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Abstract 
 

Eukaryotic cells rely on autophagy to remove excess or damaged organelles and 

proteins. In this pathway, cytoplasmic materials are delivered to the lysosomes via 

double-membrane vesicles, the autophagosomes. The formation of autophagosomes, 

which involves the expansion and deformation of the precursor membrane sac, the 

phagophore, is catalyzed by the core autophagy machinery proteins at the phagophore 

assembly site (PAS). Previous studies have gradually discovered the order of assembly of 

the core autophagy machinery proteins at the PAS. In contrast, we know little about what 

these proteins do after PAS assembly. In this study, I first focused on how Atg8, one of 

the core machinery proteins, functions in autophagosome formation and demonstrated 

that (1) the amount of Atg8 at the PAS controls the size of autophagosomes produced and 

that (2) each round of autophagosome formation involves the recruitment of Atg8 to the 

phagophore and the subsequent deconjugation and release of Atg8 from this site. By 

tracing the trafficking of Atg8 in live cells, I established a temporal dissection of the 

autophagosome formation process. This allowed the examination of events at late stages 

of autophagosome formation and led to the further discovery that defects in Atg8 release 

not only arrest the existing autophagosome formation processes, but also prevent the 

regeneration of the PAS, which is necessary for sustained autophagosome formation. In 

addition, the data suggest that the release of Atg8 happens after the departure of Atg9 

from the PAS, and that deconjugation of Atg8 is important in maintaining its correct 

localization. Furthermore, I developed two statistical methods for calculating the sizes of 

intracellular vesicles from sizes of their sections obtained through transmission electron 

microscopy. The methods were used to estimate the size of autophagic bodies, which is 

used in turn to estimate the area density of Atg8 molecules on the phagophore.  
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Chapter 1  
Introduction: Core Molecular Machinery and Auxiliary 

Factors in Autophagosome Formation 
 

 

Abstract 

 

Eukaryotic cells employ autophagy to degrade damaged or obsolete organelles 

and proteins. Central to this process is the formation of autophagosomes, double-

membrane vesicles responsible for delivering cytoplasmic material to lysosomes. In the 

past decade many autophagy-related, ATG, genes have been identified that are required 

for selective and/or nonselective autophagic functions. In all types of autophagy, a core 

molecular machinery plays a critical role in formation of the autophagosome. Additional 

auxiliary components allow autophagy to adapt to the changing needs of the cell.  
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Overview of autophagy 

 

Eukaryotic cells employ autophagy, a potent lysosome-dependent mechanism of 

intracellular degradation, to eliminate objects ranging from soluble proteins to entire 

organelles under starvation or certain developmental and pathological conditions1. In 

multi-cellular organisms, autophagy has important roles in development, immune defense, 

programmed cell death, tumor suppression, and prevention of neuron degeneration2-4.  

Several forms of autophagy have been observed, including macroautophagy, 

microautophagy5, chaperone-mediated autophagy6 and piecemeal microautophagy of the 

nucleus7①. Here I focus on the most widely studied and potentially the most powerful one, 

macroautophagy (hereafter referred to as autophagy). In this pathway, an expanding 

membrane sac termed the phagophore enwraps portions of the cytoplasm (Figure 1.1). 

This leads to the formation of a double-membrane-bound, sequestering vesicle, called the 

autophagosome. Autophagosomes subsequently fuse with lysosomes, exposing their 

inner compartment to lysosomal hydrolases. The inner membrane of the autophagosome, 

together with the enclosed cargo, is then degraded, and the resulting molecules are 

released into the cytosol through lysosomal membrane permeases for recycling. 

During the past decade, genetic screens in the yeast Saccharomyces cerevisiae 

and in other fungi have led to the isolation of individual gene products that participate in 

autophagy. To date, independent genetic screens in yeast model systems have identified 

30 AuTophaGy-related (ATG) genes, which are involved in various subtypes of 

macroautophagy, including starvation-induced autophagy, the cytoplasm-to-vacuole 

targeting (Cvt) pathway and pexophagy8.  Furthermore, orthologues of many yeast ATG 

genes have been identified in other eukaryotic organisms8. The characterization of these 

gene products have enriched our knowledge of the process, providing us with genetic and 

biochemical tools for exploring the diverse functions of autophagy under different 

physiological conditions and further deciphering the molecular mechanism of autophagy.  

                                                 
① Microautophagy involves direct uptake of cytoplasm at the lysosome surface by invagination of the 
limiting membrane of the lysosome. Chaperone-mediated autophagy also takes place at the lysosome 
membrane, but relies on translocation of unfolded proteins across the membrane. Piecemeal 
microautophagy of the nucleus is a selective type of autophagy that occurs in yeast that is used to degrade 
portions of the nucleus by taking them into the vacuole (the yeast analogue of the lysosome) lumen. 
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Figure 1.1 Schematic depiction of autophagy  

Cytosolic material is sequestered by an expanding membrane sac, the phagophore (1, 2), resulting in the 
formation of a double-membrane vesicle, an autophagosome (3); the outer membrane of the 
autophagosome subsequently fuses with a lysosome, exposing the inner single membrane of the 
autophagosome to lysosomal hydrolases. (4); the cargo-containing vesicle is lysed, and the contents are 
degraded (5). 

 

Core molecular machinery of autophagosome formation 

 

Among the ATG genes, a subset of genes is required for autophagosome 

formation in all subtypes of autophagy. We refer to the corresponding gene products as 

the ‘core’ autophagy machinery. The core machinery is composed of three major 

functional groups: (1) Atg9 and its cycling system, which includes Atg9, the Atg1 kinase 

complex (Atg1 and Atg13), Atg2 and Atg18; (2) the phosphatidylinositol 3-OH kinase 

(PI(3)K) complex (vacuolar protein sorting (Vps)34, Vps15, Atg6(Vps30) and Atg14); (3) 

the ubiquitin-like protein (Ubl) system, which includes two Ubl proteins (Atg8 and 
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Atg12), an activating enzyme (Atg7), two analogues of ubiquitin-conjugating enzymes 

(Atg10 and Atg3), an Atg8 modifying protease (Atg4), the protein target of Atg12 

attachment (Atg5) and Atg16. 

 

Figure 1.2 The phagophore assembly site (PAS)  

The phagophore assembly site (PAS) is the proposed site of autophagosome formation. Depending on the 
stage of the formation process, the following proteins/protein complexes of the core machinery are present 
at the PAS. (a) Atg9. Atg9 cycles between the PAS and multiple peripheral sites; Efficient anterograde 
transport involves Atg9 transport factors, whereas retrograde movement away from the PAS requires the 
Atg1 kinase complex, Atg18 and Atg2. (b) Atg1 kinase complex. (c) Atg18, Atg2. The PAS localization of 
these proteins depends on each other, Atg9, Atg1, and the PtdIns3K complex; Atg18 binds PtdIns(3)P. (d) 
PtdIns3K complex. (e) Atg12—Atg5-Atg16 complex, Atg8—PE; their PAS localization depends on Atg9 
and the PtdIns3K complex.   
 

The proposed site for autophagosome formation is the phagophore assembly site 

(PAS)(Figure 1.2). The PAS can be defined as a hybrid of the forming vesicle (or 
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phagophore) and the core machinery proteins, the exact configuration of which depends 

on the stage of autophagosome formation. The concerted actions of the core machinery at 

the PAS lead to the expansion and metamorphosis of the phagophore into an 

autophagosome. During this process, most core machinery proteins, except for Atg8, are 

excluded from the completed vesicle, some being relocated to non-PAS (peripheral) sites. 

In Saccharomyces cerevisiae, the PAS is a peri-vacuolar site to which most core 

machinery proteins localize9, 10. In mammalian systems, colocalization of core machinery 

proteins has been observed in many instances, even though a comprehensive study has 

been lacking11-14. In these studies, each cell generally displays multiple sites of Atg 

protein colocalization, possibly corresponding to multiple PAS. Association between the 

core machinery proteins and the phagophore has been shown in both yeast and 

mammalian cells11, 12, 15, 16. 

Atg9 is the only transmembrane protein in the core machinery that is conserved 

across species13, 14, 17. It has six proposed transmembrane domains, with its amino and 

carboxyl termini exposed in the cytosol13, 14. Atg9 is capable of self-interaction and may 

exist in a complex18. A population of Atg9 is localized to the PAS, and, in the absence of 

Atg9, the Ubl proteins are not recruited to this site9. Interestingly, unlike most other Atg 

proteins whose non-PAS population is diffuse in the cytosol, the non-PAS population of 

Atg9 is concentrated in punctate structures17. The bidirectional movement of Atg9, 

between the PAS and non-PAS structures, is necessary for autophagosome formation17, 19, 

20. Potentially, this shuttling could contribute to the delivery of membrane to the PAS17, 18. 

In yeast, some non-PAS Atg9 puncta are found to be adjacent to or at the surface of 

mitochondria18. By contrast, human Atg9 homologues localize to the trans-Golgi network 

and late endosomes14 but not mitochondria13. The efficient delivery of yeast Atg9 to the 

PAS involves Atg9 transport factors Atg23 and Atg27 (Atg9 transport factors shown in 

Figure 1.2)20, 21. Atg27 is a type I transmembrane protein20, whereas Atg23 is soluble22. 

Atg9 cannot be detected at the PAS by fluorescence microscopy in the absence of either 

of the two proteins. However, in contrast to an atg9∆ strain, autophagosomes are still 

produced in an atg23∆ or atg27∆ strain under starvation conditions, only at a lower rate20, 

22. One possible explanation for the apparent difference in the requirement for these 

proteins in autophagosome formation is that Atg23 and Atg27 mainly affect the 

 5



efficiency of Atg9 trafficking. Thus, in the absence of Atg23 or Atg27, a small amount of 

Atg9, below the detection limit of fluorescence microscopy, travels to the PAS and 

perform its function. Current evidence suggests that Atg23 and Atg27 travel together 

with Atg9 to the PAS, and that the anterograde transport of all three proteins is largely 

interdependent21; however, the mechanism for releasing the soluble protein Atg23 from 

the PAS is different from that of the integral membrane proteins Atg9 and Atg2717, 20. 

Finally, the non-PAS population of Atg9 localizes to different sites in yeasts and 

mammals, indicating that the choice of peripheral storage sites of Atg9 is species 

dependent13, 14, 18. Therefore, the corresponding Atg9 anterograde transport systems could 

potentially involve unique adaptations in different species even if they still employ 

similar mechanisms. 

The retrieval of Atg9 from the PAS depends on the Atg1 kinase complex, Atg2 

and Atg18 (Figure 1.2); the absence of any of these proteins results in Atg9 accumulation 

at the PAS17. Atg1 is a serine/threonine protein kinase23, and its kinase activity is required 

for autophagy23, 24. Atg13 is a regulatory subunit of the Atg1 complex23. Other proteins 

associated with Atg1 or Atg13 are generally specific for certain subtypes of autophagy24-

26. The Atg1 kinase complex is proposed to regulate the magnitude of autophagy 23, 24, 26. 

Currently, the retrieval of Atg9 from the PAS is the only process that the Atg1 complex is 

known to regulate17. Interestingly, Atg9 is not restricted at the PAS in atg1∆ cells 

carrying an Atg1 mutant with reduced kinase activity17, but these cells still have an 

autophagy-defective phenotype. Therefore, Atg1 may have a broader function in 

autophagy than regulating Atg9 trafficking alone. In human cells, short interfering RNA 

(siRNA) depletion of HsAtg1 (ULK1), the apparent mammalian homologue of ATG1, 

inhibits the starvation-induced redistribution of HsAtg9 (ATG9L1) from the trans-Golgi 

network to endosomes14. Putative homologues of Atg13 are found in other eukaryotes27, 

although their involvement in autophagy has not been examined. 

Atg18 and Atg2 are two interacting peripheral membrane proteins28-31. Their PAS 

localization depends on each other as well as Atg1, Atg9 and the PI(3)K complex (Figure 

1.2)28-32. Both Atg2 and Atg18 can interact with Atg917, 28. Atg18 is able to bind to two 

phosphoinositides, phosphatidylinositol 3-phosphate (PtdIns(3)P) and PtdIns(3,5)P2
32-34. 

The interaction between Atg18 and PtdIns(3)P is required for autophagy32, 33. In contrast, 
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PtdIns(3,5)P2 recruits Atg18 to the vacuole membrane for retrograde trafficking from the 

vacuole32.  

The following model has been proposed for the retrieval of Atg9 from the PAS 

(Figure 1.2; Table 1.1)17: in stage 1, Atg9 and the Atg1 complex are separately recruited 

to the PAS. In stage 2, Atg18 and Atg2 are recruited to the PAS, where they interact with 

Atg9. In stage 3, Atg9 leaves the PAS. This model is mainly based on analyses of steady-

state knockout mutants, as the in vivo order in real time has not been observed. Thus, it is 

not yet clear whether Atg9 cycles only once in a synchronized manner or cycles 

continuously during the formation of each autophagosome. 

Table 1.1 Summary of supporting data for the Atg9 retrieval model 

Event Requirements 

Atg9 localizes to the PAS Atg23*, Atg27* 20

Atg1 localizes to the PAS Atg11* or Atg17* 31, 35

Atg18/Atg2 localizes to the PAS PtdIns3K, Atg1, Atg9, Atg2/Atg18 28-32

Atg2-Atg9 interaction Not determined 

Atg9-Atg18 interaction Atg1, Atg2 17

Atg9 retrieval from the PAS Atg1, Atg13, Atg2, Atg18 17

*These proteins are either not essential for autophagy or specific for certain subtypes of autophagy. See 
Table 1.2. 

