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ABSTRACT

ACHIEVING HIGH SPIN-FLIP EFFICIENCY WITH AN RF MAGNET

AND DISCOVERY OF

SPIN-RESONANCE STRENGTH FORMULAE PROBLEM

by

Maria A. Leonova

Chairman: Alan D. Krisch

Frequent polarization reversals, or spin-flips, of a beam in high energy storage

rings, may be a powerful tool for greatly reducing the systematic errors of spin asym-

metry measurements in scattering experiments. A spin-flipping technique using an

artificially induced spin-depolarizing resonance, created by an rf magnet with a hor-

izontal magnetic field, is being developed to allow such polarization reversals in a

well-controlled way. We used a new ferrite rf dipole to study the spin flipping of a

2.1 GeV/c vertically polarized proton beam stored in the COSY Cooler Synchrotron

in Jülich, Germany. We swept the rf dipole’s frequency through an rf-induced spin

resonance to flip the beam’s polarization direction. After determining the resonance’s

frequency, we varied the frequency’s range and ramp time, and the number of flips.

At the rf dipole’s maximum strength and its optimum frequency range and ramp

time, we measured a proton spin-flip efficiency of 99.92 ± 0.04%. This result, along

xi



with previous similar IUCF results at lower energy, indicate that due to the Lorentz

invariance of an rf-dipole’s transverse
∫
Bdl and the weak energy dependence of its

spin-resonance strength, a small rf dipole should allow efficient spin flipping in very

high energies in rings such as the 250 GeV RHIC or even the 7 TeV LHC.

The accurate prediction of a spin-depolarizing resonance strength remains a chal-

lenge. We earlier analyzed all available data on the spin-flipping of stored beams of

polarized protons, electrons and deuterons. We found 10-20-fold deviations of the

measured rf-induced resonance strength from the theoretically predicted strength.

Therefore, we recently studied these resonance strength deviations experimentally by

varying the rf dipole’s voltage, and the size, momentum spread and vertical betatron

tune with a 2.1 GeV/c polarized proton beam stored in COSY. We found no depen-

dence of the resonance strength on the beam’s size or momentum spread. We did

find enhancements of more than 100 when the rf spin resonance was near an intrinsic

proton spin resonance.

We also studied the resonance strength deviations experimentally by using

1.85 GeV/c vertically polarized deuterons stored in COSY with an rf dipole and then

an rf solenoid. We found no dependence on the beam’s size or momentum spread, or

on the rf frequency sweep range for either the rf dipole or rf solenoid. We saw a signif-

icant enhancement of the rf spin resonance strength ε near an intrinsic spin resonance

with the rf dipole, but no enhancement with the rf solenoid, except exactly at the po-

sition of the very narrow intrinsic resonance. For an rf dipole the deuteron resonance

strength appeared to be about seven times smaller than expected. This resonance

strength reduction does not seem to affect the maximum spin-flip efficiency, but it does

require a very large frequency ramp time to achieve high spin-flip efficiency. More-

over, these results indicated that for rf dipoles the widely used resonance strength

formula appeared to be incorrect. Thus, further studies of rf-magnet-induced spin

resonance strengths are underway at COSY for both proton and deuteron beams.

xii



CHAPTER I

INTRODUCTION

Spin is considered a fundamental property of nuclei and subnuclear particles; it

appears naturally in the Dirac equation. Experimental studies of the spin dependence

of the strong interaction between elementary particles are needed to reveal new and

important aspects of the strong interaction, which cannot be investigated with un-

polarized beams and targets. Thus, these studies need polarized targets, polarized

beams or both. During the past decade, polarized proton, electron, and deuteron

beam experiments have become a major component of the programs in storage rings

such as the IUCF Cooler Ring [1], AmPS at NIKHEF [2], the MIT-Bates Storage

Ring [3], the COSY Cooler Synchrotron [4], LEP at CERN [5], RHIC at BNL [6] and

HERA at DESY [7].

In an ideal flat storage ring or circular accelerator, each particle’s spin precesses

around the vertical magnetic fields of the ring’s bending dipoles. The number of these

precessions during one turn around the ring, called the spin tune, is proportional to

particle’s energy and is given by

νs = Gγ, (I.1)

where γ is particle’s Lorentz factor and G is its gyromagnetic anomaly (for protons

Gp = 1.792847 and for deuterons Gd = −0.142987).

With no horizontal magnetic field the vertical spin motion is stable, and a beam’s

polarization remains unchanged; but the spin motion will be perturbed by any hor-

izontal magnetic field. A spin-depolarizing resonance occurs whenever a periodic

horizontal magnetic field’s frequency becomes synchronized with the spin precession

frequency; this allows the perturbations to add up constructively over a large num-

ber of turns and cause depolarization. The condition for a depolarizing resonance in

terms of the betatron tunes is

νs = lνx +mνy + n, (I.2)

1



2

where νx and νy are the horizontal and vertical betatron tunes, respectively, while l,

m and n are integers. When l = m = 0, the resonance is called an ”imperfection

resonance”, which occurs because of the imperfections in the ring’s magnetic struc-

ture. When either l or m or both are different from 0, the resonance is called an

”intrinsic resonance”, which is caused by the horizontal magnetic fields of the ring’s

focusing quadrupoles. Since the spin tune is proportional to the particle’s energy, the

higher the beam energy, the more resonances must be overcome to preserve beam’s

polarization during acceleration. Many techniques [8, 9, 10, 11, 12, 13, 14, 15, 16]

have been developed to overcome depolarizing resonances.

The measurements of asymmetries in polarized scattering experiments have sys-

tematic errors that can be significantly reduced by frequent reversals of the beam’s

polarization direction. Spin reversals can be achieved using either an rf solenoid’s

longitudinal magnetic field or an rf dipole’s transverse magnetic field. Running an

rf magnet at a frequency near the spin precession frequency, can create one or more

rf-induced spin-depolarizing resonances; the spin direction can then be flipped by

ramping the rf magnet’s frequency through one of these resonance’s central frequency.

The frequency fr of such an artificially rf-induced spin-depolarizing resonance is:

fr = fc(k ± νs), (I.3)

where fc is the particle’s circulation frequency, k is an integer and νs is the spin tune.

Varying the rf magnet’s frequency from a value below fr, to a value above it, is

called crossing the resonance. After such a crossing, the final beam polarization Pf

is related to the initial beam polarization Pi by the Froissart-Stora equation [17]

Pf = Pi

{
2 exp

[−(πεfc)
2

Δf/Δt

]
− 1

}
, (I.4)

where ε is the resonance strength, and Δf/Δt is the resonance crossing rate, while

Δf is the frequency’s ramp range during its ramp time Δt. The value of the exponent

determines the final polarization. If the resonance is very strong and/or the crossing

rate is very slow, then the exponent is very large and the exponential approaches zero;

therefore, the final polarization is reversed with respect to the initial polarization,

while its absolute value is the same. This is called a spin flip.

Such a 180◦ spin rotation by an rf dipole’s magnetic field was shown to be practical

at high energies [18, 19, 20, 21, 22, 23, 24], because it is energy independent. However,

the spin rotation due to a solenoid’s magnetic field decreases linearly with the beam’s

energy because of the Lorentz contraction of its
∫
Bdl; thus, an rf solenoid would have

to be impractically long for spin-flipping in very high energy rings. Therefore, we built

and installed a water-cooled ferrite-core rf dipole in the COSY Cooler Synchrotron



3

ring at the Forschungszentrum in Jülich, Germany, with a high rf-magnetic field

and, thus, a high induced resonance strength ε. We used it to study the spin-

flipping of 2.1 GeV/c vertically polarized protons stored in the COSY ring. We swept

the rf dipole’s frequency through an rf-induced spin resonance; after optimizing the

sweep parameters, we used multiple spin flipping to measure a spin-flip efficiency of

99.92 ± 0.04%.

The Michigan Spin Physics Center has carried out many experimental studies of

accelerating, storing and manipulating spin-polarized proton and deuteron beams at

the IUCF Cooler Ring [18, 19, 20, 21, 22, 25, 26, 27, 28] and at COSY [23, 24, 29,

30], and of electron beams at the MIT-Bates Storage Ring [31]. Spin-flipping data

obtained by the Spin Physics Center and collaborators at these rings show that the

experimentally measured rf-induced resonance strength often does not agree with the

strength calculated from each rf magnet’s
∫
B ·dl and the equations used for many

years. Understanding this disagreement is important for the correct estimation of

the rf magnet’s strength required for efficient spin flipping; it is also important for

properly understanding spin motion in storage rings and accelerators.

The first part of this thesis describes a high efficiency spin-flipping experiment

using a stored polarized proton beam at COSY [32]. The second part investigates

the strength of an rf-induced spin-depolarizing resonance [33, 34]. Since this subject

remains a challenge theoretically, my goal in this experimental thesis is to present the

data and to indicate some possible directions for the still-developing theory.

Chapter II contains a very brief discussion of polarized beam theory, with emphasis

on rf-induced depolarizing resonances and spin-flipping. Chapter III describes the

experimental apparatus, including the COSY Cooler Synchrotron, and the COSY-

Michigan rf dipole and rf solenoid. Chapter IV describes the high efficiency proton

spin-flipping experiment. Chapter V contains an overview of all spin-flipping data

that we know of, and discusses studies of the rf-dipole induced spin-depolarizing

resonance strength done with protons and deuterons at COSY, and studies of the

rf-solenoid induced spin resonance strength done with deuterons at COSY. Finally,

Chapter VI contains the conclusions.



CHAPTER II

THEORETICAL MOTIVATION

II.1 Spin Motion and Spin Resonances

The spin of a particle interacts with an electromagnetic field through the magnetic

moment associated with the spin. Let �S be the spin represented as a 3-vector; the

associated magnetic moment is

�μ =
ge

2m
�S, (II.1)

where g is the gyromagnetic ratio, e is particle’s charge, and m is its mass in its rest

frame. For an ideal Dirac particle, g is exactly equal to 2. The deviation of g from

2, which is called the ”anomalous” magnetic moment of the particle, can be specified

by a parameter G called the gyromagnetic anomaly

G =
g − 2

2
. (II.2)

For electrons and muons, the value of G is approximately equal to the fine structure

constant α = 1/137 divided by 2π. More precisely it is given by

G =

⎧⎨
⎩ 0.001159657, electron

0.001165924, muon ;
(II.3)

while for a proton Gp = 1.792847, and for a deuteron Gd = −0.142987.

II.1.1 Thomas-BMT Equation

Consider a particle of mass m and charge e at rest in a magnetic field �B. The

spin motion is a precession of the spin vector �S around the magnetic field direction
�B, with the equation of motion [35, 36]

d�S

dt
= �Ω × �S; (II.4)

4
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the spin precession’s angular velocity �Ω is

�Ω = − ge

2m
�B. (II.5)

Eqs. (II.4) and (II.5) describe the spin precession of a stationary particle, but we need

an equation for a relativistic particle moving in the electromagnetic fields �E and �B

of an accelerator ring. Let �υ be the instantaneous velocity of the particle; then, to

consider the precession of a moving particle as the precession of a stationary particle

in a moving frame, one must make a Lorentz transformation to the particle’s rest

frame. In this frame the spin precession equation is still Eq. (II.4); however �Ω needs

to be transformed. Note that �S is only well defined in the particle’s rest frame, while

all other quantities, �E, �B, �υ and time t, can be defined in the laboratory frame and

then transformed into the particle’s rest frame.

The orbital motion of a charged particle moving in the electromagnetic fields �E

and �B can be expressed as [35]

d�υ

dt
= − e

mγ

⎡
⎣�B +

γ2

γ2 + 1

�E × �υ

c2

⎤
⎦× �υ, (II.6)

where γ is the relativistic energy factor and c is the speed of light.

Transforming the magnetic field into particle’s rest frame, inserting it into Eq. (II.5),

and then transforming back to the laboratory frame, one obtains

�Ω = − e

mγ

[
(Gγ + 1) �B⊥ + (1 +G) �B‖ −

(
Gγ +

γ

γ + 1

)
1

c
�β × �E

]
, (II.7)

which, when substituted into Eq. (II.4), is called the Thomas-BMT equation [37, 38],

where BMT stands for Bargman, Michel, and Telegdi. The effect of the electric field
�E on spin motion is usually negligible in circular accelerators; thus, the last terms in

both, Eq. (II.6) and (II.7) can be ignored.

In Eq. (II.7), the ”1” in (Gγ + 1) �B⊥ is due to the Thomas precession, which

appears because the particle is accelerated radially. The origin of the Thomas preces-

sion is non inertial relativistic kinematics. One can see that two successive Lorentz

transformations along �β1 and �β2 can be combined into a single Lorentz transforma-

tion only if �β1 is parallel to �β2. Otherwise, they can only be combined into a Lorentz

transformation plus a rotation; this additional rotation is the Thomas precession.

II.1.2 Spin Dynamics Using Quantum Mechanical Spinor Formalism

In a circular accelerator, it is sometimes convenient to replace the time variable t

with the particle’s orbital angle θ. The transformation between θ and t is defined by

dθ =
υ

ρ
dt, (II.8)
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where ρ is the local radius of curvature of the particle’s orbit and υ is its velocity.

One can analyze the spin dynamics in the periodic magnetic structure of a syn-

chrotron using the spinor algebra language [36, 39, 40, 41]. where the spin is repre-

sented by a complex 2-component vector ψ, with

�S = ψ†�σψ, (II.9)

where �σ denotes the Pauli matrices with components

σx =

⎛
⎝ 0 1

1 0

⎞
⎠ , σl =

⎛
⎝ 0 −i
i 0

⎞
⎠ , σy =

⎛
⎝ 1 0

0 −1

⎞
⎠ , (II.10)

where x̂, l̂ and ŷ are the radial, longitudinal and vertical axes, respectively.

In terms of the orbital angle θ and two-component spinor ψ, the Thomas-BMT

equation [37, 38] of spin motion then describes the time evolution of ψ [36, 41]

dψ

dθ
= − i

2

⎛
⎝ Gγ −ζ

−ζ∗ −Gγ

⎞
⎠ψ, (II.11)

where the diagonal matrix elements Gγ describe spin precession around the vertical

fields of the bending dipoles while the off-diagonal element ζ characterizes the spin-

perturbing kick, which couples the spinor’s up (ψ↑) and down (ψ↓) components. The

quantity ζ is given by [36]

ζ = (1 +Gγ)
B̃x

B
+ (1 + G)

B̃l

B
, (II.12)

where B̃x and B̃l are the radial and longitudinal perturbing fields, respectively.

