, while the second is ensured by a frequency difference ∆d introduced between

E1 and E3 (or E2 and E4).
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2.2 Sub-Doppler Laser Cooling of the Raman Optical Lattice

In the previous section, we have shown that a reduced-period optical lattice is

possible in an effective Raman field scheme. The experimental realization of such

an optical lattice, however, might be difficult unless some sub-Doppler laser cooling

effect is present in this lattice configuration. In this section, we present theoretical

evidence for the existence of sub-Doppler laser cooling in the case of the two-photon

resonance of the Raman fields, δ = Ω1 −Ω2 − ω21 = 0, where Ωi represents the laser

frequency of the ith lattice beam. The friction force and diffusion coefficients are

calculated using a semiclassical approach and are shown to be very similar to those

obtained in standard Sisyphus cooling. A dressed atom picture is introduced to help

facilitate the comparison of the ROL cooling with conventional Sisyphus cooling. The

calculation is repeated using a quantum Monte-Carlo Wave-function simulation.

2.2.1 Semi-classical Calculations

To simplify the calculations, we consider a somewhat unrealistic level scheme in

which states 1 and 2 in Fig. 2.1 have angular momentum J = 0, while state 3 has

angular momentum J = 1. The basic physics remains unchanged for different angular

momentum states. We then make further assumptions. First, the Rabi frequencies

χ (assumed real) associated with all the atom-field transitions are assumed to be

equal. In addition, we assume the same decay rate of state 3 to each of states 1 and

2, Γ31=Γ32=Γ/2. Finally, All fields are taken to be linearly polarized in the same

direction; there is no polarization gradient. The results would remain unchanged if

all the fields were σ+ (or σ−) polarized.

Under the rotating-wave approximation and neglecting spontaneous emission, the
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Hamiltonian for the atom-field system is

H =
∑3

j=1 ~ωj |j〉 〈j|+ ~χ
[|1〉 〈3| (e−i(kz−Ω1t) + e−i(−kz−Ω3t)

)

+ |2〉 〈3| (e−i(−kz−Ω2t) + e−i(kz−Ω4t)
)

+ adj
]

,

(2.1)

where ~ωj is the energy of state j and “adj” stands for adjoint. If the atom-field

detunings are sufficiently large to satisfy

Ω1 − ω31 ≈ Ω3 − ω31 ≈ Ω2 − ω32 ≈ Ω4 − ω32 ≡ ∆ À Γ, χ, kv (2.2)

it is possible to adiabatically eliminate the population in state 3 and obtain an

effective two-state Hamiltonian

Heff =
2∑

j=1

~ωj |j〉 〈j|+ 2~ cos(2kz)
(
χ2/∆

) [
ei(δ+ω21)t |1〉 〈2|+ e−i(δ+ω21)t |2〉 〈1|] ,

(2.3)

where

δ = Ω1 − Ω2 − ω21 = Ω3 − Ω4 − ω21, (2.4)

is the two-photon Raman detuning. The above analysis neglects a common Stark

shift of ground states. As justified in the previous section, interference between fields

E1 and E3 (or E2 and E4) in driving single-photon transitions is not considered here,

nor is the combined action of fields E1 and E4 (or E2 and E3) in driving Raman

transitions between states 1 and 2.

This effective Hamiltonian is used to obtain the equations of motion for density

matrix elements ρij in a field interaction representation. For classical center-of-mass

motion (dρij/dt = ∂ρij/∂t+v∂ρij/∂y), one finds the steady-state equations of motion

for density matrix elements to be

α
∂w

∂x
= −w(x) + 2iσ (ρ21 − ρ12) cos x , (2.5a)

α
∂ρ12

∂x
= −

(
1 + i

d

2

)
ρ12 − iσw cos x− 1

2
cos x , (2.5b)
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where w = ρ22 − ρ11 is the population difference of levels 2 and 1,

x = 2kz, (2.6a)

d =
δ

Γ′
(2.6b)

α = kv/Γ′, (2.6c)

σ = ∆/Γ, (2.6d)

Γ′ = χ2Γ/∆2 (2.6e)

Here Γ′ is an optical pumping rate, and v is the z-component of the atomic velocity.

Before we solve Eqs.(2.5), several comments should be addressed about the equa-

tions. First, for δ 6= 0, Eqs. (2.5) must be solved numerically; however, an analytical

solution is possible if δ = 0. Note that Eq.(2.5b) contains a source term, −1
2
cos x,

that can be traced to the fact that −1
2
cos x ∗ (ρ11 + ρ22) = −1

2
cos x since the total

population, (ρ11 + ρ22), of the atoms is conserved. Steady state is reached on a time

scale Γ′
−1 À Γ−1. The parameter σ is actually independent of field strength in these

dimensionless units. Finally, for zero velocity atoms, α = 0, and for zero detuning

d = 0, the population difference w vanishes (since the lattice configuration becomes

symmetric regarding level 1 and 2) while the coherence ρ12 = −1
2
cos x is spatially

modulated. This is in contrast to traditional Sisyphus cooling, where the coherence

vanishes while the population difference is spatially modulated.

2.2.1.1 Fokker-Planck Equation

In the Appendix of our published paper [14], Eqs. (2.5) are modified to include

diffusion resulting from changes in atomic momentum associated with stimulated

emission and absorption, as well as spontaneous emission. The total population

S = ρ11 + ρ22 now becomes a function of momentum and position, although the
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dependence of S on position is neglected [19]. The modified equations are

α
∂

∂x




u

v

w




=




−1 d/2 0

−d/2 −1 −2σ cos x

0 2σ cos x −1







u

v

w



−




cos xS + 2σ~k sin x∂S
∂p

0

0




,

(2.7)

∂S

∂t
=

7

5
~2k2Γ ′∂

2S

∂p2
− 4χ2

∆
~k sin x

∂u

∂p
− 3

5
~2k2Γ ′ cos x

∂2u

∂p2
, (2.8)

where u = ρ12 + ρ21 and v = i (ρ21 + ρ12). Each of the parameters u, v, w are now

functions of the momentum p = mv as well as position x. Equations (2.7) are solved

for u, v, w and the solution for u is inserted into Eq. (2.8) for S. The resultant

equation is averaged over a wavelength

∂S

∂t
=

7

5
~2k2Γ ′∂

2S

∂p2
− 4χ2

∆
~ksin x

∂u

∂p
− 3

5
~2k2Γ ′cos x

∂2u

∂p2
, (2.9)

where the bar indicates a spatial average (S̄ = S, by assumption). In this work, only

the limit of zero Raman detuning, δ = 0, is considered.

If d = 0 (because δ = 0), the equation for u is decoupled from the others and can

be solved analytically.

u = − 1
α

∫ x

−∞ dx′e−(x−x′)/α
(
cos x′ S + 2σ~k sin x′ ∂S

∂p

)

= − 1
1+α2

{
S(cos x + α sin x) + 2σ~k ∂S

∂p
(sin x− α cos x)

}
.

(2.10)

When this solution is substituted into Eq. (2.8) and the resulting equation is com-

pared with the Fokker-Planck equation

∂S

∂t
=

∂

∂p

[
−F̄ S + D̄ind

∂S

∂p
+

∂

∂p

[
D̄spS

]]
, (2.11)

one can identify the spatially averaged friction force

F̄ = −2χ2

∆
~k

α

1 + α2
, (2.12)
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and the spatially averaged diffusion coefficients

D̄sp = ~2k2Γ′
(

7

5
+

3

10

1

1 + α2

)
, (2.13)

D̄ind = ~2k2 4χ2

∆

σ

1 + α2
= ~2k2 4χ2

Γ

1

1 + α2
, (2.14)

D̄tot = ~2k2Γ′
{

7

5
+

3

10

1

1 + α2
+

4χ2

∆Γ′
σ

1 + α2

}
, (2.15)

where α = kp/mΓ′ and m is the atomic mass. These results are very similar to those

found in conventional Sisyphus cooling [19].

2.2.1.2 Momentum Distribution

The Fokker-Planck equation, Eq. (2.11), can be solved analytically in steady state

with the boundary condition ∂S/∂p|p=0 = 0. The solution is given by

S(p̄) = S(0)exp




∫ p

0

dp′

(
F̄ − ∂D̄sp

∂p′

)

D̄ind + D̄sp


 . (2.16)

Since α = kv/Γ′ = kp/mΓ′,

∂D̄sp

∂p
= −6

5
~kωr

α

(1 + α2)2
, (2.17)

where

ωr =
~k2

2m
, (2.18)

is the recoil frequency associated with a one-photon transition. Defining α′ =

kp′/mΓ′, the integral in Eq. (2.16) can be rewritten in the form

p∫

0

dp′

(
F̄ − ∂D̄sp

∂p′

)

D̄ind + D̄sp

=

α∫

0

dα′
α′

1 + α′2
·

3
5
− I ′(1 + α′2)

4σ2 + 7
5
(1 + α′2) + 3

10

, (2.19)

where

I ′ = I
4σ2

1 + 4σ2
, I =

χ2

∆ωr

.
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Combining Eqs. (2.16) and (2.19), the steady state solution of the Fokker-Planck

equation Eq. (2.11) is given by

S(p̄) = S(0)

(
1 +

p̄2

p̄2
c

)β0 1(
1 + p̄2

p̄2
c
β1

)ξ+β0
, (2.20)

where

p̄ = p/~k, p̄c =
Γ′

2ωr

=
I

2σ
, (2.21a)

β0 =
1

1 + 40
3
σ2
≈ 0 , (2.21b)

β1 =
14

40σ2 + 17
≈ 7

20σ2
, (2.21c)

ξ =
5

14
I

4σ2

1 + 4σ2
≈ 5

14
I . (2.21d)

The normalized momentum distribution S̄(p̄), given by

S̄(p̄) =
S(p̄)∫ +∞

−∞ S(p̄′)dp̄′
(2.22)

is plotted in 3-D as a function of p̄ and scaled intensity I for σ = 10 in Fig. 2.2. As

seen in the figure, the narrowest momentum distribution occurs when I ∼ 5.

From the steady state momentum distribution S(p̄), the mean equilibrium kinetic

energy can be calculated as

Eeq = Er

∞∫
−∞

p̄2S(p̄)dp̄

∞∫
−∞

S(p̄)dp̄

, (2.23)

where Er = ~ωr is the recoil energy. The integrals can be evaluated analytically

for I > 21/5, and together with the approximation made in Eqs. (2.21), the mean

equilibrium kinetic energy is given by a simple expression as

Eeq

Er

=
I2

I − 21
5

. (2.24)
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Figure 2.2: Normalized momentum distribution, S̄(p̄), as a function of p̄ and I for σ = 0.

This equation indicates the lowest mean kinetic energy is achieved when I = 8.4,

which is different from where the narrowest momentum distribution occurs as seen in

Fig. 2.2. This discrepancy is attributed to insufficient cooling for the low intensity I.

As a result, a significant number of atoms still occupy high momentum states, making

the mean kinetic energy large despite a narrow momentum distribution around p̄ = 0.

Detailed discussion is presented in the next section.

So far, analytical expressions for the steady-state momentum distribution S(p̄)

and the mean equilibrium kinetic energy Eeq are obtained in a semi-classical ap-

proach. These analytical solutions will be compared with the numerical results based

on a Quantum Monte Carlo Wave-function Simulation (QMCWF) in the next sec-

tion.
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2.2.2 Quantum Monte Carlo Wave-function Simulations

To gain further insight into the cooling dynamics, we solve the problem using

quantum Monte Carlo wavefunction Simulations (QMCWF) [20, 21]. The simula-

tions employ a full quantum-mechanical description of the center-of-mass motion of

the atoms and allow us to determine their spatial and momentum distributions.

In the simulation, instead of evaluating the density matrix, we propagate the

wave-function directly according to the Schrödinger equation

i~
∂|Ψ〉
∂t

= H(t)|Ψ〉 . (2.25)

Note that the Hamiltonian here is the full Hamiltonian, including the kinetic energy

part and the potential operator part: H = Hkin + Hpot, where Hkin = p̂2/2M and

Hpot describes the interaction between the atoms and light fields. In principle, the

QMCWF simulation can deal with the exact Hpot that includes the excited state.

However, to simplify the simulation procedure, the excited-state components of the

wavefunctions are adiabatically eliminated as in the semiclassical approach. Taking

the spontaneous decay into account, the matrix elements of the potential operator

Hpot are of the form

〈z′,m′|Hpot|z, m〉 =
~χ2

∆ + iΓ/2
Am′,m(z)δ(z′ − z) (2.26)

where m′,m refer to the two ground state, m′,m ∈ (1, 2). In a conventional interac-

tion representation, the elements Am′,m are given by

A1,1(z, t) = 2[1 + cos(2kz −∆dt + φ13)]

A2,2(z, t) = 2[1 + cos(2kz + ∆dt + φ42)]

A1,2(z, t) = 2eiθ/2eiδt cos(2kz − φt) + ei[(δ+∆d)t+φ41] + ei[(δ−∆d)t+φ23]

A2,1(z, t) = A∗
1,2(z, t) ,

(2.27)
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where ∆d = Ω1−Ω3 = Ω2−Ω4, φi is the phase of the individual field and φij = φi−φj,

φ = φ21 − φ43, θ = φ21 + φ43. Assuming that |∆d| À Γ′, |δ|, the last two terms in

element A1,2(z, t) are fast-oscillating terms compared with the time scale of 1/Γ′ and

hence average to zero. The remaining term in A1,2(z, t) contains two phases θ/2 and

φ/2. Since φ/2 represents a global shift of the lattice, it can be ignored during the

simulation. The phase θ is not important if no other source, such as spontaneous

decay, contributes to the creation of coherence between ground states |1〉 and |2〉,

which is not considered in our model and is not the case experimentally.

The wavefunction |Ψm〉 can be expressed in either spatial or momentum repre-

sentations. In coordinate space,

|Ψm〉 =
nmax∑

n=−nmax

αn|zn,m〉, zn = nλ/4nmax ; (2.28)

in momentum space,

|Ψm〉 =
nmax∑

n=−nmax

βn|pn,m〉, pn = ~(2nkL + q) , (2.29)

where kL = 2π/λ, n is an integer and nmax =16 or 32. The continuous momentum

variable q, which satisfies −kL 6 q 6 kL, is associated with the photon recoil of

spontaneous emission. The coefficients αn and βn are connected by a discrete Fourier

transformation

αn =
1√
2π

nmax∑
n=−nmax

eizn2nkLβn ; (2.30)

βn =
1√
2π

nmax∑
n=−nmax

e−izn2nkLαn . (2.31)

In a small time interval ∆t, the evolution of the wavefunction takes the form

|Ψ(t + ∆t)〉 = e−
i
~H∆t|Ψ(t)〉 . (2.32)
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As discussed at the beginning of this section, the Hamiltonian has two components:

Hkin = p̂2/2M , which is diagonal in momentum space, and Hpot, which is diago-

nal in coordinate space. Thus, we use a split-operator method to propagate the

wavefunction. First, in a small time step, ∆t, the time evolution operator can be

approximated as

e−
i
~H∆t = e−

i
2~Hkin∆te−

i
~Hpot∆te−

i
2~Hkin∆t . (2.33)

Now the kinetic energy operator and the potential operator are separated. We can

apply Hkin and Hpot to the wavefunction in the momentum and coordinate spaces,

respectively. The transformation between these two bases is done using fast Fourier

transformations (FFT).

We notice that the Hamiltonian is not Hermitian: there is an imaginary part

involved according to Eq. 2.26, which causes a gradual decay of the wavefunction

norm. At each time step, a random number is generated. The evolution of the

wavefunction continues if the norm of the wavefunction is larger than this random

number; otherwise, we assume a spontaneous emission occurred. The evolution is

interrupted by a quantum jump. In each quantum jump, random numbers are drawn

to select the type of transitions (into state |1〉 or state |2〉) and the direction of the

spontaneously emitted photon, which only affects q. After the quantum jump, the

wavefunction is modified in a well-defined way determined by the wavefunction prior

to the jump and by the simulated quantum measurement of a spontaneously emitted

photon of the selected type. This procedure, including the evolution of the wave-

function and the quantum jump, is carried out several thousand times until steady

state is reached. The expectation values of the observables, such as momentum dis-

tribution, spatial distribution, mean kinetic energy, and so on, can be obtained from

the final wavefunction.
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Figure 2.3: Steady-state kinetic energy as function of I for σ = 2, 16. Dots with error bars are from
QMCWF and lines are from the semiclassical calculation, Eq. 2.23.

We first study the dependence of the steady-state kinetic energy Eeq as a function

of the scaled intensity I = χ2

∆ωr
. Results from both the simulation and the semi-

classical calculation are plotted in Fig. 2.3 in unit of recoil energy, Er = ~ωr, for

σ = ∆/Γ = 2, 16. As seen in the figure, both results display a linear dependence of

Eeq on I for I & 10. The energy values obtained in the QMCWF are about 30% lower

than those obtained in the semiclassical calculations. This systematic difference is

attributed to the beneficial effect of atomic localization in the lattice wells, which is

accounted for in the QMCWF, but not included in the semiclassical calculations.

