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Abstract 
 

 

 Femtosecond to nanosecond transient absorption experiments were performed on 

a series of B12 complexes to assess the influence of the solvent environment on the 

excited state electronic structure and resulting dynamics.  A series of alkylcobalamins 

(adenosyl-, ethyl, methyl, and propylcobalamin), all of which are known to undergo 

cobalt-carbon bond homolysis in response to excitation at 400nm were studied in a 

variety of surroundings.  Measurements on adenosylcobalamin (coenzyme B12) bound to 

glutamate mutase demonstrate a metal-to-ligand-charge-transfer (MLCT) state en route to 

bond homolysis, supported by protein influence on the excited state electronic structure.  

This charge transfer intermediate, which is similar to that reported in the literature for 

methylcobalamin, is not observed for free adenosylcobalamin.  Measurements on 

methylcobalamin probe solvent influence on the MLCT state and characterize it by a 

large charge density transfer.  This result is in contrast to studies on cyanocobalamin, 

which is not observed to undergo homolysis, where the solvent dependent lifetime of an 

intermediate ligand-to-metal-charge-transfer (LMCT) state is characterized by a modest 

transfer of charge density.  Such a LMCT intermediate is observed for 

adenosylcobalamin in water leading to bond homolysis.  The protein has greatly altered 

the photochemical pathway to homolysis, which is expected to be representative of 

influence on thermolysis. 



 xxiii

 Upon homolysis the photoinduced alkyl and cob(II)alamin radicals may 

recombine or escape the solvent cage to form solvent separated radical pairs which do not 

recombine in the bulk by the 9ns time limit of these experiments.  Recombination can be 

monitored directly via the oxidation state of the cobalt atom.  The neutral alkyl radical is 

a paradigm for small particle escape and diffusive motion in a liquid.  The escape 

behavior is similar for adenosyl, ethyl, and propyl radicals indicating that hydrogen 

bonding with the solvent is not a major influence.  The methyl radical appears to 

dissociate from the cobalamin with excess kinetic energy.  Preliminary analysis is 

presented suggesting the escape is not adequately modeled by the steady state diffusive 

hydrodynamic theory.  To explain the discrepancy of escape in different environments an 

outline of planned analysis is presented.   
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Chapter 1  

Introduction 

 

Vitamin B12, B12 cofactors (Figure 1.1), and cofactor analogues, like other 

transition metal complexes, exhibit rich colors due to their low-lying valence electronic 

transitions.  Beyond the inherent beauty, the photochemistry and photophysics 

responsible for cofactor pigmentation is also a probe into the inner workings of the 

complex.  Absorption and emission can be used to study the underlying electronic 

structure which gives rise to these spectra.  As well, the key event for the participation of 

B12 cofactors in enzyme mediated catalysis is the thermally induced cleavage of the 

cobalt – carbon (Co-C) bond.  The cleavage of the active bond may also be induced by a 

photon, resulting in photolysis. Changes in the electronic structure as well as 

conformational changes of the molecule occur on very fast time scales (femtosecond to 

picosecond). The time resolved techniques of ultrafast optics are then uniquely suited to 

the study of the cobalamins, whereby the active Co-C bond may be cleaved and the 

resulting chemistry and physics monitored on a fast time scale in both free and protein 

bound environments during and following bond cleavage. 

Observation of the photochemistry and photobiology of B12 complexes has helped 

to elucidate some aspects of the Co-C bond reactivity and ultimately the question of 

organic radical generation for enzyme mediated catalysis.  Even beyond these specific, 

biologically important questions, the B12 coenzymes may also serve as a paradigm system



 2

 

Figure 1.1.  Free adenosylcobalamin.  The corrin ring and side groups are colored green, the 
dimethylbenzimidazole and other pendants in blue and the adenosyl in red.  The functional group in 
red may also be a methyl, cyano, or aquo group (ethyl- and propylcobalamin were synthesized). This 
is just s schematic cartoon and does not indicate the geometry of the corrin ring.  Figure modified 
from Reference [1]. 

 

 for the general model of bond breaking reactions involving small particle diffusion in the 

condensed phase environment [2].  In the studies reported in this work we have probed 

the influence of environment on the electronic structure of cobalamins in solution and 

bound to the protein glutamate mutase with the collaboration of the B12 photophysics 

(Chapter 3).  We have also used the photolysis and geminate recombination of 

alkylcobalamins to investigate diffusive cage escape of small radicals in solution 

(Chapter 4), though analysis is ongoing and only preliminary results are presented on this 

topic. 
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1.1 B12: An Introduction 

B12 cofactors participate in a variety of  isomerases and methyltransferase enzyme 

mediated catalysis reactions in nature.  In mammals, which are unable to synthesize 

vitamins, only two enzymes are known to be dependent on B12 cofactors.  Methionine 

synthase utilizes heterolytic bond cleavage of methylcobalamin to produce methionine, 

an essential amino acid from homocysteine and release tetrahydrofolate [3].   

Methylmalonyl-CoA mutase produces succinyl-CoA from methylmalonyl-CoA 

with the aid of free radical production via the homolytic bond cleavage of the Co-C bond 

of adenosylcobalamin [3].  This reaction is important for both energy production and the 

synthesis of hemoglobin.  A specific adenosylcobalamin dependent protein, glutamate 

mutase, similar in structure and function to methylmalonyl-CoA mutase will be 

considered in Chapter 3.  Glutamate mutase is a well characterized protein which will 

help illustrate how enzymes can use organic free radicals to facilitate a carbon skeletal 

rearrangement reaction, effectively isomerizing about a carbon-carbon bond.   

Control of the bond cleavage to form different oxidation states of the cobalamin, 

though widely studied, remains an open question.  The interaction and metabolic 

pathways associated with the biologic function of B12 cofactors also remain at the center 

of intense interdisciplinary study.  The form of B12 typically used for fortification in the 

food supply is cyanocobalamin despite the fact this form is not the one used by the body.  

Mammals can readily convert cyanocobalamin to either adenosylcobalamin or 

methylcobalamin.  Cyanocobalamin is used in the food industry due to its stability [4].  

The name “Vitamin B12” often refers to cyanocobalamin and is the convention adopted in 

this work. 
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B12 complexes consist of a central cobalt atom ligated to five nitrogen atoms and 

one carbon atom in an octahedral arrangement (shown for the case of adenosylcobalamin 

in Figure 1.1; and shown for the isolated cobalamin in Figure 1.3).  Four of the nitrogen 

atoms are in one plane and part of a corrin ring structure.  The fifth nitrogen is ligated in 

the lower axial position and may be from an associated (pendant) dimethlybenzimidazole,  

or in the case of bonding to proteins, may be supplied by a histidine residue of the protein 

(where the dimethlybenzimidazole has been displaced, Figure 1.2).  Below physiological 

pH dimethylbenzimidazole may become protonated leaving the cobalamin in the base-off 

configuration.  At the pH values for experiments considered here the cobalamin is 

expected to be base-on [5]. 

   

Figure 1.2.  Adenosylcobalamin with lower axial nitrogen bond supplied by a histidine residue of 
glutamate mutase.  Figure reproduced from Reference [6]. 

 

The upper axial, active bond is to a carbon atom, which can be one of several 

functional groups or synthetically prepared groups.  The biologically relevant forms for 

human physiology are adenosylcobalamin (coenzyme B12 -- where the carbon is supplied 
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by 5-deoxyadenosyl), methylcobalamin (methyl), and cyanocobalamin (vitamin B12 -- 

cyanide).  Two synthesized alkylcobalamins were also studied in the course of this work: 

ethylcobalamin (carbon atom in the Co-C is supplied by an ethyl) and n-propylcobalamin 

(n-propyl). 

 

Figure 1.3.  Cobalamin looking “downward” along the upper axial direction.  The corrin ring 
structure and side chains are identified by green, and the dimethylbenzimidazole by blue.  Both the 
upper and lower axial ligands are not bonded in this figure. 

 

The conjugated structure and associated electron mobility of the corrin ring, 

which is similar in structure to the more familiar porphyrin (but likely not as flexible [7]), 

is the basis for the much of the electronic spectrum of alkyl and nonalkylcobalamins.  

There are fourteen π electrons associated with the 13 atoms of the corrin ring itself [8].  

In fact studies of metal free corrinoids and of corrinoids with different substitution metals 

besides cobalt exhibit similar absorption spectra to the coblamin arrangment.  In general, 

the substitution of a coordinating metal atom in the ring induces “surprisingly little 

effect” [8] on the spectrum. Fortunately, especially in the instance of alkylcobalamins, 
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the absorption spectrum is modified characteristically by the axial ligation as a function 

of the ligand σ-donor strength, and more subtlety so by environment [8].  A review of the 

literature for each of the alkylcobalamins studied as well as for cyanocobalamin follows. 

The steady state absorption spectra of vitamin B12, B12 cofactors, and synthetic 

analogues are characteristic of both axial ligation and environment [6].  The spectra are 

especially indicative of the oxidation state of the cobalt atom, which is related to axial 

ligation and the details of bond cleavage between the Co-C bond.  Steady-state absorption 

spectra for a variety of oxidation states are shown in Figure 1.4A [6].  Figure 1.4B 

contrasts the much more subtle influence on the spectrum due to environment and 

functional group (for two alkyl functional groups, adenosyl and methyl). 

 

 

Figure 1.4.  The steady-state absorption spectrum is characteristic of (A) cobalt oxidation state and 
(B) environment.  In box A cob(I)alamin is in black, cob(II)alamin in green, and cyanocobalamin 
(Co3+) in red.  In box B the spectra of adenosylcobalamin are shown in water (red), ethylene glycol 
(green dash), and protein (blue dash) environments.  Methylcobalamin in water is also plotted (grey 
dash).  Figure reproduced from Reference [6]. 

Cbl(I) 

Cbl(II) 

CNCbl 
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When the cobalt atom is octahedrally bonded as shown in Figures 1.1 and 1.2, it 

assumes a 3+ oxidation state, with an absorption spectrum similar to the red trace 

(cyanocobalamin) in Figure 1.4A, and each trace for adenosylcobalamin and 

methylcobalamin in Figure 1.4B.  If the Co-C bond cleavage proceeds via homolysis one 

electron each will be retained by the cobalamin and functional group resulting in two free 

radicals.  The cobalt atom assumes a 2+ oxidation state, with the unpaired electron in the 

2z
d  orbital [5].  There are two options for heterolytic bond cleavage.  Both electrons may 

be retained by either the cobalamin or the functional group.  For methyltransferase 

mediated reactions the heterolytic cleavage results in cob(I)alamin, with both electrons 

remaining on the cobalamin. 

When a molecule is placed into an electronic excited state a number of reaction 

pathways not energetically favorable for the ground state may become available for 

evolution from the excited state [9].  The energy of visible and ultraviolet photons falls in 

the correct regime to induce such transitions making this spectrum an invaluable tool for 

the study of excited state dynamics, as well as a nearly innumerable host of other physical 

phenomena.   

For the experiments presented in this work, the specific choice of optical probe 

was ultrafast transient absorption spectroscopy [10].  The experimental details along with 

some theoretical background will be discussed in Chapter 2.  It is well established that 

introducing enough energy via a photon to an alkylcobalamin results in homolytic 

cleavage of the Co-C bond [11-13], with varying quantum yield.  Aside from the innate 

interest and significance inherent in the photochemical behavior, photolytically induced 

bond homolysis may be a model for aspects of bond homolysis during enzyme mediated 
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catalysis reactions, and give some insight into why cleavage is directed heterolytically in 

methylcobalamin dependent proteins but homolytically in adenosylcobalamin dependent 

enzymes. 

The spectroscopic signature of the radical pairs produced following thermal 

homolysis (cob(II)alamin in Figure 1.4) is identical to that observed following the 

photolysis generated radical pairs.  Photolysis directed research holds several advantages 

over thermolysis studies.  Exciting with a photon allows for experiments in the more 

restricted protein environment, where the high temperatures and long times involved 

would result in denaturing of the protein [14].  A protein environment photolysis study is 

presented in Chapter 3.  Thermolysis studies cannot provide the time resolved 

information made possible by the introduction of short pulses.  Considerable work has 

been done towards characterizing the photolysis of B12 compounds [11, 12, 15-18].  Only 

recently, however, has much of that work been done with femtosecond precision [6, 13, 

19-26].  A brief review of the literature on photophysics of the B12 compounds used for 

this work follows. 

 

1.2  Photophysics Tour d’Horizon 

Photolysis of alkycobalamins (including adenosylcobalamin, ethylcobalamin, 

methylcobalamin, and propylcobalamin) proceeds via homolytic cleavage of the Co-C 

bond with varying quantum yield, and excited state dynamics.  Excitation of 

nonalkylcobalamins, such as cyanocobalamin and hydroxocobalamin, does not induce 

bond cleavage but instead is followed by internal conversion to the ground state on 

picosecond timescales.  The existing literature on the excited state dynamics of each of 
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these compounds will be considered.  The wavelength used for excitation in all 

experiments conducted for this work was the readily available second harmonic of 

titanium sapphire near 400nm.  The dynamics reviewed below are considered in regards 

to excitation wavelength beyond 400nm.   

 

1.2.1 Alkylcobalamins 

     1.2.1.1  Adenosylcobalamin 

Adenosylcobalamin excited at 400nm in free aqueous solution first undergoes 

subpicosecond internal conversion to the low lying S1 excited state (first singlet state).  

The pathway to bond homolysis proceeds via a spectroscopically identifiable 

intermediate characteristic of a weakened trans-axial nitrogen bond (towards base off 

configuration) [13, 24-26].  The dynamics are not observed to exhibit wavelength 

dependence between excitation at 400nm and 530nm [13].  Experiments with an 

excitation wavelength of 355nm are in general agreement, but are limited by nanosecond 

resolutions [17].  The radical pair, adenosyl and cob(II)alamin, is photolytically generated 

with a thermal energy near that of its surroundings [22],  and may then either recombine 

or diffuse from each other to form a solvent separated radical pair.  Bulk recombination 

will not occur on the timescales (9ns) of the experiments performed in this thesis [27]. 

The spectrum indicative of a radical pair (cob(II)alamin) arises in ≤ 100ps, following the 

intermediate arising at ≤ 14ps [25, 26].  At room temperature the quantum yield for the 

formation of solvent separated radical pairs is ~20-24% [17, 18, 24].   

Identical experiments probing the dynamics of adenosylcobalamin in ethylene 

glycol [25] found bond homolysis on a timescale of ≤ 28ps, without an identifiable 
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intermediate as seen in water.  The quantum yield for formation of solvent separated 

radical pairs is reduced from that observed in water to ~8% in ethylene glycol.  The 

intrinsic rate for geminate recombination is largely independent of the environment, 

while the effective rate is influenced by the solvent viscosity [25]. 

 

     1.2.1.2  Ethylcobalamin, Methylcobalamin, and Propylcobalamin 

 The three alkylcobalamins, ethyl-, methyl-, and propylcobalamin have been 

grouped together due to the similarity of the functional groups and due to similarities in 

the observed dynamics.  Transient absorption studies on ethylcobalamin and 

propylcobalamin return nearly identical dynamics [2].  Excitation at 400nm results 

predominantly in direct homolysis.  Further spectral evolution may represent some 

subpicosecond internal conversion to the S1 excited state with a spectrum characteristic of 

a nonalkylcob(III)alamin type state, or vibrational relaxation of the corrin ring [2, 21].  

Decay of the excited state via bond homolysis with near unit quantum efficiency (or 

vibrational relaxation) follows on a time of 30ps (water) to 100ps (ethylene glycol).  

Excitation at 520nm shows similar but delayed dynamics.  Quantum yields for solvent 

separated radical pairs at room temperature for ethylcobalamin are:  ~61-62% in water; 

and ~21% in ethylene glycol, regardless of excitation wavelength.  For propylcobalamin 

quantum yields are: ~43% in water; and ~13% in ethylene glycol [2, 14, 26].  The 

propylcobalamin geometry is that of n-propylcobalamin where the Co-C bond occurs 

along one end of the propyl molecule. 

Although the methyl radical is very similar to ethyl and propyl radicals the 

photoinduced dynamics of methylcobalamin are more complicated.  Excitation at 400nm 
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results in a one to three ratio of subpicosecond partitioning between prompt bond 

homolysis and subpicosecond internal conversion to the S1 excited as for the ethyl- and 

propylcobalamin.  However, the intermediate lifetime is lengthened for methylcobalamin 

due to the decreased σ-donating character of the methyl radical.  The 

nonalkylcob(III)alamin type intermediate spectrum, like that observed in ethyl- and 

propylcobalamin, is characteristic of a metal-to-ligand charge transfer (MLCT) state, 

which is destabilized by the donating ability of the ligand [26].   

The intermediate decays on a nanosecond timescale with ~85% returning to the 

ground state and ~15% of the population undergoing homolysis.  The radical pairs 

produced from the intermediate decay, like those produced following prompt homolysis 

may recombine or form solvent separated radical pairs.  Overall (prompt homolysis and 

homolysis ocurring along the intermediate pathway) quantum yield for the formation of 

solvent separated radical pairs at room temperature are: ~80% [26] in water and ~74% in 

ethylene glycol [2].  The room temperature quantum yields for the formation of solvent 

separated radical pairs are much larger for methylcobalamin than for any of the other 

alkylcobalamins studied.  These suggest excess kinetic energy of the methyl radical 

following homolysis and aiding solvent cage escape, and have in part inspired the 

experiments of Chapter 4 designed to look at the cage escape for the photolytically 

generated radicals [6]. 

 The kinetic data for methylcobalamin in water following excitation at 520nm and 

530nm did not demonstrate any evidence of prompt bond cleavage.  Instead, the MLCT 

transfer state described for excitation at 400nm is the only observed photoproduct on 

picosecond timescales.  The intermediate charge transfer state than decays similarly (via 
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bond homolysis) as for the case of 400nm.  Since solvent separated radical pairs result 

only from decay of the intermediate, the quantum yield is reduced to ~14% [13].  The 

smaller yield may indicate that the methyl radicals formed by homolysis of the 

intermediate state do not have the excess kinetic energy acquired by those radicals 

formed via prompt homolysis following excitation. 

 

1.2.2  Nonalkylcobalamins 

     1.2.2.1 Cyanocobalamin 

 Transient absorption studies on cyanocobalamin have not seen evidence of bond 

cleavage.  Instead a subpicosecond ground state bleach is followed by a clean ~ 6.7ps 

decay at room temperature in aqueous solution.  The dynamics were observed to be 

largely insensitive to environment and excitation wavelength (400nm and 520nm) [23].  

The decay to ground state ranges from the 6.7ps in water to ~18.5ps in 2-Propanol; 

however, comparison of intermediate lifetime in a range of solvents showed only an 

inverse dependence on the solvent dielectric constant and no dependence on the viscosity 

[23].  The short-lived intermediate following excitation is characteristic of a ligand-to-

metal charge transfer (LMCT) state [23], as opposed to the MLCT state observed in the 

simple alkylcobalamins, ethyl-, methyl-, and propylcobalamin.  The dynamics for 

cyanocobalamin are similar to those observed for other nonalkylcobalamins including 

hydroxocobalamin.  In the course of the experiments presented in this thesis, 

hydroxocobalamin transient absorption scans were collected which are very similar to 

those reported for cyanocobalamin.  Kinetic traces are shown for hydroxocobalamin 
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following 400nm excitation, for two probe wavelengths.  Only the decay times differ 

substantially from the cyanocobalamin kinetic traces reported. 
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Figure 1.5.  Kinetics of the nonalkylcobalamin, hydroxocobalamin, following excitation at 400nm.  
Probe wavelengths are 540nm and 470nm as indicated in the Figure. 

 

1.3  Thesis Outline 

 Beginning from the body of knowledge briefly outlined in Section 1.2, several 

experiments have been carried out.  Transient absorption pump-probe measurements, 

which are outlined in Chapter 2 along with other relevant experimental information, were 

performed on adenosylcobalamin bound to the protein glutamate mutase.  These 

experiments are a direct extension of those described in free solution above, but provide 

critical insight into the protein environment and the validity of photolysis as a model for 

radical generation in biological systems.  The protein bound experiments are described in 

Chapter 3.  Also described in Chapter 3 is the extension of the transient absorption 
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studies on adenosylcobalamin, cyanocobalamin, and methylcobalamin to a systematic 

variation in solvent environment through the use of temperature variation.  

Chapter 4 describes a series of measurements in solvent mixtures building upon 

the suggestive behavior of cage escape briefly noted above in reference to the quantum 

yield for solvent separated radical pairs.  With this data in mind a series of experiments 

were performed to systematically study the photolysis and geminate recombination of 

adenosylcobalamin and methylcobalamin in different solvent environments (mixtures of 

water and ethylene glycol, and sucrose solutions) and to include the synthetic 

alkylcobalamins ethyl- and propylcobalamin to investigate the cage escape.  The choice 

of these new alkylcobalamins is particularly well suited for the goal of cage escape, as it 

introduces the parameter of radical size, while the homolysis kinetics are nearly identical.  

An analysis considering standard hydrodynamic diffusion is applied to the cage escape 

data, with a further kinetic approach outlined. 

 Chapter 5 suggests several immediate and long term directions for this research 

and provides a brief summary of the results and questions arising from the experiments in 

Chapters 3 and 4.  Of particular note to experimenters continuing this work or making use 

of the experimental methods described in Chapter 2 is that a great deal of effort has been 

directed towards suggesting possible improvements on the experimental apparatus.
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Chapter 2  

Experimental Methods 

 

 The research described in this dissertation involves a diverse and highly 

interdisciplinary range of both basic and applied research.  The common theme allowing 

participation in such a varied range of research has been the use of light as a fantastic tool 

to probe the inner workings of material systems ranging from semiconductors to, more 

importantly for this work, molecules.  Accordingly, this chapter will largely be an 

introduction to the ultrafast laser system and related optical techniques which made the 

detection of the microscopic and “fast” events associated with alkylcobalamin excitation, 

bond cleavage, and ultimately radical escape possible.   

 Some of the techniques and apparatus central to the studies reported here might 

properly be considered old hat, as they have been reviewed in many places [1-4].  Even 

so, particular attention and considerable time has been devoted to improving upon and 

optimizing the already top rate designs.  A further review is therefore warranted, with 

special emphasis on those topics where improvements can be suggested.  As well, it is 

hoped that some of the calculations and suggestions for further improvements will prove 

useful for future students, especially in relation to optical compression efficiency. 
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2.1  Introduction to Experiment Principles 

 The primary technique upon which this thesis rests is transient absorption 

spectroscopy.  Although now a “routine” pump-probe experimental approach, transient 

absorption spectroscopy still can give great insight into a myriad of physical systems.  In 

the case of these experiments, the constructed apparatus provides a direct temporally 

resolved probe of the recombination and cage escape of an alkyl radical and a 

cob(II)alamin radical produced by photolysis.   There are several unique features of the 

implemented setup which move the conducted experiments out the realm of “routine.”  

Although there are some fundamental limitations inherent in the technique, as practiced 

here these are rarely reached and the limitations are simply those defined by the input 

optical pulse temporal profile.   