 

Vps34 is a class III PI(3)K. Besides autophagy, it participates in multiple 

vesicular trafficking pathways involving endosomes and lysosomes36. Vps15, a protein 

kinase required for Vps34 membrane association, interacts with and probably activates 

Vps3437, 38. In S. cerevisiae, Vps15 and Vps34, along with Atg6 (Vps30) and Atg14, form 

the autophagy-specific PI(3)K complex, localizing to the PAS39, 40. S. cerevisiae also has 

a second complex containing Vps15, Vps34, Atg6 and Vps38, which participates in the 

delivery of a subset of vacuolar proteins through the Vps pathway39, 40. By contrast, 

Beclin 1, the mammalian homologue of Atg641, is not involved in lysosomal protein 

delivery or endocytosis; instead it primarily functions in autophagy42, 43. So far, 

mammalian homologues of Atg14 have not been characterized. The PI(3)K complex 

presumably functions at the PAS by recruiting PtdIns(3)P binding proteins such as 
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Atg1832, which participates in Atg9 retrieval17. Evidently, additional effectors are present. 

For example, the localization pattern of Atg9 in atg14∆ cells is different from that seen in 

atg18∆ cells17. This implies an early role for the PI(3)K in autophagosome formation, 

although the underlying mechanism and the effectors remain elusive. 

The ubiquitin-like protein system includes two Ubl proteins, Atg8 and Atg1244, 45. 

Whereas their primary sequences do not display clear homology to ubiquitin, the crystal 

structures of Atg8 and Atg12 homologues from mammals and plants, respectively, show 

that each has a ubiquitin fold at the C terminus46, 47. In vivo, the C-terminal glycine of 

Atg8 is attached to phosphatidylethanolamine (PE) and the C-terminal glycine of Atg12 

is attached to an internal lysine in Atg544, 45, 48, 49. Before attachment, the C terminus of 

Atg8 is processed by a cysteine protease, Atg4, to expose the glycine residue50, 51. Both 

modification reactions share a single E1-like activating enzyme, Atg744, 45, 52, 53. The E2-

like conjugating enzymes are Atg3 for Atg845, 54, and Atg10 for Atg1255, 56. Endogenous 

Atg7 is cytosolic and the attachment of Ubl proteins is normal in strains defective in PAS 

localization of Ubl proteins, suggesting that the PAS is either not the site of these 

modification reactions or is not required for them to take place9, 53.During autophagy, a 

population of Atg8—PE needs to be released from PE by Atg450. No similar cleavage has 

been observed for Atg12. Both conjugation systems have been reconstituted in vitro57, 58.  

The Atg12-modified Atg5 forms a multimeric complex with Atg1612, 59, 60. In this 

complex, Atg5 interacts with Atg16 on the side opposite to where it covalently attaches 

to Atg1261. The oligomerization of the complex is mediated by the self-interaction of 

Atg1612, 59, 60, and the membrane association of the complex is mediated by Atg511, 12, 59. 

During autophagosome formation, this complex and Atg8—PE decorate the expanding 

phagophore11, 12, 15, 16.As the phagophore membrane expands, the Atg12—Atg5-Atg16 

complex mainly resides on the outer side, whereas Atg8—PE does not display a 

preference (Figure 1.2)11, 12, 15, 16. Upon completion of autophagosome formation, the 

Atg12—Atg5-Atg16 complex is released into the cytosol11, 12. Meanwhile, a significant 

amount of Atg8—PE remains in the completed autophagosome during its journey to the 

lysosome12, 15, 62. Following autophagosome-lysosome fusion and lysis of the remaining 

single-membrane that envelops the cargo, this population of Atg8 is released into the 

lysosome lumen and degraded. 
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It is possible that the Ubl proteins have a role in phagophore expansion, although 

alternative modes of action have been suggested11, 63. The PAS localization of the Ubl 

proteins depends on Atg9 and the autophagy-specific PI(3)K complex, but not on 

proteins in the Atg9 retrieval system9, 13. Additionally, Atg8—PE recruitment to the PAS 

requires the Atg12—Atg5-Atg16 complex9, 11, 64; the level of Atg8—PE in vivo is 

reduced in the absence of Atg12, Atg5 or Atg169, 11, 61. 

In yeast cells lacking Atg9 or Atg6, the recruitment of Ubl proteins to the PAS is 

affected, but the level of Atg8—PE is normal, suggesting that the Atg12—Atg5-Atg16 

complex resides on Atg8—PE -containing structures before they reach the PAS9. Both 

Atg9 and Atg8—PE are presumably integrated in the membrane and colocalize at the 

PAS, yet their non-PAS populations display distinct localization patterns: Atg9 is 

punctate and Atg8 is diffuse. Whether they reside on the same membrane structure at the 

PAS remains undetermined. 

 

Adaptations of the core machinery 

 

Autophagy can be selective or non-selective (Figure 1.3). During selective 

autophagy, only pertinent cargoes are sequestered into autophagosomes. The selective 

autophagosomes, including Cvt vesicles, pexophagosomes and bacteria-containing 

autophagosomes, have contours that resemble those of the cargoes, contain little bulk 

cytosol between the cargo and the vesicle inner membrane28, 63, 65-67. This suggests that 

the core machinery is able to incorporate information about the number and shape of the 

cargoes, and produce vesicles accordingly, or that the vesicles assemble directly around 

the cargoes, using them as a scaffold. By contrast, during non-selective autophagy, 

autophagosomes primarily contain bulk cytoplasmic material. Owing to the soluble 

nature of the cargo, the core machinery conceivably needs additional mechanisms to 

determine its own workload. Here we discuss modifications and additions (Table 1.2) to 

the core machinery in subtypes of autophagy in order to understand the mechanism used 

to achieve different modes of action in selective and non-selective autophagy. 
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Figure 1.3 Adaptations of the core machinery 

 (1) Selective autophagy (showing the Cvt pathway as an example). The cargo complex is recognized by 
the receptor, Atg19. The delivery of the cargo complex to the PAS and the organization of the PAS are 
mediated by an adapter, Atg11; Atg11 interacts with Atg19, Atg1 and Atg9. Atg19 also interacts with Atg8. 
(2) Non-selective autophagy. An increase in the magnitude of non-selective autophagy requires regulation 
of the Atg1 kinase complex that involves Atg17. Meanwhile, the expression and turnover rate of Atg8 is 
elevated. (3) Non-canonical implementation (showing micropexophagy as an example). Atg9 and Atg18 
are involved in forming the vacuole arms. Atg8 is involved in forming the micropexophagic membrane 
apparatus (MIPA), which is required for the final sequestration. 
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Table 1.2 Subtype specific ATG genes 

Involvement in autophagy subtypes Gene name 

Cvt pathway Pexophagy Non-selective autophagy 

ATG11 Yes 25 Yes 25 No 25

ATG17 No 23 I/M 26 Yes 23

ATG19 Yes 68 No 68 No 68

ATG20 Yes 69 No 69 No 69

ATG21 Yes 32 S/C/D 32, 70 No 32

ATG23 Yes 22 No 22 I/M 22

ATG24 Yes 69 S/C/D 69, 71 No 69

ATG25 N/A Yes 72 N/A 

ATG26 No 73 S/C/D 73-75 No 73

ATG27 I/M 20 I/M 20 I/M 20

ATG28 N/A Yes 76 No 76

ATG29 No 77 N/A Yes 77

Yes: required;  
No: not involved;  
I/M: knockout strains display intermediate phenotype;  
S/C/D: phenotype is species or condition dependent;  
N/A: not tested or homologues not present in relevant model systems.  
 

Yeast systems provide two well-characterized examples of selective autophagy. 

The first and most thoroughly studied example is the Cvt pathway in S. cerevisiae, in 

which at least two precursor hydrolases are delivered to the vacuole to be activated 

(Figure 1.3)78, 79. In the Cvt pathway, the assembly of the PAS is initiated in the presence 

of the cargo complex35. Precursor aminopeptidase I (prApe1), a cargo of the Cvt pathway, 

oligomerizes into dodecamers, then forms a complex of about 100 nm in diameter in the 

cytosol65, 80, 81. Atg19, the cargo receptor, is then recruited to the prApe1 complex68. The 

delivery of the cargo complex to the PAS and the organization of the PAS are mediated 

by an adaptor, Atg1125, 82. Atg11 interacts with Atg19 and two members of the core 

machinery, Atg9 and Atg1, in addition to other proteins, possibly regulating the 

trafficking of Atg9 and the activity of the Atg1 complex23, 25, 83. Atg19 also interacts with 

Atg8, and this interaction might be required for the phagophore to wrap around the 
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cargo82. After completion of autophagosome formation, both the cargo and the receptor 

are delivered to the vacuole, where the receptor is degraded68.  

The second example of selective autophagy, macropexophagy, involves the 

degradation of excess peroxisomes, when yeast cells are shifted from media in which 

peroxisomal enzymes are essential for growth to media where these enzymes are no 

longer needed. Similar to the Cvt pathway, macropexophagy employs the core autophagy 

machinery and Atg11, whereas an Atg19-like receptor has not been identified84. 

Examples of selective autophagy are also present in mammals. For instance, 

selective autophagy plays an active part in innate immune defence against intracellular 

pathogens. Invading bacteria are generally sequestered into phagosomes en route to 

destruction. Some microbes, such as Streptococcus pyogenes, however, have developed 

the ability to escape into the host cytosol. These intracellular bacteria are then targeted by 

autophagy, and the sequestering autophagosome membranes closely enwrap the 

bacteria85. Although it is not known how the host autophagy machinery recognizes 

Streptococcus, an interesting clue is provided by Shigella flexneri, which has evolved a 

method to avoid such autophagic attack by masking a surface protein that would 

otherwise be recognized by the host defense machinery67. In this case, the bacterial 

surface protein VirG, which is involved in motility, is masked by a secreted protein, IscB, 

a Shigella virulence protein. Without IscB, mutant Shigella can still escape into the host 

cytosol. Unlike the wild-type bacteria, however, these mutants are then trapped in 

autophagosomes. Under these conditions VirG interacts with Atg5; however, the role of 

this interaction primarily resides on the outside surface of forming autophagosomes. 

Another well-known function of autophagy is the removal of aggregate prone 

proteins86. In human cells, a polyubiquitin-binding protein p62 (SQSTM1) links 

polyubiquitinated aggregates with LC3, a mammalian homologue of Atg8 by binding to 

both proteins87. This can be considered as a reminiscent of the prApe1-complex-Atg19-

Atg8 scheme in the Cvt pathway.  

Non-selective autophagy has been observed in all eukaryotes analyzed. In general, 

this process is triggered by starvation, but it also takes place constitutively at a low basal 

level. Although traditionally considered the bona fide form of autophagy, studies in yeast 

suggest that non-selective autophagy also involves adjustments and additions to the core 
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machinery (Figure 1.3). This is not unexpected, considering that the induction of non-

selective autophagy leads to increases in the size of the sequestering vesicle and in the 

production rate, compared with the Cvt pathway80, 88. Therefore, an acceleration of the 

membrane supply is also expected. Several of the changes that take place during non-

selective autophagy in response to starvation center on the Atg1 kinase complex. First, 

the kinase activity of Atg1 is increased (on the basis of in vitro assays)23, 24. This is 

accompanied by dephosphorylation of Atg13, which results in stronger affinity for Atg1 

and Atg17, the latter being a protein uniquely required for non-selective autophagy23, 24, 26. 

The absence of Atg17 causes a severe reduction in both Atg1 activity and the magnitude 

of non-selective autophagy24, 26. Additionally, the expression level and turnover rate of 

Atg8 is elevated, a phenomenon observed in other eukaryotes as well15, 62, 89. It is 

noteworthy that starvation enhances lysosome biogenesis90, 91, which might coordinate 

with autophagy induction; however, this should not be interpreted as direct evidence of 

autophagy. 

The aforementioned selective and nonselective types of autophagy all follow the 

canonical scheme with formation of autophagosomes in the cytosol and subsequent 

fusion with a lysosome. However, the core machinery can also function in a non-

canonical form. In Pichia pastoris, depending on the physiological conditions, 

peroxisomes are degraded either through macropexophagy or micropexophagy84. In 

micropexophagy, peroxisomes are sequestered mainly by arm-like extensions or 

septations of the vacuole, which are then sealed through a process that involves a small 

membrane patch, the micropexophagic membrane apparatus (MIPA)(Figure 1.3)92. 

Micropexophagy uses the same core machinery proteins as macropexophagy, although in 

a different organizational pattern, despite the fact that the two pathways are 

morphologically distinct (Figure 1.3). For example, Atg9 and Atg18 localize to the 

vacuole membrane and participate in forming the extending vacuole arms during 

micropexophagy28, 93. In this case, the role of the Ubl system might be restricted to the 

formation of the MIPA, which contains Atg892. An analogy may be that of a plastic wrap, 

which can be used to cover different items in various configurations, but in all cases 

carries out a similar function. 
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Homologues of proteins of the core machinery have been identified from yeasts to 

mammals, and most of them participate in autophagy. Conversely, proteins required 

specifically in certain subtypes of autophagy, such as Atg17 in starvation-induced non-

selective autophagy and Atg11 in selective autophagy, are not conserved. It is tempting to 

speculate that during evolution, the core machinery of autophagosome formation has 

been preserved; but, this core has also been modified and supplemented with specific 

factors in different species for adaptation to their unique environmental niche. 