Because of the periodic nature of a particle’s motion in synchrotrons, ζ can be

expanded in a Fourier series

ζ(θ) =
∑
κ

εκe
−iκθ, (II.13)

where the Fourier amplitude εκ is called the resonance strength and the harmonic

κ is called the resonance tune, which is the frequency of the spin-perturbing kicks.

When the spin precession frequency is equal to the resonance tune (νs = κ), then the

beam may be depolarized by the coherent spin perturbations caused by these kicks.

The motion in the x and y directions contains harmonics of (k ± νx) and (k ± νy),

respectively, due to the betatron oscillations, and harmonics of k due to closed orbit

distortions, where νx and νy are the horizontal and vertical betatron tunes, respec-

tively, and k is an integer. These terms contribute to perturbations of the spin motion,

with perturbation tunes of k ± νx, k ± νy and k, respectively.
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II.1.3 Depolarization Resonances

Perturbations to the spin motion will accumulate, i.e. a spin resonance will occur,

whenever the perturbations to the spin motion are in phase with the unperturbed

spin motion. Thus, one expects a resonance to occur when one of these perturbation

tunes is equal to the unperturbed tune, i.e. when

Gγ =

⎧⎪⎪⎨
⎪⎪⎩
k ± νy, for vertical deviation from a closed orbit due to vertical

betatron oscillations,

k, for transverse deviations due to closed orbit distortions.

(II.14)

When a beam is injected into an accelerator, one aligns its spin along the vertical

direction ŷ. An ideal particle, whose spin motion is simple precession around ŷ, would

keep its spin aligned along ŷ. The hope is that the spin direction of the non-ideal

particles would not deviate far from ŷ, so that the net polarization of the whole beam

does not decrease significantly. This is not a problem if the perturbations are small,

and are not in phase with the natural spin motion. However, when a depolarizing

resonance occurs, even small perturbations can cause large deviations of the spin

direction from ŷ and the beam polarization can be lost. Therefore, the resonances in

Eq. (II.14) are called spin-depolarizing resonances; they are the resonances which do

not affect the particles’ orbital motion.

Any horizontal magnetic fields can perturb the spin motion, and thus depolar-

ize the beam. This depolarization occurs whenever the spin tune νs satisfies the

depolarizing resonance condition:

νs = lνx +mνy + n, (II.15)

where l, m and n are integers. The imperfection depolarizing resonances occur when

l = m = 0, while the intrinsic depolarizing resonances occur when either l �= 0 or

m �= 0, or both. The sum of l and m defines the order of the resonance. For example,

a resonance with l = 1 and m = 2 is a third-order resonance. Generally, the higher

order depolarizing resonances are weaker.

The imperfection resonances come from the y-orbit distortions due to the imper-

fections in the ring magnets. By making good orbit corrections (sometimes called

harmonic spin matching) these resonances can be reduced in strength. The intrinsic

resonances come from the vertical betatron amplitudes of the particles, which move

the particles into the focusing fields of quadrupoles with a component along x̂, and

thus perturb rotations around x̂. Since any beam has a non-zero emittance, these

resonances can not be avoided by any error correction scheme [36].
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II.2 Spin Resonance Strength

II.2.1 Introduction

Consider the Thomas-BMT equation [37, 38] in a spinor representation [36, 41]

dψ

dθ
= − i

2

⎛
⎝ Gγ −ζ

−ζ∗ −Gγ

⎞
⎠ψ, (II.16)

where the quantity ζ describes the spin perturbation and is given by

ζ = (1 +Gγ)
B̃x

B
+ (1 +G)

B̃l

B
=
∑
κ

εκe
−iκθ. (II.17)

One can use Eq. (II.17) to find the spin resonance strength εκ, which is defined as

the Fourier amplitude of the κ harmonic [36]

εκ ≡ 1

2π

∮
ζ(θ)eiκθdθ =

1

2π

∮ {
(1 +Gγ)

B̃x

B
+ (1 +G)

B̃l

B

}
eiκθdθ. (II.18)

II.2.2 RF-Induced Spin Resonance Strength

Consider a short rf dipole with a time-dependent radial magnetic field Bx(t) given

by

Bx(t) = Brf cos(2πfrft+ χ), (II.19)

where Brf is its oscillating magnetic field’s amplitude, frf its frequency, and χ is an

arbitrary phase. Assume that the rf dipole is the only source of the spin-perturbing

radial magnetic field B̃x in Eq. (II.18) [42, 43, 44, 45, 46]. Each circulating particle

encounters the rf dipole’s field once on every turn. The spin-perturbing field B̃x can

be written as a function of the total distance s traveled by the particle in the following

way

B̃x(s) = Brf cos(2πνrf
s

L
+ χ)

+∞∑
n=−∞

⎧⎨
⎩ 1, −(l/2) + nL < s < (l/2) + nL

0, otherwise
, (II.20)

where L is the ring’s circumference, n is the number of particle turns, and l is the rf

dipole’s length. The quantity νrf is the rf tune, which is the number of the rf dipole

field oscillations during one turn around the ring:

νrf = frf/fc, (II.21)

where fc is the beam’s circulation frequency.
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In the limit of a very short rf dipole (l/L→ 0), its spin-perturbing magnetic field

B̃x(s) in Eq. (II.20) can be expressed as

B̃x(s) =
∫
Brfdl cos(2πνrf

s

L
+ χ) ×

+∞∑
n=−∞

lim
l→0

⎧⎨
⎩ 1/l, −(l/2) < (s− nL) < (l/2)

0, otherwise

=
∫
Brfdl cos(2πνrf

s

L
+ χ)

+∞∑
n=−∞

δ(s− nL), (II.22)

where δ(s− nL) is the Dirac delta function.

Converting the variable in Eq. (II.22) from the distance s to the orbital angle θ

transforms Eq. (II.22) into

B̃x(θ) =
∫
Brfdl cos(νrfθ + χ)

+∞∑
n=−∞

δ(θ− 2πn)

ρ
, (II.23)

where we used the relations s = θρ, L = 2πρ, and δ(θρ− 2πnρ) = δ(θ − 2πn)/ρ.

Inserting Eq. (II.23) into Eq. (II.18) and using the identity

cos(νrfθ + χ)
+∞∑

n=−∞
δ(θ − 2πn) =

1

2π

+∞∑
n=−∞

cos[(νrf + n)θ + χ] (II.24)

gives the rf-dipole induced spin resonance strength

εdip
Bdl =

(1 +Gγ)

2π

∫
Brfdl

Bρ

∮
1

2π

+∞∑
n=−∞

cos[(νrf + n)θ + χ]eiκθdθ (II.25)

=
(1 +Gγ)

2π

∫
Brfdl

Bρ

∮ 1

2π

+∞∑
n=−∞

ei(νrf +n+κ)θ+iχ + e−i(νrf +n−κ)θ−iχ

2
dθ. (II.26)

Due to the periodic nature of the integrand in Eq. (II.26), the integral in Eq. (II.26)

is non-zero only when the resonance tune κ is given by

κ = ±(νrf + n). (II.27)

When the condition of Eq. (II.27) is satisfied, then Eq. (II.26) gives the following

expression for the absolute value of the rf-dipole-induced spin resonance strength:

|εdip
Bdl| =

1

4π

e(1 +Gγ)

p

∫
Brfdl. (II.28)

Note that, as will be discussed later, there is now some question about the validity

of Eq. (II.28).
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Equation (II.27) determines the condition for an rf-induced spin resonance, which

occurs when

νs = κ = ±(νrf + n) (II.29)

or

νrf = k ± νs, (II.30)

where n and k are arbitrary integers. Using the relations νrf = frf/fc and νs = Gγ in

Eq. (II.30), one can obtain the frequency frf , at which an rf-induced spin resonance

occurs

frf = fc(k ±Gγ), (II.31)

where fc is the beam’s circulation frequency,G is the particle’s gyromagnetic anomaly,

and γ is its Lorentz energy factor.

Similarly, for an rf solenoid with an oscillating longitudinal magnetic field

Bl(t) = Brf cos(2πfrf t+ χ), (II.32)

one can show that its rf-induced spin resonance strength is given by

|εsol
Bdl| =

1

4π

e(1 +G)

p

∫
Brfdl. (II.33)

The resonance condition for an rf-induced spin resonance due to an rf solenoid is the

same as for an rf dipole, i.e. Eq. (II.31).

II.2.3 Enhancement or Reduction of the

RF-Induced Spin Resonance Strength

The rf-dipole-induced spin resonance strength in Eq. (II.28) was derived assuming

that the rf dipole is the only source of the spin perturbation. However, this assumption

is not completely realistic, because unlike an rf solenoid, an rf dipole not only perturbs

the spin, but also affects the beam’s orbital motion. A radial-field rf dipole excites

forced vertical oscillations of the beam at the rf dipole’s frequency, which drive the

vertically polarized beam into the stronger radial field region of the ring’s focusing

quadrupoles [44, 47, 48]. These radial quadrupole fields experienced by the particles’

spins may have a significant effect on the beam’s polarization by making the rf-induced

spin resonance weaker or stronger.

To be more quantitative, consider an isolated rf-induced spin resonance with its

resonance tune κ defined as

κ ≡ fr/fc, (II.34)
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where fr is the resonance frequency and fc is the circulation frequency in the ring.

As follows from the discussion above, the total resonance strength can be written as

ε = εdip
Bdl + εfo, (II.35)

where εdip
Bdl is the resonance strength given by Eq. (II.28) due to the rf dipole itself,

and εfo is the resonance strength contribution due to the forced oscillations inside the

focusing quadrupoles. The forced contribution εfo can be obtained from Eq. (II.18);

it is given by [44]

εfo =
(1 +Gγ)

2π

∮
1

B

∂Bx

∂y
(θ)y(θ)eiκθdθ, (II.36)

where we used

B̃x(θ) =
∂Bx

∂y
(θ)y(θ). (II.37)

The vertical beam displacement y(θ) due to the forced oscillations is given by [44]

y(θ) =
1

4π|νy − νrf + k|
∫
Brfdl

√
βy(θ)βdip

Bρ
cos[νrfφrf(θ) + χ], (II.38)

where νy is the vertical betatron tune, νrf ≡ frf/fc is the excitation tune, βy(θ) is

the vertical betatron function, βdip is the betatron function’s value at the rf dipole’s

location, Bρ is the magnetic rigidity, and φrf (θ) is the phase advance of the forced

oscillations. Inserting Eq. (II.38) into Eq. (II.36) gives [44]

εfo =
(1 +Gγ)

2π

∫
Brfdl

4π|νy − νrf + k| ×
∮ √

βy(θ)βdip

B2ρ

∂Bx

∂y
(θ) cos[νrfφrf (θ) + χ]eiκθdθ. (II.39)

For the spin-flipping studies, we adjusted νrf to satisfy the condition κ = k± νrf .

Thus, the circular integral in Eq. (II.39) may be non-zero and there may be non-

zero contribution to the rf-induced spin resonance strength caused by the forced

oscillations. Note that the forced contribution εfo in Eq. (II.39) is directly propor-

tional to
∫
Brfdl and inversely proportional to the tune difference in the denominator

|νy − νrf + k|. When νy is close to νrf , εfo may become very large and thus greatly

enhance the rf-induced resonance strength. Using Eqs. (II.28), (II.35), and (II.39),

the dependence of the total rf-induced resonance strength ε on the vertical betatron

tune νy can be written as

ε
εdip

Bdl

= 1 +
C

|νy − νrf + k| , (II.40)

where

C =
1

2π

∮ √
βy(θ)βdip

B

∂Bx

∂y
(θ) cos[νrfφrf(θ) + χ]eiκθdθ (II.41)

is a complex parameter, which is independent of νy to first order.
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II.3 Froissart-Stora Equation and Spin-Flipping

In the previous section, we showed that the initially vertical polarization of a

beam, which is stored in a flat circular accelerator with no special spin rotators, can

be perturbed by a horizontal rf magnetic field from either an rf solenoid or an rf dipole.

Moreover, this perturbation can induce an rf spin resonance when each particle’s spin

coherently encounters the horizontal magnetic field during each turn around the ring.

The spin’s projection onto the vertical axis y is given by

Sy = ψ†σyψ. (II.42)

The beam’s vertical polarization at some time t is the sum over all its particles’

vertical spin components, divided by the number of particles

Py =
1

N

N∑
i=1

Syi, (II.43)

where Syi is spin projection of particle i onto the y-axis.

In case of an isolated resonance, Eq. (II.13) becomes

ζ(θ) = εκe
−iκθ. (II.44)

Then Eq. (II.42) can be solved analytically for a constant-rate linear crossing of a

resonance from θ = −∞ to θ = ∞.

For an initial polarization Py(−∞) = 1, after the beam crosses the resonance, the

polarization becomes

Py(∞) = 2e−π|ε|2/2Γ − 1, (II.45)

where Γ is called the crossing rate, and ε is the resonance strength. Eq. (II.45) was

first derived by Froissart and Stora in 1960 [17].

This formula shows that if a resonance is very weak and/or it is crossed very

quickly (|ε|2 /Γ � 1), then there is almost no loss of polarization. Moreover, when a

resonance is very strong and/or it is crossed very slowly (|ε|2/Γ 	 1), then the po-

larization direction is flipped with almost no loss of polarization. A large polarization

loss can occur when the crossing speed Γ is comparable to |ε|2.
The resonance crossing rate Γ can be written as [17]

Γ =
d

dθ
[κ− νs] =

1

2πfc

d

dt
[κ− νs], (II.46)

where κ is the resonance tune, νs is the spin tune, and fc is the circulation frequency.

According to Eq. (II.46) a resonance crossing can occur when either the resonance
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tune or the spin tune is changed. When a beam is accelerated, its spin tune νs =

Gγ changes as γ changes; thus, the beam may encounter many spin-depolarizing

resonances during normal acceleration.

If one crosses a resonance by changing the resonance tune, then one can flip the

polarization of the beam while keeping all other beam parameters unchanged. An

appropriate spin resonance can be created in a ring by inserting either an rf solenoid

with a longitudinal rf magnetic field [25, 27, 28] or an rf dipole with a transverse rf

magnetic field [18, 19, 21, 22, 23, 24, 29, 30, 31]. Using this rf resonance to spin-flip

a stored polarized beam can significantly reduce the systematic errors in a scattering

experiment’s spin asymmetry measurements.

One can define the spin flip efficiency as

η ≡ −Pf

Pi
. (II.47)

where Pf is the beam’s final polarization, and Pi is the beam’s initial polarization.

When η is very close to 1, then one can spin-flip the beam many times with little loss

of polarization.