  When light is incident on some medium (alkylcobalamin dissolved in water and 

ethylene glycol for instance), the intensity decay via absorption can be described by the 

Beer-Lambert law:   

 
AlJT

I
I

−=−== ][loglog
0

ε . (2.1)

I0 is the intensity of the incident light and I the intensity after traversing a distance l 

through the assumed isotropic medium.  The ratio of I to I0, T, is known as the 

transmittance.  The product A = -ε[J]l is the sample absorbance (optical density), with ε 

the species (J) specific molar absorption coefficient (extinction coefficient), and [J] the 

concentration of the absorbing species.  Although empirically derived, the Beer-Lambert 

law can be given a strong physical motivation.  Following Atkins [5], when light of 

intensity I traverses an isotropic medium, a decrease in intensity, -dI, can be expected 



 20

over a slice of medium, dx.  The decrease should also be proportional to the concentration 

of the absorbing species [J].  With κ as the proportionality constant: 

 IdxJdI ][κ−= , (2.2)

which can be rearranged to give 

 
dxJ

I
dI ][κ−= . (2.3)

Continuing with Atkins, since Equations 2.2 and 2.3 apply for each successive “slice” of 

medium through which the light propagates, the next step is to integrate over the total 

distance l, assuming an initial intensity I0 (Equation 2.4): 

 
dxJ

I
dI l

I

I ∫∫ −=
0

][
0

κ , (2.4)

which when integrated gives 

 
lJ

I
I ][ln
0

κ−= . (2.5)

Converting to the base 10 logarithm and setting the proportionality factor κ = ε ln(10) 

results in Equation 2.1. 

  The light exiting (depending on the experiment, it may be simply weakened in 

intensity, scattered, frequency converted, etc.; the Beer-Lambert law, however, describes 

only absorption) the sample then provides a probe of the medium.  In the simplest case, 

the steady state absorption spectrum obtained in this way can provide a fingerprint of the 

absorbing species and concentration, as well as limited information about the excited 

state near the ground state equilibrium geometry.  Such a scheme is basically the one 

employed here, with the introduction of  “ultrafast” temporal identification of the 

absorbing species (the oxidation state of the cobalt atom in cobalamin).   
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 By introducing short (~100fs)  pulses, the material response to an excitation can 

be temporally resolved; and in this way the excited state evolution may be probed in 

regions away from the ground state equilibrium geometry.  An initial excitation pulse 

first puts the system into some excited state or begins a photoinduced chemical process 

such as a bond breaking as is observed for the alkycobalamins.  A second probe pulse 

then follows at some variable delay to determine the evolution of the sample response to 

the initial excitation.  For femtosecond time scale resolution the delay between the pump 

and probe pulse is achieved through the use of a mechanical delay line (i.e. a moving 

stage) as depicted schematically in Figure 2.1.  
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Figure 2.1.   Optical path length delay for fine temporal resolution. 
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 In the example of Figure 2.1 the pump beam traverses a fixed path while the 

probe traverses a variable delay.  When the probe path length is the same as the pump’s, 

the two pulses reach the sample at the same time (denoted as d = 0 in Figure 2.1).  As the 

probe path is increased through variable stage steps, the resulting response can be 

observed on a femtosecond timescale.  The stage used was able to take steps as small as 

one micron in length.  The smallest time step available then was Δt = 2d/c = 6.67fs, 

which is much shorter than the duration of the input pulses.  The 1.5m stage length 

allowed a total delay of 3m/c = 10ns.  If the probe path length is made shorter than the 

pump length (negative times), a baseline reading can be established.  Through this simple 

exploitation of the speed of light, the oxidation state of the cobalamin cobalt atom, and 

consequently the escape and recombination of photolysis induced radical pairs, can be 

monitored on a femtosecond timescale out to times as long as ten nanoseconds.  This idea 

is at the heart of the data described in Chapters 3 and 4.  Although the principle may be 

simple, the practical details of implementing the method move these experiments beyond 

the realm of turn crank data collection.  Traces collected following this prescription are 

called kinetic traces.  It is also convenient to collect data for a broad spectrum at a 

particular delay and construct the difference spectrum (as is done in Chapter 3); and 

depending on the sample and experimental parameters, temporal and spectral data may be 

collected simultaneously.   

 Table 2.1 lists the variable time steps typically used for these kinetic traces.  

Smaller steps are taken at early times to capture all of the dynamics possible with the 

given probe and pump pulse temporal resolution (described below).  However, due to the 

long time (10ns) nature of these scans, it is not feasible to take such small steps (~100s 
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fs) at longer times where there is no fast dynamic information to be studied.  The 

introduction of variable steps is also necessary for some samples due to the short useable 

life of the sample (typically due to the large quantum yield from photolysis and 

thermolysis buildup in n-propyl- and ethylcobalamin samples).  With the ten different 

step size regions chosen, a single kinetic trace with 500-1000 shots per time position, 

required ~11-12 minutes.  Each sample in a particular environment and at a specific 

temperature was averaged at minimum over four scans to ensure stage alignment.  Times 

longer than this began to show product buildup in the sample volume (as evidenced in the 

kinetic traces and in steady state spectra).  Sometimes more scans were necessary to 

achieve a suitable signal to noise ratio.  These scans were completed with fresh sample 

for those alkylcobalamins showing product accumulation. 

Table 2.1.  Variable time steps for kinetic transient absorption scans. 

Time Region (ps) Step Size (fs) 

-10 – 5 10 

5 – 10 20 

10 – 20 50 

20 – 50 100 

50 – 100 200 

100 – 200 500 

200 – 500 1000 

500 – 1000 2000 

1000 – 2000 5000 

2000 - 9000 10000 
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 The transient absorption principles describe above require the introduction of an 

ultrashort laser pulse of an appropriate wavelength to match the electronic absorption 

spectrum (Figure 2.2) of the alkylcobalamins and probe the cobalt oxidation state.  A 

second pulse is also necessary to precipitate homolytic bond cleavage, producing a 

radical pair (cob(II)alamin and alkyl radical).  The short pulse is produced in a Kerr lens 

modelocked (KLM) Titanium:Sapphire laser, which is amplified in a Titanium:Sapphire 

multipass amplifier, chirped pulse amplification (CPA) scheme.  This laser, described 

briefly below, reliably produces pulses of approximately 60fs, centered near 800nm.   

Examination of Figure 2.2, which shows the steady state absorption spectrum for 

alkylcobalamins and a cobalamin radical following homolytic bond cleavage, 

demonstrates that this wavelength is not ideal.  Therefore several nonlinear optical 

techniques are utilized to produce pulses centered at the desired wavelength for pump and 

probe.  These techniques are also described below.  More detail concerning the choice of 

pump and probe wavelength can be found in Chapters 1 and 3. 

Pump ProbePump Probe

 

Figure 2.2.  Steady state absorption spectra for alkycobalamins, cobalamin(II) radical, and their 
associated difference spectrum. 
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2.2  Probe and Pump Pulse Generation 

  A typical [6] (Figure 2.3) chirped pulse amplification arrangement was used to 

conduct these experiments.  A Kapteyn-Murnane Labs Kerr lens modelocked 

Titanium:Sapphire oscillator was pumped with a Spectra Physics Millennia laser, 

producing a train of ≤ 20fs pulses at ~88MHz.  Average output powers in the stable 

modelocking regime were ~350mW, corresponding to a pulse energy of 

~350mW/88MHz ≈ 4nJ/pulse. This pulse energy is far too weak for the experiments 

described in this thesis.  Therefore the pulse was amplified in a multipass amplifier.  First 

the pulse was stretched, or chirped, as described in detail below (Section 2.4) to a pulse 

width of ~180ps.  One pulse every millisecond is then picked via a pockels cell placed 

between crossed polarizers to seed the amplifier.  Temporally dispersing the spectral 

components of the pulse prior to amplification serves several purposes [7].  Lengthening 

the pulse makes it possible to more efficiently extract energy from the amplifier, while 

remaining in the linear amplification regime.  In this regime unwanted nonlinear effects 

are avoided along with possible damage to the amplification medium.  Note that the 

~180ps pulse width is too short by a factor of 2 [7] to achieve the highest efficiency 

theoretically possible, but is long enough for amplification to 1mJ/pulse energy.  The 

imposed one kilohertz repetition rate allows plenty of time in between pulses for 

amplification in the multipass.  More importantly, the one kilohertz repetition rate allows 

time for sample refreshing between pulses as described in the experimental setup.   

 Following amplification, the pulses are recompressed as is also described in detail 

in the Section 2.4.  Pulses exiting the compressor have a very large peak power (~500 μJ/ 

pulse;  with an ~60fs pulse width, peak powers of ~8GW are reached).  The pulses are 



 26

amplified by a factor of ~10,000 (4nJ → 500μJ/ pulse), at the expense of a slower 

repetition rate. 

 

 

Figure 2.3.  Chirped pulse amplification schematic.  Figure reproduced from Reference [4]. 

 

 The amplifier is an 8-pass, three mirror, triangular arrangement multipass design 

based on the work of Backus and coworkers [8].  It is pumped by a Quantronix Nd:YLF 

flashlamp laser, which produces q-switched pulses of ~150ns duration.  Although 

considerable effort was spent in optimization of the multipass amplifier and in the 

maintenance (and rebuilding) of the of the Nd:YLF pump, no significant changes were 

made to the design already described in detail elsewhere [4].  The most significant feature 

of the multipass design is the ability for spatial multiplexing for pulse ejection, 

eliminating the need for dispersion inducing beam path optics (especially the intracavity 

pockels cell in a regenerative amplifier). 

  Now that there are pulses with enough energy on the table for experiments, they 

must be converted to the appropriate wavelengths for the system under study.  The 

800nm pulses are first sent through a variable split, consisting of a polarizing cube placed 

between half waveplates.  The output polarization of each beam can be individually 
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selected with the two exit waveplates.  The two beams can be used to generate pump and 

probe pulses as described below.  Figure 2.4 is a schematic of the experimental layout. 

 

 

Figure 2.4.  Experimental setup schematic. 

      

2.2.1 Second Harmonic Generation 

 A fraction of the energy is used to make the experimental pump via second 

harmonic (SH) generation in a BBO crystal.   Second harmonic generation arises as a 

result of a medium’s second order nonlinear polarization and when only one frequency is 

incident on the nonlinear medium is described by [9]:  

 .).(2)( 22)2(*)2()2( cceEEEtP t ++= − ωχχ . (2.6)
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P(2)(t) is the time varying second order polarization of the crystal; and χ(2) is the crystal’s 

second order nonlinear susceptibility.  In the expression for P(2)(t) there is a term with 

frequency 2ω resulting in a field with that frequency.  Figure 2.5 illustrates the process 

and demonstrates that energy conservation is maintained.   

ωfnd

ωSH

Energy

ωSH=ωfnd + ωfnd

Second Harmonic Generation

ωfnd

ωfnd

ωSH

Energy

ωSH=ωfnd + ωfnd

Second Harmonic Generation

ωfnd

 

Figure 2.5.  Second harmonic generation energy level diagram  (virtual levels are dashed). “fnd” 
represents the 800nm fundamental input; and “SH” represents the second harmonic of the 
fundamental.  

 

2.2.2 Noncollinear Parametric Amplification (NOPA) 

 The remaining fraction of the beam is injected into a noncollinear optical 

parametric amplifier (NOPA) based on the original design of Riedle and coworkers [10].   

This design reliably produces pulses of ~100fs duration throughout the visible without 

further need for recompression as described momentarily. Once in the NOPA, the beam 

is again split.  A small fraction (~4% reflection from a glass surface) is focused hard into 

a sapphire plate to produce a broadband supercontinuum.  By carefully controlling the 

intensity with a variable neutral density filter [11] a stable single filament is produced 
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with low divergence  [12].  The process of spectral broadening of short pulses in 

transparent media such as sapphire is still the subject of debate, but is related to pulse 

self-steepening and resulting optical shock-wave formation as well as self phase 

modulation (terms due to third order nonlinear polarization) [9, 12, 13].  The useful 

spectrum produced by 800nm pulses in sapphire extends from ~470nm to ~720nm.  

Although there are spectral components above 700nm, the spectrum produced becomes 

very structured beyond this point and not easily compressible [14].  An example of a 

typical whitelight spectrum as obtained for this work is plotted in Figure 2.6.  Note that in 

this example, the spectrometer has saturated in the region above 700nm.  A hotmirror is 

used to cut the spectrum above 750nm.  
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Figure 2.6.  Typical spectrum from supercontinuum generation obtained for the NOPA described 
here in a 2mm sapphire disk.  Note that the spectrometer is saturated in the region around 730nm.  A 
hotmirror cuts the spectrum above 750nm. 
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 The still remaining light in the NOPA is focused into another BBO crystal to 

produce the second harmonic.  The supercontinuum is then collected and mixed with the 

second harmonic in another BBO crystal to produce an amplified pulse at a desired 

spectral component of the supercontinuum through difference frequency generation 

(DFG) [9]: 
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Figure 2.7.  Energy level diagram for difference frequency generation. 

 

At first glance Figure 2.7 looks very similar to Figure 2.5; however, there are some 

important differences.  When two frequencies are incident on a medium with a nonzero 

second order susceptibility, five terms can result (four with nonzero frequency) from the 

induced second order polarization (due to phase matching – conservation of momentum – 

one term will typically dominate [9]).  The difference frequency term is [9] 

 ti
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As the name implies, a field is produced at the difference between the two input 

frequencies.  Figure 2.7 illustrates an important consequence of energy conservation.  For 

each new photon created at the difference frequency, ωidler, another must be produced at 

the signal frequency.  As well, ωidler can interact with the pump to produce new signal 

photons further “amplifying” the signal frequency.  This process can occur spontaneously 

through superflorescence seeding [11], but is enhanced dramatically by the introduction 

of a seed at the signal wavelength as is implemented here. 

 The seed is considerably chirped by the supercontinuum process and is then 

longer than the second harmonic pump.  As a consequence, a variable delay (stage) can 

temporally overlap the pump with different spectral components of the spectrally broad 

seed allowing selective amplification across the visible.  For experiments where a large 

bandwidth is required, the chirp of the seed is a problem.  There are many techniques for 

handling this issue including seed compression, chirping the pump, long crystals to allow 

different spectral components to amplify as the pump slips in relation to the seed, and the 

use of all reflective optics (mirrors in place of lenses).  These techniques along with 

others such as pulse-front matching having been used to achieve sub-5fs pulses from 

NOPAs operating in the visible [15].   Following the amplification the pulses are then 

compressed taking advantage of the relative flat structure of the supercontinuum.  For the 

experiments presented here, the probe pulse is filtered with an interference filter (540 ± 

5nm) following parametric amplification, and such practices were not necessary.  

Another broadband NOPA is under development in the lab. 

  Since the NOPA is producing a probe for kinetic traces, broad bandwidth is not an 

immediate requirement.  The broad bandwidth of the seed makes the NOPA in this 
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configuration a wonderful tool for producing probe pulses throughout the visible where 

the electronic absorption bands of materials can be studied.  Optical parametric 

amplification can be done through collinear mixing of the pump and signal as well as 

through a noncollinear geometry.  The collinear geometry limits pulses widths to above 

50fs [14].  Although the phase velocities of the pump and idler may be effectively phase 

matched by proper orientation of the birefringent medium’s optic axis, group velocity 

matching is not ensured.  The higher frequency idler will travel faster than the signal.  

Since the two pulses continuously amplify each other as they propagate through the 

crystal, the idler will introduce photons to the leading edge of the signal pulse, as the 

signal introduces photons to the rear of the idler.   The noncollinear crossing angle  

makes it possible to match the group velocity of the signal and idler pulses at the expense 

of some spatial spread as was first demonstrated in an optical parametric oscillator [16].  

Riedle extended the principle to OPAs [10] and showed that group velocity matching was 

equivalent to broadband phasematching [14]. 
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Figure 2.8.  Group velocity matching through noncollinear crossing geometry in the nonlinear 
crystal. 

 

Figure 2.8 illustrates graphically that the projection of the idler group velocity can be 

made equal to the signal group velocity (for Type I mixing, the idler will travel faster 

than the signal), according to [14] 
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 signalgidlerg vv ,, cos =Ω , (2.8)

where Ω is the angle between the signal and idler as defined in Figures 2.8 and 2.9.  The 

experimentally relevant pump, supercontinuum crossing angle, Ψ, can be expressed in 

terms of the angle Ω [14]. 
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Figure 2.9.  Wave vectors in noncollinear geometry [14]. 

 
 

Typical internal crossing angles in the employed design shown in Figure 2.4 were ~3-4°.  

See Appendix A for the calculation.  In addition to broadband phasematching, the 

noncollinear geometry is easily constructed. 

 Possible improvements of the current NOPA setup include the improvement of 

efficiency and pulse stability.  Bargheer [17] has demonstrated a modified design of that 

in reference [10] efficient enough to pump a NOPA with only 0.11mJ/pulse input energy, 

and deliver ~10μJ/pulse output.  These results were achieved by optimized focusing 

conditions and wave front matching in the difference frequency generation crystal.  As 
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well, the efficiency of the second harmonic pump generation is improved to ~40% again 

through optimal focusing conditions.  Such improvements would prove useful for two 

color experiments where both pump and probe are produced through parametric 

amplification.  Improvement beyond efficiency and stability is being implemented in the 

broadband NOPA already mentioned.  Two examples of very preliminary spectral 

outputs are shown in Figure 2.10.  Assuming a Gaussian pulse, the spectra shown are 

already broad enough to support ~10fs pulse widths in the transform limit (i.e. after 

compression).  Note that the spectra are centered at a different wavelengths than the 

NOPA used for the experiments described in this thesis. 
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Figure 2.10.  Broadband NOPA spectra (the lower wavelength, ~580nm centered spectrum was 
obtained with a hotmirror filter placed before the spectrometer coupling fiber; no filters were used 
for the ~670nm centered spectrum). 
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 The setup described above is quite versatile and can be easily modified to change 

both pump and probe as has been done for previous experiments (for example [4]). 

 

2.2.3 Beam Quality 

 One example of the quality of the beam produced by the laser system described 

above is the focusability of the beam.  An example beam profile measurement is shown 

below in Figure 2.11. 
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Figure 2.11.  Beam focus profile measurement of the fundamental, Ti:Sapphire (red—average of two 
scans done with a razor blade mounted to a mechanical stage).  A least squares fit to a 
complementary error function is shown as a dashed blue line. 

 

The measurement done shown in Figure 2.11 was completed by using a razor blade 

mounted to a motorized stage to “slice” through the laser beam before imaging onto a 

diode which recorded the intensity.  To the left side in Figure 2.11 (before ~-200μm), the 

beam is completely blocked.  The beam is no longer obstructed by ~+200μm.  The razor 

blade was positioned at the focus of a long focal length lens for this measurement.  This 
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measurement was completed on the 800nm beam.  A least squares fit of the profile trace 

was done to a complementary error function (blue dashed line).  Assuming a Gaussian 

spatial beam profile the scan shown in Figure 2.11 gives a beam diameter of (180 ± 

20)μm.  This result agrees well with the expected value; namely that anticipated from the 

expression for a focused Gaussian beam [18]: 

 
2/12

0

0

1

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

f
z

w
D , 

(2.10)

with D the focused diameter, w0 the beam radius at the focusing lens, f the focus length, 

and z0 the Rayleigh range of the input beam, 
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 A very useful variant of Equation 2.10 used numerous times in setting up the 

optical apparatus described in this chapter is to determine the beam diameter at positions 

away from the focus.  This expression is included in Appendix B. 

 

2.3 Sample Setup 

 Now that two pulses, a pump and probe, have been produced at the proper 

wavelengths and with short temporal widths, transient absorption spectroscopy can be 

performed on the alkylcobalamin samples.  The polarizations of the two pulses relative to 

each other are set with half wave plates so that they make the “magic angle” of ~54.7°.  

At this angle the observed absorption change contains only information about population 

kinetics and orientation dynamics are not a factor in the measured time constants [19-21].  

For molecules of the size considered here, orientation times can range into several 
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hundred picoseconds.  The pump and probe beams are then crossed in a flow cell as 

illustrated in Figures 2.4 and 2.12. 
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Figure 2.12.  Sample setup: flow and temperature control. 

 

The signal beam is imaged onto two matched photodiodes which monitor on a shot-to-

shot basis (this is possible at 1kHz repetition).  A reference diode collects ~4% reflection 

before the sample and the second, signal diode, is place after the sample.  By taking the 

ratio of these two signals, pulse to pulse fluctuations can be removed from the collected 

data.  A third diode is used to monitor the pump beam to determine whether each “shot” 

is pump or unpumped.  An optical chopper is placed in the pump path to chop. 
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 The sample is flown through a reservoir, coil system which can be placed in a 

temperature controlled bath.  This setup made it possible to vary the sample temperature 

from  less than 0°C to greater than 80°C, thereby changing the solvent viscosity as is 

described in detail in Chapter 4 (Section 4.1.3).  The temperature is monitored 

immediately following the sample’s exit from the flow cell with a thermocouple probe 

placed in the flow line.  A light nitrogen over pressure was placed on the sample reservoir 

to maintain an anaerobic environment to maintain the homolytic bond cleave of the 

carbon- cobalt bond without interaction with oxygen from the ambient environment.  

 Due to very limited quantities of the synthesized alkylcobalamins as small a 

sample volume was used as possible (~13mL), in conjunction with a small volume 

peristaltic pump.  The sample was moved fast enough to ensure a fresh sample on each 

shot.  Due to the small volume, care had to be taken to ensure no photoproduct buildup as 

described in the data sections of this thesis.  The sample was handled in dim, red light 

conditions (no light was used when possible). 

 The steady state absorption spectrum was obtained with a  commercial two lamp 

UV-Vis spectrometer, capable of measuring form 190 to 1100nm. 

 

2.4 Chirp: Compressor Improvements 

 Several possible improvements have been identified to increase the power output 

of the CPA system.  The most readily tractable are in the stretching and compressing of 

the pulse.  These components will be described in detail to establish the proposed 

improvements. 
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 A grating based stretcher is employed to provide the chirp necessary for chirp 

pulse amplification; and a grating based compressor is used to recompress the amplified 

pulse.  In these devices the dispersion imparted by the grating pair is exploited to produce 

a frequency dependent delay, thereby stretching or compressing the pulse in time.  A 

schematic of a standard Treacy grating-pair compressor [22] is shown in Figure 2.13. 
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The amplified pulse, represented by the red line with arrows, is injected into the 

compressor at an angle θi from the grating normal, N.  The central wavelength, λo, is then 

diffracted at angle θd.  The second grating is parallel to the first so that the diffracted 

frequency is incident to the second grating normal at θd.  Wavelengths longer than λo are 

diffracted at larger angles than the central frequency and those shorter than λo are 

diffracted at smaller angles.  The net result is that the pulse picks up a frequency 

Figure 2.13.   Treacy Grating Pair Compressor 
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dependent delay (temporal chirp), with the shorter (bluer) wavelengths traveling a smaller 

optical path length than the longer (redder) wavelengths.  Since the pulse frequencies are 

then spatially dispersed as well, the pulse is redirected back along the same path through 

the grating pair to remove the spatial chirp, acquiring twice the temporal chirp in the 

process.  The retro-reflecting mirror setup elevates or lowers the pulse so that it can be 

extracted after the second pass. 

 The accrued group delay dispersion after two passes through the grating pair is 

given by [7, 13, 23]: 
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where b is the grating separation as defined in Figure 2.13, d is the grating groove 

density, and c is the speed of light.  It is apparent from Equation 2.12 that the second 

order dispersion is necessarily negative for this design; the shorter wavelengths traverse a 

shorter optical path than the longer spectral components.  The third order dispersion is, 

however, positive: 
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 Providing the longer wavelengths with a shorter optical path length, imparting a 

positive chirp, can be done with a negative effective grating separation, b [7, 13, 23, 24].  