Fig. 2.4 shows the momentum distributions multiplied by p̄2 for σ = 8 and several

different values of scaled intensity I. It is seen that when the intensity is small,

I = 3.11, the cooling is not sufficient: there is still a significant population of atoms

occupying high momentum states, p̄ > 20. When the intensity is large, I = 50,

the two peaks become further apart, which corresponds to a broader momentum

distribution. The systematic difference between the semiclassical results and the

QMCWF simulation results can again explained by the localization effect of the
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Figure 2.5: Population of atoms at different locations after the application of the ROL with σ = 3,
and I = 5 (dashed) and 35 (solid).

atoms in the lattice wells.

The QMCWF simulation also yields the spatial density distribution of the atoms

inside the lattice, which is found to have a period of λ/4, shown in Fig. 2.5, in

agreement with the discussion in the previous section. Quantitatively, the simulations

show that the modulation depth (defined as the difference between the maximum

and minimum densities divided by their sum) increases with the beam intensity I

and the atom-field detuning ∆, as shown in Fig. 2.6. A modulation depth of ∼ 0.4

can be achieved.
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Figure 2.6: Modulation depth of the density distribution of the atoms in the lattice as a function
of I for several values of σ.

2.3 Conclusion

In conclusion, we have proposed a new optical lattice scheme using Raman tran-

sitions, which leads to a reduced periodicity. Moreover, based on both semi-classical

calculations and quantum Monte-Carlo wavefunction (QMCWF) simulations, a sub-

Doppler laser cooling mechanism, different from other laser cooling mechanisms, is

present in this Raman-optical-lattice (ROL) configuration. From the QMCWF sim-

ulations, the ROL produces an atomic density distribution with a period of λ/4, in

agreement with the theoretical prediction.



CHAPTER III

Experimental Realization of the ROL

In the previous chapter, it was established theoretically that there is a sub-Doppler

cooling mechanism in the reduced-period Raman Optical Lattice (ROL). Experimen-

tal evidence is presented in this chapter to verify both the sub-Doppler cooling and

λ/4 periodicity of a ROL applied to 87Rb atoms. A time-of-flight (TOF) method

is employed to measure momentum distributions of the atoms. The sub-Doppler

cooling of the ROL is then established by comparing the momentum distributions

before and after the application of the ROL. From the momentum distribution, the

equilibrium temperature of the atoms can be calculated. Our data shows that the

atoms reach a temperature of about 8 µK after the ROL cooling. The dependence

of the ROL cooling on different parameters is also characterized. To probe the spa-

tial distribution of atoms in the ROL, a phase-controllable standing wave–an optical

mask–is applied to atoms right after the ROL. The number of atoms optically trans-

ferred by the mask is measured as a function of relative position between the lattice

and the mask. This corresponds to a direct mapping of the spatial distribution of

atoms. We first conduct the mask experiment in a λ/2-period optical lattice and then

repeat it in the ROL. By comparing the two experimental results, a clear signature

of the λ/4 periodicity of the ROL is obtained.

23
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3.1 Experimental Setup

3.1.1 Magneto-Optical Trap

z

Energy

m = +1e

m = 0g

m = 0e

m = -1e

z=0

s+ field s- field

w
l

Figure 3.1: A simplified 1-D MOT energy diagram

A standard vapor-cell Magneto-optical trap (MOT) is used to collect an atom

cloud, ∼ 1.5 mm in diameter, of up to 107 87Rb atoms for the lattice experiment.

The basic concept of a MOT can be explained in a simple one dimensional model. For

atoms moving in a linearly inhomogeneous magnetic field, B(z)=Az, the magnetic

sublevels of the atoms are also linearly shifted. In the simplest case, we assume

that the atoms only have two levels: ground state, Jg = 0, and excited state, Je =

1. The corresponding energy diagram is shown in Fig. 3.1. Also shown are two

counterpropagating laser beams of opposite circular polarization, both red-detuned

with respect to unshifted Jg = 0 → Je = 1 transition. As seen in Fig. 3.1, when an

atom moves left of the center (z=0 and B=0), the ∆m = 1 transition is closer to

resonance than the ∆m = −1 transition. Hence, more photons from the σ+ beam

are scattered by the atom than from the σ− beam. Due to the radiation-pressure



25

I I

s+

s+ s+

s-s-

s-x

y

z

Figure 3.2: The 3-D MOT setup

imbalance, the atom is driven back towards the center. In the opposite case where

the atom drifts right, a similar argument yields that it is pushed back by scattering

more σ− photons. The atom is thus trapped spatially in the vicinity of z=0. At

the same time, in velocity space, the atoms experience an analogous situation due

to the Doppler effect and concentrate around the zero-velocity region. As a result,

trapping and cooling of the atoms are achieved simultaneously in a MOT.

This 1-D MOT scheme can be extended to 3-D, where the trapping magnetic

field is provided by two coils in an anti-Helmholtz configuration, and three pairs of

counterpropagating beams meet at the center of the trap (B=0) from three orthog-

onal directions as shown in Fig. 3.2. The beams are red-detuned with respect to the

5S1/2, F = 2 → 5P3/2 F ′ = 3 transition of 87Rb atoms. Although the internal states

involved in the MOT transition are much more complicated than those discussed in

the simple 1-D model, the basic physics remains the same. Since the 5S1/2 ground

state has another level, F = 1, a repumper beam, on resonance with the 5S1/2, F = 1

→ 5P3/2 F ′ = 2 transition, is necessary during the MOT operation to pump atoms
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back to the F = 2 level. The frequency of both the MOT and repumper beams are

stabilized to within 1 MHz using the standard saturation spectroscopy method [22].

3.1.2 ROL Transition Diagram
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Figure 3.3: (a) Level scheme and field directions and polarizations. (b) Lattice and repumper
transitions.

As shown in Fig. 3.3(a), The ROL is formed by two pairs of counter-propagating

laser beams driving the 5S1/2 F = 1 → 5P3/2 F ′ = 1 transition of 87Rb atoms. Due

to their polarizations, fields 1 and 3 drive only |m = −1〉 → |e〉 transitions and fields

2 and 4 drive only |m = 1〉 → |e〉 transitions. As discussed in Chapter II, when the

average atom-field detuning, ∆, is much larger than the excited state decay rate,

Γ (Γ=6MHz is the excited state decay rate), the excited state population can be

adiabatically eliminated. Thus, the system can be simplified to a two-level system

driven by an effective Raman field with a wave vector −2k. Adding the other pair,

fields 3 and 4, introduces another effective Raman field with a wave vector +2k.

These two effective Raman fields interfere in driving the |m = −1〉 → |m = 1〉

transition, which leads to a λ/4-period optical potential. By introducing a frequency
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difference ∆d = ∆2 − ∆1 of a few MHz between fields 1 and 3, and between fields

2 and 4, couplings between any other pairs of these four lattice beams are to be

neglected, as assumed in the theoretical calculation.

In the experiment, we implement a ∆d of 4 MHz. The average atom-field detuning,

∆ = (∆1 + ∆2)/2, can be set between −15Γ and +16Γ relative to the 5S1/2, F = 1

→ 5P3/2 F ′ = 1 transition. In order to optically pump the atoms into the active

F = 1 state, a repumper beam on-resonance with the 5S1/2 F = 2 → 5P3/2 F ′ = 2

transition, as indicated in Fig. 3.3(b), is applied during the ROL phase. In the

presently investigated scheme, both Raman transitions possess the same Raman

detuning, δ. The value of δ is determined by both the frequency difference between

the Raman beams, labeled as ∆f in Fig. 3.3 (a), and the energy separation between

the |m = −1〉 and |m = 1〉 sub-levels, which is tuned by an external magnetic field

parallel to the lattice-beam direction.

3.1.3 Lattice Beam Setup

Laser
To lattice beam setup

AOM

PID circuit

To laser
feedback
control

Rb
vapor
cell

Photo-diodes

RF

Figure 3.4: The saturation spectroscopy setup for the lattice beams. An AOM is added to the
system to shift the frequency of the spectroscopy beam. In this setup we can change the frequency
of the lattice beams by varying the RF frequency driving the AOM.

All four ROL beams are derived from a diode laser, the frequency of which is sta-
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Figure 3.5: The function of the IQ modulator

bilized by the standard saturation spectroscopy method, with a slight modification.

The spectroscopy beam, split from the lattice laser, is frequency shifted by pass-

ing through an acousto-optic modulator (AOM) twice before entering the standard

spectroscopy setup as shown in Fig. 3.4. The frequency of the lattice beams can be

varied by changing the frequency of the RF signal driving the AOM. This way, we

can vary the lattice beam frequency in small steps over a broad range.

The output beam from the laser is split into four beams, which are frequency-

shifted by individual amounts using four AOMs. The AOMs are driven by four

RF signals generated by RF signal sources and a custom RF circuit. The main

components of this RF circuit are IQ modulators. They can combine the local

oscillator signal with the I and Q modulation signals as indicated in Fig. 3.5. Through

careful selection of the phase difference between I and Q modulation signals, the IQ

modulator can either increase or decrease the input frequency by an amount equal

to the modulation frequency. Assuming the output signals of the RF generators are

sine waves with no additional phase shift (adding a constant phase will not change

the outcome.), according to the RF circuit shown in Fig. 3.6 the modulation signals

for the IQ modulators are sin(νt) and cos(νt) for channel 1 and sin(νt) and − cos(νt)
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Figure 3.6: Schematic drawing of the RF circuit that is used to generate four RF signals with a
stable frequency difference.

for channel 3 (the channel number corresponds to the lattice beam number in Fig. 3.3

(a)). The IQ modulator will combine these modulation signals with the input signal

sin(ω1t) according to Fig. 3.5. Thus, channel 1 and 3 output sin(νt)·sin(ω1t)+cos(νt)·

cos(ω1t) = cos[(ω1− ν)t] and sin(νt) · sin(ω1t)− cos(νt) · cos(ω1t) = − cos[(ω1 + ν)t],

respectively. The frequency of the input signal is either increased or decreased by

exactly the same amount. In this scheme, the frequency differences of the four ROL

beams are very stable, as required for the ROL. The frequency fluctuations of the

laser are much less than Γ and affect all ROL beams equally, and therefore do not

significantly affect the ROL performance.

Spatial mode-matching of co-propagating pairs of beams (1 with 4 and 2 with 3)

is achieved by coupling each beam pair into the two orthogonal modes of a shared
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Figure 3.7: Schematic drawing of the lattice beam setup.

polarization-maintaining optical fiber using polarization optics, shown in Fig. 3.7.

The combined beams coupled out of the fibers are passed through λ/4 -waveplates,

leading to the polarizations indicated in Fig. 3.3 (a), and are directed vertically

from opposite directions into the chamber. The spatial profiles of the beams at the

location of the atomic cloud are approximately Gaussian with an intensity full-width-

half-maxim (FWHM) of 8 mm.

3.2 Sub-Doppler Laser Cooling

3.2.1 Time-of-Flight Measurement

We probe the laser cooling effect using a time-of-flight (TOF) method [23, 24].

As shown in the top panel of Fig. 3.8, the TOF probing beam is a cylindrically

collimated sheet of on-resonant (5S1/2 F = 2 → 5P3/2 F ′ = 3 transition) light ∼
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0.4 mm thick, located 20 cm below the MOT position. After application of the

ROL, all fields are turned off. The atoms fall freely due to the gravity. As they

fall through the TOF probe beam, their fluorescence is detected by a large-area

photodiode. The photocurrent is then amplified using a transimpedance amplifier

and finally recorded and averaged over typically 30 scans by a digital oscilloscope.

The lower panel of Fig. 3.8 shows a typical TOF signal. The momentum distribution

of the atoms follows from the time dependence of the signal.
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Figure 3.8: Schematic drawing of the time-of-flight method

3.2.2 Momentum Distribution of Atoms after the ROL Cooling

The experimental procedure for demonstrating ROL cooling is as following. The

MOT is on for 600 ms to collect about 107 87Rb atoms. The atoms are then further
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Figure 3.9: (a) Momentum distributions of atoms cooled by optical molasses and by ROL, respec-
tively. (b) 2D plot of momentum distribution of atoms vs. cooling time in ROL.

cooled for 1 ms in an optical molasses to a temperature of ∼50 µK. After the molasses

cooling, the ROL is applied for durations ranging from a few to 150 µs. Finally the

momentum distribution of the atoms is measured using the TOF method. This

procedure is repeated at 1 Hz rate. In Fig. 3.9 (a) we compare typical momentum

distributions (in units of recoil momentum prec = ~k) measured after cooling in a

standard six-beam optical molasses and after additional cooling in the ROL (δ=0,

∆ = 3Γ, 1 mW/cm2 single-beam intensity, 150 µs lattice duration). A Gaussian fit

of the data yields a standard deviation σp that is related to the temperature by

T =
σ2

p

MkB

, (3.1)

where M is the atomic mass and kB is the Boltzmann constant. Note that we do

not calculate the temperature from the mean kinetic energy (Eq. 2.23) because the

unavoidable noise of experimental data, especially for large momenta, would result
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in a large error based on the mean kinetic energy approach. Using the Gaussian-fit

method, we find that the typical molasses temperature is 50 µK, while the ROL

cools the atoms further to 8 µK. The presence of sub-Doppler cooling in the ROL

is therefore established. To characterize the speed of the cooling process, we vary

the duration of the ROL in steps of 10 µs. The resultant momentum distributions

are assembled in a two-dimensional data set, which is displayed in Fig. 3.9 (b). The

darkness represents the height of the TOF signal (or the population of the atoms).

For the lattice parameters of Fig. 3.9 it is found that steady state is achieved in

about 70 µs.

3.2.3 Intensity Dependence of the ROL Cooling
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Figure 3.10: Intensity dependence of ROL cooling.

An important characteristic of laser-cooling is the dependence of the steady-state

temperature on the intensity of the laser beams. We measure steady-state momen-

tum distributions as a function of the single-beam intensity I at the center of the

lattice beams and calculate the equilibrium temperature according to Eq. 3.1. The

resultant data is shown by the circles in Fig. 3.10. We compare the experimental
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results with the QMCWF simulations [14]. The simulations use the exact atomic and

lattice-beam parameters used in the experiment, and hence can be compared directly

with the experimental results. The squares in Fig. 3.10 show temperatures obtained

from Gaussian fits to the simulated momentum distributions. Both in theory and

experiment, we observe a linear relationship between intensity and temperature, and

experimental and theoretical results agree to within 20%. The discrepancy may be

caused by the Gaussian intensity profile of the laser beams, due to which the average

intensity experienced by the atoms is slightly below the intensity I at the beam cen-

ter. The QMCWF simulations also reproduce the time dependence of laser cooling

in the ROL in a satisfactory manner.

3.2.4 Detuning Dependence of the ROL Cooling
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Figure 3.11: (a) 2D-plot of momentum distributions of atoms for different atom-field detunings
∆. (b) Simulation results.

As in standard optical lattices, where the detuning of the laser frequency greatly
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affects the Sisyphus cooling [25], in the ROL the atom-field detuning ∆ is also very

important to the cooling. In Fig. 3.11(a) we show experimental momentum distri-

butions as a function of ∆ relative to the F = 1 → F ′ = 1 transition, varied in steps

of 2 Γ. This is accomplished by changing the frequency of the RF signal driving

the AOM in the saturation spectroscopy setup (Fig. 3.4). Figure 3.11(b) offers the

corresponding results from the QMCWF simulations. The latter extend beyond the

F ′ = 2 level (this was not possible experimentally for technical reasons). Experi-

mental and theoretical results generally agree well. Cooling occurs when the laser

fields are slightly blue-detuned relative to the F = 1 → F ′ = 0 and F = 1 → F ′ = 1

transitions, and clearly works best for the F = 1 → F ′ = 1 transition. No cooling is

observed for either blue or red detuning from the F = 1 → F ′ = 2 transition.

The detuning-dependence observed in the vicinity of the F = 1 → F ′ = 0 and

F = 1 → F ′ = 1 transitions can be qualitatively explained using the result of the

semi-classical treatment of the ROL in the previous chapter. There, the spatially

averaged friction force on the atoms for |∆| > Γ is found to be

F̄ ≈ −2χ2

∆
~k

α

1 + α2
, (3.2)

where α ≈ ∆2kv/χ2Γ, χ is the Rabi frequency, and v is the velocity of the atoms.

For positive ∆ (blue-detuning), the friction force opposes the direction of motion,

leading to sub-Doppler cooling. At small velocities, α is less than 1, and the friction

force tends to be ∝ v∆. Thus, lower temperatures should be achieved at larger

detunings. In Fig. 3.11, this trend is generally observed for blue-detunings less than

∼ 5Γ relative to the F = 1 → F ′ = 0 and F = 1 → F ′ = 1 transitions. Since

the velocity capture range vc of the friction force, identified by
[
dF̄ /dv

]
(vc) = 0,

decreases as ∝ χ2/∆2, the cooling becomes ineffective for larger blue-detunings.