CHAPTER III

EXPERIMENTAL APPARATUS

III.1 COoler SYnthrotron (COSY)

COSY is a COoler SYnchrotron and storage ring for medium energy physics, in

Jülich, Germany. The cooler ring delivers protons and deuterons in the momentum

range 270 to 3300 MeV/c. The COSY facility consists of an ion source, an injector

cyclotron, a 100-m-long injection beam line, a 184-m-circumference ring and extrac-

tion beam lines. It has an electron cooling system that operates at injection, and a

stochastic cooling system that operates at momenta between 1500 and 3300 MeV/c.

The apparatus used for our experiments is shown in Fig. III.1; it includes the

polarized ion source [50, 51, 52], the injector cyclotron [53, 54, 55], the Low Energy

Polarimeter (LEP) [56], which monitored the beam’s polarization before injection into

COSY, the COSY storage ring [57, 58, 59, 60], the electron Cooler [61], the EDDA

detector [62, 63, 64, 65], and the rf dipole [66, 67] (or the rf solenoid [68, 69]).

III.1.1 Polarized Ion Source

The COSY polarized ion source was designed and built by a collaboration of

groups from the universities of Bonn, Erlangen, and Cologne [50, 51, 52]. It produces

negatively charged polarized beams of hydrogen H− or deuterium D−. A schematic

view of the source is shown in Fig. III.2. It contains three main components: the

atomic beam source that produces an intense polarized atomic hydrogen �H0 or deu-

terium beam �D0, the cesium beam source that produces a fast neutral Cs0 beam, and

the charge-exchange region where the �H0( �D0) beam collides with the Cs0 beam.

To produce an atomic beam, the H2 or D2 molecules were first dissociated in the

300-400 W rf dissociator. Then, the atoms passed through a 20-mm-long aluminum

14



15

 

Figure III.1: Layout of the COSY accelerator facility showing the polarized ion source,

the injector cyclotron, the Low Energy Polarimeter, and the COSY ring with its EDDA

detector, electron Cooler, rf dipole, and fast quadrupole.
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nozzle with a 3 mm diameter where they were cooled to about 30 K. This slowed the

atoms allowing shorter sextupoles and increasing the acceptance solid angle; it also

increased the ionization probability in the charge-exchange region by increasing the

time atoms stayed there. Next, the atomic beam was polarized by passing through

the two sextupoles and three rf transition units (RFT’s).

In a strong magnetic field, the electron spin component me and the proton spin

component mp can be either +1
2

or −1
2
, the deuteron spin component md can be

-1, 0 or 1. Thus, the hydrogen (deuterium) atoms are split into four (six) hyperfine

states, which are numbered in the order of decreasing of their energy. The hydrogen’s

hyperfine states |mp, me〉 are:

|1〉 = | + 1
2
,+1

2
〉, |2〉 = | − 1

2
,+1

2
〉, |3〉 = | − 1

2
,−1

2
〉, |4〉 = | + 1

2
,−1

2
〉.

The deuterium’s hyperfine states |md, me〉 are:

|1〉 = |+1,+1
2
〉, |2〉 = |0,+1

2
〉, |3〉 = |−1,+1

2
〉,

|4〉 = |−1,−1
2
〉, |5〉 = |0,−1

2
〉, |6〉 = |+1,−1

2
〉.

In a weak magnetic field the electron and nuclear spins are coupled to each other.

Thus, the spin state of an atom can not be described by one ’pure’ spin state, but

is instead a mixture of the states defined above. The sextupole magnets focus the

states with me = +1
2

and defocus the states with me = −1
2
. The RFT’s operate

at some magnetic field and frequency that drive rf-induced transitions, exchanging

the populations of pairs of the hyperfine states. A set of three RFT’s allows a large

number of combinations.

The cesium (Cs) source is located opposite to the atomic �H0/ �D0 beam source, as

shown in Fig. III.2. First, the Cs vapor was thermally ionizes on a hot (1200 ◦C)

 
 

Figure III.2: Schematic view of the COSY’s polarized ion source.
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porous tungsten surface. Then, the Cs+ ions were accelerated by a potential of

40-60 kV and focused by a triplet of magnetic quadrupoles. Next, the Cs+ beam

passed through a neutralizer filled with Cs0 vapor, which neutralized the beam by

capturing an electron. The neutral Cs beam entered the charge-exchange region

through an orifice in the 90◦-deflector. To avoid excessive Cs contamination of the

source, the neutralizer was filled with Cs0 vapor only during the short COSY injection

pulses and was emptied between the pulses. Then the Cs+ ions were no longer

neutralized, and got deflected by the Cs+ deflector into the Faraday cup.

In the charge exchange region the polarized atomic �H0( �D0) beam collided with

the fast neutral Cs0 beam and exchanged electrons:
�H0( �D0) + Cs0 → �H−( �D−) + Cs+.

An electric field inside the charge exchange region guided the negatively charged
�H−( �D−) atoms into the 90◦-deflector that transfered them to the cyclotron. The

atoms passed through the Wien Filter, which consists of perpendicular electric and

magnetic fields that are perpendicular to the ion’s trajectory. The electric and mag-

netic fields were adjusted so that the spin would be parallel to the magnetic field

inside the cyclotron, and only ions with the correct velocity and mass-to-charge ratio

could pass. The extracted beam current was about 20 μA for �H−, and up to 16 μA

for �D−; the beam’s typical vector polarization was about 80% for �H− and up to 70%

for �D−.

III.1.2 Injector Cyclotron

The cyclotron [53, 54, 55] delivered about 1 μA of polarized �H− ( �D−) ions at

45 MeV (75 MeV) for strip-injection into COSY. Its schematic layout, together with

the ion source and its beam line, is shown in Fig. III.3. The cyclotron injected the ions

into COSY in pulses lasting 10 to 20 ms at a maximum repetition rate of 0.5 Hz. Most

cyclotron systems operated continuously, and the beam pulses were generated by a

chopper in the source beam line (QBL). The H− and D− ion beams were injected into

the cyclotron at 4.5 keV and 7.6 keV, respectively. The ion beam was matched to the

rf-phase acceptance of the cyclotron by a buncher with a sinusoidal voltage, which

is located below the cyclotron; it could also be combined with a special sawtooth

buncher. A hyperbolic inflector (HI) near the center of the cyclotron was used for

final injection onto a constant orbit.

The cyclotron has three spiral sector magnets (hills, shown in purple in Fig. III.3);

the magnetic field was produced by a pair of main coils wound around each magnet’s

poles and a set of correction coils located on the pole faces. The magnetic field was

stabilized to ∼ 10−6 using an NMR feedback system. Three Dees (shown in blue in
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Figure III.3: Schematic view of the cyclotron with the colliding beams ion source (CBS)

and the source beam line (QBL).

Fig. III.3) located between the hills provided the acceleration; they operate on the 3rd

harmonic of the orbital frequency, in the range of 20 to 30 MHz with a peak voltage

of up to 40 kV. For acceleration of �H− ( �D−) ions to 45 MeV (75 MeV), one used a

frequency of ∼29.6 MHz (∼27.3 MHz) and a voltage amplitude of ∼20 kV (∼33 kV).

To keep the frequency in tune, the Dees were connected in the central region to a

capacitively terminated resonance line. The beam was multi-turn extracted by a

septum deflector, located in the pole gap of one of the hills.

III.1.3 COSY Ring

The COSY ring itself [57, 58, 59, 60] has a race-track geometry formed by two

52-m-long 180◦ arcs joined by two 40-m-long straight sections, adding up to a circum-

ference of 184 m. A schematic view of the ring was shown in Fig. III.1. Each straight

section contains four optical triplets (each consisting of four quadrupoles), designed

to produce either a π or 2π betatron phase advance in each straight section. One

straight section is used for two internal target experiments (COSY-13 and EDDA),

the other provides space for the accelerating rf cavity, the electron cooler, scrapers,

Schottky pickups, current monitors, and recently the WASA experiment.

Each of the two arc section consists of three almost identical cells. Each cell con-
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tains 4 bending dipoles, 4 quadrupoles, and 1 or 2 sextupoles. Each half-cell has

a FODO structure with the possibility of exchanging the focusing (F) and defocus-

ing (D) for additional flexibility in adjusting the betatron tunes. The half-cells are

arranged in a mirror-symmetric way, leading to a six-fold symmetry of the ring’s

magnetic lattice. One arc houses the injection and extraction hardware including a

stripping target, the bumper magnets for injection, and the electrostatic and mag-

netic septa for extraction. The other arc provides space for a third internal target

area (COSY-11), a diagnostic kicker, the ultra-slow extraction (USE) elements, a fast

quadrupole, and an rf dipole or rf solenoid for spin manipulation.

The pickups and kickers for stochastic cooling are located at the intersections of

the straight sections and arcs. In total 18 sextupoles are installed in the COSY ring,

5 in each arc for chromatic corrections, and 4 in each straight section for resonant

extraction. The ring also contains 30 horizontal and vertical beam position monitors

along with 40 correction dipoles for closed orbit corrections.

To avoid crossing the transition energy during acceleration, which could lead to

significant beam loss in the strong-focusing COSY ring, the transition energy was

shifted upward and always kept above the beam’s instantaneous energy during accel-

eration by adjusting the ring’s lattice. Thus, the transition point was never crossed.

After reaching the flat-top energy: the rf voltage was adiabatically turned off; the

beam was debunched; and the transition energy was moved back to its nominal value.

The beam could then be rebunched, if needed, with nearly no intensity loss.

For the successful acceleration of a polarized proton beam, a number of proton

spin resonances had to be properly handled. Five imperfection spin resonances and

ten vertical intrinsic spin resonances exist in COSY’s energy range; they are listed in

Table III.1 and Table III.2, respectively. The beam’s polarization was fully flipped

at the crossing of each imperfection resonance. The polarization loss during each spin

Gpγ 2 3 4 5 6

p (MeV/c) 463.8 1258.7 1871.2 2442.6 2996.4

Table III.1: Imperfection resonances at COSY.

6 − νy −1 + νy 7 − νy 0 + νy 8 − νy 1 + νy 9 − νy 2 + νy 10 − νy 3 + νy

Gpγ 2.38 2.62 3.38 3.62 4.38 4.62 5.38 5.62 6.38 6.62

p (MeV/c) 819.2 999.9 1499.5 1645.8 2091.4 2228.4 2654.6 2787.5 3204.4 3335.1

Table III.2: Intrinsic resonances at COSY (resonance momenta are given for νy = 3.62).
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flip was reduced to less than 1%, by enhancing strength of each resonance using fast

vertical correction dipoles to increase the beam’s vertical betatron amplitude. The

intrinsic resonances are weaker than the imperfection resonances and cannot produce

full spin flip. The beam’s polarization was preserved at the crossing of each intrinsic

resonance by making a vertical betatron tune jump using a fast pulsed quadrupole

magnet installed around a ceramic vacuum pipe. It jumped the vertical betatron

tune νy by about Δνy = 0.06 during 10 μs; this reduced the polarization loss to

less than 5% for the strongest Gγ = 8 − νy intrinsic resonance, and to less than

1% for all other intrinsic resonances. The slower fall-off time of νy after the jump

was typically adjusted to 40 ms or less to avoid double crossing of a resonance. To

optimize the distance between the intrinsic resonances, νy was typically kept fixed

at 3.525 during acceleration. Polarization losses for all the Gγ = n ± νx coupling

intrinsic spin resonances were eliminated by separating the horizontal and vertical

betatron tunes by |νx − νy| > 0.15.

These techniques allowed acceleration of polarized protons up to COSY’s max-

imum momentum with only a few percent polarization loss. The total beam loss

caused by the correction dipoles and the fast quadrupole during acceleration was un-

der 10%. There were no intrinsic spin resonances for deuterons in COSY’s energy

range when νy was kept around 3.6 during acceleration.

III.1.4 Electron Cooler

The electron cooler [61] was used to reduce the emittance and momentum spread

of the proton or deuteron beam after injection into the COSY ring. Although the

electron cooler could produce a 100 keV electron beam of 3 A, the p↑ (d↑) ion losses

increase substantially at higher currents. The cooler was used at the COSY’s p↑ (d↑)
ion energy of 45 MeV (75 MeV), which corresponds to an electron beam energy of

20.66 keV. The optimal current for a typical 10 s cooling time was 170 mA (250 mA)

for the p↑ (d↑) ion beam. The electron beam diameter was about 25 mm. The

geometric length of the cooling section is 2 m, while its effective length is 1.5 m. Two

toroid magnets, on either side, turned the electron beam into (out of) the p↑ (d↑) ion

beam’s path.

The transverse emittance was measured using the H0 atoms that were formed in

a small quantity inside the electron cooler. These neutral atoms were not affected by

the magnetic fields, thus, they could be detected by wire chambers located behind

the first ring’s bending dipole, about 25 m downstream of the electron cooler. The

width of a beam position monitor’s sum signal from a longitudinal Schottky scan

was used to measure the beam momentum spread Δp/p. The correction dipoles and
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quadrupoles of the electron cooler were used to match the directions of the electron

and proton beams, and to compensate for the influence of the cooler’s magnets.

In a test with 2×109 protons in the COSY ring, the analysis showed that the initial

Δp/p of 10−3 was reduced by an order of magnitude, to 10−4. The wire chambers’

data showed a transverse phase space reduction from 25π mm mrad down to 0.5π mm

mrad after 6 s of cooling. The proton and electron beam directions were matched to

better than 0.3 mrad to achieve these results.

III.1.5 EDDA Detector

The Excitation function Data acquisition Designed for Analysis of phase shifts

(EDDA) detector [62, 63, 64, 65] is shown in Fig. III.4. The detector consists of

two cylindrical double layers covering the laboratory polar angle range 10◦ < θlab <

72◦ and about 82% of the full 4π solid angle. The inner double layer contains 640

scintillating fibers each with a 2.5 mm diameter. They were helically wound around

proton
proton

Beam

10 cm

Left Right

z

y
x

back-scattered

Fiber target

forward-scattered

Figure III.4: The EDDA detector.
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the beam pipe in two layers, with opposite helicities; the fibers are connected to

16-channel multi-anode photomultipliers. One of the outer double layers consists of

32 scintillator bars with triangular cross section, which are mounted parallel to the

beam axis. Each bar spans an azimuthal angle of 11.25◦. The second layer consists

of 29 pairs of scintillator semi-rings, which surround the scintillator bars. The semi-

rings close to the target are made from scintillating fibers. Each pair of the semi-rings

covers θlab of about 2.5◦. The scintillator cross sections were designed so that a particle

passing through the outer double layer produces a position dependent signal in two

neighboring bars and rings.