Insertion of a lens pair between two gratings allows the first grating to be imaged behind 

the second, as depicted in Figures 2.14 through 2.16. 
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Figure 2.14.  Gratings arranged in Martinez 4f telescope. 

 

The 4f layout in Figure 2.14 uses a telescope to image the beam spot on the first grating, 

G1, at grating 2 with magnification one; the focal lengths of lenses L1 and L2 are both f.   

Such a layout can be used for phase and amplitude shaping of ultrashort pulses in the 

frequency domain by placing an appropriate mask in the Fourier plane (midway between 

the two lenses of the telescope).  Figure 2.15 illustrates the utility of the 4f design for 

producing positive group delay dispersion. 

 

Figure 2.15.  Martinez 4f Stretcher 
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Moving the second grating, G2, nearer L2 and away from the focus results in the image of 

G1, G1’, falling behind G2; i.e. there is an effective negative grating separation, b = -Z2, 

between the two gratings.   Similarly, moving G1 towards L1 places the image, G1’, 

further behind the second grating, such that the effective path length is given by 

 )( 21 ZZb +−= . (2.14)

Since the expressions describing stretcher induced dispersion will be identical to those for 

the compressor (Equations 2.12 and 2.13), the sign of the second and third order 

dispersion will be opposite to that in the compressor.  The second order dispersion will be 

positive, and the third order dispersion negative.   

 Due to the large bandwidth inherent in femtosecond pulses, it is preferable to use 

an all reflective optical design for the stretcher.  The 4f stretcher as experimentally 

realized in the chirped pulse amplification system described above [1, 2] is sketched in 

Figure 2.16. 
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Figure 2.16 illustrates the correspondence between the pertinent measurements in the 

Martinez stretcher and more practical all reflective design.  The two lenses are replaced 

by multiple reflections from one large curved mirror.  The diameter of the curved mirror 

is large so as to accommodate as large a bandwidth as possible.  One grating is used as 

well, insuring antiparallelism between the first and second passes of the grating (or that 

the image of G1 is parallel to G2).  Flat mirrors, M, are placed at the focus of the curved 

mirror, and such to reinject the pulse for a second pass and for pulse ejection.  There is a 

slight tilt in the optical path length from the dispersion plane in order to allow the 

Figure 2.16.  All Reflective Stretcher 
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multiple passes and to cleanly pick off the beam.  As long as the tilt is kept small, the 

dominant aberrations are spherical [7].  The location of the grating in the  perfect 4f 

design (no stretching) is indicated by the gray dashed line crossing the curved mirror 

focal plane.   

 There are many designs for optical stretchers, some aberration free [7, 23, 25].  

However, these designs are often complex, suffer from large higher order dispersion and 

are unnecessary for the powers and efficiencies relevant to the laser system described 

above and used for these experiments [7, 23].  The design in Figure 2.16 allows easy 

alignment (using the zeroth diffracted order) and adjustment. 

 If the pulse injected into the stretcher is initially unchirped, the pulse length to 

second order after passing through the stretcher is [13, 26]: 
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Assuming an input transform limited pulse, τp = 20fs (the actual input pulse is probably 

longer as the oscillator’s dispersion control prisms do not compensate for the final pass 

through the Titanium:Sapphire crystal or the output coupler [27]), the output pulse width 

can be estimated at ~180ps to second order, using Equations 2.12 and 2.15.  The pulse is 

stretched by a factor of ~10,000.  The grating separation, b, measured at 29.6cm., is 

plugged into Equation 2.12 to obtain the ~180ps pulse which is suitable for amplification 

in the multipass amplifier. 

 It would seem then that at least to third order, ignoring the aberrations which 

result from the stretching and compressing optics, the pulse dispersion can be perfectly 

corrected for by setting the incidence angles in the stretcher and compressor equal.  
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Unfortunately, a complication arises once the amplification process is considered as the 

material making up the amplifier (lenses, amplification and pulse picking crystal) will 

also result in further stretching of the pulse.  Here the second and third order dispersion 

are described by [7, 13, 23]: 
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l is the distance propagated through the material; and n is the frequency dependent 

refractive index, characteristic of the medium.  Both of these quantities are positive, and 

therefore the overall second and third order dispersion cannot be simultaneously 

compensated with identical incidence angles to the grating normal.  Kane and Squier [23] 

show that by introducing an angle mismatch, where the compressor incidence angle is a 

function of material length traversed (l), the second and third order dispersion can be 

compensated.  It was determined that such an adjustment was unnecessary for the 

experiments described herein, based on second harmonic autocorrelation measurements.  

The multipass design helps to minimize dispersion as compared to the more common 

regenerative amplifier.  A typical autocorrelation with an autocorrelation FWHM ~90fs is 

shown in Figure 2.15. 
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Figure 2.17.  Typical SH Autocorrelation Trace 

 
 

 The radical recombination and escape time constants are typically on the order of 

100s of picoseconds to nanoseconds.  The temporal width of the pulse shown in Figure 

17 is on the order of 60fs.  Nonetheless, a calculation to determine the optimal 

compressor incidence angle is described in Appendix C, along with the arguments 

presented by Kane and Squier, in the hope that this result may prove fruitful for future, 

more temporally demanding experiments.  As it turns out, slightly longer (~100fs) pulses 

result in better NOPA performance as described above, providing even less impetus to 

further improve upon stretcher and compressor design as it relates to the pulse width for 

these experiments. 

 One area in particular that has plagued the pulse compression setup currently in 

use and described above is the power throughput efficiency.  The current setup, 

illustrated above in Figure 2.13 and below in Figure 2.18 has demonstrated only ~45-
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49% throughput efficiency at best.  Similar to the case for the pulse widths, the power 

and consequently the energy per pulse, exiting the compressor is more than enough to 

complete the experiments presented here.  With typical amplifier output on the order of 

1W at 1kHz repetition rate (1mJ/pulse energy), compressed pulses with energies around 

500μJ were routinely available.  The pulse energy requirements for the alkylcobalamin 

experiments described here are: 1. Second harmonic pump with pulse energy ~2μJ; 2.  

NOPA generated visible probe, described in detail above.  With 500μJ compressed 

fundamental input into the experimental setup, extensive use of neutral density filters was 

necessary in order to keep the probe energy small (so as not to induce further excitation 

in the sample), and the excitation pulse at 2μJ.  Although not necessary for these 

experiments, as for the case of pulse widths, it is likely more stringent experimental 

parameters will soon require larger pulse energies.   Improvement of the compressor 

design is the best candidate to easily and dramatically improve the useable pulse energies 

available for experiments.  The basis supporting this statement is that typical compressor 

efficiencies are at least greater than 60%; improvement to standard should then give 

>10% more useable energy per pulse compared to the current efficiency.   Blazed 

gratings can shift the peak of the diffraction pattern away from the zeroth order (specular 

reflection).  Careful choice of blaze angle along with the incidence angle of the input 

beam from the grating normal routinely results in first order efficiency on the order of 

≥90% [28, 29], after one pass off a grating. After four passes from grating surfaces, as is 

the case in the compressor design, efficiencies on the order of η4 ~0.94 = 65% are 

possible.  As the first order diffraction efficiency is improved above 90%, the compressor 

efficiency continues to improve as η4.   The inclusion of the retroreflector introduces an 
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additional source of losses, expected to be on the order of ~ 1 - 0.982 ≈ 4% (two 

reflections from a gold mirror in this setup). 

 A ruled reflection grating with triangular blaze is shown in Figure 2.18.  This is 

the type of grating employed in the compressor described above.  The interference pattern 

resulting from a monochromatic source of light on the grating is governed by the groove 

density, N.  The intensity of each order in the interference pattern is scaled by the 

diffraction pattern.  In the case of no blaze, the most intense order will be the zeroth 

order.  Since there is no dispersion for the zeroth order (when a polychromatic beam is 

introduced), any light directed into this order is wasted [30], as is any light directed into 

orders besides those employed for producing dispersion in the optical device.  The peak 

of the diffraction pattern is that point for which there is no farfield phase delay between 

the different spatial components of the diffracted beam, and corresponds to the condition 

of specular reflection from the grating face when there is no blaze, accounting for the 

zeroth order’s intensity domination.  Introduction of a grating blaze shifts the point of 

zero farfield phase delay away from the zeroth order.  It is possible to manufacture 

gratings with other types of blaze than that illustrated in Figure 2.18, such as a sinusoidal 

blaze [28, 31]; these will not be discussed here.  The efficiency of triangular grooved 

gratings is not as susceptible to the angular deviation (Δ) between the incident in 

diffracted beams as it is for holographic gratings  [32].   For a triangular blaze grating the 

condition of zero phase delay (peak of the diffraction intensity) is geometrical reflection 

from the blaze normal [30], NB, where the angles of incidence, Θi, and reflection, Θr, 

from the blaze normal are equal to each other.  
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Figure 2.18.  Ruled reflection grating with triangular blaze. 

 

In terms of the most readily obtained and used experimental parameters, Θi = Θr can be 

expressed as  

 iBBd θθθθ −=− , (2.18)

and then rearranged to give the diffracted angle in terms of the blaze angle 

 iBd θθθ −= 2 . (2.19)

Combining the relation for diffraction angle under optimal blaze conditions with the 

grating equation, 

 )sin()sin( BiNm θθλ += , (2.20)

where m is the order number, λ the wavelength and N =1/d is the groove density, gives: 

 [ ]))sin((sin
2
1 1

iiB Nm θλθθ −+= − . (21)
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Equation 2.21 is the optimal blaze angle, as a function of incidence angle, input 

wavelength, and groove density.  Figure 2.19 plots the optimal blaze versus input angle, 

along with the associated angle of diffraction, for 800nm light and N = 1200mm-1 groove 

density.  The diffraction angle can be found either from the grating equation (Equation 

2.20) or from Equation 2.19.  The diffracted angle, θd, is plotted in red; and the optimal 

blaze angle, θB, is colored blue. 
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Figure 2.19.  Optimal grating blaze as a function of incidence angle. 

 

To interpret Figure 2.19 for use in grating selection the sign convention must considered.  

For this figure, one side of the grating normal is positive and the other is negative,  so that 

angles produced by rotation to one side of the grating normal are positive and to the other 

are negative.  In Figure 2.18 angles measured counterclockwise from the grating normal 

are positive and those measured clockwise from the grating normal are negative.  

Therefore, both θi and θd are positive as shown in Figure 2.18.  The plots demonstrate 



 51

that blaze angle is on the same side of the grating normal as the diffracted angle (under 

conditions of optimal blaze).   

 Figure 2.18 and Equation 2.21 are just guides in selecting the best blaze for a 

particular application as there are numerous details and complications inherent in the 

grating blaze and the manufacture of the grating (and its blaze) [28, 29].  Specifically 

there are anomalies in the efficiency curves for gratings.  Individual efficiency curves 

should be consulted when choosing the best grating from the available selection.  The 

efficiency and bandwidth throughput are generally best when the angle of deviation 

between the incident and diffracted beams (angle Δ in Figure 2.18) is kept at a minimum 

[29, 32].  There are several options for improving the efficiency of the compressor setup 

used for these experiments.  These include choosing groove densities to minimize 

bandwidth loss. The incident angle may also be made greater in relation to the Littrow 

angle in order to improve bandwidth efficiency .  However, the most immediate and 

straightforward change is to reduce the angle of deviation (Δ) between the incident beam 

and the diffracted order.  It is desirable that the deviation not be in excess of 10° [32].  

Minimizing the deviation can be done by increasing the incident injection angle.  There 

will be complications owing to the limited space available for geometry; especially in the 

stretcher which must be matched (or at least correlated to depending on the angle 

matching program – Appendix C) to the compressor.  Figure 2.20 shows a theoretical 

absolute efficiency plot from a product catalog [33] to illustrate the reasoning for 

increasing incidence angle (thereby reducing deviation angle).  The calculation plotted in 

Figure 2.20 is for a 1200groove/mm, gold coated, holographic grating, with operation set 

to the first order.  This is not the grating used in our lab (where plane ruled gratings are 
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used); but the plot is useful for demonstrating the general efficiency characteristics (the 

efficiency for each position marked, θi and θd, will be different).  Figure 2.20 shows that 

for the θi and θd chosen, the efficiency curves begin to drop down, especially as the 

wavelength varies toward the lower part of the Ti:Sapphire bandwidth (the efficiency is 

symmetrical about θLittrow as expected based on the reciprocity theorem [32, 34]). 
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Figure 2.20.  Calculated absolute efficiency curves in the first diffracted order versus incidence angle 
(from grating normal) for a gold coated reflection, holographically grooved grating.  Plots are shown 
for 750 (blue) and 800nm (red). θi and θd used for the compressor described above are as indicated in 
the Figure.  L750 and L800 are the Littrow angles at 750 and 800nm respectively. Figure modified from 
Reference [33]. 

 

 Commercial software is available for calculating the efficiency of diffraction 

gratings versus incidence angle, as well as for a host of other parameters.  One such 

example, PC-Grate [35], was used to predict the absolute efficiency versus incident angle 

for the gratings used in the compressor described above (blazed grooves this time versus 
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the holographically grooved grating analyzed in Figure 2.20).  The calculation was 

performed by I.I.G. Inc. Support. The results are plotted in Figure 2.21. 
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Figure 2.21.  Absolute efficiency versus incidence angle calculated with PC-Grate [35].  The 
calculations are for the first diffracted order of a gold coated, 1200grooves/mm grating with blaze 
angle 21.1°.  Plots are shown for several wavelengths as labeled in the Figure. 

 

Figure 2.21 shows a relative broad plateau of high efficiency centered about the Littrow 

angle, which decreases in width with decreasing wavelength as anticipated from Figure 

2.20.  The drops in efficiency at either end of the plateau are not as pronounced as those 

plotted in Figure 2.20.  An earlier version of this program has been shown to have 

difficulty in the case of TM polarization (S polarization in relation to the groove surface 

of the grating; this is the polarization of the incident light used to produce the maximum 

efficiency) for certain applications [36], and therefore should also only be considered a 

guide.  It is still strongly anticipated that decreasing the deviation between incident and 

diffracted beams will greatly improve the efficiency of the compressor.    
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 Kane suggests [37] another possibility is to maintain the larger angle in the 

stretcher if necessary and compensate with a higher groove density and smaller grating 

separation in the compressor (i.e. grating mismatch between the stretcher and compressor 

[38]), employing a holographic grating like that considered in Figure 2.20.  This layout 

would allow for a smaller deviation angle, Δ, in the compressor compared to that in the 

stretcher. This point is important since the holographic grating is more susceptible to 

efficiency loss with increasing deviation angle than the plane ruled grating.  As well, this 

design has the potential to compensate for fourth order dispersion and beam quality is 

expected to be improved over ruled gratings.  Such a scheme has been employed in a 

nearly petawatt system [39]. 
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Chapter 3  

Environment Influence on the Excited State of Alkyl- and Nonalkylcobalamins1 

 

 The results of previous transient absorption studies [1-11] on the alkylcobalamins 

(adenosyl-, methyl-, ethyl-, and n-propylcobalamin) and the nonalkylcobalamin 

cyanocobalamin were reviewed in Chapter 1 (Section 1.2).  These data demonstrate that 

the dynamics of bond cleavage and the subsequent radical escape and recombination 

exhibit a dependence on the solvent environment.  The transient absorption techniques 

described in Chapter 2 were used to extend the earlier work exploring the dynamics 

following excitation of both the alkyl- and nonalkylcobalamins as a function of the 

environment.  The new work reported here includes investigations of adenosylcobalamin 

bound to glutamate mutase and studies of methyl-, adenosyl-, and cyanocobalamin as a 

function of solvent polarity and solvent temperature through the introduction of a sample 

temperature controlled bath as detailed in Chapter 2 (Section 2.3). 

 The dynamics of free adenosylcobalamin in water and ethylene glycol were 

outlined in Chapter 1.  Although ethylene glycol provides a more biologically realistic 

environment in terms of viscosity and dielectric constant than does water, the 

                                                 
1 The data and analysis reported in this chapter has been published in Sension, R.J., Harris, D. A., Stickrath, 
A. B., Cole, A. G., Fox, C. C., Marsh, E. N. G., Time-resolved measurements of the photolysis and 
recombination of adenosylcobalamin bound to glutamate mutase. Journal of Physical Chemistry B, 2005. 
109(38): p. 18146-18152;  and in Harris, D.A., Stickrath, A.B.,  Carroll, E.C., Sension, R. J., Influence of 
environment on the electronic structure of Cob(III)alamins: Time-resolved absorption studies of the S-1 
state spectrum and dynamics. Journal of the American Chemical Society, 2007. 129(24): p. 7578-7585. 
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adenosylcobalamin is still in free solution.  Studying the dynamics of adenosylcobalamin 

while bound to the active site in a B12 coenzyme dependent protein and comparing to the 

data in free solution holds the promise of a probe into the biological interaction of the 

protein with the coenzyme, and ultimately towards an understanding of the biological 

generation and control of free radicals for the enzymatic catalysis of chemical reactions. 

 The Co-C bond of adenosylcobalamin in free solution has a bond dissociation 

energy of 32kcal/mol and associated half-life for homolysis of approximately six  

months [12-14].  When bound to a protein, Co-C bond homolysis is accelerated by 

approximately 1012 when there is concomitant substrate binding.  Since photolysis in 

adenosylcobalamin is likely a better paradigm for the study of biologically relevant bond 

cleavage than photolysis in methylcobalamin [9, 15], it is an ideal cofactor for these 

studies. (Note, however,  that previous work has been reported on methylcobalamin 

bound to protein [8].) 

 The protein chosen to investigate the bound dynamics of adenosylcobalamin was 

glutamate mutase.  The enzymatic function of glutamate mutase is well characterized; 

and crystal structures have been determined for the protein with bound coenzyme and 

substrate [16, 17].  As for other adenosylcobalamin dependent enzymes, catalysis 

proceeds through the generation of organic free radicals via the homolytic bond cleavage 

of the Co-C bond.  Just as for the case of free adenosylcobalamin, the spectroscopic 

signature of this bond breaking is that due to the creation of cob(II)alamin radical.   
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Figure 3.1.  Carbon-skeletal rearrangement by the abstraction of hydrogen, and subsequent 
migration of group X, via the interaction of an adenosyl radical.  Figure reproduced from [4]. 

 

In Figure 3.1, the generic scheme of the adenosyl radical to abstract a carbon 

bound hydrogen and facilitate a carbon-skeletal rearrangement is illustrated.    The 

process begins in the top center of the figure where adenosylcobalamin undergoes 

thermalytic bond cleavage to produce an adenosyl radical as well as the associated 

cob(II)alamin radical which is observed spectroscopically.  Moving counter clockwise in 

the figure, the adenosyl radical abstracts the hydrogen, and the group X can then migrate 

to where the hydrogen had been (under the influence of the protein electronic 

environment).  The newly formed adenosine can then give up one of its hydrogens (not 

necessarily the one originally abstracted – indicted by the color scheme of the hydrogen 

in the figure), and recombine with the cob(II)alamin radical.  This entire process takes 

place in and is controlled by the protein environment. 
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 The specific reaction catalyzed by glutamate mutase with its conspirator 

coenzyme, adenosylcobalamin, is the rearrangement of L-glutamate to L-threo-

methylaspartate.  The cartoon in Figure 3.2 shows the starting and ending geometries 

after undergoing the process outlined in Figure 3.1. 

 

Figure 3.2.  Starting (L-glutamate, left) material and ending (L-threo-methylaspartate, right) 
product after carbon-skeletal rearrangment through the enzymatic action of glutamate mutase.  
Figure reproduced from [4].  

 

3.1  Sample Preparation 

3.1.1  Alkylcobalamin (Solute) Preparation 

 Adenosylcobalamin, methylcobalamin, and cyanocobalamin as biologically 

relevant compounds are readily available commercially.  These compounds were 

obtained from Sigma and used without any further purification.   

 The alkylcobalamin was introduced to the solvent immediately prior to the start of 

the experiment; and kept under an inert gas atmosphere for the duration of its use as 

described in Section 2.3 of Chapter 2.  The commercially available compounds were 

normally mixed in at concentrations of 1mM.  Using the Beer-Lambert law (Chapter 2, 

Equation 2.1), along with a molar extinction coefficient of ~5000M-1cm-1 at 400nm (see 

Figure 3.3), and optical path length (flow cell width) of 1mm, the predicted absorption of 

the for 400nm second harmonic excitation pump is ~68%.  This absorption was typically 

sufficient to induce an approximately 10-20mOD change in absorption at the probe 
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wavelengths used.  With this scale of absorbance, a reasonable signal to noise ratio was 

readily obtained for the kinetic traces.  Samples of adenosylcobalamin bound to the 

protein, glutamate mutase, were also reconstituted to the protein immediately prior to use.  

As the protein had to be expressed and purified, less sample was available for these 

experiments.  Typical concentrations were enough to provide only 0.3OD to 0.4OD 

(using the Beer-Lambert law, this optical density corresponds to absorbing ~50 – 60% of 

the incident light) at the excitation wavelength.  However, the signal to noise was still 

very good for the protein bound adenosylcobalamin kinetic scans.  Considerable effort 

was placed on improving the signal to noise ratio for the small signals of the synthesized 

compounds through improving the quality and stability of both excitation and probe laser 

pulses (extending from the oscillator operation right through probe and excitation pulse 

generation). 

 

Figure 3.3.  Steady-state absorption spectra for: (A) Cob(I)alamin (black), cob(II)alamin (green), and 
cyanocobalamin (nonalkylcob(III)alamin – red); (B) Adenosylcobalamin in water (red), bound to 
glutamate mutase (blue dashed),  and in ethylene glycol (green dashed), and methylcobalamin in 
water (grey dotted).  Figure reproduced from Reference [4]. 
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 Glutamate mutase samples were obtained from the Marsh Group (University of 

Michigan) in a potassium phosphate buffer, and introduced to the adenosylcobalamin in 

excess.  The protein samples used were the engineered single subunit, GlmES, where the 

two subunits of the wildtype protein have been genetically fused.  The protein was 

expressed and purifed as a recombinant protein from E. coli.  The kinetics are simplified 

for GlmES as compared to the wildtype, but the catalytic properties have not been 

changed [18]. 