For negative ∆ (red-detuning), the friction force and v have the same sign. Thus,
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atoms will accelerate away from v = 0 (“sub-Doppler heating”). The acceleration

eventually diminishes, as α increases with v. The net effect is that atoms should

emerge with a (non-stationary) two-peak momentum distribution, as observed in

Fig. 3.11 for red-detunings less than ∼ 5Γ relative to the F = 1 → F ′ = 0 and

F = 1 → F ′ = 1 transitions. We have verified that the double-peaked momentum

distributions are non-stationary; the separation between the two peaks gradually

increases as a function of heating time in the ROL. Furthermore, for large v, α is

much larger than 1. Under this condition, the heating force F̄ ∝ v∆−3. This explains

why the separation between the two peaks is larger for smaller ∆. In a quantitative

analysis, momentum diffusion must be considered in addition to friction [14].

To understand the qualitative differences in behavior in the vicinity of different

upper-state hyperfine levels F ′, we need to take into account the magnetic sub-level

|m = 0〉 that is not directly coupled by the fields (see Fig. 3.3). Near the F = 1 →

F ′ = 0 transition, atoms falling into that state require a long time to be optically

pumped back into one of the active |F = 1, m = ±1〉 states through off-resonant

excitation into |F ′ = 1, m′ = ±1〉 and subsequent decay into |F = 1, m = ±1〉.

The long dwell time of atoms in the inactive state reduces the ROL cooling and

heating efficiency. In contrast, near the F = 1 → F ′ = 1 transition the σ-polarized

lattice beams rapidly re-pump atoms out of the |m = 0〉 state into one of the active

levels. Thus, cooling and heating processes are expected to be more efficient near

the F = 1 → F ′ = 1 transition, as observed. Finally, the heating effect associated

with near-resonant excitation from |F = 1, m = ±1〉 into |F ′ = 2, m′ = ±2〉 entirely

disables the ROL close to the F = 1 → F ′ = 2 transition frequency, as evident in

Fig. 3.11.
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Figure 3.12: (a) Momentum distributions of atoms in the ROL for the indicated longitudinal
magnetic fields and ∆f = f1− f3 = 0. Single-beam intensity is 1 mW/cm2. (b) Same as (a) except
the single-beam intensity is 2 mW/cm2. (c) A frequency difference ∆f = −200 kHz is applied.
Single beam intensity is 1 mW/cm2. The arrows indicate the boundaries of the cooling ranges
defined in the text (1 mG corresponds to a change of 1.4 kHz in the detuning δ).

3.2.5 Raman Detuning Dependence of the ROL Cooling

We also study how the ROL cooling depends on δ. In our experiment, δ =

∆f − ∆E/h, where ∆f = f1 − f3 = f4 − f2 is the frequency difference between

the beams driving the Raman transitions, and ∆E = −µBB is the Zeeman splitting

between |m = 1〉 and |m = −1〉 due to a longitudinal magnetic field B (see Fig. 3.3).

Thus, δ can be varied by both ∆f and B. We keep the frequency difference ∆f fixed

and take the TOF signals as a function of B, which is varied in steps of 12.4 mG,

equivalent to steps of 17.4 kHz in δ. Figure 3.12(a) and (b) show the measured

momentum distributions for ∆f = 0 for single-beam intensities of 1 mW/cm2 and
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2 mW/cm2, respectively. In both cases, we observe cooling over a certain range of B,

and the cooling is symmetric about B = 0. Defining the cooling range −δc < δ < δc

as the range of δ over which the temperature is less than twice the temperature

at δ = 0, we obtain δc = 85 kHz and δc = 160 kHz for Figs. 3.12(a) and (b),

respectively. This result suggests that the cooling range is proportional to intensity.

In Fig. 3.12(c) we apply a frequency difference ∆f = −200 kHz. The cooling range

is found to remain almost the same as for ∆f = 0, whereby best cooling occurs at

B = 150 mG. At this field value, δ ≈ 0, i.e. the Zeeman shift cancels the applied

frequency difference ∆f . Thus, laser cooling in the ROL performs best for zero two-

photon detuning, δ = 0. This is in contrast to conventional Sisyphus cooling, where a

non-zero single-photon detuning is required to avoid excessive light scattering. This

contrast in detuning behavior reflects the fact that the two cooling mechanisms are

qualitatively different. Simulations are in good agreement with the observations in

Fig. 3.12.

3.2.6 Transition of Laser Cooling between Standard and Raman Optical Lattices

As discussed in Chapter II, to establish the ROL configuration, a frequency dif-

ference ∆d has to be introduced between lattice beams 1 and 3, and beams 2 and

4. This frequency difference ensures that we can neglect the coupling effect between

field 1 and field 3 (2 and 4) in driving one-photon transitions, and between field 1

and field 4 (2 and 3) in driving Raman transitions. In this section we study the

dependence of the ROL cooling on ∆d.

The detuning difference ∆d is varied in steps of 100 kHz by changing the modu-

lation frequency. In Fig. 3.13, experimental momentum distributions are displayed

in a two-dimensional representation as a function of ∆d. We observe efficient sub-

Doppler cooling for ∆d . 100 kHz. In the range 200 kHz . ∆d . 500 kHz, no cooling
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effect is observed; however, in that domain the momentum distributions appear to

be modulated by a regular pattern (see dotted lines in Figs. 3.13 and 3.14). Over

the range 500 kHz . ∆d . 800 kHz, sub-Doppler cooling re-develops and reaches a

steady level for ∆d &800 kHz.

ROL
cooling

lin- -lin coolingq

p (hk )L

Figure 3.13: Momentum distributions of atoms, obtained from experimental time-of-flight data,
as a function of ∆d. The average lattice detuning ∆ is 5 Γ, and the single-beam lattice intensity
is 2 mW/cm2. The atoms are cooled for 150 µs in the lattice. The figure shows two domains
of efficient laser cooling, namely ∆d . 100 kHz and ∆d & 600 kHz, as well as a regular pattern
identified by the dotted lines.

The physics of the cooling can be qualitatively explained as follows. The co-

propagating, spatially overlapping σ+ and σ− lattice beams 1 and 4 are equivalent

to a single, linearly polarized net field, the polarization plane of which rotates at a

frequency ∆d/2. Beams 2 and 3 are equivalent to an analogous net field. In a fixed,

beam-independent frame, the polarization planes of the net fields rotate in opposite

directions. If the rotation period 2/∆d is of order of or exceeds the time it takes for

an atom to laser-cool in a two-beam lin-θ-lin lattice, the cooling behavior is expected

to be similar to that of the lin-θ-lin lattice [26, 27]. For the conditions in Fig. 3.9,
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Figure 3.14: Top panel: Simulated momentum distribution of atoms as a function of ∆d after 150 µs
ROL cooling. The average detuning is 5 Γ and the single-beam lattice intensity is 2 mW/cm2. The
simulation agrees well with experimental data displayed in Fig. 3.13. Bottom panel: Momentum
distribution at ∆d = 300 kHz.

we find that for the case ∆d = 0 the time required to cool the atoms is of order

50 µs. This suggests that lin-θ-lin cooling should be effective for detuning differences

∆d . 50 kHz. In agreement with this very simple estimate, we find experimentally

that the lin-θ-lin cooling is effective for ∆d . 100 kHz.

The singular case ∆d = 0 corresponds to well-known Sisyphus cooling in a sta-

tionary lin-θ-lin lattice [26, 27]. In the experiment, the value of θ varies from one

repetition of the lattice cooling to the next due to phase variations in the lattice

beams caused by thermal and mechanical instabilities and air turbulence. Since the

cooling data is typically collected over a period of order one minute, we assume that
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the data for ∆d = 0 represents an average for a uniform probability distribution in

θ. During any given repetition of the cooling, the phase θ is approximately constant.

We find in the QMCWF simulations that the cooling efficiency and speed do not vary

much over a range π/16 . θ 6 π/2, while in the range 0 6 θ . π/16 the cooling is

slow and the steady-state temperature is of order twice the θ-averaged temperature.

These findings explain another experimental observation: in the case ∆d = 0, the

cooling works well in most individual repetitions; in about one out of ten repetitions

it apparently fails.

In the range 200 kHz . ∆d . 500 kHz, the angle between the linear polarizations

of the counter-propagating lattice beams rotates too fast for lin-θ-lin cooling to be

effective. Also, ∆d is not large enough for the sub-Doppler cooling mechanism of

the ROL to be effective. As a result, in this range no significant cooling occurs.

There is, however, some cooling into frames of reference moving at velocities of v =

±λ∆d/2 and v = ±λ∆d/4, identified by the dotted lines in Figs. 3.9 and 3.10. The

accumulation of atoms at these velocities is most clearly seen in the side-structures

in the bottom panel of Fig. 3.10.

The case v = ±λ∆d/2 can be interpreted as a cooling type similar to magnetic-

field-induced laser cooling (MILC) [28], in which atoms are cooled into σ+- or σ−-

standing waves. For instance, the σ+-standing wave generated by beams 1 and 3 of

Fig. 3.3 moves at a velocity of v = λ∆d/2. The atoms cooled into the light-shift

potentials associated with that standing wave move at an average velocity of λ∆d/2.

To obtain Sisyphus-type laser cooling, some mixing is required between the states

associated with the light-shift potentials generated by the moving σ+-standing wave.

In MILC, the mixing is provided by a weak transverse magnetic field [28]. In the

present case, the mixing is provided by Raman couplings involving pairs of σ+- and
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σ−-beams in Fig. 3.3.

3.3 λ/4 Periodicity of the Raman Optical Lattice

In the previous section, the sub-Doppler cooling effect of the ROL was demon-

strated by the momentum distributions of the atoms obtained from the TOF method.

In this section, we provide experimental evidence of the λ/4 periodicity of the ROL.

3.3.1 Optical Mask Technique

To study the period of optical lattices, traditionally a Bragg scattering method [2,

29] is used. However, this method is virtually impractical in the ROL case since

shorter-wavelength probe beams would be required. An alternative method, an opti-

cal mask technique, is therefore explored to study the ROL period. Not only can the

optical mask technique, in principle, measure structures with periods of λ/2n, where

n is an integer number, also it is relatively straightforward to implement based on

the ROL setup.

An optical mask consists of a standing wave with a spatial period of λ/2 and a

frequency close to resonance with an open atomic transition that optically pumps the

atoms from an initial state F to an uncoupled state F̃ . When applied to the atoms,

the mask depletes the population of atoms in state F everywhere except in the narrow

vicinity of the nodes of the mask (shown in Fig. 3.15). Assume initially the atomic

density distribution has a period of λ/2. To map out this density distribution, the

mask position is translated relative to the atomic spatial distribution. As shown in

Fig. 3.15, the number of atoms remaining in state F depends on the mask translation

and undergoes a full period when the mask is translated from 0 to λ/2. Thus, the

population of atoms remaining in state F as a function of the mask translation has

the same λ/2 period as the initial atomic spatial distribution. Alternatively, the
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Atoms in state F

Optical mask standing wave

Atoms left in state F
after the optical maskIn phase

Out of phase

In between

l/2

l/2

l/8

l/8

l/8

l/8

In between

In phase

Figure 3.15: Top panel shows the anti-node of the mask standing wave overlaps with the atomic
density peaks (in phase). As a result, most atoms in state F will be optically pumped to an
uncoupled state F̃ . Bottom panel indicates a λ/4 translation of the mask from that of the top
panel (out of phase). In this case most atoms are left in state F since they experience little pump
light near the nodes of the mask standing wave.

population transfered into state F̃ can be measured, as reported in our experiments.

The optical-mask technique can also be used to measure atomic distributions with

smaller periods as long as the period is an integer fraction of that of the mask, i.e.

the period is λ/2n, where n is an integer number. In these cases, the atomic densities

at the locations of the mask nodes are always the same. Therefore, only one node of

the mask standing wave needs to be considered since the rest should produce exactly

the same results. Shown in Fig. 3.16 is the application of the mask to a λ/4 period
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Atoms left in state F
after the optical mask

l/2

l/4

l/16

l/16

l/16

l/16

Figure 3.16: In case of applying the optical mask to an atomic distribution with a λ/4 period, a
λ/8 translation of the mask leads to a half oscillation of atoms left in state F .

structure, where we can see that a λ/4 translation of one node of the mask standing

wave produces a full oscillation of the population of atoms left in state F . The mask

can, in principle, be used to measure periods with even larger n provided the standing

wave intensity is strong enough, which determines the spatial resolution of the nodes

of the standing wave. Using this optical-mask technique, atomic distributions with

a period of λ/2 created by the mask itself [30], with a period of λ/4 produced by an

atom interferometer [31] and with a period as small as λ/10 created by the Talbot-

Lau effect [32], have been successfully imaged experimentally.
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3.3.2 Application of the Optical Mask to a λ/2 Period Optical Lattice

The optical-mask technique is first tested in a λ/2 period optical lattice formed by

magnetic-field-induced laser cooling (MILC). The MILC optical lattice consists of two

counter-propagating circularly polarized laser beams with identical direction of field

rotation relative to a fixed axis (e.g., a left-circularly and a right-circularly polarized

beam). This configuration forms a σ+- or σ−-polarized standing wave with a period

of λ/2. A weak transverse magnetic field, B⊥, of order 100 mG mixes the magnetic

sublevels of the atoms near the nodes of the resultant standing wave. A combination

of light-shift-induced electric-dipole forces, magnetic-field-induced coupling near the

field nodes and optical pumping leads to Sisyphus sub-Doppler laser cooling.

The MILC optical lattice drives exactly the same transition as the ROL (5S1/2

F = 1 → 5P3/2 F ′ = 1 transition of 87Rb). Hence, beam 1 and beam 3 of the ROL

in Fig. 3.3(a) are used to realize the MILC optical lattice, except that now there is

no frequency difference between these two beams. All the optics for the ROL remain

unchanged for the mask experiment. A different RF circuit, however, is utilized to

integrate the application of an optical mask after the optical lattice. The circuit is

shown schematically in Fig. 3.17. During the lattice cooling phase, the RF switch in

Fig. 3.17 is set to the upper input and the amplitude controllers are set such that

each beam has an intensity of 1.5 mW/cm2 at the location of the atoms. During the

mask phase, the RF switch is set to its lower input and the amplitude controllers are

set such that each mask beam has an intensity of 6.5 mW/cm2. The spatial phase

of the mask relative to that of the lattice is varied using an electronic phase shifter

inserted into the RF-line for the mask (see Fig. 3.17). In this way, properly timed RF

signals allow us to use the same beams to form both the lattice and the mask. The

mask duration must be sufficiently short that the movement of the atoms is negligible
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during the mask application. For a lattice period of 390 nm and atomic speeds of

about 4 cm/s, the maximum allowable mask time amounts to about 2 µs. To ensure

that masks of that duration generate sufficient optical pumping from F = 1 to F = 2,

the mask fields must have a considerably higher intensity than the lattice fields.

0
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Power
splitter

Phase shifter

RF switch
Amplitude
controller

AOM

AOM
RF Generator

0
o

Power
splitter

0
o

Power
splitter

50 W

Amplitude
controller

Lattice

Mask

Figure 3.17: RF circuit used to rapidly switch from a MILC optical lattice to an optical mask. The
phase difference between the lattice and mask beams is controlled by an electronic phase shifter.

The experiment runs at a repetition rate of 60 Hz. In each cycle, about 106 87Rb

atoms are first collected in a 12 ms MOT and pre-cooled to about 50 µK using a 1 ms

optical molasses. The MOT beams are switched off after the molasses cooling. The

MILC lattice beams are then turned on for 150 µs to create a periodically modulated

atomic density. Atoms are cooled to a temperature of about 15 µK, or an average

velocity of about 4 cm/s, and localized at a period of λ/2 in the F = 1 ground state.

After the lattice cooling, the repumper beams are switched off and the beams forming

the lattice are switched from lattice mode into mask mode, as described above. The

spatial phase of the mask relative to the MILC lattice is controlled by the phase-

shifter. The optical mask is on for about 1 µs. During this time, atoms in the F = 1

hyperfine level are optically pumped into the F = 2 hyperfine level, unless they are

in the vicinity of a node of the standing-wave mask field. To measure the effect of

the mask, a traveling-wave probe beam of 15 µs duration and with frequency tuned

to the 5S1/2 F = 2 → 5P3/2 F ′ = 3 transition is then applied to the atoms. The
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resultant atomic fluorescence is collected by a lens (2 inch diameter and focal length)

and focused onto a photodiode. The photocurrent is recorded and averaged using a

transimpedance amplifier and a digital oscilloscope. The integral of the fluorescence

signal is proportional to the number of atoms transferred by the mask into the F = 2

state. This state offers a closed probe transition that yields high fluorescence per

atom. Since in the MILC lattice a small fraction of the atoms always resides in the

probed level F = 2, we subtract the fluorescence signal obtained without application

of the optical mask from the fluorescence signal obtained with the mask.

