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CHAPTER 1

INTRODUCTION

Our solar system contained the only known planets orbiting a main sequence star

until 1995, when a planet was found orbiting the Sun-like star 51 Peg via a periodic

Doppler shift in the star’s spectrum. The discovery of more than 200 additional

extrasolar planets has overturned our understanding of what constitutes a typical

planetary system. The extrasolar planets discovered to date are Jupiter-sized, possess

a wide range of orbital eccentricities (0 ≤ ε ≤ 0.9), and orbit their host stars with

small semi-major axes (0.03 AU ≤ a ≤ 6 AU). In contrast, similarly sized planets in

our solar system (Jupiter and Saturn) live in nearly circular orbits at 5 and 10 AU.

These discoveries prompted corresponding shifts in solar system evolution theory.

We previously believed that planets formed in, or near, their current orbits. However,

ice, which plays a significant role in forming the dense solid core of a gas giant,

will not condense within 3 AU of a Sun-like star, which in turn implies that gas

giant planets are unlikely to form with the small semi-major axes they possess. We

now believe that massive planets form outside of this “snow line” and subsequently

move inward via interactions with a circumstellar disk, a process known as planetary

migration. There are two limiting cases in migration theory in a laminar disk: Type

I migration, in which a planet lacks sufficient mass to clear a gap in the disk material

and is driven inward by a density wake in the disk, and Type II migration, in which

massive planets do clear a gap and are driven inward by resonances between the

planet and material in the remainder of the disk. For completeness we note that

1
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additional models of runaway migration have been proposed as a way to explain “hot

Jupiters” (sometimes called Type III migration – see Masset & Snellgrove, 2001;

Masset & Papaloizou, 2003), although they are not considered here. If the disk is not

laminar, Type I migration can be overwhelmed by turbulent effects (Laughlin et al.,

2004; Nelson, 2005). An important astronomical challenge is to provide a theoretical

explanation for the observed distributions of orbital elements. A related challenge is

to understand the physical mechanism through which planets migrate inward from

their birth sites.

This thesis addresses many important issues in the evolution of solar systems,

including what initial planet mass function is likely, what mechanisms give rise to

the observed distributions of extrasolar planet orbital elements, and how often ter-

restrial planets are likely to be detected by transit observations. We organize this

thesis as follows: chapters 2 and 3 review relevant aspects of planet observations and

solar system dynamics, and chapters 4-7 present research completed in the course of

this thesis work; this material is also available in Moorhead & Adams (2005) and

Moorhead & Adams (2008). Finally, our main results are summarized in chapter 8.



CHAPTER 2

OBSERVATIONS OF EXTRASOLAR PLANETS

2.1 Observation Methods

While the current catalog of extrasolar planets is less than fifteen years old, forward-

thinking astronomers have been proposing extrasolar planet detection methods for

many decades. One example is Otto Struve’s 1952 paper detailing how massive

planets in tight orbits produce a wobble in their host star detectable though a Doppler

shift in the star’s spectrum (Struve, 1952.) In this same document, Struve points out

that a large planet in a small orbit is also likely to eclipse its host star, an effect which

can be detected through a dip in the star’s overall brightness. Thus, the two main

planet detection methods in current use were first proposed over fifty years ago.

2.1.1 Reflex Velocity Observations

Astronomers were historically prevented from observing extrasolar planets due to in-

suffuciently precise Doppler reflex motion measurements; a planet such as Jupiter

will produce a reflex velocity in its sun of about 10 m/s (this quantity can be ob-

tained from Eq. 2.1.1), while radial velocity measurements had uncertainties of order

1 km/s. The last quarter of a century saw a series of advances in radial velocity

measurements; systematic errors were reduced by obtaining the reference spectrum

and stellar spectrum simultaneously (Griffin & Griffin 1973), and the uncertainty

was gradually whittled down. In 1996, an accuracy of 3 m/s was obtained by sending

starlight through an iodine cell and using the iodine absorption lines as a scale (Butler

3
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et. al., 1996); a host of extrasolar planet detections followed.

The three quantities derived from Doppler shift observations of a planet-star sys-

tem are the period of reflex velocity fluctuations, the amplitude of the fluctuations,

and the mass of the central star, which is obtained by determining its spectral type.

Combining the period of the fluctuations with the star’s mass yields the semi-major

axis. The velocity amplitude K of a star M∗ due to a planet of mass MP tilted with

respect to the viewer by angle i is

K =
(

2πG

P

)1/3 MP sin i

(MP + M∗)2/3

1

(1− e2)1/2
, (2.1)

where e is the orbital eccentricity and a is the semi-major axis of the planet’s orbit

(Perryman, 2000).

This leaves a degeneracy between MP , i, and e. However, further information can

be gleaned from the reflex velocity as a function of time. As a simple example, if an

orbit is eccentric and perogee does not lie along the viewer’s line of sight, the minima

in radial velocity will not occur halfway between maxima as they would for a planet

in a circular orbit. Thus, further examination of the radial velocity curve allows us

to calculate eccentricity, leaving only M and i degenerate in this set of variables.

2.1.2 Transit Observations

The first observations of extrasolar planets using the transit method of detection were

made in 1999 (Charbonneau et al., 2000; Henry et al., 2000). Observers using this

technique survey stars that are known or expected to have planets; however, even if

a planet is known to exist around a given star, the odds that the planet will transit

the star are long. For this reason, transit detections remain behind reflex velocity

detections in number.

On the other hand, supplementing with transit observations helps to fill in the

gaps left by the radial velocity observation method. The mere occurence of a transit

implies that we are seeing the system edge on, and that MP sin i = MP . The primary
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observables of a transit are the depth, duration, and period of recurrence of the

decrease in the star’s luminosity. The period, of course, yields the semi-major axis

of the transiting planet, which can be compared with any existing radial velocity

measurements of the same quantity.

The decrease in luminosity, combined with a main sequence estimation of the star’s

radius, yields the radius of the planet; ∆L/L = (RP /R∗)
2. Transit observations have

yielded the surprising information that many exoplanets are much less dense than

Jupiter; the first observed transiting planet, HD 209458b, possesses a density roughly

30% that of Jupiter (Charbonneau et al., 2000).

The duration of the transit reflects the angular velocity of the planet at the time

of the transit. Work is currently underway to transform this quantity, along with

other variables, into additional information about the planet’s orbit (see, for example,

Ford et al., 2008). Small variations in the period may be indications of additional,

otherwise invisible, bodies in the extrasolar planetary system (Holman & Murray,

2005).

2.1.3 Additional Observational Techniques

In addition to the radial velocity and transit methods, potential mechanisms for

detecting extrasolar planets include gravitational microlensing and direct imaging.

Microlensing occurs when a small body, such as a planet, passes near a luminous

body; its gravitational field focuses the light coming from the luminous object and

causes a slight amplification in brightness. Direct imaging, while currently difficult to

impossible considering the many orders of magnitude difference between a star and

a planet’s luminosity, grows more plausible all the time with advances in coronagra-

phy and adaptive optics. However, these methods have yet to result in any planet

discoveries.
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2.2 Properties of the Extrasolar Planets

With more than 200 discoveries so far, it is possible to comment on the properties

of the observed planets. First of all, though we are only able to determine MP sin i,

and not MP , for the majority of planets, due to the degeneracy inherent in the

radial velocity approach, we expect the viewing angle to have a random distribution.

Therefore, the distribution of MP sin i, which is roughly characterized by the power

law dNP /dMP ∝ M−1.16
P (Butler et al., 2006), should more or less resemble the true

distribution of MP (see Fig. 2.1).

2.1
Chart3

Page 1

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

MP  sin i

N
P

Figure 2.1. The number of planets, NP , with MP sin i between M and M + dM , where dM =
0.25MJ . Notice the power law shape of the mass distribution.

As mentioned previously, the observed extrasolar planets generally lie much closer
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to their host stars than Jupiter does in our system, with an average period of about

3 days. Simultaneously, these planets possess fairly eccentric orbits; the mean eccen-

tricity of the observed planets is 0.24, and the median 0.2, with eccentricities as high

as 0.9 (using data posted on exoplanets.org as of May 2008; this data is from Butler

et al., 2006, and is updated by the authors). To first order, the observed planets fill

the eccentricity-semi-major axis parameter space (see Fig. 2.2).

2.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3

a (AU)

e

10.01 0.1 10

Figure 2.2. Eccentricity versus semi-major axis for the population of observed extrasolar planets.
Note that the scale for semi-major axis is logarithmic, reflecting the large number of planets with
periods on the order of days. The eccentricity distribution, on the other hand, is very roughly linear,
with large numbers of planets with intermediate and high values of eccentricity. This breaks down
for planets with semi-major axes less than 0.1, which are subject to long-term tidal circularization.

This distribution is partly affected by observational biases; both the transit and
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radial velocity methods of planet detection favor massive, short-period planets. The

lower limit on detectable reflex velocities, for instance, is a couple meters per second

(Butler et al., 2006); in comparison, Jupiter induces a reflex velocity in the sun of

13 m/s. Thus, while Jupiter would be detectable by this method, Neptune, with an

induced solar reflex velocity of 0.2 m/s, would not.

On the other hand, the wide range in observed eccentricity exists despite a slight

bias against detecting planets with large eccentricities, and, while observational biases

describe why it is possible to detect planets with small orbits, it does not explain why

such planets exist. To truly understand the extrasolar planets, we must investigate

how the planets moved into their current, observed, configurations.



CHAPTER 3

SOLAR SYSTEM DYNAMICS

All solar systems are governed primarily by gravitational forces, which can be

easily calculated in N -body simulations (though of course this calculation is time-

consuming if many bodies are present.) However, planets are thought to form from

the material in a circumstellar disk, and both the mechanism of planet formation and

the disk’s continued effects on solar system dynamics are incompletely understood.

Much of current solar system dynamics research is devoted to better understanding

the role of the disk; here we present recent developments in this area.

3.1 Planet Formation

There are two competing theories of solar system formation: the core accretion model

and the gravitational instability model. While the core accretion model works for a

variety of disk masses, the gravitational instability model requires a highly massive,

cold disk for the spontaneous condensation of planet-sized bodies. Here we summa-

rize the two models and their implications for the orbital elements of newly-formed

planets.

3.1.1 The Core Accretion Model

The standard core accretion model (see, e.g., Pollack et al., 1996) combines three

phases, as seen in Figure 3.1: [1.] In the first phase, solids accrete onto a planetary

embryo until the planet’s feeding zone is depleted. [2.] Subsequently, solids and gas

accrete onto the embryo at a slow, nearly constant rate. [3.] When the embryo reaches

9
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a critical mass, runaway gas accretion commences and continues until the planet’s

(now enlarged) feeding zone is once again depleted. The first and third phases take

place rapidly; the timescale of planet formation in the core accretion model is almost

entirely determined by the length of the second phase.

3.1 72 POLLACK ET AL.

FIG. 1. (a) Planet’s mass as a function of time for our baseline model, case J1. In this case, the planet is located at 5.2 AU, the initial surface
density of the protoplanetary disk is 10 g/cm2, and planetesimals that dissolve during their journey through the planet’s envelope are allowed to
sink to the planet’s core; other parameters are listed in Table III. The solid line represents accumulated solid mass, the dotted line accumulated
gas mass, and the dot–dashed line the planet’s total mass. The planet’s growth occurs in three fairly well-defined stages: During the first !5 ! 105

years, the planet accumulates solids by rapid runaway accretion; this ‘‘phase 1’’ ends when the planet has severely depleted its feeding zone of
planetesimals. The accretion rates of gas and solids are nearly constant with ṀXY " 2–3ṀZ during most of the !7 ! 106 years’ duration of phase
2. The planet’s growth accelerates toward the end of phase 2, and runaway accumulation of gas (and, to a lesser extent, solids) characterizes phase
3. The simulation is stopped when accretion becomes so rapid that our model breaks down. The endpoint is thus an artifact of our technique and
should not be interpreted as an estimate of the planet’s final mass. (b) Logarithm of the mass accretion rates of planetesimals (solid line) and gas
(dotted line) for case J1. Note that the initial accretion rate of gas is extremely slow, but that its value increases rapidly during phase 1 and early
phase 2. The small-scale structure which is particularly prominent during phase 2 is an artifact produced by our method of computation of the
added gas mass from the solar nebula. (c) Luminosity of the protoplanet as a function of time for case J1. Note the strong correlation between
luminosity and accretion rate (cf. b). (d) Surface density of planetesimals in the feeding zone as a function of time for case J1. Planetesimals become
substantially depleted within the planet’s accretion zone during the latter part of phase 1, and the local surface density of planetesimals remains
small throughout phase 2. (e) Four measures of the radius of the growing planetary embryo in case J1. The solid curve shows the radius of the
planet’s core, Rcore , assuming all accreted planetesimals settle down to this core. The dashed curve represents the effective capture radius for
planetesimals 100 km in radius, Rc . The dotted line shows the outer boundary of the gaseous envelope at the ‘‘end’’ of a timestep, Rp . The long-
and short-dashed curve represents the planet’s accretion radius, Ra .

when the protoplanet has virtually emptied its feeding zone volve interacting embryos for accretion to reach the desired
culmination point (Lissauer 1987, Lissauer and Stewartof planetesimals.

If this simulation had been done in a gas-free environ- 1993). However, it is possible to carry our simulations of
the formation of the giant planets to a reasonable endpointment, as might be appropriate for the formation of the

terrestrial planets, then the next phase would have to in- without involving interacting embryos, because of the im-

Figure 3.1. Mass as a function of time for Jupiter’s formation under the core accretion model as
simulated by Pollack et al. (1996). Total mass, MP , is represented by the dashed line, while the
mass in hydrogen and helium, MXY , is represented by the dotted line and mass in all other elements,
MZ , is represented by the solid line. The three phases of the core accretion model are plainly visible;
runaway planetesimal accretion takes place in less than 1 Myr, followed by slow accretion of both
gases and solids for the next 7 Myr. At the 8 Myr mark, the critical mass is reached and runaway
gas accretion takes place.

The core accretion process is usually modeled starting with a field of planetesimals.

A large number of initial planetesimals is assumed and their velocities determined by

assigning a probability density to individual orbital elements; perihelia and longitudes

of ascending nodes are evenly distributed and inclination angles and eccentricities are

Rayleigh distributed (Lissauer, 1993). Collision frequency and outcome determined

the growth rate of the largest planetesimal. Objects in non circular orbits undergo

radial motion given by rmax−rmin = a(1+e)−a(1−e) = 2ae, where a is the object’s

semi-major axis and ε is the object’s orbital eccentricity. Accretion takes place most

rapidly when random velocities, and thus the quantity 2aε, are small; protoplanets

acquire small but non-zero eccentricities of order 0.01, which are nevertheless sufficient
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for the protoplanets to suffer close encounters (Safronov, 1991).

Hydrogen and helium do not condense in the solar nebula, and so must be accreted

onto protoplanets in gaseous form. Additionally, a gas envelope surrounding an ice

core cannot remain static if the core mass is greater than 10-15 earth masses (Mizuno,

1980). The similarity to estimated core masses of Jupiter and Saturn gives impetus

to the core accretion model.

The core accretion model predicts the formation of multiple planets spaced radi-

ally between the snow-line, or the 3 AU distance from a sun-like star at which ices

condense, and about 30 AU. Since the core accretion model requires the formation of

a solid core, planet formation in this model is inhibited within the snow-line due to

the lack of solid ices. As mentioned above, planets are thought to attain small orbital

eccentricities. The timescale for the core accretion model is comparable to estimated

disk lifetimes of a few million years. While the seminal work by Pollack et al. seems to

indicate a timescale problem (i.e., the lengthy second phase barely completes by the

time the disk dissipates), more recent work has noticeably shortened the formation

timescale. In particular, more accurate equations of state (Saumon & Guillot, 2004),

updated opacities (Ikoma et al., 2000), and the inclusion of disk density patterns

(Klahr & Bodenheimer, 2006) have all shortened the expected timescale for planet

formation so that it lies well within the expected timescale of circumstellar disks.

3.1.2 The Gravitational Instability Model

The gravitational instability model of planet formation, in which massive, cold disks

collapse into smaller, planet-mass fragments, was developed as an alternative to the

core accretion model. The underlying physics of this mechanism can be understood

by looking at the Toomre stability factor (Toomre, 1964), Q,

Q = κas/πGσ , (3.1)
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where σ is the local, azimuthally averaged surface density, as is the sound speed,

and κ is the epicyclic frequency, or frequency at which orbiting material undergoes

radial oscillations. If Q is greater than 1, the gas is stable against axisymmetric

perturbations (Shu, 1992). We can see from this equation that if the temperature,

and thus the sound speed as ∝
√

T , are low, and the surface density is high, the disk

is subject to non-axisymmetric perturbations, which may lead in turn to gravitational

collapse.

Hydrodynamical simulations of heavy (MD & 0.1M�), cold disks indeed show

signs of the disks collapsing into smaller fragments (e.g., Boss, 2001) which could

potentially continue to collapse into gas giant planets. This collapse takes place

within the time it takes the fragments to complete an orbit or two; therefore, it is an

extremely rapid mechanism for planet formation. Fragments are most like to form

at large distances from the central star (10s of AUS) where the disk is coldest; disk

material near the star is stabilized against collapse by the star’s heating.

While these two models have significantly different starting disks and mechanisms

of planet formation, both predict that planets are unlikely to form near the central star

of solar systems. This contrasts with observations; the detected exoplanets frequently

lie in orbits with semi-major axes measuring a fraction of an AU, in some cases

as small as 0.01 AU. Thus, additional physics is required to explain the observed

properties of solar systems.

3.2 Planet Migration

Neither model of planet formation predicts planets with small semi-major axes;

additionally, the core accretion model produces planets with small eccentricities

only. In contrast, the observed extrasolar planets possess a wide range of orbital

eccentricities (0 ≤ ε ≤ 0.9), and orbit their host stars with small semi-major axes

(0.03 AU ≤ a ≤ 6 AU).
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The most popular explanation for this discrepancy is planetary migration, in which

massive planets form outside of the “snow line,” or radius outside of which ices are

able to condense, and subsequently move inward via interactions with a circumstellar

disk. There are two limiting cases in migration theory in a laminar disk: Type I

migration, in which a planet lacks sufficient mass to clear a gap in the disk material

and is driven inward by a density wake in the disk, and Type II migration, in which

massive planets do clear a gap and subsequently drift inward on the viscous timescale

of the disk.

Whenever the ratio of periods of two orbiting bodies is a rational number, the

system will repeatedly pass through the same configuration over and over. If the

orbits are aligned in one of a set of certain configurations (one example, for a 2:1

mean motion ratio, occurs when the planets’ apogees are anti-aligned; Murray &

Dermott, 2001), the situation is known as a mean motion resonance. This leads to

significant planet-planet interactions as each planet is repeatedly subjected to the

same forces. In addition to resonances between planets, resonances can exist between

a planet and annuli in a circumstellar disk. In fact, a planet-disk system contains an

infinite number of such resonances, and corresponding torques, between the disk and

the planet.

Disk-planet resonances occur, and torques are exerted, where the motion of a ring

in the disk matches the pattern speed Ω`,m of the planet,

Ω`,m = ΩP + (`−m)κP /m =
`

m
ΩP , (3.2)

where ΩP is the mean motion of the planet and κP its epicyclic frequency. The quan-

tities ` and m are integer wavenumbers. The most strongly contributing resonances

can be divided into two groups; Lindblad resonances and corotation resonances.
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3.2.1 Corotation Resonances

Corotation resonances occur where disk material rotates with the same mean motion

as the given pattern speed; i.e., at radii r where

Ω(r) = Ω`,m . (3.3)

We denote the radius at which we encounter a corotation resonance rC . The expres-

sion for the disk torque due to a corotation resonance (Goldreich & Tremaine, 1980;

hereafter GT80) in a cold, Keplerian, non-gravitating disk is given by

T C
`,m = −4mπ2

3

[
r

Ω(r)

d

dr

(
Σ

Ω

)
(φP

`,m)2

]
rC

. (3.4)

where φP
`,m is the (l, m) component of the cosine expansion of the disturbing potential

produced by the planet (see GT80), and is discussed in further detail below.

3.2.2 Lindblad Resonances

Lindblad resonances, perhaps best known for giving rise to spiral arms in galaxies,

occur at radii where a test particle in the disk encounters peaks in the potential at the

same frequency as it undergoes radial oscillations (Binney & Tremaine, 1987). The

condition for this to occur is Ω(r) ± κ(r)/m = Ω`,m, where m > 0. For a Keplerian

disk, in which κ = Ω, this condition can be written in the form

Ω(r) =
(

m

m± 1

)
Ω`,m . (3.5)

The radius of a Lindblad resonance is denoted rL. In the above equation and through-

out this discussion, we take the top sign for an outer Lindblad resonance and the lower

sign for an inner Lindblad resonance. The expression for the disk torque due to a

Lindblad resonance in a cold, Keplerian, non-gravitating disk is given by

T L
`,m =

mπ2

3(1±m)

 Σ(r)

Ω2(r)

(
rdφP

`,m

dr
∓ 2mφP

`,m

)2

rL

. (3.6)
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3.2.3 Determining the Expansion Coefficients

Just as the disk is insufficiently massive for self-gravitation, the orbiting planet’s

gravitational potential is small in comparison to the potential produced by the central

star. As a result, we treat the planet’s influence as a small perturbation in the overall

potential, and consider the cosine expansion of the potential. The elements of this

expansion correspond to resonances between the planet and disk material at different

radii.

The disturbing potential φP produced by an orbiting planet moving in the plane

of the disk is well known (see, for example, Murray & Dermott, 2001), and is given

by

φP(r, θ, t) = GMP

(
rP · r

r3
− 1

|r− rP|

)
(3.7)

= GMP

rP cos (θ − θP )

r2
− 1√

r2 + r2
P − 2rrP cos (θ − θP )


We can expand in terms corresponding to pattern speeds Ω`,m:

φP(r, θ, t) =
∞∑

`=−∞

∞∑
m=0

φP
`,m(r) cos (mθ − `ΩP t) . (3.8)

Defining β = r/a, we can write the expansion coefficients φP
`,m in the form

φP
`,m(β) =

GMP

2π2a

∫ 2π

0

∫ 2π

0
dθdξ

[
cos (mθ − `(ξ − ε sin ξ))(1− ε cos ξ)

×

g(θ, ξ)

β2
− 1√

β2 + (1− ε cos ξ)2 − 2βg(θ, ξ)

] , (3.9)

g(θ, ξ) = (cos ξ − ε) cos (θ) + (
√

1− ε2 sin ξ) sin (θ) .