 

3.1.2  Solvent Preparation 

 Water was either distilled or purchased distilled.  Ethylene glycol was purchased 

from Sigma in spectroscopic grade.  The homolytic Co-C bond cleavage observed in the 

alkylcobalamins results in the formation of two radicals: cob(II)alamin and an alkyl 

radical.  Since either of these radicals will readily react with the unpaired electrons of 

dissolved molecular oxygen, the solvent environment must be deoxygenated before the 

addition of the alkylcobalamin solute.  For samples in water, the dissolved oxygen can be 

sufficiently displaced by purging with an inert gas [19, 20].  In fact, inert gas purging can 

be more effective than more involved techniques such as vacuum filtration [21].  A small 

volume of distilled water (≤ 250mL) was purged with nitrogen for at least one hour 

before the addition of any solute.  Nitrogen was bubbled through any water to be 

introduced as a solvent including that used for mixtures with ethylene glycol and water 

with dissolved sucrose (the distilled water was purged before mixing with ethylene glycol 

or sucrose).   
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 Due to the more viscous nature of ethylene glycol (see Chapter 4, Section 4.1.3) 

the method of freeze-pump-thaw [19] was chosen for deoxygenation.  In this method the 

solvent is first frozen.  The atmosphere above the frozen solvent is then evacuated and the 

solvent allowed to thaw.  Dissolved oxygen will then boil out of the solvent into the 

vacuum left after pumping out the air above the frozen solvent.  An inert gas is then 

introduced.  Typically this process is repeated several times, and the solvent then left 

under inert gas environment until ready for use.  For these experiments, <100mL of 

ethylene glycol was placed in Schlenk flask (round-bottomed to reduce the risk of 

breaking) and put on a Schlenk line.  The Schlenk line was pumped first by a mechanical 

roughing pump capable of producing a vacuum of < 100mTorr, at which point a diffusion 

pump could be turned on to produce a vacuum <10mTorr.  The ethylene glycol was 

frozen with a liquid nitrogen bath placed outside of the Schlenk flask.  Once frozen, the 

atmosphere above of the ethylene glycol was pumped to <10mTorr.  Nitrogen, vented to 

atmosphere through a mineral oil bubbler, was used as the inert gas.  The process was 

carried out at least four times for each volume of ethylene glycol deoxygenated. 

 As described in Chapter 2 (Section 2.3), a positive pressure of inert gas (nitrogen) 

is maintained on the sample after the addition of alkylcobalamin and for the duration of 

experimental use.  Each scan (or series of scans) was proceeded by a test run with free 

adenosylcobalamin in aqueous solution at room temperature (the kinetic traces for which 

are now well characterized [1, 8-11]) to ensure stage alignment over the entire 9ns 

window probed.  The stage alignment was then periodically checked with aqueous 

adenosylcobalamin samples (at room temperature) to ensure maintained alignment.  The 
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test measurement also served the dual purpose of ensuring the sample flow rate was 

sufficient for a fresh sample volume every millisecond (1 kHz laser repetition rate). 

 

3.2  Adenosylcobalamin Bound to Glutamate Mutase 

3.2.1  Transient Absorption Data 

 Kinetic transient absorption scans as described in Chapter 2 were performed on 

adenosylcobalamin bound to glutamate mutase.  Ice bath temperature traces at probe 

wavelengths of 470nm and 600nm are shown in Figures 3.4 through 3.7.  These two 

scans proved particularly difficult to obtain with satisfactory signal to noise due to the 

experimental parameters.  600nm is at the edge of the adenosylcobalamin visible 

absorption (Figure 3.3) resulting in weak signals.  470nm though within the sample 

region of absorption is near the edge of the NOPA spectrum (Chapter 2, Figure 2.6) and 

presented difficulty for obtaining a quality beam to collimate for the entire 9ns of 

observation time. 
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Figure 3.4.  Kinetic trace for adenosylcobalamin bound to glutamate mutase.  Excitation wavelength 
is 400nm and probe wavelength is 470nm.  On the left is the first -10 to 1 picoseconds; and on the 
right is 1ps through 9ns.  Data was collected at room temperature. 
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Figure 3.5.  Detail of the adenosylcobalamin bound to glutamate mutase scan shown in Figure 3.4: A 
shows -10 through 10ps.  B shows -10 through 100ps.  C shows -10 through 1000ps. 
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Figure 3.6.  Kinetic trace for adenosylcobalamin bound to glutamate mutase.  Excitation wavelength 
is 400nm and probe wavelength is 600nm.  On the left is the first -10 to 1 picoseconds; and on the 
right is 1ps through 9ns.  Data was collected at room temperature. 
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Figure 3.7. Detail of the adenosylcobalamin bound to glutamate mutase scan shown in Figure 3.6: A 
shows -10 through 10ps.  B shows -10 through 100ps.  C shows -10 through 1000ps. 
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 The scans with 470nm probe show an initial spike followed by an increase in 

absorption peaking near 300ps after excitation.  By 9ns the signal has returned to the 

baseline (established with negative times).  The scans using 600nm probe show an 

instrument limited rise in absorption followed by decay.  By 9ns the signal has nearly 

returned to baseline, though there remains a long lived plateau. 

 These data were fit globally to a sum of exponentials.  For the global fit it was 

assumed that each kinetic trace has the same time constants, but that each time 

component is weighted by a wavelength specific amplitude, as described in Equation 3.1.   

 
∑
=

−=Δ
5

1
,

i

tk
i

ieAA λλ . (3.1)

Included in the global fit were data obtained previously at probe wavelengths from 

520nm to 570nm [2].  The minimum number of five time constants required to fit the 

data are listed in Table 3.1.  

 

Table 3.1.  Results of global fit to a sum of five exponentials for adenosylcobalamin bound to 
glutamate mutase. 

i (from Equation 1) Rate Constant, k (ns-1) Time Constant, τ (ps) 

1 > 2000 < 0.5 

2 160 ± 50 6 

3 9.5 ± 1.0 105 

4 1.05 ± 0.1 950 
0 ∞ 5 (does not decay at by 9ns – long lived plateau) 
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3.2.2 Results 

 The transient absorption data obtained for adenosylcobalamin bound to glutamate 

mutase is best analyzed in comparison with previously acquired data for free 

adenosylcobalamin in aqueous and ethylene glycol solutions [10].  Figure 3.8 shows 

comparison plots for adenosylcobalamin in each of these three environments at selected 

probe wavelengths, including the wavelengths shown above in Figures 3.4 through 3.7.  

Note that the temporal axis for the plots in Figure 3.8 is on a log scale in order to better 

elucidate changes induced by the solvent environment (water, ethylene glycol, or protein 

in potassium phosphate buffer) and that each scan begins at 1ps. 

 

Figure 3.8.  Room temperature kinetic traces for adensosylcobalamin in three different 
environments: free coenzyme in aqueous solution (red); free coenzyme in ethylene glycol (green); and 
bound to glutamate mutase (blue).  The probe wavelength is indicated in the upper right corner of 
each plot.  Note that these traces are plotted on a log scale for time and do not include subpicosend 
dynamics (each begins at 1 ps).  Figure reproduced from Reference [4]. 
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The adenosylcobalamin bound to glutamate mutase traces (blue) in Figure 3.8 at probe 

wavelengths of 470nm and 600nm are the same as those shown in Section 3.2.1 above 

(but with the time axis on a log scale).  Free adenosylcobalamin in aqueous solution is 

plotted in red and in ethylene glycol is plotted in green.  All traces shown were collected 

at room temperature.   

 As discussed in Chapter 1, Section 1.2.1.1, the existing literature [1, 10, 11, 22] 

shows that for times longer than a few hundred picoseconds the dominant feature in the 

transient absorption data is the formation of cob(II)alamin radical.  The spectral 

fingerprint of cob(II)alamin can be seen by reference to Figures 3.3 and 3.8.  At time 

delays of at least a few hundred picoseconds there is an increase in absorption for all 

samples at 470nm (where cob(II)alamin shows a marked increase in absorption compared 

to cob(III)alamin) and a decrease at each of the other probe wavelengths (where 

cob(II)alamin shows a marked decrease in absorption compared with cob(III)alamin).  

However, Figure 3.8 shows that the creation of the cob(II)alamin characteristic state is 

delayed as compared to free adenosylcobalamin in both water and ethylene glycol.  

Decay-associated difference spectra for the protein bound adenosylcobalamin obtained 

from the kinetic traces are shown in Figure 3.9.  The clear formation of cob(II)alamin 

from adenosylcobalamin by 1ns is shown in Figure 9, as the 1ns decay associated 

difference spectrum is identical to the difference spectrum expected for the creation of 

cob(II)alamin from adenosylcobalamin (scaled, black dashed line).  The decay associated 

difference spectra show the wavelength specific amplitudes obtained from the sum of 

exponentials fitting, Ai,λ, plotted versus the probe wavelength. 
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Figure 3.9.  Decay associated difference spectra for adenosylcobalamin bound to glutamate mutase.  
Points are associated with each time component of the sum of exponential fit as indicated in the 
legend.  The black dashed spectrum is the (scaled) difference spectrum expected for the creation of 
cob(II)alamin from adenosylcobalamin.  Figure modified from reference [4].  

 

 Besides a delay for the formation of cob(II)alamin radical, Figures 3.8 and 3.9 

show that the protein bound adenosylcobalamin sample starting at 1ps has an increase in 

absorption for the 550nm probe wavelength.  Free adenosylcobalamin does not show any 

increase at this wavelength, but instead is already decreasing toward the cob(II)alamin 

spectrum by 1ps.  Reference to Figure 1 indicates that an increased absorption near 

550nm is characteristic of the creation of nonalklycob(III)alamin state (red spectrum in 

Figure 3.3). 

 If a simple step-wise model is assumed for the observed kinetics following 

excitation at 400nm for the protein bound adenosylcobalamin, the difference spectrum 

associated with the cob(III)alamin type signal can be estimated, along with any other 

intermediate species.  These can be calculated using the model to weight the contribution 
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of each decay associated spectra to the individual species absorption difference spectra.  

(For more details, see Chapter 4, Section 4.2.1.) 

 

Figure 3.10.  (A) Proposed step-wise model for the observed kinetics of adenosylcobalamin bound to 
glutamate mutase.  Time constants are those listed in Table 3.1.  k1 =  kR + kE in this model.  (B) 
Species associated difference spectra for the two intermediate states (blue diamonds and red squares 
as shown in (A)), as well as for the long lived cob(II)alamin (green triangles).  The black dashed line 
represents the scaled difference spectrum anticipated for the formation of cob(II)alamin from 
adenosylcobalamin.  Figure reproduced from Reference [4]. 

 

The weighting of the decay associated spectra in determining the species associated 

spectra is described in References [10] and [20].  The distinction between the decay 

associated difference spectra shown in Figure 3.9 and the species associated difference 

spectra in Figure 3.10(B) is that the decay associated spectra represent the dominant 

spectral component associated with a particular time constant, while the species 

associated spectra represent the difference spectrum of an individual species (in this case 

an intermediate).  For a mixture of independent absorbing species, each with a 

characteristic time constant, the decay and species associated difference spectra are the 

same [23].  However, when the system being probed is an excited state reaction, the 

situation is complicated and the decay associated spectra no longer represent an 

individual absorbing species (or excited state conformer).  Notice that at long times the 

(A) (B)
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decay and species associated difference spectra are identical to each other and identical to 

the difference spectrum expected for the formation of cob(II)alamin from 

adenosylcobalamin.  The decay and species associated difference spectra are identical to 

each other in this instance since there is only one absorbing species left at long times and 

no longer a mixture of different species in the population.  Of course the ground state is 

absorbing as well; but the transient absorption scans probe only the change in absorbance 

as compared to the ground state absorbance and described by the Beer-Lambert law 

(Equation 2.1 in Chapter 2). 

 As described in Chapter 1 (as reviewed from [10]), free adenosylcobalamin in 

ethylene glycol undergoes homolytic bond cleavage of the Co-C bond on a time scale of 

≤ 28ps.  In water a spectroscopic intermediate is observed, possibly characteristic of a 

base-off (lower nitrogenous ligand) alkylcobalamin or base-on cob(II)alamin, followed 

by homolysis on a time scale of 100ps.  The bond dissociation pathways observed 

following excitation of the protein bound adenosylcobalamin are distinctly different from 

the free adenosylcobalamin.  Not only is there a delay in the formation of the 

cob(II)alamin radical, but a distinct intermediate, characteristic of a 

nonalkylcob(III)alamin-type state, is identified by the data presented.  The role of the 

protein in supporting an electronically distinct intermediate suggests an influence on the 

electronic structure of the bound coenzyme.   

 A cob(III)alamin type species with a marked absorption at 550nm is characteristic 

of nonalkylcobalamins, such as vitamin B12 (cyanocobalamin, shown in Figure 3.3(A), 

red) and hydroxocobalamin (Chapter 4, Figure 4.1)).  The ligands in these cases are σ-

donating anions; and more charge density will be located on the ligand.  If the supported 
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intermediate corresponds to such a state, it would then represent a metal-to-ligand charge 

transfer state (MLCT state).  A similar suspected MLCT intermediate is observed 

following the excitation of methylcobalamin [8, 11]. 

 Following bond homolysis in the protein environment, the rates for geminate 

recombination and cage escape, assuming the step-wise model presented in Figure 

3.10(A) are: 

Table 3.2.  Rates for geminate recombination and cage escape of the adenosyl radical with the parent 
cob(II)alamin. 

 Geminate Recombination Cage Escape 

Rate Constant (ns-1) 0.05 ± 0.03 1.0 ± 0.1 

Time Constant (ns) 20 1 
 

The rate constant for geminate recombination is slowed in comparison to the adenosyl 

radical recombining with cob(II)alamin in water and ethylene glycol (1.4ns-1 [10]; the 

protein bound sample is in an ice bath, however, the experiments in Chapter 3 Section 3.3 

and in Chapter 4 demonstrate that the recombination is slowed in comparison to free 

samples at lower temperature as well).  However, the accelerated rate of bond homolysis 

in response to substrate binding cannot be accounted for by this stabilization.  

Experiments probing the dynamics of adenosylcobalamin while in the protein 

environment in the presence of substrate are clearly desirable for a more thorough insight 

into protein’s influence of bond homolysis.  Such experiments may be complicated by the 

interaction of radical and substrate and may therefore require appropriate protein mutants.  

Rate constants for diffusive escape from a cage will be discussed in detail in Chapter 4. 
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3.3  S1 Excited State and Dynamics 

 The observation of the MLCT excited state for protein bound adenosylcobalamin 

was unexpected and suggested that a more detailed study of the excited states of 

alkylcobalamins was called for.  Data was taken for adenosylcobalamin, 

methylcobalamin, and cyanocobalamin like that described in the previous section, with 

the addition of temperature as a further experimental parameter.  The setup is as 

described in Chapter 2.  It is worth noting that this program of experiments cannot be 

readily extended to the protein environment due to the degradation of protein with 

temperature. 

 

3.3.1  Cyanocobalamin 

 The transient absorption data for cyanocobalamin is presented in Figures 3.11 and 

3.12. 

 

Figure 3.11.  Kinetic trace for cyanocobalamin in ethylene glycol.  Excitation wavelength is 400nm 
and probe wavelength is 520nm.  The main figure shows kinetics out to 30ps, while the inset plots the 
data to 100ps (effectively demonstrating that the sample has returned to the ground state).  Figure 
reproduced from Reference [24]. 
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Figure 3.12.  Kinetic traces for cyanocobalamin in water.  Excitation wavelength is 400nm and probe 
wavelength is 560nm.  The main figure shows kinetics out to 14ps, while the inset plots the data to 
50ps (effectively demonstrating that the sample has returned to the ground state).  Figure 
reproduced from Reference [24]. 

 

The kinetic behavior of the nonalkylcobalamins following photoexcitation is relatively 

simple in comparison to that for the alkylcobalamins.  Excitation at both 400nm and 

520nm fails to induce Co-C bond homolysis [7].  The data presented in Figures 3.11 and 

3.12 demonstrate a strong bleach at the probe wavelengths (560nm in water, near the 

peak of the absorption; and 520nm in ethylene glycol), followed by recovery to the 

ground state on timescales given in Table 3.2 (obtained by fitting to a sum of two 

exponentials; Equation 3.1 with i = 2, k2 is given in Table 3.2): 
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Table 3.3.  Rates for cyanocobalamin ground state recovery following excitation at 400nm.  Table 
reproduced from Reference [24]. 

Ethylene Glycol Water 

T(˚C) k2 (ps-1) τ(ps) T(˚C) k2 (ps-1) τ(ps) 

10 0.061 16.21 8 0.137 7.25 

20 0.065 15.39 21 0.152 6.56 

40 0.085 11.78 38 0.148 6.74 

60 0.099 10.05 50 0.166 6.01 

75 0.123 8.13 63 0.176 5.67 

 

 The kinetic traces presented in Figures 3.11 and 3.12 demonstrate behavior 

identical to that described in the literature [7] and reviewed in Chapter 1.  The 

introduction of a temperature variation parameter induces no change in the initial 

excitation and internal conversion to the S1 excited state.  The decay of the excited state 

to the ground state does depend on environment as detailed in Chapter 1; and this aspect 

is reflected in a temperature dependent intermediate lifetime as evidenced by the fitting 

parameters in Table 3.3. 

      A standard approach to analyzing the temperature dependence of reaction rates is to 

fit the data with an Arrenhius expression: 

 RTE
h

aeAk /−= . (3.2)

Taking the logarithm allows fitting to a straight line: 
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E

k +−= . (3.3)
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A plot of the natural logarithm of the excited decay rate constant versus 1/T and the 

corresponding fits to Equation 3.3 are shown in Figure 3.13. 

 

Figure 3.13.  Plot of ln(k) vs. 1/T for CNCbl in water (filled diamonds, dashed line) and ethylene 
glycol (filled triangles, dashed line), ln(k)-a(ε-1)/RT in water (open diamonds) and ethylene glycol 
(open triangles). The value for a is 0.0466 kJ/mol per unit change in dielectric constant as described 
in the text.  Figure reproduced from Reference [5]. 

 

 The slopes in Figure 3.13 predict that the activation energy in ethylene glycol is 

approximately 3 times that in water.  The fits to Equation 3.3 assume that the exponential 

prefactor, Ah, and the activation energy, Ea, are independent of temperature.  As pointed 

out in Chapter 1, the excited state lifetime exhibits an inverse dependence on dielectric 

constant (at least at room temperature) [7].  Since the dielectric constant of the solvent 

varies with temperature (by 22% in water and 27% ethylene glycol over the range of 

temperatures studied), it is anticipated that in fact the temperature will exert some 

influence on the activation energy.  To gauge the extent of temperature influence on the 

activation energy, it was first assumed that the entire dependence was through the 

influence of dielectric constant.  If this were the case, comparing the rate constant in 
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different solvents (to vary the dielectric constant) while holding the temperature constant 

would describe not only how the rate constant varies with the dielectric properties of the 

solvent, but also how the activation energy varies with temperature (via the associated 

change in dielectric constant).  To this end, Figure 3.14 plots the natural logarithm of the 

rate constant versus dielectric constant, with the temperature held constant at room 

temperature.   

 

Figure 3.14.  -RTln(k) (in kJ/mol) vs. dielectric constant (ε-1) for CNCbl at room temperature in a 
variety of solvents and solvent mixtures. There is a clear correlation with solvent polarity although 
the scatter is also significant.  The filled diamonds represent data obtained in water or 50/50 mixtures 
of water and ethanol, methanol or acetonitrile [7].  The open diamonds represent data obtained in 
neat alcohol solvents, methanol, ethanol, 2-propanol and isobutanol [7]. The circle is the data point 
obtained in ethylene glycol in the present study. The dashed line is a linear fit to all of the data; the 
solid line is a linear fit to the filled diamonds.  Figure reproduced from Reference [5]. 

 

 Returning to the Arrhenius analysis, the linear dependence of the activation 

energy on temperature inferred in Figure 3.14 can be put to the test, by expressing the 

activation energy in Equation 3.3 as a linear function of the dielectric constant, 

 )1()1()( −−== εεε aEE aa , (3.4)
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arriving at 
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 where a is a constant which should agree with the slope in Figure 3.14, while resulting in 

a straight line for Equation 3.5.   The bottom line in Figure 3.13 is for the data in both 

water and ethylene glycol with a = 0.0466 kJ/mol.  This value for a is in close agreement 

with the fit to high dielectric constant data in Figure 3.13, where the slope is 0.047 ± 

0.005 kJ/mol. This analysis suggests that the only influence on the excited state is the 

electrostatic stabilization by the solvent. 

 This data further is consistent with the existence of a ligand-to-metal-charge-

transfer (LMCT) state as proposed in the literature [7].  The charge transfer density 

appears modest as the activation barrier decreases with increasing dielectric constant (see 

Figure 3.15). 

 

Figure 3.15.  Cartoon illustrating the influence of solvent stabilization on the activation energy for 
internal conversion for a modest charge redistribution in a polar solvent.  The solvent will stabilize 
the energy of the excited state leading to a lower activation energy for internal conversion.  This is 
demonstrated as the upper potential energy surface moves down in relation to the ground state, 
resulting in ΔE3 < ΔE2 <ΔE3.  Figure reproduced from Reference [5]. 
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3.3.2  Methylcobalamin 

 Transient absorption kinetic traces for methylcobalamin following excitation at 

400nm as a function of temperature and at select probe wavelengths in water and 

ethylene glycol are presented below in Figures 3.16 through 3.20. 

 

Figure 3.16.  Methylcobalamin in water transient absorption kinetic scans.  This data has been scaled 
(see Chapter 4 for a complete discussion).  Probe wavelength is 520nm; pump wavelength is 400nm.  
This Figure is reproduced from Reference [24]. 
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Figure 3.17.  Methylcobalamin in ethylene glycol transient absorption kinetic scans.  This data has 
been scaled (see Chapter 4 for a complete discussion).  Probe wavelength is 510nm; pump wavelength 
is 400nm.  This Figure is reproduced from Reference [24]. 

 
 
 
 
 

 
Figure 3.18.  Methylcobalamin in ethylene glycol transient absorption kinetic scans.  This data has 
been scaled (see Chapter 4 for a complete discussion).  Probe wavelength is 520nm; pump wavelength 
is 400nm.  This Figure is reproduced from Reference [24]. 
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Figure 3.19.  Methylcobalamin in ethylene glycol transient absorption kinetic scans.  This data has 
been scaled (see Chapter 4 for a complete discussion).  Probe wavelength is 540nm; pump wavelength 
is 400nm.  This Figure is reproduced from Reference [24]. 

 
 
 

 
Figure 3.20.  Methylcobalamin in ethylene glycol transient absorption kinetic scans.  This data has 
been scaled (see Chapter 4 for a complete discussion).  Probe wavelength is 600nm; pump wavelength 
is 400nm.  The inset shows a blowup of the first 10ps.  This Figure is reproduced from Reference 
[24]. 
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 Each transient absorption scan was fit to a sum of exponentials (Equation 3.1).  

The model in methylcobalamin due to partitioning between two photoproduct channels is 

different than that used for fitting the cyanocobalamin or adenosylcobalamin bound to 

glutamate mutase above, and is illustrated in Chapter 4, Figure 4.27.  The decay of the 

metal-to-ligand-charge-transfer (MLCT – Chapter 1) state is considered in an Arrhenius 

plot as for cyanocobalamin.  Figure 3.21 plots the natural logarithm of the rate constant 

for decay of the excited state against the inverse temperature. 

 

Figure 3.21.  Plot of ln(k) vs. 1/T for MeCbl in water (diamonds, solid line) and ethylene glycol 
(triangles, dashed line).  This Figure is reproduced from Reference [5]. 

 

 The most interesting feature of Figure 3.21 is that the slope is steeper for 

methylcobalamin in water than in ethylene glycol, which is opposite of what was 

observed for cyanocobalamin (Figure 3.13).  The larger activation energy in the solvent 

with a larger dielectric constant suggests that compared to the modest charge density 

transfer of the nonalkylcobalamin excited state (Figure 3.15), that there is a much 

increased charge density transfer for the cob(III)alamin like, MLCT intermediate state.  
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The cartoon in Figure 3.22 makes the point that increased stabilization by the solvent 

(upper curve moves closer to the ground state), increases the activation energy. 