We average the fluorescence signals as follows. For each sampled spatial phase

of the mask, 180 individual fluorescence traces are taken and averaged on the os-

cilloscope. These pre-averaged traces are temporarily stored, and the sampling is

repeated until, for each sampled mask phase, 20 pre-averaged traces are obtained.

The final signal consists of the average of these 20 pre-averaged traces. This aver-

aging procedure minimizes the influence of slow drifts, such as fluctuations of the

number of atoms in the MOT.

Two typical background-subtracted, averaged fluorescence signals are shown in

Fig. 3.18 (a). Each curve is an average over 3600 individual fluorescence traces,

obtained as explained above. When the maxima of the density distribution of the

atoms in the F = 1 lattice state coincide with the anti-nodes of the mask standing

wave (in-phase case), the fluorescence is much stronger than in the case in which the

density maxima coincide with the nodes (out-of-phase case). In the in-phase case,

the mask optically pumps more atoms into the probed state F = 2. The difference

between the two cases shows that the atomic density distribution produced by the

MILC optical lattice exhibits a significant modulation.

The number of atoms transferred into the F = 2 state is proportional to the
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Figure 3.18: Analysis of a MILC optical lattice using an optical mask. The lattice operates on
the F = 1 hyperfine level of 87Rb, has a single-beam intensity of 1.5 mW/cm2, a blue-detuning
of 12 MHz with respect to the 5S1/2 F = 1 → 5P3/2 F ′ = 1 transition, and a magnetic field of
110 mG transverse to the lattice beams. (a) Atomic fluorescence vs time. The small peaks show
atomic fluorescence caused by the mask action (i.e., optical pumping from F = 1 to F = 2). In
the in-phase case, the anti-nodes of the mask standing wave coincide with the peaks of the atomic
density distribution produced by the MILC lattice. (b) Areas of the fluorescence signals such as
those shown in (a) vs phase shift of the mask standing wave.

integral over the fluorescence peaks in Fig. 3.18 (a). In Fig. 3.18 (b) we show the

integrals of the fluorescence as a function of the phase shift applied by the phase

shifter. The sampled range of the mask phase shift is 360o, which corresponds to a

translation of the mask relative to the lattice by λ/2. In Fig. 3.18 (b) it is seen that

the number of atoms transferred by the mask into F = 2 undergoes one oscillation

period while the mask is translated by λ/2. This result shows that the period of the

atomic-density modulation produced by the MILC lattice is λ/2, as expected. The

actual shape of the fluorescence vs phase shift is a complicated function of several

parameters including mask duration, atomic density distribution, and mask transfer
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efficiency.

3.3.3 Application of the Optical Mask to the ROL

In the previous section, the λ/2 period of the MILC optical lattice is experi-

mentally verified using the optical mask technique. Now we use this technique to

investigate the period of the ROL.
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Figure 3.19: Transition diagram of the ROL and fields polarization and propagation.
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Figure 3.20: Diagram of the RF circuit used to apply an optical mask to the ROL.

Without the external magnetic field, the transition diagram of the ROL can be

simplified as in Fig. 3.19. The field polarization and propagation (right panel of
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Fig. 3.19) indicates that lattice beam 1 and 3 are suitable to form an optical mask

standing wave. However, to satisfy the ROL condition, beam 1 and 3 can not have

the same frequency. Therefore, an RF circuit is used to rapidly switch from the ROL

beam frequencies to the mask frequency (RF circuit diagram shown in Fig. 3.20).

The AOM numbers correspond to the laser beams shown in Fig. 3.11. Each RF

line incorporates an amplitude controller; the controllers are used to switch the

corresponding laser beams on and off, and to vary their intensities. During the

ROL stage, the RF switch connects AOM 3 to the lower RF generator. Therefore,

AOMs 1 and 2 are driven with an identical frequency ω1, while AOMs 3 and 4 are

driven with a frequency ω2 = ω1 + 1.5 MHz, in accordance with the ROL scheme

in Fig. 3.11. During the optical mask stage, the RF lines driving AOMs 2 and 4

are turned off, while the RF switch connects AOM 3 to the upper RF generator.

The resultant standing-wave light field formed by beams 1 and 3 can be used as an

optical mask. The switching time of the RF circuit is 20 ns. The position of the

mask standing-wave relative to that of the ROL can be varied by an electronically

controlled phase-shifter that is located in the RF line driving AOM 3 during the

mask phase. The RF power level during the mask phase is chosen such that each

mask laser beam has an intensity of 6.5 mW/cm2.

The steps of collecting and analyzing the mask fluorescence data for the ROL are

identical to those used to analyze the MILC lattice. The resulting area of fluorescence

vs the phase shift applied to one mask beam is plotted in Fig. 3.21 for six runs

(as before, a phase variation of 360 degrees corresponds to a mask translation of

λ/2). Panels (a)-(d) of Fig. 3.21 clearly exhibit two approximately equidistant peaks:

when scanned over a distance of λ/2, the antinodes of the mask standing wave

coincide twice with peaks of the atomic density distribution. This is indicative of
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a λ/4 periodicity in the ROL atomic density distribution. The modulation depths

of the curves in Fig. 3.21 (a)-(d) are about 5%. This low value is in qualitative

accordance with the results of QMCWF simulations, which, for the lattice parameters

chosen, indicate a modulation depth in the atom density distribution of about 13%.

We believe that the discrepancy between the modulation depths measured in the

fluorescence data and in the simulated atom density distribution is partially due

to the fact that we use a λ/2-period mask to probe a structure with a λ/4-period.

Due to the factor-of-two mismatch, during the measurement some spatial averaging

will occur, leading to a loss in measured modulation depth. Another reason for a

reduction of the modulation depth lies in experimental phase drifts, discussed below.

-120 -60 0 60 120 180 240 300

5.2

5.6

6.0

6.4 (b)

(c) (d)

(e) (f)

(a)

Phase shift ( 
o
)

-120 -60 0 60 120 180 240 300

5.2

5.6

6.0

6.4

-120 -60 0 60 120 180 240 300

5.2

5.6

6.0

6.4

Phase shift ( 
o
)

A
re

a
 o

f 
fl
u
o
re

s
c
e
n
c
e
 (

A
rb

. 
u
n
it
)

-120 -60 0 60 120 180 240 300

5.2

5.6

6.0

6.4

-120 -60 0 60 120 180 240 300

5.2

5.6

6.0

6.4

-120 -60 0 60 120 180 240 300

5.2

5.6

6.0

6.4

Figure 3.21: Areas of fluorescence vs phase shift of the mask standing wave obtained in the ROL.
(a)-(f) are experimental results under the same experimental conditions.

Some measurements show only small modulation (see Fig. 3.21 (e) and (f)). We
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think that fluctuations of the relative phases between ROL beams may be the main

reason for the occasional loss of modulation. Phase fluctuations also explain why,

among the data that do show modulations, the peaks do not line up perfectly from

plot to plot (see Fig. 3.21 (a) - (d)). While slow phase variations do not affect sub-

Doppler cooling in the ROL, they do shift the atomic distribution. If we assign an

individual phase to each lattice beam and neglect decay due to spontaneous emission,

we find an effective Hamiltonian for the lattice potential of:

Heffective =
~
2




δ r

r −δ




with r =
4χ2

∆
cos(2kz +

ϕ1 + ϕ4 − ϕ2 − ϕ3

2
) (3.3)

where ϕi is the phase of the ith lattice beam and δ is the Raman detuning (δ = 0

in this experiment). It is apparent in Eq. 3.3 that the location of the ROL potential

is affected by the phase term ϕ1 + ϕ4 − ϕ2 − ϕ3. The subsequent optical mask,

however, is formed by beams 1 and 3 alone. Thus, the position of the optical mask is

only determined by ϕ1 and ϕ′3, where ϕ′3 may differ from ϕ3 since the respective RF

paths in Fig. 3.15 are different. All phases vary in time because the corresponding

laser beams have different optical paths and propagate through different fibers or in

different fiber modes. The phase variations are caused by thermal and mechanical

instabilities and air turbulence. Since the position of the ROL potential depends

on the phase combination ϕ1 + ϕ4 − ϕ2 − ϕ3, while the mask position depends on

ϕ1 and ϕ′3, the phase fluctuations result in uncontrolled drifts of the mask position

relative to that of the ROL potential. Since each data set shown in Fig. 3.21 takes

about twenty minutes to accumulate, it is likely that phase fluctuations are the main

reason why in some data sets of Fig. 3.21 there is no clear modulation.
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3.4 Conclusion

In this chapter, we have demonstrated experimentally both the sub-Doppler cool-

ing [33, 34] and the λ/4 periodicity of the ROL [35]. The dependence of the ROL

cooling on different lattice parameters is characterized and compared with the QM-

CWF simulations. We use an optical mask technique to probe the density distribu-

tion of atoms inside the ROL. The experimental results show a clear signature of λ/4

periodicity.



CHAPTER IV

Bose-Einstein Condensate

4.1 Introduction

A Bose-Einstein condensate (BEC) is an ensemble of atoms that is cooled to

such a low temperature that they all collapse into the same lowest quantum state.

Therefore, although being a many-body system, the BEC can be described by a

single wavefunction and hence displays quantum effects on a macroscopic scale. This

condensation phenomenon was first predicted by Bose and Einstein in 1925, and was

first achieved in dilute alkali gases through a series of experiments in 1995 [36–38].

The condition for the BEC to occur in a free space dilute gas is that the deBroglie

wavelength of each atom, λdB, associated with its thermal motion extends over one

another. In other words, the spatial density n of atoms has to satisfy

nλ3
dB ≥ 2.612 . (4.1)

For atoms confined in a harmonic trap, however, the BEC condition is slightly dif-

ferent and is given by [39]

N(
~ω̄
kBT

)3 ≥ 1.202 , (4.2)

where N is the atom number, ω̄ is the geometric mean trapping frequency, kB is the

Boltzmann’s constant and T is the thermal temperature of the atoms.

54
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Neglecting the interaction between atoms in a condensate, the Schrödinger equa-

tion governing the atomic motion is simply a linear one. However, since atoms do

interact, this interaction has to be considered in the Schrödinger equation. A widely

used approximation is to treat the interaction as a mean-field force. Under this

treatment, the potential associated with the interaction is proportional to the local

density of atoms. If the BEC is described by the wavefuction Ψ(r), the density is

simply |Ψ(r)|2, which means that the Schrödinger equation is no longer linear. The

resultant non-linear Schrödinger equation is often referred to as a Gross-Pitaevski

equation [40, 41]. It takes the following form

i~
∂Ψ(r, t)

∂t
= [− ~2

2M
∇2

r + Vext(r) + NVint|Ψ(r, t)|2]Ψ(r, t) , (4.3)

where M is the atomic mass, Vext(r) is the external potential and Vint characterizes

the strength of the mean field interaction between the atoms, defined as Vint ≡

4π~2a/M , with a being the s-wave scattering length of the atom.

Many properties and behaviors of the BEC inside external potentials can be solved

theoretically based on the Gross-Pitaevski equation. This relatively simple model has

sparked a considerable amount of theoretical interest in studying BECs in different

types of external potentials, such as a harmonic trap [42–44], a light field inducing

Raman transitions [45], an optical lattice [46–48] and a polarization potential created

by ions [49]. Experimentally, the macroscopic quantum properties of the BEC and

its easy manipulation and control by optical or magnetic approaches have triggered

even larger excitement. Experiments involving BECs have dealt with fundamental

properties of BECs [50–55], BECs in optical lattices (for a review, see Ref. [56]),

atom interferometers using BECs [57–60] and the interaction of BECs with other

entities [61–63]. The achievement of the BEC has led to a new frontier for physics

research.
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We have long been aware of the importance of BECs. Starting in 2004, we made

our initial plan to build the first BEC apparatus at the University of Michigan. In

September 2005, we started the construction of the BEC chamber and in February

2007, we observed the first BEC in our laboratory. In this chapter, I will describe

our BEC apparatus and the pathway towards the BEC.

4.2 Experimental Setup

4.2.1 Vacuum Chamber

Figure 4.1: The vacuum chamber for the BEC experiment consists of three main parts: the low-
vacuum primary chamber (labeled 2), the intermediate pumping stage and the high-vacuum sec-
ondary chamber (labeled 3).

The single chamber design of our old vacuum system for the ROL is not compatible

to the BEC experiment, because achieving a BEC generally simultaneously requires
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a large number of trapped atoms and a low background collision rate. These two are

usually conflicting requirements inside a single chamber. Therefore a new vacuum

system was constructed for the BEC experiment. Like most other BEC systems, the

new vacuum chamber consists of three main parts as shown in Fig. 4.1. The first part

is the primary chamber, with components 1 and 2. Component 1 is the rubidium

reservoir which provides Rb atoms in vapor form. The background vapor pressure

inside the primary chamber is ∼ 10−8Torr since only one 20L/s ion pump pumps

the primary chamber directly. About 109 87Rb atoms can therefore be collected

by a magneto-optical trap (MOT)inside the component 2. The trapped atoms are

transported into the secondary chamber (component 3) after passing a gate valve.

Between the secondary chamber and the primary chamber is a differential pump-

ing stage, which is a combination of two ion pumps and a Titanium sublimation

pump. This stage is very important for maintaining the ultra-high-vacuum (UHV),

below 2 × 10−11 Torr, inside the top chamber, while the lower chamber is kept at a

much higher pressure so that enough atoms can be collected.

Inside the secondary chamber, component 3, is where the BEC is created. Two 20

L/s ion pumps are connected to this chamber, where the vacuum pressure is below

2× 10−11Torr. Another magneto-optical trap is set up inside component 3 to recap-

ture the transported atoms from the primary MOT. In this way more than 109 87Rb

atoms can be collected while the background pressure is kept below 2 × 10−11Torr.

Component 4 contains four current feedthroughs, which carry currents into the vac-

uum chamber to create the necessary magnetic fields for the BEC experiment. A

detailed discussion about the MOT beam and magnetic field setup is given in the

following section.

To reach a vacuum below 10−8 Torr, the entire chamber has to be baked around
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100oC for a couple of days. For our secondary chamber, where the vacuum is re-

quired to be below 10−11 Torr, we baked it at a temperature up to 250oC for a

week. The detailed discussion about baking and vacuum parts cleaning can be found

elsewhere [64]. One comment I would like to emphasize regarding the vacuum issue

is that if you plan on reaching 10−11 Torr vacuum, a Titanium sublimation pump

(TSP) is absolutely necessary. Our first trials of the vacuum chamber were without

a TSP. No matter how hard we baked the chamber, the vacuum would not go below

8× 10−10 Torr, even after several months. After the TSP was mounted, the vacuum

went down to 3× 10−11 Torr in one day after the bake-out.

4.2.2 Double MOT Setup

Pyramidal Mirror

Laser

: MOT Beam

: MOT Magnetic field

s-

s+ s+

s-

s-

s helicity with
respect to laser
propagating
direction

x

z

y

Figure 4.2: The primary pyramidal MOT beam and magnetic field configuration. The six beams
are created by a single circularly-polarized incoming field bouncing off four mirrors in a pyramidal
structure. The helicity of the beams are automatically satisfied for a MOT configuration. The
MOT magnetic field is produced by two anti-Helmholtz coils in vertical (z) direction. Show here is
a x-z plane plot of the pyramidal MOT setup. The configuration is the same in y-z plane.

The primary MOT is a so-called pyramidal MOT [65]. A pyramid-shaped metal

mirror is located inside component 2 with the reflective sides facing downwards, as

shown in Fig. 4.2. A two-inch-diameter laser beam is sent upwards and reflected by

the four walls of the pyramidal mirror, creating six counter-propagating beams for the

MOT. The incoming beam is circularly polarized and after each reflection changes to
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the opposite helicity with respect to its propagation direction. This guarantees that

the final 6 MOT beams have the correct polarization. The MOT magnetic field is

created by two anti-Helmholtz coils in the vertical (z) direction. Two compensation

coils may be required in x- and y-directions to adjust the location of the magnetic

field to match that of the 6 MOT beams. At the apex of the pyramidal mirror,

a small (about 1 mm in diameter) aperture is drilled. When the MOT is located

right under this aperture, due to the radiation pressure imbalance a portion of the

trapped atoms will be pushed upwards through the aperture by the upward MOT

beam. This produces a cold atom flux for the secondary MOT shown in Fig. 4.3.

The secondary MOT is located underneath a gold-coated silicon mirror [66] at-

tached to a copper structure at the end of the current-feedthrough in the top cham-

ber. Two MOT beams with opposite helicity are brought into the chamber from

both sides at 45 degrees with respect to the mirror surface as indicated in Fig. 4.3.