Currently, our knowledge of the organization and functions of the core machinery 

is still quite limited, in part because very few of the Atg proteins have clear functional 

motifs. accordingly, continued efforts are needed to elucidate the most complex part of 

autophagy, the formation of the autophagosome. Furthermore, there are differences 

between autophagy that is induced by starvation and the process that is initiated in 

response to pathogen invasion or other pathological conditions. Thus, the unique 

adaptations that allow autophagy to meet various physiological conditions should not be 

overlooked. 
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Chapter 2  
Atg8 Controls Phagophore Expansion during 

Autophagosome Formation 
 

 

 

Abstract 

 

Autophagy is a potent intracellular degradation process with pivotal roles in 

health and disease. Atg8, a lipid conjugated ubiquitin-like protein, is required for the 

formation of autophagosomes, double-membrane vesicles responsible for the delivery of 

cytoplasmic material to lysosomes. How and when Atg8 functions in this process, 

however, is not clear. Here we show that Atg8 controls the expansion of the 

autophagosome precursor, the phagophore, and give the first real-time, observation-based 

temporal dissection of the autophagosome formation process. We demonstrate that the 

amount of Atg8 determines the size of autophagosomes. During autophagosome 

biogenesis, Atg8 forms an expanding structure and later dissociates from the site of 

vesicle formation. Based on the dynamics of Atg8, we present a multi-stage model of 

autophagosome formation. This model provides a foundation for future analyses of the 

functions and dynamics of known autophagy-related proteins and for screening new 

genes.  

 

 22



Introduction 

 

Eukaryotic cells employ macroautophagy, hereafter referred to as autophagy, to 

eliminate objects ranging from soluble proteins to entire organelles 1. In multi-cellular 

organisms, autophagy has important roles in development, immune defense, programmed 

cell death, tumor suppression, and the prevention of neuronal degeneration 2-5. In this 

pathway, cytoplasmic materials are sequestered into an expanding membrane sac, the 

phagophore, which subsequently matures into a double-membrane vesicle, the 

autophagosome. The site of autophagosome formation is termed the phagophore 

assembly site (PAS) 6, 7. Each autophagosome eventually fuses with a lysosome, resulting 

in the degradation of the inner membrane and the cargos. The formation of 

autophagosomes depends on the concerted actions of core autophagy machinery proteins 
1, 8. 

Among the core machinery proteins is Atg8, a ubiquitin-like protein (UBL) 9, 10. 

Newly synthesized Atg8 is processed by a cysteine protease, Atg4, to expose its carboxyl 

terminal glycine residue 11-13. It is then conjugated to phosphatidylethanolamine (PE) by 

the E1-like activating enzyme Atg7 and the E2-like conjugating enzyme Atg3 9, 14-16. 

Conjugated Atg8 can also be deconjugated by Atg4 11. A multimeric protein complex 

formed by Atg12, Atg5, and Atg16 facilitates the conjugation of Atg8, possibly by 

serving as an E3-like enzyme 6, 17. The formation of this complex itself also involves a 

conjugation reaction, in which the UBL Atg12 is attached to Atg5 by Atg7 and the E2-

like enzyme Atg10 18-21.  

During autophagy, Atg8 localizes to the PAS. In addition to PE conjugation and 

the Atg12−Atg5-Atg16 complex, its proper localization requires Atg9, a transmembrane 

protein suggested as a membrane carrier, and the autophagy-specific phosphatidylinositol 

3-kinase (PI3K) complex 6, 11, 12, 22-25. The PAS population of Atg8 is presumably 

associated with the phagophore 26-28. When the phagophore matures into an 

autophagosome, some Atg8 is trapped inside and eventually degraded 26, 27, 29, 30. The 

absence of Atg8 does not apparently affect the function of any other core machinery 
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proteins 6, 25. Although Atg8 has been widely used as a marker for recognition of 

autophagosomes 31, its exact in vivo function is still not clear.  

In the yeast Saccharomyces cerevisiae, the core machinery proteins are shared 

between starvation-induced autophagy and a second autophagy-like process, the 

cytoplasm to vacuole targeting (Cvt) pathway, which transports hydrolase precursors 

from the cytosol to the vacuole (a lysosome analogue) under nutrient rich conditions 1, 32. 

Among these proteins, only Atg8 has a significantly elevated protein level when 

autophagy is induced by starvation, making it a natural candidate for an autophagy 

regulator 26, 29. Here we investigated the role of Atg8 through morphological and 

functional analyses. 

 

Results 

 

Atg8 Regulates the Level of Autophagy 

To explore the possible role of Atg8 in autophagy regulation, we generated strains 

(A8-1, A8-2, and A8-3) that express different levels of Atg8 (Figure 2.1A; Materials and 

methods). Under nitrogen starvation conditions, the amounts of both conjugated and 

unconjugated Atg8 in these strains were lower than those of the wild type (Figure 2.1A). 

We then quantified the levels of autophagy in these strains using the Pho8∆60 assay 33. 

This assay is based on the autophagy-dependent delivery of a non-specific cytosolic 

marker, the modified phosphatase precursor Pho8∆60, from the cytosol to the vacuole, 

where it gets activated. The resulting alkaline phosphatase (ALP) activity thus indicates 

the total internal volume of autophagosomes. In wild-type cells, nitrogen starvation led to 

a sharp increase of Pho8∆60-dependent ALP activity (Figure 2.1B). In contrast, the 

atg8∆ strain showed a negligible increase. Strains A8-1, A8-2 and A8-3 showed 

intermediate increases, which correlated with their Atg8 protein levels. Importantly, these 

results were not caused by long-term low-level expression of Atg8 (i.e., a chronic defect), 

because in nutrient-rich media the levels of Atg8 in strains A8-1, A8-2 and A8-3 were 

similar to that of the wild-type strain (Figure 2.1A). This level of Atg8 was sufficient for 
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the maturation of the Cvt pathway cargo, precursor aminopeptidase I (prApe1) (Figure 

2.1C). Thus, the levels of Atg8 directly determine levels of autophagy in the 

corresponding strains.  

 

 

Figure 2.1 Atg8 regulates the level of autophagy 

(A) Strains A8-1, A8-2, and A8-3 showed intermediate Atg8 protein levels. Yeast cells were grown in rich 
medium to mid-log phase, then starved in nitrogen starvation medium for 4 h. Protein extracts were 
analyzed by immunoblotting with anti-Atg8 antiserum. Atg8—PE, Atg8 conjugated to 
phosphatidylethanolamine.  (B) Atg8 limits the level of autophagy. Yeast cells were grown in rich medium 
to mid-log phase, and then shifted to nitrogen starvation medium. At the indicated time points, samples 
were collected and tested by the Pho8∆60 assay. Specific units, specific activity units (µmoles 
phosphate/mg/min) normalized to protein concentration. Error bar, S.E.M. (standard error of mean) from 
six independent repeats. (C) The Cvt pathway is normal in strains A8-1, A8-2, and A8-3. Yeast cells grown 
in rich medium were collected at mid-log phase; protein extracts were analyzed by immunoblotting with 
anti-Ape1 antiserum. The locations of precursor and mature Ape1 are indicated.  
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Atg8 Controls the Size of the Autophagosome 

Normal recruitment of Atg8 to the PAS requires Atg9 6, 25. It has been shown that 

slowing the anterograde trafficking of Atg9 leads to retarded autophagosome formation 

without affecting autophagosome size, possibly by reducing the membrane supply 34. To 

explore whether Atg8 functions in a similar manner, we analyzed the effect of lower 

Atg8 expression by transmission electron microscopy (EM).  

Strains expressing variable levels of Atg8 were deleted for the PEP4 locus. Pep4-

dependent vacuolar hydrolase activity is required for degradation of the inner vesicles of 

autophagosomes (termed autophagic bodies) in the vacuole. Hence, the absence of PEP4 

allows the preservation of autophagic bodies. After 4 hours of starvation, no autophagic 

bodies were observed in atg8∆ pep4∆ strains (Figure 2.2A), showing that atg8∆ cells are 

unable to produce autophagosomes; in A8-1, A8-2, A8-3 and wild-type strains deleted for 

PEP4, autophagic bodies abounded in the vacuoles (Figure 2.2A). Lower levels of Atg8 

led to significant reductions in sizes of autophagosomes. The average cross sectional radii 

of autophagic bodies in the A8-1, A8-2, and A8-3 pep4∆ strains were 115±2, 125±2, and 

148±2, respectively, whereas that of the wild-type pep4∆ strain was 162±2 nm (Mean ± 

S.E.M., n>200) (Figure 2.2B). In contrast, the numbers of autophagic bodies were not 

affected by the reduced level of Atg8 (Figure 2.2C). These data suggest that even though 

Atg8 depends on Atg9 for its PAS localization, the role of Atg8 in autophagosome 

formation is distinct from that of Atg9, in that it specifically controls the size of 

autophagsomes.  
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Figure 2.2 Atg8 controls the size of the autophagosome 

(A, B) Lower amounts of Atg8 reduce the sizes of autophagosomes. Yeast cells were grown in rich medium 
to mid-log phase, then starved in nitrogen starvation medium for 4 h, fixed in potassium permanganate, and 
processed for electron microscopy (EM). (A) Representative EM images from pep4∆ strains. Autophagic 
bodies accumulated in A8-1, A8-2, A8-3, and wild-type background strains. No autophagic bodies were 
found in atg8∆ background cells. Scale bar, 1 µm. (B) Quantification of autophagic body size. The average 
radii of cross sections of autophagic bodies are shown; Error bar, S.E.M., n > 200. Autophagic bodies in the 
A8-1, A8-2 and A8-3 strains were significantly smaller than those of the wild-type (WT) background. (C) 
Atg8 level does not limit the number of auotphagosomes produced. Yeast cells starved for 2 and 4 h were 
collected and processed for EM. The average numbers of autophagic bodies per vacuole section are shown; 
Error bar, S.E.M., n > 100. Similar numbers of autophagic bodies were observed in strains with different 
amounts of Atg8.  
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The Dynamics of GFP-Atg8 during Autophagosome Formation 

To gain further insight into how Atg8 participates in autophagosome formation, 

we used fluorescence microscopy to observe the dynamics of Atg8 in live cells. GFP-

Atg8 was expressed under the control of the endogenous ATG8 promoter in the atg8∆ 

background (strain GA8). When cells were examined under starvation conditions, we saw 

the constant emergence and disappearance of GFP-Atg8 punctate structures, each with a 

duration of approximately 10 minutes (Figure 2.3). The sizes of the GFP-Atg8 puncta 

expanded initially but then remained nearly the same when the fluorescence decreased 

(Figure 2.3).  

 

 

Figure 2.3 Tracing of one GFP-Atg8 punctum during autophagsome formation 

Strain GA8 cells were starved for 1 h, immobilized on concanavalin A-treated cover slips, and incubated in 
starvation medium on a depression (concave) slide. Image stacks were collected every minute; only the 
images with GFP-Atg8 puncta (if present) in focus are shown. A GFP-Atg8 punctum expanded as the 
fluorescence increased and then retained that size as the fluorescence decreased. White arrows indicate the 
GFP-Atg8 punctum being tracked. During 15 minutes of observation, 90% cells displayed 1~4 such 
processes. R.F.: relative fluorescence normalized to peak value. DIC, differential interference contrast. 
Scale bar, 1 µm.  
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Figure 2.4 Dynamics of GFP-Atg8 during autophagosome formation 

Yeast cells were grown in rich medium to mid-log phase, then starved for 1 h, and observed as in Figure 
2.3. (A) The emergence and disappearance of GFP-Atg8 puncta correspond to autophagosome formation. 
GFP-Atg8 and mCherry-prApe1 were expressed under their endogenous promoters in wild-type cells. GFP-
Atg8 was recruited to the PAS, marked by the presence of the cargo mCherry-prApe1; after some GFP-
Atg8 was released, the cargo was delivered to the vacuole and disassembled. The white arrow indicates the 
GFP-Atg8 punctum being tracked. (B) The dynamic pattern is absent in atg1∆ cells. GFP-Atg8 and 
mCherry-prApe1 were expressed in atg1∆ cells. GFP-Atg8 and mCherry-prApe1 signals persisted without 
a significant decrease in fluorescence in their punctate structures during 30 min of observation. Scale bar, 1 
µm. 

 

To determine whether this dynamic pattern correlates with autophagosome 

formation, we repeated the analysis in cells expressing mCherry-prApe1 (Figure 2.4A) 35. 

Precursor Ape1 forms a large oligomer in the cytosol, detectable as a single punctum, 

which becomes a cargo of an autophagosome in starvation conditions 32, 36. Upon 

vacuolar delivery, the large oligomer disassembles into dodecamers, which then display a 

diffuse fluorescence pattern within the vacuole lumen. In wild-type cells, the 

disappearance of each mCherry-prApe1 punctum was preceded by the emergence and 
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disappearance of a colocalizing GFP-Atg8 punctum. In contrast, in atg1∆ cells, which are 

defective in autophagosome formation but not initial assembly of the PAS 6, 25, 37, both 

GFP-Atg8 and mCherry-prApe1 persisted without a significant decrease in fluorescence 

in punctate structures (Figure 2.4B). These data suggest that the dynamic pattern of Atg8 

puncta formation and disassembly is an integral part of normal autophagy, and that it 

represents events that occur before the disassembly of the cargo complex in the vacuole.  

 

The Majority of Atg8 at the PAS Is Released during Autophagosome 
Formation 

To test if the decrease and disappearance of the GFP-Atg8 signal represents the 

degradation of GFP-Atg8-containing autophagic bodies in the vacuole, we examined the 

dynamics of GFP-Atg8 in pep4∆ atg11∆ cells (ATG11 was knocked out to reduce the 

accumulation of Cvt bodies 38, which otherwise interfere in tracing the movement GFP-

Atg8 punta that are associated with autophagic bodies). A decrease of the GFP-Atg8 

signal was again clearly observed (Figure 2.5A). Following the decrease in GFP-Atg8 

fluorescence, some GFP-Atg8 puncta persisted within the vacuole lumen, displaying a 

low amount of fluorescence, whereas the majority could no longer be detected. These 

data suggest that the majority of GFP-Atg8 molecules were released into the cytoplasm 

before autophagosome-vacuole fusion.  