Note that β is not a free variable, but is determined by m, `, and the type of

resonance. As a result, φP
`,m(β) is a non-trivial function of m, `, ε and the type of

resonance, as both the planet mass MP and the semi-major axis a are prefactors.
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3.2.4 Type I Migration

When the planet is insufficiently massive to clear a gap in the disk (i.e., the planet

is less than 0.1 MJ), an infinite number of resonances exist close to the planet.

Therefore, one computes first the torque density as a function of radius near the

planet, then uses this quantity to compute the average torque per radial interval.

For a given ring torque component T with pattern speed Ω, the semi-major axis

and eccentricity evolution is given by (GT80)

da

dt
= − 2ΩP

aκ2MP

T (3.10)

de

dt
= −

[
(Ω− ΩP )− 2e2ΩP

(
1 +

d ln κP

d ln r

)]
T

MP e(aκP )2
(3.11)

where ΩP and κP are the mean motion and epicyclic frequency at a, the location of the

planet. Integration over radius yields semi-major axis and eccentricity damping on

a timescale of thousands of years. Note that this is much shorter than the accepted

lifetime of circumstellar disks, which are estimated to last for a few million years.

While overcoming planet accretion is an important obstacle in understanding whether

the core accretion model can take place, several methods for slowing or halting Type

I migration have been proposed, such as turbulence or the formation of a hole in the

disk.

3.2.5 Type II Migration

If a protoplanet survives Type I migration via turbulence, hole formation, or some

other mechanism, and accumulates a mass of 0.1 MJ , it begins to clear a gap in the

surrounding disk material. The width of this gap can be estimated by balancing the

viscous torque with the primary Lindblad torques (Goldreich & Sari, 2003). The

viscous torque is given by

Tvis = 3παΣr2(Ωh)2 (3.12)
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where h is the disk scale height, or vertical length scale over which disk surface density

decreases by a factor of e, given by the sound speed over the mean motion. Σ is the

local surface density, and α = ν/Ωh2 is the standard parameter for accretion disks.

The torque from each principal Lindblad resonance with pattern speed Ω is

TL ≈
(

r

w

)3

Σr2(rΩ)2
(

MP

M∗

)
, (3.13)

where MP /M∗ is the ratio of the planet mass to central star mass. Combining these

two equations yields the gap width

w

r
≈ (3πα)−1/3

(
r

h

MP

M∗

)
. (3.14)

Using the values α = 10−3 and h/r = 0.04, a Jupiter-mass planet at 1 AU produces

a gap of width 0.4 AU.

Because a wide gap has been cleared, the planet’s semi-major axis is no longer

noticeably affected by Lindblad and corotation torques. Instead, the planet drifts

inward on the viscous timescale of the disk; that is,

1

a

da

dt
= t−1

vis ∼ αΩ

(
h

r

)2

. (3.15)

However, the eccentricity evolution is still governed by resonant disk torques. For a

Keplerian disk, the eccentricity evolution due to an individual disk torque TD is

dε

dt
=

(1− ε2)
[
(1− ε2)−1/2 − `/m

]
/ε

MP

√
GM∗a

TD , (3.16)

where a, ε, and MP are the semi-major axis, eccentricity, and mass of the planet,

m is the azimuthal wavenumber of the pattern speed (see Eq. 3.2), and TD is the

portion of the torque exerted by the disk on the planet that corresponds to the Fourier

component of the planet’s potential with azimuthal wavenumber m and pattern speed

(l/m)ΩP (Goldreich & Sari, 2003).

Recall that the system contains an infinite number of resonances, and corre-

sponding torques, between the disk and the planet. For example, if we assign these
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resonances wavenumbers (m, `), the location of a corotation resonance is given by

rC = a[m/(`)]3/2. However, the massive planets of interest here will clear large gaps

in the disk, providing, for each value of `, an upper limit on the number of resonances

contributing to the total torque. The shape of the gap also affects the eccentricity

evolution; Lindblad resonances are proportional to surface density, and corotation

resonances are proportional to the radial derivative of surface density. Thus, in the

Type II migration case, we first calculate the location and torque of each resonance,

then sum over the finite number of contributions to obtain the total eccentricity time

derivative due to these resonances.

These formulae will be of particular importance in Chapter 5, in which we calculate

the eccentricity time derivative as a function of initial eccentricity.

3.3 MHD Turbulence

We have seen the effects of a circumstellar disk on early solar system evolution through

the mechanism of planet migration. The disk itself, however, is subject to a magnetic

field; if this magnetic field has a poloidal component, and the angular velocity of the

disk material decreases with radius, the disk is unstable to axisymmetric disturbances

(Balbus & Hawley, 1991), a phenomenon referred to as magnetorotational instability

(MRI.) Magnetohydrodynamical turbulence plays an important role in star formation

theory; expecting this turbulence to continue beyond the formation of a protostar and

into the planet-formation era is therefore not unreasonable.

The central star threads the disk with a poloidal field; furthermore, circumstellar

disks are not likely to be massive enough for angular velocity to increase with radius.

MRI turbulence, then, should be present in all circumstellar disks, and should be

included in models of solar system formation. In fact, several studies have shown

that MRI turbulence is capable of overwhelming Type I migration on sufficiently

short timescales (Laughlin, Steinacker, & Adams, 2004; and Nelson, 2005), possibly
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solving the problem of how planet cores avoid being accreted onto the central star

before further planet formation can take place.

Laughlin, Steinacker, and Adams (2004, hereafter LSA04) take the approach of

modeling the turbulence spectrum; in this manner, they are able to compute the

typical random walk in semi-major axis experienced by a protoplanet embedded in a

turbulent disk without performing the (time-expensive) full MHD simulations. While

the net displacement due to random walk grows like
√

t and the effect on semi-major

axis due to migration is proportional to e−t/τdamp , it is possible for turbulence to

overwhelm migration on a finite timescale. If that timescale is the lifetime of the

circumstellar disk, or the time necessary for the protoplanet to begin runaway gas

accretion, then MRI turbulence can prevent the accretion of protoplanets onto the

central star.

While small protoplanets are easily batted around by turbulent fluctuations, mas-

sive bodies are less affected. Nevertheless, turbulence may still play an important role

in gas giant dynamics. In multiple body systems, differential migration will, without

fail, force pairs of planets into resonances. If these resonances are stable, both planets

will remain in the system for the lifetime of the disk; if not, one planet is likely to be

ejected from the system or accreted onto the central star. If turbulence is present in

the surrounding disk, the small perturbations the planets experience may be capable

of jostling them out of resonance. In this manner, an otherwise small effect could

prove important for the dynamics of systems with large planets.

The turbulence model of LSA04, while developed initially for use in an analytic

calculation, can also be easily incorporated into N -body simulations. The potential

of a particular turbulent fluctuation is given as

Φ =
Aξe−(r−rc)2/σ2

r1/2
cos (mθ − φ− Ωct̃) sin (π

t̃

∆t
) , (3.17)

where rc and φ give the position of the center of the disturbance and σ describes its

radial extent. The disturbance persists for time ∆t and has pattern speed Ωc. Each
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individual disturbance has amplitude ξ, chosen from a gauss-random distribution with

unit width, and the entire spectrum has the overall amplitude A. This amplitude can

be chosen to mimic the turbulence encountered in MHD simulations (see Laughlin et

al., 2004), and has the (awkward) units of `5/2t−2 where ` is a length scale and t a

time scale.



CHAPTER 4

MIGRATION THROUGH THE ACTION OF

DISK TORQUES AND PLANET-PLANET

SCATTERING

Our primary goal in this thesis is to discover how the extrasolar planets obtained

the observed combination of small semi-major axes and wide variety in eccentric-

ity. We first investigate the effects of combining planet-planet interactions with disk

torques in the form of planetary migration. During the epoch of planet formation

and migration, both gaseous circumstellar disks and multiple planets are expected

to be present. As previously discussed, sufficiently massive disks – those that are a

few percent of the central star’s mass – are effective at exerting torques on planets

and moving them inward, thereby changing their semi-major axes a. Scattering in-

teractions between planets are effective at increasing the orbital eccentricities ε (Lin

& Ida, 1997; Kley, 2000; Thommes & Lissauer, 2003; Kley et al. 2004; Adams &

Laughlin, 2003, hereafter AL2003). Many of the previous studies focus on explaining

particular observed two-planet systems like GJ876 (e.g., Snellgrove et al., 2001; Lee

& Peale, 2002; Murray et al., 2002) and 47 UMa (Laughlin et al., 2002). This study

adopts a more general treatment.

We present a statistically comprehensive study of this migration mechanism and

demonstrate that the interplay between these two effects leads to a rich variety of

possible outcomes. Because these systems cover a wide range of parameter space

and tend to be chaotic, this process results in a broad distribution for the orbital

elements of the final systems. This model – Type II migration driven by interactions

21
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with a circumstellar disk and by dynamical scattering from other planets – naturally

produces the entire possible range of semi-major axis a and eccentricity ε.

In this study, we assume planets have already formed and attained sufficient mass

to clear gaps in the disk; the starting point of these calculations takes place after

Type I migration has run its course (although it remains possible for these early

stages to provide an alternate explanation of the observed orbital elements). We

utilize a simplified parametric description of Type II migration, in which semi-major

axis and eccentricity are damped on roughly Myr timescales.

This chapter has two modest goals: The first objective is to explore the physics of

this migration mechanism by extending previous calculations to encompass a wider

range of parameter space. this chapter is a straightforward generalization of AL2003,

but extends that paper in several ways: [1] In addition to the random mass distribu-

tion of AL2003, this chapter considers a a log-random initial mass function for the

planets. [2] We explore a much wider range of time scales for eccentricity damping

due to the disk. [3] We include starting configurations that lead to the planets being

initially caught in both the 2:1 and 3:1 mean motion resonances, and we track how

long the planets stay near resonance. [4] The distributions of ejection velocities for

escaping planets are determined. [5] In order to isolate the effects of the input pa-

rameters on the final results, we present the orbital elements both immediately after

planets are lost and after corrections for additional evolution are taken into account.

[6] The results presented here include a tenfold increase in the number of numerical

simulations and hence in coverage of parameter space (for a total of ∼ 8500 trials).

The second goal of this chapter is to determine if this migration mechanism can

account for the orbital elements of the observed extrasolar planets. Since the observed

orbital elements of these planetary systems explore (nearly) the full range of possible

semi-major axis and eccentricity, filling the a−ε plane is a necessary, but not sufficient,

condition on a complete theory of planet migration. The mechanism explored here
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can be made consistent with the observed orbital element distributions, but such a

comparison is preliminary and caution should be taken.

4.1 Methods and Initial Conditions

This section outlines our basic migration model which combines the dynamical in-

teractions between two planets with inward forcing driven by tidal interactions with

a background nebular disk, i.e., Type II migration (see also Kley, 2000; Murray et

al., 2002; Papaloizou, 2003; Kley et al., 2004). Our goal here is to build on previous

studies by producing a statistical generalization of the generic migration problem

with two planets and an exterior disk – a situation that we expect is common during

the planet formation process.

The numerical experiments are set up for two planets with the following orbital

properties: Two planets are assumed to form within a circumstellar disk with initial

orbits that are widely spaced. The central star is assumed to be of solar-type with

mass M∗ = 1.0 M�. For the sake of definiteness, the inner planet is always started

with orbital period Pin = 1900 days, which corresponds to a semi-major axis ain ≈ 3

AU. This radial location lies just outside the snowline for most models of circumstellar

disks and thus provides a fiducial starting point where the innermost giant planets

are likely to form. For most of the simulations, the second (outer) planet is placed

on an orbit with the larger period Pout = π21/4Pin ≈ (3.736 . . . )Pin. With this

starting state, the planets are not initially in resonance but will first encounter the

3:1 resonance as the outer planet migrates inward. As the system evolves, the two

orbits become closer together. With these starting states, the planets are sometimes

caught in the 3:1 resonance, but often pass through and approach the 2:1 resonance.

In an alternate set of starting states, the outer planet is given an initial orbital

period Pout = ePin ≈ (2.718 . . . )Pin so that the planets start inside the 3:1 resonance

but outside the 2:1 resonance. In either case, the two planets are often caught in



24

mean motion resonances for some portion of their evolution (for a more detailed

description, see Lee & Peale, 2002). In practice, the initial period ratio is likely to

have a distribution, but this chapter focuses on these two specific choices. The initial

eccentricities of both planets are drawn from a uniform random distribution in the

range 0 < ε < 0.05. The planets are also started with a small, but nonzero inclination

angle in the range i ≤ 0.03 (in radians). Planetary systems started in exactly the

same orbital plane tend to stay co-planar, whereas small departures such as these

allow the planets to explore the full three dimensions of space.

In this study we use two different distributions for the starting planetary masses.

We denote the planetary mass distribution as the IMF (the initial mass function)

where it should be understood that we mean planet masses (not stellar masses). The

first IMF is a uniform random distribution in which the planet masses mP are drawn

independently from the range 0 < mP < 5mJ , where mJ is the mass of Jupiter. In the

second mass distribution, denoted as the log-random IMF, the logarithm of the planet

mass log10[mP /mJ ] is drawn independently from the interval−1 ≤ log10[mP /mJ ] ≤ 1.

The random mass distribution provides a good starting point to study the physics of

these systems – it provides a good sampling of the possible masses and mass ratios

that two planet systems can have. On the other hand, the observed distribution of

planet masses is much closer to a log-random distribution, so this latter distribution

provides a better model for comparison with observations. One result of this chapter

is a determination of how this migration mechanism changes the planetary IMF, and

it is useful to study this evolution from the two different starting distributions.

The numerical integrations are carried out using a Bulirsch-Stoer scheme (Press

et al., 1986), described more fully in the Appendix. The equations of motion are

those of the usual three body problem (two planets and the star) with the following

additional forcing terms: The circumstellar disk exerts torques on the planets which

lead to both orbital decay (Type II migration) and damping of eccentricity. The star
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exerts tidal forces on the planets which leads to additional energy dissipation and

partial circularization of the orbits. Finally, the leading order curvature of space-

time (due to general relativity) is included to properly account for the periastron

advance of the orbits.

The outer planet in the system is tidally influenced by a background circumstellar

disk. Since the planets are (roughly) of Jovian mass, they clear gaps in the disk

and experience Type II migration. Instead of modeling the interaction between the

outer planet and disk in detail, we adopt a parametric treatment that introduces a

frictional damping term into the dynamics. This damping force has the simple form

f = −vτdamp
−1 and is applied to the outer planet at each time step, as a torque

r× f , so the outer planet is gradually driven inward. The assumed damping force is

proportional to the velocity and defines a disk accretion time scale τdamp. We assume

here that the disk inside the orbit of the outer planet is sufficiently cleared out so

that the inner planet does not usually experience a Type II torque. Over most of

its evolution, the inner planet has a sufficiently small eccentricity so that it lies well

inside the (assumed) gap edge and receives negligible torque from the disk (which

lies outside the outer planet). When the inner planet attains a high eccentricity,

however, it can be found at a radius comparable to that of the outer planet and

can thus experience some torque. This (relatively minor) effect is included by giving

the inner planet a torque that is reduced from that of the outer planet by a factor

(rin/rout)
6.

In this set of simulations, we set the accretion time scale to be τdamp = 0.3 Myr,

consistent with recent estimates, outlined as follows. We can compare this time scale

to several reference points: [1] For example, Nelson et al. (2000) advocate migration

time scales of 104 orbits for Jovian mass planets. [2] If disk accretion is driven by

viscous diffusion and can be described by an α prescription, then the disk accretion

time scale τdisk = r2/ν, where the viscosity ν = (2/3)αa2
sΩ

−1 (Shu, 1992). The disk
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scale height H can be written in the form H = as/Ω, where as is the sound speed, and

the accretion time becomes τdisk = 1.5(r/H)2Ω−1α−1. If we evaluate the disk scale

height H and rotation rate Ω for a temperature of T = 70 K at $ = 7 AU (where the

outer planet forms and begins its migration), the adopted disk accretion time scale

τdamp = 0.3 Myr corresponds to α = 7 × 10−4. This value falls within the expected

range 10−4 ≤ α ≤ 10−2 (see Shu 1992). [3] As another point of comparison, three-

dimensional simulations of Jovian planets in circumstellar disks (Kley, D’Angelo, &

Henning, 2001) find similar migration time scales, about 0.1 Myr, which agree with

two-dimensional simulations done previously (Kley, 1999). In these numerical studies,

the disks have slightly larger α = 4×10−3 (hence the slightly shorter time scale), scale

height H/r = 0.05, and disk mass Md = 3.5 × 10−3M� between 2 and 13 AU. Note

that the total disk mass must be larger than the planet masses in order to drive Type

II migration. Notice also that the migration time scale is assumed to be independent

of the orbital eccentricity, although more complicated behavior is possible.

These simulations include an additional forcing term that damps the eccentricity

of the outer planetary orbit (as suggested by numerical simulations of these systems).

In other words, the same angular momentum exchange between the disk and the

planet that leads to orbital migration can also modify the eccentricity of the orbit.

Unfortunately, previous work on this issue presents rather divergent points of view.

Most numerical studies indicate that the action of disk torques leads to damping

of eccentricity, and these results are often supported by analytic calculations (e.g.,

Snellgrove et al., 2001; Schäfer et al., 2004). On the other hand, competing ana-

lytic calculations indicate that eccentricity can be excited through the action of disk

torques and this mechanism has been proposed as an explanation for the observed

high eccentricities in the extrasolar planetary orbits (e.g., Ogilvie & Lubow, 2003;

Goldreich & Sari, 2003; Papaloizou et al., 2001). One reason for this ambiguity is

that the interaction between the disk and the planet can be broken down into the
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action of resonances in the disk, where the non-coorbital corotation resonances act

to damp the eccentricity of the planetary orbits while the non-coorbital Lindblad

resonances act to pump it up. The net effect depends on a close competition between

the damping terms and the excitation terms. In rough terms, the conditions that

result in eccentricity damping are those that lead to relatively narrow gaps, which in

turn correspond to large disk viscosity (α ∼ 10−3) and modest sized planet masses

(mP ∼ mJ) as assumed here. The disk surface density and scale height also play a

role (Bryden et al., 2000). If the gap is not completely clear, then the corotation reso-

nance locations within the gap will contain gas that can interact with the planet and

help enforce eccentricity damping (Ogilvie & Lubow, 2003; Goldreich & Sari, 2003).

In contrast, wide and clear gaps, which result from smaller viscosity and/or larger

planet masses (mP ≈ 10 − 20mJ), can lead to eccentricity excitation (Snellgrove et

al., 2001; Papaloizou et al., 2001).

In light of these ambiguities, we incorporate the effects of eccentricity damping in

a parametric manner. For completeness, we note that the damping force described

above (that which enforces inward migration) also tends to damp the eccentricity,

although this effect is much smaller than the explicit eccentricity damping terms in-

cluded here. Specifically, the orbital eccentricity of the outer planet is damped on a

time scale τed, which is considered as a free parameter in this treatment. The eccen-

tricity damping is enforced by converting the cartesian variables to orbital elements

(a, ε, i), applying the damping term, and then converting back. The inclination an-

gle is not explicitly damped, although the outer planet experiences a small damping

effect due to the form of the migration force. In this chapter, we explore a range of

damping times scales 0.1 Myr ≤ τed ≤ ∞, where the τed → ∞ limit corresponds to

no eccentricity damping. We have also run test cases in which τed varies with orbital

eccentricity, so that more eccentric orbits are damped to a greater extent, although

the results are not markedly different. Our numerical exploration of parameter space
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suggests that the most relevant variable is the ratio of eccentricity damping time to

disk accretion time, where this ratio falls in the range 1/3 ≤ τed/τdamp ≤ ∞ for the

simulations presented here. For comparison, the full range of positive values for this

ratio considered in the literature is approximately 0.01 ≤ τed/τdamp ≤ ∞ (with an

additional range of negative values corresponding to eccentricity excitation). This

chapter considers the more limited range because the behavior outside our range is

known: For small values of τed/τdamp, eccentricity damping is highly efficient, few

planets are ejected, and large eccentricities are not produced (e.g., Lee & Peale, 2002;

Thommes & Lissauer, 2003). For negative values of τed/τdamp, eccentricity is excited.

We find that even with no eccentricity damping, this model tends to overproduce ec-

centricity relative to the currently observed sample of extrasolar planets; eccentricity

excitation could lead to even larger discrepancies. Note that one advantage of this

parametric treatment is that thousands of simulations can be performed and the full

distributions of final orbital elements can be determined.

The numerical code includes relativistic corrections to the force equations (e.g.,

Weinberg, 1972). This force contribution drives the periastron of both planetary

orbits to precess (in the forward direction). Because the effect is greater close to

the star, the inner planet experiences more precession, and the net effect is to move

the two planets away from resonance. If the planets migrate sufficiently close to the

central star, this differential precession effect can keep the planets out of a perfect

resonance. Since resonant conditions lead to greater excitation of orbital eccentricity,

which in turns drives the system toward instability, this relativistic precession acts to

make planetary systems more stable. In these simulations, however, the planets rarely

migrate close enough to the star to make this effect important, but it is included for

completeness.