After bouncing off the mirror, both beams counter-propagate with each other. These

two beams and their reflections, together with another counter-propagating pair of

beams in the y-direction, form the optical geometry of the secondary MOT. The

magnetic field of the secondary MOT is first created by two external coils placed

such that the axis of the coils is aligned with one of the 45o MOT beams. These

120-turn coils are in an anti-Helmholtz configuration and, with a 5 A current, can

provide a magnetic field gradient of about 10 G/cm around the MOT location. This

intermediate MOT is on for up to 16 s to capture ∼ 109 atoms.

The MOT magnetic field can also be generated by running a current through a

“U” shaped wire and using a uniform bias magnetic field [67]. The U-shaped wire is

part of the copper structure mounted to the end of the current-feedthrough as shown

in Fig. 4.4 (a). The copper structure is a 1”× 1”× 0.25” piece. It has a “H” shaped
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Figure 4.3: The schematic drawing of the secondary MOT setup. The distance between two MOTs
is about 35 cm.

square wire at the center with the separation between two legs of either 7mm (1 and

2) or 5mm (3 and 4). The four ends of the “H” wire are connected to the four current

feedthroughs with good electric contact. When a current is sent through electrodes

1 and 2, a U-shaped current is generated; when instead 2 and 3 are connected, we

can realize a Z-shaped current which will be discussed later. The square wire has a

dimension of 1.4mm × 1.4mm, which ensures that no significant heat is generated

for a current of up to 60A. The H-wire design in our experiment is similar to that
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described in Refs. [68, 69].

x

y

z

1
2

3
4

Gold-coated silicon mirror

(a) (b)

Figure 4.4: (a) A “H” shaped wire is machined at the center of the copper structure. The four ends
of “H” are connected to four current feedthroughs. (b) The gold mirror is attached to the bottom
of this copper structure.

To understand how the “U” wire trap functions, we first consider the field of a

single wire in the y-direction and a uniform bias field Bo in the x-direction. The

superposition of these two fields forms a two-dimensional quadrupole potential in

the x− z plane, qualitatively shown in Fig. 4.5. To obtain a three-dimensional trap,

the wire is bent into a “U” shape. The field due to the two legs has a y component,

which provides a trapping potential in the y-direction. Thus a three-dimensional trap

is formed and referred to as a U-trap. Note that the field components in y-direction

cancel at the center of the trap. Therefore the U-trap is a quadrupole potential with a

zero magnetic field at the center. When the copper structure is aligned such that the

center bar of the H-wire is along the y-direction and four legs are in the x-direction,
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Figure 4.5: The superposition of a uniform field and a field generated by a single wire. As a result
a two-dimensional quadrupole potential is formed.

the U-trap has exactly the same topology as the magnetic potential generated by

the external coils shown in Fig. 4.3. For a current I and a bias field Bo, the U-trap

is located at a distance ro given by

ro =
µ0

2π

I

Bo

(4.4)

underneath the wire and the magnetic field gradient at the trap center can be cal-

culated to be

∇B(ro) =
2π

µ0

B2
o

I
. (4.5)

The U-MOT and the intermediate MOT share the same laser beams due to the

same topology of their magnetic field. However the U-trap can have a much higher

magnetic field gradient, which leads to a much denser atom cloud. But because of

the small dimensions of the U-wire, the U-MOT can only capture a small number of

atoms. That is why the intermediate MOT is needed in our experiment.
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4.2.3 “Z” Trap

The typical temperature for a BEC transition to occur is around several hundred

nano kelvin, which is not attainable by traditional laser cooling methods. Therefore

an alternative cooling mechanism, evaporative cooling, is applied. The basic idea of

evaporative cooling is to preferentially remove higher energy atoms inside an atomic

assembly, and allow the remaining atoms to reach a lower equilibrium temperature

by elastic collisions. For atoms trapped by a magnetic field, a straight-forward way

to do evaporative cooling is to lower gradually the trap depth. The quadrupole trap

described in the previous section, however, is not compatible with evaporative cooling

since it has a magnetic field zero at its center. The Majorana spin-flip around a zero

magnetic field causes a large atom loss, especially for cold atoms because they tend

to stay at the bottom of the trap.

To avoid the Majorana spin-flip, a nonzero magnetic field has to be present at

the bottom of a magnetic trap, which can be generated by the Z-shaped current [67]

mentioned in the previous section. The “Z” current and the bias field Bo produce

the same two-dimensional trap in the x-z plane as the U-trap. In the y-direction,

however, contributions from the two legs of the Z-wire add up. As a result, the final

field has a nonzero y component at the trap bottom. To obtain a more quantitative

understanding, we simulate the Z-trap magnetic field based on the Biot-Savart law.

The Z-wire is first divided into 3 straight segments, and each segment is then divided

into 9 parallel current elements with smooth current distributions. The feedthroughs,

which carry the current into the vacuum chamber, are also each divided into 32

parallel current elements. The magnetic field of each current element is calculated

and the final Z-trap field is obtained by summing over all current elements. The

effect of gravity is taken into account in the simulation by introducing a constant
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Figure 4.6: The simulated Z-trap magnetic field plotted in 2-D on 3 orthogonal planes. The color
represents the magnitude of the magnetic field as indicated by the number of the lower panel. The
numbers are in unit of Gauss.

field gradient in the vertical direction. Fig. 4.6 shows the simulated Z-trap field for a

current of 54 A and bias magnetic fields of (17 G, 7 G, 0 G) in (x-, y-, z-) directions.

The field is plotted in 2-D with the origin located at the center of the Z-wire. The

magnitude of the field is represented by colors in steps of 2 Gauss. As seen the

Z-trap has a nonzero magnetic field at its minimum and is much tighter in x- and

z-direction than in y-direction.

One of the important parameters of a magnetic trap is its oscillation frequency.

In the vicinity of the trap center, we can usually treat it as a harmonic trap. Under
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this approximation, the trap frequency in a certain direction i is given by

ωi =

√
µB∇2

i B

M
, i = x, y, z , (4.6)

where µB = 9.274× 10−24J · T−1 is the Bohr magneton, M is the mass of the 87Rb

atom. From simulations, we can figure out ∇2
i B at the center of the Z-trap for

parameters given in Fig. 4.6. The trap frequencies in (x, y, z) directions are then

calculated to be 2π×(54 Hz, 15 Hz, 54 Hz) based on the Eq. 4.6. In section 4.4, we

will show that the trap frequencies can be experimentally measured. By comparison,

we are able to prove the accuracy of the simulations.

4.2.4 Laser System and Optics

We have two home-made Tapered Amplifier (TA) systems for the BEC experi-

ment, one for each MOT setup. The TA diode, from Eagleyard Photonics, is designed

to have a maximum CW output of 1W. The wavelength of the TA output beam is

determined by a master diode laser, which seeds a beam of around 15 mW into the

TA diode. The master diode laser is frequency stabilized by the standard saturation

spectroscopy method. The TA diode works for a broad range of wavelengths. In

fact, for one TA system, we seed both MOT and repumper beam into the TA diode,

and both beams get amplified. The detailed information about the TA design is de-

scribed elsewhere [70]. In addition to the TA systems, we have another diode laser,

from New Focus, which provides optical pumping and shadow image beams.

Fig. 4.7 shows schematically the laser systems and the optical setup. As shown,

all laser beams, before being directed into the chamber, pass through optical fibers

to achieve a gaussian intensity profile. The secondary MOT beam goes through an

acousto-optic modulator (AOM) twice before the fiber, which enables us not only to

switch the beam but also to control the beam intensity and frequency by changing
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Figure 4.7: The schematic drawing of the optical setup for the BEC experiment
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the RF signal driving the AOM. The optical pumping and imaging beams have the

same AOM setup. After the AOMs, they are combined by a polarization cube and

coupled into two orthogonal modes of a polarization maintaining fiber. To ensure

that no near-resonant light leaks into the chamber during the offstage of the beams,

mechanical shutters are necessary to back up the AOM switching, since AOMs cannot

completely extinguish the light. The repumper light and the primary MOT beam

are switched only by mechanical shutters.

4.2.5 Power Supply System

R R

U Z wire

G G
C C

E E

Ground

Agilent
6572A

Figure 4.8: The IGBT circuit used in the BEC experiment to switch “U Z” currents. The control
signal is applied between Gate and Emitter of the IGBT.

All magnetic fields involved in our experiment are generated by currents. There-

fore we need a number of affordable current sources with not only a good stability

but also a fast-switching ability. The Kepco ATE power supplies are good candi-

dates. In the fast current-control mode, the typical peak-to-peak output fluctuation

is less than 0.1% of the maximum output and the switching time constant is less than

100µs, assuming a load with a small conductance. All currents generating magnetic
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fields are controlled by the ATE power supplies except the “UZ” currents. The “UZ”

wires are connected to an Agilent DC power supply model 6572A with a 20V-100A

maximum output. The DC power supply is set at a constant voltage and its cur-

rent is switched by insulated-gate bipolar transistors (IGBT). The circuit diagram is

displayed in Fig. 4.8. For a certain Collector-Emitter voltage, the Collector-Emitter

current of a IGBT is determined by the Gate-Emitter voltage. Therefore when the

“H” wire is connected in series with the Collector-Emitter of the IGBT, the “UZ”

current can be varied by the voltage applied between the Gate and the Emitter, as

shown in Fig. 4.8. The IGBT used in our experiment is model APT100GF60JRD.

4.2.6 Timing-control System

Our main timing-control instrument is a computer-controlled TTL pulse card,

PulseBlasterESR-PCI. The card can output 21 independent TTL signals with a 4ns

resolution. These TTL signals, however, do not control the other apparatus directly

since their amplitude cannot be varied. Instead we built a number of 4-channel

multiplexer (MUX) circuits, which accept two TTL signals to select one of the 4

channels as the output. The amplitude of each channel is controlled by a voltage

divider. The outputs from the MUX are then used to control most power supplies

generating magnetic fields and all AOM drivers switching optical fields. The only

disadvantage of the MUX is that it cannot output waveforms other than square-

shaped, such as a triangle wave or a sinusoidal wave. To obtain a more complicated

control signal, we use an arbitrary function generator, Agilent model 33220A. The

arbitrary wave generator is externally triggered by one channel of the TTL card and

outputs a user-defined waveform. It is worth mentioning that the Agilent 33220A has

only 64 K data points for the arbitrary waveform, which turns out to present a slight

problem for our experiment. Since it can take up to 30 s to produce a BEC in the
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experiment, the shortest time step for the arbitrary waveform is only about 0.5 ms

for a total of 64K data points. However some critical steps in the BEC production

are in ms range or even much less, like the 100µs optical pumping stage. As a result,

the 64 K data points cannot always guarantee a timing match-up between the control

signals from the MUX circuit and the function generator. In the future, the function

generator should be upgraded to at least 512 K memory for the arbitrary waveform.

The Agilent 33220A can also produce a linear or logarithmic frequency sweep within

its frequency limit, 1 µHz to 20 MHz. Therefore it is also used in our experiment to

generate a RF signal for evaporative cooling.

4.3 Useful Experimental Techniques

4.3.1 Absorption Imaging

f f f f

CCD

y

Z wire

Figure 4.9: A 4-f absorption imaging setup

We image the atom cloud using an absorption imaging technique. The atoms

are illuminated by an on-resonant probe beam. The photon scattering of the atoms

leaves a shadow in the beam, which is recorded by a charge coupled device (CCD)

camera as shown in Fig. 4.9. The optical depth (OD) is related to the intensity of

the probe beam as in Eq. 4.7,

I = I0e
−OD , (4.7)

where I is the probe beam intensity with the atoms and I0 without the atoms. The
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column density of atoms at each point is simply OD/σ, where σ is the scattering

cross section.

In the experiment, in addition to I and I0, a background image Ib is also needed.

This background image, taken with the probe beam off and the camera shutter open,

will be used to compensate for the camera dark current as well as any stray light not

from the probe beam. With these three images, the optical depth OD at a certain

pixel site (i, j) is given by

OD(i, j) = ln(
I0(i, j)− Ib(i, j)

I(i, j)− Ib(i, j)
. (4.8)

The total atom number is then simply calculated by

N =
1

σ

∑
i,j

OD(i, j)Spixel , (4.9)

where Spixel is the pixel area of the CCD camera. The scattering cross section σ can

be expressed as

σ =
BR

2

3λ2

2π
× (1 + 4

∆2

Γ2
)−1 , (4.10)

where BR is the branching ratio of the probe beam transition, λ is the probe beam

wavelength, ∆ is the probe beam detuning and Γ is the excited state decay rate.

For on-resonant light, ∆ = 0 and the branching ratio for our probe beam transition,

|F = 2,m = −2〉 → |F ′ = 3,m = −3〉, can be looked up in appendix A to be

15/15=1. Hence σ is computed to be 0.1452µm2 for our imaging setup.

As shown in Fig. 4.7, the image beam comes from a diode laser, which is frequency

stabilized by the absorption spectroscopy method. Afterwards the beam frequency

is up-shifted twice by an AOM before being coupled into a polarization maintaining

fiber. We also use the AOM to switch the probe beam, which pulses for 40 µs in our

experiment. The beam is collimated to have a FWHM of about 3 mm after the fiber



71

and an intensity of about Is

5
, where Is is the saturation intensity 1.6 mW/cm2. After

passing through a λ/4 waveplate to become circularly polarized, the probe beam is

directed to the atoms along the center bar of the “Z” wire (y-direction). On the

other side of the chamber, we have a 4-f lens setup to project the beam onto the

CCD camera. The 4-f lens setup also works for the fluorescence imaging technique.

Our CCD camera is from COOKE Corporation, model PIXELFLY qe, which has

a 6.7 µm×6.7 µm pixel size. The camera has a ultra compact design, only about

1.5”× 1.5”× 2” in dimension. Two achromatic lenses (1” diameter, 4” focal length)

are mounted inside a Thorlab lens tube with the camera attached at the end. The

distances between two lenses and between the lens and the camera are variable. The

whole imaging package is then attached to a translation stage that offers a fine control

over the relative position between the atoms and the imaging setup. Fig. 4.10 shows

absorption images taken by our imaging system including image I (left), image I0

(middle) and the image after the data analysis (right).

Figure 4.10: The images taken by the CCD camera with (left) and without the atom cloud (middle).
The right picture shows the atom cloud after the data analysis.

4.3.2 Optical Pumping

The atoms trapped by the MOT are equally distributed among the 5 different

magnetic sublevels of the ground state, but only |F = 2,m = 2〉 atoms can be

efficiently transferred into the Z-trap. To improve the transferring efficiency, an

optical pumping beam is applied to the atoms before the Z-trap is turned on. The
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optical pumping beam, circularly polarized, drives transitions as shown in Fig. 4.11.

When atoms reach |F = 2,m = 2〉 sublevel, they will stay there since the |F = 2,m =

2〉 sublevel is decoupled from the pumping field. A repumper field, on resonance of

|F = 1〉 → |F ′ = 2〉 transition, is present during the optical pumping.

m=-2 m=-1 m=0 m=+1 m=+2

m=-2 m=-1 m=0 m=+1 m=+2

F=2

F’=2
Optical pumping

Spontaneous
decay

Figure 4.11: The transition diagram for the optical pumping.

The quantized axis of the Z-trap is along the direction of the center bar (y direc-

tion). Therefore during the optical pumping, a 3G magnetic field along y-direction

is switched on to define the quantization axis. The optical pumping beam is also

in the y-direction. As seen in Fig. 4.7, the pumping beam comes from the same

laser as the imaging beam and has a very similar optical setup. However, the AOM

down-shifts the frequency of the beam twice in the optical pumping case. The beam

is then coupled into the same fiber as the imaging beam and shares the same optics

and optical path afterwards. The optical pumping beam has an intensity of about

2Is and is on for 100µs.

4.3.3 Evaporative Cooling

After the atoms are transferred into the Z-trap, we start the forced RF evaporative

cooling. The evaporative cooling works by preferentially removing most energetic

atoms from the Z-trap and at the same time allowing the remaining atoms to reach
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a lower temperature by elastic collisions. The removal of the higher energy atoms

is done by bathing the Z-trap in a radio frequency magnetic field. This RF field

couples atoms in adjacent magnetic sublevels ∆m = ±1 with a resonance frequency

νrf given by

νrf =
µB ·Btrap

2h
, (4.11)

where Btrap is the magnetic field of the Z-trap at the location of an atom. At the

beginning of the evaporation, νrf is set at a high value and the resonant Btrap for

spin-flip is located on an ellipsoidal surface far away from the trap center. Given the

fact that higher energy atoms tend to stray away from the center of the trap and

penetrate this ellipsoidal surface, they are most likely to be coupled to |m = 1, 0〉

or even anti-trapped |m = −1,−2〉 states and permanently leave the trap. As the

evaporation process goes on, we continuously ramp down νrf , forcing the ellipsoidal

surface to shrink, and keep removing the higher energy atoms until the remaining

atoms reach the BEC transition temperature. Fig. 4.12 shows the absorption images

of the atoms inside the Z-trap after 10 s of forced RF evaporation starting from 10

MHz. As seen, the atom cloud shrinks as the stopping frequency decreases.