The resulting polar and azimuthal angular resolutions are about 1◦ and 1.9◦

FWHM, respectively. Combined with the spatial resolution of the inner layer’s heli-

cal fibers, this allows one to do vertex reconstruction with a resolution of better than

2 mm in all dimensions. However, when taking exclusive pp elastic scattering data

with EDDA, usable beam currents and detector count rates were greatly reduced due

to the data acquisition dead time.

During our experiments EDDA was used as a very fast proton beam polarimeter.

Background was suppressed by requiring a kinematic coincidence between the signals

from the forward-scattered and back-scattered particles. EDDA counted only the

trigger signals for the two-prong coincidence events in the left and right semi-rings.

This method used only fast scalers and did not require any event reconstruction, thus,

it had little dead-time and was very fast; further details can be found in [70]. The fast

polarimeter was calibrated in a dedicated calibration run by measuring the effective

analyzing power A(p, θc.m.) of C fiber target. Exclusive pp elastic scattering data were

taken simultaneously with fast scaler data. The effective analyzing power A(p, θc.m.)

was determined from

A(p, θc.m.) = App(p, θc.m.)
α(p, θc.m.)

αpp(p, θc.m.)
, (III.1)

where App(p, θc.m.) is the analyzing power of pp elastic scattering, α(p, θc.m.) is the

inclusive two-prong ring scaler asymmetry while αpp(p, θc.m.) is the exclusive pp elastic

scattering asymmetry.

We also used the EDDA detector to measure the deuteron polarization in COSY.

EDDA was configured to operate as a very fast deuteron polarimeter by using scalers

to count all particles scattered into the left (L), right (R), top (T ), and bottom (B)

quadrants of EDDA’s outer scintillator double layer. The measured L, R, T , and B

counts were used to form the vector α
V

and tensor α
T

scattering asymmetries:

α
V

≡ L− R

L+R
, (III.2)
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α
T

≡ 4
(L+R) − (T +B)

L +R+ T +B
. (III.3)

The measured vector α
V

and tensor α
T

asymmetries are related to the beam’s vector

PV and tensor PT polarizations [71, 72, 73, 74] by the equations.

α
V

=
[1 − ηR

ηL
] + [1 +

ηR

ηL
] 3
2
A′

yPV + [1 − ηR

ηL
] 1
2
A′

yyPT

[1 +
η

R

ηL
] + [1 − η

R

ηL
] 3
2
A′

yPV + [1 +
η

R

ηL
] 1
2
A′

yyPT

, (III.4)

α
T

= 4
[1 +

η
R

η
L
− η

T

η
L
− η

B

η
L
] + [1 − η

R

η
L
] 3
2
A′

yPV +

[1 +
ηR

η
L

+
ηT

η
L

+
ηB

η
L
] + [1 − ηR

η
L
] 3
2
A′

yPV +
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ηR
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L
)A′

yy − (
ηT

η
L

+
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η
L
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xx]
1
2
PT

+[(1 +
η

R

ηL
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yy + (
η

T

ηL
+

η
B

ηL
)A′

xx]
1
2
PT

, (III.5)

where η
L
, η

R
, η

T
and η

B
are the detection efficiencies of the left, right, top and bottom

quadrants, respectively. We found the detection efficiency ratios η
R
/η

L
, [(η

T
/η

L
) +

(η
B
/η

L
)] and the “effective” analyzing powersA′

y, A
′
xx, A

′
yy during a special calibration

run with a full detector readout. Later we used these measured parameters listed in

Table III.3 to determine the vector and tensor polarizations from the measured scaler

asymmetries.

Parameter Value

ηR/ηL 0.961± 0.001

[(ηT /ηL) + (ηB/ηL)] 2.1064± 0.0015

A′
y 0.0962± 0.0023

A′
xx −0.2975± 0.0810

A′
yy −0.2058± 0.0816

ΔA′2
xx 0.00656863

ΔA′2
yy 0.00665173

ΔA′
xxΔA′

yy 0.00660606

Table III.3: The detecting efficiency ratios and “effective” analyzing powers.

III.2 Ferrite RF Dipole

The spin rotation due to a transverse rf magnetic field of an rf dipole is almost

independent of energy at high energies; while the spin rotation due to a longitudinal

rf magnetic field of an rf solenoid gets smaller as the beam’s energy increases because

of the Lorentz contraction of an rf solenoid’s
∫
Bdl. Thus, an rf dipole was installed

in COSY to study the spin-flipping and spin manipulation of polarized protons and
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Figure III.5: Poisson-simulation of the rf dipole with a ferrite yoke.

deuterons. The rf dipole was designed at the University of Michigan [66] and built

and tested at COSY [67]. The rf dipole’s location in the ring is shown in Fig. III.1. It

was installed around a ceramic vacuum pipe in place of the second fast quadrupole,

which was no longer needed.

The dipole consists of an 8-turn copper coil surrounded by a ferrite yoke. The

spacings between the coil’s turns were optimized to produce a highly uniform radial

 

Figure III.6: RF dipole’s transverse field Bx, calculated by the Poisson program for a

nominal current of 10 A in the coil, plotted vs the radial coordinate.
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magnetic field in the beam region, so that all particles in the beam would see the

same
∫
Bdl; thus, their spins would all be rotated by the same amount. Fig. III.5

shows in red the B-field lines produced by a two-dimensional Poisson simulation for

the rf dipole; the uniformity of the resulting transverse field is shown in Fig. III.6.

Integrating from -350 mm to 350 mm with respect to the dipole’s center gave a com-

puted total field energy for a nominal current of 10 A in the coil, 1.41×10−3 Joule,

giving an inductance of 28.2 μH and an
∫
Bxdl of 0.3 T·mm. A three-dimensional

MAFIA simulation of the rf dipole allowed calculating the integrals of all three mag-

netic field components along its axis.

radial:
∫
Bxdl/I = 0.03113 T·mm/A; (III.6)

vertical:
∫
Bydl/I = 0.00012 T·mm/A; (III.7)

longitudinal:
∫
Bldl/I = 0.00083 T·mm/A. (III.8)

Equations (III.6)-(III.8) clearly indicate that the vertical and longitudinal field com-

ponents are small compared to the radial component. The calibration of Eq. (III.6)

 

Figure III.7: RF dipole’s design drawing showing the longitudinal cross section (left), front

view (top right), and transverse cross section (bottom right).
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was used to obtain the rf dipole’s
∫
Bxdl from its measured voltage Vdipole:∫

Bxdl = [
∫
Bxdl/I ]

Vdipole

2πfrfL
, (III.9)

where [
∫
Bxdl/I ] is given by Eq. (III.6), frf is the rf dipole’s frequency, and L is its

inductance.

The coil was made of 6-mm-diameter copper tubing, which was cooled by the

flow of water. A ferrite yoke was added to enhance the magnetic field’s strength and

improve its uniformity in the dipole’s gap. The ferrite yoke was made of fourteen

265 × 100 × 40 mm blocks of Ferroxcube 4L1 ferrite with a magnetic permeability of

about μ = 240. The ferrite yoke was cooled by water-cooled copper plates installed

on its sides; with the normal water flow at 10 bar input pressure, the temperature rise

was less than 10 degree. The rf dipole’s construction drawing is shown in Fig. III.7.

The photograph of the rf dipole installed in the COSY ring is shown in Fig. III.8.

To increase the rf dipole’s magnetic field strength, it was a part of the LC resonant

circuit shown in Fig. III.9. The variable capacitor Cp, with a range of 50 to 5000 pF,

was connected in parallel with the dipole to form the resonant circuit. Its capacitance

was adjusted to give the appropriate resonant frequency fr = (2π)−1(LC)−1/2. The

variable vacuum capacitor Cm, with a range of 5 to 500 pF, was wired in series with

the LC resonant circuit to match the circuit’s impedance to the 50 Ohm output

impedance of the power supply.

The rf dipole’s circuit was driven with up to 1 kW of input power produced by

 Figure III.8: RF dipole installed around a ceramic vacuum pipe in the COSY ring.
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Figure III.9: RF dipole’s resonant circuit.

combining the outputs of two ENI 500 W rf amplifiers. With 1 kW of forward power

at 916 kHz, the rms voltage measured across the rf dipole was about 2.8 kV, which

corresponded to an
∫
Brmsdl of about 0.54 T·mm. The rf dipole’s amplitude and

frequency ramps were produced using a computer control system that was originally

developed for COSY’s ultra-slow extraction (USE) system. The timing of the control

system was synchronized with COSY’s operation to produce the proper amplitude

and frequency ramps at the appropriate times during the accelerator cycle.

III.3 RF Solenoid

An rf solenoid magnet was later designed at the University of Michigan [68] and

built and tested at COSY [69]. Poisson-simulations for the rf solenoid and its re-

sulting longitudinal field are shown in Figs. III.10 and III.11. The simulation gave

an inductance of about 40 μH and an
∫
Bdl of 0.67 T·mm. To provide a site and rf

power for the new rf solenoid, the COSY-Michigan ferrite rf dipole was disassembled

 

Figure III.10: Poisson-simulation of the rf solenoid.
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Figure III.11: RF solenoid’s longitudinal field, calculated by the Poisson program for a

nominal current of 10 A in the coil, plotted vs the longitudinal coordinate.

and stored, it can later be reinstalled in the COSY ring. The solenoid was installed

around a ceramic vacuum pipe in place of the rf dipole.

The solenoid was a 57.5 cm-long 25-turn air-core copper coil with an average

diameter of 21 cm as shown in Fig. III.12. The coil was made of the same type of

6-mm-diameter copper tubing as the rf dipole; thus, it was easily connected to the

rf-dipole’s water-cooling system. The rf solenoid’s inductance and
∫
Bdl are similar

to those of the rf dipole; thus, it could easily use the rf dipole’s resonant circuit and

power supply system.

 

Figure III.12: RF solenoid installed around a ceramic vacuum pipe in the COSY ring.
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Several pick-up loops were installed on the inside of the rf solenoid coil, to measure

the solenoid’s field just outside the ceramic vacuum pipe. The pick-up loops were 0.85-

mm diameter wires wound one turn around a 24 mm diameter rod. For the loop at

the solenoid’s longitudinal center, at a frequency of 917 kHz, a peak-to-peak voltage

of 4.75 V was measured on a monitor in the COSY control room. The wires of this

pick-up loop were connected to the monitor part of the rf solenoid’s circuit. The

circuit diagram of rf solenoid’s circuit, including the monitor is shown in Fig. III.13.

This measured 4.75 V peak-to-peak voltage corresponds to a 3.26 V rms voltage

across the pick-up loop. This gave an rf magnetic field at the solenoid’s center of

Brms = V/(2πfrA) = 1.17×10−3 T rms, or an
∫
Bdl of 0.66 T·mm, which agrees with

the simulation value very well.

Cs

Cp
Rp LC1M

C2M 1 k50

50
U0

UM
US

Monitor
(capacitive divider)

Solenoid

Generator

Figure III.13: RF solenoid’s resonant circuit, including the monitor part located in the

COSY control room.



CHAPTER IV

HIGHLY EFFICIENT SPIN FLIPPING OF POLARIZED PROTON

BEAM AT COSY

An rf dipole was earlier used to spin flip 120 MeV (490 MeV/c) polarized protons

stored in the IUCF Cooler Ring with a 99.93 ± 0.02% spin-flip efficiency. Due to the

Lorentz invariance of an rf dipole magnet’s transverse
∫
Bdl, and the resulting very

weak energy dependence of its rf-induced spin-resonance strength, at very high ener-

gies an rf dipole’s spin rotation angle should become almost independent of energy.

Thus, a moderately strong small rf dipole should allow spin-flipping with more than

99.9% efficiency for protons in high energy rings, such as the 250 GeV Relativistic

Hadron Collider, or even the 7 TeV Large Hadron Collider. To help confirm this,

we conducted an experiment on the spin flipping of a 2.1 GeV/c vertically polarized

proton beam stored in the COSY ring, which is described in this chapter.

IV.1 Introduction

The unperturbed spin motion of a particle beam in an ideal flat and circular

storage ring or accelerator is a simple precession of each particle’s spin vector around

the vertical magnetic fields of the ring’s bending dipoles. The spin tune, which is

a number of spin precessions during one turn around the ring, is proportional to

particle’s energy and is given by

νs = Gγ, (IV.1)

where G is particle’s gyromagnetic anomaly (for protons Gp = 1.792847) and γ is

its Lorentz factor. Any horizontal magnetic field would perturb this simple motion;

and when the frequency of a horizontal-field rf magnet is correlated with the spin

precession frequency, then an rf spin-depolarizing resonance is created at

fr = fc(k ± νs), (IV.2)

30
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where fc is the particle’s circulation frequency and k is an integer.

Adiabatically ramping the rf magnet’s frequency through fr can flip each proton’s

spin. The empirically modified [27, 31] Froissart-Stora equation [17] relates the beam’s

final polarization Pf to its initial polarization Pi after crossing the resonance,

Pf = Pi

{
(1 + η̂) exp

[−(π εFS fc)
2

Δf/Δt

]
− η̂

}
. (IV.3)

The limiting spin-flip efficiency η̂ includes only losses due to mechanisms other than

crossing the resonance being considered, while the measured spin-flip efficiency

η ≡ −Pf

Pi
. (IV.4)

also includes losses due to the resonance crossing. We maximized η by varying both

Δf and Δt in the resonance crossing rate Δf/Δt, where Δf is the rf magnet’s total

frequency ramp range and Δt is its frequency ramp time. The rf-induced resonance

strength εFS is proportional to the rf dipole’s rms magnetic field integral
∫
Brmsdl,

which was widely believed [36, 41, 43, 45] to be given by

εBdl =
1

2
√

2π

e(1 +Gγ)

p

∫
Brmsdl, (IV.5)

where e is the proton’s charge and p is its momentum. Note, however, that Eq. (IV.5)

is for an ideal flat circular accelerator with a point rf dipole causing the only pertur-

bation of the spin motion, which is not realistic for most rings.

IV.2 Experimental Procedure and Analysis

We used the ferrite-yoke rf dipole, described in section III.2.1, with radial rf mag-

netic field to manipulate the beam’s vertical polarization. The stored 2.1 GeV/c

protons’ measured circulation frequency in COSY was fc = 1.491 892 MHz, corre-

sponding to a Lorentz energy factor γ of about 2.4514; with this γ, Eq. (IV.1) gave

a spin tune νs = Gγ near 4.3950. Thus, Eq. (IV.2) implies that the k = 5 rf spin-

depolarizing resonance should be centered near

fr = (5 −Gγ)fc = 902.62 kHz. (IV.6)

The proton beam emerging from the polarized H− ion source was accelerated by

the Cyclotron to COSY’s 45 MeV injection energy. To monitor the stable operation

and polarization of the ion source, the Low Energy Polarimeter measured the beam’s

vertical polarization at 45 MeV in the injection line, before injection into the COSY

ring. During injection into COSY, acceleration and then storage at 2.1 GeV/c, the
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horizontal and vertical betatron tunes were fixed at νx = 3.525 and νy = 3.575,

respectively. The rf acceleration cavity was turned off and shorted during COSY’s

flat-top, thus, there were no synchrotron oscillations or sideband spin resonances.