It should be noted that this large decrease of fluorescence was not an artifact due 

to photo-bleaching. We quantified the fluorescence of GFP-Atg8 punta in live cells and 

compared them against the values obtained from fixed cells. In fixed cells, photo-

bleaching caused less than a 10% reduction in fluorescence after 5 minutes (Figure 2.5D). 

In contrast, in live pep4∆ atg11∆ cells and in GA8 cells, the fluorescence of GFP-Atg8 

structures dropped well below 50% of the maximum intensities in 5 minutes post-peak 

(Figure 2.5B, C).  

Next, we decided to test if the release of GFP-Atg8 fluorescence from the PAS 

required deconjugation. The deconjugation of Atg8—PE by Atg4 is necessary for normal 

autophagy 11, although its exact role is not clear. We expressed GFP-Atg8∆R, which 

lacks the carboxyl terminal arginine residue (thus bypassing the first step of Atg4 

processing), together with mCherry-prApe1 in atg4∆ atg8∆ cells. In the absence of Atg4, 

 30



Atg8∆R can be conjugated normally but cannot be deconjugated. We then examined 

these cells in starvation conditions. As in wild-type cells, we found GFP-Atg8 puncta 

colocalizing with mCherry-prApe1, indicating that deconjugation is not required for the 

PAS localization of Atg8 (Figure 2.5E). However, these puncta did not show a significant 

decrease in fluorescence and the colocalizing mCherry-prApe1 remained visible (Figure 

2.5E), suggesting that the release of GFP-Atg8 from the PAS that we are monitoring is 

mediated by Atg4 and that this reaction is a crucial step in autophagosome formation 

and/or completion.  

Taken together, these results suggest that each cycle of appearance and 

disappearance of the GFP-Atg8 signal represents the recruitment and release of Atg8 

involved in the formation and completion of an autophagosome.  

 

The Amount of Atg8 at the PAS Regulates the Level of Autophagy 

The PAS is generally considered to be the site where the core machinery proteins, 

including Atg8, act to form autophagosomes. We next tested whether the regulation of 

the level of autophagy that occurs through modulating the size of the autophagosome is 

accomplished by controlling the amount of Atg8 at the PAS. GFP-Atg8 was expressed in 

atg8∆ cells under the control of either its own promoter (strain GA8) or the promoter 

used in strain A8-1 (strain A81-GA8) (Figure 2.6A). After cells were incubated in 

starvation conditions for 1 hour, we quantified the peak fluorescence of the GFP-Atg8 

PAS puncta during the dynamic cycles. The average intensity value in strain A81-GA8 

was approximately 50% of that in strain GA8 (Figure 2.6B). Consistently, the Pho8∆60 

activity of strain A81-GA8 was lower than that of strain GA8 (Figure 2.6C), indicating 

that the amount of Atg8 recruited to the PAS regulates the level of autophagy.  
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Figure 2.5 The majority of GFP-Atg8 at the PAS is released during autophagosome formation 

(A) The decrease of signal intensity of GFP-Atg8 puncta is caused by the release of GFP-Atg8. GFP-Atg8 
was expressed in atg11∆  pep4∆ cells. Yeast cells grown to mid-log phase in nutrient-rich medium were 
collected and starved in nitrogen-starvation medium for 30 min. Microscopy observation was performed as 
in Figure 2.4. The signal decreases were evident in atg11∆ pep4∆ cells, which are defective in degradation 
of autophagic bodies. (B, C, D) The significant decrease in fluorescence is not an artifact due to 
photobleaching. The intensities of GFP-Atg8 puncta in live cells and fixed cells were quantified. For live 
cells, the peak intensities were normalized as 100%, and the peaks were aligned to time 0. For fixed cells, 
the initial intensities were normalized as 100%. In fixed cells, photo-bleaching caused less than a 10% 
reduction in fluorescence after 5 min. In atg11∆ pep4∆ cells (B) and in strain GA8 (GFP-Atg8 in atg8∆) 
(C), the remaining fluorescence at the PAS was clearly below 50% at 5 min post peak. The actual data from 
which the photobleaching trend line is generated is shown in (D). Error bar, S.E.M, n=6. (E) Atg8 
deconjugation is required for the release of Atg8 and completion of autophagosomes. GFP-Atg8∆R and 
mCherry-prApe1 were expressed in atg4∆ atg8∆ cells. Yeast cells were starved for 1 h. Microscopy 
observation was performed as in Figure 2.3. GFP-Atg8 and mCherry-prApe1 persisted in a punctate 
structure during 20 min of observation. Scale bar, 1 µm. 
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Figure 2.6 Amount of Atg8 at the PAS controls the level of autophagy  

(A) Different amounts of GFP-Atg8 were expressed in strain A81-GA8 and GA8. GFP-Atg8 was expressed 
under the promoter used in strain A8-1 (strain A81-GA8) or its own promoter (strain GA8) in atg8∆ cells. 
Yeast cells were collected at the indicated time points after starvation. Protein extracts were analyzed by 
immunoblotting with anti-GFP antibody. GFP: GFP moiety, which is stable in the vacuole, released as the 
result of GFP-Atg8 degradation. (B) The amount of Atg8 recruited to the PAS is limited by the protein 
level. Yeast cells were starved in nitrogen-starvation medium for 1 h. Microscopy observation was 
performed as in Figure 2.4. Average peak intensities during dynamic cycles are shown. The average peak 
intensity in strain GA8 is normalized as 100%. Error bar, S.E.M., n > 100. Lower amounts of GFP-Atg8 
were recruited to the PAS in strain A81-GA8 compared with strain GA8. (C) Autophagy levels in strain 
atg8∆, A81-GA8, GA8, and GA8+A8. The Pho8∆60 assay was performed as in Figure 2.1. Error bar, 
S.E.M. from three independent repeats.  
 

Atg8 does not Control the Frequency of Autophagosome Formation 

Our microscopy observation provided a novel method to test whether a lower 

amount of Atg8 limits the number of autophagosomes produced. Because the recruitment 

and release of the majority of Atg8 happens before the delivery of autophagosomes to the 

vacuole, the number of GFP-Atg8 signal peaks would reflect the number of 

autophagosomes formed. We compared the peak frequency in a strain (GA8) expressing 
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GFP-Atg8 alone with that in a strain (GA8+A8) expressing additional Atg8 (Figure 2.7A). 

In strain GA8, the average number of peaks per cell in 15 minutes was 2.2±0.1 (Mean ± 

S.E.M.). Strain GA8+A8 did not show a statistically significant difference in the 

frequency from strain GA8 (Figure 2.7B), even though the Pho8∆60-dependent ALP 

activity was clearly higher in the former (Figure 2.7C), reflecting an increase in the total 

volume of the autophagosomes. This is consistent with our EM data, indicating that a 

lower amount of Atg8 did not limit the rate of autophagosome formation but did affect 

autophagosome volume. In contrast, the frequency was significantly lower in atg27∆ 

cells (Figure 2.7B), which are known to produce fewer autophagosomes and served as a 

control 34.  

 

Figure 2.7 Atg8 does not control the frequency of autophagosome production 

(A) GFP-Atg8 was expressed alone (strain GA8) or with additional Atg8 (strain GA8+A8). Samples were 
prepared as in Fig. 5 A. Protein extracts were analyzed by immunoblotting with anti-GFP antibody or anti-
Atg8 antiserum. (B) Frequencies of autophagosome production in strains GA8 and GA8+A8 are 
comparable; the atg27∆ strain showed a significantly lower frequency. Yeast cells were starved for 1 h. 
The microscopy observation was performed as in Figure 2.4.  The numbers of GFP-Atg8 peaks during 15 
min were recorded. Error bar, S.E.M., n > 100. (C) Autophagy levels are different in strains GA8 and 
GA8+A8. The Pho8∆60 assay was performed as in Figure 2.1. Error bar, S.E.M. from three independent 
repeats. 

Discussion 

 

In this study, we showed that (A) the amount of Atg8 regulates the level of 

autophagy by specifically modulating the size of the autophagosomes, whereas the 

number of autophagosomes is unaffected; (B) each round of autophagosome formation 

involves a cycle of Atg8 trafficking in which Atg8 is first recruited to an expanding 

structure and later released from it; (C) the release of Atg8 is essential for the completion 
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of autophagosome formation and it is mediated by deconjugation. In mammalian cells, 

the autophagosomes produced in response to group A Streptococcus invasion are larger 

than those seen in starvation conditions 39. According to those data, where the signal is 

not saturated, the level of Atg8 induced by group A Streptococcus invasion is higher than 

that induced by starvation, suggesting that the regulation of autophagosome size achieved 

by controlling the amount of Atg8 may be a conserved mechanism.  

For the first time, our data allowed temporal dissection of the autophagosome 

formation process based on real-time observations (Figure 2.4, 5). Here we propose a 5-

stage model (Figure 2.8): In the first stage, cargos and factors required for the PAS 

recruitment of Atg8 arrive at the PAS; in stage 2, Atg8 arrives at the PAS and the Atg8-

containing structure expands; stage 3 is a transitional step, allowing the completion of 

expansion and initiating release of Atg8 through deconjugation; in stage 4, additional 

Atg8 molecules are gradually released from the PAS; in stage 5, the phagophore matures 

into an autophagosome, and some Atg8 molecules are trapped inside. Previously, the lack 

of a data-derived multi-stage model restricted most studies on autophagosome formation 

to the PAS recruitment-dependency of autophagy-related proteins. Our model provides 

the foundation for re-analysis of the functions of known autophagy-related proteins and 

for screening new genes whose products act at each stage. In addition, this model serves 

as a reference point to coordinate the dynamics of other autophagy-related genes. For 

instance, it would be interesting to find at which stage Atg9, a protein known to cycle 

between the PAS and peripheral sites, departs from the PAS 24, 40.  

Our results suggest that the expansion and deformation of the phagophore 

happens concurrently or slightly after the recruitment of Atg8 to the PAS, given that Atg8 

is a causal factor in determination of autophagosome size. When Atg8 is released, the 

Atg8-containing structures retained their sizes (Figure 2.3), indicating that at this moment 

the expansion of the phagophore should be near completion, but not fully closed so that 

Atg8 molecules attached to the concave side of the phagophore (that will become the 

inner membrane of the autophagosome) can leave the membrane.  
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Figure 2.8 A multi-stage model of autophagosome formation 

Stage 1, cargos and factors required for PAS recruitment of Atg8 (showing Atg9 as an example) arrive at 
the PAS. Stage 2, Atg8 arrives at the PAS and resides on an expanding structure, in coordination with the 
growth and deformation of the phagophore. Stage 3 is a transitional stage, marked by the completion of 
expansion and initiating the release of Atg8.  Stage 4, additional Atg8 departs from the PAS. Stage 5, the 
phagophore matures into a completed autophagosome; only a small amount of Atg8 remains in the lumen. 
The timing of Atg9 departure is not yet determined.  

 

At present, how Atg8 modifies the phagophore to produce different-sized 

autophagosomes is not clear. One possibility is that Atg8 is a component of a coat 

structure that supports the expansion and deformation of the phagophore. The amount of 

Atg8 at the PAS then decides the size of the coat structure and the autophagosome 

formed thereafter. At the end of the process, the coat structure is disassembled. 

Consistent with this model, Atg8 is known to interact with cargo receptors 36, 41, and its 

conjugation provides a natural link to the membrane. These properties are analogous to 

those of Sec24, an adaptor protein in the coat of COPII vesicles, which interacts with 

cargo receptors and the vesicle membrane while residing on the coat cage formed by 

heterotetramers of Sec13 and Sec31 42, 43. Another possibility is that Atg8 controls the 
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size of the phagophore by limiting membrane incorporation. Purified Atg8 can mediate 

liposome hemifusion in vitro 44. In this model, the amount of Atg8 dictates the rate of 

phagophore expansion, and an independent mechanism will signal the end of expansion 

at a predetermined time point. At this moment, the edge of the phagophore will seek to 

merge with its opposing side. The determination of phagophore curvature is therefore a 

passive event instead of relying on an existing scaffold. Both models, however, are 

currently in need of critical supporting data. For the first model, even though the density 

of Atg8 molecules at the PAS may be consistent with a coat-like function (our 

unpublished data), the size of Atg8 is insufficient for connecting separate Atg8 proteins 

with each other; yet proteins that function analogously to Sec13 and Sec31 have not been 

identified.  For the second model, it is not known whether the phagophore expands 

through vesicular fusion; and the localization of Atg8 at the planar region of the 

phagophore 26-28 is inconsistent with the proposed membrane incorporation site, along the 

growing edge 45.  

 

Figure 2.9 Vesicles of unknown identity are present in autophagy mutants  

Samples were prepared for EM as in Figure 2.2. Occasionally, small vesicles were observed in the vacuoles 
of atg8∆ pep4∆ cells. Similar vesicles were also found in atg1∆ pep4∆ vps4∆ cells, which are defective in 
autophagosome formation. Scale bar, 1 µm. 
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Our data indicate that Atg8 is essential in autophagosome formation. In rare cases 

(in approximately 1% of the cells), however, small vesicular structures can be observed 

in atg8∆ pep4∆ cells (Figure 2.9). Previously, small autophagosome-like structures have 

also been detectd in atg8∆ cells 46. Currently the identity of these structures cannot be 

tested in the absence of an autophagic membrane marker other than Atg8. In addition, 

similar rare structures can also be detected in atg1∆ pep4∆ vps4∆ cells, which are 

defective in autophagosome formation (Figure 2.9). Further experiments are needed to 

elucidate the nature of these vesicles.    
 