8MHz 6MHz 4MHz 3MHz 2.5MHz

Stopping frequency:

Figure 4.12: The in-trap images of the atoms after 10 s forced RF evaporation. The RF signal starts
from 10 MHz and linearly decreases to 8 MHz, 6 MHz, 4 MHz, 3 MHz and 2.5 MHz respectively.

The RF signal is generated by an arbitrary function generator, Agilent 33220A.

It can output two types of frequency sweep, a linear sweep and a logarithm sweep,

upon an external trigger. Both sweeps work in our experiment to achieve a BEC,
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which will be discussed later. The signal is then passed through a Mini-circuit RF

switch before sent to a Mini-circuit 1W amplifier. A home-made 3-loop coil takes

this amplified RF signal and delivers it to the atoms. The coil, about 2 inches in

diameter, is made from normal 15 gauge magnetic wire and soldered directly to a

BNC connector. A BNC cable is used to connect between the amplifier and the

coil. Before we set up the coil, we make sure the coil itself has no obvious resonant

frequencies within the evaporation frequency range, which is typically from 17 MHz

→ 500 kHz. The coil is placed right outside one of the large windows with the axis

of the coil tilted 10o relative to the center bar of the “Z” wire. This is not an ideal

position for the coil since only the component of the RF field perpendicular to the

local quantization axis can cause a spin-flip. However, considering the RF field will

reflect multiple times in all directions inside the vacuum chamber, this should not

pose a serious problem for us.

A more serious problem posed by this radiation RF field is that it interferes with

both our diode laser systems and power supplies. In general we find it is helpful to

ground the case of the laser driver through a thick wire and connect certain capacitors

between the ± outputs of power supplies. The RF amplifier itself is also contained

in an aluminum box. Although some interference is still present in our experiment,

it does not affect the production of the BEC.

4.4 Experimental Measurement of the Z-Trap Frequency

It is important to know the Z-trap frequencies when we start the evaporative

cooling. Although as pointed out in section, we can calculate trap frequencies from

simulations, we want experimental measurements to verify the simulation results.

With the absorption image setup and the forced RF evaporation working, it is pos-
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sible to measure the Z-trap frequencies in x- and z-directions experimentally. The
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Bx

CCD

probe beam

Trapped
atoms

Figure 4.13: Relative position between the Z-wire and the absorption image beam.

relative position between the Z-wire and the absorption image beam is shown in

Fig. 4.13. Based on the observation perspective, oscillations in x- and z-directions

can be seen on absorption images. We apply a sudden small change to the z (y) bias

magnetic field Bz (By), which causes a small displacement of the Z-trap from its ini-

tial location in the x- (z-) direction. The atom cloud inside the Z-trap cannot follow

the sudden shift and will undergo subsequent oscillations. Since the displacement is

normally in the order of 100 µm, to observe this oscillation we need an atom cloud

with a size much less than the oscillation amplitude, which requires a functional

evaporative cooling. After the displacement, we take absorption images at different

times and stack them as shown in Fig. 4.14. The time difference between neighboring

images is 2 ms. From Fig. 4.14, the oscillation frequency in x-direction is ∼56 Hz.

The measurement of the z-directional oscillation frequency yields a similar result.

4.5 Experimental Procedure towards BEC

The procedure of producing the BEC can be divided into five stages: collection,

compression, transfer, evaporation and detection.
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Figure 4.14: Oscillation of the cold atom cloud inside the Z-trap. The time interval between adjacent
images is 2 ms.

The first stage involves collecting as many as possible atoms using the double-

MOT setup discussed in section 4.2.2. Both the pyramidal MOT and the intermedi-

ate MOT are continually on for 16 s, during which about 109 atoms are loaded into

the intermediate MOT located 3 mm below the mirror. After the collection stage,

we shut the pyramidal MOT beam off and perform the MOT compression in the

secondary chamber. This is done by turning off the external MOT coils and switch-

ing the U-trap on simultaneously, while keeping the MOT beams on. The U-trap

has a current of 45 A and a x-bias field of 20 G. Although we use step functions to

switch magnetic fields, the real transfer from the intermediate MOT to the U-MOT

is adiabatic due to the inductance of the external MOT coils. It takes about 50 ms
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for atoms to be reloaded into the U-MOT. This process moves the atom cloud up by

1.5 mm and compresses its size to about 2 mm in diameter. No significant atom loss

is observed during the procedure. To further compress the U-MOT, the detuning of

the MOT beams is increased from 2 Γ to 4 Γ for an additional 20 ms.

Now we have a large number of atoms in a high density region. Before we transfer

the atoms into the Z-trap, we need to further cool atoms down to about 50 µK

to ensure a good transfer efficiency. A 3 ms molasses cooling stage is therefore

applied. We switch off the U-MOT magnetic field and use the MOT beams as a 3D

corkscrew optical molasses. Since it takes about 500 µs to turn off magnetic fields, it

is necessary for the MOT beams to be off during this period. Otherwise, the atoms

would pick up too much momentum during the sudden switch of magnetic fields.

When the MOT beams are turned back on, their detuning is increased to 7 Γ and

the total power drops to 30 mW. Since the optical molasses is very sensitive to any

stray magnetic field, we also use it to minimize the stray field in the vicinity of the

atom cloud by adjusting three pairs of external compensation coils. When the stray

field is less than 100 mG, we see an isotropic expansion of the atom cloud inside the

optical molasses. After the 3 ms molasses cooling, the y bias magnetic field for the

Z-trap is turned on to define the quantization axis. We then apply a 100 µs optical

pumping pulse 300 µs later. Up to this point, the repumper beam is always on.

The final step of the transfer stage is to turn on the Z-trap and use the mechanical

shutters to block all beams. To optimize the transfer efficiency, the absorption image

of the atoms inside the Z-trap is taken right after the transfer. We also maximize

the atom number by adjusting the detuning and intensity of both molasses beams

and the optical pumping beam as well as the Z-trap location. The final Z-trap has

a current of 55 A, a x-bias field of 17 G and a y-bias field of 7 G, which corresponds
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to (54 Hz, 15 Hz, 54 Hz) trap frequencies in (x-, y-, z-) directions, respectively.
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Figure 4.15: The number of atoms inside the Z-trap as a function of time. An exponential decay
fitting shows the lifetime t0 of 21 s.

After the optimization, about 107 atoms are loaded into the Z-trap. The next

step is to evaporatively cool the atoms to the BEC transition temperature. How-

ever, before doing the evaporative cooling, we want to measure the lifetime of the

atoms inside the Z-trap, which not only tells us how good the vacuum is or whether

there is any stray light problems in the experiment, but also roughly determines

the evaporation time. Fig. 4.15 shows the number of atoms inside the Z-trap as a

function of time t. We fit the data with an exponential decay function and get the

lifetime, t0 = 21s. This data is taken one month after the bake-out of our vacuum

chamber and with a black curtain surrounding the chamber to block any stray light.

We currently expect a longer lifetime since the vacuum should be improved. During

the evaporative cooling, on one hand we want time for the atoms to rethermalize,

but on the other we do not want significant atom loss due to background collisions.
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Thus, we first set the evaporation time to be 12 s (later on we found 16 s evaporation

was optimal.). After the evaporation time is set, we try to determine the starting

frequency, which is done by looking at the in-trap image of the atom cloud after a

two-second evaporation with a constant frequency. We want the starting frequency

to be such that the RF signal just evaporates the edge of the atom cloud. In our case,

we measure the starting frequency to be around 16 MHz. With these two predeter-

mined parameters and a RF power of 1 Watt, we first try an evaporative cooling with

a linear frequency sweep, starting at 16 MHz and with different stopping frequencies.

At the same time, the x-bias magnetic field is ramped up linearly from 20 G to 55 G,

which results in a final Z-trap frequency of (500 Hz, 60 Hz, 500 Hz). The Z-current

drops from 55 A to 53.5 A during the 12 s evaporation due to the heating of the

Z-wire.

After the evaporative cooling, we turn off all magnetic fields and let the remaining

atoms freefall for 12 ms before taking an absorption image. However, at the beginning

when all experimental parameters are not optimized, it is hard to observe anything

from the absorption image. Because when the stopping frequency is low, there is

hardly any atoms left; but when the stopping frequency is high, the atom cloud

expands too much during the 12 ms TOF. We therefore decide to decompress the

Z-trap before the TOF since the decompression lowers the temperature of atoms and

hence makes the detection of atoms much easier after the TOF. The decompression

is done by linearly ramping down the x-bias field to 40 G in 100 ms. With the

decompression, we can finally observe the atom cloud after the TOF. Unlike the in-

trap image, the TOF image not only provides us with information about the density

and temperature of the atom cloud, more importantly, also contains a distinctive

signature of the BEC transition–an atom cloud with two density distributions due to
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the fact that the BEC expands much more slowly than the thermal cloud. Once we

observed the atom cloud after the 12 ms TOF, we lowered the stopping frequency of

the evaporative cooling until the atom cloud was barely visible. Then we optimized

the visibility by adjusting experimental parameters. If the BEC transition is not

reached, we lowered the final frequency and repeated the optimization again. Finally

we observed a clear BEC transition at a stopping frequency of 185 kHz as shown in

Fig. 4.16.

Our best condition for a linear RF frequency sweep are: 15 s loading of the

intermediate MOT, 16 s evaporation from 18 MHz to 800 kHz with a RF power of

1 W, although we never try more than 1 W RF power due to the limitation of the

instrument. With these conditions, we can achieve a BEC of more than 100,000

atoms. We also find that multiple stages of a frequency sweep does not help in our

case.

To reduce the BEC production time, we explored other approaches to reach the

BEC transition. One successful way is to use a logarithm RF frequency sweep. In

this method, after the atoms are loaded into the Z-trap, we compress the Z-trap

to (500 Hz, 60 Hz, 500 Hz) trapping frequencies in 150 ms before the evaporative

cooling. In this case, the starting collision rate of the atoms is much higher and since

the atom cloud is very close to the mirror surface, surface cooling also plays a role.

The RF frequency is then swept from 16 MHz to 800 kHz in a logarithm form in

5 s. With this RF sweep, we can achieve a BEC of about 80,000 atoms. The initial

collection stage can also be greatly reduced. We have successfully achieved a BEC

of 50,000 atoms with only 6 s intermediate MOT loading. For experiments discussed

in the next chapter, the BECs are all produced with 10 s loading time and 5 s of

evaporation.
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Figure 4.16: Top panel: absorption images of the atom cloud after 12 ms TOF for different final
evaporation frequencies. The center image shows a clear BEC transition – there are two density
distributions of the atom cloud. The right image is a pure BEC of about 30,000 atoms. The bottom
panel is the 3-D plot of the top panel with the height representing the density.
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4.6 Conclusion

In this chapter, I have described our experimental setup to achieve a Bose-Einstein

condensate of 87Rb atoms. A new vacuum chamber, with three main compartments,

is constructed for the BEC experiment. The 87Rb atoms are first collected from the

background vapor inside the primary chamber and then transported to the secondary

chamber, where the vacuum pressure is three orders of magnitude lower. This pres-

sure difference is maintained by a differential pumping stage. Inside the secondary

chamber, the atoms are recaptured, compressed, further cooled, optically pumped

and eventually tranfered into an Ioffe-Pritchard type magnetic trap formed by a Z-

shaped current. Finally the BEC is achieved inside the Z-trap after the forced RF

evaporative cooling.



CHAPTER V

Bose-Einstein Condensate in Optical Lattices

The realization of Bose-Einstein condensation in dilute alkali gases has opened

exciting new frontiers in physics research. Subsequent investigations have involved

fundamental properties of BECs, such as vibrational excitations of BECs [50, 51]

and the role of the scattering length and its modification by Feshbach resonances [52,

53]. Being macroscopic quantum ensembles, BECs also provide an unprecedented

platform to study quantum phenomena, such as vortices in BECs [54] and BEC

interference [55], which ultimately leads to a wide range of research involving atom

interferometers [57–60]. Moreover, the combination of BECs with optical lattices can

be used to simulate traditional condensed matter systems. Compared with electrons

in solid state crystals, BECs in optical lattices not only offer excellent control over

experimental parameters, but also are easy to probe in laboratories. In addition, since

optical lattices are perfect periodic potentials, there are no complicated impurity

effects present in the BEC-optical lattice experiment. As a result, many condensed

matter phenomena have been observed in this system, including Bragg scattering [71],

Bloch oscillation [72], the superfluid to Mott-insulator transition [12, 73, 74] and

tunneling of BECs between [75] and out of lattice wells [76].

In this chapter, we study the behavior of BECs inside a far-detuned 1-D op-

83
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tical lattice. The starting point of lattice experiments is a BEC of about 60,000

atoms inside the Z-trap. The potential depths of optical lattices are calibrated using

Kapitza-Dirac diffraction. The interference effects of both thermal clouds and BECs

are discussed. Quantum phenomena, such as Bloch oscillations and superfluid to

Mott-insulator transitions, are investigated.

5.1 The 1-D Optical Lattice Setup

BEC

Translation stage

Polarization
maintaining
fiber

Mirror mount

Lens tube

Collimation
package

x

z

y

Figure 5.1: The 1-D lattice beam setup

The lattice beam comes from a Tapered Amplifier System (TAS) built by Sacher

Lasertechnik. The master laser of the TAS is a Cheetah distributed feedback (DFB)

diode laser, with a wavelength fixed at 852 nm. The maximum power output of the

TAS is 900 mW. Since the frequency of the lattice laser is far away from any atomic

transitions, frequency-stabilization is not needed. Out of the TAS, the beam is passed

through an acousto-optic modulator (AOM) and then coupled into a polarization

maintaining optical fiber. After the fiber, the lattice beam is first collimated to a

FWHM of 0.75 mm and then focused into the vacuum chamber by an achromatic lens

with 30 cm focal length. On the other side of the chamber, the beam is collimated
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again by another achromatic lens with the same focal length and then retro-reflected

by a mirror. The lattice beam is delivered to the atoms in the x-direction. As

shown in Fig. 5.1, the fiber output, the collimation package and the achromatic lens

are mounted together inside a Thorlab 1” lens tube, which is then attached to a

mirror mount. The whole package is set up on top of a translation stage so that

fine-adjustment of the focus location of the beam is possible. A retro-reflection unit

with a similar design is set up on the other side of the chamber. We arrange the

optics such that the two counter-propagating beams overlap and the BEC is located

at the focus of the lattice beams. The size of the focal spot is about 100 µm. The

relative position between the lattice beam and the rest of the experimental setup

is shown in Fig. 5.2. This optical lattice configuration is used in all experiments

discussed in the following sections.
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CCD
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Trap potential
in x direction
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Figure 5.2: The relative position between the lattice beam and the Z-trap.

The alignment of the lattice beam with respect to the BEC is a non-trivial proce-

dure. Fortunately in our experiment the BEC is created underneath a mirror, which

works as a reference for our alignment. First, the distance between the mirror and

the BEC can be measured from the absorption image. Then we align the lattice

beam to be about the same distance away from the mirror. Since the lattice beam

has a Rayleigh range of about 9 mm and the BEC should be located at the center of
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Figure 5.3: Absorption images of the BEC without lattice beams (left) and with a continuous lattice
beam (right). Both images are taken after 10 ms TOF.

the vacuum chamber, the alignment in x direction can be roughly done by placing

the lens 30 cm away from the center of the chamber. Then only walking the beam

in the y-direction is necessary.

We first set the lattice beam to be continuous and look for the effect of the input

lattice beam from the absorption image after 10 ms TOF of the BEC. When the

lattice beam intensity is high enough, we expect it work as an optical dipole trap.

The BEC will be distorted and its position after 10 ms TOF will be shifted upwards

since the optical dipole trap holds the BEC against the gravity. These two effects

are seen as shown in Fig. 5.3 when the single beam power is over 120 mW. Once the

input beam hits the BEC, the alignment of the returning beam is not as hard.

5.2 Kapitza-Dirac Diffraction

One of the most important parameters of an optical lattice is its potential depth,

which is proportional to the intensity of the lattice beam. However, at the location

of the atoms, it is hard to know the local intensity accurately especially when the

beam is focused down to such a tiny spot. A small misalignment of the lattice beam

relative to the atoms can cause a large intensity difference. Hence, we depend on an

experimental method to determine the local potential depth of the lattice.