The EDDA detector measured the beam’s vertical polarization in the COSY ring; we

reduced its systematic errors by cycling the polarized source between the up and down

vertical polarization states on alternate pulses. The measured proton polarization in

COSY, before spin manipulation, was about 80%.

The rf dipole was a part of an LC resonant circuit, which operated near the

circuit’s resonance frequency of about 902.6 kHz at an rf voltage of 2.4 kV rms,

giving an
∫
Brmsdl of 0.46 ± 0.03 Tmm. Thus, Eq. (IV.5) gave an rf-induced spin

resonance strength of εBdl = (40 ± 3) × 10−6.

IV.2.1 The Spin Resonance Search

In order to flip a stored beam’s polarization with high efficiency using an rf-induced

spin resonance, the resonance’s exact location and width was first determined. Then

the central frequency of the ramp was set to the resonance’s central frequency fr, and

the ramp’s frequency range Δf was chosen to completely cover the resonance width.

We first roughly measured this resonance’s frequency by linearly ramping the rf-

dipole’s frequency around the fr calculated in Eq. (IV.6); we first ramped it from

fr − Δf/2 to fr + Δf/2 with Δf/2 = 2 kHz, while the ramp time was Δt set at

10 s. We then continued making these ±2 kHz ramps, next to each side of the

previous frequency range, until the beam was either spin-flipped or depolarized, as

shown in Fig. IV.1. The ±2 kHz ramps with no depolarization did not cross the

rf-induced resonance; the ±2 kHz ramps with depolarization or a partial spin-flip did

cross some part of the resonance, and the ±2 kHz ramps with an almost full spin-flip

crossed almost the whole rf-induced resonance. The data’s behavior and our previous

experience [23] suggested that the resonance width was comparable to the ±2 kHz

frequency ramps.

Thus, we next repeated this experiment while first narrowing frequency ramps to

Δf/2 = 1 kHz, and then finally to Δf/2 = 0.2 kHz, to better determine the reso-

nance’s exact location and width; these data are also shown in Fig. IV.1. Fitting the

±0.2 kHz data to the indicated first-order Lorentzian curve gave a central resonance

frequency of fr = 902.4± 0.1 kHz and a resonance width w = 2.4± 0.3 kHz FWHM.
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Figure IV.1: The measured proton polarization is plotted against the central frequency

of each ramp; each ramp’s frequency range Δf is shown by a horizontal bar; the ramp

time Δt was set at 10 s. The curves are fits using 1st-order Lorentzian for ±0.2 kHz

sweeps and 2nd-order Lorentzians for ±1 and ±2 kHz sweeps. The ±0.2 kHz data’s fit gave

fr = 902.4± 0.1 kHz and w = 2.4 ± 0.3 kHz FWHM.

IV.2.2 Optimization of the Resonance Crossing Rate

To maximize the spin-flip efficiency, we varied the rf-dipole’s frequency ramp’s

range Δf and ramp time Δt at the maximum
∫
Brmsdl. The frequency range Δf

was centered at the fr = 902.4 kHz measured in Fig. IV.1. We first spin-flipped

the proton beam by ramping the rf-dipole’s frequency through fr with a constant

frequency half-range Δf/2 = 4 kHz at various ramp times Δt, while measuring the

final beam polarization after each ramp. We observed an almost full spin-flip at Δt

of 0.007 s, as shown in Fig. IV.2. To ensure very efficient spin-flipping, we set Δt at

0.4 s, which was safely on the high-efficiency plateau and allowed us to proceed with

our program quickly. The fit of Fig. IV.2 data to Eq.( IV.3) gave a limiting spin-flip

efficiency of η̂ = 98 ± 1%.
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Figure IV.2: The proton final polarization measured after 1 spin-flip, is plotted against

the rf-dipole’s ramp time Δt. The curve is a fit to Eq. (IV.3), giving a limiting spin-flip

efficiency of η̂ = 98 ± 1%. The arrow indicates the Δt chosen for the next study.

To find the optimum values for the rf-dipole frequency ramp parameters, we next

measured the polarization after 11 spin-flips, while first varying the rf-dipole’s fre-

quency range Δf , and later its ramp time Δt, at the maximum
∫
Brmsdl. This

multiple spin-flip technique enhanced small changes in the final beam polarization’s

dependence on the ramp parameters, because the 11th power of even a small sin-

gle spin-flip depolarization can be significant. We then obtained the single spin-flip

efficiency for each data point from

η = 11
√
−P11/Pi, (IV.7)

where P11 is the measured polarization after 11 spin-flips and Pi is the initial po-

larization. The measured polarization after 11 spin-flips and the single spin-flip ef-

ficiency are plotted against the rf-dipole’s frequency half-range Δf/2 in Fig. IV.3;

they showed no dependence on Δf/2 in the region of about 3 to 10 kHz. Thus, we

set Δf/2 = 6 kHz to safely cover the resonance.
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Figure IV.3: The final proton polarization measured after 11 spin-flips P11 and the

spin-flip efficiency η calculated using Eq. (IV.7), are plotted against the rf-dipole’s fre-

quency half-range Δf/2. The arrow indicates the Δf/2 chosen for further studies.

We next measured the polarization after 11 spin-flips, P11, while varying the rf-

dipole’s frequency ramp time Δt. Both the measured P11 and η are plotted against

Δt in Fig. IV.4; using these data we set Δt at 0.1 s, where the spin-flip efficiency

was high, while Δt was small enough to allow 51 spin flips fairly quickly. The fit of

Fig. IV.4 data to Eq. (IV.3) gave a limiting spin-flip efficiency of η̂ = 99 ± 1%.
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Figure IV.4: The final proton polarization measured after 11 spin-flips P11 and the spin-flip

efficiency η calculated using Eq. (IV.7), are plotted against the rf-dipole’s ramp time Δt.

The curve is a fit to Eq. (IV.3), giving a limiting spin-flip efficiency of η̂ = 99 ± 1%. The

arrow indicates the Δt chosen for further studies.
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IV.2.3 Multiple Spin-Flipping

After setting Δt and Δf to maximize the spin-flip efficiency, we determined it

much more precisely by measuring the final polarization while varying the number

of spin-flips, up to 51, with Δt, Δf , and
∫
Bdl all fixed at their optimum values.

These data are plotted against the number of spin-flips in Fig. IV.5. We obtained the

spin-flip efficiency η by fitting these data to

Pn = Pi · (−η)n, (IV.8)

where Pn is the measured polarization after n spin-flips. The fit gave a measured

spin-flip efficiency of η = 99.92 ± 0.04%.
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Figure IV.5: The magnitude of the measured proton polarization is plotted against the

number of spin-flips. The rf-dipole’s frequency ramp time Δt was 0.1 s; its frequency

half-range Δf/2 was 6 kHz; and its
∫
Brmsdl was 0.46± 0.03 T·mm. The line is a fit using

Eq. (IV.8), giving a measured spin-flip efficiency of η = 99.92± 0.04%.



CHAPTER V

STRENGTH OF THE INDUCED SPIN RESONANCE

We earlier analyzed all available data on spin-flipping stored beams of polarized

protons, electrons and deuterons [33]. Fits to the modified Froissart-Stora equation of

the measured polarization data after crossing an rf-induced spin resonance, gave a spin

resonance strength ε that deviated by factors of up to 10-20 in both directions from

the strength given by the equations used for many years [36, 39, 41, 42, 43, 44, 45, 46].

The polarization was typically manipulated by linearly sweeping the frequency of an rf

dipole or rf solenoid through an rf-induced spin resonance. Understanding such a dis-

agreement is important for the correct estimation of the rf magnet’s strength required

for efficient spin flipping and other spin manipulations in storage rings. Therefore, we

recently studied the resonance strength deviations experimentally using a 2.1 GeV/c

polarized proton beam stored in COSY with an rf dipole, and using a 1.85 GeV/c

polarized deuteron beam stored in COSY with both an rf dipole and an rf solenoid.

V.1 Overview of the Existing Spin-Flipping Data

The rf-induced spin resonance strength εFS was obtained experimentally by mea-

suring the final beam polarization Pf after ramping an rf magnet’s frequency through

a spin resonance frequency fr by a range Δf during different times Δt. Then Pf was

plotted vs. the different Δt values and the data were fit to either the Froissart-Stora

equation [17], Eq. (I.4), or to a modified [27, 31] Froissart-Stora equation, Eq. (IV.3),

with εFS as a fit parameter.

It was widely believed [36, 39, 42, 43, 45, 46] that one could obtain the strength

εBdl of an rf-magnet-induced resonance using the equations

Solenoid: εBdl =
1

2
√

2π

e(1 +G)

p

∫
Brmsdl, (V.1)

37
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Dipole: εBdl =
1

2
√

2π

e(1 +Gγ)

p

∫
Brmsdl, (V.2)

where e is the particle’s charge, p is its momentum, and
∫
Brmsdl is the rf magnet’s

rms magnetic field integral in the particle’s rest frame. These equations, however,

were derived for a flat circular accelerator with a point rf magnet causing the only

perturbation of the spin motion. This may not be a realistic assumption, especially

for the transverse magnetic field of an rf dipole.

V.1.1 Compilation of Existing Data

We examined all available publications and logbooks for spin-flipping data [33]

that allowed us to simultaneously obtain both: the spin resonance strength εBdl from

the rf magnet’s
∫
Bdl, and the spin resonance strength εFS from polarization vs. ramp

time Δt measurements. We also checked, in each experiment, for any other spin

resonances near the rf-induced resonance. Fits to Eq. (IV.3), the modified Froissart-

Stora equation, gave the measured spin resonance strength εFS for each experiment

and its error. We also calculated the spin resonance strength from each rf magnet’s∫
Bdl using Eq. (V.1) or (V.2). For the experiments at IUCF and MIT, there were no

precise measurements of the rf magnet’s
∫
Bdl; thus, we assumed a ±10% error. For

the more recent experiments at COSY, the rf dipole’s
∫
Bdl was known with a ±5%

uncertainty.

Then we took the ratio of the two spin resonance strengths, εFS/εBdl, for each

experiment and obtained its error using simple error propagation formulae. Figure V.1

from Ref. [33] shows these ratios obtained for protons and deuterons at IUCF and

COSY and electrons at MIT plotted vs. the frequency range Δf used for each Δt

curve.

This compilation indicated that for many experiments εBdl and εFS disagree with

the predictions [36, 42, 43, 45] by factors of 0.1, 10, or more. For the proton experiment

described in Chapter IV, the εBdl from Eq. (V.2) was (40 ± 3) × 10−6, while the εFS

obtained from Fig. IV.2 was (580 ± 10) × 10−6, which is about 14.5 times larger. For

the deuteron experiment, done with the same rf dipole at COSY and described later in

this Chapter, εBdl was (7.9 ± 0.5) × 10−6, while εFS was (1.17 ± 0.01) × 10−6, which

is about 6.8 times smaller. Thus, these large deviations in opposite directions seemed

unlikely to be due to an incorrect calibration of
∫
Bdl.

Figure V.1 showed that all data with small Δf had εFS/εBdl values far below 1,

while all data with large Δf have εFS/εBdl values near or above 1. For deuterons, all

εFS/εBdl ratios were far below 1 for rf dipoles, but closer to 1 for rf solenoids. This

suggested some anomalous behavior of spin-1 deuterons when spin-manipulated by
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Figure V.1: Ratio of εFS to εBdl is plotted vs. the frequency range Δf used for each

Δt curve. The reference and some experimental parameters for each point are listed in

Table V.1. For example, points c and d come from Figs. IV.2 and IV.4, respectively. εFS

is obtained by fitting data in each Δt curve to Eq. (IV.3); εBdl is obtained using each data

point’s
∫
Bdl in Eq. (V.1) or (V.2). Note that points a and b overlap, as do points e, f, g

and h.

dipoles. For protons, all εFS/εBdl ratios were above 1 for rf dipoles, and below 1 for

rf solenoids.
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Ring, particle Reference p νy Δf Flips εBdl εFS εFS/εBdl

and magnet type (GeV/c) (kHz) (×10−6) (×10−6)

COSY, p, Dipole [23] 1.941 3.60 10 11 9.8 19.7±0.3 2±0.1

10 1 20.7±0.2 2.1±0.1

COSY, p, Dipole [32] 2.100 3.525 12 11 39.90 840±30 21±1

8 1 583±9 14.5±0.8

IUCF*, p, Dipole [22] 0.489 0.15 10 1 33.35 199±2 6.0±0.6

10 10 202±4 6.0±0.6

IUCF*, p, Dipole [21] 0.489 0.22 10 10 35.44 204±3 5.8±0.6

10 1 210±9 6.0±0.6

IUCF, p, Dipole [18] 0.649 4.791 4 1 7.02 150±40 22±6

IUCF*, p, Dipole [19] 0.489 0.2 10 1 8.85 71±3 8.0±0.8

IUCF*, p, Solenoid [27] 0.454 2 1 235 95±8 0.40±0.06

IUCF, p, Solenoid [25] 0.529 3.5 1 176 133±2 0.76±0.08

COSY, d , Dipole [30] 1.850 3.60 0.2 1 7.9 1.166±0.009 0.15±0.01

COSY, d , Dipole [29] 1.850 3.60 0.1 1 2.19 0.298±0.006 0.14±0.01

IUCF, d , Solenoid [28] 1.042 0.201 4 1 19.44 17.3±0.6 0.88±0.09

MIT*, e, Dipole [31] 0.670 8.183 2 1 8.9 5.6±0.4 0.64±0.08

Table V.1: Some experimental parameters for the data in Fig. V.1. The letters p, d and e

stand for protons, deuterons and electrons, respectively. We assumed a ±10% error in the

rf magnets’
∫
Bdl for the experiments at IUCF and MIT, and a ±5% error in the rf dipole’s∫

Bdl for our experiments at COSY. The ∗ denotes experiments done with a ∼ 100% Siberian

snake present in the ring.
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V.1.2 Strength of an RF-Dipole-Induced Resonance

One source of the disagreement between the measured resonance strength and

the calculations using Eq. (V.2) for an rf dipole, is that its horizontal magnetic field

excites vertical forced beam oscillations [44, 47, 48]. These oscillations occur at the

rf dipole’s frequency, and their amplitude is proportional to the rf dipole’s strength,

Eq. (II.38). These oscillations drive the beam into the horizontal fields of ring’s

quadrupoles; thus, the rf dipole itself is no longer the only source of perturbing

horizontal magnetic fields at this frequency of fr = fc(k ±Gγ). Thus, in tune space

the rf-induced spin resonances occur at

νr ≡ l ± fr

fc
= m±Gγ. (V.3)

Now consider the case when this tune is close to the vertical betatron tune νy of

an intrinsic resonance, whose value is given by Eq. (II.15) to be

νs ≡ Gγ = νy + n, (V.4)

where k, l, m and n are integers. The perturbations due to ring’s quadrupoles’

horizontal magnetic fields then add up coherently for many turns around the ring,

significantly increasing the rf-induced resonance strength. The resonance strength ε
can then be written [44] as a sum of two terms

εFS = εBdl(A +
B

|νy − νr|), (V.5)

where the first term is due to the rf dipole’s field itself, and the second term is due

to the ring’s quadrupoles’ fields that particles see because of their forced oscillations

due to the rf dipole. The second term is also proportional to the rf dipole’s strength

εBdl because the amplitude of the forced oscillations is proportional to the rf-dipole’s

strength.