 

 

Figure 3.22.  Cartoon illustrating the influence of solvent stabilization on the activation energy for 
internal conversion for a large charge redistribution in a polar solvent.  The solvent will stabilize the 
energy of the excited state leading to an increased activation energy for internal conversion.  This is 
demonstrated as the upper potential energy surface moves down in relation to the ground state, 
resulting in ΔE3 > ΔE2 > ΔE3.  Figure reproduced from Reference [5].      

 

 Analysis according to Equation 3.5 does not result in a single straight line and 

dielectric constant alone cannot account for the solvent dependent decay of the excited 

intermediate state.  The apparent insensitivity of the kinetic traces to environment at 

600nm is characteristic of ligand field transitions from the cobalt 3d orbitals. (an apparent 

insensitivity is exhibited to functional group as well [3]). 

 Several transient absorption experiments were performed for methylcobalamin at 

fixed delay and with a wide band visible probe.  These demonstrate clearly the 

characteristic structure of the MLCT intermediate described above. 
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Figure 3.23.  Difference spectrum for methylcobalamin at 10°C, following excitation at 400nm.  The 
spectrum demonstrate the evolution from the MLCT intermediate to a distinctly different 
cob(II)alamin at longer time delay.  This Figure is reproduced from Reference [24]. 

 

Figure 3.24. Difference spectrum for methylcobalamin at 40°C, following excitation at 400nm.  The 
spectrum demonstrate the evolution from the MLCT intermediate to a distinctly different 
cob(II)alamin at longer time delay.  However, the intermediate is less well defined than at 10°C 
(Figure 3.23), and the cob(II)alamin is more well defined by 9ns.  This Figure is reproduced from 
Reference [24]. 
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Figure 3.25.  Difference spectrum for methylcobalamin at 80°C, following excitation at 400nm.  At 
this temperature the intermediate is barely discernable at 20 ps.  This Figure is reproduced from 
Reference [24]. 

 

The difference spectra in Figures 3.23 through 3.25 clearly illustrated the evolution 

through the MLCT intermediate to the cob(II)alamin spectrum expected for radical pairs.  

At the 80°C temperature in Figure 3.25 the intermediate lifetime is severely shortened. 
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3.3.3  Adenosylcobalamin 

 Transient absorption kinetic traces for adenosylcobalamin as a function of sample 

temperature in water and ethylene glycol are presented in Figures 3.26 through 3.28. 

 

Figure 3.26.  Transient absorption kinetic traces for adenosylcobalamin in water following excitation 
at 400nm.  The probe wavelength is 520nm.  The inset shows a blowup of the first 10 picoseconds 
following excitation.  This Figure is reproduced from Reference [24]. 

 

 

Figure 3.27.  Transient absorption kinetic traces for adenosylcobalamin in ethylene glycol following 
excitation at 400nm.  The probe wavelength is 520nm.  The inset shows a blowup of the first 10 
picoseconds following excitation.  This Figure is reproduced from Reference [24]. 



 89

-17

-15

-13

-11

-9

-7

-5

-3

-1

1

-1 0 1 2 3 4 5 6 7 8 9

time (ns)

ab
so

rb
an

ce

10°C
20°C
40°C
60°C
80°C

 
Figure 3.28.  Transient absorption kinetic traces for adenosylcobalamin in ethylene glycol following 
excitation at 400nm.  The probe wavelength is 540nm.   

 

 The adenosylcobalamin data was also fit to a sum of exponentials, resulting in the 

identification of several short lived intermediates on the path to homolysis (as described 

in Chapter 1).  The rate constants from these fits are compared by environment with an 

Arrhenius plot in Figure 3.29. 
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Figure 3.29.  ln(k) vs 1/T for AdoCbl in water (circles) and ethylene glycol (squares).  Figure 
reproduced from Reference [5]. 

 

Note that there are no rate constants plotted for k3 in ethylene glycol, as the intermediate 

“3” is not observed in ethylene glycol.  This LMCT (Chapter 1) intermediate appears 

stabilized in water as the higher dielectric constant stabilizes the solvation of the 

dimethylbenzimidazole. 

 

3.4 Remarks 

 The results from the experiments on the excited states presented in the previous 

section (3.3) give some insight into the intermediate observed for adenosylcobalamin 

bound to glutamate mutase presented in Section 3.2.  As this intermediate is 

spectroscopically identical to the MLCT state observed in methylcobalamin, the protein 
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is likely influencing the excited state electronic structure of the adenosylcobalamin in 

such a way as to support the large charge density transfer to the adenosyl ligand of the 

MLCT state, and suppress the photophysical pathways found in Section 3.3.3.  The 

general process should be similar to Figure 3.22. 
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Chapter 4  

Solvent Dependence of Cage Escape for Small Nonpolar Radicals in Solution 

 

 The studies presented on alkylcobalamins in Chapter 3 address several intriguing 

questions of biochemical importance concerning the enzymatic generation and 

exploitation of free radicals.  The alkylcobalamins also turn out to be scientifically 

interesting in their own right.  The experiments described in Chapter 3, especially the 

temperature dependent studies presented in Section 3.3.2, also suggest that the cage 

escape of photodissociated alkyl radicals may be well suited, perhaps surprisingly so, as a 

paradigm system to study the diffusion of small particles in solution.  The notion of a 

solvent caging influence in the photolysis of cobalamins has been suggested previously 

[1].  The temperature dependent determination of rate constants for cage escape of 

adenosylcobalamin and methylcobalamin in water and ethylene glycol present some 

surprising findings as will be discussed in detail below.   

 To further the inquiry into the solvent cage effect a systematic study was carried 

out, varying the solvent viscosity over as wide a range as possible and in different 

environments.  Due to the widely disparate behavior of the methyl and adenosyl radicals 

in terms of cage escape, intermediate sized radicals were sought.  The result was that two 

synthetic alkylcobalamins, ethyl and propylcobalamin, were produced.  The choice of 

alkyl radicals was influenced by the desire to study specific interactions between the 

protic, hydrogen bonding solvents and the diffusing radicals.  The adenosyl radical has 
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nitrogen and oxygen atoms that may interact with the solvent, while the methyl, ethyl, 

and propyl radicals lack such interaction. 

 Despite the extensive literature on solvent cage effects [2], there is relatively little 

direct time-resolved investigation of caging.  At least one study, more limited in scope 

than the one presented in this chapter, was focused on the solvent caging of radical pairs 

produced by the photolysis of adenosylcobalamin as a function of solvent viscosity [3].  

This study undertaken by Gerards and coworkers examined the cage escape of adenosyl 

and cob(II)alamin radicals following photolysis in a series of eight different water and 

glycerol mixtures at three temperatures each.  However, this experiment suffered from an 

inherent limitation.  The photolyzed radical pairs were produced by excitation with a 

xenon arc lamp.  Without the short time resolved capabilities of the experimental 

apparatus described in Chapter 2, bulk recombination of non-geminate radical pairs must 

be considered.  Gerards and coworkers introduced the radical scavenger tempo (2,2,6,6,-

tetramethylpiperidine 1-oxide) in excess to react with adenosyl radicals which have left 

the initial solvent cage before there is opportunity to interact with cob(II)alamin radicals 

in the bulk.  There has been a report of reaction between cob(II)alamin and tempo[4]; 

however, Gerards and coworkers did not observe any interaction between the two.  The 

study undertaken here was performed with femtosecond resolution, making possible a 

direct real-time measurement of cage escape and recombination, without the need for 

radical scavengers. 
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4.1  Sample Preparation 

4.1.1  Alkylcobalamin (Solute) Preparation 

 Adenosylcobalamin and methylcobalamin as biologically relevant compounds are 

readily available commercially.  These compounds were obtained from Sigma and used 

without any further purification.  The synthetic alkylcobalamins, ethyl- and n-

propylcobalamin, could not be obtained commercially and were synthesized according to 

literature methods [5-8].   The starting material for both ethyl- and n-propylcobalamin 

was the cob(III)alamin hydroxocobalamin, where the upper axial ligand of the cobalt 

atom is bonded to the oxygen of a hydroxyl functional group.   

 The highlights of the synthesis of ethyl- and n-propylcobalamin are sketched very 

briefly as follows.  Cob(I)alamin is first produced through the reaction of the 

hydroxocobalamin with an excess of sodium borohydride.  The cob(I)alamin is then 

reacted with an excess of the appropriate alkyl halide (either ethyl iodide or n-propyl 

bromide) to create the alkylcobalamin.  The mixture is desalted by abstraction into a 

solution of dichloromethane and phenol and added to diethyl ether before being 

centrifuged.  After being centrifuged, the precipitated alkylcobalamin is separated from 

the solution and the supernatant discarded.  The alkylcobalamin was then redissolved in 

water and stored chilled until used.  A more detailed description of the synthesis is 

described in reference [6].  Note that the final step here varies from that described 

previously [6], due to difficulty with sample loss.  The problems with sample loss might 

arise in this final step as there is some evolution of the procedure between reference [6] 

and the earlier reference [7].  Another procedure for the purification process with 
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increased yield percentage was evidently used in the past [9], and should be considered 

for future ethylcobalamin and n-propylcobalamin synthesis. 

 For transient absorption measurements the alkylcobalamin was introduced to the 

solvent immediately prior to the start of the experiment, and kept under an inert gas 

atmosphere for the duration as described in Section 2.3 of Chapter 2.  The commercially 

available compounds were normally prepared at concentrations of 1mM.  Using the Beer-

Lambert law (Chapter 2, Equation 2.1), along with a molar extinction coefficient of 

~5000M-1cm-1 at 400nm (see Chapter 3, Figure 3.3), and optical path length (flow cell 

width) of 1mm, the predicted absorption of the 400nm second harmonic excitation pump 

is ~68%.  This absorption was typically sufficient to induce an approximately 10-20mOD 

change in absorption at the probe wavelengths used.  With this scale of absorbance, a 

reasonable signal to noise ratio was readily obtained for the kinetic traces.   

 Although the molar extinction coefficient is comparable for the synthesized 

compounds, their scarce supply compounded with the need to constantly refresh the 

sample often dictated that sample concentrations were less than 1mM (and much less 

than the protein bound adenosylcobalamin samples described in Chapter 3, which had a 

signal to noise comparable to the commercially available compounds).  The difficulty of 

the experiments increased significantly as with a comparable noise to that for the 

commercial compounds, the signal to noise ratio was much poorer in the traces obtained 

with the synthesized alkylcobalamins (which were less concentrated).  Considerable 

effort was placed on improving the signal to noise ratio for the small signals of the 

synthesized compounds through improving the quality and stability of both excitation and 
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probe laser pulses (extending from the oscillator operation right through probe and 

excitation pulse generation). 

 Typical steady-state absorption spectra for the synthesized compounds are shown 

in Figure 4.1.  These agree with spectra reported in the literature [10].   The steady-state 

spectrum of the starting material, hydroxocobalamin (dashed line), is included in Figure 

4.1 as well.  The solid black line shows sample degradation following a prolonged 

exposure to a 400nm excitation laser pulse as well heating to temperatures near 80°C.  

Figure 4.1 demonstrates the need to carefully ensure sample quality by monitoring the 

sample, protecting it from light and heat when not in use, and especially by continually 

replacing with fresh sample.  These procedures were most important for the ethyl- and n-

propylcobalamin samples.  As the data will show, the quantum yield for radical pairs is 

very large in these samples, allowing the cob(II)alamin radical to interact with the solvent 

producing hydroxocobalamin and aquocobalamin (upper axial ligand is to a water 

molecule – spectrum not shown).  The degraded sample spectrum shows the evolution 

toward the starting material spectrum and towards aquocobalamin. 
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Figure 4.1.  Steady-state absorption spectra of ethyl- (red) and n-propylcobalamin (blue).  The 
steady-state spectra of the starting material for synthesis, hydroxocobalamin (black), along with a 
used sample (dashed) showing product buildup are included for reference. 

 
 Another example of sample reverting to the starting material is illustrated in the 

transient absorption kinetic traces shown in Figure 4.2.  The blue trace is the first scan 

using the same propylcobalamin sample used to obtain the steady-state spectrum (blue) 

shown in Figure 4.1.  The pump is at 400nm and the probe at 540nm.  The red trace is the 

same sample after having been used for several hours and after cycling the temperature 

through 80°C.  The steady-state spectrum (black dashed) of this sample is also shown in 

Figure 4.1.  Clearly, the kinetics are no longer the same after extensive sample use.  The 

black trace is a room temperature scan for hydroxocobalamin under the same conditions.  

Because of the problem with sample degradation  all samples were changed regularly and 

maintained at or below room temperature except during the actual measurements. 
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Figure 4.2.  Kinetic traces demonstrating product buildup:  Propylcobalamin (blue) is compared with 
the same sample after long time use (red), for 400nm excitation and 540nm probe wavelengths.  A 
hydroxocobalamin trace under the same conditions is included for comparison.  The inset shows 
hydroxocobalamin traces for 400nm excitation and 470nm (blue), 540nm (green) probe.  The green 
trace in the inset is the same as the black trace in the main figure. 

 

4.1.2  Solvent Preparation 

 As described in Chapter 3, the homolytic Co-C bond cleavage observed in the 

alkylcobalamins results in the formation of two radicals: cob(II)alamin and an alkyl 

radical.  Since either of these radicals will readily react with the unpaired electrons of 

dissolved molecular oxygen, the solvent environment must be deoxygenated before the 

addition of the alkylcobalamin solute.  For samples in water, the dissolved oxygen can be 

sufficiently displaced by purging with an inert gas [6, 11].  Due to the more viscous 

nature of ethylene glycol (see 4.1.3) the method of freeze-pump-thaw [11] was chosen for 

deoxygenation.  Refer to Chapter 3, Section 3.2.1 for details on the deoxygenation 

techniques. 
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 As described in Chapter 2, a positive pressure of inert gas (nitrogen) is maintained 

on the sample after the addition of alkylcobalamin and for the duration of experimental 

use.  Also, as described in Chapter 3, stage alignment over the entire nine nanosecond 

temporal window probed was check prior to performing measurements and then 

periodically by taking kinetic traces of the well characterized [7, 12-15] free 

adenosylcobalamin in aqueous solution at room temperature. 

 

4.1.3  Solvent Viscosity 

 Modeling the radical recombination and diffusive escape from the solvent cage 

requires knowledge of the solvent viscosity.  The solvents used for these experiments are: 

water; ethylene glycol; mixtures of water and ethylene glycol; and mixtures of sucrose 

and water.  The use of mixtures and solvent temperature variation as detailed in the 

Sample Setup description of Chapter 2 allows for a large change in solvent viscosity 

(from 0.40 cP in pure water at 71°C to 27.5 cP in pure ethylene glycol at 10°C).  The 

choice of sucrose dissolved in water as a solvent makes it possible to vary the solvent 

viscosity without the associated large change in dielectric constant seen in switching from 

water to ethylene glycol [16].   

 

     4.1.3.1 Water, Ethylene Glycol, and Mixtures of Water and Ethylene Glycol 

 While there is considerable tabulated viscosity information available for pure 

water and pure ethylene glycol, there is far less data available for mixtures of water and 

ethylene glycol [17].  Fortunately, at least two groups [17, 18] have studied the viscosity 

properties of and provided fits for these mixtures over a sufficiently wide range of 
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concentration variations and temperatures, so as to cover all compositions and 

temperatures used to analyze the data presented here.  In choosing a method to calculate 

solvent viscosity, preference was given only to a good and well characterized fit to 

measured data points over a physical model, which might provide some motivation for 

the properties of the solvent but result in larger errors for the calculated viscosities.   

With this philosophy in mind, both the fits of Teja and coworkers [17] and Obermeier 

and coworkers [18] were considered and compared with each other.  Calculated 

viscosities for each mixture concentration used are plotted in Figure 4.3, for both the fits 

of Teja and Obermeier.  Solid lines are those from Teja and coworkers; dashed lines are 

from the work of Obermeier and coworkers.  The pure solvents, water and ethylene 

glycol, are shown in red and brown, respectively.  The mixtures are plotted as follows:  

75% water / 25% ethylene glycol (black); 50% water / 50% ethylene glycol (green); and 

25% water /  75% ethylene glycol (blue).  Also included on the plot are experimentally 

determined points for the pure solvents [19] (red circles for water and brown diamonds 

for ethylene glycol).  These viscosity points are used for both adenosylcobalamin and 

methylcobalamin in the pure solvents.  The remaining viscosities for all samples (solutes) 

in all solvents were calculated as described in this chapter and plotted in Figure 4.3 (due 

to lack of available experimentally determined viscosity data). 
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Figure 4.3.  Calculated and measured solvent viscosity: water, ethylene glycol, and mixtures of water 
and ethylene glycol. 

 

The plots of viscosity, η, in Figure 4.3 were arrived at according to [17, 18]:  

 )()(ln 615421212211 tAwAAwwyyywywTeja ++−++=η , (4.1)

and 
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w1 and w2 in Equation 4.1 are the mass fractions of ethylene glycol and water 

respectively, in a solvent mixture.  In Equation 4.2, x is the mass fraction of ethylene 

glycol in the mixture (the notation has been kept consistent with each group’s 
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convention).  y1  and y2 are fits to the pure solvent viscosities [17] for ethylene glycol (1) 

and water (2) and are given by: 

 

3

2
11 ln

At
AAy EG +

+== η ; (4.3)

 

9

8
72 ln

At
A

Ay WT +
+== η . 

(4.4)

t is the temperature, in degrees centigrade, in Equations 4.1 through 4.4.  The 

coefficients, Ai and Bi,j, are constants determined from fits and are listed in Tables 4.1 

(Teja) and 4.2 (Obermeier). 

 
Table 4.1.  Coefficients for the viscosity calculations according to the fits of Teja and coworkers [17]. 

i: Ai 
Value 

η in mPa*s = cP 
 

1 -3.61359 

2 986.519 

3 127.861 

4 -0.165301 

5 -0.287325 

6 1.10978*10-3 

7 -3.758023 

8 590.9808 

9 137.2645 
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Table 4.2.  Coefficients for the viscosity calculations according the fits of Obermeier and coworkers 
[18]. 

Bi,j 
η in mPa*s = cP j = 1 j = 2 j = 3 

i = 1 5.5164*10-1 2.6492 8.2935*10-1 

i = 2 -2.7633*10-2 -3.1496*10-2 4.8136*10-3 

i = 3 6.0629*10-17 2.2389*10-15 5.8790*10-16 
 
 
 References [17] and [18] state Equations 4.1 and 4.2 without motivation.  This 

approach is reasonable given the goal of merely reproducing the actual data with the best 

accuracy.  Obermeier and coworkers characterize the fit given by Equation 4.2 as having 

an accuracy of ±5% when compared to experimental data over the range fitted (-10°C to 

100°C); while the method of Teja is characterized to have an average absolute deviation 

of 0.80% and maximum absolute deviation of 2.35% over the range 16.85°C to 

176.85°C.  The fit provided by Teja is preferable since it is in general a better fit.  

However, it has not been characterized to the lowest temperatures reached for the 

alkylcobalamin experiments. The lowest temperature was 6.3°C for the water and 

ethylene glycol mixtures.  Therefore comparisons of  the deviation between the two fits 

are shown in Figures 4.4 and 4.5. 
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Figure 4.4.  Absolute deviation between the fits of Teja and Obermeier. 

 

 Figure 4.4 shows the absolute deviation of the fits due to Teja from those to 

Obermeier, while Figure 4.5 shows the relative deviations (plots in Figure 4.4 are divided 

by the Obermeier viscosities to produce the plots in Figure 4.5).  These two Figures show 

that the two methods never deviate by more than 6% from each other over the range of 

interest (6°C to 80°C).  Figure 4.5 also shows that the viscosities obtained from Equation 

4.1 do not deviate any more from those obtained from Equation 4.2 below 16.85°C than 

above 16.85°C, which is the lower limit of the characterization by Teja.  The method of 

Teja was then chosen to calculate the viscosities used to analyze and model the escape 

data described in this thesis.  It is worth noting that for several sets of data, the viscosities 

due to Obermeier were also used and no discernable difference was identified in the 

escape and recombination analysis. 
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Figure 4.5.  Relative deviation of fits due to Teja from those due to Obermeier. 

 

 Both Equations 4.1 and 4.2 are expressed in terms of the mass fraction of water 

and ethylene glycol in the solvent mixture.  The knowledge of this experimental 

parameter imposes a problem since each solvent mixture was prepared as a volume 

fraction.  The volume of a water and ethylene glycol mixture will be contracted when 

compared to the sum of the individual volumes of water and ethylene glycol mixed 

(though, of course, mass and mole fractions will remain constant).  Ideally, one would 

prepare the samples measuring the mass of each volume of the individual components of 

the mixture before mixing them together.  However, this complication was not 

appreciated until viscosity calculations were begun already following data collection.   

The problem of determining mass fractions from the known volume fractions remains.    

 To ascertain the extent to which volume contraction might impact the final sample 

volume (typically of 15mL), the densities of the mixtures were calculated as a function of 
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temperature and concentration.  The mixture density was also calculated to the according 

to the method of Teja and coworkers [17], again using the form of Equation 4.1, with a 

new set of fit coefficients (Table 4.3): 

 )()( 615421212211 tCwCCwwyyywyw ++−++=ρ . (4.5)

This time, however, y1 = ρEG and y2 = ρWT are given by: 

 tCCCy EG 3211 ++== ρ ; (4.6)

 32
9872 tCtCtCCy DWT +++== ρ . (4.7)

 

Table 4.3.  Coefficients for solvent mixture density calculations [17]. 

i: Ci 
Value 

ρ in kg*m-3 
 

1 1127.68 

2 -0.65816 

3 -6.1765*10-4 

4 0.30590 

5 0.13781 

6 -1.8961*10-3 

7 1002.17 

8 -0.116189 

9 -0.358024*10-2 

10 0.37667*10-5 
 

 The stated accuracy when compared to experimental data for the density fits is: 

average absolute deviation 0.038% and maximum absolute deviation 0.133%.  The 

expected mixture volume contraction can be calculated by comparing volumes 
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determined through densities calculated via Equation 4.5 to those expected if the volumes 

were simply additive.  The change in volume is known as an excess volume; the excess 

volume will be negative since a contraction is expected.  To make the comparison, first 

an initial volume of water and ethylene glycol are chosen and the associated mass 

calculated, using the liquid density at the laboratory room temperature, m = ρ*v.  Once 

an initial mass is known for the two solvents, these values are divided by the temperature 

dependent densities (Equations 4.6 and 4.7 with appropriate scaling factors for units).  

The result is the temperature dependent volume of the initially prepared water or ethylene 

glycol.  These two values are then summed and subtracted from the volume calculated for 

the mixture from Equation 4.5.  This procedure is summarized in Equation 4.8 (modified 

version of Equation 4a in reference [17]): 
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The superscript, RmT, represents room temperature and ρRmT refers to a specific density at 

room temperature (i.e. it is a constant, not a function like ρmix or y1 and y2).  The 

superscripts Eq5, Eq6,  and Eq7 represent that these densities are expressed in Equations 

4.5, 4.6, and 4.7 respectively.  The results for the mixture concentrations and volumes 

used are plotted in Figure 4.6. 
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Figure 4.6.  Calculated excess volumes of water / ethylene glycol mixtures. 