Materials and Methods 

Yeast Media 

Rich medium (YPD): 1% yeast extract, 2% peptone, 2% glucose. Nitrogen 

starvation medium (SD-N): 2% glucose, 0.17% yeast nitrogen base without amino acids 

and ammonium sulfate.  

Construction of Strains and Plasmids 

Gene knockouts were performed as previously described 34. To construct Atg8 

expression plasmids, promoters from genes with protein levels expected to be similar to 

that of Atg8 in rich medium were placed in front of the ATG8 open reading frame; the 

resulting Atg8 protein levels were tested by western blotting. Three plasmids were 

chosen for this study based on the following two criteria: (a) Atg8 amounts in starvation 

were lower than that of the wild-type strain, (b) Atg8 amounts in rich media were similar 

to that of the wild-type strain. Plasmid pPATG27ATG8-406 contains 740 bp of ATG27 5’ 

sequence; plasmid pPVPS30ATG8- PATG18ATG8-406 contains 420 bp of VPS30 5’ sequence 

and 530 bp of ATG18 5’ sequence in front of 2 copies of ATG8 open reading frames, 

respectively; plasmid pPATG3ATG8-406 contains 380 bp of ATG3 5’ sequence. Plasmid 

pP1KGreen fluorescent protein (GFP)-ATG8-406 contains 990 bp of ATG8 5’ sequence in 

front of GFP-Atg8 open reading frame. These Atg8 expressing plasmids or the 

corresponding empty vectors were linearized and integrated into the atg8∆ strain. The 

strains used in this study are listed in Table 2.1.   
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Table 2.1 Yeast strains used in this study 

Descriptive Name Strain 
Name 

Genotype Reference 

Pho8∆60 parent TN124 MATα leu2-3,112 trp1 ura3-52 pho8::pho8∆60 
pho13::LEU2 

33

 YZX200 TN124 atg8∆::KAN This 
study 

atg8∆ YZX231 TN124 atg8∆::KAN URA3 TRP1 This 
study 

Wild type YXZ232 TN124 URA3 TRP1 This 
study 

A8-1 YZX233 TN124 atg8∆::KAN pPa
ATG27ATG8::URA3 TRP1 This 

study 

A8-2 YZX234 TN124 atg8∆::KAN pPVPS30ATG8-pPATG18ATG8::URA 
TRP 

This 
study 

A8-3 YZX235 TN124 atg8∆::KAN pPATG3ATG8::URA3 TRP1 This 
study 

Wild type pep4∆ YZX213 TN124 URA3 pep4∆::TRP1 This 
study 

atg8∆ pep4∆ YZX214 TN124 atg8∆::KAN URA3 pep4∆::TRP1 This 
study 

A8-1 pep4∆ YZX216 TN124 atg8∆::KAN pPATG27ATG8::URA3 
pep4∆::TRP1 

This 
study 

A8-2 pep4∆ YZX211 TN124 atg8∆::KAN pPVPS30ATG8-
pPATG18ATG8::URA3 pep4∆::TRP1 

This 
study 

A8-3 pep4∆ YZX212 TN124 atg8∆::KAN pPATG3ATG8::URA3 
pep4∆::TRP1 

This 
study 

GA8 YZX247 TN124 atg8∆::KAN pP1KGFP-ATG8::URA3 TRP1 This 
study 

GFP-Atg8 mCherry-
prApe1 

YZX261 TN124 atg8∆::KAN pP1KGFP-ATG8::URA3 Cherry-
Ape1::TRP1 

This 
study 

A81-GA8 YZX233 TN124 atg8∆::KAN pPATG27GFP-ATG8::URA3 TRP1 This 
study 

GA8+A8 YZX268 TN124 atg8∆::KAN pP1KGFP-ATG8::URA3 
pPATG3ATG8::TRP1 

This 
study 

atg1∆ pep4∆ vps4∆ JHY28 SEY6210 atg1∆::HIS5 S.p. pep4∆::LEU2 
vps4∆::TRP1  

34

a P, promoter 
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Electron Microscopy 

Sample preparation and image acquisition were performed as described 

previously 34. Autophagic body cross sections with a clear limiting membrane were 

outlined by hand using Adobe Photoshop. The area values of outlined autophagic body 

cross sections were obtained using the particle analysis function of ImageJ 

(http://rsb.info.nih.gov/ij/). The area values were then converted to radii for data 

presentation, using the formula: radius = square root of (area divided by pi).  

 

Fluorescence Microscopy 

Live cell fluorescence microscopy was performed as previously described 34 with 

the following modification: one side of the cover glass was coated with 1 mg/ml 

concanavalin A for 5 min, and rinsed with water; 100 µl of yeast cell culture was placed 

on the treated side for 3 min to immobilize yeast cells on the cover glass; the cover glass 

was rinsed with water, placed on a concavity slide containing liquid medium and 

observed under the microscope. Each experiment was repeated at least 3 times with more 

than 100 cells observed.  

 

Quantification of Fluorescence Intensity  

At each time point, a stack of images was collected along the z-axis to cover the 

entire cell. A projection of the image stack was created by calculating the sum of signal 

intensities. The intensity of GFP-Atg8 puncta was calculated as the difference between 

the absolute value of the GFP-Atg8 punctum and that of the local background, using the 

intensity of its adjacent area, as determined with softWoRx® software (Applied Precision, 

LLC, Issaquah, WA).  

 

Additional Assays 

The protein extraction, immunoblot and alkaline phosphatase (Pho8∆60) assays 

were performed as described previously 33, 34.  
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Chapter 3  
Statistical Methods for Estimating the Sizes of 

Intracellular Vesicles from Electron Microscopy Data 
 

Abstract 

 

Assessing the sizes of original vesicles from the 2-D images is an important 

component of electron microscopy studies. Although the collective properties, such as 

total volume or total surface area, can be obtained directly from the random sections, it is 

difficult to estimate the sizes of individual objects. For a population of vesicles 

heterogeneous in size, random sectioning results in size-biased sampling. Here I 

developed two methods for estimating the sizes of intracellular vesicles from size-biased 

data. One method uses computer programming to simulate the random sectioning of 

aggregated vesicles. The second method simplifies the process by using numerical 

integration without considering vesicle aggregation. Both methods can be applied to 

establish the correlation between the size distribution of the vesicles and that of vesicle 

sections and to subsequently estimate the sizes of autophagic bodies from real sectioning 

data. The two methods were used to calculate the area density of Atg8 molecules at the 

phagophore assembly site. The result suggested that the area density of Atg8 at the PAS 

is comparable with that of proteins that forms the COPII coat.  
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The Computational Simulation Method 

 

Macroautophagy, hereafter referred to as autophagy, is a pivotal intracellular 

degradation process1.  During autophagy, cytoplasmic materials are sequestered into an 

expanding membrane sac, the phagophore, which latter matures into a double membrane 

vesicle, the autophagosome. Each autophagosome eventually fuses with a lysosome, 

leading to the degradation of the inner membrane and the cargos. The formation of 

autophagosomes is catalyzed by a set of core machinery proteins at the phagophore 

assembly site (PAS).  The core machinery is supplemented by certain auxiliary proteins, 

the composition of which varies depending on physiological stimuli.  

Although autophagosomes and vesicles of the secretory pathway share similar 

mechanisms in their fusion with their corresponding destination compartments2, 3, it is not 

clear whether the formation processes of autophagosomes and secretory vesicles also 

follow the same principle. It is generally accepted that vesicles in the secretory pathway 

are generated from existing membrane structures by budding4. This involves the 

deformation of the membrane by the coat complexes, such as the COPII coat for 

endoplasmic reticulum (ER) to Golgi complex transport, the COPI coat in retrograde 

intra-Golgi complex and Golgi complex to ER transport, and the clathrin coat in post-

Golgi transport5. Although the participating components vary, these coats share a two-

layer scheme of organization, with a membrane proximal layer of adaptor proteins and a 

membrane distal layer of cage proteins. The assembly and disassembly of the coats are 

regulated by small GTPases. In autophagosome formation, however, the phagophore is 

considered to be formed de novo through membrane expansion instead of budding from 

existing organelles6.  A Sar1-like GTPase, which can be targeted to prevent coast 

disassembly, is absent from the currently known molecular machinery of autophagosome 

formation. It is therefore unknown whether the determination of the curvature of the 

phagophore involves a coat cage.  

Recently, we discovered that a member of the core autophagosome formation 

machinery, Atg8, specifically controls the sizes of autophagosomes7. Atg8 is a ubiquitin-

like protein8, 9. Although it has been suggested to be a tethering factor based on in vitro 
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results10, properties of Atg8 revealed by in vivo studies possess strong resemblance to 

those of coat adaptor proteins. During autophagosome formation, Atg8 is conjugated to 

phosphatidylethanolamine (PE) and initially resides on the surface of the phagophore11, 12. 

Later, the majority of Atg8 needs to be released by deconjugation prior to the completion 

of autophagosome formation7, which mirrors the de-coating stage. Similar to known coat 

adaptors, Atg8 also interacts with cargo receptors13, 14. Because the phagophore is a 

membrane sac with two layers of membrane in its planar regions, a transmembrane cargo 

receptor similar to those in the secretory pathway will not be able to reach coat adaptors 

on the convex side. This may explain why, unlike other coat adaptors, Atg8 localizes to 

both sides of the phagophore, with the population on the concave side presumably 

responsible for interacting with cargo receptor proteins. Functioning as a coat adaptor, 

Atg8 may restrict the size of the coat cage by limiting the amounts of cage proteins 

recruited. If this is the case, even though Atg8 does not form a cage by itself, the area 

density of Atg8 molecules on the membrane should be comparable to that of cage 

elements. Therefore I tested the coat adaptor model by estimating the area density of 

Atg8 on the phagophore.  

The area density of Atg8 was calculated using two input values: (1) the number of 

Atg8 molecules recruited to the PAS and (2) the size of the autophagosome, which 

should correspond to the size of the fully expanded phagophore. Our laboratory recently 

measured the number of Atg8 molecules recruited to the PAS by fluorescence 

microscopy using GFP-tagged Atg8 expressed in atg8∆ cells under the control of 

endogenous ATG8 promoter. Under nitrogen starvation conditions, the average peak 

number of GFP-Atg8 molecule in each round of Atg8 recruitment and release is found to 

be approximately 272±9 (mean ± S.E.M., n=100) (Table 3.1) (Geng J. et. al, in press).  

I then used electron microscopy to estimate the sizes of autophagosomes. When 

the PEP4 gene encoding the vacuolar aspartyl protease Pep4 is knocked out, the inner 

single-membrane vesicle of autophagosomes, termed autophagic bodies, can be preserved 

in the yeast vacuole (a lysosome analogue) and be visualized easily in transmission 

electron microscopy (Figure 3.1). The average radius of autophagic body cross sections 

in pep4∆ cells from the aforementioned GFP-Atg8-expressing strain is 127±2 nm (mean 

± S.E.M., n>200) (Table 3.1).  
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Table 3.1 Summary of results in the estimation of the area density of Atg8 

Estimation of GFP-Atg8 Density 

Mean S.E.M. (n=100) Number of GFP-Atg8 molecules at the PAS

272 9 

Mean S.E.M. (n>200) Radii of autophagic body sections 

127 nm 2 nm 

Mean C.I.  Radii of autophagic bodies 

148 nm 5 nm 

Area density of GFP-Atg8 1 per 2x103 nm2

Length of edge 40~50 nm 

S.E.M., standard error of the mean. C.I., 95% confidence interval. 

 

 

Figure 3.1 Autophagic bodies in pep4∆ cells  

(A) A representative section of a yeast cell. atg8∆ pep4∆ cells expressing GFP-Atg8 grown to mid-log 
phase were incubated in nitrogen starvation medium for 4 hours and processed for electron microscopy. 
Autophagic bodies accumulated as a cluster of single membrane vesicles in the yeast vacuole. Scale bar, 1 
µm. (B) The formation of autophagic bodies. When autophagosomes fuse with the vacuole, the inner 
vesicles are released into the vacuole lumen. They are termed autophagic bodies. In pep4∆ cells, 
autophagic bodies are not degraded.  
 

 

To calculate the actual sizes of these vesicles, however, the biases introduced by 

the sectioning process need to be corrected. When sectioning a spherical object, the radii 

of most sections are smaller than that of the sphere, contributing a negative bias. In a 

population of spheres heterogeneous in size, larger ones have higher probabilities of 

getting sectioned, contributing a positive bias. In addition to these two major biases, two 
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minor biases are introduced by the following factors: (1) the aggregation of autophagic 

bodies will obscure each other on the overlaid areas (Figure 3.1A); (2) cross sections 

below a certain size threshold are difficult to recognize because they do not have 

sufficient details to be distinguished from the background noise.  

 

 

Figure 3.2 Scheme for the computational simulation of sectioning autophagic bodies  

(A) First, the program generates a population of vesicles based on the specified parameters. (B)Then, the 
vesicles are positioned so that their surfaces contact each other. (C) The vesicle cluster is sectioned to 
produce a 70 nm-thick slice. (D) The areas of vesicle sections in the slice is quantified and reported. 