V.2 RF-Dipole-Induced Resonance Strength for Protons

During our November 2005 run, we experimentally studied the resonance strength

deviations using the rf dipole, by varying its voltage, and the size, momentum spread,

and vertical betatron tune of a 2.1 GeV/c polarized proton beam stored in COSY.

The 2.1 GeV/c polarized proton beam was similar to that described in section

IV.2 for the high efficiency spin-flipping experiment. The main difference was that we

used the electron Cooler to reduce the beam’s size and momentum spread at injection

energy. A 24.5 keV electron beam of about 170 mA, with a diameter of about 25 mm,
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cooled the protons in COSY’s 2-m-long cooling section; it took 10 s to cool the proton

beam’s momentum spread Δp/p and transverse emittance. This decreased its injected

momentum spread by about a factor of 2 to about Δp/p = 2.4 × 10−4 FWHM. The

measured flat-top polarization, before spin manipulation, was typically 50 to 60%.

V.2.1 The Spin Resonance Search

We first determined the resonance’s position and the upper limit on its width using

the procedure described in section IV.2.1. Fitting the ± 0.2 kHz data to a first-order

Lorentzian gave a resonance frequency fr of 906.5 ± 0.1 kHz and an upper limit on

the resonance width w of 1.1 ± 0.2 kHz FWHM. Comparing these to the results in

Fig. IV.1, the electron cooling at injection reduced the total measured width of the

resonance by about a factor of two, which is consistent with a factor of two reduction

in the measured momentum spreads Δp/p, while the resonance position moved by

about 4 kHz, which may be due to the slightly different accelerator parameters used

when the electron cooling was on or off. Based on these data and the experiment
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Figure V.2: The measured proton polarization is plotted against the central frequency of

each ramp; each ramp’s full-frequency range Δf is shown by a horizontal bar; the Δf/2

values of each ramp are indicated by the different symbols in the figure. The ramp time

Δt was set at 2 s. The curves are fits using 1st-order Lorentzian for ± 0.2 kHz sweeps and

2nd-order Lorentzians for ± 1 and ±2 kHz sweeps.
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discussed in Chapter IV, we chose Δf/2 = 4 kHz for further studies.

V.2.2 RF Dipole Voltage Study

We next studied the dependence of the measured resonance strength εFS on the rf

dipole’s strength. According to Eq. (V.2) the strength is proportional to the rf dipole’s∫
Bdl, which is proportional to the rf voltage across the dipole. After one spin-flip, we

measured the final polarization Pf while varying the rf-dipole’s voltage and keeping

the other resonance crossing parameters fixed at Δf = 8 kHz and Δt = 4 ms. For each

Pf measurement, the effective resonance strength was obtained by using Eq. (V.6),

the inverted Froissart-Stora equation (Eq. (I.4)).

εFS =
1

π fc

√√√√Δf

Δt
ln

2

Pf/Pi + 1
. (V.6)

For each value of the rf dipole voltage, Pf was the final measured polarization while

Pi was taken as the polarization measured at zero voltage. These data are plotted

against the rf dipole voltage in Fig. V.3. The data are described very well by a straight

line going through zero; thus, the measured resonance strength is indeed proportional

to the rf dipole’s
∫
Bdl.

0

200

400

600

0 0.5 1 1.5 2 2.5 3 3.5

ε F
S
 (

x1
0-6

)

Vrms (kV)

  νx 

  νy 

fres 

 Δf 

 Δt 

 = 3.575

 = 3.525

 = 906.5 kHz

 = 8 kHz

 = 4 ms

Figure V.3: The rf-induced resonance strength εFS is plotted against the rf-dipole’s voltage;

the ramp’s full-frequency range Δf was set at 8 kHz and the ramp time Δt was set at 4 ms.
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Figure V.4: The measured proton polarization is plotted against the rf-dipole’s voltage;

the ramp’s full-frequency range Δf was set at 8 kHz and the ramp time Δt was set at 4 ms.

The curve is fit to Eq. (I.4).

The measured final polarization after one flip is also plotted in Fig. V.4. The fit to

the Froissart-Stora equation Eq. (I.4) with εFS = K×Vrms, where K was a fit parame-

ter, gave a calibration of εFS against the rf dipole voltage,K = (212 ± 2) × 10−6 kV−1.

V.2.3 Beam Size Study

COSY uses a fast pulsed quadrupole to produce a vertical betatron tune jump to

preserve beam’s polarization during acceleration through its intrinsic resonances. The

pulse of the fast quadrupole has a 10 μs rise time and 40 ms fall-off time. We pulsed

this fast quadrupole at the start of COSY’s flat-top to increase the beam’s emittance

before manipulating the beam’s polarization with the rf dipole. We measured beam’s

vertical profile for several different fast quadrupole currents by moving EDDA’s thin

fiber target vertically through the beam. We simultaneously recorded the target’s

position, and measured the current of secondary electrons due to scattering of the

beam on the fiber target.

The position of EDDA’s target and the secondary electron monitor signal are

plotted vs. time in Fig. V.5 for 0 A of current in the fast pulsed quadrupole. We

recorded similar data for several other currents in the fast quadrupole. For each data

set, we obtained the two time values when the secondary electron monitor signal was

at its half maximum value. We then obtained, for those two times, the values of the
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Figure V.5: EDDA target position and Secondary electron monitor signal vs. time for 0 A

of current in the fast pulsed quadrupole at the start of COSY’s flat-top.

EDDA target position signals in volts. Then we divided their voltage difference by a

calibration constant of 0.033 mm/V, to obtain the beam’s vertical full width at half

maximum ΔyFWHM size. This is plotted in Fig. V.6 against the current in the fast

quadrupole.
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Figure V.6: The beam’s measured vertical size ΔyFWHM vs. current in the fast quadrupole.
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Figure V.7: The proton final polarization measured after 1 spin-flip, is plotted against the

rf dipole’s ramp time Δt. The curve is a fit to Eq. (I.4), giving the measured resonance

strength εFS of (84.0± 0.6)× 10−6. The resonance strength εBdl calculated from Eq. (V.2)

was (6.7± 0.3)× 10−6.

While the data are not very precise and it is difficult to estimate the systematic

errors, it seems to indicate that the beam size increased by a factor of about 2 for

moderate pulsed quadrupole currents, but then stopped increasing probably due to

beam losses when the beam size exceeded COSY’s acceptance range. Nevertheless,

we used the obtained values in Fig. V.6 as the vertical beam size values for those fast

quadrupole currents.

Then, we obtained the resonance strength εFS from Δt curves for few different

currents in the fast quadrupole. A typical Δt curve from this study, for 0 A current

in the fast quadrupole, is shown in Fig. V.7. We plotted the final beam polarization,

measured after one spin-flip for different frequency ramp times Δt and all other

parameters fixed, against its Δt; we then obtained the resonance strength εFS from

a fit to Eq. (I.4).

The εFS/εBdl ratios for 1, 2 and 3 A currents in the fast quadrupole are plotted

in Fig. V.8 against the beam’s vertical size ΔyFWHM which was obtained for that fast

quadrupole current value and is shown in Fig V.6. The slightly-higher εFS / εBdl

ratio value at 0 A current is only about 3% higher, which is visible only on the very

blown-up scale, while the beam size was increased by more than 30%. Thus, the data

show no dependence on the beam’s vertical size. The fit to horizontal straight line

gives resonance strength ratio of 12.1 ± 0.1.
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Figure V.8: Ratio of εFS to εBdl is plotted vs. the vertical beam size ΔyFWHM. Fit to

horizontal straight line gives a resonance strength ratio of 12.1 ± 0.1. The vertical betatron

tune νy was 3.525.

V.2.4 Beam Momentum Spread Study

The presence of electron cooling at injection was essentially the only difference in

beam parameters between the November 2005 proton run and the earlier April 2004

proton run described in Chapter IV. This similarity allowed us to directly compare

the ratios of the measured rf-induced resonance strengths to the calculated strength

using
∫
Bdl, for these two experiments. For the earlier experiment, the momentum

spread Δp/p was about 5×10−4 FWHM, while for this experiment Δp/p was reduced

to about 2.4 × 10−4 FWHM.

We earlier measured an εFS/εBdl ratio of 14.5±0.8 for a single spin flip in Fig. IV.2;

while we measured an average ratio of 12.1± 0.1 for single spin flips for the different

beam sizes in Fig. V.8. These two results differ by only about 15%, while both are

about 13 times too high; thus, momentum fluctuations can not be responsible for

these large deviations of measured rf-induced resonance strength from the strengths

calculated using Eq. (V.2).

V.2.5 Vertical Betatron Tune Study

We measured the proton beam’s final polarization after sweeping, on flat-top, the

vertical betatron tune νy from its initial value of 3.525 to different final values, to

study the nearby 1st-order intrinsic spin resonance νs = 8−νy, which was expected at

νy = 8−4.395 = 3.605 for the 2.1 GeV/c proton beam. These data are plotted vs. the

final value of νy in Fig. V.9. During injection into COSY and acceleration, the vertical

νy and horizontal νx betatron tunes were fixed at 3.525 and 3.575, respectively. Next



48

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

3.5 3.55 3.6 3.65 3.7

P

νy

 νx  = 3.575

Figure V.9: The final proton polarization, measured after the vertical betatron tune νy was

moved at the start of COSY’s flat-top time from its original value of 3.525 to some final

value of νy , is plotted vs. the final νy. The horizontal betatron tune νx was fixed at 3.575;

the rf dipole was off.

νy was moved, at the start of COSY’s flat-top, from 3.525 to some final value, while

νx was fixed at 3.575; then, the final proton polarization was measured. The rf dipole

was off during this study.

Figure V.9 shows that the polarization flipped as we crossed this 1st-order

νs = 8 − νy resonance; this suggests that this resonance was rather strong. The

2.1 Gev/c proton beam momentum placed the 1st-order intrinsic resonance in the

νy region where COSY could operate; thus, we could study the rf resonance strength

in proximity of a strong intrinsic resonance. There were also four 3rd-order and one

2nd-order much weaker resonances in the accessible νy range.

We then obtained the resonance strength εFS from Δt curves similar to Fig. V.7

for different values of the vertical betatron tune νy. The resulting εFS/εBdl ratios are

plotted against νy in Fig. V.10. The dependence of εFS/εBdl on the distance between

the vertical betatron tune νy and the rf spin resonance’s tune νr is given by Eq. (V.5).

Fitting the data in Fig. V.10 to Eq. (V.5) gave A of 0.87 ± 0.92, B of 1.01 ± 0.06;

moreover νr was 3.6060 ± 0.0005, which was very near the calculated value of 3.605

for the 1st-order intrinsic spin resonance. The parameter B depends on many details

of the ring. The parameter A should give the predicted resonance strength ratio

εFS/εBdl infinitely far from any intrinsic spin resonances [36, 42, 43, 45, 46]. Clearly

our data could not determine A with good precision. The data in Fig. V.10 along

with some relevant experimental parameters are listed in Table V.2.
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Figure V.10: Ratio of εFS to εBdl is plotted vs. the vertical betatron tune νy. The fit to

Eq. (V.5), gives νr of 3.6060 ± 0.0005, A of 0.87 ± 0.92 and B of 1.01 ± 0.06. The

1st and 3rd order proton spin resonances are shown by the red (bold) and green arrows,

respectively. The betatron beam resonances are shown by the black dashed arrows. Some

experimental parameters for each data point are listed in Table V.2.

Ring, particle p νy Flips εBdl εFS εFS/εBdl

and magnet type (GeV/c) (×10−6) (×10−6)

COSY, p, Dipole 2.100 3.525 1 49.6 634±10 12.8±0.6

3.525 1 3.9 50.6±0.4 13.0±0.6

3.540 1 2.18 35.2±0.5 16.2±0.8

3.540 1 8.5 135±1 15.8±0.8

3.559 1 2.18 50.3±0.2 23±1

3.561 1 17.5 434±2 25±1

3.580 1 17.5 705±3 40±2

3.580 1 1.13 45.2±0.2 40±2

3.590 1 17.5 988±9 57±3

3.590 1 1.13 73.6±0.3 65±3

3.600 1 1.13 195±1 172±8

Table V.2: Data for Fig. V.10 along with some relevant experimental parameters. We

assumed a ±5% normalization uncertainty in the rf dipole’s
∫
Bdl, which dominated the

εFS/εBdl error in the error.
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V.3 RF-Dipole-Induced Resonance Strength for Deuterons

During our December 2004 deuteron run, we varied the beam’s vertical size, and

the rf dipole’s voltage; during our May 2006 deuteron run, we varied the rf dipole’s

frequency sweep range Δf , and the momentum spread Δp/p and betatron tune νy of

stored 1.85 GeV/c polarized deuterons.