Consider what happens to a BEC exposed to an optical lattice. We assume that
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the BEC wavefunction at time t=0 is given by

ψ(t = 0) = 1, (5.1)

and the BEC experiences a lattice potential

V (z) = −V0

2
cos2(kLz), (5.2)

where kL = 2π
λ

with λ being the lattice beam wavelength. If the lattice duration τ is

sufficiently short, the lattice potential can be treated as a phase modulation, given

by eiV (z)τ/~, to the initial BEC wavefunction [77]. Using the Jacobi-Anger relation,

the propagated wavefunction can be expanded as

ψ(z, t > 0) = exp

(
i
V0τ cos(2kLz)

2~

)
(5.3)

=
∞∑

n=−∞
(i)nJn

(
V0τ

2~

)
ei2nkLz, (5.4)

where Jn are Bessel functions of the first kind. Each term in the expanded wavefunc-

tion represents one diffraction order of the BEC. The nth order has a momentum of

n2~kL and a population of [Jn(V0τ
2~ )]2. This phenomenon is similar to the diffraction

of electrons by a standing wave, predicted by Kapitza and Dirac in 1933, with the

role of electrons played by the BEC. Note that the above argument also applies to

thermal atoms. Therefore the Kapitza-Dirac diffraction effect can also be observed

with thermal atoms as long as their temperature is low enough to allow different

diffraction orders to separate.

Since the population of the nth diffraction order is directly related to the local

potential depth V0 of the optical lattice, we can measure V0 experimentally by this

diffraction method. In the experiment, we apply optical lattices with different du-

rations to the BEC and take absorption images after 15 ms time-of-flight to allow

different diffraction orders to separate. The TOF images are shown in Fig. 5.4. The
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Figure 5.4: The 15ms TOF images of BECs after exposed to an optical lattice with different
durations indicated on the right side.

atom numbers of 0th, 1st, and 2nd orders are calculated and plotted as a function

of τ in Fig. 5.5. To compensate for the fluctuation of the initial condensate atom

number, the total population of each shot is normalized to 1. In order to calculate

V0, we fit J0(cτ)2 to the first 10 data points in Fig. 5.5 (a) and achieve a fitting

parameter c = 0.804µs−1 for the maximum lattice beam power of 180 mW. Based

on Eq. 5.4, V0 = 2~c = h × 256kHz. To check the accuracy of the fitting param-

eter, we plot J1(cτ)2 and J2(cτ)2 in Fig. 5.5 (b) and (c) with the same parameter

c = 0.804µs−1. As seen, up to 5 µs, all three experimental data stay close to the

predicted values. However, after 6 µs, they start to deviate from the fitting curve,

which means a breakdown of the ”short” pulse assumption. The effect of the optical

lattice can no longer be treated as a phase modulation due to the breathing motion

of the BEC inside the optical lattice [77].

Now that we have established an experimental method to measure the local po-

tential depth for the maximum lattice beam power, the potential depths can be
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Figure 5.5: The normalized population of atoms in 0th (a), 1st (b), 2nd (c) diffraction orders as a
function of the optical lattice duration. The fitting is only for the first 10 data points of (a). After
obtaining the fitting parameter c, the theoretical results are plotted in (b) and (c) with the same c
value.
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calculated for any power based on the linear relationship between the power and the

potential depth. In the following experiments, all of the quoted lattice depths are

calibrated by this method. The Kapitza-Dirac diffraction phenomenon can also be

used to fine adjust positions of the lattice beams since it is very sensitive to the local

intensity change, especially for a lattice duration of about 2 µs .

5.3 Interference of Thermal Atoms Using the Kapitza-Dirac Diffraction

The interference of atom clouds is often regarded as the signature of BECs since

the long-range coherence is believed to appear only when the atoms are condensed

into the same quantum state. However, we know that the interference of two light

beams was observed long before the laser was invented. The most famous example is

Young’s double-slit experiment, where two interfering beams from the same source,

the first slit, act as two copies of the source light. As discussed in the previous sec-

Thermal
atoms

After first diffraction

After second diffraction

First pulse

Second pulse

Dt

Interference regions

-1 0 +1

Figure 5.6: Schematic drawing of Kapitza-Dirac diffraction orders produced by two pulses.

tion, a short and intense lattice pulse projects atoms into different velocity groups

through Kapitza-Dirac diffraction. When another pulse is applied, it remixes differ-

ent diffraction orders as shown in Fig. 5.6. We expect to see interference fringes at

regions where atom clouds overlap. Since this interfering behavior originates from

the overlapping of two copies of a single-atom wavefunction, the interference pattern

can show up regardless of whether the atoms are in condensate or thermal states.
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The fringe visibility of the whole thermal atom cloud, however, depends on the tem-

perature of the atoms since it is an incoherent sum over all atoms.

50 sm

100 sm

200 sm

300 sm

Dt

0-1 +1

Figure 5.7: The interference images after 20 ms TOF for ∆t =50 µs, 100 µs, 200 µs and 300 µs.

In the experiment, the cold thermal atom cloud is created by choosing the final

RF-evaporation frequency to be 40 kHz above the BEC transition. Each lattice pulse

has a potential depth V0 = h × 256 kHz and a duration of 2 µs. After the second

pulse is applied, the Z-trap is switched off to allow the atom cloud to free fall for

20 ms before an absorption image is taken. The interference images for different pulse

separations, ∆t, are shown in Fig. 5.7. As seen, the interference pattern around the

0th diffraction order is different from other regions because it involves three atom

clouds as indicated in Fig. 5.6. We also notice that, with an increasing ∆t, the period

of the interference fringe decreases. According to Ref. [78], the fringe period λf for

two-cloud interference is given by

λf =
C

∆t
, C =

htTOF

Mv2rec

, (5.5)

where tTOF is the time of flight, M is the mass of the atom and v2rec is the two-photon

recoil velocity (the pulse duration is not considered in this equation since it is much
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shorter than ∆t). From Fig. 5.7, λf can be measured as a function of ∆t. To be

consistent with the Eq. 5.5, where the interference only involves two thermal clouds,

we only consider the first diffraction-order region when measuring λf . The resulting

λf vs. 1
∆t

is plotted in Fig. 5.8. It clearly shows a linear relation between λf and 1
∆t

,

which is expected from Eq. 5.5. Fitting the experimental data with a linear function

y = Cx gives a slope C = 9.0 ± 0.1 µm·ms. Theoretically C is calculated to be

8.6 µm·ms.
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Figure 5.8: The measured λf as a function of 1
∆t . A linear fit yields a slope C = 9.0± 0.1 µm·ms.

To qualitatively show the dependence of the overall fringe visibility on the thermal

temperature, we vary the final evaporation frequency νfRF and keep ∆t =200µs and

all other parameters the same as in the previous experiment. The temperature of

the atom cloud is determined by νfRF, where increasing νfRF leads to higher temper-

atures. As seen in Fig. 5.9, the visibility drops with an increasing temperature. The

quantitative dependence of the fringe visibility on the thermal temperature can be

found in Ref. [78].
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Figure 5.9: Interference images for different temperatures of the atom cloud.

5.4 Atom Interferometer Using the Kapitza-Dirac Diffraction

Due to their long spatial coherence, BECs are promising for applications such as

atom interferometer. It has long been demonstrated that overlapping of two BEC

clouds produces interference fringes, analogous to the interference of two coherent

light beams. To make an atom interferometer, the only other requirement is that

the two BECs undergo different paths before overlapping.

An atom interferometer can be realized using Kapitza-Dirac diffraction and a

magnetic trap, as schematically shown in Fig. 5.10. The first lattice pulse splits the

BEC into different momentum components. As a result, the non-zero momentum

components undergo oscillations inside the magnetic trap. After half an oscillation

period, all BEC components meet again at the center of the trap, and interference

fringes should be produced. However, since the fringe period is inversely propor-
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Figure 5.10: Atom-interferometer scheme using Kapitza-Dirac diffraction and a magnetic trap.

tional to the velocity difference between two BEC components, it is too small to be

observable in the experiment. Therefore, another diffraction pulse is applied to the

BECs, which remix different momentum components as in the previous experiment.

Note that thermal clouds are not good for this interferometry scheme, even though

their interference is demonstrated in the previous section. Because different ther-

mal states develop different phases during the oscillation, the interference fringes are

completely washed out. For BECs, this atom interferometer, in principle, works for

multi oscillations.

In the experiment, the lattice pulses have a 2 µs duration and the oscillation

period, T , of the magnetic trap is about 17 ms. After the second lattice pulse, we

turn off the magnetic trap and allow the BECs to free fall for 25 ms before taking an
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Figure 5.11: Interference fringes produced by the atom interferometer for pulse separations of (a)
1 ms, (b) 7.8 ms and (c) 16.5 ms.

absorption image. Figure 5.11 shows experimental results for the pulse separation,

∆t, of (a) 1 ms, (b) 7.8 ms (∼ T/2) and (c) 16.5 ms (∼ T ). The interference fringes

are clearly present in all three cases. In Fig. 5.11 (a), the situation is similar to

what is discussed in the previous section except that now we use a BEC instead

of a thermal cloud. Figure 5.11 (b) and (c) demonstrate the atom interferometer

described in Fig. 5.10.

The interference fringes in Fig. 5.11 (c) are obviously tilted. This may be due to

the fact that the BEC is contained in a 3-D magnetic trap and the trap frequencies

in the x- and z-directions are slightly different. If the projection of the lattice beam

in the z-direction is non-zero, BECs also oscillate in the z-direction after the first

lattice pulse. Since oscillations in the x- and z- directions do not exactly synchronize,

interfering momentum components will have non-zero relative velocity perpendicular

to the lattice direction, causing tilting fringes. Based on the simulations, the x-

and z-oscillation frequencies have ∼ 3% difference, which means that the longer the

separation between two lattice pulses (within our experimental time scale), the larger

the relative velocity becomes perpendicular to the lattice direction. That is why the

tilting is most prominent in Fig. 5.11 (c), where the pulse separation is the largest.

Close to half an oscillation period, the relative velocity between interfering BEC

components becomes small, which leads to a larger spatial period of the interference

fringes. In Fig. 5.12, ∆t is 7.2 ms, 7.8 ms and 8.4 ms for (a), (b) and (c), respectively.
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(a)

(b)

(c)
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Figure 5.12: Interference fringes produced by the atom interferometer for pulse separations of (a)
7.2 ms, (b) 7.8 ms and (c) 8.4 ms.

The spatial period of the interference fringes increases as ∆t approaches T/2. When

this spatial period becomes larger than the size of the BEC, instead of fringes, the

interference shows up as a population difference between ± momentum components,

as seen in Fig. 5.12 (c).

5.5 Bloch Oscillation of BECs

One of the most striking predications made by early quantum theory is the Bloch

oscillation of electrons in a solid state crystal. When a homogeneous static electric

field is applied, electrons undergo oscillatory instead of accelerated motion inside the

crystal (see [79] for detailed discussion). This Bloch oscillation phenomenon, how-

ever, is almost impossible to observe experimentally in solid state systems becauset

the scattering time of electrons by defects in the crystal is much shorter than the

oscillation period. Cold atoms in an optical lattice mimic electrons in a crystal, but

due to the extremely low temperature of atoms and the perfect periodic potential

created by the optical lattice, the coherence time of atoms is much longer. This

makes the experimental observation of the Bloch oscillation possible. So far, Bloch

oscillations have been observed for cold atoms [80] and BECs [81] in the rest frame

of accelerated optical lattices.

In this section, we present the Bloch oscillation of a BEC in the laboratory frame.

Unlike previous Bloch experiments where the Bloch oscillation is induced by accel-
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erating the optical lattice, in our experiment we initiate the oscillation by a small

displacement of the BEC from the trap center, as shown in Fig. 5.13 (a). Follow-

ing the displacement, the BEC is accelerated towards the trap center. Since it also

experiences an optical lattice potential, according to the Bloch oscillation theory,

the BEC can not be accelerated beyond a certain velocity. This velocity limit cor-

responds to one recoil velocity, where Bragg reflection of the BEC by the optical

lattice occurs. At the end of the Bragg reflection, the BEC velocity is reversed, but

maintains its magnitude. The BEC then comes back to its initial location at the end

of one oscillation. The system shown in Fig. 5.13 (a) can also be viewed as an atom

cavity with the optical lattice acting as a mirror to reflect atoms.
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3D Magnetic trap
(Z-trap)

BEC

Effective Bragg
reflection plane

(a) (b)
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Figure 5.13: (a) A schematic drawing of the setup to realize Bloch oscillations of the BEC inside
the combination of a magnetic trap and an optical lattice. (b) Momentum of the BEC inside the
cavity.

In the experiment, the BEC is prepared in a trap with frequencies of 45 Hz, 15 Hz

and 45 Hz in the x-, y- and z-directions, respectively. An optical lattice with a full

potential depth of about one recoil energy is applied to the BEC with a turn-on time
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of about 1 µs. Three milliseconds after the lattice is applied, the vertical bias field

(z-direction), is ramped up by 100 mG in 2 µs, corresponding to a 44 µm translation

of the equilibrium position of the Z-trap in the x-direction, parallel to the optical

lattice. The translation occurs quickly enough that the BEC does not have time to

move. In this way, we experimentally create initial conditions equivalent to those in

Fig. 5.13 (a).

The momentum of the BEC is measured using a time-of-flight (TOF) method.

In the TOF method, the BEC is released after a certain evolution time by sud-

denly switching off both the Z-trap and the optical lattice. We then allow the BEC

to expand freely for 15 ms before taking an absorption image, at which point the

momentum of the BEC at the time of release can be determined by its measured

position in the x-direction.

After the decompression, the BEC often exhibits a small, random momentum

that we attribute to magnetic field fluctuations. The random momentum leads to

a phase shift in the Bloch oscillation, which causes a time jitter of up to ±0.5 ms

in the observed Bragg reflections. To minimize the effect of this jitter, we take five

separate TOF images for each time step, compare the BEC momenta, and choose

the median image for presentation.

Figure 5.13 (b) shows TOF images of the BEC after different evolution times. The

horizontal axis of the image represents the momentum in the x-direction. Generally,

as the evolution time increases, the momentum of the BEC increases in an approx-

imately linear fashion due to the magnetic force. The momentum reversals at 2 ms

and 5 ms are due to Bragg reflection; these reflections occur at times when the BEC

reaches a momentum of +prec. During the Bragg reflection process, both momentum

components, +prec and −prec, are present in the BEC, as seen in Fig. 5.13 (b). From



99

the point of view of energy band theory, the BEC moves along the lowest energy

band in the first Brillouin zone, indicated in Fig. 5.14. Assuming no excitation to

higher energy bands, whenever the BEC leaves one edge of the first Brillouin zone,

it comes back from the other edge. This is confirmed by our experimental data in

Fig. 5.13 (b) since +prec and −prec correspond to the two edges of the first Brillouin

zone.

q

E(q)

F

-2 /p l 2 /p l0

Edges of the first Brilliouin zone

Lowest energy band

Figure 5.14: Schematic drawing of the BEC moving in the lowest energy band in the first Brillouin
zone.

The data in Fig. 5.13 (b) indicate a momentum oscillation of the BEC and clearly

show the mirror effect of the optical lattice when the BEC momentum reaches +prec.

In addition, the data demonstrate that it is possible for the BEC to oscillate more

than once. Based on the above observations, the optical lattice with a magnetic trap

works as an atom cavity.

To characterize this Bragg-reflecting atom cavity, we apply different Z-trap dis-

placements. Since the BEC will experience different forces at different locations in

the Z-trap, the atoms will reach +prec at different times, leading to a change in

oscillation frequency of the atoms. In the experiment, the BEC is placed 30 µm,

44 µm, 60 µm and 74 µm away from the center of the Z-trap. The corresponding
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Figure 5.15: Momentum distribution of the BEC inside the atom cavity (linear gray-scale represen-
tation). The BEC is initially displaced by different amounts from the center of the Z-trap. (a)-(d)
correspond to 30 µm, 44 µm, 60 µm and 74 µm displacements, respectively.

data are shown in Fig. 5.15 (a)-(d), respectively. As can be seen, the oscillation pe-

riod decreases with increasing displacement. Qualitatively, this is because the BEC

experiences a larger force farther away from the trap center, so it accelerates faster,

taking less time to change its momentum from 0 to +prec. As many as five oscilla-

tions are observed, as in Fig. 5.15 (c). Considering the regularity with which images

containing both momentum components, +prec and −prec, are seen in Fig. 5.15, we

conclude that the Bragg reflection takes on the order of 1 ms, which is confirmed by

simulation results presented later in the this section.

We calculate the oscillation period, T , based on the assumption that the optical

lattice only acts as a Bragg mirror and does not affect the BEC elsewhere. There-
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fore, T/2 corresponds to the time it takes for the BEC to accelerate to one recoil

momentum in the Z-trap under the initial conditions that the BEC is stationary and

located at a distance of x0 from the center. For small x0, as in this experiment, the

Z-trap can be approximated by a harmonic potential, which leads to the following

equation for the period T :

Mωx0 sin

(
ω

T

2

)
= prec =

h

λ
, (5.6)

where M is the atom mass, ω = 2π×45 Hz is the frequency of the harmonic trap in

the x-direction, and λ = 852 nm is the lattice-beam wavelength. Since

T =
2

ω
sin−1

(
h

Mωx0λ

)
'

(
2h

Mω2λ

)
1

x0

=
A

x0

, (5.7)

T approximately is a linear function of 1/x0 with a slope A = 147 ms µm.