 

Although similar problems have been studied in the past, I was unable to find a 

suitable analytical solution. Instead, I developed a computational method in collaboration 

with Mr. Maciej B. Szefler and Dr. Edwards D. Rothman (Dept. of Statistics, UM). The 

code was written using the R statistical software environment ( http://www.r-project.org/ ) 

according to the following assumptions (Figure 3.2) (The source code can be download 

here: http://www-personal.umich.edu/~zxie/Research/Statistical Tools.htm ): (a) 

autophagic bodies are nearly rigid spheres; (b) radii of autophagic bodies are distributed 

log-normally with unknown parameters, µ and σ, which correspond to the mean and 

standard deviation of the distribution at a log scale; (c) accumulated autophagic bodies 

are positioned so that their surfaces are in contact with each other; (d) the thickness of 

each sample section is 70 nm; (e) cross sections with radii less than 50 nm (the 

recognition threshold in my own experience) are ignored. The simulation process first 
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generates a set of vesicles in silico based on the distribution with a given set of µ and σ 

values. Next, these vesicles are rearranged to be in contact with each other using an 

algorithm described by Milenkovic15. The pile of vesicles is then sectioned, in silico, to 

produce a 70 nm thick slice, and areas of vesicle cross sections are reported. By varying 

the parameters of the original distribution, the correlation between the observed cross 

section distribution and the original distribution can be established by linear regression 

using the empirical moments.  

 

 

Figure 3.3 The size distributions of observed sections and estimated original vesicles 

Observed section, sizes of actually observed sections of autophagic bodies. Estimated original, the sizes of 
original autophagic bodies estimated from simulation results. 

 

Using this method, I estimated the original autophagic body radii distribution 

using the data from the electron microscopy analyses (Figure 3.3). The estimated average 

radius was 148±5 nm (mean ± 95% confidence interval) (Table 3.1). Assume that GFP-

Atg8 is distributed evenly on both the convex and concave sides of the phagophore, the 

result above translates into one Atg8 molecule per 2x103 nm2 of surface area (Table 3.1). 

If each Atg8 molecule resides on a vertex of a polyhedral cage, the corresponding length 

of the edge will be approximately 40~50 nm, and the exact value will depend on the 
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composition of the polyhedron. In comparison, the length of the COPII coat edge is 

approximately 30 nm16.  

My result suggests that a coat adapter role for Atg8 remains a possibility. The key 

missing piece in the model, however, is the identity of components that constitute the 

edge of the coat. Previously, the complex formed by Atg12, Atg5 and Atg16 was 

proposed to be a coat candidate17. However, the number of Atg16 molecules recruited to 

the PAS is one order of magnitude lower than that of Atg8 (Geng J. et. al, in press), 

ruling out the possibility that the complex can fully cover the phagophore by itself. The 

function of Atg12—Atg5-Atg16 may instead be limited to recruiting Atg8 and 

facilitating Atg8 conjugation18-22.  

 

The Excel Numerical Integration Method 

 

Although the computational simulation method solved the problem of estimating 

sizes of vesicles, I realize that it has two limitations. The first one is the speed. The 

program can produce approximately 300 sections of vesicles for a set of µ and σ in an 

hour. In order to use linear regression, one would need to try about 10 or more sets of µ 

and σ, which means a whole day of computational work. The second one is accessibility. 

Whereas the R software is familiar to most researchers in statistics, it is not yet widely 

used by biologists. Currently, I am working with LSI IT staff to set up a server to run the 

program with an easy-to-use web interface. This will eliminate the need to learn the R 

software. The problem of speed, however, is intrinsic to the method.  

I then designed a second method that tackles both issues: speed and ease of use. 

This is a method implemented in Microsoft Excel®. It runs numerical integration in the 

background. To simplify the process, it ignores any obscuring of vesicles by other 

vesicles close by. Similar to the first method, the overall concept is to establish the 

correlation between the size distribution of vesicles and that of sections of vesicles. Here, 

I present steps to use this method first and the mathematical background afterwards. The 

descriptions are tailored for the exemplary spreadsheet file, which can be downloaded 

from http://www-personal.umich.edu/~zxie/Research/Statistical Tools.htm . 
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Firstly, to set the empirical parameters: the thickness of the sample slice 

(generally around 70 nm) and the size thresholds for recognizable vesicle sections (Figure 

3.4). In reality, when vesicle sections get small enough, I can not recognize them reliably. 

The upper threshold is where it becomes difficult to recognize. The lower threshold is 

where it becomes impossible to recognize.  

 

 

Figure 3.4 Entering parameters in the spread sheet  

A screen shot showing the region in the spread sheet where the user specify analysis parameters: Section 
Thickness, Recognition Thresholds, Calculation Range, µ and σ. 

 

Next, to analyze the actual data (Figure 3.5). Once the area values are converted 

to radii, calculate the following: mean, standard deviation, skewness, and kurtosis (the 

corresponding Excel functions are AVERAGE(), STDEV(), SKEW(), and KURT() ). It is 

also preferable to plot the probability density of the actual data (Figure 3.6). The density 

plot provides a graphical view of the actual data to compare with theoretical data 

generated later.  
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Third step is to choose a calculation range (Figure 3.4). Vesicles below this range 

are considered in the calculation. As a starting point, set it to be 1.5 times of (mean + 2 

standard deviations). This range need to be increased later if it can not cover the majority 

part of the size distribution.  

 

 

Figure 3.5 Analyzing the actual data 

A screen shot showing the region in the spread sheet where actual data are analyzed. Four values are 
calculated using the built-in functions: Mean, Standard Deviation, Skewness, Kurtosis.  
 

 

Figure 3.6 Experimenting with distribution parameters for a good fit to the actual data  

Shown here are the probability density plots for the following size distributions: green line, actually 
observed sections; blue line, theoretical original vesicles; red line, theoretical sections of vesicles. By 
changing the parameters µ and σ for the theoretical original vesicles (blue line), a user can try to fit the 
theoretical section result (red line) to the actual one (green line). (A) A good fit. (B) Bigger than actual. (C) 
Wider than actual. (D) Smaller than actual.  

 

Fourth step, to experiment with the parameters of the size distribution of the 

original vesicles and collect the theoretical data of resulted vesicle sections (Figure 3.6). 
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The two parameters µ and σ can be viewed as the mean and the standard deviation of the 

original distribution at a log scale. Ideally the user want to use the parameter close to the 

real value of the sample, so to have a graphical plot of actual data is advantageous 

because the user can find a good visual fit first and only try values around that pair of µ 

and σ (Figure 3.6). For instance, if µ = 5.21 with σ = 0.15 provides a good fit, the user 

can try µ = 5.16, 5.21, 5.26 versus σ = 0.11, 0.15, 0.19, a total of 9 combinations. For 

each set of µ and σ, the user should record µ and σ2 of the original distribution together 

with the mean, standard deviation, skewness, and kurtosis of the calculated section size 

distribution.  

Last step, to estimate the parameters of size distribution of the original vesicles. 

Run a linear regression using the sets of results collected in the previous step and the 

mean, standard deviation, skewness, kurtosis of the actual data. After obtaining µ and σ2, 

the corresponding mean and standard deviation of the original radii are then calculated as:  
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In the example file, I chose the following settings: slice thickness 70 nm, size 

thresholds 50 and 75 nm, calculation range 350 nm. Of 430 autophagic body cross 

sections from pep4∆ yeast, the mean radius is 162 nm; the standard deviation is 40 nm. 

From these data the sizes of the original autophagic bodies are estimated, the mean radius 

is 188 nm, and the standard deviation is 26 nm.  

Estimating vesicle sizes from random vesicle sections is a classical stereological 

problem. Assuming (1) vesicles are spherical, and r(x) is the probability density function 

of vesicle radii; (2) vesicles are randomly positioned in space, resulting in size biased 

sampling when taking a random slice of the space; (3) the thickness is the sample slice is 

2t; then the density function of the radii of the projected vesicle sections s(y) is a function 

of r()23:  
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For a given piece of vesicle cross section, whether it can be reliably recognized 

and collected as data is affected by its size. In practice, very small ones are generally not 

collected.  Assuming below a lower threshold l all are ignored, above an upper threshold 

u all are collected, and in between the possibility of being collected is proportional to the 

size, then the collection possibility function c(y) is:  
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Then, the density function of radii of vesicle sections a researcher can get, g(y), is:  
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With a known r(x), s(y) and g(y) can be calculated using numerical integration. 

Here I assume r(x) is a log-normal distribution:  
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Now a linear regression can be used to fit µ and σ based on the mean, standard 

deviation, skewness and kurtosis of actually collected data.  

After comparing results obtained through the current method and the simulation 

method, I found the difference to be around 1%. If the vesicles are much smaller, then the 

effect of packing will conceivably becomes stronger. The main advantage of the second 

approach is that it is much faster.  

Although developments in design based stereological sampling and computer 

assisted tomography have brought in promising new methods24, 25, the traditional 

approach of taking a random sample slice and quantifying all the observed cross sections 

of vesicles is still widely used due to limitation of available facility or of sample 

properties. The main caveat in using such data is to correct the effect of size-biased 

sampling. Non-parametrical methods for solving this problem have been developed 

previously23. The parametrical method described here is not meant to be a replacement of 

these existing methods, but rather a simple and efficient way to reach a reasonable 

estimation.  
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Chapter 4  
The Release of Atg8 Is Important for Sustaining 

Autophagosome Formation 
 

 

 

Abstract 

 

Eukaryotic cells rely on autophagy to eliminate excess or damaged organelles and 

proteins. The phagophore assembly site (PAS) is where the core autophagy machinery 

proteins and their auxiliary factors catalyze the formation of autophagosomes, which are 

double membrane vesicles carrying cytoplasmic materials for degradation. Although the 

recruitment of these proteins to the PAS has been extensively studied, little is known 

about the events happening afterwards or the nature of the PAS. Here we present 

evidence suggesting that the PAS contains a persistent complex that is used in 

consecutive rounds of autophagosome formation. Arresting the existing autophagosome 

formation process by blocking Atg8 release prevents the initiation of new ones. Our data 

also indicate that the retrograde trafficking of Atg9 from the PAS to peripheral sites 

happens before the release of Atg8 from the PAS. Blocking the release of Atg8 does not 

affect the trafficking of Atg9. Conversely, blocking Atg9 departure from the PAS 

prevents the release of Atg8. Finally, we show that deconjugation of Atg8 is important 

for maintaining the normal sub-cellular localization of Atg8.  
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Introduction 

 

Eliminating excess or damaged organelles and proteins is critical in maintaining 

the health of eukaryotic cells. Macroautophagy, hereafter referred to as autophagy, is a 

major pathway in achieving such homeostasis 1, 2. During autophagy, cytoplasmic 

materials destined for degradation are sequestered into an expanding membrane sac, the 

phagophore (also known as the isolation membrane), which matures into a double 

membrane vesicle, the autophagosome. Each completed autophagosome eventually fuses 

with a lysosome (or a vacuole, in the case of yeast), leading to the degradation of the 

inner vesicle and its contents.  

A set of core autophagy machinery proteins catalyze the formation of 

autophagosomes at the phagophore assembly site (PAS, also known as the pre-

autophagosomal structure) 1, 3. Depending on the induction stimuli, the core machinery 

proteins are supplemented by a varying set of auxiliary proteins that modulate the 

specificity and the magnitude of autophagy. Even though most core machinery proteins 

are excluded from the completed autophagosomes, it is not clear what happens to the 

PAS afterwards: whether the PAS retains a basic complex for consecutive rounds of 

autophagosome formation or the PAS is then completely disassembled.  

Among the core machinery proteins, two are known to depart from the PAS 

during autophagosome formation 4, 5. One is Atg9, a transmembrane protein. Atg9 

localizes to the PAS and non-PAS peripheral sites, including the mitochondria 4, 6-8. The 

cycling of Atg9 between the PAS and non-PAS sites has been proposed to be important 

for the transportation of membrane to the phagophore. Reducing the anterograde 

trafficking of Atg9 to the PAS results in reduced number of autophagosomes, although 

their sizes are normal 9. The departure of Atg9 from the PAS involves the Atg1 complex 

and the Atg2-Atg18 complex 4. The other one is Atg8, a ubiquitin-like protein 10, 11. 

Unlike most ubiquitin-like proteins, the conjugation target of Atg8 is 

phosphatidylethanolamine (PE), a lipid. Atg8—PE localizes to the phagophore and 

controls the sizes of autophagosomes 5, 12-14. Presumably, after the phagophore is fully 

expanded, most Atg8 is released to the cytosol by deconjugation5.  
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The conjugation and deconjugation of Atg8 involves a set of enzymes. After 

synthesis, Atg8 is processed by a cysteine protease, Atg4, at the carboxyl terminus, to 

expose the glycine residue for conjugation 10, 15-17. The resulted form is termed Atg8∆R in 

yeast, since the residue cleaved off is an arginine. The conjugation of Atg8∆R to PE is 

catalyzed by the E1-like activating enzyme Atg7, the E2-like conjugation enzyme Atg3, 

and a possible E3-like protein complex composed of Atg12—Atg5-Atg16, in which 

Atg12 is conjugated to Atg5. Atg16 in the E3 complex has been shown to determine the 

membrane target of Atg8 conjugation 10, 18-26. The deconjugation of Atg8—PE is 

catalyzed by the same protease, Atg4, which revert Atg8—PE back to Atg8∆R. If Atg8 is 

synthesized directly as Atg8∆R, the conjugation can proceed normally without Atg4.  

In this study, we focused on the physiological importance of Atg8 release and the 

temporal dissection of the autophagosome formation process.  

 

Results 

 

The Release of Atg8 is Necessary for the Regeneration of the PAS 

At present, it is not clear what happens to a PAS after the completion of an 

autophagosome. Does the PAS move on to engage in the next round of autophagosome 

formation? Or does the existing PAS disassemble and a new PAS reassemble from 

scratch for each round of autophagosome formation? The two possibilities can be 

distinguished by arresting the existing autophagosome formation processes (Figure 4.1A). 

If new rounds of autophagosome formation need the PAS to be freed from prior work, 

arresting the existing ones will prevent new processes from happening. If a PAS is 

reassembled from scratch in each round, arresting the existing ones will not immediately 

affect the formation of the new ones. Instead, new PAS will keep on forming until the 

essential components are depleted.  