 

 Since the volume concentrations only need to be considered at the ambient 

laboratory temperature at the time of sample preparation to determine the mass fraction 

of water or ethylene glycol in a mixture, Figure 4.6 shows a maximum contraction of 

approximately 0.18mL (for a mixture made of 7.5mL of water and 7.5mL of ethylene 

glycol).  The graduated cylinder used to prepare the solvent samples however had a stated 

error of ±5%.  For 15mL solutions, this accuracy translates to ±0.75mL which is four 

times larger than the largest deviation from additive volumes.  Figure 4.6 predicts then 

that any excess volume will be lost within the accuracy of the measurement.  With this 

justification then, the mass fractions necessary to calculate mixture viscosities were 

determined from the volume fractions (i.e. Figure 4.3) assuming no excess volume. 
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     4.1.3.2  Sucrose Dissolved in Water 

 Whereas there is comparatively little data for the viscosity of water and ethylene 

glycol mixtures (surprisingly so, given the industrial importance of such mixtures), there 

is a considerable literature on and varied approaches to the viscosity of solutions made 

from sucrose dissolved in water (for example[20, 21]).  Sucrose solutions are important 

as a gradient medium for the separation of biological material in centrifuges [22], 

requiring viscosity information as a function of temperature and sucrose concentration.  

As an interesting aside, the diffusive movement of sugar in water was considered by 

Albert Einstein in his dissertation [23].  Along with the viscosity of the solvent, he used 

the diffusive movement of the sugar molecule to estimate both the size of the sugar 

molecule as well as Avogadro’s number.   The results of this theory led directly to his 

work on Brownian motion [24].  This hydrodynamic approach will be important in the 

data analysis of the diffusive cage escape of radicals following photolysis.  Again a turn 

key equation was desired to produce viscosity values with well characterized accuracy.  

The fits of Barber [22] were chosen; and the relevant plots are shown in Figure 4.7.   
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Figure 4.7.  Viscosities for 20% and 40% by weight sucrose solutions. 

 

 Barber compared his fit with tabulated data [25] and found that for the 

concentrations of interest here, no point deviated from the actual value by more than 

three parts per thousand from 5°C to 40°C.  Outside of this range, some values may 

deviate by as much as eight parts per thousand from the experimental values.  Even for 

the smallest calculated viscosity used (0.684 cP for 20% sucrose by mass at 70°C), a 

deviation of 8 parts per thousand corresponds to a relative error of only ~ 1.2%. The 

viscosities plotted in Figure 4.7 are obtained from: 

 
Ct

BA
+

+=ηlog . (4.9)

t is still the temperature in degrees centigrade.  A and B are polynomials described by: 
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 7
7

2
210, yDyDyDDBA ++++= K , (4.10)

with the coefficients D given in Table 4.4. 

 

Table 4.4. Coefficients for polynomials A and B (Equation 4.9) [22]. 

i: Di 

Coefficients for A 
η in mPa*s = cP 

(for 5 to 48% mass 
sucrose) 

 

Coefficients for B 
η in mPa*s = cP 

(for 5 to 48% mass 
sucrose) 

 
0 -1.5018327 2.1169907*102 

1 9.4112153 1.6077073*103 

2 -1.1435741*103 1.6911611*105 

3 1.0504137*105 -1.4184371*107 

4 -4.6927102*106 6.0654775*108 

5 1.0323349*108 -1.2985834*1010 

6 -1.1028981*109 1.3532907*1011 

7 4.5921911*109 -5.4970416*1011 
 

C is give by  
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with z the mole fraction of sucrose in the solution and Gi constants listed in Table 4.5.  
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Table 4.5.  Coefficients for constant C (Equation 4.11) [22]. 

Coefficients in C 
Value 

η in mPa*s = cP 
 

G1 146.06635 

G2 25.251728 

G3 0.070674842 

 

 Unlike the case of water and ethylene glycol, determining mole fractions, z,  does 

not pose a significant problem.  For the sucrose mixtures, a mass of sucrose was weighed 

and dissolved in a known volume of water.  15mL was then measured out of a mixture 

prepared in this way to use as the experimental solvent. 

 The fits to sucrose solution viscosity described by Equations 4.9 through 4.11 

were physically motivated by the Antoine (modified Arrhenius) equation which is 

described in reference [22]. 

 

4.2  Transient Absorption Data and Fits 

4.2.1 Adenosylcobalamin 

 Kinetic transient absorption scans were collected for adenosylcobalamin, 

methylcobalamin, ethylcobalamin, and n-propylcobalamin in a series of environments 

and temperatures to systematically address the diffusive cage escape of the geminate 

radical pair.  Transient scans were presented in Chapter 3 for adenosylcobalamin (Figures 

3.26 through 3.28) and methylcobalamin (Figures 3.16 through 3.20) in the pure solvents 

(water and ethylene glycol).  The data below is presented over the full 9ns time window 

collected without insets on the early time behavior.  This presentation style is adopted 
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since this chapter addresses the cage escape which occurs on time scales of picoseconds 

to 100s of picoseconds (as to which the following plots attest). 

 Adenosylcobalamin data is presented in Figures 4.8 through 4.16.  Each of the 

following traces was collected following excitation at 400nm and with a probe of 540nm.  

Solvent environments consisting of mixtures of ethylene glycol and water are presented 

first, in Figures 4.8 through 4.13.  The data for samples in sucrose solutions follows in 

Figures 4.14 and 4.15.  Figure 4.16 is a comparison plot to develop the influence of 

solvent on the excited state dynamics of adenosylcobalamin. 
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Figure 4.8.  Adenosylcobalamin in a 50% ethylene glycol / 50% water solvent.  The kinetic traces 
have not been scaled in this Figure, and the ordinate axis is therefore plotted in mOD. 

 

 The data in Figure 4.8 for adenosylcobalamin in a mixture of 50% ethylene glycol 

and 50% water have not been scaled.  The ordinate axis is plotted in mOD; and each trace 

is reflective of the magnitude of actual measured signal.  These experiments were carried 
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out over the course of many months and many samples.  The absolute magnitude of the 

signal reflects these variations.  For example there are two traces in Figure 4.8 with the 

sample held near 20°C (20.4°C and 20.65°C, both red), with one of the traces exhibiting a 

magnitude nearly 50% larger than the other.  However, if either of these two traces is 

scaled both will sit on top of each other very well within the noise of the measurement.  

The result is shown in Figure 4.9 where all the traces from Figure 4.8 have been scaled to 

normalize the data to the peak of the absorption bleach.  Notice that the two 20°C scans 

(both red) follow along with each other.  Scaling the data in this manner helps to 

graphically demonstrate the influence of temperature on the recombination and escape of 

the geminate radical pairs.   

 As the temperature is increased, the plateau at long times settles at a more 

negative value.  This trend is a result of the increased cage escape of the radical pairs to 

produce a solvent separated radical pair, and thus an absorbing cob(II)alamin species 

which does not recombine geminately or with any radicals in free solution on the 

timescales of this experiment.  The slope of the recovery of the ground state bleach 

towards the long lived plateau reflects the geminate recombination.  The ordinate 

coordinate in Figure 4.9 has been adjusted to arbitrary units due to the scaling of the data. 
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Figure 4.9.  Adenosylcobalamin in 50% ethylene glycol / 50% water.  This data is the same as for 
Figure 4.8, except the data has been scaled to normalize the magnitude at the peak of the ground 
state bleach.  The ordinate axis is then simply in arbitrary units (AU), due to the scaling. 

 

 The rest of the adenosylcobalamin kinetic data will presented scaled as in Figure 

4.9 (and in Figure 4.10), since this presentation provides a more meaningful 

interpretation of the data.  A quantitative analysis follows.  Another useful presentation of 

the data from Figures 4.8 and 4.9 is shown in Figure 4.10. 
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Figure 4.10.  Data from Figure 4.9 (scaled adenosylcobalamin in 50% ethylene glycol / 50% water), 
presented in a surface plot format.  The sample temperature has been added as a third plotting 
parameter.  The surface representing the initial subpicosecond bleaching of the ground state has 
been made partially transparent to provide a better perspective view of the ensuing dynamics. 

 

 Figure 4.10 consists of the same data as shown in Figure 4.9, with the sample 

temperature included as a plotting parameter (x-axis).  The surface representing the 

decrease in absorption representative of the initial subpicosecond ground state bleach has 

been made partially transparent to allow a better perspective view of the ensuing 

dynamics.  Data for adenosylcobalamin in the other solvent mixtures used in these 

investigations are shown in Figures 4.11-4.16 below. 
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Figure 4.11.  Adenosylcobalamin in 75% ethylene glycol / 25% water.  This data has been scaled so 
that the ground state bleach in each trace has the same magnitude. 
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Figure 4.12.  Data from Figure 4.11 (scaled adenosylcobalamin in 75% ethylene glycol / 25% water), 
presented in a surface plot format.  The sample temperature has been added as a third plotting 
parameter.  The surface representing the initial subpicosecond bleaching of the ground state has 
been made partially transparent to provide a better perspective view of the ensuing dynamics. 
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Figure 4.13.  Adenosylcobalamin in 25% ethylene glycol / 75% water.  This data has been scaled so 
that the ground state bleach in each trace has the same magnitude. 
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Figure 4.14.  Adenosylcobalamin in sucrose solution (20% sucrose by mass).  This data has been 
scaled so that the ground state bleach in each trace has the same magnitude, as for the data in 
mixtures of ethylene glycol and water.  The colligative properties of sucrose dissolved in water makes 
the negative temperatures possible. 



 122

-30

-25

-20

-15

-10

-5

0

5

-1 0 1 2 3 4 5 6 7 8 9

time (ns)

Δ
A

 (A
U

)

-0.25°C
10.1°C
20.9°C
31.65°C
41.45°C
50.25°C
60.2°C
69.9°C

 
Figure 4.15.  Adenosylcobalamin in sucrose solution (40% sucrose by mass).  This data has been 
scaled so that the ground state bleach in each trace has the same magnitude, as for the data in 
mixtures of ethylene glycol and water.  The colligative properties of sucrose dissolved in water makes 
the negative temperatures possible. 

 

 Figure 4.16 shows selected traces near 10°C for several scans (75% ethylene 

glycol / 25% water, 9.9°C; 25% ethylene glycol / 75% water, 8.3°C; 20% sucrose 

solution, 10.6°C).  The upper plot compares the scans with 75% ethylene glycol versus 

that with 25% ethylene glycol, while the bottom plot compares the same scan with 75% 

ethylene glycol versus the 20% sucrose solution scan.  These plots have also been scaled 

to match the magnitude of the ground state bleach. 
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Figure 4.16. Selected adenosylcobalamin kinetic traces (from Figures above) compared to 
demonstrate solvent influence.  The sample temperature for each scan was near 10°C (temperatures 
as indicated in the legends).  “75/25” in the legends indicates 75% ethylene glycol / 25% water for the 
solvent, and likewise for “25/75.”  “20%” indicates the solvent was 20% sucrose solution by mass.  
Viscosities are listed in centipoises. 

 

 This comparison (Figure 4.16) of scans near the same temperature but in different 

environments demonstrates that there is some environmental influence on the dynamics 

of adenosylcobalamin following excitation.  The viscosities of each solution are also 
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indicated in the Figure.  In both the top and bottom panels of Figure 4.16 there is a clear 

discrepancy in the slope towards ground state recovery and a slight difference in the level 

of the plateau.  Notice that the traces in both plots cross each other near 1.5ns. 

 Each of the transient absorption kinetic traces in Figures 4.8 through 4.16, as well 

as those for adenosylcobalamin in pure water and pure ethylene glycol (Chapter 3) was fit 

to a sum of exponentials like that in Chapter 3: 

 
∑
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ieAA λλ . (4.11)

For some of the alkylcobalamins fits as few as three exponentials were necessary, while 

for others four were required for an adequate fit.  The same model (number of 

exponentials in the sum) was used for a particular alkylcobalamin in a specific solvent for 

consistency.  A nondecaying component was introduced to account for the long lived 

escape of adenosyl radicals from cob(II)alamin radical (plateau in Figures 4.8 through 

4.16).     Analysis of the data in this manner can be justified on the basis of the previous 

studies (as reviewed in Chapter 1)   An example fit with the residual difference between 

the data trace and fit is plotted in Figure 4.17.   
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Figure 4.17.  Example of a sum of exponential fit to the data presented above.  The data trace (blue) 
is for adenosylcobalamin in 25% ethylene glycol / 75% water at 20.45°C (taken from Figure 4.13).  
The fit is plotted in red and the residuals are included in grey. 

 

 The step-wise model presented in Chapter 3 was again assumed as a plausible 

explanation for the adenosylcobalamin dynamics, based on the background literature.    

As will be developed below, this model is not a complete description of the experimental 

data; but it was the first approach taken to analyze the data.  A different fitting program to 

calculate cage escapes, than that based on the sum of exponentials and a stepwise model 

may be required.  With this model in mind (Figure 4.18) the rate constant for escape from 

the solvent cage was calculated according to the following program. 
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Figure 4.18.  Stepwise model assumed for initial modeling of the transient absorption data for 
adenosylcobalamin, as well as the other alkylcobalamins.  The brackets,{} , represent the solvent 
cage, and the “•” represent the unpaired electron of the adenosyl and cobalamin radicals.  Thus 
“{ Ado• + •Cbl}” represents a solvent caged (and relaxed) radical pair, while “Ado• + {} +•Cbl” 
represents a solvent separated radical pair.   

 

 According to the model in Figure 4.18, with n = 3 (4 exponential decays in the 

sum of exponentials fit, with k4 = kE + kR), the wavelength specific amplitudes of the 

species associated spectra for the solvent caged and solvent separated radical pairs are 

given in terms of the amplitudes of the decay associated spectra (Ai(λ) in Equation 4.11 – 

determined by the sum of exponentials fits), by [14]: 

 
)()(

))()((
)( 4

321

414243
}{ λλλ NDRP AA

kkk
kkkkkk

S +
−−−

= , (4.12)

and 

 
)()( 4 λλ ND

E
RP A

k
kS = . (4.13)

The subscript “ND” refers to the nondecaying amplitude (i.e. k5 = 0).  The key relation 

between Equations 4.12 and 4.13 is that they should be equal to each other since the 
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solvent caged and solvent separated radical pairs are spectroscopically indistinguishable. 

Equating Equations 4.12 and 4.13 and solving for kE (rate constant for escape) gives [14]: 
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Since the amplitudes obtained through fitting show up only as the ratio, R, in the 

expression for the cage escape rate constant, the varying experimental parameters 

described in the presentation of the scaled data can be bypassed.  The quantum yield for 

cage escape to produce solvent separated radical pairs can be determined from 
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The results of these fits are summarized in Table 4.6 for mixtures of water and ethylene 

glycol and Table 4.7 for sucrose solutions. 
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Table 4.6.  Summary of escape rate constants for adenosylcobalamin in mixtures of water (WT) and 
ethylene glycol (EG).  The quantum yield for escape, ϕ, is also tabulated. 

Water / Ethylene Glycol Mixtures:       

Solvent Temperature 
(°C) kE (ns-1) τ (ns) ϕ 

100% EG 10 0.02 62.71 0.01 
  20 0.05 20.43 0.04 
  40 0.14 7.27 0.09 
  60 0.47 2.11 0.22 
  80 1.08 0.93 0.38 

75% EG / 25% WT 9.9 0.10 10.41 0.071 
  19.9 0.16 6.35 0.098 
  20.45 0.18 5.47 0.11 
  39.35 0.44 2.29 0.20 
  59.5 0.89 1.12 0.295 
  76.85 2.08 0.48 0.39 

50% EG / 50% WT 9.8 0.24 4.10 0.23 
  20.4 0.29 3.42 0.27 
  20.65 0.31 3.22 0.27 
  40.05 0.70 1.43 0.43 
  59.9 0.88 1.13 0.52 
  79.4 0.99 1.01 0.63 

25% EG / 75% WT 8.3 0.23 4.43 0.18 
  20.35 0.40 2.49 0.26 
  40.6 0.61 1.64 0.35 
  61.55 0.79 1.27 0.51 
  81.3 1.23 0.82 0.71 

100% WT 10 0.43 2.33 0.28 
  20 0.62 1.61 0.37 
  40 0.93 1.07 0.44 
  60 1.21 0.83 0.52 
  70 1.69 0.59 0.60 
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Table 4.7. Summary of escape rate constants for adenosylcobalamin in sucrose solutions.  The 
sucrose solution is labled by mass percent sucrose.  The quantum yield for escape, ϕ, is also 
tabulated. 

Sucrose Solutions         

Solvent Temperature 
(°C) kE (ns-1) τ (ns) ϕ 

20% Sucrose -0.3 0.15 6.64 0.10 
  10.6 0.21 4.67 0.13 
  20.7 0.46 2.17 0.20 
  31.7 0.58 1.74 0.22 
  41.6 0.97 1.03 0.28 
  50.2 1.11 0.90 0.31 
  60.2 1.48 0.67 0.35 
  70 1.87 0.54 0.38 

40% Sucrose -0.25 0.06 15.97 0.057 
  10.1 0.12 8.59 0.083 
  20.9 0.20 5.01 0.12 
  31.65 0.33 3.01 0.17 
  41.45 0.50 2.01 0.21 
  50.25 0.66 1.51 0.25 
  60.2 0.84 1.19 0.29 
  69.9 1.21 0.83 0.33 

 

 

4.2.2 Propylcobalamin 

 Kinetic transient absorption data for propylcobalamin was collected in the same 

manner as described above in mixtures of water and ethylene glycol.  Each scan is for 

400nm excitation and 540nm probe wavelengths.  Propylcobalamin studies were not 

pursued in sucrose solution to due limited sample supply.  The propylcobalamin kinetic 

traces follow in Figures 4.19 through 4.21.  Traces in Figures 4.20 (50% ethylene glycol / 

50% water) and Figure 4.21 (75% ethylene glycol / 25% water) have been scaled by 

normalizing the peak of the ground state bleach as prescribed for adenosylcobalamin 

traces.  The traces in Figure 4.19 were left unscaled for aesthetic reasons, as with the 
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large number of traces and less than optimal signal to noise ratio it is difficult to discern a 

particular trace from its neighbors when scaled. 
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Figure 4.19.  Propylcobalamin in 100% water.  This data has not been scaled; the small magnitude of 
the absorbance is indicative of the difficulty of the transient absorption measurements on the 
synthesized alkylcobalamins.  Indeed, many of the absorbance magnitudes for scaled data in the 
remaining plots were only a couple of mOD in magnitude. 
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Figure 4.20.  Propylcobalamin in 50% ethylene glycol / 50% water.  This data has been scaled to 
normalize the magnitude of the ground state bleach. 
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Figure 4.21.  Propylcobalamin in 75% ethylene glycol / 25% water.  This data has been scaled to 
normalize the peak of the ground state bleach. 



 132

 Synthesis complications dictated that no studies were performed in pure ethylene 

glycol. Difficulty in the purification step of the synthesis meant that in order to have 

viable sample, it was left in an aqueous solution.  It was then possible to make mixtures 

with ethylene glycol, but pure solutions could not be produced.  The higher the 

percentage of volume occupied by ethylene glycol, the lower the concentration of 

propylcobalamin since it was present already in aqueous solution at fixed concentration.  

The propylcobalamin dynamics show very qualitatively similar behavior to the 

adenosylcobalamin evolution.  This data was also fit to a sum of exponentials and the 

escape rate constant determined according to Equations 4.10 through 4.17.  The results 

are summarized in Table 4.8. 

 

Table 4.8.  Summary of escape rate constants for propylcobalamin in mixtures of water (WT) and 
ethylene glycol (EG).  The quantum yield for escape, ϕ, is also tabulated. 

Solvent Temperature 
(°C) kE (ns-1) τ (ns) ϕ 

75% EG / 25% WT 8 0.13 7.71 0.18 
  21.55 0.29 3.43 0.30 
  31.5 0.49 2.06 0.36 
  41.5 0.81 1.23 0.46 
  50.9 1.45 0.69 0.68 
  60.4 1.78 0.56 0.68 

50% EG / 50% WT 7.35 0.14 7.25 0.19 
  21.95 0.37 2.73 0.31 
  32.6 0.63 1.59 0.40 
  41.85 1.00 1.00 0.47 
  51.65 1.28 0.78 0.49 
  61.4 2.03 0.49 0.55 

100% WT 10.4 0.52 1.91 0.40 
  20.45 0.66 1.51 0.44 
  40.05 1.18 0.85 0.50 
  60.5 1.41 0.71 0.56 
  62.2 1.59 0.63 0.70 
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4.2.3  Ethylcobalamin 

 The transient absorption kinetic traces for ethylcobalamin are presented in Figures 

4.22 and 4.23.  Similar to the case for propylcobalamin, Figure 4.22 (100% water) has not 

been scaled for aesthetic reasons (to make the individual scans more discernable).  There 

are few data sets for ethylcobalamin since it was in even shorter supply than the 

propylcobalamin sample (and there are again no transient scans for sucrose solutions).  

Since ethylcobalamin suffered from the same purification difficulty in the synthesis 

procedure as propylcobalamin, there is no study in pure ethylene glycol.  This data was 

also collected with 400nm pump and 540nm probe wavelengths. 
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Figure 4.22.  Ethylcobalamin in pure water.  This data has not been scaled. 
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Figure 4.23.  Ethylcobalamin in 75% ethylene glycol / 25% water.  This data has been scaled to make 
the magnitude of the ground state bleach the same for each scan. 

 

 A summary of the rate constants for cage escape determined from a fit to a sum of 

exponentials and the model presented in Figure 4.18 is documented in Table 4.9. 
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Table 4.9.  Summary of escape rate constants for ethylcobalamin in mixtures of water (WT) and 
ethylene glycol (EG).  The quantum yield for escape, ϕ, is also tabulated. 

Solvent Temperature 
(°C) kE (ns-1) τ (ns) ϕ 

75% EG / 25% WT 8.2 0.28 3.56 0.34 
  21.2 0.56 1.77 0.44 
  33 0.95 1.05 0.56 
  41.8 1.51 0.66 0.59 
  51.1 1.15 0.87 0.61 
  60.95 2.88 0.35 0.64 

100% WT 6.6 0.78 1.28 0.52 
  6.3 0.83 1.20 0.58 
  20.9 1.05 0.95 0.62 
  31.45 1.33 0.75 0.71 
  42.8 1.94 0.52 0.72 
  52.15 2.28 0.44 0.70 
  62.3 3.67 0.27 0.69 

 

 

4.4.4  Methylcobalamin 

 The same process as outlined in Sections 4.2.1 through 4.2.3 was carried out with 

methylcobalamin in varying solvent environments.  Like it’s biologically (and 

commercially) relevant counterpart, adenosylcobalamin, there was plenty of sample to 

extend the studies through a wider range of environments and experimental parameters.  

The methylcobalamin kinetic data presents a complication as a result of the rise of a 

cob(III)alamin-type intermediate as described in Chapter 1 (Section 1.2.1.2, and similar 

to the intermediate observed following excitation of adenosylcobalamin in the protein 

environment, Chapter 3, Section 3.3.2).  The metastable metal-to-ligand-charge-transfer 

(MLCT) state arises on a time similar to the recombination time and a only a small 

percentage of the solvent caged radical pairs recombine; although a large percentage of 

the molecules initially in the MLCT state return to the ground state.  It is not clear how to 
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best scale the data for presentation; instead the data is left unscaled.  Figures 4.24 through 

4.28 show the kinetic traces in mixtures of water and ethylene glycol, while Figures 4.29 

and 4.30 present the traces collected in sucrose solutions.  The plots for methylcobalamin 

in pure water and in pure ethylene glycol have already been presented in Chapter 3.  Also 

data presented in Figures 4.24 through 4.30 is for 400nm pump and 540nm probe. Data 

collected in the pure solvents were excited with 400nm pump; the probe wavelengths are 

as indicated in Chapter 3. 