Equation 5.7 can also be obtained by assuming that the Bloch oscillation occurs

under constant force, Fext = ω2Mx0. In that case, the time derivative of the quasi-

momentum, q, is given by ~q̇ = Fext. The period T equals the time it takes for q to

scan the first Brillouin zone, which has a full width of 4π/λ. Therefore, q̇ = 4π/(λT ),

leading to Eq. 5.7.

From Fig. 5.15, we can measure T experimentally for different displacements x0.

The resulting period as a function of 1/x0 is plotted in Fig. 5.16. Also shown in

Fig. 5.16 is a linear fit of the experimental data. The fit yields a slope of 137 ms µm.

Based on the error bars of the data points, the uncertainty of the slope is estimated

to be ±15 ms µm. Within this uncertainty, experimental and theoretical values of

the slope agree with each other.

We simulate the approximate BEC motion inside the cavity by solving the time-

dependent 1-D Gross-Pitaevskii equation [82] using the Crank-Nicholson method

(Appendix B). Figure 5.17 (a) shows the simulated momentum distribution with
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Figure 5.16: Oscillation period T as a function of 1/x0. A linear fit of the experimental data yields
a slope of 137 msµm.

parameters chosen to match the experimental conditions in Fig. 5.15 (b). The sim-

ulation reproduces the experimentally observed Bragg reflection and momentum os-

cillation of the BEC in the cavity; the experimental and simulated oscillation periods

agree. Figure 5.17 (b) shows the simulated spatial distribution. During the Bragg

reflection, a “standing-wave” is formed due to the interference between incoming

and reflected wavefunction components. The duration of the Bragg reflections is of

order 1 ms, in agreement with the experiment, and increases with successive Bragg

reflections due to wavepacket dispersion.

A notable feature in Fig. 5.15 is that the momentum of the atoms appears to

diffuse over the first Brillouin zone, −prec ≤ px ≤ +prec, with no detectable diffusion

beyond this range. There are several possible mechanisms for the diffusion. One

mechanism is s-wave scattering of condensate atoms with opposite momenta during

the Bragg reflection, when the BEC is split into two components, | − precx̂〉 and

| + precx̂〉 (x̂ is the x unit vector). Since s-wave scattering amounts to processes of

the type | + precx̂〉 + | − precx̂〉 → | − p′〉 + | + p′〉, where |p′| = prec, it generates

a circular halo between the two momentum components. This halo spans the first
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Figure 5.17: (a) Momentum distribution of the BEC inside the atom cavity obtained from the
simulation (b) Corresponding wavefunction of the BEC.

Brillouin zone of the lattice and is sometimes observed at the first Bragg reflection.

A second contributing factor is the dynamic instability of the BEC [83–85], which

can be qualitatively explained as follows. The atom’s effective mass is negative

near the edges of the first Brillouin zone, where Bragg reflection occurs. Negative

effective mass means an attractive force between condensate atoms, which leads to

an instability of the BEC. Another diffusion mechanism is Landau instability [85] due

to the BEC moving faster than the local sound speed. A fourth possible mechanism

is the creation of solitons and vortices [48] by the Bragg reflection.

5.6 Superfluid to Mott-insulator Transition in a 1-D Optical Lattice

One of the most phenomenal accomplishments involving BECs in optical lattices

is the observation of the quantum phase transition from superfluid to Mott-insulator.

When adiabatically loaded into periodic potential wells created by optical lattices,

BECs still maintain the long-range coherence if the potential depth of the lattice is
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small. From another prospective, inside optical lattices condensate atoms localized

around individual potential wells are connected through tunneling, which enables the

atoms to possess a global phase. Thus, atoms are still in a superfluid state. However,

when the lattice depth is increased, the tunneling rate decreases. At a certain point,

condensate atoms can be considered isolated at each lattice site. Although atoms still

occupy the lowest quantum state in each potential well, the whole atomic ensemble

loses its long-range coherence. It is because the lowest quantum state in each lattice

well now becomes a number state [12], which possesses a random phase. The resulting

non-superfluid state is called Mott-insulator, in reference to a similar phenomenon

in condensed matter physics.

The loss of the coherence in the Mott-insulator state is different from other deco-

herence mechanisms of BECs, such as thermal excitation. In fact, the lost coherence

can be re-achieved through tunneling when the lattice depth is lowered back down.

This phenomenon, in the case of a 1-D optical lattice, will be demonstrated in this

section.

In the experiment, the BEC is first prepared in a magnetic trap with a 200 Hz

frequency in the x-direction. Next, the lattice potential is ramped up from zero to

its final value over 10 ms. This is realized using the amplitude modulation of an

AOM. At its final value, the lattice is kept on for 5 ms before we simultaneously

turn off the lattice and the magnetic trap, and take a TOF measurement (12 ms

expansion). As can be seen in Fig. 5.18 (b), for small lattice depths the BEC is

only slightly modulated by the lattice, corresponding to the appearance of only two

weak side peaks, at ±2~kL. As the depth of the lattice is increased, the transition to

Mott insulator occurs. The typical signature of the transition is that the side peaks

disappear and the central peak broadens, reflecting the momentum distribution of
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Figure 5.18: Left: TOF images. Right: lattice depth as a function of time for (a) BEC with no
lattice, (b) superfluid phase, (c) 1-D Mott insulator, (d) superfluid phase recovered after Mott
insulator, and (e) BEC with no lattice, recovered after Mott insulator.

the localized wavefunction in a single lattice well [12]. Here, we find that the system

fully reaches the 1-D Mott insulator state around 30 Erec.

The Mott insulator transition is a quantum phase transition, and thus is reversible;

to be certain that we have seen the Mott transition, as opposed to a lattice-induced

heating effect, we must show that we can reverse it. To demonstrate this, we ramp

the lattice to 31 Erec over 10 ms, hold it there for 5 ms, and then ramp back down over

10 ms. As can be seen in Figs. 5.18 (d) and (e), we obtain a modulated superfluid

and BEC when we ramp down to a weak lattice and no lattice, respectively. Thus,

the effect we see is fully reversible, providing strong evidence that it is the 1-D Mott

insulator transition.

In the 1-D Mott-insulating state (Fig. 5.18 (c)), the quantum gas loses phase

coherence in the direction of the optical lattice while retaining its superfluidity in

the other two directions. The 1-D Mott insulator can thus be thought of as a stack

of uncorrelated pancake BECs, each containing ∼3000 atoms under the conditions of

Fig. 5.18 (c). As can be seen in Fig. 5.18 (c), the 1-D Mott insulator expands much
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farther in the direction of insulation than in the directions of superfluidity. This

is largely due to the momentum spread of the pancake BECs in the lattice-beam

direction. Examining the TOF image in Fig. 5.18 (c), we find a velocity spread of

∆p/mRb = 8 mm/s. Using the Heisenberg uncertainty relation, ∆x∆p ≥ ~/2, this

corresponds to a localization ∆x = 46 nm, or 11% of the lattice period. Neglecting

mean-field effects and using the fact that the lattice wells are approximately harmonic

near their minima, we find an oscillation frequency of 2π× 35 kHz for a lattice with

a depth of 30 Erec, and velocity and position uncertainties of 8.9 mm/s and 41 nm,

respectively, for the ground state. These numbers match the values derived from

Fig. 5.18 (c) quite well, showing that the expansion in the lattice-beam direction is

mostly driven by the kinetic energy of the pancake BECs in the optical-lattice wells.

A more subtle effect is that in the insulating case the expansion transverse to

the lattice-beam direction is considerably slower than in the lattice-free BEC: about

1.5 mm/s and 2.5 mm/s, respectively. We attribute the difference to a variation in

the manifestation of the repulsive mean-field potential (estimated to be . 1 kHz

for our BECs in 200 Hz magnetic traps). Without the lattice, the BEC expansion

is driven by a combination of the mean-field pressure and the kinetic energy of the

BEC in the magnetic trap, leading to a final expansion speed of about 2.5 mm/s in

all directions in Fig. 5.18 (a). After application of the deep, Mott-insulating lattice

in Fig. 5.18 (c), the expansion is mostly driven by the comparatively high kinetic

energy of the BEC pancakes in the optical-lattice wells, leading to a much faster

expansion in the lattice direction. The faster expansion leads to a reduction of the

time over which a substantial mean-field pressure exists, leading to a reduced final

expansion speed transverse to the lattice, as observed.
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5.7 Conclusion

In this chapter, BECs in far-detuned 1-D optical lattices are studied. Many inter-

esting phenomena are observed, such as Kapitza-Dirac diffraction, thermal atom

interference, atom interferometer, Bloch oscillation and the superfluid to Mott-

insulator transition.



CHAPTER VI

Conclusions and Future Plans

6.1 Conclusions

In this thesis, I present work regarding cold neutral atoms in optical lattices. In

the first half, a new type of optical lattice, which is referred to as a Raman Optical

Lattice (ROL), is studied. When applied to laser-cooled 87Rb atoms in a magneto-

optic trap (MOT), the ROL drives Raman transitions between two ground states of

the atoms and creates an atomic density distribution with a period of λ/4. This is

a factor of two smaller than that of traditional optical lattices. We investigate this

ROL scheme both theoretically (Chapter II) and experimentally (Chapter III). In

the second half of the thesis, instead of cold thermal atoms, we load optical lattices

with Bose-Einstein condensates (BEC). I first describe our work towards forming

a BEC (Chapter IV) and then show several experiments involving BECs in optical

lattices (Chapter V).

The thesis begins with a general introduction to optical lattices in Chapter I.

Then in Chapter II, a reduced-period ROL configuration is proposed. The theoret-

ical work shows that there is a novel sub-Doppler laser-cooling mechanism present

in the ROL. The cooling prediction is based on a semi-classical treatment of the

ROL, where the laser beams are regarded as classical fields and the internal levels

108
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of the atoms are treated quantum-mechanically. The calculated friction force of the

ROL is similar to that associated with the traditional Sysphus cooling. However,

the cooling mechanism of the ROL is different. The ROL is further investigated

from an approach of quantum Monte-Carlo wavefunction (QMCWF) simulations.

The QMCWF simulation confirms the theoretical predictions about the ROL: a λ/4

periodicity and a sub-doppler laser cooling.

In Chapter III, the ROL is demonstrated experimentally. First, the sub-doppler

cooling of the ROL is verified using a time-of-flight (TOF) method. From the TOF

signal, the momentum distribution of the atoms cooled by the ROL is obtained and

fitted to calculate the temperature of the atoms. The data show a temperature of

about 8 µK, well below the doppler limit. Once the cooling effect is established,

the ROL cooling is further characterized by investigating the cooling dependence on

different lattice parameters. The experimental data agree well with the QMCWF

simulations. In the second part of Chapter III, an optical-mask technique is used

to probe density distributions of the atoms in optical lattices. The optical mask is

applied to both a λ/2-period optical lattice and the ROL. The comparison between

experimental data in these two cases yields a clear signature of the λ/4 periodicity

of the ROL.

Chapter IV concerns the experimental setup to achieve the BEC. The BEC ap-

paratus, including the vacuum chamber, the laser system, the timing-control system

and the powersupply system, is discussed in detail. To achieve a BEC, 87Rb atoms

are first collected from the background vapor inside the primary chamber and then

transported to the secondary chamber, where the vacuum pressure is three orders of

magnitude lower. This pressure difference is maintained by a differential pumping

stage. Inside the secondary chamber, the atoms are recaptured, compressed, fur-



110

ther cooled, optically pumped and eventually tranfered into an Ioffe-Pritchard type

magnetic trap formed by a z-shaped current. Finally the BEC is achieved inside the

z-trap after the forced RF evaporative cooling.

After the achievement of the BEC, in Chapter V, BECs in far-detuned 1-D op-

tical lattices are studied. When a short and intense lattice pulse is applied to the

BEC, Kapitza-Dirac diffraction is observed. The BEC is coherently split into several

momentum components. Using Kapitza-Dirac diffraction, the interference of ther-

mal atoms and an atom interferometer are realized. On the other hand, inside a

long and weak optical lattice, the BEC behaves differently. With an additional force

introduced by displacing the BEC from the center of the magnetic trap, the BEC

undergoes Bloch oscillation. When the lattice depth is increased gradually, the BEC

eventually loses its long-range coherence. However, the lost coherence can be recov-

ered by gradually reducing the lattice depth. This famous quantum phase transition

from the superfluid to Mott-insulator is also discussed in the case of a 1-D optical

lattice.

6.2 Future Plans

In the future, it is planed to apply 2-D and 3-D optical lattices to BECs and study

their consequent behaviors. Especially we are interested in the dependence of the

superfluid to Mott-insulator transition on the dimensionality of the optical lattice.

We also would like to investigate the interaction between BECs and impurities.

An interesting impurity is ions. It has been shown theoretically [49, 86, 87] that

ions sparsely immersed into a BEC can capture up to several hundreds of condensate

atoms. The captured atoms are in loosely bound states of a polarization potential

induced by the ion.
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Many aspects of this unique system can be explored experimentally, including

the effective mass of ions in a BEC, spatial structures in the BEC wavefunction

caused by the ion-BEC interaction, the rate of charge exchange of the ions with

the surrounding BEC atoms and the effect of optical lattices on ions embedded in

a BEC. Despite all these theoretical works and interesting subjects involved, this

area is almost unexplored experimentally [88]. The main challenge of this ion-BEC

experiment is the difficulty of minimizing the stray electric field around the BEC

down to 2 mV/cm so that ions have an efficient interaction time with the BEC

to cause any noticeable effect. Therefore, to study the ion-BEC interaction, the

current BEC chamber will be modified to include compensation electrodes around

the BEC. Furthermore, a microchannel plate (MCP) will be mounted inside the

vacuum chamber for ion-detection.
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APPENDIX A

Branching Ratios of 87Rb D2-line
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Figure A.1: Branching ratios for 87Rb D2-line.
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APPENDIX B

Crank-Nicholson Algorithm

We begin the discussion by writing down the time-dependent Schrödinger equation

in one dimension

i~
∂ψ(x, t)

∂t
= − ~

2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) . (B.1)

We consider a spatial domain x ∈ [a, b] with a boundary condition

ψ(a, t) = ψ(b, t) = 0 . (B.2)

The solution to the Schrödinger equation is uniquely determined given the initial

wavefunction ψ(x, 0) = Ψ(x).

To obtain the solution numerically, we consider the wavefunction ψ(x, t) on a

regular grid of ∆x = (b − a)/Nx in space x and ∆t in time t. The value of the

wavefunction at a certain grid (j, k) is given by ψ
(k)
j = ψ(a + j∆x, k∆t). The

derivatives can then be replaced by finite differences:

∂ψ(x,t)
∂t

=
ψ

(k)
j −ψ

(k−1)
j

∆t
backward difference

or =
ψ

(k+1)
j −ψ

(k)
j

∆t
forward difference

∂2ψ(x,t)
∂x2 =

ψ
(k)
j+1+ψ

(k)
j−1−2ψ

(k)
j

∆x2 .

(B.3)

The right hand side of the Schrödinger equation then becomes

− ~2

2m∆x2
(ψ

(k)
j+1 + ψ

(k)
j−1 − 2ψ

(k)
j ) + V (a + j∆x)ψk

j =
Nx∑

m=0

Hj,mψ(k)
m , (B.4)
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where H is a tridiagonal matrix

H =




~2
m∆x2 + V (a) − ~2

2m∆x2 0 0... ...0

− ~2
2m∆x2

~2
m∆x2 + V (a + ∆x) − ~2

2m∆x2 0... ...0

0 − ~2
2m∆x2

~2
m∆x2 + V (a + 2∆x) − ~2

2m∆x2 ...0

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...




(B.5)

Combined with the left-hand site of the Schrödinger equation with a forward differ-

ence, we get

ψ(k+1) = (1− i

~
H∆t)ψ(k) ; (B.6)

or, with a backward difference, we get

(1 +
i

~
H∆t)ψ(k) = ψ(k−1) . (B.7)

The average of Eq. B.6 and Eq. B.7 gives the Crank-Nicholson algorithm

(1 +
i

2~
H∆t)ψ(k+1) = (1− i

2~
H∆t)ψ(k) . (B.8)

According to Eq. B.8, we can propagate the wavefunction forward in time steps

of ∆t, starting from the initial wavefunction Ψ(x). Each propagation step involves

solving a tridiagonal-matrix problem. Using LU decomposition, this problem can

be efficiently solved. The Crank-Nicholson algorithm is a unitary operation in time,

which assures that the wavefunction preserves its norm throughout the calculation.
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