The simulations also include energy lost due to tidal interactions between the

planets and their central stars. In these simulations, the planets spend most of their
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time relatively far from the star where tidal interactions are negligible. As a result,

we adopt a simplified treatment of this effect. Specifically, the force exerted on the

planet due to tidal interactions is written in the approximate form

F = −GmP R5
∗

Cjr11

[
r2v − (r · v)r

] 0.6r3
p

1 + (rp/R∗)3
, (4.1)

where R∗ is the radius of the star, rp is the distance of closest approach for a parabolic

orbit with angular momentum j, and C = 2
√

π/3 is a dimensionless constant of order

unity (for further discussion, see Papaloizou & Terquem, 2001; Press & Teukolsky,

1977). This formula implicitly assumes that the time between encounters is long com-

pared to the time for tidal interaction itself and that most of the forcing occurs near

the point of closest approach. This approximation is valid when the close encounters

occur due to planetary orbits with high eccentricities, which is generally the case for

planets in these simulations. Note that for longer term evolution of close planetary

orbits, such as circularization over Gyr time scales, an alternate approximation for

the tidal forces is necessary (see Section 4.2).

The simulations allow for collisions to take place between the planets, and between

the planets and the star. The effective radius for planetary collisions is taken to be

RP = 2RJ , with cross section σP = 4πR2
J , which implicitly assumes that the planets

have not fully contracted. In order to model accretion events, we assume that when

a planet wanders within a distance d = 2×1011cm of the central star, accretion takes

place. This distance corresponds to d ∼ 3R�; the pre-main sequence simulations of

D’Antona and Mazzitelli (1994) yield stellar radii ranging from 5.7R� at 105 years to

2.2R� at 106 years.

For a given set of starting conditions (described above), each numerical experi-

ment is integrated forward in time and the system follows the same basic evolutionary

trend (see Fig. 4.1 and Section 3): The planets are started with a sufficient separa-

tion so that they have weak initial interactions and are far from resonance. As the

outer planet migrates inward through the action of disk torques, the planets often
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enter into a mean motion resonance, usually the 3:1 or 2:1 resonance because of the

starting conditions. The tendency to enter 3:1 versus 2:1 resonances varies with the

planetary IMF, with a linear IMF producing more planets in 3:1 resonances and a

log IMF producing more 2:1 systems. In addition, the 2:1 resonances last longer,

implying that they are more stable. The two planets then migrate inwards together,

staying relatively close to resonance, but displaying ever larger librations as the or-

bital eccentricities of both planets increase (on average). The eccentricities increase

until the system (often) becomes unstable, and a wide range of final system prop-

erties can result. In practice, we continue the simulations until one of the following

stopping criteria is met: A planet is ejected, the planets collide with each other, a

planet is accreted by the central star, or a maximum integration time limit is reached

(set here to be 1.0 Myr). This latter time scale represents the time over which the

disk contains enough mass to drive inward migration of planets; the disk could retain

enough gas to exhibit observational signatures over a longer time.

After a planet is lost (through ejection, accretion, or collision), the numerical

integration is stopped and the orbital elements of the surviving planet are recorded.

In general, however, the orbital elements of the surviving planet can continue to evolve

after a planet is lost as long as the disk is still present. In order to separate the effects

of the combined migration mechanism (i.e., Type II migration with planet scattering)

from the additional evolution, we first present the results with no additional evolution

in the following section. In order to compare with the observed orbital elements of

extrasolar planets, we consider possible algorithms for this additional evolution in

Section 4.

4.2 Results from the Numerical Simulations

This chapter presents the results of an ensemble of ∼ 8500 simulations that follow

the early evolution of two-planet solar systems subjected to disk torques using the
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methodology described above. The simulations use two different planetary IMFs

and, for each IMF, four choices of the eccentricity damping time scale τed. For each

set of these input parameters, we completed approximately 800 – 1000 solar system

simulations. We then determined the resulting distributions of semi-major axis a,

eccentricity ε, inclination angle i, and surviving planetary mass mP . These results

can be used to quantify the outcome of this migration mechanism (see below) and

can be compared to observed distributions of orbital elements in extrasolar planetary

systems (Section 4).

4.2.1 Evolution of Orbital Elements

To illustrate the general behavioral trend of these systems, we follow the evolution

of orbital elements for a collection of representative simulations. The result of one

such run is shown in Fig. 4.1. The first panel shows how the semi-major axis of

each planet decreases smoothly with time; this basic trends holds for essentially all

cases. In the second panel of Fig. 4.1, we plot the period ratio of the two planets,

and find that it quickly approaches and remains near 3. This result indicates that

the two planets may be in a 3:1 mean motion resonance (see Section 3.3 for further

discussion). This behavior occurs during the early evolution for the majority of cases,

although in some cases the outer planet passes through the 3:1 period ratio (and hence

the 3:1 resonance) and the period ratio remains near ∼2 for most of the evolution.

In other systems, the period ratio remains near 3 for the early evolution, and then

the planets move through the 3:1 resonance, become closer, and reside near the 2:1

resonance for the latter part of the simulation. A more detailed accounting of how

long various systems spend near the 3:1 and 2:1 resonances is given below (Section

3.3).

4.1

The behavior of eccentricity and inclination angle is more complex. We find that
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Fig. 1.— Time evolution of a typical system of two interacting planets migrating under the influence

of torques from a circumstellar disk. The upper left panel shows the time evolution of the semi-

major axes, which decrease steadily on the migration time scale τdamp. The upper right panel shows

the ratio of the orbital periods. This ratio quickly decreases to 3 and stays close to this value for

much of the evolution (the two planets are near the 3:1 resonance – see section 3.1). The evolution

of eccentricity is illustrated in the lower left panel, which shows that the eccentricity of both planets

steadily increases at first and then enters into a complicated time series including both short period

oscillations and an overall growth trend on longer time scales. The lower right panel shows the

corresponding time evolution of the inclination angle. Both planets wander back and forth out of

the original orbital plane, but the inclination angles vary by only a few degrees.

Figure 4.1. Time evolution of a typical system of two interacting planets migrating under the
influence of torques from a circumstellar disk. The upper left panel shows the time evolution of
the semi-major axes, which decrease steadily on the migration time scale τdamp. The upper right
panel shows the ratio of the orbital periods. This ratio quickly decreases to 3 and stays close to
this value for much of the evolution (the two planets are near the 3:1 resonance – see section 3.1).
The evolution of eccentricity is illustrated in the lower left panel, which shows that the eccentricity
of both planets steadily increases at first and then enters into a complicated time series including
both short period oscillations and an overall growth trend on longer time scales. The lower right
panel shows the corresponding time evolution of the inclination angle. Both planets wander back
and forth out of the original orbital plane, but the inclination angles vary by only a few degrees.
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orbital eccentricity increases steeply in the beginning, and then undergoes oscillations

about an average value that increases at a slower rate. The eccentricity exhibits

varying behaviors over different spans of time and varies substantially from case to

case. In the more stable systems, the eccentricity values level off and experience

variations about the mean. In unstable cases, the eccentricities are driven to ever

larger values until a planet is either ejected or accreted onto the central star. The

inclination angle experiences a similar evolutionary trend.

This complex behavior of the orbital element leads to a distribution of final values.

To illustrate this sensitive dependence on the initial conditions, we have run a set of

numerical experiments with equal mass planets, an eccentricity damping time scale τed

= 1 Myr, and starting configurations with the outer planet outside the 3:1 resonance.

The starting values of the angular orbital elements are chosen randomly from 0 to 2π.

The results are shown in Fig. 4.2 for the case of two mP = 1.0mJ planets (top two

panels) and two mP = 5.0mJ planets (bottom two panels). For the case of smaller

planets (1 mJ), both planets survive the entire 1.0 Myr time span of the simulations,

but they attain a wide distribution of final orbital elements. For the case of larger

planets (5mJ), one of the planets is always ejected, whereas the remaining planet

attains a distribution of orbital elements as shown. Fig. 4.2 shows that effectively

equivalent starting conditions lead to a well-defined distribution of outcomes. In other

words, for this class of simulations, the outcomes must be described in terms of the

distributions of a or ε, rather than as particular values of a or ε.

4.2

4.2.2 End State Probabilities

The simulations end in a variety of different states, including ejection, accretion,

collision, or the survival of both planets past the fiducial time span of one million

years. The frequencies of each fate are listed in Table 4.1 for varying eccentricity



34

– 33 –

Fig. 2.— Illustration of sensitive dependence on initial conditions. The top panels show the results

of simulations performed for two equal mass planets with mP = mJ . The set of simulations use the

same starting conditions except for the choice of angular orbital elements. In all cases, both planets

survive to the end of the fiducial time period of 1 Myr, but the orbital elements of the planets are

different, i.e., they show a distribution of values. The orbital elements of the inner planet are shown

as the shaded histogram; those of the outer planet correspond to the unshaded histrogram. The

bottom two panels show analogous results for simulations done with two equal mass planets with

mP = 5mJ . In this case, one of the planets is always ejected, but the remaining planet takes on a

distribution of values for its orbital elements.

Figure 4.2. Illustration of sensitive dependence on initial conditions. The top panels show the
results of simulations performed for two equal mass planets with mP = mJ . The bottom two panels
show analogous results for simulations done with two equal mass planets with mP = 5mJ . The set
of simulations use the same starting conditions except for the choice of angular orbital elements.
In all cases, both planets survive to the end of the fiducial time period of 1 Myr, but the orbital
elements of the planets are different, i.e., they show a distribution of values. In the top panels, the
orbital elements of the inner planet are shown as the shaded histogram; those of the outer planet
correspond to the unshaded histrogram. As mentioned, the bottom two panels show analogous
results for simulations done with two equal mass planets with mP = 5mJ . In this case, one of the
planets is always ejected, but the remaining planet takes on a distribution of values for its orbital
elements.
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damping time scales and for both planetary IMFs. The number of ejected planets

depends sensitively on the IMF: Only one third of the planets were ejected for a

logarithmic IMF, whereas more than half were ejected for a linear IMF. This behavior

is expected because the linear IMF provides more massive planets, which in turn

produce a disturbing function of greater magnitude and lead to more frequent ejection.

We also find that the outer planet is more than 3–4 times as likely to be the ejected

planet, and the inner planet is almost always the accreted planet. The incidence of

each end state exhibits no clear trend with respect to eccentricity damping time scale

(for a given planetary IMF). For the case in which the planets are started just outside

the 2:1 resonance (inside the 3:1 resonance), the end state probabilities are similar,

but show a slight preference for accretion relative to ejection (see Table 4.1).

Table 4.1. Planetary Fate Probabilities.

τed Ejection Accretion Collision Survival
Linear IMF
0.3 Myr 0.53 0.33 0.031 0.11
1.0 Myr 0.56 0.19 0.006 0.24
3.0 Myr 0.55 0.16 0.003 0.29
Log IMF
0.1 Myr 0.25 0.40 0.072 0.27
0.3 Myr 0.34 0.35 0.030 0.29
1.0 Myr 0.34 0.29 0.005 0.37
∞ 0.35 0.33 0.004 0.29
Log IMF (2:1)
1.0 Myr 0.29 0.35 0.011 0.35

Averaged over all outcomes, the mean time of the simulations (which end when a

planet is lost) is about 0.5 Myr; this time scale is roughly comparable to the viscous

damping time of τdamp = 0.3 Myr. Accretion events take the longest, with an average

time of 0.55 Myr; ejection events have a mean time of 0.22 Myr; collisions take place

the fastest with a mean time of only 0.10 Myr.

The end states depend on the planet masses in a systematic way, as shown in Figs.

4.3 and 4.4, which show the various possible end states as a function of the masses.
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For systems in which the outer planet is substantially more massive than the inner

one, mout � min, the inner planet is nearly always driven to high eccentricities and

accreted onto the central star (as shown by the blue diamonds in Figs. 4.3 and 4.4). In

the opposite limit where mout � min, the outer planet tends to be ejected (as shown

by the green squares in the figures). When both planets are massive, corresponding

to the upper right portion of the mass plane, either planet can be readily ejected.

When both planets have relatively low masses, corresponding to the lower left portion

of the mass plane, both planets tend to survive (shown by the cross symbols in the

figures).

4.3

4.4

Tables 4.2 – 4.4 present the distributions of mass mP , semi-major axis a, and

eccentricity ε at the end of the simulations. Each entry lists the mean value of the

distribution as well as its width (variance). Table 4.2 presents the planetary masses

for all cases, including planets that are lost (ejected planets and accreted planets).

The following tables list the parameters that characterize the distributions of semi-

major axis (Table 4.3) and orbital eccentricity (Table 4.4) for the planets that remain

at the end of the simulations. For accretion or ejection events (of either planet),

the distributions of semi-major axis, eccentricity, and mass are roughly similar for a

given planetary IMF and varying τed (although variations do exist, especially at the

extremes of our chosen range of τed). The collisions result in significantly different

orbital properties (not listed in the Tables), with smaller eccentricity ε and larger

mass mP . The other general trend that emerges from this suite of simulations is that

the systems that remain stable over the entire 1 Myr integration time are those with

the smallest planets, with a mean mass of only 0.79 mJ (for the log-random IMF,

averaged over the four values of τed) compared to a mean mass mP = 2.8 mJ for the

whole ensemble.
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Fig. 3.— End states as a function of the planetary masses for eccentricity damping time scale τed =

1 Myr. Each symbol in this figure represents the outcome of a simulation with the mass of the outer

planet plotted as a function of the mass of the inner planet. All of the simulations depicted here use

the log-random IMF, the standard starting configuration in which the outer planet begins outside

the 3:1 resonance, and eccentricity damping time τed = 1 Myr. The different symbols correspond to

different outcomes: open blue diamonds represent accretion of the inner planet, open green squares

denote ejection of the outer planet, open red triangles represent ejection of the inner planet, crosses

denote survival of both planets, and orange star symbols represent accretion of the outer planet.

Figure 4.3. End states as a function of the planetary masses for eccentricity damping time scale τed

= 1 Myr for a linear IMF. Each symbol in this figure represents the outcome of a simulation with the
mass of the outer planet plotted as a function of the mass of the inner planet. All of the simulations
depicted here use the log-random IMF, the standard starting configuration in which the outer planet
begins outside the 3:1 resonance, and eccentricity damping time τed = 1 Myr. The different symbols
correspond to different outcomes: open blue diamonds represent accretion of the inner planet, open
green squares denote ejection of the outer planet, open red triangles represent ejection of the inner
planet, crosses denote survival of both planets, and orange star symbols represent accretion of the
outer planet.
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Fig. 4.— End states as a function of the planetary masses for eccentricity damping time scale

τed = 0.1 Myr (compare with Fig. 3). Each symbol in this figure represents the outcome of a

simulation with the mass of the outer planet plotted as a function of the mass of the inner planet.

All of the simulations depicted here use the log-random IMF, the standard starting configuration

in which the outer planet begins outside the 3:1 resonance, and eccentricity damping time τed =

0.1 Myr. The different symbols correspond to different outcomes: open blue diamonds represent

accretion of the inner planet, open green squares denote ejection of the outer planet, open red

triangles represent ejection of the inner planet, crosses denote survival of both planets, and orange

star symbols represent accretion of the outer planet.

Figure 4.4. End states as a function of the planetary masses for eccentricity damping time scale
τed = 0.1 Myr. (Compare with Fig. 4.3). Each symbol in this figure represents the outcome of a
simulation with the mass of the outer planet plotted as a function of the mass of the inner planet.
All of the simulations depicted here use the log-random IMF, the standard starting configuration
in which the outer planet begins outside the 3:1 resonance, and eccentricity damping time τed =
0.1 Myr. The different symbols correspond to different outcomes: open blue diamonds represent
accretion of the inner planet, open green squares denote ejection of the outer planet, open red
triangles represent ejection of the inner planet, crosses denote survival of both planets, and orange
star symbols represent accretion of the outer planet.
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Table 4.2. Planet Masses (in mJ).

τed Ejectors Ejectees Accreted Acc. Surviver Both Survive
Linear IMF
0.3 Myr 3.7 ± 0.9 2.5 ± 1.4 1.0 ± 0.6 3.3 ± 1.1 1.3 ± 0.8
1.0 Myr 3.6 ± 1.0 2.2 ± 1.4 0.8 ± 0.7 3.3 ± 1.1 1.8 ± 1.1
3.0 Myr 3.5 ± 0.9 2.2 ± 1.5 0.7 ± 0.5 3.4 ± 1.1 1.8 ± 1.0
Log IMF
0.1 Myr 5.7 ± 1.9 1.6 ± 1.9 0.9 ± 1.0 3.3 ± 2.7 0.8 ± 0.8
0.3 Myr 5.2 ± 2.4 1.8 ± 2.1 0.6 ± 0.6 3.9 ± 2.8 0.7 ± 0.7
1.0 Myr 4.9 ± 2.4 1.8 ± 2.1 0.5 ± 0.5 4.0 ± 2.7 0.8 ± 0.7
∞ 5.0 ± 2.4 1.8 ± 1.9 0.5 ± 0.4 3.7 ± 2.8 0.9 ± 1.0
Log IMF (2:1)
1.0 Myr 4.8 ± 2.2 1.6 ± 2.2 0.65 ± 0.9 3.8 ± 2.6 0.8 ± 0.7

Table 4.3. Semi-major Axes of Remaining Planets (in AU).

τed Ejectors Acc. Surviver Both Survive All Survivors
Linear IMF
0.3 Myr 2.3 ± 1.8 0.2 ± 0.2 0.4 ± 0.4 1.2 ± 1.2
1.0 Myr 2.5 ± 2.7 0.7 ± 1.6 0.4 ± 0.3 1.4 ± 0.5
3.0 Myr 2.3 ± 1.1 1.0 ± 1.1 0.6 ± 0.4 1.4 ± 0.9
Log IMF
0.1 Myr 3.1 ± 6.2 0.2 ± 1.4 0.5 ± 0.4 1.0 ± 3.1
0.3 Myr 2.5 ± 0.9 0.2 ± 0.4 0.4 ± 0.4 0.9 ± 0.6
1.0 Myr 2.6 ± 2.7 0.6 ± 0.6 0.5 ± 0.4 1.1 ± 1.4
∞ 2.7 ± 1.9 1.5 ± 0.9 1.3 ± 0.7 1.7 ± 1.2
Log IMF (2:1)
1.0 Myr 2.6 ± 0.9 0.5 ± 0.9 0.5 ± 0.4 1.0 ± 1.7

For the log-random IMF, which is closest to producing the observed mass distri-

bution, roughly one third of the systems retain both planets within 30 AU at the

end of the 1 Myr integration time (see Table 4.1). For comparison, about 10 – 20

percent of the observed extrasolar planetary systems show multiple planets (to date

– see www.exoplanets.org). However, the theoretical systems that retain multiple

planets tend to have planetary masses that are smaller than average (Table 4.2) and

such low mass planets may have escaped detection. In addition, as many as half of

the systems observed with one planet may contain additional bodies (Fischer et al.,

2001). More data is necessary to determine whether or not this issue is problematic
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Table 4.4. Eccentricities of Remaining Planets.

τed Ejectors Acc. Surviver 2-Planet Systems All Survivors
Linear IMF
0.3 Myr 0.5 ± 0.3 0.3 ± 0.2 0.5 ± 0.3 0.4 ± 0.3
1.0 Myr 0.4 ± 0.3 0.5 ± 0.3 0.7 ± 0.2 0.5 ± 0.2
3.0 Myr 0.4 ± 0.3 0.4 ± 0.3 0.8 ± 0.1 0.6 ± 0.2
Log IMF
0.1 Myr 0.2 ± 0.3 0.04 ± 0.07 0.3 ± 0.2 0.2 ± 0.2
0.3 Myr 0.3 ± 0.2 0.1 ± 0.2 0.4 ± 0.3 0.3 ± 0.2
1.0 Myr 0.3 ± 0.3 0.3 ± 0.3 0.7 ± 0.2 0.5 ± 0.2
∞ 0.3 ± 0.3 0.4 ± 0.4 0.8 ± 0.1 0.6 ± 0.2
Log IMF (2:1)
1.0 Myr 0.3 ± 0.3 0.4 ± 0.2 0.6 ± 0.21 0.5 ± 0.2

for the theory; our model contains only two planets, for instance, while solar systems,

as we well know, can possess more than two planets.

4.2.3 Behavior of Resonance Angles

As shown above, the period ratio of the two planets quickly and smoothly approaches

an integer value, often 3, and thus approaches a mean motion resonance. As one

benchmark, 70% of the systems studied here spend at least 10,000 years near the 3:1

resonance. This result is supported by the behavior of the 3:1 resonance angles over

time. To illustrate this behavior we focus on the three angles

φ1 = 3λ2− λ1− 2$1, φ2 = 3λ2− λ1−$2−$1, φ3 = 3λ2− λ1− 2$2, (4.2)

where the λj are the mean longitudes and the $j are the longitudes of pericenter

(Murray & Dermott, 2001). Note that a complete description of the 3:1 resonance

requires three additional angles, although their behavior is similar to those considered

here. For the representative case of two planets of one Jupiter mass each, Fig. 4.5

shows how the system passes through different versions of the 3:1 resonances. For

example, between 50 and 200 thousand years, the first three angles librate about

values that are 120 degrees apart. Then, between 0.25 and 1 Myr, the first and third

angles librate about an angular value that is 180 degrees different from the second.
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4.5

– 36 –

Fig. 5.— Representative behavior of the resonance angles. The first three panels show the time

evolution of the 3:1 resonance angles for a representative simulation in which two equal mass

planets with mP = 1.0 mJ migrate inward together and approach the 3:1 mean motion resonance.

As shown here, the resonance angles exhibit complex behavior and exhibit large librations about

the resonance; nonetheless, a well-defined resonant condition is reached. The lower right panel

shows two of the resonance angles plotted against each other. For most of the evolution, t > 0.25

Myr, the system librates around the point φ1 = 0, φ2 = π.

Figure 4.5. Representative behavior of resonance angles for a 3:1 mean motion resonance. The
first three panels show the time evolution of the 3:1 resonance angles for a representative simulation
in which two equal mass planets with mP = 1.0 mJ migrate inward together and approach the
3:1 mean motion resonance. Colors have no significance except to help identify regions in the last
plot with different spans of time. As shown here, the resonance angles exhibit complex behavior
and exhibit large librations about the resonance; nonetheless, a well-defined resonant condition is
reached. The lower right panel shows two of the resonance angles plotted against each other. For
most of the evolution, t > 0.25 Myr, the system librates around the point φ1 = 0, φ2 = π.