We examined the effects of arresting existing autophagosome formation processes 

by blocking Atg8 deconjugation. In wild type yeast cells, induction of autophagy by 

starvation leads to sustained production of autophagosomes, as indicated by the 
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emergence and disappearance of GFP-Atg8 puncta (Figure 4.1B). On average, GFP-Atg8 

puncta emerged at a rate of 2~3 per 15 minutes. In contrast, in cells defective in Atg8 

deconjugation (atg4∆ atg8∆ cells expressing GFP-Atg8∆R), the frequent emergence of 

new punta was not observed (Figure 4.1C), suggesting that defect in releasing Atg8 not 

only arrests the existing autophagosome formation process, but also prevents the 

initiation of new processes.  

The lack of new GFP-Atg8-containing PAS can be explained by a defect in 

regeneration of the PAS, but can also be explained if deconjugation has dual roles, in 

both the recruitment of Atg8 to the PAS and its release afterwards. In the latter possibility, 

a severe kinetic defect in the recruitment may still allow Atg8 to eventually arrive at the 

PAS that are formed previously, although there might be a significant number of newly 

formed PAS that do not contain Atg8. To rule out this alternative explanation, we tested 

whether Atg8 can be recruited normally to newly formed PAS. Atg11 is a protein critical 

for PAS formation in nutrient-rich condition, but not essential for starvation-induced 

autophagy 27, 28. When observed immediately after shifted to starvation medium, most 

atg11∆ cells contained no GFP-Atg8 puncta, indicating that these cells lacked PAS 

initially (data not shown). After about 30 minutes of incubation, however, GFP-Atg8 

puncta started to appear in these cells, indicating that Atg8 was recruited to newly 

assembled PAS (Figure 4.2A). We then examined atg11∆ cells with defect in Atg8 

deconjugation. Interestingly, new GFP-Atg8 puncta also appeared in these cells after 30 

minutes of starvation (Figure 4.2B). These results suggest that deconjugation primarily 

affects the release of Atg8 from the PAS, not the recruitment of Atg8 to the PAS.  
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Figure 4.1 The defect in release of Atg8 prevents the regeneration of the PAS  

(A) Two potential fates of a PAS after autophagosome formation have different predicted outcomes. As 
shown in the left panel, one possible model is that a PAS is re-assembled from scratch for each round of 
autophagosome formation and disassembled afterwards. In this case, arresting existing autophagosome 
formation processes will not prevent the formation of new PAS until essential components are depleted. 
Alternatively, the de novo formation of the PAS is a slow process; and once formed, the PAS is re-used in 
consecutive rounds of autophagosome formation. In this model, arresting existing autophagosome 
formation processes will prevent the initiation of new processes due to lack of an available PAS. (B) New 
autophagosome formation processes are initiated continuously in wild type cells. Wild type cells expressing 
GFP-Atg8 were starved for 1 hour, immobilized on Concanavalin A-treated cover slips, and incubated in 
starvation medium on a depression (concave) slide. Image stacks were collected every 90 seconds and 
projected to a single image. New autophagosome formation processes were initiated constantly, as 
indicated by the emergence of GFP-Atg8 puncta. The later decrease and the eventual disappearance of 
fluorescence signal represent the release of Atg8 and the fusion of the autophagosome with the vacuole. (C) 
Deconjugation defective cells are unable to initiate new autophagosome formation processes. atg4∆ atg8∆ 
cells expressing GFP-Atg8∆R were observed as in (B). These cells lacked the frequent emergence of new 
GFP-Atg8 puncta seen in wild type cells.  
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Figure 4.2 The lack of new GFP-Atg8-containing PAS in the absence of Atg8 release is caused by the 

lack of an available PAS  

Fluorescence microscopy was performed as in Figure 4.1B. (A) GFP-Atg8 is recruited to newly formed 
PAS after starvation. After incubation is starvation medium for about 30 minutes, new GFP-Atg8 puncta 
started to emerge in atg11∆ cells. (B) Deconjugation is not required for Atg8 recruitment to newly formed 
PAS. atg4∆ atg8∆ atg11∆ cells expressing GFP-Atg8∆R were starved for 30 minutes. New GFP-Atg8 
puncta emerged in these cells as in (A). (C) Overexpressing GFP-Atg8∆R does not lead to emergence of 
new GFP-Atg8 puncta. atg4∆ atg8∆ cells expressing GFP-Atg8∆R under the control of CUP1 promoter 
were starved for 1 hour. No frequent emergence of new GFP-Atg8 puncta was observed. 

 

In wild type cells, the majority of Atg8 at the PAS is released back into the 

cytosol upon completion of autophagosome formation5. Since the amount of Atg8 

recruited to the PAS is limited by the amount of Atg8 available in the cell5, it is possible 

that a block in Atg8 release may reduce the cytosolic pool and cause the amount of Atg8 
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at the PAS to drop below the threshold for detection, even if new PAS is being 

constructed normally. If this is the case, an additional supply of Atg8 will cancel this 

effect and allow these PAS to recruit a sufficient amount of Atg8 to be detected. To test 

this possibility, we over-expressed GFP-Atg8∆R using CUP1 promoter. When observed 

by fluorescence microscopy, although the GFP-Atg8 puncta were brighter, the numbers 

of GFP-Atg8 puncta in the release-defective cells were not significantly different from 

those without over-expression. Consistently, emergence of new puncta was generally 

absent (Figure 4.2C). Taken together, these data suggest that the lack of emergence of 

Atg8-containing PAS when Atg8 release is defective is not because of slow recruitment 

kinetics or depletion of cytosolic pool of Atg8; instead it is because the PAS can not be 

regenerated from arrested existing ones.  

 

The Release of Atg8 Happens After the Departure of Atg9  

Previously, our laboratory has discovered that Atg9 cycles between the PAS and 

non-PAS peripheral sites 4. Atg9 is required for normal Atg8 recruitment to the PAS 29, 30. 

Hence Atg9 presumably arrives at the PAS earlier than Atg8 does. On the other hand, the 

relative timing of Atg9 departure from the PAS versus that of Atg8 release has not been 

determined. If the autophagosome formation process involves the sequential progression 

of the PAS through different stages, arresting an earlier step will prevent late events to 

happen. So we tested the relationship between the departure of Atg9 and the release of 

Atg8.  

Firstly, we examined the localization of Atg9 tagged with three GFP moieties in 

the carboxyl terminus (Atg9-3xGFP). In wild type cells, Atg9-3xGFP was observed on 

multiple puncta (Figure 4.3A). This appearance represents the normal steady state 

localization of Atg9: some at the PAS, some at peripheral sites. In atg1∆ cells, which are 

defective in Atg9 retrograde trafficking, Atg9-3xGFP was concentrated at one or two 

puncta that presumably represent the PAS (Figure 4.3A) 4. Interestingly, in cells defective 

in Atg8 release, Atg9-3xGFP was present in multiple puncta, similar to that in wild type 

cells (Figure 4.3A). With the precondition that Atg9 is able to travel to the PAS, such 

result indicates that Atg9 is able to leave the PAS. We then tested if the precondition is 
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true in this situation by further knocking out ATG1. In Atg8 deconjugation defective cells 

with ATG1 knocked out, Atg9-3xGFP became concentrated on a few puncta (Figure 

4.3A), suggesting that the deconjugation defect does not prevent the trafficking of Atg9 

to the PAS. These data indicate that the bidirectional trafficking of Atg9 does not require 

the release of Atg8.  

 

 

Figure 4.3 The release of Atg8 happens after the departure of Atg9 from the PAS  

(A) The trafficking of Atg9 does not depend on the release of Atg8. Cells expressing Atg9-3xGFP were 
collected from culture growing in rich medium or from culture incubated for 2 hours in starvation medium 
and observed. A stack of images was taken for each sample, of which one representative image is shown. In 
wild type cells, Atg9-3xGFP was present at multiple puncta. In atg1∆ cells, Atg9-3xGFP was present on 
one or two puncta. In atg4∆ atg8∆ cells expressing Atg8∆R, Atg9-3xGFP was present on multiple puncta, 
similar to in wild type cells. In atg1∆ atg4∆ atg8∆ cells expressing Atg8∆R, Atg9-3xGFP was present on 
one or two puncta per cell. (B) The release of Atg8 depends on the departure of Atg9. atg2∆ atg11∆ cells 
expressing GFP-Atg8 were starved for 1 hour and observed as in Figure 4.1B. Once formed, GFP-Atg8 
puncta persisted in these cells.  
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Next, we tested whether the release of Atg8 depends on the departure of Atg9. For 

this purpose, we used atg2∆ atg11∆ cells. Atg2 interacts with Atg9 and functions in Atg9 

departure 4, 31. We did not choose other genes involved in Atg9 retrograde trafficking, 

such as ATG1 and ATG18, because they have functions beyond the trafficking of Atg9 32 

(Cao Y. et. al, manuscript in preparation).  After shifted to starvation medium, new GFP-

Atg8 puncta emerged in these cells (data not shown), indicating that the recruitment of 

Atg8 to newly formed PAS is normal. In contrast to those dynamic puncta in atg11∆ cells, 

the GFP-Atg8 puncta in atg2∆ atg11∆ cells persisted once formed (Figure 4.3B), 

indicating defect in release. This result suggests that the departure of Atg9 mediated by 

Atg2 is necessary for the release of Atg8 and implies that the departure of Atg9 happens 

earlier than the release of Atg8.  

 

Deconjugation of Atg8 Is Important for Maintaining Normal 
Localization of Atg8 

During our examination of the deconjugation defective cells, we noticed an 

unusual phenomenon: some GFP-Atg8 localizes to the vacuole membrane (Figure 4.4). 

Compared with cells with other core machinery gene knocked out, deconjugation 

defective cells have a slightly higher autophagy activity as measured by the Pho8∆60 

assay. In addition, we could see occasional disappearance of GFP-Atg8 puncta in the 

deconjugation defective cells. So we suspected whether Atg8 molecules on the vacuole 

membrane arrive there as a result of “leaky” autophagosome formation. If 

autophagosome can be completed by an alternative albeit slower mechanism without 

releasing Atg8, the fusion of these unusual autophagosomes will deposit Atg8 on the 

vacuole limiting membrane. To test this hypothesis, we knocked out ATG1 and ATG14 in 

deconjugation defective cells. Both Atg1 and Atg14 are essential core autophagy 

machinery proteins 33, 34. (Their absence completely reduced the autophagy activity in 

those cells to background level.) Interestingly, the vacuole membrane accumulation of 

GFP-Atg8 was still present (Figure 4.4), indicating Atg8 reaches vacuole membrane 

independent of autophagosome formation. Presumably, this population of Atg8 is quickly 

removed by Atg4 in wild type cells and therefore never observed. This result suggests 
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that in addition to the E3 complex, active deconjugation by Atg4 is also important for 

maintaining the correct localization of Atg8—PE.  

 

 

Figure 4.4 Deconjugation is necessary for maintaining normal localization of Atg8  

atg4∆ atg8∆ cells expressing GFP-Atg8∆R were observed as in Figure 4.3A. In addition to the perivacuolar 
puncta, some GFP-Atg8 was present on the vacuole membrane. Further knocking out ATG1 or ATG14 did 
not abolish the accumulation of GFP-Atg8 on the vacuole membrane.  

 

Discussion 

 

Previously, extensive studies have been carried out to understand the assembly of 

core autophagy machinery proteins at the PAS. In contrast, little was known about the 

fate of the PAS after an autophagosome is completed. Here we show that the release of 

Atg8 from the PAS is necessary for the regeneration of the PAS, suggesting that the PAS 

contains a persistent basic complex that cycles back to its initial status in order to go 

through a next round of autophagosome formation. It should be noted that observations in 

atg11∆ background cells clearly demonstrated that the PAS can be formed de novo. In 

order to sustain autophagy, however, the availability of the PAS needs to match the rate 

of autophagosome formation. On depression slides at room temperature, each wild type 

cell is producing 2~3 autophagosomes per 15 minutes. In contrast, after 30 minutes of 

autophagy induction, the PAS is formed in only some atg11∆ cells but not all. Therefore 

the rate of de novo formation is insufficient for the high rate of autophagosome formation 

and the majority of the PAS involved need to come from regeneration.  
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After the release of Atg8 from the PAS is discovered, determining the relative 

timing between its release and the retrograde movement of Atg9 becomes a natural next 

step. Here we showed that the bi-direction movement of Atg9 does not depend on the 

release of Atg8, whereas the release of Atg8 is blocked when Atg9 retrograde movement 

is defective. The results suggest that the departure of Atg9 happens earlier than release of 

Atg8.  

The complex of Atg12—Atg5-Atg16 has recently been proposed to function as an 

E3-like enzyme that specifies the target membrane of Atg8 conjugation 24, 25. Our data 

indicate that maintaining correct localization also involves deconjugation. Presumably, 

the conjugation of Atg8 to the phagophore benefits from enhanced local conjugation 

activity due to the presence of the E3 complex. Conversely, the lack of E3 complex at 

other membranes means the conjugation rate will be lower than the rate of deconjugation, 

preventing mis-localization of Atg8.   

 

Experimental Procedures 

 

Construction of Plasmids and Yeast Strains 

Plasmid p1K-GFP-Atg8-406 and pAtg9-PG5 were described previously 5, 35. 