The beam emerging from the polarized D− ion source was accelerated by the

cyclotron to COSY’s injection energy of about 75.7 MeV. Then the Low Energy Po-

larimeter measured the deuteron’s polarization before injection into COSY to monitor

the stable operation and polarization of the ion source. The Electron Cooler reduced

the beam’s size and momentum spread at injection energy. A 20.6 keV electron beam

cooled the deuteron beam’s transverse emittances and momentum spread Δp/p. The

EDDA detector measured the beam’s polarization in COSY; we reduced its system-

atic errors by cycling the polarized source between the 5 different vector and tensor

vertical polarization states used in December 2004:

(PV , PT ) = (0, 0), (+1
2
,+1

2
), (1

3
,−1), (+2

3
.0), (0,−2),

or the 4 different vector and tensor vertical polarization states used in May 2006:

(PV , PT ) = (0, 0), (+1,+1), (1
3
,−1), (−2

3
, 0)

on sequential pulses. The rf acceleration cavity was turned off and shorted during

COSY’s flat-top. The measured (+1,+1) vector polarization, before spin manipula-

tion, was about 63%.

In COSY, the deuterons’ average circulation frequency fc was 1.147 43 MHz at

1.850 GeV/c, where their Lorentz energy factor was γ = 1.4046. For these param-

eters, the spin tune νs = Gγ was −0.200 84. Thus, Eq. (IV.2) implies that the

fr = fc(1 +Gγ) spin resonance’s central frequency should be very near 917.0 kHz.

We manipulated the deuteron’s polarization using the ferrite-core rf dipole, with

an 8-turn copper coil, which produced a uniform radial magnetic field. The rf dipole

was part of an LC resonant circuit, which operated near fr = 917 kHz, typically at an

rf voltage of 3.1 kV rms giving an rf
∫
Brmsdl of 0.60 ± 0.03 T·mm. Thus, Eq. (V.2)

gives an εBdl of (8.8 ± 0.4) × 10−6.

V.3.1 RF Dipole Voltage and Beam Size Studies with Deuterons

The main focus of the December 2004 run, was on coherent partial spin rotations

rather than on studying the rf-dipole-induced resonance strength for deuterons. We

did only a few studies relevant to the rf resonance strength investigation.

After determining the position and width of the rf resonance, we studied the de-

pendence of the measured resonance strength εFS on the rf dipole’s voltage. We
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Figure V.11: The measured rf-induced resonance strength εFS is plotted against the

rf-dipole’s voltage for each of the 4 non-zero deuteron polarization states; the ramp’s fre-

quency range Δf was set at 150 Hz and the ramp time Δt was set at 30 s.

measured the final deuteron vector polarization for each polarization state after a

single frequency sweep, while varying the rf-dipole’s voltage with the resonance cross-

ing parameters Δf and Δt fixed at Δf = 150 Hz and Δt = 30 s. For each value of

the rf dipole voltage, we obtained the effective resonance strength εFS from the mea-

sured deuteron vector polarization using Eq. (V.6). These data are plotted against

the rf dipole voltage in Fig. V.11. It shows that the deuteron’s measured rf resonance

strength seems to be proportional to the rf dipole’s
∫
Bdl.
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Figure V.12: Ratio of εFS to εBdl is plotted vs. the vertical beam size ΔyFWHM. The

vertical betatron tune νy was 3.60. The fit to a horizontal line gives a resonance strength

ratio of 0.12 ± 0.01.
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We then studied the dependence of the measured resonance strength εFS on the

vertical beam size as described in Section V.2.3. We used the fast quadrupole to

increase the beam’s vertical size. For each beam size, we obtained εFS by taking

a Δt-curve at the rf dipole’s maximum voltage with Δf = 200 Hz. The εFS/εBdl

ratios are plotted against the beam’s vertical size ΔyFWHM in Fig. V.12. The data

are consistent with no dependence on the beam’s vertical size; the data’s fit to a

horizontal line gives a εFS/εBdl ratio of 0.12 ± 0.01.

V.3.2 Deuteron Spin Resonance Search

Our May 2006 run with deuterons was mostly focused on studying the rf-dipole-

induced resonance strength. We also studied and tried to confirm a new matrix

formalism developed by A.W. Chao [75, 76] that describes a crossing of an isolated

spin resonance in a more general way than Froissart and Stora’s 1960 paper [17].
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Figure V.13: Measured vector deuteron polarizations at 1.85 GeV/c are plotted vs rf-dipole

frequency frf . Fits of the e-cooling OFF data to a 2nd-order Lorentzian give a resonance

frequency fr of 916, 960± 10 Hz and width w of 42 ± 2 Hz FWHM. Fits of the e-cooling

ON data to a 1st-order Lorentzian give fr of 916, 992± 10 Hz and w of 23 ± 2 Hz FWHM.
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We first determined the rf resonance’s position, with the electron cooling both

on and off, by measuring the polarization with the rf dipole set at different fixed

frequencies. These data are shown in Fig. V.13. Note that the deuteron rf-resonance

frequency changed by about 30 Hz, probably due to slightly different COSY param-

eters that somehow occurred when the electron cooling was on or off. The electron

cooling decreased the resonance’s total width w from 42±2 to 23±2 Hz FWHM. The

resonance’s natural width, 2εFSfc, was only 3 Hz; thus, the total width was domi-

nated by the resonance width due to the beam’s momentum spread Δp/p. When the

natural width is unfolded from the measured w values, the resulting resonance width

values due to the beam’s Δp/p (42 ± 2 and 23 ± 2) are essentially the same as the

measured total width values.

V.3.3 RF-Dipole Frequency Ramp Range Δf and

Beam Momentum Spread Studies with Deuterons

All earlier anomalous deuteron εFS/εBdl data [33] were at the small Δf values of

100 and 200 Hz; thus, we increased Δf in four steps from 100 to 3000 Hz. The

resulting εFS/εBdl ratios, at νy = 3.60, are plotted vs Δf in Fig. V.14 along with all

earlier deuteron data. The data show no dependence of εFS/εBdl on Δf .
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Figure V.14: Ratio of εFS to εBdl for deuterons is plotted vs rf dipole’s frequency sweep

range Δf . The νy values at COSY were all 3.60, and νy was 4.80 at IUCF. εFS is the

resonance strength obtained by fitting the Δt curve for each data point to Eq. (IV.3); εBdl

was obtained using each data point’s
∫
Bdl in Eq. (V.1) or (V.2). The fit to all rf dipole

deuteron points gives a resonance strength ratio of 0.15± 0.01.
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We also measured εFS for two different frequency ranges, Δf of 100 and 300 Hz,

with the beam’s momentum spread reduced by the electron cooler. These data are

also shown in Fig. V.14. The εFS/εBdl ratios for the cooled and uncooled beams differ

only by about 7%, while Fig. V.13 indicates that the cooling reduced Δp/p by a factor

of 2. Thus, any small Δp/p fluctuations can not explain the observed 7-fold reduction

of the resonance strength for experiments with both cooled and uncooled beams. The

fit to all rf-dipole points gives a resonance strength εFS/εBdl ratio of 0.15 ± 0.01 for

deuterons, which certainly disagrees with Eq. (V.2). However we noted that the IUCF

rf-solenoid point [28] had εFS/εBdl quite near to 1.

V.3.4 Vertical Betatron Tune Study with Deuterons

We next measured εFS for different values of the vertical betatron tune νy. The

εFS/εBdl ratios are plotted against νy in Fig. V.15a. The nearby deuteron 1st-order

intrinsic spin resonance νs = νy − 4 (see Fig. V.15b), allowed a study of the inter-

ference between an rf-dipole-induced spin resonance and an intrinsic spin resonance.

We fit the observed asymmetric dependence of εFS/εBdl on the distance between νy

and the rf spin resonance’s tune νr ≡ k ± fr/fc (where k is an integer) by empirically

modifying the earlier-derived hyperbola [33, 44] into an asymmetric hyperbola

εFS/εBdl = |A + B
νr − νy

|. (V.7)

Fitting the deuteron data in Fig. V.15a to Eq. (V.7) gave: A of 0.06 ± 0.04, B of

0.010 ± 0.002 and νr of 3.798 ± 0.001. This νr value was consistent with the expected

value of 3.79923 ± 0.00001, calculated from

νr = 3 + fr/fc (V.8)

using COSY’s measured fc of 1,147,306 Hz and the fr of 916, 960 ± 10 Hz measured

in Fig. V.13. The B parameter depends on many details of the ring. The parameter

A should give the predicted [36, 42, 43, 44, 45, 46] εFS/εBdl ratio far from any intrinsic

spin resonances.

Figure V.15b shows the measured ratio of the final to initial vector polarizations

plotted against the different νy values with the rf dipole off. Fitting a 2nd-order

Lorentzian to this sharp and narrow dip due to the νs = νy − 4 intrinsic resonance,

gave a width of (10 ± 3) × 10−3 FWHM and νr of 3.795 ± 0.002, which agrees with

the 3.798 ± 0.001 value from Fig. V.15a. Figures V.15a and V.15b may be the first

detailed study of a deuteron intrinsic spin resonance.
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Figure V.15: a) Ratio of εFS to εBdl is plotted vs the vertical betatron tune νy ; Δf

was 300 Hz; the cooling was off. The dashed blue curve is a fit to Eq. (V.7) giving

νr = 3.798± 0.001. b) Measured deuteron vector polarization ratio at 1.85 GeV/c is plot-

ted vs νy ; the rf dipole was off; the cooling was on. The red curve is a fit to a 2nd-order

Lorentzian giving νr = 3.795± 0.002.

V.4 RF-Solenoid-Induced Resonance Strength for Deuterons

During our May 2007 run, we studied the dependence of an rf-solenoid-induced

spin resonance’s strength εFS on the rf solenoid’s frequency ramp range Δf , and on

the momentum spread Δp/p and betatron tune νy of stored 1.85 GeV/c polarized

deuterons. The 1.85 GeV/c vertically polarized deuteron beam was again set up as

described in Section V.3 for the experiment with the rf dipole. The only difference

was that we used an rf solenoid to manipulate the deuterons’ polarization [77]. We

cycled the polarized D− ion source through five different vector PV and tensor PT

vertical polarization states:

(PV , PT ) = (0, 0), (+1,+1), (−1
3
,−1), (−2

3
, 0), (−1,+1).

The asymmetry measured in the (0, 0) spin state was then subtracted from the

other states’ measured asymmetries, in each 20 ms time-bin, to correct for detector

efficiencies and beam motion asymmetries in the EDDA polarimeter.
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The solenoid was a 25-turn air-core water-cooled copper coil, of length 57.5 cm

and average diameter 21 cm. It was part of an RLC resonant circuit, which operated

near 917 kHz, typically at an rf voltage of 5.7 kV rms producing a longitudinal rf∫
Brmsdl of 0.67 ± 0.03 T·mm. Thus, Eq. (V.1) gave εBdl of (1.04 ± 0.05) × 10−5.

V.4.1 Deuteron Spin Resonance Search

With e-cooling both off and on for 15 s, we experimentally determined the reso-

nance’s center fr and its width w by measuring the vertical vector polarization PV

after the rf solenoid was run at many different fixed frequencies. These data are

plotted vs the rf frequency frf in Fig. V.16, along with their fit values of fr and

w for the electron cooling off and for the 15 s cooling-time. With 15 s cooling, fr

was 917 010 ± 10 Hz, with electron cooling off, fr was 916 988 ± 10 Hz; the shift

in fr of about 20 Hz was probably due to slightly different COSY conditions dur-

ing the electron cooling on and cooling off runs. The fit widths were 86 ± 2 and

41 ± 1 Hz FWHM for the uncooled and cooled beams, respectively, indicating that

the momentum spread Δp/p was reduced by more than a factor of two.
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Figure V.16: The measured vertical deuteron vector polarizations at 1850 MeV/c plotted

vs the rf-solenoid fixed frequency frf . The curves are fits to 2nd-order Lorentzians. The

data points’ errors are purely statistical.
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V.4.2 RF Solenoid Frequency Ramp Range Δf and

Beam Momentum Spread Studies with Deuterons

All rf dipole data with deuterons showed a resonance strength reduction by about

factor of 7; however, the only rf solenoid point [28], which was from IUCF, was quite

near to 1. Its frequency ramp range Δf value was 4 kHz, which is significantly larger

than the Δf values of 100-200 Hz used with rf dipoles. Thus, we varied the Δf of

the new COSY solenoid, in four steps, from 200 to 3000 Hz, with νy = 3.60. The

resulting εFS/εBdl ratios, with an rf solenoid, are plotted vs Δf in Fig. V.17, which

shows no dependence of εFS/εBdl on Δf .

For two different frequency ranges, Δf of 200 and 300 Hz, we also obtained εFS

with the beam’s momentum spread Δp/p reduced by the electron cooler. Fig. V.17

shows the εFS/εBdl ratios at Δf of 200 and 300 Hz, for both the cooled and uncooled

beam; it clearly indicates that the rf resonance strength does not depend on Δp/p,

and it does not depend on Δf .
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Figure V.17: Ratio of εFS to εBdl for deuterons is plotted vs rf solenoid’s frequency sweep

range Δf . The νy values at were all 3.60. εFS is the resonance strength obtained by fitting

the Δt curve for each data point to Eq. (IV.3); εBdl was obtained using each data point’s∫
Bdl in Eq. (V.1). The errors are strongly dominated by the 5% scale uncertainty in

∫
Bdl.

V.4.3 Vertical Betatron Tune Study with Deuterons

We next measured εFS for different values of the vertical betatron tune νy. The

εFS/εBdl ratios are plotted against νy in Fig. V.18. The data is completely flat, except

at νy of 3.7975, exactly at the position of the νs = νy − 4 deuteron 1st-order intrinsic
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Figure V.18: Ratio of εFS to εBdl is plotted vs the vertical betatron tune νy; Δf was

300 Hz. A fit to a horizontal line, excluding the point at νy = 3.7975, gives the strength

ratio of 1.02± 0.05. The errors are again dominated by the 5% scale error in
∫

Bdl.

spin resonance. A fit to a horizontal line, excluding the intrinsic resonance point at

νy = 3.7975, gives a strength ratio of 1.02 ± 0.05; the error is dominated by the 5%

uncertainty in the rf solenoid’s
∫
Bdl. These data together with Fig. V.15 confirm

that there is no interference with intrinsic spin resonances, since an rf solenoid does

not effect the orbital motion of the beam as an rf dipole does. Thus, the formula for

the rf spin resonance strength, Eq. (V.1), does not need to be corrected to include

the magnetic structure of each accelerator ring.

V.5 Compilation of all RF-Induced Spin Resonance Strength Data

The plot in Fig. V.19 contains all known resonance strength εFS/εBdl ratio data, for

protons, deuterons and electrons, including our new experimental data. The proton

experiment at COSY [33] showed that the enhancements of the measured rf-induced

resonance strengths for protons with rf dipoles, were due to the interference of the rf-

induced resonance with a nearby intrinsic resonance. The recent deuteron dipole and

solenoid experiments at COSY [34, 78] showed that the 7-fold reductions for deuterons

were not due to the small Δf ramps earlier used to manipulate the deuteron spin,

or interference with a deuteron intrinsic resonance. There has been some theoretical

disagreement about a factor of 2 [42, 43, 44, 45, 46] in both Eqs. (V.1) and (V.2);

our deuteron experiment with the rf solenoid at COSY confirms the formula for the

rf spin resonance strength with the ”BNL” [43, 45] factor of 2.