A wide range of behavior is displayed in the time evolution of the resonance angles,

although the overall defining trend can be described as follows (see also Beaugé et

al., 2003; Ferraz-Mello et al., 2003; Lee, 2004): The planets tend to approach a mean

motion resonance, but generally exhibit large librations about a perfect resonant con-

dition. Two effects contribute to this behavior. The circumstellar disk exerts a torque

on the outer planet and acts to move the planet inward and away from resonance; al-

though the inner planet experiences a greatly reduced torque, it is not enough to keep
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up, and the two planets must continually readjust their orbital elements to maintain a

resonant condition. In addition, the planets are massive enough and sufficiently close

together so that they tend to excite the orbital eccentricities; this continual pumping

up of the eccentricities can eventually act to make the system unstable. Notice that

when the planets have low masses, they tend to stay in resonance longer. Indeed, at

the end of the simulations, the subset of solar systems that retain both planets over

the entire 1 Myr time period have a much lower average mass (see Table 4.2, Figs.

4.3 and 4.4, and the previous subsection).

Although most of these two-planet systems spend some of their evolutionary time

in states with period ratio near 3:1, a substantial fraction of the systems pass through

the 3:1 resonance and approach a 2:1 period ratio. One should keep in mind that a

rational period ratio is a necessary, but not sufficient, condition for being in a mean

motion resonance. For the ensemble of simulations studied here, we have kept track of

the time for which the planets display period ratios near 3:1 and near 2:1 (specifically,

period ratios within 3 ± 0.15 and 2 ± 0.15, respectively). The results are compiled

in Table 4.5. The first four columns give the percentage of the time spent near each

resonance, where the first value in each table entry corresponds to the 2:1 resonance

and the second value to the 3:1 resonance. Here, for the first four columns of results,

the percentage is calculated by integrating up the total time that any planet in the

given ensemble spends near the resonance and then dividing by the total time that

the ensemble of planets resides in the simulations. Notice that this figure of merit is

different from that obtained by finding the percentage of time that each individual

planet spends near resonance, and then averaging that fraction over the planets; this

latter quantity is given in the last column in Table 4.5 for the total samples (including

all outcomes) for each planetary IMF.

For the linear IMF, Table 4.5 indicates that planets spend about 70 percent of

their evolutionary time with period ratios of 3:1 and only about 20 percent of their
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Table 4.5. Percent of Total Time Spent in 2:1/3:1 Resonances.

τdamp TimeStop Eject Accrete Total Total(alt)
Linear IMF
0.3 Myr 47/50 2/83 18/69 22/67 12/73
1.0 Myr 25/72 9/69 20/68 20/70 13/70
3.0 Myr 21/77 11/68 19/67 19/73 13/71
Log IMF
0.1 Myr 64/32 10/61 40/54 49/44 34/52
0.3 Myr 70/25 8/63 33/46 51/35 33/46
1.0 Myr 70/26 17/55 34/46 55/34 37/44
∞ 62/33 15/56 43/37 51/37 32/46
Log IMF (2:1)
1.0 Myr 100/0 94/0.3 100/0 100/0 94/0.1

time with ratios near 2:1. The planets that survive the longest (from the simulations

that reach the stopping time of 1 Myr without losing a planet) tend to reach the 2:1

resonance (see below). As a result, the resonance fractions obtained by time averaging

over the whole ensemble of planets (the percentages given in column 4 in Table 4.5)

are more weighted toward the 2:1 resonance than the fractions obtained by finding

the individual resonance time fractions and then averaging (the alternate percentages

given in column 5). Similarly, for the log-random IMF, the systems spend an average

of 53 percent of their time with 2:1 period ratios and 38 percent of their time with

3:1 period ratios (averaged over the four values of τed). The main difference between

the two IMF choices is that the linear IMF has larger planets and mass ratios closer

to unity; our numerical results indicate that this combination is more conducive to

keeping the planets locked in the 3:1 resonant condition. For those systems that stay

near a period ratio of 3:1 for more than 80 percent of their evolutionary time, the

distribution of mass ratios mout/min is sharply peaked near unity, with a long tail

to larger values. As a result, equal mass planets tend to stay near resonance longer.

Systems with with the inner planet more massive than the outer planet tend to move

away from resonance, often by ejecting the smaller planet, whereas systems with more

massive outer planets often drive the smaller inner planet into the star.
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Another related result concerns the systems that survive for the entire 1 Myr time

span without ejecting a planet. As mentioned above, the planets in these systems

have relatively lower masses (Table 4.2). For the log-random IMF, 69 percent of the

surviving systems are found with period ratios near 2:1, 28 percent of the systems

show period ratios near 3:1, and the remaining 3 percent are “far” from resonance.

Thus, surviving systems tend to be those that pass through the 3:1 resonance and

become locked into the 2:1 resonance. As expected, the surviving systems show a

mass distribution that is weighted toward lower masses compared with the original

log-random distribution (which is roughly consistent with the mass distribution of

observed planets). The distribution of mass ratios mout/min is slanted toward values

less than unity so that surviving systems tend to have the outer planet less massive

than the inner planet. For the linear IMF, the results are somewhat different, where

67 percent of the surviving systems have period ratios near 3:1 and the remaining 33

percent have 2:1 period ratios (see also Figs. 4.3 and 4.4).

4.2.4 Distributions of Orbital Elements

For each class of starting configuration, the simulations result in a distribution of final

system properties. The starting states can be characterized by the planetary IMF,

the eccentricity damping time scale τed, and the initial period of the outer planet Pout

(although most of our simulations use Pout ≈ 3.736Pin). Each triple (IMF, τed, Pout)

thus leads to distributions of final orbital elements, as reported in Tables 4.2 – 4.4. For

each end state of the simulations (ejection, accretion, etc.), these tables characterize

the distributions of mass, eccentricity, and semi-major axes, by specifying their mean

values and widths. One must keep in mind the probabilistic nature of this type of

problem. The simulations act as a mapping from an initial space to a final one,

(IMF, τed, Pout) →
{
fout, fa(a), fε(ε), fi(i), fm(mP ), . . .

}
, (4.3)
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where the entries on the left hand side are numbers (single values) and the entries fj

on the right hand side are distributions of values (e.g., fout represents the fractional

occurrence of each outcome, fa(a) is the distribution of semi-major axes, etc.).

The resulting distributions of orbital elements, and planet masses are plotted in

Figs. 4.6 and 4.7. For comparison, these figures include the distributions of planet

properties from the observed sample (see Section 4). The lower right panel of each

figure shows the mass distribution of the planets that survive to the end of the

simulations. The observed distribution of planets provides us with mP sin iobs (rather

than mP ); to account for this ambiguity, we have used the quantity 2mP sin iobs as a

working mass estimate for specifying the “observed” mass distribution (notice also

that the observational viewing angle is different from the usual definition of inclination

angle as an orbital element so that sin iobs 6= sin i). In spite of the tendency for smaller

planets to be ejected, the linear IMF tends to roughly preserve its shape during the

course of evolution (see Fig. 4.6). However, in comparison, the mass distribution of

observed extrasolar planets has fewer high mass planets and more low mass planets

and is thus closer to the log-random distribution (which we adopted as our second

working IMF – see Fig. 4.7). Even with the ejection of the smaller planets, the

log-random IMF model yields a final mass distribution that is close to the observed

distribution. Some discrepancy occurs in the high mass tail, however, because our log-

random distribution has an upper bound at mP = 10 mJ . Our model also provides a

small surplus of planets in the low mass tail, relative to the observed mass distribution,

although this disagreement may be the result of less frequent detection of the smallest

planets.

4.6

The different sets of simulations (two planetary IMFs and four values of the ec-

centricity damping time scale) tend to result in relatively flat distributions of the

semi-major axis (see the upper left panels of Figs. 4.6 and 4.7). For the case of no
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Fig. 6.— Normalized histograms of the orbital elements of surviving planets for a linear (random)

planetary IMF. The upper left panel shows the distributions of semi-major axis for the observed

planets (solid curve) and theoretical simulations with varying time scales for eccentricity damping:

dashes (τed = 0.3 Myr), dots (τed = 1 Myr), and dot-dashes (τed = 3 Myr). Similarly, the upper

right panel shows the distributions of eccentricities and the lower left panel shows the distributions

of orbital inclination angles. The lower right panel shows the distributions of masses, where the

mass distribution of the observed planets (solid curve) is included for comparison; note that the

random IMF for the simulations cuts off at 5 mJ .

Figure 4.6. Normalized histograms of the orbital elements of surviving planets for a linear (random)
planetary IMF. Vertical scale is linear and represents the relative number of planets in each bin. The
upper left panel shows the distributions of semi-major axis for the observed planets (solid curve)
and theoretical simulations with varying time scales for eccentricity damping: dashes (τed = 0.3
Myr), dots (τed = 1 Myr), and dot-dashes (τed = 3 Myr). Similarly, the upper right panel shows the
distributions of eccentricities and the lower left panel shows the distributions of orbital inclination
angles. The lower right panel shows the distributions of masses, where the mass distribution of
the observed planets (solid curve) is included for comparison; note that the random IMF for the
simulations cuts off at 5 mJ .
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eccentricity damping and a log-random IMF, however, the semi-major axis distribu-

tion of the surviving planets displays a broad peak near 1 AU. As the eccentricity

damping is increased (more damping with a shorter time scale τed), this peak becomes

even broader (flattens out) and moves toward lower values of a. Because Type II mi-

gration torques are effective at moving planets inward, and because of the random

element introduced into the migration process (due to different starting angles and

varying effective integration times), the resulting values of semi-major axis fill the

entire range covered by current observations.

4.7

The distributions of eccentricities are shown in the upper right panels in Figs. 4.6

and 4.7. As expected, the distribution of eccentricity shifts toward lower values as the

level of eccentricity damping is increased (i.e., as τed decreases). The general trend

is for the simulations to excite the orbital eccentricities to higher levels (averaged

over the distribution) than those found in the observational sample. The exception

to this rule occurs for the shortest eccentricity damping time scale τed = 0.1 Myr for

the log-random planetary IMF: In this class of systems, the resulting distribution of

eccentricity is shifted to lower values than the observed planetary orbits. Taken at face

value (ignoring the possibility of selection effects in the observational sample), this set

of results argues that, within the context of this migration scenario, the eccentricity

damping time scale cannot be smaller than about τed = 0.1 Myr (otherwise, resulting

eccentricities would be too low) or larger than about τed = 1.0 Myr (otherwise, ε

values would be too large). We will return to this issue below.

The distributions of inclination angle are shown as the lower left panels in Figs.

4.6 and 4.7. The resulting distributions of the inclination angle appear to be largely

independent of the eccentricity damping time scale τed for both choices of plane-

tary IMF. The distribution shows a well-defined peak near i ≈ 6 degrees for the

random IMF and a broader peak near i = 3 − 5 degrees for the log-random IMF.
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Fig. 7.— Normalized histograms of the orbital elements of surviving planets for a logarithmic

(random) planetary IMF. The upper left panel shows the distributions of semi-major axis for the

observed planets (solid curve) and theoretical simulations with varying time scales for eccentricity

damping: long dashes (τed = 0.1 Myr), regular dashes (τed = 0.3 Myr), dots (τed = 1 Myr),

and double dot-dashes (τed → ∞). Similarly, the upper right panel shows the distributions of

eccentricities and the lower left panel shows the distributions of orbital inclination angles. The lower

right panel shows the distributions of masses, where the solid histogram shows the distribution of

observed planets and the solid horizontal line shows starting log-random distribution; note that the

log-random IMF for the simulations cuts off at 10 mJ .

Figure 4.7. Normalized histograms of the orbital elements of surviving planets for a logarithmic
(random) planetary IMF. The upper left panel shows the distributions of semi-major axis for the
observed planets (solid curve) and theoretical simulations with varying time scales for eccentricity
damping: long dashes (τed = 0.1 Myr), regular dashes (τed = 0.3 Myr), dots (τed = 1 Myr), and
double dot-dashes (τed → ∞). Similarly, the upper right panel shows the distributions of eccen-
tricities and the lower left panel shows the distributions of orbital inclination angles. The lower
right panel shows the distributions of masses, where the solid histogram shows the distribution of
observed planets and the solid horizontal line shows starting log-random distribution; note that the
log-random IMF for the simulations cuts off at 10 mJ .
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Although modest, these angles are significantly larger than the starting inclination

angles (|i| ≤ 0.03 ≈ 1.7 degrees). For the shortest eccentricity damping time scale

and the log-random IMF (which has the greatest number of small planets), however,

the distribution of inclination angle is shifted somewhat toward lower values.

As a general rule, increases of the inclination angle are correlated with increases

of eccentricity (consistent with the earlier studies of AL2003; Thommes & Lissauer,

2003). For this ensemble of simulations, we find that the inclination angle and the

eccentricity have a linear correlation coefficient in the range r(N) ≈ 0.33 − 0.66 for

simulations that end in either ejection or accretion. Table 4.6 shows these results

for the eight classes of simulations conducted in this study; also shown (in parenthe-

ses) are the numbers of simulations in the sample used to compute each correlation

coefficient. For the large sample size (N ∼ 100 − 300), these values of r(N) are

generally considered significant (Press et al., 1986), but the correlation is not exact.

Notice that our simple treatment does not include the possible damping of inclination

angle by the circumstellar disk (e.g., Lubow & Ogilvie, 2001). Such damping would

move the distributions of i to smaller values, but the correlations between eccentricity

excitation and inclination angle excitation would remain.

Table 4.6. Linear Correlation Coefficient between ε and i.
τdamp Survival Ejection Accretion Total
Linear IMF
0.3 Myr 0.62 (44) 0.53 (99) 0.61 (96) 0.50 (214)
1.0 Myr 0.064 (260) 0.43 (294) 0.57 (103) 0.31 (660)
3.0 Myr 0.061 (190) 0.39 (180) 0.76 (54) 0.27 (425)
Log IMF
0.1 Myr 0.69 (428) 0.59 (221) 0.55 (333) 0.64 (1034)
0.3 Myr 0.58 (456) 0.53 (258) 0.57 (274) 0.54 (1013)
1.0 Myr 0.30 (566) 0.56 (248) 0.33 (224) 0.45 (1038)
∞ 0.28 (398) 0.40 (228) 0.66 (238) 0.46 (867)
Log IMF (2:1)
1.0 Myr 0.36 (198) 0.56 (80) 0.60 (98) 0.51 (379)
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4.2.5 Distribution of Ejection Speeds

A substantial fraction of the planetary systems eject a planet and these planets can, in

principle, be observed as free floating bodies. Table 4.1 indicates that approximately

one-third of the systems will eject planets for the log-random planetary IMF, and over

half of the systems with a linear IMF will eject planets. These planets have roughly

Jovian mass (Table 4.2) and thus do not represent a significant mass contribution

to the galaxy – in other words, the number of ejected planets is not large enough

to be problematic. However, recent observations have found some evidence for very

small mass brown dwarfs in stellar clusters; these objects could potentially be freely

floating planets (e.g., Zapatero Osorio et al., 2000). If so, these predicted planets

must be consistent with the observations.

The planets are ejected with a well-defined distribution of speeds, as shown in

Fig. 4.8. For all cases considered here, the distribution displays a well-defined peak

near vej = 5 km/s and most of the distribution falls between 0.5 and 20 km/s. For

comparison, the planets are ejected from orbits with semi-major axes near 3 – 7 AU,

where the orbit speeds are about 11 – 17 ≈ 14 km/s. The kinetic energy carried away

by the ejected planets is thus a small fraction FE of the total. A rough estimate of

this fraction is given by

FE ≈
vej

2/2

|E|
=

avej
2

GM∗
≈ (5/14)2 ≈ 0.13 , (4.4)

where vej is the ejection speed and a is the semi-major axis from which ejection occurs.

This finding vindicates the assumption that ejected planets tend to leave on (nearly)

zero energy orbits (AL2003; Marzari & Weidenschilling, 2002).

4.8

We can understand the general form of the distribution of ejection speeds with

the following heuristic argument: Ejections occur through close encounters between

the planets. Let b denote the impact parameter of these interactions, so that the
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Fig. 8.— Distribution of ejection velocities for planets that are ejected during the epoch of mi-

gration. The distribution is shown for the log-random planetary IMF and for four values of the

eccentricity damping time scale: τed = 0.1 Myr (yellow long-dashed curve), τed = 0.3 Myr (red

short-dashed curve), τed = 1.0 Myr (green dotted curve), and τed → ∞ (blue dot-dashed curve).

The four distributions are normalized to the same value, with the vertical scale arbitrary. The

smooth solid curve shows the (normalized) analytic approximation to the distribution of ejection

speeds (as derived in the text). All speeds are given in km/s.

Figure 4.8. Distribution of ejection velocities for planets that are ejected during the epoch of
migration. The distribution is shown for the log-random planetary IMF and for four values of the
eccentricity damping time scale: τed = 0.1 Myr (yellow long-dashed curve), τed = 0.3 Myr (red
short-dashed curve), τed = 1.0 Myr (green dotted curve), and τed → ∞ (blue dot-dashed curve).
The four distributions are normalized to the same value, with the vertical scale arbitrary. The
smooth solid curve shows the (normalized) analytic approximation to the distribution of ejection
speeds (as derived in the text). All speeds are given in km/s.
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ejection speed can be written

1

2
vej

2 = α
G〈m〉

b
− GM∗

2a
, (4.5)

where a is the semi-major axis of the ejected planet (before the interaction), 〈m〉 is

an average mass of the remaining planet, and α is a dimensionless factor of order

unity (which depends on the geometry of the interaction). If we define a velocity

scale v2
0 ≡ GM∗/a and a length scale r0 ≡ 2α(〈m〉/M∗)a, the ejection speed can be

written in the form

u =
[1
ξ
− 1

]1/2
, (4.6)

where u ≡ vej/v0 and ξ ≡ b/r0. If we assume that the impact parameter is distributed

according to dP ∝ bdb (the target area is circular), the probability distribution for

the ejection speed takes the form

dP

du
=

4u

(1 + u2)3
. (4.7)

As written, this probability distribution is normalized to unity over the full range of

dimensionless ejection speeds 0 ≤ u ≤ ∞. In practice, the impact parameter has a

minimum value given by the radius of the (ejector) planet, bmin = rP , and this value

implies a corresponding cutoff in the ejection speed vmax ≈ v0

√
r0/rP . However, the

distribution falls rapidly at high speeds so that the value of this cutoff is relatively

unimportant. Equation (4.7) has the same form as the distributions of ejection speeds

found in the simulations (as shown in Fig. 4.8). The model distribution has been

normalized to agree with the simulations (note that the fraction of systems that

experience ejection must be determined numerically). The distributions agree if the

velocity scale is taken to be v0 ≈ 11 km/s, which implies that ejections (mostly)

occur near the beginning of the evolution (the outer planets, which are more often

ejected, start near 7 AU where (GM∗/a) ≈ 11 km/s). Finally, we note that the simple

formula derived above assumes a single value for the velocity scale. Since the planets
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can migrate inwards to different semi-major axes before ejection, the true distribution

will have a range of v0 values; although this range is relatively narrow in the present

application, this effect tends to broaden the distribution of ejection speeds relative

to equation (4.7).

Under a reasonable set of assumptions, we can estimate the expected population

of free floating planets within a typical birth aggregate. The velocity dispersion for a

young star forming group/cluster is about 1 km/s (Lada & Lada, 2003; Porras et al.,

2003). Given the distribution of ejection speeds (Fig. 4.8), the majority of ejected

planets are predicted to be unbound to their birth clusters. As a first approximation,

suppose that every solar system produces migrating planets and that one third of them

eject planets (Table 4.1). Of the ejected planets, about one tenth remain bound to

the group/cluster with ejection speeds vej < 1 km/s. For every 30 stars in the cluster,

it will thus contain one freely floating planet that is gravitationally bound. The

unbound planets have ejection speeds of ∼5 km/s. For an average cluster size of

R ∼ 1 pc, the ejected planets would remain within their birth clusters for ∼0.2 Myr.

If the young group/cluster remains intact for 10 Myr, then 1/50th of the unbound

planets will reside within the group/cluster at any given time, and the cluster will

contain one unbound planet for every 150 stars. Given a fiducial group/cluster size

of N∗ ≈ 300 stars (Lada & Lada, 2003; Porras et al., 2003), stellar birth aggregates

will have ∼ 10 freely floating planets at low speeds (vej ≤ 1 km/s) and ∼ 2 freely

floating planets at higher speeds (vej ∼ 5 km/s) at any given time (t ≤ 10 Myr).

4.3 Comparison with Observed Extrasolar Planets

In order for a migration mechanism to be considered fully successful, it must produce

distributions of orbital elements that are consistent with those of observed extrasolar

planets. Given that the observed distributions are incomplete and contain biases,

however, and that additional orbital evolution must take place between the end of
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our simulations and the ∼ 1 − 6 Gyr ages of the observed systems, this type of

comparison remains preliminary. In this section, we briefly discuss the limitations of

the data set and outline how the distributions of orbital elements can evolve after

the end of our simulations. We then show that this migration mechanism meets the

necessary (but not sufficient) condition of being able to fill the a−ε plane in a manner

that is roughly consistent with presently available data.

4.3.1 Observed Sample of Extrasolar Planets

The observed sample of extrasolar planets used in this chapter is taken from the

California and Carnegie Planet Search Website.1 In order to compare theoretical

results with this data set, some of its properties must be taken into account. All

planet searches using radial velocity surveys are subject to selection effects. Since

the surveys are subject to a minimum (detectable) velocity amplitude, planetary

companions that induce reflex velocities that are too small cannot be measured. This

effect limits the sensitivity of the surveys to low mass planets. In addition, planets

with long periods (large semi-major axes a) cannot be adequately detected because

of the limited time baseline of the surveys. This latter effect thus leads to a loss of

sensitivity at large a. As a benchmark, Jupiter produces a 12.5 m/s velocity variation

on the Sun with a period of 12 years. The detection of a Solar System analog requires

approximately k ≈ 3 m/s precision maintained over a decade window of observing.