These two plasmids express GFP-Atg8 and Atg9-3xGFP under their endogenous 

promoters. Plasmid p1K-Atg8-404 contains the ATG8 open reading frame with 1 kb of 5’ 

upstream sequence and 200 bp of 3’ downstream sequence. The corresponding constructs 

lacking the last Arginine residue were created by site directed mutagenesis using the 

following primers: (1) Atg8∆R Nhe1 PF: ACATTTGGCtaGcAGTCTTTTATATG, and 

(2) Atg8∆R Nhe1 PR: AGACTgCtaGCCAAATGTATTTTCTC. The GFP-Atg8∆R 

overexpression plasmid pCu-GFP-Atg8∆R-406 was created by replacing the endogenous 

promoter with that of 250 bp of CUP1 5’ sequence. When necessary, the auxotrophic 

marker genes in these plasmids were swapped using enzyme PvuI. These plasmids were 

integrated into yeast strains at the locus of the corresponding auxotrophic marker genes. 

Gene knockouts were performed using standard PCR based approach 36, 37.  
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Table 4.1 Strains used in this study 

Strain 
Name 

Genotype Reference

TN124 MATα leu2-3,112 trp1 ura3-52 pho8::pho8∆60 pho13::LEU2 38

SEY6210 MATα ura3-52 leu2-3,112 his3-∆200 trp1-∆901 lys2-801 
suc2-∆9 mel GAL 

39

UNY3 TN121 atg1∆ 32

YTS153 SEY6210 atg2∆::HIS5(S.p.) atg11∆::LEU2(K.l.) This study 

YZX275 TN124 GFP-ATG8::URA3 This study 

YZX284 TN124 atg4∆ atg8∆ GFP-Atg8∆R::TRP1 This study 

YZX293 TN124 atg4∆ atg8∆ Atg8∆R::TRP1 This study 

YZX295 TN124 atg4∆ atg8∆ Atg8∆R::TRP1 Atg9-3xGFP::URA3 This study 

YCY62 TN124 atg4∆ atg8∆ Atg8∆R::TRP1 Atg9-3xGFP::URA3 
atg1∆::Ble 

This study 

YZX322 TN124 atg4∆ atg8∆ GFP-Atg8∆R::TRP1 atg14∆::URA3(K.l.) This study 

YCY47 TN124 atg4∆ atg8∆ GFP-Atg8∆R::TRP1 atg1∆::URA3(K.l.) This study 

 

Yeast Media 

Rich medium (YPD): 1% yeast extract, 2% peptone, 2% glucose. Nitrogen 

starvation medium (SD-N): 2% glucose, 0.17% yeast nitrogen base without amino acids 

and ammonium sulfate. 

 

Fluorescence Microscopy 

Live cell fluorescence microscopy was performed as previously described5. For 

time-lapse observations, one side of the cover glass was coated with 1 mg/ml 

concanavalin A for 5 min, and rinsed with water; 100 µl of yeast cell culture was placed 

on the treated side for 3 min to immobilize yeast cells on the cover glass; the cover glass 

was rinsed with water, placed on a concavity slide containing liquid medium and 

observed under the microscope.  
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Chapter 5  
Conclusions and Perspectives 

 

 

 

Brief Summary of Results 

 

The formation of autophagosomes is morphologically and functionally the central 

part of the autophagy pathway. Previous studies have gradually discovered the order of 

assembly of the core machinery proteins at the PAS. In contrast, we know little about 

what these proteins do after PAS assembly. In this study, I first focused on how Atg8 

function in autophagosome formation and demonstrated that (1) the amount of Atg8 at 

the PAS control the size of autophagosomes produced and that (2) each round of 

autophagosome formation involves the recruitment of Atg8 to the phagophore and the 

deconjugation and release of Atg8 from the phagophore. In my study, I have established a 

temporal dissection of autophagosome formation process based on time-lapse observation 

of live cells. The temporal dissection extended the effectiveness of fluorescence 

microscopy beyond studying the PAS assembly and allowed examination of events at late 

stages of autophagosome formation. This led to the further discovery that the defects in 

Atg8 release not only arrest the existing autophagosome formation processes, but also 

prevent the regeneration of the PAS, which is necessary for sustained autophagosome 

formation. In addition, the data suggest that the release of Atg8 happens after the 

departure of Atg9 from the PAS, and that deconjugation of Atg8 is important in 

maintaining correct localization of Atg8.  

In an attempt to estimate the area density of Atg8 on the phagophore, I developed 

two statistical methods for calculating the sizes of intracellular vesicles from sizes of 

their sections obtained through transmission electron microscopy. Both methods rely on 
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establishing the correlation of section size distribution with vesicle size distribution, 

which is then used to calculate the parameters of vesicle size distribution from collected 

section size data. The first method uses computer programming to simulate the random 

section of vesicles and take into consideration the effect of vesicle (autophagic bodies) 

aggregation. The second method takes a faster numerical integration approach that 

ignores the aggregation effect. Unlike existing analytical solutions, both methods free 

users from dealing with complex differential equations. The second method may appeal 

to more potential users since it only requires acquaintance with Microsoft Excel.  

 

Perspectives 

 

Function of Atg8 

 

Even though Atg8 has long been known as a ubiquitin-like protein, their 

functional analogy seems to be limited to the conjugation reaction. After conjugation, 

ubiquitinated proteins are often regulated by various types of ubiquitin-binding proteins. 

In contrast, the list of proteins which interacts with Atg8—PE is very short, as it only 

contains Atg4 and Atg19. Atg4 is the de-conjugation enzyme. Atg19 is a cargo receptor. 

Recent genome-wide protein interaction studies identified two potential interacting 

partners: Atp14 and Crc1. Both Atp14 and Crc1 are mitochondrial inner membrane 

proteins, casting doubts on their physiological relevance. So, are we at the end of the 

story? Not necessarily. Past genome-wide screenings may have missed the potential 

target for two reasons. Firstly, instead of forming a stable complex, Atg8 might interact 

with its partners transiently only at a specific stage or two during autophagosome 

formation. Most large-scale screenings are carried out using nutrient rich media, in which 

the autophagy activity is at a low basal level. The transient nature of the interaction 

combined with low occurrence of autophagosome formation in the cells could have 

prevented the successful detection. Secondly, when Atg8 is used as the bait in screening, 

it is generally tagged at the carboxyl-terminus. Should the tagged Atg8 function normally, 
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the tag would have been cleaved off by Atg4, voiding the original purpose. These two 

problems can be easily remedied if Atg8 is the focus of research. The tag can be added to 

the amino-terminus. The cells can be starved. The autophagosome formation process can 

also be arrested. Atg8 stays at the PAS under at least 3 conditions: when the retrograde 

movement of Atg9 is blocked, when the kinase activity of Atg1 is inhibited, when the 

deconjugation of Atg8 is blocked. These modifications should improve the chances of 

detecting potential Atg8 interacting proteins.   

If new interacting partners can be identified, the study of the physiological 

function of the interaction can benefit from our structural knowledge of Atg8. A typical 

Atg8 family protein is composed of two domains. One domain is the ubiquitin-fold, 

which can be aligned to ubiquitin with a Z-score of 6. The other domain is made of the 

N-terminal residuals, which forms 2 alpha helices covering part of the ubiquitin-fold. The 

N-terminal domain is unique to the Atg8 family of ubiquitin-like proteins. Interestingly, 

two independent studies suggest that the N-terminal domain can go through 

conformational changes in aqueous solution. Such a conformational change could 

potentially expose a patch of conserved amino acids that is otherwise covered by the N-

terminal domain in the crystal structure. Alanine-scan of the surface residues have shown 

that mutations in or adjacent to the covered area reduce autophagy activity as much as 

removing the N-terminal domain does. Should this area turn out to be an interaction 

surface, the function and regulation of the interaction will surely be fascinating research 

objects.  

 

Temporal and spatial dissection of autophagosome formation 

 

Besides Atg8, how do other core machinery proteins work together to form 

autophagosomes? For each of these proteins, at least three questions should be answered: 

what action(s) it performs, where it performs the action, and when it performs the action. 

Currently, attempts to answer the first question are hindered by our limited ability to 

decipher the enzymatic activity of a novel protein from its structure. In contrast, we are 

much better equipped to deal with the latter two: where and when. Specifically, the focus 
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of “where” is the spatial structure of core machinery proteins and the phagophore at the 

PAS, and the focus of “when” is the temporal order of the trafficking of the core 

machinery proteins to, from, and potentially within the PAS. Combining these two 

aspects together, we will then have a model that describes the re-organization of the 

spatial structure of the PAS through consecutive stages of autophagosome formation, in 

coordination with the trafficking of the proteins and the metamorphosis of the 

phagophore. Our understanding of the functions of these proteins will also benefit from 

such a model.  

The first step into constructing such a model is to establish spatial and temporal 

reference points. The current model of autophagosome formation was envisioned at a 

time when little information of the molecular machinery was available. The proposed 

intermediate stages are largely conceptual. With the knowledge accumulated in the past 

decade, it is now possible to examine the actual intermediates. Previous studies and my 

work have indicated that at least two events are happening after the initial assembly of 

the PAS: the retrograde movement of Atg9 and the release of Atg8. The release of Atg8 

presumably happens later. Mutants blocking either event can therefore provide a snapshot 

of an intermediate stage of autophagosome formation. One approach is to examine the 

condition of the phagophore, and the localization of Atg9 and Atg8 relative to the 

phagophore using immuno-EM. It is also possible to use fluorescence microscopy to 

study the spatial structure if the diameter is larger than 200 nm. The localization of other 

core machinery proteins can then be compared with that of Atg9, Atg8, or the 

phagophore. Both Atg8—PE and Atg9 are membrane-associated, one being lipid 

conjugated, the other a transmembrane protein. The PAS also contains PI3P produced by 

the autophagy specific PI3K complex, which recruits effector proteins, such as Atg18 and 

Atg21, to the PAS. It is not known, however, whether Atg8—PE, Atg9, Atg18 and Atg21 

reside on the same membrane structure. Resolving the spatial structure of the PAS and 

the actual intermediates of phagophore will provide new insights into the function of 

these proteins.  

Another method to study the temporal order is live-cell time-lapse fluorescence 

microscopy. Here, the trafficking pattern of Atg8 serves as a perfect reference. Unlike 

conventional genetic epistasis analysis that addresses dependency, this approach can 
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answer the question of timing directly and be applied to trafficking kinetics studies. 

Furthermore, when analyzing the phenotype of mutants, especially conditional mutants, 

one can ask how the whole process is affected instead of just how PAS assembly is 

affected. The main obstacle to this approach is the signal strength of fluorescent proteins 

relative to the sensitivity of the microscope. The observation of Atg8 is possible because 

it is the most abundant core machinery protein at the PAS. Signal strengths of other 

tagged core machinery proteins are much weaker so that in order to get reliable detection, 

strong photobleaching is unavoidable. The observation of Atg9 trafficking proves to be a 

different challenge because it resides in numerous small punta moving at high speed that 

by the time a scan of the whole cell is done, each puctum may have gone through several 

sections. Considering the fast advance of electronics, this obstacle will soon be overcome 

when the availability of more sensitive equipments improves. After all, not too long ago 

we still relied on overexpressed proteins to get a good image.  

When referring to autophagosome formation, most people will think about the 

classical model in which a membrane sac expands and matures into a double membrane 

vesicle. Even if this conceptual model can gather further supporting data from 

aforementioned spatial and temporal dissection studies, one should not forget that the 

same set of core machinery proteins are involved in a morphologically distinct process, 

micropexophagy. Thanks to the large sizes of the peroxisomes, the spatial organization of 

the core machinery proteins is much easier to resolve.  If macroautophagy process and 

micropexophagy evolved from a common ancestral form of autophagy, dissecting the 

micropexophagy process might provide a fast track to the understanding of PAS 

organization principle. It is interesting to note that in micropexophagy, Atg—PE and 

Atg9 localize to different membrane structures. Atg8—PE localizes to a special 

membrane sac (MIPA), whereas Atg9, together with Atg18, localize to the vacuole 

extensions. If they also reside on different compartments in macroautophagy, it would 

suggest that two pathways share the same topological organization. Alternatively, if the 

core machinery proteins were originally utilized in a process different than either 

pathway and the two autophagic processes later evolved independently, analyzing these 

two processes together may nevertheless ease the task of deciphering the activities of 

these proteins, which by themselves are presumably the same, only in different forms. In 
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general, the study on micropexophagy has not been as extensive as that of 

macroautophagy, since fewer laboratories are involved. As research in this field is 

picking up speed in recent years, it might turn into a rich resource for the understanding 

of core machinery proteins.  

 

5-Year Outlook 

 

The first autophagy specific gene, ATG1, was reported in 1993. By 2003, when 

the nomenclature was unified, the list had already included 27 genes. Based on the 

existing data, the entire autophagosome formation machinery can be categorized into the 

core machinery and the auxiliary factors; and the core machinery proteins can be put into 

several functional groups. In addition, we have a preliminary understanding of the 

enzymatic activities of several core machinery proteins. As the research in the field 

deepens, in the next five years, we should be able to establish a basic framework on the 

spatial and temporal organization of the PAS in autophagosome formation. The discovery 

of new genes will continue. Considering that yeast only have about 2000 more genes than 

bacteria, the list of yeast genes functioning at the PAS may be completed in a few years 

and reach a level of about 100 genes, with about 1/3 essential ones and the rest auxiliary 

ones (among the currently known 31 genes, about 1/2 are essential). The list in mammals 

will take longer to exhaust, although most entries will be auxiliary factors fine-tuning the 

autophagy process. The complete list of core machinery proteins will facilitate the 

identification of the regulation target of each auxiliary factor and improve our 

understanding of how autophagy is regulated in physiological or pathological conditions. 

Because autophagy is a process that affects various aspects of cellular physiology and 

both inadequate autophagy and excess autophagy are harmful, knowledge on the 

auxiliary factors will be very important in successful therapeutic manipulation of 

autophagy so that the autophagy process can occur at the desired timing and location 

towards the intended targets.  
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