 There are several sets of data presented for methylcobalamin in mixtures of 50% 

ethylene glycol and 50% water.  Each of these performed at widely separated time 

(~months).  They are kept separate in the following presentation only to keep from 

cluttering the plots. 
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Figure 4.24.  Methylcobalamin in 50% ethylene glycol / 50% water, Set A.  This data has not been 
scaled; the ordinate axis is labeled in mOD. 
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Figure 4.25.  Methylcobalamin in 50% ethylene glycol / 50% water, Set B.  This data has not been 
scaled. 
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Figure 4.26.  Methylcobalamin in 50% ethylene glycol / 50% water, Set C.  This data has not been 
scaled. 



 138

 The collection of multiple data sets in the same solvent environment (50% 

ethylene glycol / 50% water) as presented in Figures 4.24 through 4.26 invites a 

comparison of traces collected near the same temperatures.  Figure 4.27 shows a 

comparison of several selected temperatures taken from the plots above to demonstrate 

the reproducibility of the data collected.  The scans in Figure 4.27 have been scaled, since 

they are only being compared with other scans near the same temperature.  These 

comparisons should then be expected to lie on top of each other within the noise of the 

experiment (as Figure 4.27 verifies) making the scaling worthwhile here. 
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Figure 4.27.  Comparison of selected temperatures for methylcobalamin in mixtures of 50% ethylene 
glycol / 50% water.  Data has been scaled to demonstrate the reproducibility inherent in the 
experimental setup. 
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The remaining methylcobalamin in ethylene glycol and water mixture (75% ethylene 

glycol / 25% water) is shown in Figure 4.28, while methylcobalamin in 20% sucrose and 

40% sucrose solutions is shown in Figures 4.29 and 4.30.  
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Figure 4.28.  Methylcobalamin in 75% ethylene glycol / 25% water.  This data has not been scaled. 
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Figure 4.29.  Methylcobalamin in 20% (by mass) sucrose solution.  This data has not been scaled. 

 

-20

-15

-10

-5

0

5

-1 0 1 2 3 4 5 6 7 8 9

Time (ns)

Δ
A

 (m
O

D
)

0.0°C
8.15°C
21.6°C
32.4°C
41.45°C
50.45°C
60.25°C

 

Figure 4.30.  Methylcobalamin in 40% (by mass) sucrose solution.  This data has not been scaled. 
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 The methylcobalamin dynamics are distinct from the dynamics of 

adenosylcobalamin, ethylcobalamin and propylcobalamin (though there remains some 

similarity in the intermediate formation as described in the review).  In fact, at higher 

temperatures, there is no geminate recombination of the methyl and cob(II)alamin 

radicals.  There is a subpicosecond bleach, which is difficult to see in the 9ns timescale 

plotted above.  Figure 4.31 is a blowup of the methylcobalamin dynamics in pure 

ethylene glycol over the first 100ps following excitation.  The initial bleach can be seen 

in this Figure.  It is immediately pursued by a subpicosecond recovery toward the ground 

state.  The model adopted for analysis [15, 26] (Figure 4.32) assigns the subpicosecond 

dynamics to competition between prompt bond homolysis and the formation of the 

intermediate nonalkylcob(III)alamin like state. 
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Figure 4.31.  Blowup showcasing the dynamics of methylcobalamin in ethylene glycol over the first 
100ps following excitation.  The pump is 400nm and the probe is 540nm. 

 



 143

. 

 

Figure 4.32.  Model for methylcobalamin dynamics following excitation at 400nm pump.  Brackets 
represent the solvent cage as for the model presented in Figure 4.18.    The superscripts, “+” and “-“ 
represent the transfer of charge density to support the MLCT intermediate. k3 = kR + kE.  The 
ampersand represents an excited state.  This Figure is reproduced from Reference [15]. 

 

The nonalkylcob(III)alamin like, MLCT state manifests itself at 540nm probe wavelength 

by an increase in absorption.  The metastable MLCT state can then relax to the ground 

state, or a small percentage results in solvent separated radical pairs. The 10-100 ps 

absorption increase in Figure 4.31 arises from the geminate recombination of 

methylcobalamin. 

 The methylcobalamin data was fit to a sum of four exponentials and one 

nondecaying component (n =5, with k5 = 0 in Equation 4.11).  For the model in Figure 

4.32, k3 = kR + kE, instead of k4 (as was the case for the other alkylcobalamins).  The 

results of fitting to this model are summarized in Tables 4.10 (for mixtures of water and 

ethylene glycol) and 4.11 (for sucrose solutions).  Only those traces for which there was a 

clearly discernable recombination component present were subject to the escape analysis.  

Higher temperature data was collected despite a clear lack of recombination to further 

studies on the dielectric influence on dynamics, as introduced in Chapter 3.  
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Table 4.10.  Summary of escape rate constants for methylcobalamin in mixtures of water (WT) and 
ethylene glycol (EG).  The quantum yield for escape, ϕ, is also tabulated.  Only those traces with 
clearly evident recombination components are included. 

Water / Ethylene Glycol Mixtures       

Solvent Temperature 
(°C) kE (ns-1) τ (ns) ϕ 

100% EG 10 1.30 0.77 0.41 
  20 2.79 0.36 0.55 
  30 4.37 0.23 0.73 
  40 6.49 0.15 0.80 
  50 15.93 0.06 0.92 
  60 23.44 0.04 0.95 

75% EG / 25% WT 8.5 2.90 0.35 0.57 
  20.5 6.16 0.16 0.75 

50% EG / 50% WT 8.35 3.86 0.26 0.67 
  10 4.09 0.24 0.62 
  20.4 5.60 0.18 0.79 
  20.25 4.81 0.21 0.75 
  29.75 5.94 0.17 0.84 
  31.1 8.91 0.11 0.86 

100% WT 10 5.50 0.18  0.96 
  20 7.50 0.13  >0.98 

 

 

Table 4.11.  Summary of escape rate constants for methylcobalamin in sucrose solutions.  The 
sucrose  solution is labeled by mass percent sucrose.  The quantum yield for escape, ϕ, is also 
tabulated.  Only those traces with clearly evident recombination components are included. 

Water / Ethylene Glycol Mixtures       

Solvent Temperature 
(°C) kE (ns-1) τ (ns) ϕ 

20% Sucrose -0.2 2.54 0.39 0.46 
  6.75 4.82 0.21 0.64 

40% Sucrose 0 1.38 0.72 0.365 
  8.15 2.50 0.40 0.50 
  21.6 4.91 0.20 0.78 
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4.3  Cage Escape and Recombination Analysis 

 The time constants and quantum yields presented in Tables 4.6 through 4.11 

testify to the fact that the solvent environment exerts a significant influence on the ability 

of the photolytically produced radical pair to escape each other and formed long lived, 

solvent separated radicals.  It is also clear that the alkyl group significantly influences the 

rates and yields for escape.  There are many possible factors at play in determining the 

outcome of cage escape, such as entropic influences (do the radicals need to be oriented 

in a particular geometry to recombine?), and excess kinetic energy following homolysis.  

A previous study found a qualitative correlation between recombination and the 

orientation requirements for recombination for methylcobalamin compared with 

ethylcobalamin and propylcobalamin.  However, it was found that the larger adenosyl 

radical recombined with the cob(II)alamin with a rate constant similar to the methyl 

radical [26].  It was speculated that following homolysis the adenosyl radical has little 

time to rotate and thus is already in a favorable geometry for recombination, while the 

methyl radical need not have a specific orientation relative to the cob(II)alamin.  The two 

intermediate sized alkyls, methyl and propyl, will have had some opportunity to rotate on 

the times relevant for recombination, and require a specific orientation to recombine.   

 These complications will be ignored in the initial analysis.  Instead, it will be first 

assumed that the cage escape is a purely diffusive controlled process, dependent only on 

solvent viscosity (this approach will then be contrasted with a kinetic theory).  The results 

of such a model will then be compared with the experimental data from Section 4.2.  A 

significant assumption made is that there is no external barrier to cage escape.  With this 

model, cage escape can be treated as a solely diffusive process, dependent on the 
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behavior of the alkyl and cob(II)alamin radicals in a solvent environment characterized 

by the temperature and solvent’s temperature dependent viscosity.  Also, though not an 

assumption, it is important to note that following homolysis neither the cob(II)alamin or 

alkyl radicals are charged.  When an ion radical pair is generated, the escape and 

recombination process is dominated by the Coulombic interaction between the ions [2]; 

and a test of the diffusive behavior of the small molecule would not be possible.   

 With this model in mind, the expected behavior of the alkyl radical in a viscous 

environment and the associated rate constant for escape must be determined for 

comparison to the experimental data.  The diffusive behavior of a particle in a viscous 

environment can be described by the diffusion coefficient, D [2, 27, 28]: 

 
ξ
Tk

D B= . (4.18)

kB is the Boltzmann constant, T the temperature, and ξ a parameter describing friction.  

An expression for the friction coefficient is complicated by the molecule’s structure and 

relative size in comparison to the surrounding solvent molecules.  It is commonly chosen 

for the case of a spherical particle much larger than the solvent molecules (i.e. the sphere 

is moving in a continuum) to be [27-29] 

 rπηξ 6= , (4.19)

for the case of no slip between the sphere and “fluid continuum.”  η is the solvent 

viscosity and r the spherical diffusive radius of the sphere.  For the case of slip between 

the sphere and surrounding continuum the friction coefficient is 

 rπηξ 4= . (4.20)



 147

The radicals relevant to this study have sizes comparable to the solvent molecules calling 

the solvent continuum model into question.  It is also not clear that a spherical 

approximation is reasonable, and if so how to best define the diffusive radius.  Due to 

these concerns, the friction coefficient is also sometimes expressed empirically as 

 rnπηξ = , (4.21)

where n is an empirically determined constant, which is found to not be particularly 

sensitive to shape [30].   

 Equations 4.19 and 4.20 have been shown to be increasingly poor as the 

diffusional radius decreases.  Attempts at introducing the discrete nature of the solvent 

also suffer from poor agreement with the experimental data [2].  Estimated diffusive radii 

[26] for each alkyl radical assuming a spherical shape are given in Table 4.12.  These 

values were calculated based on equilibrium geometry and volume. 

 

Table 4.12.  Calculated diffusive radii for alkyl radicals [26].  The adenosyl radius is in agreement 
with the value found for an adenosine molecule assuming a van der Wals volume [31]. 

 Methyl Ethyl Propyl Adenosyl 

r (Å) 2.0 2.3 2.5 3.8 
 

It has been determined empirically that for quasi-spherical particles with radii similar to 

the adenosyl radical that Equation 4.20 is a reasonable approximation in protic solvents.  

Considerable deviation is expected for the smaller radii [30] of the other alkyl radicals. 

     Experimentally determined adenosine diffusion coefficients in water give a larger 

radius, r = 4.42Å, (assuming the relation in Equation 4.19 to calculate the radius from the 

experimentally measured diffusion constant) [31], than that determined using molecular 
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volume.  An estimate of the radius using Equation 4.20 will return an even larger value.  

This result is a double edged sword for the hydrodynamic models presented.  Since the 

adenosyl radical diffuses as though the radius is larger, the continuum model may seem 

more accurate.  However, this means that the calculated diffusive coefficient based on 

molecular volume is likely to be inaccurate.  Even with these reservations, the 

hydrodynamic model is often applied for similar diffusive parameters with surprising 

success [2, 30].  For the case of this analysis, Equation 4.19 will be assumed for the 

adenosyl radical with the radius given by r = 4.42Å as in reference [31].  Nishida and 

coworkers [31] measured the diffusion coefficient in aqueous solution for the adenosine 

radical, so it is expected that this choice will return the experimentally determined 

diffusive coefficient. 

 There are several approaches in the literature for modeling the specific situation 

of geminate recombination and escape of photoinduced radical pairs, along with many 

attempts at modifying the general approaches [2, 32, 33].  All suffer from difficulty when 

it comes to quantitatively comparing with experimental data [2].  Two main avenues will 

be considered in this analysis.  The first is a diffusive approach, with the simplifications 

introduced in the preceding discussion.  The second is a kinetic approach which takes 

into account the discrete nature of the solvent, though it will also rely on the diffusive 

coefficient in Equations 4.19 and 4.20 for application.  These approaches have been 

shown to agree in the long time limit [2, 34], lending credence to the diffusive models. 

  As a preliminary matter, both the kinetic and diffusive approaches require some 

knowledge of the initial particle distribution.  For the geminate recombination and escape 

of photoinduced radical pairs, the distribution information reduces to the initial separation 
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between the two radicals following homolysis.  If the pairs are generated with no excess 

translational energy, but separate from each other only with thermal energy 3kBT/2, the 

radical separation can be estimated at [2, 35]: 

 

r
TmkB

πη
σ

6
6

~ . (4.22)

m is the radical mass; all other parameters are as defined in Equations 4.19 and 4.20.  

Initial separations estimated with Equation 4.22 are plotted in Figure 4.33, for 

adenosylcobalamin (red) and methylcobalamin (blue) in water (dashed) and ethylene 

glycol (solid).   
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Figure 4.33.  Initial radical separation for homolysis estimated from Equation 4.22.  
Adenosylcobalamin is colored red and methylcobalamin blue.  Dashed lines are for water (WT) and 
solid for ethylene glycol (EG) solvent environments. 
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The small (less than 1Å versus the ~2-4Å diffusive radii for the alkyl radicals and larger 

for the cob(II)alamin radical) initial separations plotted Figure 4.33 suggest that the 

assumption of “contact” radical pairs may be valid (although the large quantum yields for 

solvent separated radical pairs following homolysis in methylcobalamin suggests that 

Equation 4.22 which is based on no excess translational energy may not be appropriate).  

In future analysis it may be advantageous to assume a distribution of initial separations 

surrounding a mean distance [36]. 

 Under the simplification of contact radical pairs, the diffusive approach predicts 

that the unimolecular cage escape rate constant is [37] 
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and the recombination probability for a photoinduced pair (which appears to be a 

commonly characterized parameter) can be described by [37]: 
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(4.24)

R is the reaction radius.  The result in Equation 4.24 agrees with that presented in 

Reference [2] when the unimolecular rate constant for recombination, kR, is related to the 

bimolecular rate constant by kBi = 4πR3kR [37].  Equations 4.23 and 4.24 were derived 

under the assumption of stationary recombination kinetics [2, 37]. The quantum yield, φ, 

for solvent separated radical pairs logged in the Tables of Section 4.2 are simply related 

to FC, by φ = 1 – Fc. 

 Using Equations 4.18 through 4.21 to substitute for the diffusive coefficient in 

Equation 4.23 suggests that the experimentally determined (Section 4.2) cage escape rate 
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constants be plotted versus the solvent fluidity (T/η).  These are shown in Figures 3.34 

(adenosyl, ethyl, and propyl radicals) and 3.35 (methyl radical). 
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Figure 4.34.  Rate constants for cage escape for adenosyl (circles), ethyl (squares), and propyl 
(triangles) radicals, versus fluidity (T/η).  0 (red), 25 (light blue), 50 (brown), 75 (orange), and 100 
(blue) percentages reflect percent ethylene glycol by volume.  20 (light blue) and 40 (gold) percent 
reflect percent sucrose (diamonds) by mass.  Linear fits are included for the data in pure water (red) 
and pure ethylene glycol (blue). 
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Figure 4.35.  Rate constants for cage escape for methyl radicals, versus fluidity (T/η).  0, 50, 75, and 
100 percentages reflect percent ethylene glycol by volume.  20 and 40 percent reflect percent sucrose 
by mass.  Linear fits are included for the data in several solvents. 

 

 If Equation 4.23 were to hold strictly true, it should be expected that each radical 

would present the same slope when escape rate constant is plotted versus fluidity, 

regardless of solvent.  Certainly, such is not the case for any of the radical escape 

constants calculated and shown above in Figures 4.34 and 4.35!  Also highlighted in 

these figures is that the relative magnitudes for escape rate constant are all similar for 

adenosyl, ethyl, and propyl radicals, while the methyl radical’s rate constants are an order 

of magnitude larger (which is why they are plotted separately from the rest). 

 The initial quantitative comparison of the diffusive hydrodynamic theory with the 

experimental data will be done with the adenosylcobalamin data set since this is the most 

well characterized data set (largest variety of solvent environments) with the best signal 
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to noise.  Figure 4.36 shows the experimental diffusive escape rate constants for 

adenosylcobalamin in water and ethylene glycol (the same as for Figure 4.34, scaled by 

units) compared with the expected slope based on the diffusive hydrodynamic model 

(Equation 4.23). 

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

1.E+09

2.E+09

2.E+09

0.E+00 1.E+05 2.E+05 3.E+05 4.E+05 5.E+05 6.E+05 7.E+05 8.E+05 9.E+05

T/η (K/Poise)

k e
 (1

/s
)

Ado Water
Ado EG
Theory

 

Figure 4.36.  Rate constants for adenosylcobalamin cage escape in water (blue squares) and ethylene 
glycol (red triangles).  The trend anticipated from the hydrodynamic model (black line) is compared. 

 
 
The predicted trend based on the hydrodynamic model (black line) shows general 

agreement with the data in water (blue squares), and the lower fluidity data in ethylene 

glycol (red triangles).  This result may be due the relative sizes of the water and ethylene 

glycol molecules compared with the adenosyl radical, but is more likely related to the 

recombination rate (see below).  This analysis is ongoing and will be applied to the other 

alkyl radicals. 

 It is not clear that the hydrodynamic approach of diffusive motion in a continuum 

solvent is a valid model on the relevant time scales of these experiments [2, 34, 38], as 
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Equations 4.23 and 4.24 were derived under the assumption of steady state (although the 

hydrodynamic model has been successfully applied to the escape and recombination of 

iodine atoms photodissociated from molecular iodine [2, 39]) .  The kinetic approach can 

be more readily applied to the femtosecond to nanosecond timescales of the cage escape 

and recombination.   

 Before moving on to the kinetic model a brief look at the caging fraction and the 

quantum yield for solvent separated pairs may be worthwhile.  Since these yields (the 

caging fraction is the quantum yield for recombination) are the expected long time values 

(before the onset of bulk recombination, which is not probed here, and moreover, to 

which the kinetic model has not been successfully applied [38]), the assumptions of the 

diffusive hydrodynamic model may be more realistic.  To make a comparison of the 

caging fraction as defined in Equation 4.24 to the experimental data it is helpful to plot 

the inverse fraction [2], to obtain a linear function versus fluidity (in T/η): 
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There is still the complication of the reaction rate for recombination in Equation 4.25.  

This rate is relatively insensitive to solvent environment [26]; so we begin by plotting the 

inverse cage fraction against fluidity (T/η). 
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Figure 4.37.  Inverse caging fraction versus fluidity for adenosyl-, ethyl-, and propylcobalamin in 
mixtures of water and ethylene glycol and in sucrose mixtures.   Pure ethylene glycol (red triangles) 
and pure water (blue squares) are labeled as in Figure 4.36.  Otherwise, mixtures are color coded (i.e. 
75% ethylene glycol is orange for adenosyl, ethyl, and propyl).  Diamonds indicate adenosyl, 
triangles indicate propyl, and squares for ethyl. 

 

 
The inverse cage efficiency data also demonstrates the generally linear behavior as 

expected.  However, this analysis still demonstrates a clear discrepancy in the 

recombination efficiency between different solvents, despite the prediction of identical 

behavior (Equation 4.25). 

 To help identify a reason for the observed discrepancy, a couple presentations of 

the experimental data are helpful.  In Figure 4.38, the caging efficiency is plotted versus 

viscosity; it demonstrates that at high viscosities (greater than ~ 5cP) the caging fraction 

begins to “plateau” as 100% recombination is approached.  Data in pure ethylene glycol 

is again plotted as red triangles and in pure water as blue squares. 
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Figure 4.38.  Caging fraction (yield for recombination) of radical pairs versus solvent viscosity for 
adenosylcobalamin in a range of environments.  Note the plateau at viscosities greater than ~ 5cP. 

 

The plateau feature of the caging efficiency with increased solvent viscosity points 

toward the influence of recombination rate which was not considered in the analysis 

above.  The relation for cage escape rate constant in terms of the solvent viscosity 

(Equation 4.23) is derived under the assumption of steady state diffusive dissociation of 

radical pairs only.  Figure 4.39 plots the recombination rate constants obtained via the 

sum of exponentials fitting and model application for adenosylcobalamin in water (blue 

squares) and ethylene glycol (red triangles). 
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Figure 4.39.  Recombination rate constants versus fluidity for adenosylcobalamin in water (blue 
squares) and ethylene glycol (red triangles). 

 
The assumption of constant recombination rate seems reasonable for the water data, but 

not for the data in ethylene glycol.  The recombination rates in water are also comparable 

to the escape rates; however, the recombination rates in ethylene glycol are as much as 

~60 times greater than the escape rates in water for the higher fluidity data points.  

Dropping the assumption of constant recombination rate, the adenosylcobalamin inverse 

caging fraction in water and ethylene glycol (originally plotted above in Figure 4.37 

without consideration of recombination) is shown in Figure 4.40. 
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Figure 4.40.  Adenosylcobalamin inverse caging fraction in water (blue squares) and ethylene glycol 
(red triangles), with the assumption of constant recombination rate relaxed. 

 
With the assumption of constant recombination rate relaxed, a quantitative comparison to 

the diffusive hydrodynamic theory (Equation 4.25) can now be made.  The result is 

shown as the black line in Figure 4.40.  Again, there is agreement between the 

hydrodynamic theory and the data in water.  As for the case of escape rate constants, the 

agreement between theory and data in ethylene glycol is reasonable only at low fluidity.  

This comparison, despite explicitly including recombination rate, still relies on Equation 

4.24 (steady state diffusive escape) to express the escape rate.  A more sophisticated 

model than the steady state diffusive dissociation of radical pairs is necessary to 

successfully explain the observed data.  This model should explicitly include the 

recombination behavior at various viscosities. 

 Besides the recombination rate assumption, another was the initial formation of 

“contact” radical pairs.  The influence of initial radical separation following homolysis 
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may be considered with reference to Figure 4.33.  As expected, the initial separation is 

predicted to be larger in water, the less viscous solvent, and to increase in both solvents 

with temperature.  At the largest shown separations, a change in the expected caging 

fraction of near ten percent can be expected .  A quantitative treatment of the initial 

separation results in the inverse caging fraction no longer behaving in a linear (or easily 

plotted) manner [2].  This analysis is also ongoing. 

  The methyl radical has not been included in the diffusive analysis so far due to its 

clearly larger rates. The plot of initial separation in Figure 4.33 may not even be a valid 

approach, as with excess kinetic energy the methyl radical may not stop.  A further study 

as a function of excitation wavelength would be a worthwhile pursuit.  The caging 

fraction can be considered however with reference to Equations 4.24 and 4.25.  For 

methyl, the recombination rate constant is very small, and therefore the caging fraction 

becomes very small. 