Since this level of precision (Bernstein et al., 2003) and this time baseline are the

best that are currently available, the mass and semi-major axis of Jupiter represent

a rough upper limit on detectability. As a general rule, the completeness of the data

set must decline with increasing semi-major axis and decreasing planet mass. The

detection limit can be written in terms of the reflex velocity kre, defined by

kre ≡
mP sin iobs

M
2/3
∗ (1− ε2)1/2

(
2πG

P

)1/3

, (4.8)

1http://exoplanets.org/science.html
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which is valid in the limit mP � M∗. We can scale this formula to the limit quoted

above, i.e., that the detection of Jupiter itself is near the present day observational

threshold. The portion of the a− ε plane that is accessible to observations is (conser-

vatively) delimited by the curve a(1− ε2) ≤ 5µ2, where a is in AU and µ = mP sin iobs

is in Jupiter masses. The radial velocity surveys have 7 year time spans (for the latter,

more complete samples) which implies a limit of about a ≤ 3.5 AU for completeness

in semi-major axis. For this value of a, the corresponding mass limit is thus µ ≥ 0.84

(1−ε2)1/2. As a result, for the moderate eccentricities observed, 〈ε〉 ≈ 0.3, the sample

is expected to nearly complete out to a = 3.5 AU for mP sin iobs ≥ 0.8mJ , and nearly

complete at a = 1 AU for mP sin iobs ≥ 0.43mJ . At the low end of our planetary IMF,

mP ∼ 0.1mJ , the observed sample is expected to be missing planets.

For planets detected with incomplete data sampling, the derived orbital eccen-

tricities are subject to uncertainties. If a planet has extremely low eccentricity, then

noise in the radial velocity data stream can mimic the signature of small eccentrici-

ties. On the other hand, extrasolar planets with the highest eccentricities, say ε > 0.8,

may be subject to an additional bias that makes them hard to detect using available

strategies, which are sparsely sampled in time (due to limited telescope resources).

Planets on high eccentricity orbits spend most of their time out near apstron, where

they produce little radial velocity variation. Unless the system is observed when the

planet is near periastron, it is difficult to determine the true eccentricity. Even when

such a planet is detected, the analysis can underestimate the eccentricity until enough

data has been obtained to provide full orbital phase coverage (e.g., see Naef et al.,

2001, and the case of HD 80606). However, this bias can be eliminated by sufficient

observational coverage and relatively few of the planets already detected should suffer

from this effect (D. Fischer, private communication). The eccentricities of multiple

planet systems can also vary with time through secular interactions (analogous to the

secular eccentricity variations of Jupiter and Saturn). The observed eccentricity dis-
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tribution of the extrasolar planets is thus a particular sampling of a larger underlying

distribution. The observed eccentricity values can be either lower or higher than the

mean values sampled over a secular cycle; although this effect can influence the inter-

pretation of a particular eccentricity value, it will not affect the overall distribution

of eccentricity of interest here.

4.3.2 Additional Evolution of the Orbital Elements

The orbital elements of the planets will, in general, continue to evolve after the

end of the simulations presented in the previous section. In order to compare the

theoretical results of this migration scenario with the orbital elements of observed

extrasolar planets, this additional evolution should be taken into account. In this

section we discuss two physical processes – continued orbital evolution driven by the

circumstellar disk (with time scale ∼ 1 Myr) and longer term circularization due to

interactions of close planets with the star (with time scale ∼ 1 Gyr).

The simulations end when a planet is ejected or accreted, a collisions take place,

or after a fiducial time span of 1 Myr. In general, however, the disk will not lose its

ability to drive migration at exactly the same time that the simulations are stopped.

Suppose that the disk continues to drive Type II migration (and eccentricity damping)

over a time span ∆t. The orbital elements will evolve from their values (a0, ε0) at the

end of the numerical simulations to new values given by

af = a0 e−∆t/τdamp and εf = ε0 e−∆t/τed . (4.9)

Since the migration time τdamp and eccentricity damping time τed are determined for

a given simulation, the distribution of values for the additional migration time ∆t

determines the final distribution of orbital elements.

Unfortunately, the correct choice of the ∆t distribution is not known. The numer-

ical experiments begin with the planets already formed, so the disk has already been

around for some time before the clock starts, and this lead time will vary from system
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to system. In fact, within the core accretion scenario of planet formation, theories

often have trouble forming giant planets while the disk retains its gas (e.g., Kornet et

al., 2002, suggest a formation time of about 3 Myr), which leaves little time for mi-

gration. The planets with the largest masses in our numerical simulations lead to the

shortest integration times, but these same planets are expected to have the longest

formation times. Astronomical observations show that circumstellar disks have life-

times in the range 3 – 6 Myr (e.g., Haisch et al. 2001), significantly longer than the

∼ 1 Myr time spans of the integrations. However, this range of observed disk lifetimes

represents the time span over which the disk exhibits observational signatures. The

time over which the disk is sufficiently massive to drive (Type II) planet migration

will be significantly shorter. In light of these uncertainties, this chapter explores a

set of algorithms to account for additional evolution of the orbital elements by the

disk, i.e., a set of simple, but well-defined, distributions for the remaining migration

time ∆t.

The system evolution discussed thus far produces orbital elements that apply to

system ages of a few Myr, immediately after planets have finished forming and the

disk has lost its ability to drive migration. Longer term evolution can also take place.

On time scales ∼ 1 − 6 Gyr characteristic of the stellar ages in observed extrasolar

planetary systems, tidal interactions with the star act to circularize close orbits. In

the absence of other processes, the eccentricity of a planetary orbit decays with a

time scale τcirc = −ε/ε̇. Here we write this time scale in an approximate form (see

Goldreich & Soter, 1966; Hut, 1981; Wu & Goldreich, 2002):

τcirc ≈
2

21

Q

k2

(
a3

GM∗

)1/2mP

M∗

(
a

RP

)5

(1− ε2)13/2[f(ε2)]−1 , (4.10)

where Q ≈ 105 − 106 is the tidal quality factor, k2 ≈ 1/2 is the tidal Love number,

and RP ≈ RJ ≈ 7 × 109 cm is the radius of the planet (notice that this radius is

smaller than that used for the collision cross section in the simulations because the

planets will contract over the longer time spans considered here). This form includes
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the essential dependence of the circularization time scale on eccentricity, where f(ε2)

is a rather complicated function of ε (defined by eqs. [9–12] of Hut, 1981). Evaluation

of this time scale for representative values of the parameters indicates that

τcirc ≈ 1Gyr
[
a/(0.05 AU) (1− ε2)

]13/2

[f(ε2)]−1 . (4.11)

As a result, orbits with a ≤ 0.05 AU are expected to be (nearly) circularized, and

orbits with somewhat larger a will experience a substantial decrease in eccentricity.

Although a number of additional processes can take place (e.g., orbital decay and

stellar spinup – see Lin et al., 2000), the leading order effect is loss of eccentricity

at constant angular momentum (see also Goldreich & Soter, 1966; Hut, 1981; Wu &

Goldreich, 2002). Here we numerically integrate the (nonlinear) evolution equation

for eccentricity over the stellar ages t∗, which are assumed to lie in the range t∗ = 1−6

Gyr. In the following subsection, we apply this correction to the theoretical data set

in order to compare with observations, although only the closest orbits are affected.

4.3.3 Comparison of Theory and Observation

One way to evaluate the effectiveness of this migration mechanism is to compare the

resulting two-dimensional distribution of orbital elements in the a − ε plane with

those of the observed extrasolar planets. This subsection presents such a comparison

in systematic fashion. For all cases discussed here, we use the log-random IMF, as it

closely mirrors the observed mass distribution of extrasolar planets. The number of

theoretical planets is taken to be equal to the number in the observed sample, where

the theoretical planets are chosen randomly from the ensemble of simulations. We

then produce a− ε diagrams for each value of the eccentricity damping time scale τed

= 0.1, 0.3, 1.0 Myr, and τed →∞. Within this format, the results are presented for a

collection of possible corrections for additional evolution of the orbital elements and

selection effects, as outlined above.

The first comparison in shown in Fig. 4.9, which shows the a − ε plane for
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observed and theoretical planets, with no corrections applied for possible additional

evolution. The location of the observed extrasolar planets in the a − ε plane are

marked by the star symbols, whereas the results of the theoretical simulations are

marked by open squares. The four panels show the results of the four eccentricity

damping time scales. The theoretical distribution of planets moves to lower values of

eccentricity and to lower values of semi-major axis as the eccentricity damping time

scale decreases. The lower ε values are a direct result of the increased effectiveness of

eccentricity damping. The lower values of a occur because the increased eccentricity

damping keeps the planets stable for longer times and the disk has more time to move

planets inward. This figure suggests that the simulations with no eccentricity damping

(τed → ∞; lower right panel) produce too many high eccentricity planets compared

to the observational sample, whereas the simulations with τed = 0.1 Myr (upper left

panel) tend to produce planetary orbits with too little eccentricity. Nonetheless, the

zeroeth order result of this comparison is that both the observed planets and the

theoretical simulations fill most of the a − ε plane shown here (except for the case

τed → ∞, which ejects planets before they move far enough inward). Nonetheless,

some differences appear, and we need to explore whether or not the corrections for

additional evolution described above act to bring the observational and theoretical

samples into better agreement.

4.9

The discussion of Section 4.1 suggests that the observed sample is likely to be

incomplete for planet masses below 0.5 mJ , with the level of incompleteness increasing

with semi-major axis a. In other words, the sample is incomplete for small values of

the reflex velocity kre. To determine the importance of this issue on our assessment

of this migration mechanism, we present the same set of a− ε diagrams with a kre cut

applied; specifically, all planets in the theoretical sample with kre ≤ 3 m/s have been

removed from consideration. The result is shown in Fig. 4.10. No other corrections
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– 40 –

Fig. 9.— The a− ε plane for observed and theoretical planets, where no corrections for additional

evolution have been applied to the theoretical sample. This diagram shows the semi-major axes

a and eccentricities ε for the observed extrasolar planets as stars. The results of the theoretical

simulations are shown as open squares. All of the theoretical simulations use the log-random IMF.

The four panels correspond to different choices of the eccentricity damping time scale: τed = 0.1

Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0 Myr (lower left), and τed → ∞ (lower

right).

Figure 4.9. The a−ε plane for observed and theoretical planets, where no corrections for additional
evolution have been applied to the theoretical sample. This diagram shows the semi-major axes a and
eccentricities ε for the observed extrasolar planets as stars. The results of the theoretical simulations
are shown as open squares. All of the theoretical simulations use the log-random IMF. The four
panels correspond to different choices of the eccentricity damping time scale: τed = 0.1 Myr (upper
left), τed = 0.3 Myr (upper right), τed = 1.0 Myr (lower left), and τed →∞ (lower right).
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for additional evolution have been applied to the theoretical sample. Comparison of

Figs. 4.9 and 4.10 indicates that mass/kre incompleteness has only a modest effect

on comparisons of the a − ε plane. This result makes sense because the mass range

in question, roughly mP ≤ 0.5mJ , represents about one fourth of the starting mass

range, but relatively more of the low mass planets are ejected or accreted (see Fig.

4.7 and Table 4.2). As a result, only 10 – 15 percent of the surviving planets fall in

this low mass range.

4.10

– 41 –

Fig. 10.— The a − ε plane for observed and theoretical planets, where the theoretical sample

starts with a log-random IMF and has been subjected to a cut in reflex velocity kre at 3 m/s.

No corrections for additional evolution have been applied to the theoretical sample. This diagram

shows the semi-major axes a and eccentricities ε for the observed extrasolar planets as stars. The

results of the theoretical simulations are shown as open squares. The four panels correspond to

different choices of the eccentricity damping time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr

(upper right), τed = 1.0 Myr (lower left), and τed → ∞ (lower right).

Figure 4.10. The a − ε plane for observed and theoretical planets, where the theoretical sample
starts with a log-random IMF and has been subjected to a cut in reflex velocity kre at 3 m/s. No
corrections for additional evolution have been applied to the theoretical sample. This diagram shows
the semi-major axes a and eccentricities ε for the observed extrasolar planets as stars. The results
of the theoretical simulations are shown as open squares. The four panels correspond to different
choices of the eccentricity damping time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper
right), τed = 1.0 Myr (lower left), and τed →∞ (lower right).

In order to take into account additional evolution of the orbital elements beyond
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the end of the simulations due to the surviving circumstellar disk, we apply correc-

tions according to equation (4.9). As discussed above, the distribution of additional

migration time ∆t is not well determined. As a result, we explore different algorithms

for continued evolution. In the first case, we assume that the disk is able to drive

migration beyond the end of the numerical simulations for an additional time given

by ∆t = δt− tsim, where tsim is the time at the end of the simulation, δt is a random

time scale in the range 0 – 1 Myr (where negative values of ∆t are set to zero, i.e.,

no additional evolution). This is the same algorithm used in the previous study of

this migration scenario in AL2003. The resulting a − ε diagrams are shown in Fig.

4.11 for different choices of eccentricity damping time scale. The continued migration

moves the points to lower values of both a and ε, and the random time element tends

to spread the distributions, although the effect is relatively small (except for the case

with no eccentricity damping). Nonetheless, this correction acts to bring the theoret-

ical and observational distributions into closer agreement (although the distribution

of ∆t applied here is not unique).

4.11

An alternate assumption for additional evolution is that the disk has a remaining

lifetime ∆t that is random and independent of the previous evolution. Keep in mind

that ∆t is the time over which the disk has enough mass to change the orbital elements

of any remaining planets; the disk may exhibit observational signatures over longer

times. Fig. 4.12 shows the resulting a − ε diagrams for random disk lifetimes in

the range ∆t = 0 – 0.3 Myr. Fig. 4.13 shows the a − ε diagrams for random disk

lifetimes in the somewhat longer range ∆t = 0 – 0.5 Myr. These results are much

the same as for the previous algorithm illustrated in Fig. 4.11. Any similar model

of continued disk evolution will move the theoretical points to smaller values of (a, ε)

and will spread the distributions. The magnitude of the effect (the mean value of

the ∆t distribution) matters more than the particular choice of algorithm (which
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Fig. 11.— The a− ε plane for observed and theoretical planets, where the theoretical sample starts

with a log-random IMF and has been corrected for additional orbital evolution (first alogrithm).

Here the disk is assumed to exist beyond the end of the numerical simulations for an additional

time given by ∆t = δt − tsim, where tsim is the time at the end of the simulation, δt is a random

time scale in the range 0 – 1 Myr, and negative values are set to zero. This diagram shows the

semi-major axes a and eccentricities ε for the observed extrasolar planets as stars. The results

of the theoretical simulations are shown as open squares. The four panels correspond to different

choices of the eccentricity damping time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper

right), τed = 1.0 Myr (lower left), and τed → ∞ (lower right).

Figure 4.11. The a − ε plane for observed and theoretical planets, where the theoretical sam-
ple starts with a log-random IMF and has been corrected for additional orbital evolution (first
alogrithm). Here the disk is assumed to exist beyond the end of the numerical simulations for an
additional time given by ∆t = δt− tsim, where tsim is the time at the end of the simulation, δt is a
random time scale in the range 0 – 1 Myr, and negative values are set to zero. This diagram shows
the semi-major axes a and eccentricities ε for the observed extrasolar planets as stars. The results
of the theoretical simulations are shown as open squares. The four panels correspond to different
choices of the eccentricity damping time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper
right), τed = 1.0 Myr (lower left), and τed →∞ (lower right).
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sets the shape of the distribution). Inspection of Figs. 4.11 – 4.13 suggests that a

mean value 〈∆t〉 ≈ 0.3 − 0.5 Myr is needed to provide reasonable agreement with

observations. Notice that the model allows for some interplay between this time scale

and the eccentricity damping time scale – for larger τed, less additional evolutionary

time 〈∆t〉 is indicated.

4.12

– 43 –

Fig. 12.— The a− ε plane for observed and theoretical planets, where the theoretical sample starts

with a log-random IMF and has been corrected for additional orbital evolution (second algorithm).

The disk is assumed to exist beyond the end of the numerical simulations for an additional time

∆t, which is chosen randomly from the range 0 – 0.3 Myr. This diagram shows the semi-major axes

a and eccentricities ε for the observed extrasolar planets as stars. The results of the theoretical

simulations are shown as open squares. The four panels correspond to different choices of the

eccentricity damping time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0

Myr (lower left), and τed → ∞ (lower right).

Figure 4.12. The a − ε plane for observed and theoretical planets, where the theoretical sample
starts with a log-random IMF and has been corrected for additional orbital evolution (second algo-
rithm). The disk is assumed to exist beyond the end of the numerical simulations for an additional
time ∆t, which is chosen randomly from the range 0 – 0.3 Myr. This diagram shows the semi-major
axes a and eccentricities ε for the observed extrasolar planets as stars. The results of the theoret-
ical simulations are shown as open squares. The four panels correspond to different choices of the
eccentricity damping time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0
Myr (lower left), and τed →∞ (lower right).

4.13

Next we consider corrections to the orbital elements due to the longer term process
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Fig. 13.— The a− ε plane for observed and theoretical planets, where the theoretical sample starts

with a log-random IMF and has been corrected for additional orbital evolution (third alogorithm).

The disk is assumed to exist beyond the end of the numerical simulations for an additional time

∆t, which is chosen randomly from the range 0 – 0.5 Myr. This diagram shows the semi-major axes

a and eccentricities ε for the observed extrasolar planets as stars. The results of the theoretical

simulations are shown as open squares. The four panels correspond to different choices of the

eccentricity damping time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0

Myr (lower left), and τed → ∞ (lower right).

Figure 4.13. The a − ε plane for observed and theoretical planets, where the theoretical sample
starts with a log-random IMF and has been corrected for additional orbital evolution (third alo-
gorithm). The disk is assumed to exist beyond the end of the numerical simulations for an additional
time ∆t, which is chosen randomly from the range 0 – 0.5 Myr. This diagram shows the semi-major
axes a and eccentricities ε for the observed extrasolar planets as stars. The results of the theoret-
ical simulations are shown as open squares. The four panels correspond to different choices of the
eccentricity damping time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0
Myr (lower left), and τed →∞ (lower right).
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of tidal circularization by the central star. To account for this effect, we integrate

the differential equation ε̇/ε = −τcirc
−1, with the circularization time scale given by

equations (4.10, 4.11). The assumed system lifetimes are assumed to be randomly

distributed and lie in the range 1 – 6 Gyr, similar to the stellar ages in the observed

sample. The resulting a − ε diagrams are shown in Fig. 4.14. The inclusion of this

circularization processes cleans up an important discrepancy between the theoretical

and observed orbital elements, namely the observed lack of short period planets (small

a) with substantial eccentricities.

4.14

– 45 –

Fig. 14.— The a− ε plane for observed and theoretical planets, where the theoretical sample starts

with a log-random IMF and has been corrected for tidal circularization over the stellar lifetime,

which is assumed to lie in the range 1 – 6 Gyr. This diagram shows the semi-major axes a and

eccentricities ε for the observed extrasolar planets as stars; results of the theoretical simulations are

shown as open squares. The four panels correspond to different choices of the eccentricity damping

time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0 Myr (lower left), and

τed → ∞ (lower right).

Figure 4.14. The a − ε plane for observed and theoretical planets, where the theoretical sample
starts with a log-random IMF and has been corrected for tidal circularization over the stellar lifetime,
which is assumed to lie in the range 1 – 6 Gyr. This diagram shows the semi-major axes a and
eccentricities ε for the observed extrasolar planets as stars; results of the theoretical simulations are
shown as open squares. The four panels correspond to different choices of the eccentricity damping
time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0 Myr (lower left), and
τed →∞ (lower right).
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Finally, in Fig. 4.15, we present a set of a − ε diagrams with all of the correc-

tions applied: a reflex velocity cut such that only planets with kre > 3 m/s remain,

continued migration with remaining disk lifetimes given by the algorithm depicted in

Fig. 4.11, and the circularization correction. The resulting theoretical distributions

of a and ε are in reasonable agreement with those of the observed sample of extra-

solar planets. The eccentricity damping time scale τed = 0.3 Myr (i.e., τed = τdamp)

provides the best fit, although all three cases with τed in the range 0.3 – 3 Myr are

in the right ballpark.

4.15

4.4 Conclusion

In this section we summarize our results so far. As the outer planet migrates inward,

it eventually becomes close enough to the interior planet to force it inward and to

drive eccentricity growth with increasingly violent interactions. Such systems are

generally not stable in the long term and adjust themselves to stability by ejecting a

planet, accreting a planet onto the central star, or by having the two planets collide.

The surviving planet is left on an eccentric orbit of varying semi-major axis, roughly

consistent with the orbits of observed extrasolar planets. On longer time scales, tidal

interactions with the central star act to circularize the orbits of the closet planets.

We have presented a comprehensive, but not exhaustive, exploration of parameter

space for this migration scenario. Our main results can be summarized as follows:

[1] This migration scenario results in a wide variety of final systems with a broad

distribution of orbital elements. In particular, this migration scenario can fill essen-

tially the entire a− ε plane for semi-major axes a smaller than the initial values. The

observed extrasolar planets have orbital elements that fill the a− ε plane in roughly

the same way (see Figs. 4.9 – 4.15). When the theoretical ensemble of planets is cor-

rected for additional orbital evolution due to interactions with the circumstellar disk
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Fig. 15.— The a− ε plane for observed and theoretical planets using corrections for both continued

disk evolution and tidal circularization. The theoretical sample starts with a log-random IMF, but

a reflex velocity cut kre > 3 m/s has been applied to the surviving planets. The disk is assumed

to continue driving planet migration beyond the end of the simulations for a random time interval

in the range 0 – 0.3 Myr. Tidal circularization is assumed to continue for a stellar lifetime, taken

to be a random time interval in range 1 – 6 Gyr. This diagram shows the semi-major axes a and

eccentricities ε for the observed extrasolar planets as stars; results of the theoretical simulations are

shown as open squares. The four panels correspond to different choices of the eccentricity damping

time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0 Myr (lower left), and

τed → ∞ (lower right).