Recently there has been a theoretical effort to understand what is causing this large

reduction in εFS/εBdl for deuterons. An independent approach [79] now challenges
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the derivation of Eq. V.2 [36, 41, 42, 43, 44, 45]; it indicates that the factor (1 +Gγ)

should instead be Gγ for the idealistic case where an rf dipole is the only perturbation

of spin motion in a circular accelerator or storage ring with no focusing and no radial

or longitudinal magnetic fields. It seems that in any real accelerator ε is not exactly

proportional to either Gγ or (1 + Gγ) for an rf dipole. Note that this problem

was not noticed earlier because the ratio of Gγ to (1 + Gγ) is very near one for

high energy protons, where it was studied earlier; however, the ratio’s magnitude is

| − 0.201/0.799| ≈ 0.25 for our 1.85 GeV/c deuterons [34]. Our measured εFS/εBdl

ratio of 0.15 ± 0.01 clearly favors the factor Gγ rather than (1 +Gγ) in Eq. V.2.
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Figure V.19: Ratio of εFS to εBdl is plotted vs. the frequency ramp range Δf used for each

Δt curve for all the available data including the new experimental data. εFS is obtained by

fitting data in each Δt curve to Eq. (IV.3) or (I.4); εBdl is obtained using each data point’s∫
Bdl in Eq. (V.1) or (V.2). The solid line is the predicted ratio of 1 for an rf solenoid; the

dashed line is the fit to the deuteron rf dipole data. The references and some experimental

parameters for each point are listed in Tables V.3 and V.4.
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Ring, particle Reference p νy Δf Flips εBdl εFS εFS/εBdl

and magnet type (GeV/c) (kHz) (×10−6) (×10−6)

COSY, p, Dipole [23] 1.941 3.60 10 11 9.8 19.7±0.3 2±0.1

10 1 20.7±0.2 2.1±0.1

COSY, p, Dipole [32] 2.100 3.525 12 11 39.90 840±30 21±1

8 1 583±9 14.5±0.8

IUCF*, p, Dipole [22] 0.489 0.15 10 1 33.35 199±2 6.0±0.6

10 10 202±4 6.0±0.6

IUCF*, p, Dipole [21] 0.489 0.22 10 10 35.44 204±3 5.8±0.6

10 1 210±9 6.0±0.6

IUCF, p, Dipole [18] 0.649 4.791 4 1 7.02 150±40 22±6

IUCF*, p, Dipole [19] 0.489 0.2 10 1 8.85 71±3 8.0±0.8

IUCF*, p, Solenoid [27] 0.454 2 1 235 95±8 0.40±0.06

IUCF, p, Solenoid [25] 0.529 3.5 1 176 133±2 0.76±0.08

COSY, d , Dipole [30] 1.850 3.60 0.2 1 7.9 1.166±0.009 0.15±0.01

COSY, d , Dipole [29] 1.850 3.60 0.1 1 2.19 0.298±0.006 0.14±0.01

IUCF, d , Solenoid [28] 1.042 0.201 4 1 19.44 17.3±0.6 0.88±0.09

MIT*, e, Dipole [31] 0.670 8.183 2 1 8.9 5.6±0.4 0.64±0.08

November 2005 experiment

COSY, p, Dipole [33] 2.100 3.525 8 1 6.74 84.0±0.6 12.45±0.08

3.525 8 1 6.74 81.2±0.6 12.04±0.09

3.525 8 1 6.74 81.2±0.8 12.04±0.12

3.525 8 1 6.74 81.2±0.4 12.05±0.06

3.525 8 1 49.6 634±10 12.8±0.6

3.525 8 1 3.9 50.6±0.4 13.0±0.6

3.540 8 1 2.18 35.2±0.5 16.2±0.8

3.540 8 1 8.5 135±1 15.8±0.8

3.559 8 1 2.18 50.3±0.2 23±1

3.561 8 1 17.5 434±2 25±1

3.580 8 1 17.5 705±3 40±2

3.580 8 1 1.13 45.2±0.2 40±2

3.590 8 1 17.5 988±9 57±3

3.590 8 1 1.13 73.6±0.3 65±3

3.600 8 1 1.13 195±1 172±8

Table V.3: Some experimental parameters for the data in Fig. V.19. The letters p, d and e

stand for protons, deuterons and electrons, respectively. We assumed a ±10% error in the

rf magnets’
∫
Bdl for the experiments at IUCF and MIT, and a ±5% error in the rf dipole’s

or rf solenoid’s
∫
Bdl for our experiments at COSY, which dominated the error in εFS/εBdl.

The ∗ denotes experiments done with a ∼ 100% Siberian snake present in the ring.
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Ring, particle p νy Δf Cooling εBdl εFS εFS/εBdl

and magnet type (GeV/c) (kHz) (×10−6) (×10−6)

December 2004 experiment [33]

COSY, d , Dipole 1.850 3.60 0.2 off 8.8 1.082±0.003 0.124±0.006

3.60 0.2 off 8.8 1.16±0.03 0.124±0.007

3.60 0.2 off 8.8 1.09±0.03 0.123±0.007

May 2006 experiment [34]

COSY, d , Dipole 1.850 3.60 0.1 off 8.8 1.32±0.03 0.150±0.008

3.60 0.3 off 8.8 1.39±0.04 0.158±0.008

3.60 0.8 off 8.8 1.31±0.02 0.149±0.008

3.60 3 off 8.8 1.25±0.07 0.142±0.008

3.60 0.1 on 8.8 1.47±0.03 0.167±0.008

3.60 0.3 on 8.8 1.43±0.05 0.163±0.008

3.70 0.3 off 8.8 1.53±0.02 0.174±0.008

3.74 0.3 off 8.8 1.93±0.03 0.219±0.008

3.78 0.3 off 8.8 4.57±0.07 0.519±0.008

3.84 0.3 off 8.8 1.68±0.02 0.191±0.008

3.76 0.3 off 8.8 2.62±0.02 0.298±0.008

3.80 0.3 off 8.8 33±2 3.77±0.27

3.79 0.3 off 8.8 12.3±0.1 1.40±0.02

3.81 0.3 off 8.8 8.43±0.08 0.96±0.01

May 2007 experiment [78]

COSY, d , Solenoid 1.850 3.60 0.2 off 10.4 10.65±0.06 1.02±0.05

3.60 0.3 off 10.4 10.69±0.06 1.03±0.05

3.60 0.8 off 10.4 10.61±0.06 1.02±0.05

3.60 3 off 10.4 10.72±0.08 1.03±0.05

3.70 0.3 off 10.4 10.42±0.12 1.00±0.05

3.74 0.3 on 10.4 10.56±0.20 1.02±0.05

3.60 0.2 on 10.4 10.38±0.10 1.00±0.05

3.60 0.3 on 10.4 10.52±0.11 1.01±0.05

3.78 0.3 on 10.4 10.40±0.15 1.00±0.05

3.843 0.3 on 10.4 10.21±0.23 0.98±0.05

3.765 0.3 on 10.4 10.68±0.15 1.02±0.05

3.80 0.3 on 10.4 10.45±0.21 1.01±0.05

3.795 0.3 on 10.4 10.46±0.15 1.01±0.05

3.7975 0.3 on 10.4 12.80±0.28 1.23±0.07

Table V.4: Some experimental parameters for the data in Fig. V.19. The letter d stands

for deuterons. We assumed a ±5% error in the rf dipole’s or rf solenoid’s
∫
Bdl for our

experiments at COSY, which dominated the error in εFS/εBdl.



CHAPTER VI

CONCLUSIONS

The ability to control and manipulate a proton or deuteron beam’s polarization

can greatly reduce the systematic errors in many polarized scattering experiments.

We studied the spin-flipping and spin-manipulation of polarized proton and deuteron

beams of about 2 GeV at COSY, where we obtained some interesting and unexpected

deuteron data and demonstrated very highly efficient proton spin flipping.

We first designed at Michigan a ferrite-core water-cooled rf-dipole, which was then

built at COSY using Michigan ferrite. We ramped its frequency through an rf-induced

spin resonance to spin-flip the polarization of 2.1 GeV/c polarized protons stored

in COSY. After optimizing the spin-flip parameters, we obtained a 99.92 ± 0.04%

measured spin-flip efficiency [32]. This is consistent with the earlier obtained proton

spin-flip efficiency of 99.93± 0.02% at 0.49 GeV/c at IUCF [22]. An rf-dipole’s
∫
Bdl

is Lorentz invariant and its resonance strength becomes almost energy-independent

at high energy. Thus, if no new problems emerge, even a small rf dipole with an∫
Bdl of about 0.6 T·mm should allow more than 99.9% proton spin-flip efficiency in

Brookhaven’s 250 GeV Relativistic Heavy Ion Collider (RHIC) and perhaps someday

in CERN’s 7 TeV Large Hadron Collider (LHC).

We next compiled [33] all then-existing data on the spin-manipulation of polarized

stored beams of protons, deuterons and electrons using the horizontal rf magnetic

field of either an rf dipole or solenoid. We then fit these polarization data to the

Froissart-Stora equation to obtain the measured rf spin resonance strength εFS . We

also calculated for each data set the corresponding strength εBdl from the
∫
Bdl of

the rf magnet used for the spin-manipulation by using the widely-accepted formulae

for εBdl [43, 44, 45]. We found deviations in the εFS/εBdl ratio, which should be 1,

by factors of up to 7 or more in each direction. All the εFS/εBdl ratios for rf dipoles

with protons seemed to be above 1. All the rf-dipole εFS/εBdl ratios with deuterons

were far below 1, but they also had small frequency ramp ranges Δf . The single rf
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solenoid point with deuterons had εFS/εBdl very near 1; moreover the two rf solenoid

points with protons had εFS/εBdl near or below 1.

To understand these deviations, we studied them experimentally at COSY using

an rf dipole with both protons and deuterons, and using an rf solenoid with deuterons.

We first used the rf dipole magnet to spin-manipulate the polarization of a 2.1 GeV/c

vertically polarized proton beam, while varying the rf dipole’s voltage, and the beam’s

size and vertical betatron tune [33]. We saw a linear dependence of the rf spin

resonance strength εFS on the rf dipole’s voltage. We found no dependence of εFS

on the beam’s vertical size; however, we found even larger deviations of εFS/εBdl, of

more than 100, when the rf spin resonance was moved near an intrinsic spin resonance

by changing COSY’s vertical betatron tune νy. This enhancement near an intrinsic

resonance seems to explain why the εFS/εBdl ratio was always higher than 1 for

protons. This effect had been seen earlier [47, 48] but only very near an intrinsic

resonance; it was apparently not understood that the enhancement would be so large

far from an intrinsic resonance.

We next manipulated the polarization of a 1.85 GeV/c vertically polarized deuteron

beam using the same rf dipole [33, 34]. We varied the rf dipole’s voltage and frequency

ramp range, and the beam’s size, momentum spread and vertical betatron tune. We

observed a linear dependence of the rf spin resonance strength εFS on the dipole’s

voltage, and no dependence on its frequency ramp range. We also found no depen-

dence of εFS on the beam’s vertical size or momentum spread. When the rf resonance

was near an intrinsic spin resonance, we found an enhancement of about 20 over the

flat ”base-line” εFS away from the intrinsic resonance. Thus, destructive interference

with an intrinsic resonance could not explain the 7-fold reduction of εFS for deuterons.

We recently built an rf solenoid magnet to study its spin resonance strength at

COSY. We used it to manipulate the polarization of a 1.85 GeV/c vertically polarized

deuteron beam, while varying the rf solenoid’s frequency ramp range Δf , and the

deuteron beam’s momentum spread Δp/p and vertical betatron tune νy. We saw

no εFS dependence on the solenoid’s Δf , or on the beam’s Δp/p or νy. Moreover,

the εFS/εBdl ratio was very close to 1, except for the single point centered exactly

on the intrinsic resonance [78]. This confirmed the widely used formula for the spin

resonance strength due to an rf solenoid with its (1 +G) factor; it also increased the

concern about the experimental disagreement with the equally widely used (1 +Gγ)

factor in the rf dipole formula.

These studies inspired a theoretical discussion of the formula for the rf spin res-

onance strength due to an rf dipole. Kondratenko suggested [79] that in an ”ideal”

circular accelerator or storage ring with no radial or longitudinal magnetic fields, ex-

cept for a short rf dipole, the factor (1+Gγ) should instead be close to Gγ. However,



64

radial and longitudinal fields are always present in real accelerators or storage rings;

thus, this factor is instead a complex function, which must be calculated for each

ring’s actual parameters. Therefore, in any real accelerator the factor is neither Gγ

nor (1 +Gγ).

Studying these deviations also helped to inspire a new analytic formalism by

Chao [75], which seems to be the first generalization of the Froissart-Stora equa-

tion [17] since its publication in 1960. Chao’s analytic Matrix Formalism was recently

confirmed experimentally [76, 77].
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Report 2003.

[68] M.A. Leonova, SPIN@COSY internal report, 2007 (unpublished).

[69] H. Stockhorst et al., SPIN@COSY internal report, 2007 (unpublished).

[70] V. Schwarz, Ph.D. dissertation, Universität Bonn (1999).

[71] K. Sekiguchi et al., Phys. Rev. C 65, 034003 (2002).

[72] M. Haji-Saied et al., Phys. Rev. C 36, 2010 (1987).

[73] H. Rohdjess, SPIN@COSY internal report, 2004 (unpublished).

[74] V.S. Morozov, Ph.D. dissertation, University of Michigan (2007).

[75] A.W. Chao, Phys. Rev. ST Accel. Beams 8, 104001 (2005).

[76] V.S. Morozov et al., Phys. Rev. ST Accel. Beams 10, 041001 (2007).



69

[77] V.S. Morozov et al., Phys. Rev. Lett. 100, 054801 (2008).

[78] M.A. Leonova et al., to be submitted for publication.

[79] A.M. Kondratenko, SPIN@COSY Internal Rpt., August 2006; ibid. February
2007; Proc. 9th Intl. Symposium on High Energy Spin Physics, Bonn, 1990
(Springer-Verlag, Berlin, 1991), p. 140; Proc. VI Workshop on High Energy Spin
Physics, Protvino, 1995 (Protvino, 1996), p. 207.