 Aside from the consideration of recombination rate and initial pair distribution, 

the model based on steady state diffusive dissociation of radical pairs is approached only 

on timescales of R2/D [37].  With the kinetic approach it should be possible to work 

directly with the raw data presented in Section 4.2 by fitting to the anticipated probability 

for time dependent radical pair survival (a time dependent quantum yield). According to 

method of Shin and Kapral [34, 40-42], in the long time limit the time dependent pair 

survival probability can be expressed as [34]: 
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κ is the ratio of the initial separation to the reaction radius. λ is the ratio of the 

recombination and escape rate constants.  τ is the ratio of time to the to R2/D.  There are 
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alternative kinetic expressions in the literature [36, 37, 43]; however, the method of Shin 

and Kapral has been applied to both experimental and simulated studies [38, 40, 41].  The 

diffusive rate coefficient still comes into play as for the hydrodynamic model, and 

consideration must still be made of the initial radical pair separation.  It is hoped that 

fitting to a kinetic model will make possible an estimate of rate constants and initial pair 

separation [40, 42], which more realistically models the experimental parameters..  

 Figure 4.41 shows the behavior of Equation 4.26 for selected values of the 

parameters λ and κ. 
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Figure 4.41.  Kinetic model [34] pair survival probability for several different choices of initial pair 
separation.  The green line is for an initial (artificial) separation less than the contact distance.  The 
red line is for an initial separation twice the contact distance, and the blue for a contact pair.  The 
ratio λ has been set to 1 for all three plots. 

 

Following the approach of Scott and Liu [40-42], the probability can be integrated with a 

Gaussian representing the instrument response function of the transient absorption 

apparatus to fit to the data, an example of which is shown in Figure 4.42. 
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Figure 4.42.  The blue trace from Figure 4.41 (contact pair, κ = 1) convoluted with a Gaussian. 

 

Or since the signal monitored in Section 4.2 is a bleach, the trace can be made negative: 

0 2 4 6 8 10
1.2

1

0.8

0.6

0.4

0.2

0

t τ

ΔA
 (A

U
)

0 2 4 6 8 10
1.2

1

0.8

0.6

0.4

0.2

0

t τ

ΔA
 (A

U
)

 

Figure 4.43.  Same as Figure 4.42, but negative to represent the ground state bleach. 
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 Another feature of a kinetic approach is worth describing to emphasize that the 

analysis should be pursued.  Bagdasar’yan has shown that the time dependent caging 

fraction for contact radical pairs under a simple kinetic (pair population described by the 

sum of diffusive and recombination processes) model can be described in the long time 

limit (t → ∞) by [37] 
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Since the numerator in Equation 4.27 will be less than 1, the caging fraction will be 

smaller than that expected for steady state diffusive behavior (Equation 4.24).  Such a 

result is encouraging for the ethylene glycol data since the inverse caging fractions 

plotted in Figure 4.40 are larger than expected when the recombination rate constant 

becomes large in comparison to the escape rate constant.  Figure 4.44 shows the behavior 

of Equation 4.27 compared with the steady state caging fraction (Equation 4.24), as a 

function of recombination rate for adenosylcobalamin.  The diffusive coefficients have 

been selected for each temperature listed. 
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Figure 4.44.  Caging fraction as calculated from Equation 4.27 (red) and 4.24(blue).  The green line 
indicates the measured recombination rate. 

 

Figure 4.44 shows that the efficiency calculated from Equation 4.27 underestimates the 

caging fraction for adenosylcobalamin in water and in ethylene glycol at 20°C. (The 

green line indicates measured recombination rates.)  Although Equation 4.27 

overestimates the caging fraction for ethylene glycol at 60°C (expected value ~0.5), it is 

much closer than the steady state model.  A continued analysis is necessary. 
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4.4  Remarks 

 There is a wealth of data presented in this chapter with which to further the 

beginnings of the analysis presented in Section 4.3.  Already, these data have shown that 

a simple steady state diffusive hydrodynamic model of the alkyl radical cage escape does 

not sufficiently describe the experiments, at least given the level of approximation 

introduced.  Continued application of the hydrodynamic approach is still a worthwhile 

pursuit.  Relaxing the various assumptions and observing any change in agreement with 

the experimental data may provide insight into the specific failures plaguing the initial 

analysis.  Also, the work should be continued for each of the radicals in all environments, 

as the full analysis has been limited to select situations (adenosylcobalamin in water and 

ethylene glycol) thus far. 

 The kinetic models present some hope for better fit to the experimental data and 

for estimation of some of the parameters, such as the distribution of initial radical 

separation.  This work is only in the preliminary stages and has not yet been actively fit to 

the data presented in this Chapter.  With such an approach it may also be possible to 

characterize the degree to which the system may be considered steady state diffusive in 

nature.  With the comparison of the kinetic model to the experimental data, it is hoped 

that some insight may be gained into what features of the experimental environment 

influence the cage escape and direct it away from the steady state diffusive behavior. 

 Already though, this data has demonstrated an important result.  The temperature 

dependent data presented in Chapter 3 exhibits the striking order of magnitude difference 

between rate constants for escape of the adenosyl and methyl radicals.  Based on that 

data, one plausible explanation for the discrepancy in escape rates is specific interaction 
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of the adenosyl radical with the solvent molecules via hydrogen bonding.  The extension 

of these studies to ethyl and propyl radicals has rendered that explanation less plausible 

since the constants for escape of ethyl and propyl radicals are comparable with the 

adenosyl rates, and are much smaller than the methyl escape rate constants. 

 Another avenue of investigation which should be pursued simultaneously is a 

molecular dynamics simulation of the cage escape process as suggested by Geva [44].  

Kinetic approaches can help to account for the buildup to steady state diffusive behavior 

(on timescales of order R2/D).  Simulations should prove a useful complementary 

approach. 
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Chapter 5  

Back to The Future 

 

5.1  Summary, Conclusions, and Questions 

 The systematic transient absorption studies presented in this thesis have addressed 

several problems related to the physiological basis of cobalamin coenzyme function in 

enzymatically catalyzed reactions (Chapter 3), influence of environment on the electronic 

structure of alkylcobalamins (Chapter 3), and escape from solvent cage or more generally 

on the diffusion of small particles in solution (Chapter 4).  There remain many more 

outstanding questions.   

 Transient absorption studies on adenosylcobalamin bound to an engineered single 

subunit variation of glutamate mutase [1] (without substrate present) demonstrate the 

support of an intermediate cob(III)alamin type, metal-to-ligand-charge-transfer (MLCT) 

state.  This state is spectrally similar to that observed following excitation of 

methylcobalamin, ethylcobalamin, and propylcobalamin but does not exist for free 

adenosylcobalamin.  The electronic environment of the protein influences the excited 

state in such a way as to support the charge density transfer associated with the MLCT 

state (which is not observed for free adenosylcobalamin). 

 Systematic sample temperature dependent transient absorption studies on 

environment influence for adenosylcobalamin, cyanocobalamin, and methylcobalamin 

[2] lead to the designation of two distinct excited state spectra.  The spectra observed 
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following excitation of cyanocobalamin and adenosylcobalamin are both characteristic of 

a weakened interaction between the cobalt atom and the lower axial nitrogen ligand.  The 

methylcobalamin state is characteristic of the nonalkylcob(III)alamin MLCT state 

discussed above and in the review of literature.  The protein environment influences the 

excited state structure of adenosylcobalamin to support an intermediate with the excited 

state spectrum observed for methylcobalamin. 

 Systematic sample temperature dependent transient absorption studies performed 

on a variety of alkylcobalamins (adeno-, ethyl-, methyl-, and propylcobalamin) as a 

function of temperature (viscosity) and environment demonstrate a cage escape 

mechanism which is not consistent with standard steady state diffusive models.  Further 

analysis is pending for both the diffusive hydrodynamic model and a kinetic model.  This 

data has demonstrated that specific interaction between the adenosyl radical and solvent 

molecules via hydrogen bonding is not likely to play a significant role in the cage escape 

process. 

 

5.2 Future Directions: Immediate and Long Term 

5.2.1  Cage Escape and Diffusion (Chapter 4) 

 The most immediate work to be continued, in terms of this thesis, is to further the 

analysis of radical cage escape, as begun in Chapter 4.  There remains a wealth of 

information to be unlocked via continued modeling of the of the already collected data as 

outlined in the on going analysis of Chapter 4.  Effort should also be directed towards a 

molecular dynamics simulation of the diffusive process as suggested by Geva [3]. 
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 On a slighter longer term timescale, an intriguing study might be to perform 

transient absorption scans on methylcobalamin as a function of excitation wavelength.  

The large changes reported in the literature [4] in excited state response between 

excitation at 400nm and 520nm suggest that it may be possible to study the initial radical 

separation [5, 6].  The NOPA under development and described in Chapter 2 is an ideal 

source for the excitation pulses covering the wavelength region from ~470nm to 520nm.  

Surprising results for some caged systems exhibiting increased caged efficiency with 

increased excitation energy have been reported [7]. 

 

5.2.2  Protein Environment (Chapter 3) 

     A multitude of avenues exist for complementary transient absorption studies, such as 

that just described.  A few of these include continued study of coenzyme bound to 

protein, and the systematic study of newly synthesized alkylcobalamins.  For future 

protein studies, the University of Michigan is fortunate to have the Marsh group’s 

expertise in the expression and purification of mutant proteins.  By substituting 

strategically chosen amino acid residues with others, it may be possible to determine 

specific interactions between the protein and coenzyme   X-ray crystal structures identify 

at least two amino acids, Glu 330 and Lys 326, within range to interact via hydrogen 

bonding with the adenosyl radical (Figure 5.1, [2]). 
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Figure 5.1.  Structure of adenosylcobalamin bound to glutamate mutase.  Figure reproduced from 
Reference [2]. 

 

5.2.3  Light Modulated X-Ray Absorption Spectroscopy 

 Another experimental direction is already under way.  The transient absorption 

experiments performed for this thesis exploited the distinct variations in visible steady-

state absorption spectra unique to each oxidation state (and also indicative of axial 

ligation) of the cobalt atom in a cobalamin.  The visible spectrum makes it possible to 

probe electronic transitions.  However, with x-rays it is possible to probe the actual 

molecular structure.  Although the molecular structure has been determined for several of 

the cobalamins including methylcobalamin [8], and most famously for 

adenosylcobalamin [9], time resolved x-ray studies would make possible a direct measure 
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of the Co-C bond separation during the cleavage process.  The capabilities do not yet 

exist or are under development to make a truly time resolved x-ray study of the active 

bond separation with satisfactory signal to noise; several groups are doing exciting work 

towards this goal [10] (in particular a charge transfer state of an organometallic has been 

studied [11], but the pulses were 100ps).   

 The intermediate nonalkylcob(III)alamin type state supported by 

methylcobalamin following photoexcitation makes an enticing case for a complementary 

x-ray approach with the potential of improved signal to noise.  Ohta and coworkers have 

shown that it is possible to introduce a light modulation detection technique [12, 13] to 

photoexcited x-ray absorption studies to characterize an excited state [14].  This 

technique does not give time resolved data of excited state dynamics. It does provide 

information about a single, relatively long lived excited state (or if there are many 

intermediates the data is representative of the integration of each contributing species).  

The central cobalt atom makes methylcobalamin an interesting candidate for similar 

studies.  There are several reasons to pursue these studies with methylcobalamin over 

other possible organometallic candidates.  Ohta and colleagues studied thin layers of 

powdered samples; with methylcobalamin it will be possible to conduct experiments in 

solution.  Second, if successful, the methylcobalamin experiments may provide 

biologically rich information. 

 Early attempts at conducting light modulated x-ray absorption studies have met 

with experimental difficulty.  Methylcobalamin has not yet been studied.  In order to 

maximize the chance for success it is desirable that the intermediate excited state be as 

long lived as possible.  It was for this purpose that sucrose solutions were chosen as a 
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solvent [15].  The sucrose solution has increased viscosity compared to water, but does 

not impose as large a decrease in dielectric constant as does switching to ethylene glycol 

[16].  The combination of increased viscosity and maximized dielectric constant (so that 

the activation barrier remains high) serves to increase the lifetime of the intermediate as 

demonstrated in Figures 5.2 and 5.3. 
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Figure 5.2.  Demonstration of intermediate lifetime variation of the MLCT state observed following 
excitation of methylcobalamin in varying environments.  It is longest for the 40% sucrose (by mass) 
solution at 0.0°C (orange in the Figure).  The lifetime of the intermediate is longer than the 9ns 
window of this plot.  Traces at the lowest recorded temperatures in 20% sucrose and ethylene glycol 
solutions are included to show the progression in lifetime.  A plot at 80°C in water is included for a 
comparison reference. 

 

 In Figure 5.2, neither the trace for 0.0°C in 40% sucrose (by mass) solution nor 

the trace for -0.2°C in 20% sucrose solution have reached plateaus within the 9ns 

window.  Another study in a 60% sucrose showed continued progression towards 

increased lifetime, though with slightly worse signal to noise, possibly due to scatter from 
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the highly concentrated sucrose.  The influence of solvent environment, studied heavily 

in this thesis, is thus applied to increase the intermediate lifetime by greater than ten 

times.  Figure 5.3 presents a 3D presentation of the progression of excited state lifetime 

with selected solvent environments. 

 It may also be possible to perform direct time-resolved EXAFS studies on the 

methylcobalamin excited state at the Advanced Photon Source at Argonne, similar to the 

work reported in Reference [11]. The 100 ps x-ray pulses available at this source should 

permit direct measurement of the methylcobalamin excited state in water where the 

lifetime is 1 ns.  A collaborative effort is being discussed to pursue this line of research. 
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Figure 5.3.  Progression of intermediate methylcobalamin excited state lifetime with choice of solvent 
environment.  This data is that same as that presented in Figure 5.2. 
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Appendix A  

Noncollinear Parametric Amplification Crossing Angle 

 

 As stated in Chapter 2 (Equation 2.9), the noncollinear angle between the pump 

and seed beams in a noncollinear parametric amplifier (NOPA) can be approximated as 

[1]: 
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Figure A.1  (2.9).  Wave vectors in noncollinear geometry [1]. 

 

 

where Ω is the angle between the idler and signal wave vectors and λidler, λsignal are the 

wavelengths of the idler and signal, respectively.  The approximation of Equation A.1 is 

in assuming that the group velocities of the signal and idler are nearly equal to each other 
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and to the refractive index at the pump wavelength and polarization [1].  The exact 

expression is given by [2] 
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The subscript s refers to signal and i to idler. vg is the group velocity, nx the refractive 

index for beam x, and λx the wavelength for beam x. 

 Obtaining parameters for the refractive indices and group velocities from the 

SNLO program [3], Ψ is calculated to be ~3.5° for a central wavelength of 540nm.  For 

these parameters, a BBO crystal cut at 28° was assumed as the nonlinear medium.  As is 

evidenced in Figure A.2, this angle is excellent for broadband phase matching throughout 

much of the visible.  Figure A.2 plots both the phase matching angle for Ψ = 3.5° and for 

the linear case, Ψ = 0°.  These plots were constructed again with the SNLO nonlinear 

optics code [3]. 
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Figure A.2.  Phase matching angle for the case of a linear geometry of the pump and seed wavelength 
(red) and for a noncollinear geometry (black).  Angles calculated using the SNLO nonlinear optics 
code [3]. 

 

 

Figure A.2 shows that broadband phase matching is not possible in the collinear case but 

can be accomplished for the case of Ψ = 3.5° (the plot is nearly vertical throughout much 

of the visible wavelengths).  For the experimental geometry used in these experiments, 

where the face of the BBO difference frequency generation crystal was near normal to the 

seed beam, the external crossing angle can be estimated at approximately ~5.9°.  Once set 

near this angle, the crossing angle was normally scanned slightly to find the best beam 

quality. 
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Appendix B  

Beam Diameter as a Function of Distance from Focus 

 

 Although simple, the following expressions were of particular value during many 

different instances.  It is included here in the hopes that is will prove worthwhile for 

future graduate students carrying on the research described in this thesis. 

 As included in Chapter 2, the beam diameter at the focus of a Gaussian beam can 

be calculated as [1]: 
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with D the focused diameter, w0 the beam radius at the focusing lens, f the focus length, 

and z0 the Rayleigh range of the input beam, 

 

λ
π 0

0
2 w

z = . (B.2)
(2.11) 

 It is often convenient to know how the spot size changes as one moves away from 

the focus.  For instance this is a handy parameter when determining focusing 

characteristics at the sample or when determining focusing characteristics at a nonlinear 

crystal.  Selected portions of a MathCAD document making use of this expression are 

included below.
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First the equations from above are defined in the MathCAD worksheet: 
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Figure B.1.  Definition of equations presented above and in Chapter 2.  Also included is a plot of the 
focus spot size for a range of focal length from 0 to 1 meter, a wavelength of Λ = 532nm, and an 
initial spot size of 2.3mm.  Units are indicated in square brackets, i.e. meters is indicated by [m] in 
the equation expressions.  Powers of ten are included to correct for units. 
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For reference, the focus location [1] is shown in Figure B.2; 
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Figure B.2. Focus location for the same parameters as in Figure B.1 (focal lengths from 0 to 1 meter, 
wavelength of 532nm, and initial spot size of 2.3mm).  The focus location is expressed as “z.”  Notice 
that at longer focal lengths the actual minimum spot location begins to deviate from the lens focal 
length value. 

 

     To determine the beam diameter D(x) at some distance, x, from the focus the 

following expression [1] for a Gaussian can be used: 
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All of the variables are as defined above for Equations B.1 and B.2.  In Equation B.3 the 

focus location is located at x = 0.  The Rayleigh range, z0, will depend on the focused spot 
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radius as described in Equation B.2.  By using the beam radius calculated in Equation B.1 

(D/2) in the expression for the Rayleigh range, the beam radius (or diameter) can easily 

be calculated as a function of distance from the focus. 
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Figure B.3.  Beam diameter as a function of distance from focus location.  z1 is the Rayleigh range 
with variable waist radius, calculated based on the focal length.  W1 is the beam radius as a function 
of distance from the focus location.  Powers of ten are just for unit correction.  The plot shown is for 
wavelength of 532nm and initial spot size of 2.3mm as above.  This plot is for a lens focal length of 
30cm.  At x = 0 the minimum spot size (2W1) is measured at the focus location.  The beam then 
diverges away from the focus.  At x = 2.3mm, the beam diameter reaches the input diameter of 
2.3mm. 
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Appendix C  

Angle Mismatch between Compressor and Stretcher 

 

 As was mentioned in Chapter 2, the current stretcher and compressor design 

implemented can be used to simultaneously compensate both second and third order 

dispersion, including material dispersion, by employing angle mismatch between the 

stretcher and compressor [1].  The optimal angle in the compressor will be a function of 

material length.  Since a multipass design is employed in the amplification system the 

material length is normally not adjusted and therefore this is reasonable constraint.  A 

MathCAD worksheet is included below which follows the program of Kane and Squier 

[1] to determine the estimated optimal angle mismatch for the chirped pulse amplification 

setup used in these experiments.   

      For the MathCAD worksheet, the angle α is equal to θI in the stretcher and β is the 

diffracted angle.  γ is the incident angle in the compressor and θnum the diffracted angle. 

Otherwise parameters are as defined in Chapter 2.  Begin MathCAD document (boxed): 

Parameters for incident light, gratings, and stretcher incident 
angle (α):

λ0 0.8:= μm α 18.4166667:= deg 

N 1.2:= grooves/μm
c 0.3:= μm/fs

b 2.96 105
⋅:= μm 

ω λ( ) 2 π⋅ c⋅
λ

:=
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TOD for BK7 (fs3), l in μmφ3BK7λ lBK7( ) β3BK7λ lBK7⋅:=

SOD for BK7 (fs2), l in μmφ2BK7λ lBK7( ) β2BK7λ lBK7⋅:=

fs3

μm
β3BK7λ

λ0
2

4π
2

c3
⋅

− 3λ0
2

n2BK7λ⋅ λ0
3

n3BK7λ⋅+⎛
⎝

⎞
⎠:=

fs2

μm
β2BK7λ

λ0
3

2 π⋅ c2
⋅

n2BK7λ⋅:=

n'''(λ=800nm) in μm-3n3BK7λ 0.29−:=

n''(λ=800nm) in μm-2n2BK7λ 0.050:=

BK7 (Reference [3], Table 2.1)

TOD (λ=800nm) for Ti:Al2O3, l in cm, TOD in fs 3φ3TS lTS( ) 753.32lTS⋅:=

SOD (λ=800nm) for Ti:Al2O3, l in cm, SOD in fs 2φ2TS lTS( ) 1020.99lTS⋅:=

Ti:Al203 (Reference [2])

Calculation of the second and third order dispersion for all 
material in the amplifier:  first write expressions for each type 
of material.
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KD*P (Reference [4])

no λ( ) 1.9575544
0.2901391
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SOD for KDP (fs2) o/e, l in μm 

φ2KDPo lKDP( ) β2KDPo .8( ) lKDP⋅:= φ2KDPe lKDP( ) β2KDPe .8( ) lKDP⋅:=

TOD for KDP (fs3) o/e, l in μm

φ3KDPo lKDP( ) β3KDPo .8( ) lKDP⋅:= φ3KDPe lKDP( ) β3KDPe .8( ) lKDP⋅:=
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Calculate dispersion in the stretcher for given incidence 
angle and wavelength: 

sind x( ) sin x deg⋅( ):= cosd x( ) cos x deg⋅( ):=

Returns the diffracted angle in degrees; incident angle 
entered in degreesβ

180
π

asin N λ0⋅ sind α( )−( )⋅:=

φ2str
N2

λ0
3

⋅ b⋅

π c2
⋅ cosd β( )( )2⋅

−:= fs2

φ3str φ2str−
3 λ0⋅

2 π⋅ c⋅
⋅ 1 N λ0⋅

sind β( )

cosd β( )( )2
⋅+⎡

⎢
⎣

⎤
⎥
⎦

⋅:= fs3

φ2str 1.319− 106
×= fs2 φ3str 3.454 106

×= fs3

 

Calculate material dispersion for all material between 
stretcher and compressor:

φ2mat lTS lBK7, lKDP,( ) φ2TS lTS( ) φ2BK7λ lBK7( )+ φ2KDPo lKDP( )+:= fs2

φ3mat lTS lBK7, lKDP,( ) φ3TS lTS( ) φ3BK7λ lBK7( )+ φ3KDPo lKDP( )+:= fs3

Estimated total material traversal (8 passes through crystal, lenses, pockels cell, etc.)

Note: lTS entered in cm, while lBK7 and lKDP entered in μm

LTS 4.8:= cm LBK7 1.27 104
⋅:= μm LKDP 2.54 104

⋅:= μm
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Compressor Settings:

C lTS lBK7, lKDP,( ) 1
N λ0⋅

2 π⋅ c⋅
3 λ0⋅

φ3str φ3mat lTS lBK7, lKDP,( )−

φ2str φ2mat lTS lBK7, lKDP,( )+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅ 1−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅:=

Guess Value

θ 1:=

Given

sin θ( )

cos θ( )( )2
C LTS LBK7, LKDP,( )

θnum Find θ( ):=

θnum 0.676= γ
180
π

asin N λ0⋅ sin θnum( )−( )⋅:=

γ 19.541= This is the incident angle in degrees

b
π c2
⋅ cos θnum( )( )2⋅

N2
λ0

3
⋅

φ2str φ2mat LTS LBK7, LKDP,( )+( )⋅:=

b 1⋅ 10 4−
⋅ 31.71= This is the separation in cm (for diffracted angle θ)  

 

End MathCad Document (boxed) 
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