Figure 4.15. The a − ε plane for observed and theoretical planets using corrections for both
continued disk evolution and tidal circularization. The theoretical sample starts with a log-random
IMF, but a reflex velocity cut kre > 3 m/s has been applied to the surviving planets. The disk is
assumed to continue driving planet migration beyond the end of the simulations for a random time
interval in the range 0 – 0.3 Myr. Tidal circularization is assumed to continue for a stellar lifetime,
taken to be a random time interval in range 1 – 6 Gyr. This diagram shows the semi-major axes a and
eccentricities ε for the observed extrasolar planets as stars; results of the theoretical simulations are
shown as open squares. The four panels correspond to different choices of the eccentricity damping
time scale: τed = 0.1 Myr (upper left), τed = 0.3 Myr (upper right), τed = 1.0 Myr (lower left), and
τed →∞ (lower right).
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(on . Myr time scales) and tidal interactions with the central star (on ∼ 1 Gyr time

scales), the resulting distributions of theoretical orbital elements are in reasonable

agreement with those of the observed sample of extrasolar planets.

[2] Planets of smaller mass tend to be the ones that are ejected or accreted (see

Figs. 4.3 and 4.4). The mass distribution of the observed planetary sample is roughly

log-random, with a moderate deficit of planets at the low mass end (Fig. 4.7). This

shape is consistent with planets being formed with (roughly) a log-random mass dis-

tribution and the lower end of the mass function being depleted through planet-planet

scattering, as produced by this migration mechanism. Keep in mind, however, that

the lower end of the mass distribution also suffers from selection effects (Tabachnik &

Tremaine, 2002), which must be sorted out before definitive conclusions can be made

(see Section 4.1).

[3] The mutual gravitational interactions of the planets are highly effective at

increasing orbital eccentricities. The general trend is for planet-planet scattering to

produce orbital eccentricities that are somewhat larger than those observed in the cur-

rent sample of extrasolar planets. As a result, real solar systems must either provide

sufficient eccentricity damping as suggested by numerical simulations of planet-disk

interactions (e.g., Kley et al., 2004; Nelson et al., 2000), contain only single planets,

or provide a mechanism to keep multiple planets sufficiently separated. The eccen-

tricity damping time scale that provides the best fit to the observations lies in the

range τed = 0.1 – 1 Myr for a viscous damping time scale of τdamp = 0.3 Myr, i.e.,

the ratio τed/τdamp = 1/3 – 3. While we find in the next chapter that, analytically,

eccentricity excitation and damping are both possible, this study indicates that ec-

centricity damping is most effective at reproducing the characteristics of the observed

extrasolar planets.

Planet-planet interactions are most effective at increasing eccentricities when the

two planets are in a mean motion resonance, as can be seen from individual simu-
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lations. If additional physics, such as MHD turbulence, prevents the planets from

remaining in resonance, this effect will likely be diminished (see Chapter 6.)

[4] The inclination angles of the planetary orbits are excited with a well-defined

distribution centered of ∆i ≈ 5 degrees (Figs. 4.6 and 4.7). For the end states

of this migration mechanism, the inclination angle excitation is correlated with the

excitation of orbital eccentricity (Table 6).

[5] This migration scenario leads to a large number of ejected planets; specifically,

about one-third to one-half of the simulated systems eject a planet. The distribution

of ejection speeds is broad, with a peak near 5 km/s and a long tail toward higher

speeds (Fig. 4.8). The functional form of the distribution of ejection speeds can be

understood in terms of the simple physical argument given in Section 3.5. More than

90 percent of the exiled planets are predicted to attain ejection speeds greater than

1 km/s, the speed required for planets to (immediately) escape their birth aggregate.

As a result, typical stellar birth clusters (with N∗ ≈ 300) are expected to contain

only ∼ 12 free floating planets at a given time due to this migration mechanism.

This migration scenario produces a full distribution of orbital elements for the

surviving planets and is in reasonable agreement with observations. In order for this

mechanism to be successful, the systems must have a number of properties, and it is

useful to summarize them here: The planets that end up in the currently observed

region of the a − ε plane are assumed to have formed in disk annulus r = 3 − 7

AU, roughly where Jupiter lives in our solar system. The disk must be able to sus-

tain Type II migration torques over time scales ∼ 1 Myr; the disk must maintain

more mass (in gas) than its planets over this time scale, which is comparable to

the time required for giant planets to form through the core accretion mechanism.

Some system-to-system variation in this migration time scale is also indicated. As

mentioned above, disk signatures are observed over longer times (several Myr), al-

though the disks do not necessarily maintain enough mass to drive migration over
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this longer time. The torques must be large enough so that |a/ȧ| ≈ 0.3 Myr, which

is equivalent to having a viscosity parameter α ∼ 10−3. The disk must damp orbital

eccentricity of the outer planet with a damping time scale in the range 0.1 – 1 Myr (so

that |εȧ/ε̇a| ∼ 1). The planetary IMF must be nearly log-random, more specifically,

close to the observed planetary mass function with a moderate excess of lower mass

planets (they are the ones accreted or ejected). Finally, in order to not overpopulate

the (low a, high ε) portion of parameter space, close orbits must be circularized and

hence the tidal quality factor must lie in the estimated range Q = 105 − 106. If the

system parameters differ significantly from these values/ranges, then this migration

mechanism (in the form studied here) will not produce the observed orbital elements

of extrasolar planets.

Although this migration mechanism is promising, a number of issues remain un-

resolved and should be considered in future work. One important issue is the manner

in which eccentricity is damped by the circumstellar disk. The parametric treatment

presented here indicates that in order for the theory to produce results consistent with

the observed distributions of orbital elements, the ratio of the eccentricity damp-

ing time scale to the migration (disk accretion) time scale should lie in the range

τed/τdamp ≈ 1/3 − 3. Numerical simulations of circumstellar disks interacting with

planets often provide a damping time scale near the low end of this range (e.g., Nelson

et al., 2000; Kley et al., 2004), whereas competing analytic calculations suggest that

eccentricity is not damped at all, but rather is excited by the disk (Goldreich & Sari,

2003; Ogilvie & Lubow, 2003). Since a particular disk cannot damp and excite eccen-

tricity at the same time, these two conflicting results define an interesting problem

for future study. The resolution of this issue must allow for eccentricity damping time

scales in the proper range (τed/τdamp ≈ 1/3− 3) if this migration scenario represents

the correct explanation for the observed extrasolar planetary orbits. Therefore, the

next chapter of this chapter investigates the eccentricity evolution of giant planets
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with a range in starting eccentricity.



CHAPTER 5

ECCENTRICITY EVOLUTION OF GIANT

PLANET ORBITS

In the standard description of planetary migration, rings of disk material in reso-

nance with a planet in a nearly circular orbit exert torques on the planet, driving it

inward and further decreasing its eccentricity ε (Goldreich & Tremaine, 1980, here-

after GT80). This scenario, while appropriate for our solar system, never allows the

planet to possess large orbital eccentricity, and hence does not explain the large eccen-

tricities of many detected planetary orbits. As a result, one of the current challenges

in planetary migration theory is to produce the wide range in orbital eccentricity ob-

served in the extrasolar planet population. The observed range in eccentricity can be

explained by disk torques acting in conjunction with interactions with a second planet

(Moorhead & Adams, 2005, see Chapter 4; hereafter MA05; see also Rasio & Ford,

1996; Thommes & Lissauer; 2003, Adams & Laughlin, 2003). Here we investigate

whether eccentricity excitation can take place when we remove the small eccentricity

assumption from the GT80 formalism. We then outline a method for incorporating

the results into numerical simulations, such as that performed in Chapter 4, in order

to investigate to what extent the a-ε distribution changes under this modification.

This chapter combines the formalism of three key analytic papers on planet mi-

gration: GT80, Goldreich & Sari (2003; hereafter GS03), and Ogilvie & Lubow (2003;

hereafter OL03). Specifically, we obtain our torque formulas from GT80, the form of

the eccentricity derivative from GS03, and our treatment of saturated corotation res-

onances from OL03. We extend this combined treatment primarily by performing a

73
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full calculation of the coefficients of the cosine expansion of the planet’s perturbation

to the overall gravitational potential, φP
`,m(β) (see Chapter 3), assuming neither small

eccentricity nor large azimuthal wavenumber (as in past studies). We find that the

function φP
`,m(β) has a complicated dependence on eccentricity (see section 2). Each

resonant torque depends on φP
`,m(β) (see Chapter 3), and as a result, the eccentric-

ity time derivative is also a complicated function of eccentricity; in particular, dε/dt

attains both positive and negative values depending on the current value of eccen-

tricity. Several properties of the planet’s cleared gap, including its width, placement

around the planet, and the degree to which it is cleared, alter the shape of dε/dt. In

this chapter, we present eccentricity time derivatives for a variety of gap widths and

shapes, seeking common behaviors. Additionally, if corotation resonances become

saturated, we find dε/dt to be almost exclusively positive. In this manner, we attain

a greater understanding of how the production of either eccentricity excitation or

damping depends on current planet and disk properties. The paper concludes with a

discussion of this finding in the context of recent analytic studies as well as numerical

studies, which generally produce eccentricity damping.

5.1 Methods and Initial Conditions

5.1.1 Disk Properties

For the sake of definiteness, we consider a 1MJ planet orbiting a 1 M� star, embedded

in a 0.05 M� circumstellar disk with radius 30 AU. We assume that the unperturbed

disk surface profile density falls off with distance from the central star as a power law,

Σ = Σ0(r/r0)
−1/2. We choose this power-law index for comparison with the many

numerical studies that do the same; additionally, the results are largely insensitive

to this choice. We can easily verify that the small chosen disk mass does not disturb
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the overall Keplerian rotation curve Ω(r), i.e., the condition

GΣ

Ω2r
� 1 (5.1)

is satisfied; the largest value GΣ/Ω2r attains for any value of r in our given range is

0.04.

We assume that the radial temperature profile also obeys a power law, T =

T0(r/r0)
−3/4, where T0 = 50 K at the snow-line, r0 = 7 AU. Finally, we specify the

properties of the disk material, the standard viscosity parameter for accretion disks

α = 10−3 and the ratio of specific heats γ = 1.4. These parameters determine the

extent to which planets are able to clear gaps in the disk and the strength of the

torques produced by disk-planet resonances (see GT80; Shu, 1992; Lin & Papaloizou,

1993). A change in the temperature profile or a change in viscosity would result in

a different gap width; we investigate several gap widths to account for such possible

variations in disk properties.

We assume a flat (cold) disk in our analysis. In addition, our torque formulas

require that the disk satisfy the more stringent condition,

m
h

r
= m

(as/Ω)

r
� 1 , (5.2)

for each resonance of order m, where h is the disk scale height and as is the sound

speed. The largest value h/r attains is 0.07, where h/r ' 0.04(r/1 AU)1/8. A 1 MJ

planet at 1 AU allows for only 5-10 resonances of each type, and so we can safely use

the flat disk torque formulas. Notice, however, that smaller planets produce smaller

gaps, which in turn require larger values of m. As a result, this treatment cannot be

extrapolated to arbitrarily small planet masses.

We adopt the treatment of disk torques as developed in GT80 and outlined in

Chapter 3 of this thesis, including both Lindblad and corotation resonances. We

calculate the location and torque of each resonance (and discuss the perturbing func-
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tion’s coefficients φP
`,m(β) in detail). We then present our method for translating a

given gap profile into an upper limit on the number of contributing resonances.

5.1.2 Calculating the Expansion Coefficients

Calculating the coefficients of the disturbing potential, φP
`,m, requires the evaluation

of an oscillatory two-dimensional integral. One method of sidestepping this problem

is to expand φP
`,m(r) to first order in ε (GT80). However, extrasolar planets often

display large orbital eccentricity, and one goal of migration theory is to explain these

large eccentricities. It is therefore important to consider the validity of the linear

approximation of φP
`,m for the full range of eccentricity ε. Figure 5.1 displays the

behavior of the numerically determined and approximate expressions for one partic-

ular coefficient, φP
4,3(rILR), as a function of eccentricity. Clearly, an approximation to

first order in eccentricity is only useful for eccentricities ε . 0.3. In the context of

GT80, this approximation was acceptable as researchers were mainly interested in

explaining the properties of our own solar system, where planets have nearly circular

orbits. However, many extrasolar planets possess large eccentricities, and thus the

small ε approximation necessarily breaks down.

5.1

An alternative method for avoiding the full calculation of φP
`,m is to take the large

m limit, where the Lindblad and corotation resonances have the same functional de-

pendence on φP
`,m(r) (see Eqs. 3.6 and 3.4). In this limit, one can evaluate the degree

to which Lindblad and corotation resonances cancel or add (GS03). The torque is

proportional to m, so large m resonances are more significant. This approximation

works well for less massive planets, which clear small gaps and allow large m reso-

nances to contribute to the torque. On the other hand, a 10 MJ planet clears a wide

enough gap that only a few resonances exist, and even a 1 MJ planet only allows for

only 5 to 10 resonances of each type. Thus, an important part of this study is to
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Figure 5.1. The exact solution for φP
4,3(rILR) (solid curve) and an approximation for φP

4,3(rILR)
accurate to first order in eccentricity (dashed line) as a function of eccentricity. This plot shows
that, for this `, m, the linear approximation is useful only in the region ε . 0.3. As the azimuthal
wavenumber m increases, the cusp in the exact solution moves leftward while the oscillations in the
right half of φP

`,m(rILR) increase in number and decrease in amplitude, thus shrinking the region of
accuracy for the linear approximation.
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calculate the coefficients φP
`,m(r) to much higher order accuracy for larger values of

eccentricity, ε.

To conclude, for the currently observed sample of extrasolar planets, making low ε

or large m approximations may not produce the correct eccentricity evolution for any

given system; on the other hand, calculating the exact solution for φP
`,m(r) is often

not computationally feasible. Therefore, we embark on a semi-analytic investigation

of the eccentricity evolution for intermediate values of eccentricity and for a number

of representative disk-planet configurations. We look for an overall pattern, both

to understand eccentricity evolution and to incorporate into future calculations of

planetary migration.

5.1.3 The shape of the function φP
`,m(β) and its radial derivative

Here we note several characteristics of φP
`,m(β) and its derivative as a function of ε,

as shown in Fig. 5.1. The overall shape consists of three distinct regions: a nearly

linear decrease with ε for small ε, a cusp located at an intermediate value ε = ε0, and

a smooth oscillation for larger values of ε. As m increases, the location of the cusp

moves to the left, and the number of oscillations increases roughly in proportion with

m. The cusp at ε0 = 1−β is of particular interest because the derivative dφP
`,m(β)/dβ

becomes unbounded at ε = ε0.

The function φP
`,m(β) is bounded, and we find, as expected (GT80) that the over-

all amplitude of the resonance falls off as |` − m| increases (GT80). However, the

derivative dφP
`,m(β)/dr is unbounded at the location of the cusp in φP

`,m(β), ε0. Fur-

thermore, ε0 = |1−β| = |1− (m−1)|/` (for inner Lindblad resonances, for example),

and so is dense like the rational numbers. In other words,

∀ ε, h ∈ R, {φP
`,m : |∂rφ

P
`,m(ε)

∣∣∣∣∣
rP
`,m

| > h} 6= ∅. (5.3)

Using this information alone, it is incorrect to ignore higher values of |l − m|.

However, any physical disk will exhibit a smooth response to the planet’s stimulus.
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To mimic this effect, we manually smooth the potential (and therefore the cusp in

φP
`,m) over the largest relevant physical scale. The viscous length scale is given by

δν =

(
ν

m[−dΩ/dr]

)1/3

, (5.4)

where ν is the characteristic kinematic viscosity (OL03). For m = 1 and r = 1 AU,

δν = 0.004, and for any m, r of interest, δν . 0.01. On the other hand, the size of

the disk scale height is h/r ' 0.04. We will present results using first the viscous

length scale as our chosen smoothing length, and then using the disk scale height.

This is to demonstrate the effect that increasing the smoothing length has on our

results. Smoothing over these physical scales prevents the derivative from attaining

arbitrarily large values, and higher order resonances may be safely discarded.

Furthermore, we may apply a low order correction for our treatment of the disk as

two dimensional by averaging over the disk scale height (Menou & Goodman, 2004).

The disk scale height is about four times as large as the viscous scale length, and

therefore we will discard the viscous scale length and smooth all of our functions over

the disk scale height.

It is important to note that the amplitude of the resonances decreases much more

rapidly for small ε than for large ε. Thus, it is important to include resonances

for which |` − m| > 1 in order to calculate dε/dt accurately. However, the shape

of φP
`,m(β) does not change rapidly with |` − m| (see Fig. 5.2), and higher order

resonances tend to add to a similar shape as do lower order resonances. Therefore,

we take the approach of using |`−m| ≤ 1 resonances to determine the shape of dε/dt,

and then calculating dε/dt more accurately for key values of ε using all contributing

`, m.

5.2
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Figure 5.2. The exact solution for the torque exerted by the inner Lindblad resonance τ`,4(rILR)
as a function of ε for ` = 5, 6, 7, 8, 9, 10, 11, 12. As ` increases, the first peak decreases and
moves toward higher eccentricity. We find that by including resonances for which |`−m| > 1, dε/dt
increases in magnitude, but does not significantly alter the shape of dε/dt as a function of ε.

5.2 Results

Using the framework developed in the above section, we can calculate the eccentricity

time derivative for a given Jovian planet in a given thin disk. The most important

parameters in this calculation are the mass, semi-major axis, and eccentricity of the

planet, and the surface density profile in the vicinity of the planet’s cleared gap. Our

algorithm can be summarized as follows: [1] We define the radial surface density

profile of the disk and the orbital properties of the planet. [2] We evaluate the

formulae for φP
`,m and its derivative (using the Gauss-Kronrod numerical integration

function in Mathematica), the torques, and the eccentricity derivative resulting from

each resonance, smoothing over the disk scale height to partially account for the disk’s

finite thickness (Menou & Goodman, 2004). [3] We sum the contributions to the total

eccentricity derivative over all resonance types and values of m. For each set of input

parameters (disk properties plus orbital parameters of the planet), we obtain dε/dt
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as a function of ε. Issue may be taken with any individual surface density profile we

present in this section. However, we present dε/dt for a variety of gap architectures,

noting shared characteristics.

5.2.1 A Sharp-Edged Gap

We first present the simplest case: a 1 MJ planet orbiting at a = 1 AU in a gap

with sharply defined edges. The strongest resonances occur for values of ` = m or

` = m±1, limiting the number of values of ` we must consider (GT80). The azimuthal

wavenumber m may still take on any value, but, as m increases, the location of the

resonance approaches the semi-major axis of the perturbing planet. When the planet

clears a clean gap, the edges of the gap place a physical upper limit on the number of

values of m that must be considered. The resulting function dε/dt versus ε (shown in

Figs. 5.3 and 5.4) is the result of summing the contributions of five to ten resonances of

each type (where type refers to, for example, an ` = m+1 inner Lindblad resonance).

5.3

5.4

In Fig. 5.3, dε/dt is not smoothed over the disk scale height, but is instead

smoothed over the viscous length scale δν ' 0.01. Due to the small smoothing

length, the features of the φP
`,m functions are clearly visible in Fig. 5.3; the peaks

correspond to the singularities in dφP
`,m(β)/dβ smoothed over the viscous length scale,

and the smooth right half of the plot is produced by the combination of the smoothly

oscillating portions of the φP
`,m(β) and dφP

`,m(β)/dβ functions. In Fig. 5.4, the features

of the φP
`,m functions are smoothed out over the disk scale height, h/r ' 0.04, and thus

not clearly visible in the resulting function dε/dt. However, the peaks and troughs in

dε/dt for ε < 0.5 generally correspond to the singularities in dφP
`,m(β)/dβ, and peaks

and troughs in dε/dt for ε > 0.5 correspond to the smoothly oscillating portions of the

φP
`,m(β) and dφP

`,m(β)/dβ functions. The most important result obtained from this
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Figure 5.3. The function dε/dt versus ε for a 1 MJ planet in a 1 AU orbit. Here we have smoothed
over the viscous scale length to demonstrate the shape of dε/dt for a small smoothing length. The
features of this function clearly result from the φP

`,m functions; each sharp peak and trough occurs
at the location of a cusp in some φP

`,m function, which is the same location at which the radial
derivative of φP

`,m becomes unbounded (e.g., see Fig. 5.1).
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Figure 5.4. The function dε/dt versus ε for a 1 MJ planet in a 1 AU orbit. Here we have smoothed
over the disk scale height to account for the finite thickness of the disk. The overall shape of this
function is common for all surface density profiles that have gaps with sharp edges centered on the
orbiting planet. The features of this function result from the φP

`,m functions; peaks and troughs
for ε < 0.5 occur at the locations of smoothed cusps in the φP

`,m functions, and result from the
oscillations in low order φP

`,m functions for ε > 0.5. The dotted curve is for a narrower gap.
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plot is that planet-disk interactions do not result in uniform eccentricity damping or

excitation. The behavior of dε/dt is complicated, leading to varying levels of damping

or excitation depending on the current value of ε.

There exist sizable bodies of both analytic and numerical work on the subject of

planet-induced gaps in circumstellar disks. In the context of this study, these works

translate into a wide array of possible inputs for the surface density in the vicinity of

the planet. A planet on an eccentric orbit is likely to have a wider gap than a planet

in a circular orbit, as is assumed in many of these studies, and so we also perform a

calculation of dε/dt for an artificially widened gap. The shape of the surface density

profile has two important effects on the resulting eccentricity evolution equation dε/dt:

[1] Since each torque depends on either the surface density or its radial derivative,

altering the shape of the surface density profile will (linearly) change the relative

heights of the features in the function dε/dt. At the same time, if the width of

the gap is unchanged, the overall pattern will also be largely unchanged. [2] If we

instead alter the gap width, the shape of the function dε/dt changes as resonances

are included or excluded. To understand the general implications of gap width for

eccentricity evolution, we present gap architectures with varying gap widths.

The result of slightly narrowing the cleared gap – a change in the sign of dε/dt –

is also displayed in Fig. 5.4. However, we are most interested in calculating dε/dt for

intermediate values of eccentricity (and this is the region where our assumptions are

most accurate), so this change is not significant within the context of our calculations.

5.2.2 The Effect of Residue in the Gap

When some material remains within the gap, the radius at which disk material no

longer exerts torques on the planet is unclear. To investigate eccentricity evolution

in such a gap, we choose a gap shape resembling that produced by the numerical

calculations of Bate et al. (2003), where residual material remains within the gap
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(see Fig. 5.5). We then raise the limit on the number of contributing resonances (by

raising the allowed values of m) until dε/dt converges to a single value.

5.5
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Figure 5.5. Surface density profile for a gap as calculated in Bate et al. (2003). This profile is
used to evaluate dε/dt versus ε in Fig. 5.6.

5.6

As mentioned, the radius at which disk material no longer exerts torques on the

planet is unclear. Therefore, we present dε/dt with and without torques resulting from

coorbital disk material. Figure 5.6 displays (dε/dt)/ε as a function of ε where only

non-coorbital resonances are allowed to contribute. As it is somewhat unclear how

to include coorbital material, we present results both with, and withouth, coorbital

resonances. Here, we find that (dε/dt)/ε does not converge as ε approaches zero, but

instead approaches +∞. When we include the effects of coorbital resonances (Fig.

5.7), dε/dt switches sign for small ε, resulting in eccentricity damping rather than

excitation. Notice, however, that in both cases, eccentricity damping results for all

values of eccentricity in the range 0.1 < ε < 0.8.
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Figure 5.6. The function dε/dt versus ε for a 1 MJ planet in a 1 AU orbit for the gap shape of
Fig. 5.5 (from Bate et al., 2003). Here we have included non-coorbital corotation and Lindblad
resonances only.

5.7

5.2.3 Other configurations

As mentioned previously, the overall shape of the function dε/dt versus ε is fairly

uniform for all surface density profiles that contain a sharp-edged gap of a given width

centered on the planet. However, there are a number of scenarios in which a planet

may lie off-center in the gap: accretion may clear the inner disk, photoevaporation

or a close encounter with another star may strip the outer disk, or multiple planets

may produce overlapping gaps in the disk. Of these three possibilities, the situation

in which two planets have overlapping gaps is of the greatest interest because two

planets orbiting in a close resonance are certain to produce a gap in which neither

planet lies at the center. In contrast, it requires more fine-tuning for other processes

to deplete the disk from one of its edges exactly to the semi-major axis of the planet.

To study the effect of a two-planet gap, we place two 1 MJ planets in orbits at
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Figure 5.7. The function dε/dt versus ε for a 1 MJ planet in a 1 AU orbit for the gap shape of Fig.
5.5 (from Bate et al., 2003). Here we have included coorbital corotation and Lindblad resonances
as well as non-coorbital resonances.

a1 =1 AU and a2 =1.59 AU, and thus in a 2-1 mean motion resonance. The resulting

gap in disk material is displayed in Fig. 5.8, and the eccentricity evolution it produces

is displayed in Fig. 5.9. We find that the gap asymmetry does not affect the planets

equally; while the inner planet experiences a drastic change in both the shape and

magnitude of its dε/dt function, the outer planet’s eccentricity evolves in much the

same way a lone planet’s eccentricity evolves. We find, upon closer inspection, that

this result is due to the fact that the contribution to dε/dt from the m = 2, ` = 1

corotation and Lindblad resonances are significantly greater than any other resonance

contributions for a single planet, and that these resonances are located on the outer

side of the gap. For the inner planet in a 2-1 resonance, there is no material at this

location, but for the outer planet, the location of the 2-1 resonance lies within the

disk material. We can deduce from this that, for any planet orbiting in a disk, a

particularly strong resonance exists between the planet and a ring of disk material
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inside the planet’s orbit. It is then important to combine this effect with that of

the mean motion resonance (Murray & Dermott, 2001; Thommes & Lissauer, 2003;

Lee & Peale, 2002) between the two planets when performing semi-analytic studies

of solar system evolution such as that in MA05.
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Figure 5.8. Radial surface density profile for a disk in the presence of 1 MJ planets at (dashed) 1
AU, (dotted) 1.59 AU, and at both 1 AU and 1.59 AU (solid). This configuration places the planets
in a 2-1 mean motion resonance. The gaps produced by the two planets in the final case overlap to
produce a single wide gap, in which each planet is offset from the gap center.

5.9

If these results are to be used in future numerical calculations such as extensions

to MA05 it is important to understand how the eccentricity evolution depends on

orbital parameters. By completing a large range of calculations, we have determined

the following: [1] As the semi-major axis a decreases, the surface density in the

vicinity of the planet increases, and the planet sits in a deeper, narrower trough. The

function dε/dt versus ε obtains an increased number of peaks and troughs, smoothed

over the disk scale height, in the small ε region as we include more resonances, and an
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Figure 5.9. The resulting plot of dε/dt as a function of ε produced by the double gap shown in Fig.
5.8. The dotted line traces the eccentricity evolution of the outer planet, and the dashed line traces
that of the inner planet. The function dε/dtis changed substantially for the inner planet due to the
lack of material at locations corresponding to the strongly contributing m = 2, ` = 1 Lindblad and
corotation resonances.
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increased magnitude of dε/dt everywhere due to the larger surface density at small

radii. As a increases rather than decreases, these effects are reversed. [2] As the

planet mass decreases, the planet clears a narrower and narrower gap. Once again,

the function dε/dt versus ε obtains an increased number of peaks and troughs, again

smoothed over the disk scale height, and experiences an decreased overall magnitude

due to the dependence dε/dt ∝ MP . (This dependence arises from Eqs. 3 and 11; In

Eq. 3, the formula dε/dt explicitly contains the term 1/MP , and we see from Eq. 11

that (φP
`,m)

2
contributes M2

P .)

5.2.4 Saturation of Corotation Resonances

The torque of the planet on resonances in the disk deposits or removes angular mo-

mentum from the resonance locations in the disk. Lindblad resonances lose this

change in angular momentum through a wave flux, but corotation resonances do

not. As a result, they can become saturated and thereby exert a reduced torque

on the planet. In this section, we assume that coorbital corotation resonances will

be completely saturated, and thus provide no contribution to the overall eccentricity

evolution (Balmforth & Korycansky, 2001). We account for the effects of corotation

saturation using the prescription of OL03.

The degree of saturation for a particular (`, m) non-coorbital corotation resonance

can be expressed in terms of a single parameter p (OL03), which is given by

p ≡
(
−d ln r

d ln Ω

)
φP

`,m(β)

κ2

(
[−dΩ/dr]

ν/m

)
, (5.5)

where the viscosity ν is related to the parameter α by the standard Shakura-Sunyaev

formulation, ν = αΩh2. Therefore, assuming the disk is Keplerian, and that the disk

scale height h = as/Ω, the expression for p becomes

p =
2

3
φP

`,m(β)

[
3mH

αγkBT0

√
r

GM∗
(r/r0)

3/4

]2/3

. (5.6)

Using the quantities specified previously, we obtain p ≈ 0.284 φP
`,m(β). Our sample

calculation of φP
4,3(rILR) has an amplitude of about 5 (φP

4,3(rC) has a similar amplitude),
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and so the saturation parameter p attains values of order unity for some values of

ε. Thus, it is important to investigate the effect that saturation may have on our

results.

The torque exerted in the corotation region is reduced by a factor f(p), where

f(p) ≈ 0.4019p−3/2 for p � 1, and f(p) ≈ 1 − 2.044p2 for p � 1 (OL03). We

interpolate between these two limits in a manner similar to that in GS03 to obtain

f(p) = (1 + 0.3529p3)5/6/(1 + 1.022p2)2 . (5.7)

The result of including saturation effects is shown in Figs. 5.10 and 5.11. Thus, the

calculated saturation level of corotation resonances results in eccentricity excitation

over the full range of eccentricity. If coorbital resonances are allowed to contribute,

a small interval of eccentricity damping exists for ε . 0.05. On a side note, we learn

that the substantial eccentricity damping in the low ε limit in Fig. 5.11 is due to

coorbital Lindblad resonances and not coorbital corotation resonances.

5.10

5.11

Taken at face value, our results imply that all single planets starting with ε > 0.1

will be ejected from their systems or accreted on time scales shorter than 0.15 Myr.

Furthermore, uniform eccentricity excitation would lead to no multiple planet systems

(MA05), in contrast with the observed population of extrasolar planets which contains

about 10-20% multiple systems. As a result, it is unlikely that corotation resonances

are saturated to the degree described above. The determination of the degree of

saturation is thus an important issue for the future.

5.2.5 Eccentricity Damping at ε = 0.3

As mentioned earlier in this work, our goal is to compute the eccentricity time deriva-

tive for a variety of orbital parameters and gap shapes, looking for a common pattern.

We find that for each set of inputs, the eccentricity time derivative for a single planet
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Figure 5.10. The function dε/dt versus ε for a 1 MJ planet in a 1 AU orbit for the gap shape of
Fig. 5.5 (from Bate et al. 2003), including the effects of saturation of corotation resonances. Here
we have included only non-coorbital corotation and Lindblad resonances. A marked difference exists
between this graph and previous graphs. This is due to the reduction of non-coorbital corotation
resonant torques via corotation saturation.
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Figure 5.11. The function dε/dt versus ε for a 1 MJ planet in a 1 AU orbit for the gap shape of
Fig. 5.5 (from Bate et al. 2003), including the effects of saturation of corotation resonances. Here
we have included coorbital corotation and Lindblad resonances as well as non-coorbital resonances,
although we then assume that coorbital corotation resonances are fully saturated.

without saturation of corotation resonances is negative for some range in eccentricity

between 0.1 and 0.5, and is always negative for ε = 0.3. On the other hand, the

eccentricity derivative for the same set of parameters, including ε = 0.3, is always

large and positive when corotation resonances become saturated.

At this point in our study, we narrow our focus to ε = 0.3 only. We now include

resonances in our calculation for which |` − m| > 1 and recalculate dε/dt for our

different gap shapes. The result is displayed in Table 5.1. The corresponding gaps in

surface density are displayed in Fig. 5.12. We see that dε/dt maintains its sign while

adopting a greater magnitude in all cases, as expected.

5.12

5.1

It is clear that, using our approach and assumptions, we obtain, for intermediate

eccentricity, either eccentricity damping or extremely rapid eccentricity excitation.
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Figure 5.12. Surface density as a function of radius for different gap shapes corresponding to
values of eccentricity evolution timescales presented in Table 5.1.

Eccentricity damping at ε = 0.3 will prevent planets from attaining the full range of

eccentricity values that the observed sample of extrasolar planets possesses. On the

other hand, if corotation saturation occurs according to the formula of Ogilvie and

Lubow (2003), planets would attain very large eccentricities in a few thousand years,

and thus would likely be ejected from their host systems within the Myr lifetime

of the disk. Either some additional component (such as vorticity of the gap edges)

must be included in calculations of eccentricity evolution, or some additional physical

phenomenon, such as interactions between planets in multiple planet systems, must

take place.

5.3 Conclusions

We have re-examined the manner in which circumstellar disks exert torques on giant

planets and thereby change their orbital eccentricity, and shown that both the small

ε and large m approximations for calculating eccentricity evolution are invalid for
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Table 5.1. dε/dt at ε = 0.3, in units of Myr−1.

– 17 –

Gap
Architecture

Coorbital
Material
Included?

Corotation
Saturation
Included?

|! − m| ≤ 1 only all !, m

wide and
sharp-edged

– no -0.16 -0.05

narrow and
sharp-edged

– no -0.17 -0.048

narrowest and
sharp-edged

– no -0.13 -0.073

Bate et al. gap
no no -0.052 -0.025

Bate et al. gap
yes no -0.050 -0.019

narrow and
sharp-edged

– yes 0.063 0.029

narrowest and
sharp-edged

– yes 0.077 0.031

Bate et al. gap
no yes 0.032 0.017

Bate et al. gap
yes yes 0.032 0.017

Table 1: Here we present the timescale for growth or decay in eccentricity resulting from our calcula-

tions. All numbers presented are in units of Myr, and negative values denote eccentricity damping

while positive values denote eccentricity excitation. We present both the results of calculations

including resonances with |! − m| ≤ 1 and including all contributing resonances. We find that

including resonances for which |! − m| > 1 decreases the timescale by approximately a factor of 3,

but does not change any cases from eccentricity damping to eccentricity excitation or vice versa.

studying the current population of observed extrasolar planets. We have removed

both of these approximations from the formalism and completed a full calculation

of φP
`,m(β) (see Fig. 5.1). The resulting function dε/dt attains both positive and

negative values (see Figs. 5.3 and 5.4), reflecting its nature as a composition of

φP
`,m(β) functions. Thus, Type II migration produces neither uniform eccentricity

excitation nor uniform eccentricity damping, but can produce either excitation or

damping depending on the combination of disk and planet properties. We have found

that dε/dt is influenced by gap properties, in particular gap width. As the gap width

changes, the number of included torques changes and we see corresponding addition

or subtraction of spikes in the dε/dt function. The placement of the planet within
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the gap is also important. A planet in a 2-1 resonance with a second planet and thus

far offset from the gap center, for instance, may experience substantially different

eccentricity evolution than a planet roughly at the center of the gap.

A gap with sharp edges places an upper limit on the number of contributing

resonances. The exact width of such a gap strongly affects the eccentricity time

derivative in the low eccentricity limit. For instance, a small change in the gap

width produces eccentricity excitation rather than damping for small eccentricity

(Fig. 5.4). Therefore, it is important to understand the shape of the planet’s cleared

gap to predict the eccentricity evolution in the small eccentricity regime using our

approach. If the gap contains residual contributing material (Figs. 5.6 and 5.7) or if

the gap is generated by two, rather than one, planets (Fig. 5.9), the shape of dε/dt

versus ε changes drastically.

This work has several limitations. First, we have assumed throughout that the

disk is infinitesimally thin. The accuracy of our method relies on the inclusion of rel-

atively few disk torques. As m increases, the flat-disk approximation for disk torques

is less accurate. This effect is of concern in our analyses when ε . 0.1. Second,

our calculations converge extremely slowly for large eccentricity. Furthermore, while

D’Angelo et al (2006) showed that the primary effect of moderate planet eccentricity

was to widen the gap in the disk, the effects of a very eccentric planet (ε > 0.5) on

disk geometry are uncertain. With these limitations in mind, we present again our

dε/dt plots with data shown only for 0.1 < ε < 0.5 (Fig. 5.13). This plot demon-

strates that, as long as corotation resonances are unsaturated, eccentricity damping

necessarily occurs for 0.2 < ε < 0.5. Therefore, disk-planet interactions alone cannot

produce the full observed range in extrasolar planet eccentricities, assuming corota-

tion resonances are unsaturated. However, disk-planet interactions combined with

planet-planet scattering, as in Chapter 4, or turbulence, as in Chapter 6, remain

possible solutions to the observed eccentricity distribution.
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Figure 5.13. The function dε/dt versus ε for a 1 MJ planet in a 1 AU orbit for various disk
configurations. Note that the range in eccentricity (horizontal axis) is restricted to the regime
where the approximations of this chapter are most applicable. The solid curve corresponds to a gap
in the disk with sharp edges defined by T0 = 70 K at r0 = 7 AU, and the dotted curve corresponds to
a gap in the disk with sharp edges defined by T0 = 50 K at r0 = 7 AU. The dashed curve corresponds
to the gap shape of Fig. 5.5 (from Bate et al. 2003) with no coorbital resonances contributing, and
the long-dashed curve to the same disk shape with coorbital resonances contributing. In all four
curves, corotation resonances are completely unsaturated.

If, on the other hand, we find that if corotation resonances are saturated, we

obtain almost exclusive eccentricity excitation (Figs. 5.10 and 5.11). However, the

resulting excitation is so severe that a planet could only remain in orbit about its

host star for less than a tenth of a million years (we obtain this timescale when we

include all values of `, m in our dε/dt calculation). Assuming that disks last for of

order one million years, this scenario fails to explain how planets survive disk-planet

interactions.

There are several possible refinements and extensions of this work. In our treat-

ment of the disk as strictly Keplerian, we neglect the effects of vortices near the gap

edges. A careful treatment of vorticity may alter the strength of the corotation res-
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onances and lead different values of the eccentricity derivative. Furthermore, it may

be informative to extend the range in eccentricity for which this approach is valid,

as the observed range in eccentricity for the extrasolar planets ranges from 0 to 0.9.

As mentioned, we have assumed an infinitesimally thin disk throughout this project.

Accounting for the disk’s finite thickness is necessary for understanding the behavior

of dε/dt for ε . 0.1. Second, as mentioned previously, the function dε/dt may be-

have differently than we have calculated here for high eccentricities (ε & 0.5). Our

calculation will therefore benefit from an improved understanding of disk properties

when a massive planet is present in a highly eccentric orbit. Third, additional disk

effects, such as turbulence, may reduce the degree of corotation resonance saturation

proposed by Ogilvie and Lubow to a level consistent with eccentricity growth on a

timescale of a few million years, allowing planetary orbits to survive Type II migra-

tion. Finally, these results can be utilized in numerical studies of planet migration,

such as MA05, where the effects of the disk can be combined with other solar system

phenomena, such as secular resonances between planets.

As this set of calculations illustrates, different disk properties, gap properties, and

planet properties can lead to different types of behavior concerning the eccentricity

evolution of giant planet orbits. In the vast ensemble of star and planet forming en-

vironments in our Galaxy (and others), we expect a wide variety of disk surface den-

sity profiles, gap widths, gap edge shapes, and other characteristics that determine

eccentricity damping and excitation. In addition, for any given set of disk/planet

properties, the eccentricity damping and/or excitation rates are complicated func-

tions of eccentricity. As a result, although we have found a common denominator of

eccentricity damping at ε = 0.3 for a variety of gap shapes and widths, the question

of how circumstellar disks affect the eccentricity evolution of their planets should

generally be considered only in a statistical sense.



CHAPTER 6

SOLAR SYSTEM EVOLUTION IN THE

PRESENCE OF MHD TURBULENCE

The combination of planet-planet scattering and simplified disk effects (constant

damping rates of semi-major axis and eccentricity) has been shown to successfully

reproduce the observed a-ε distribution of the extrasolar planets (Adams & Laugh-

lin, 2003; Moorhead & Adams, 2005). The disk drives both planets inward while

interactions between the planets compete with the disk’s eccentricity damping; the

result is both small a and a large range in ε. We found that many of our two-planet

simulations spent a significant fraction of time in a low-order mean motion resonance.

As a next step, we want to explore the result of combining three phenomena po-

tentially important to the process of solar system formation: planet-planet scattering,

planetary migration, and disk turbulence. Laughlin, Steinacker, and Adams (2004)

showed that disk turbulence induces a random walk in an embedded planet’s semi-

major axis that can potentially overwhelm Type I migration. Giant planets, on the

other hand, clear an annulus in the circumstellar disk and therefore are less subject

to turbulence; however, turbulence in the disk may be sufficient to prevent pairs of

planets from maintaining a mean motion resonance. This modification of solar system

dynamics may result in significantly different distributions of orbital parameters.

We present here simulations of a two-planet solar system under the influence of

mutual gravitational interactions, Type II migration, and varying levels of MHD

turbulence. We plan to extend this project to include large numbers of simulations

with randomly chosen initial configurations to complete a parametric study similar

99
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to that performed in Moorhead & Adams (2005). These simulations are currently

underway.

6.1 Methods and Initial Conditions

This section outlines our basic migration model which combines [1] the dynamical

interactions of two planets, [2] inward forcing driven by tidal interactions with a

background nebular disk (see also Kley 2000; Murray et al. 2002; Papaloizou 2003;

Kley et al. 2004), and [3] MHD turbulence, which induces a random walk in orbital

elements. Our goal here is to build on previous studies by producing a statistical

generalization of the generic migration problem with two planets and an exterior disk

– a situation that we expect is common during the planet formation process.

The numerical experiments are set up for two planets with the following orbital

properties: Two planets are assumed to form within a circumstellar disk with initial

orbits that are widely spaced. The central star is assumed to be of solar-type with

mass M∗ = 1.0 M�. For the sake of definiteness, the inner planet is always started

with orbital period Pin = 1900 days, which corresponds to a semi-major axis ain ≈ 3

AU. This radial location lies just outside the snowline for most models of circumstellar

disks and thus provides a fiducial starting point where the innermost giant planets

are likely to form. For most of the simulations, the second (outer) planet is placed on

an orbit with the larger period Pout = π21/4Pin ≈ (3.736 . . . )Pin; with this starting

state, the planets are not initially in, or near, resonance but will have the opportunity

to pass through a number of low-order mean motion resonances, including the 3:1

resonance, as the outer planet migrates inward. In the absence of disk turbulence,

the two planets are often caught in mean motion resonances for some portion of their

evolution (Moorhead and Adams, 2005; for a more detailed description, see Lee and

Peale, 2002). The initial eccentricities of both planets are drawn from a uniform

random distribution in the range 0 < ε < 0.05. The planets are also started with
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a small, but nonzero inclination angle in the range i ≤ 0.03 (in radians). Planetary

systems started in the exactly the same orbital plane tend to stay co-planar, whereas

small departures such as these allow the planets to explore the full three dimensions

of space.

The observed planetary mass function is nearly log-random, and the chosen plan-

etary mass function tends to be preserved throughout solar system evolution (Moor-

head and Adams, 2005); we choose −1 ≤ log10 [MP /MJ ] ≤ 1, where MJ is the mass

of Jupiter, as a good approximation of the observed exoplanet mass distribution.

The numerical integrations are carried out using a second-order mixed-variable

symplectic (MVS) algorithm incorporating simple symplectic correctors (see Wisdom

et al., 1996), Mercury (Chambers, 1991). This algorithm, while much more rapid

than Bulirsch-Stoer, cannot handle close encounters (see the Appendix for a discus-

sion of Bulirsch-Stoer and symplectic integration). While Mercury’s hybrid Bulirsch-

Stoer/symplectic integrator can handle close encounters by switching to Bulirsch-

Stoer when the planets move within a few Hill radii of each other, it is much less

accurate, proving unstable when the planets move within 1 AU of the central star.

As we found in Chapter 4 that collisions comprise a small percentage of the possible

outcomes, we have therefore chosen to use the MVS integration scheme rather than

the hybrid integrator. The equations of motion are those of the usual three body

problem (two planets and the star) with the additional forcing terms to implement

the effects of Type II migration and MHD turbulence in the disk on the planets. In

each case, the simulations are carried out for 1 Myr.

The outer planet in the system is tidally influenced by a background circumstellar

disk. Since the planets are (roughly) of Jovian mass, they clear gaps in the disk

and the migration is Type II. Instead of modeling the interaction between the outer

planet and disk in detail, we adopt a parametric treatment of semi-major axis and
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eccentricity damping:

a = a0 e−t/τa (6.1)

e = e0 e−t/τe . (6.2)

We choose damping timescales τa = τe = 0.3 Myr. We assume here that the disk

inside the orbit of the outer planet is sufficiently cleared out so that the inner planet

does not usually experience a Type II torque. Over most of its evolution, the inner

planet has a sufficiently small eccentricity so that it lies well inside the (assumed) gap

edge and receives neglible torque from the disk (which lies outside the outer planet).

When the inner planet attains a high eccentricity, however, it can approach a radius

comparable to that of the outer planet and experience some torque. This (relatively

minor) effect is included by giving the inner planet a torque that is reduced from that

of the outer planet by a factor (r1/r2)
6.

In this set of simulations, we set the accretion and eccentricity damping time

scales to be τa = τe = 0.3 Myr. This is roughly consistent with recent estimates

and is roughly the correct order of magnitude to produce the observed distribution

of semi-major axis and eccentricity in the absence of MHD turbulence (see Chapter

4). We would like to point out that our treatment of Type II migration relies on a

host of studies of laminar disks; however, the study of overall migration trends in

turbulent disks are inconclusive (Nelson, 2005) and so we adopt the simplest model

of combining the two effects.

MHD turbulence is approximated using the prescription of LSA04; that is, we in-

troduce a spectrum of nonlinear density perturbations which are capable of producing

a random walk in the orbital elements of any embedded planets. The gravitational

potential of such a perturbation is given by

Φ =
Aξe−(r−rc)2/σ2

r1/2
cos (mθ − φ− Ωct̃) sin (π

t̃

∆t
) . (6.3)

The center of the perturbation has radial location rc and initial angular location
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φ, both of which are chosen from a random uniform distribution. The azimuthal

wave number m, chosen from the log-random distribution 1 ≤ m ≤ 32, determines

the extent of the mode. The parameter σ = πrc/4m sets the shape of the mode

as roughly 4:1. Notice that the mode travels with the Keplerian flow due to the

appearance of the pattern speed Ωc in the time dependent term. The duration of the

perturbation is obtained from the sound crossing time of the mode along the angular

direction; ∆t = 2πrc/(mas), where as is the sound speed. When one perturbation

ceases, we assume the immediate formation of another, so that the total number of

nodes at any time is constant.

The overall amplitude of the modes, A, best approximates MHD turbulence with

a value of approximately 2×10−2 AU5/2 yr−2, while the migration of terrestrial mass

planets is observed to visibly change when A > 2 × 10−4 AU5/2 yr−2 (LSA04.) We

therefore investigate how Type II migration is affected at these same levels. The

individual amplitude, ξ, is chosen from a gaussian random distribution with unit

width.

6.2 Results

In the following section we present the solar systems that result from our simulations.

The key difference between this experiment and previous studies (such as MA05) is

the inclusion of turbulent fluctuations, which we investigate by gradually increasing

the overall magnitude of the turbulence.

First we revisit the non-turbulent scenario, explored previously in Adams &

Laughlin (2003) and Moorhead & Adams (2005). In this case, the outer planet quickly

migrates inward under the influence of Type II migration. Along its route inward, the

outer planet has the potential to become trapped in a mean motion resonance with

the inner planet, and, in fact, this often occurs. We present one example in Figs. 6.1

and 6.2, where the inward migration of first the outer planet (Mout = 0.12MJ), then
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both planets (Min = 0.33MJ) together, is plainly visible.

6.1
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Figure 6.1. Planetary semi-major axes of a system of two interacting planets migrating under the
influence of torques from a circumstellar disk in the absence of MHD turbulence. The outer planet
starts outside 7 AU and is represented by the blue line. The inner planet starts at 3 AU and is
represented by the red line.

6.2

Fig. 6.3 demonstrates that the two planets spend nearly the entire span of the

simulation very close to a 2:1 period ratio, which is a strong indication that the

two planets may be in resonance. However, this period ratio represents a necessary

but not sufficient condition for the planets to be in resonance. In addition, the

resonance angles must librate rather than circulate; these angles, for a 2:1 mean
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Figure 6.2. Ratio of the periods of two interacting planets migrating under the influence of torques
from a circumstellar disk in the absence of MHD turbulence. The outer planet migrates inward
quickly until the planets attain a period ratio of 2:1. The planets subsequently migrate inwards
together, maintaining this period ratio.
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motion resonance, are given by

φ1 = 2λ2 − λ1 −$1, φ2 = 2λ2 − λ1 −$2, (6.4)

where the λj are the mean longitudes and the $j are the longitudes of pericenter

(Murray and Dermott 2001). With this in mind, we present the 2:1 resonance angles

in Fig. 6.3. Our representative case is indeed in a 2:1 mean motion resonance, as

each angle librates about a constant value. These values are spaced approximately

100 degrees apart.
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Figure 6.3. 2:1 resonance angles of two interacting planets migrating under the influence of torques
from a circumstellar disk in the absence of MHD turbulence. φ1 = 2λ2−λ1−$1 and is represented
by the purple diamonds. φ2 = 2λ2 − λ1 −$2 and is represented by the orange squares.

Our simulations always begin with small orbital eccentricities, in keeping with our

current understanding of planet formation. However, once the planets enter a mean-
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motion resonance, planet-planet interactions tend to increase the orbital eccentricity

of each (see Fig. 6.4). In our example, each planet’s eccentricity smoothly increases,

then saturates. It is worth noting that the less massive outer planet (Mout = 0.12MJ)

attains a higher eccentricity than that of the more massive inner planet (Min =

0.33MJ). In fact, the value of the eccentricity at eccentricity excitation saturation is

inversely proportional to mass: eout,sat/ein,sat = (Mout/Min)−1.
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Figure 6.4. Planetary eccentricities of a system of two interacting planets migrating under the
influence of torques from a circumstellar disk in the absence of MHD turbulence. The outer planet
attains a higher value of eccentricity and is represented by the blue line. The inner planet is
represented by the red line.

To summarize, in the absence of turbulence, our simulation of these two planets

sees them quickly entering a 2:1 mean motion resonance and maintaining this reso-

nance as the two planets migrate inward together. Neither the period ratio nor the
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resonance angles change appreciably over the course of the simulation.

Next we repeat the simulation, adding a small amount of MHD turbulence. Here

we have employed the spectrum of LSA04, discussed above, with an overall amplitude

of 2× 10−4AU5/2yr−2. This is equivalent to the value of 10−5 in the units of LSA04,

or the value above which Type I migration changes its character.

Although Type I migration may change significantly above the threshold of 2 ×

10−4AU5/2yr−2, Type II migration does not. This is likely because [1] giant planets,

being much more massive, are less susceptible to the tugging of turbulent fluctuations,

and [2] these planets clear large gaps in the vicinity of their orbits, so turbulence must

act from a distance. Thus, Type II migration proceeds (see Fig. 6.5) roughly as usual;

the outer planet migrates quickly inward, the two planets enter a 3:1 mean motion

resonance, and then both planets migrate inwards together. We see a small amount

of noise in the outer planet’s path due to the turbulence, but it is not enough to alter

the system’s evolution. The time evolution of eccentricity and the resonance angles

are also unchanged.

6.5

While turbulence of the order of magnitude 2 × 10−4AU5/2yr−2 is significant for

Type I migration, MHD turbulence is expected to be two orders of magnitude larger

(LSA04). We run our simulation once again, this time with 2 × 10−2AU5/2yr−2;

note that this level of turbulence best approximates the turbulence spectrum from

LSA04’s full MHD simulations. Much stronger turbulent fluctuations result, and the

evolution of the system is drastically changed. A random walk component is visible

in the planet’s semi-major axis from the beginning of the simulation (Fig. 6.6). A

random walk is also apparent in the planets’ eccentricities (Fig. 6.7). We find that

when the outer planet is scattered to large radii, the random walk temporarily ceases;

this is because our treatment of the turbulent zone is restricted to between 0.05 and

15 AU.
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Figure 6.5. Planetary semi-major axes of a system of two interacting planets migrating under the
influence of torques from a circumstellar disk in the presence of minimal MHD turbulence. Here
the overall amplitude of the spectrum of turbulent fluctuations is given by A = 2× 10−4AU5/2yr−2.
The outer planet starts outside 7 AU and is represented by the blue line. The inner planet starts at
3 AU and is represented by the red line.
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Figure 6.6. Planetary semi-major axes of a system of two interacting planets migrating under the
influence of torques from a circumstellar disk in the presence of MHD turbulence. Here the overall
amplitude of the spectrum of turbulent fluctuations is given by A = 2× 10−2AU5/2yr−2. The outer
planet starts outside 7 AU and is represented by the blue line. The inner planet starts at 3 AU and
is represented by the red line.

6.7

The plot of semi-major axis versus time (Fig. 6.6) does not appear to show the

planets anywhere near a mean motion resonance; Fig. 6.8 confirms it. The two

planets, as a direct result of the inclusion of MHD turbulence, do not approach a

mean motion resonance at any point, confirming one of our hypotheses. Additionally,

turbulence leads to a different end state for the system, ejecting the outer planet after

0.57 Myr.

6.8
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Figure 6.7. Planetary eccentricities of a system of two interacting planets migrating under the
influence of torques from a circumstellar disk in the presence of MHD turbulence. Here the overall
amplitude of the spectrum of turbulent fluctuations is given by A = 2× 10−2AU5/2yr−2. The outer
planet starts outside 7 AU and is represented by the blue line. The inner planet is represented by
the red line.
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Figure 6.8. Ratio of the periods of two interacting planets migrating under the influence of torques
from a circumstellar disk in the presence of MHD turbulence. The outer planet starts outside 7 AU
and is represented by the blue line. The inner planet is represented by the red line. Note that the
planets never enter a mean motion resonance.
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In conclusion, we find that the introduction of turbulence at a level in agreement

with MHD simulations changes the orbital evolution of giant planets. A random walk

in orbital elements is observed, and the system is prevented from entering a mean

motion resonance. Finally, the end state of the system is altered, with the ejection

of one of the planets occurring halfway through the simulation.

6.3 Conclusions and Future Work

In this short section, we have explored the effects of disk turbulence on the planet

migration scenario developed in this thesis. We have found that the introduction of

turbulence into simulations of two planet solar systems undergoing Type II migration

has the capacity to alter the evolution and outcome of these systems. We find that, in

at least one case, the influence of turbulence prevents the planets from entering mean

motion resonances, produces fluctuations in orbital elements such as eccentricity, and

halves the lifetime of the outer planet.

These changes are likely to occur in every realization of planet-planet interactions,

Type II migration, and MHD turbulence, although it should be noted that the system

investigated here had planets of relatively low mass; planets have been observed to

be much more massive than 0.1 MJ , and such planets would be less affected by

turbulence. The next step to take is to complete a parametric study of three body

systems under the influence of Type II migration and MHD turbulence similar to

that of Moorhead & Adams (2005). Such a study would allow us to address the

following questions: [1] What degree of turbulence is typically necessary to prevent

capture into mean motion resonances? [2] How do varying levels of turbulence affect

the number of surviving planets and the final distribution of orbital elements? [3]

What combination of turbulence, Type II migration, and planet-planet scattering

best recreates the observed a-e distribution?

MHD turbulence is a promising mechanism for rescuing planetary cores from
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runaway Type I migration. It is therefore important to evaluate whether turbulence

is compatible with the observed distribution of giant planet orbital elements. If it is

incompatible, then Type I migration must be halted by some other means, or MHD

turbulence must fade before giant planets form.



CHAPTER 7

CONCLUSIONS

The rapid discovery of, to date, more than 200 extrasolar planets has revolu-

tionized planetary astronomy. The attempt to explain these planets has produced a

much improved core accretion model, and revived another planet formation model:

the gravitational instability model. However, in their simplest form, both models

fail to explain the orbital elements of the observed planets; the core accretion model

works best at intermediate radii (for instance, Jupiter’s current orbit) and requires

solids for the initial phase of planet formation, which are rare within the condensa-

tion radius. The gravitational instability method works best where the disk is heavy

and cold, and thus is prone to producing very massive planets (many Jupiter masses)

tens to hundreds of AU from their host star. Since many of the observed planets

have semi-major axes that are a small fraction of an AU in size, additional physics is

required to explain their formation.

The migration mechanism developed by Goldreich and Tremaine (1980) provides

a possible solution for this problem. If a circumstellar disk is present around a proto-

planetary core, interactions between the disk and the planet act to drive the planet

inward and damp its eccentricity. This process is so effective, in fact, that it is difficult

to prevent the accretion of all cores onto the central star, but it is certainly capable

of moving planets inward. If the planet has the opportunity to grow to gas giant

size (MP > 0.1MJ) it begins to open a gap in the disk; this halts Type I migration

and Type II migration, which proceeds on the viscous time scale of the disk, begins.
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Thus, an understanding of Type II migration is necessary to describe the observed

extrasolar planets, nearly all of which are of gap-opening mass.

Any viable migration scenario must be able to explain the observed distributions

of orbital elements. We have shown in Chapter 4 that Type II migration (modeled

using parametric disk torques) acting in combination with planet-planet scattering

can produce these observed distributions (see Fig. 4.15). Furthermore, we find that

our modeled systems have a variety of outcomes: accretion of one planet, ejection of

one planet, or the persistence of both planets beyond the disk lifetime of a million

years are all possible. Outcome was observed to be somewhat dependent on planet

mass (see Fig. 4.3 and 4.4); the smaller of the two planets is generally the planet to be

ejected or accreted onto the central star, and persistence of both planets throughout

the simulation tends to occur when both planets were less than 1MJ . Each outcome

occurs in approximately equal numbers, with the number of double planet solar sys-

tems in the set of complete simulations ranging from 30 to 50% of the total. This is a

higher rate of two planet systems than is observed; we might then favorably consider

any additional physics that reduces the number of two planet systems. We also note

that these systems tend to spend a significant portion of their lifetime in mean motion

resonance; planet in both 2:1 and 3:1 mean motion resonances have been observed,

with systems in the 2:1 mean motion resonance proving to be slightly more stable.

We have shown in Chapter 6 that the introduction of turbulence into simulations

of two planet solar systems undergoing Type II migration has the potential to alter the

outcome of these systems. Turbulence can prevent planets from entering mean motion

resonances and can lead to a different outcome, such as the ejection of one planet

(see Fig. 6.6). We note that a higher level of turbulence is required to appreciably

alter Type II migration; while an overall amplitude of the turbulence spectrum of

2 × 10−4 may be sufficient to change the character of Type I migration (LSA04),

the same level of turbulence does not alter the orbital evolution of giant planets
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(see Fig. 6.5). However, the level of turbulence encountered in MHD simulations is

sufficient to alter the evolution of these massive planets (see Fig. 6.6). We anticipate

that turbulence may affect the orbital parameters of planetary systems in general

and increase the number of planets scattered out of their solar systems; to quantify

this effect, a parametric study of the combination of planet-planet interactions, Type

II migration, and MHD turbulence in the manner of Moorhead & Adams (2005) is

necessary.

Our simulations treat semi-major axis and eccentricity damping due to disk torques

in a highly simplified manner; we explicitly damp both orbital elements on given time

scales, usually a fraction of a million years. While this treatment of semi-major axis

is in good agreement with simulations of Type II migration, the time evolution of

eccentricity is highly debated. This debate is outlined in Chapter 5, and a more

complete calculation of the time derivative of eccentricity for non-negligible starting

eccentricity is performed. We encounter neither uniform damping nor uniform ex-

citation of orbital eccentricity, but rather a function dε/dt that varies in both sign

and magnitude depending on eccentricity and other solar system properties. Most

significantly, we find that for every combination of disk and planet properties in-

vestigated, corotation torques produce negative values of dε/dt for some range in ε

within the interval [0.1, 0.5] (Fig. 5.13). If corotation torques are saturated, this

region of eccentricity damping disappears, and excitation occurs on a short timescale

of less than 0.08 Myr. Thus, our study does not produce eccentricity excitation on a

timescale of a few Myr – we obtain either eccentricity excitation on a short time scale,

or eccentricity damping on a longer time scale. As eccentricity excitation on a time

scale of 0.08 Myr would result in the ejection of nearly every forming planet from its

host system, we conclude that, for now, it is more reasonable to assume eccentricity

damping in parametric studies.

This thesis work has led to a number of subsequent projects. As mentioned, we are
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in the midst of producing data for a parametric study of planet-planet interactions,

Type II migration, and MHD turbulence similar to that of Moorhead & Adams (2005).

In an effort to better understand the behavior of eccentricity, we are looking into using

the hydrodynamics code FARGO (Masset, 2000) to simulate disk-planet interactions

for a variety of starting orbital elements; comparison of these results with the results

of Chapter 5 will enhance our understanding of corotation resonance saturation.



APPENDIX A

NUMERICAL INTEGRATION OF N-BODY

SYSTEMS

Much of this thesis is devoted to understanding the evolution of solar systems

over very long timescales; i.e., millions of years. In order to achieve this, we must use

integration schemes that have high accuracy and speed. We have implemented two

such algorithms in our research thus far; the Bulirsch-Stoer integration scheme and

a symplectic integrator, Mercury.

A.1 Bulirsch-Stoer Integration

Suppose an N -body is governed by the equation dx/dt = f(t,x). We can divide a

given timestep, H, into N equal, smaller timesteps, H = Nh, and apply a modified

midpoint method (Bodenheimer, Laughlin, & Rozyczka, 2007, hereafter BLR07):

x0 = x(t) (A.1)

x1 = x0 + hf(t,x0) (A.2)

xn = xn−2 + 2hf(t + [n− 2]h,xn−1) for n = 2, ... , N (A.3)

x(t + H) =
1

2
[xN + xN−1 + hf(t + H,xN)] (A.4)

We can repeat this process for the same overall time step with increasing values of

N ; each successive calculation’s error can be expressed as a power series in h2; thus,

the x(t + H)’s can be combined to produce a final result that has high accuracy in

comparison to computation time. Richardson extrapolation describes the process in

which this polynomial combination is calculated for N = 2, ..., 2k and the resulting
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polynomial is extrapolated for k → ∞. Once these coefficients are determined, the

resulting expression is evaluated at h = 0 to determine x(t + H).

Bulirsch-Stoer integration (Stoer & Bulirsch, 1980), which uses Richardson ex-

trapolation, is well suited to calculating dynamics for systems in which energy and

angular momentum are conserved; often, the level to which these invariants must

be conserved is predetermined, and Bulirsch-Stoer integration is performed with an

initial timestep that preserves this level of accuracy, usually chosen to be something

like 10−11 for solar system simulations.

In addition to being speedy and accurate, the Bulirsch-Stoer method has the

additional benefit of being able to handle close encounters, making it superior to

several other methods (including symplectic integration) in this respect. As a result,

Bulirsch-Stoer is often the method of choice for N -body integrations where N < 10

and close encounters may occur. For these reasons, we chose to perform Bulirsch-

Stoer integration in our initial studies of 3-body systems under the influence of Type

II migration (Moorhead & Adams, 2005).

A.2 Symplectic Integration

While the motion resulting from the gravitational interaction of two bodies can be

written down in an analytic form (and is usually the focus of at least a chapter in

any mechanics course), the 3-body problem is non-integrable (Murray & Dermott,

2001). However, if there is a large imbalance in mass, such as one encounters with a

star and two planets, the gravitational effect of the third, small body can be treated

as a perturbation to the gravitational forces exerted by the most massive body in the

system. Symplectic integration takes advantage of this by dividing the motion of the

planet into Keplerian and non-Keplerian components.

To be more specific, symplectic integration divides the Hamiltonian into Keple-

rian and non-Keplerian components. This can be done most easily using Jacobian
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coordinates (Wisdom & Holman, 1991), in which the origin is located at the center

of mass of the system. Integration is then carried out in two steps. First, the motion

due to the Keplerian portion of the Hamiltonian can be carried out rapidly using

Gauss’ f and g functions (BLR07):

r(t) = f(t, t0)r(t0) + g(t, t0)v(t0) (A.5)

v(t) = ḟ(t, t0)r(t0) + ġ(t, t0)v(t0) (A.6)

where

f(t, t0) =
a

r0

[cos (E − E0)− 1] + 1 (A.7)

g(t, t0) = (t− t0) +
1

n
[sin (E − E0)− (E − E0)] (A.8)

where r0 is the radial location at time t0 and E is the eccentric anomaly at time t.

Next, second-order corrections resulting from contributions to the non-Keplerian

portion of the Hamiltonian are applied in the form of velocity “kicks.” Additional

forces, such as disk torques, can very naturally be added at this stage as well:

∆v′i = ∆t

(
dv′i
dt

)
interaction

= ∆t
1

m′
i

(
∂Hinteraction

∂r′i

)
. (A.9)

Symplectic integration is extremely rapid – up to ten times more rapid than

Bulirsch-Stoer (BLR07) – and is well-suited to studying the long-term behavior of

multiple planet systems where the planets do not experience close encounters. How-

ever, as mentioned, symplectic integration relies on the assumption that the system

is near Keplerian; that is, that the gravitational effects of additional bodies can be

treated as perturbations to the star’s gravitational potential. When two planets have

a close encounter, the assumption obviously breaks down. In general, symplectic in-

tegration is no longer a viable approach when two bodies approach within 3 Hill radii

of each other, where the Hill radius of a body with semi-major axis ai and mass Mi

is given by

RH = ai

(
Mi

Mtot

)1/3

. (A.10)
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Our simulations of N -body systems in the presence of Type II migration and MHD

disk turbulence proved, at first, to be much slower than our simulations without

turbulence. Therefore, for our more recent work (see Chapter 6), we are using a

symplectic integrator: to be specific, the Mercury symplectic integrator developed by

John Chambers (1999).
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