Equilibria in a Hotelling Model: First-Mover Advantage?

Uday Rajan
Stephen M. Ross School of Business
at the University of Michigan

Amitabh Sinha
Stephen M. Ross School of Business
at the University of Michigan

Ross School of Business Working Paper
Working Paper No. 1114
December 2008

This paper can be downloaded without charge from the Social Sciences Research Network Electronic Paper Collection:
http://ssrn.com/abstract=1158605
Equilibria in a Hotelling model: First-mover advantage?

Uday Rajan∗ Amitabh Sinha†

December 1, 2008

Abstract

We consider the presence of first-mover advantage or disadvantage in a duopoly model of product positioning. Firms in our model are symmetric except for the order of entry. We study a generalization of the Hotelling model, with a consumer’s utility from a product depending on the location of product and consumer in product attribute space, a random utility term that captures idiosyncratic preferences, and the price of the product. Since the model is analytically intractable, we computationally study location equilibria, with prices decided simultaneously after locations have been chosen.

As a benchmark, we consider the simultaneous location game, which admits only symmetric equilibria. If product attribute preferences are weak and idiosyncratic preferences are also weak, both firms locate in the interior of the feasible location space. With strong product attribute preferences and weak idiosyncratic preferences, price competition is at its most intense, leading to maximal differentiation. As idiosyncratic preferences become more important, price competition is mitigated, leading to both firms locating at the market center.

In the sequential game, we find that when product attribute preferences are strong and idiosyncratic preferences are weak, the follower has a strong desire to avoid price competition and the leader experiences a first-mover advantage. However, if idiosyncratic preferences are also strong, price competition is somewhat weaker, and the leader cedes a location and profit advantage to the follower. Thus, a first-mover disadvantage exists even though the follower has no obvious advantage over the leader.

If product attribute preferences and idiosyncratic preferences are both weak, maximal differentiation results, and entry order is irrelevant. Finally, when idiosyncratic preferences dominate, price competition is a non-issue, and both players locate at the market center. Once again, the order of entry does not matter.

∗Ross School of Business, University of Michigan, Ann Arbor, MI 48109. urajan@umich.edu
†Ross School of Business, University of Michigan, Ann Arbor, MI 48109. amitabh@umich.edu
1 Introduction

Is there a first-mover advantage in a market for a new product? Golder and Tellis (1993) report that two famous examples (among others) of this pioneer advantage are Coca Cola and Crisco Shortening. However, they also point out that many markets have been characterized by a first-mover disadvantage, rather than an advantage, such as disposable diapers (Pampers over Chux) and chocolate (Hershey over Whitman’s). Boulding and Christen (2003) report that, over the long term, there is typically a first-mover disadvantage in terms of profit.

Previous explanations for a first-mover disadvantage have typically relied on dynamic frictions that violate a notion of symmetry between a pioneer and a later entrant. For example, a follower may use a leader’s experience to learn about the consumer distribution (Gal-Or 1987, Fershtman et al. 1990), or gain a technological advantage by developing a lower cost product (Tyagi 2000). There are countervailing forces as well: For example, Schmalensee (1982) recognizes that consumer loyalty is a factor that typically benefits the first mover in a dynamic setting. Chen and Xie (2007) show that, if a firm sells two products, asymmetry in customer loyalty can be a source of first-mover advantage or disadvantage. The existence or lack of a first-mover advantage can affect a pioneer’s incentives to enter a market (Narasimhan and Zhang 2000).

In this paper, we consider the existence of first-mover advantage in a model in which firms are symmetric, except for the order in which they enter the market. In particular, the entrant or follower firm does not have a cost advantage and does not learn about demand from the pioneer or leader firm. More generally, neither firm has a structural advantage or disadvantage compared to its rival. Instead, we build upon the canonical Hotelling model, with both firms symmetric in terms of how they are affected by their relative locations with respect to consumer distribution and their prices. In such a situation, it is widely believed that the first mover has an advantage, since it can locate at the market center. Nevertheless, we demonstrate that a first-mover disadvantage may exist in this setting.

The main insight behind our result is that products have many attributes, and modeling consumer preferences along a single dimension represents a stylized simplification that models only the most important attribute. For example, if the product is a soft drink such as Coke or Pepsi, taste is arguably the most important attribute. Nevertheless, a consumer’s preferences over other attributes, such as brand image or celebrity endorsements, may also
influence her decision. One way to represent preferences over other unmodeled or unobserved attributes is via a random utility for the product. The random utility term makes a consumer’s choice across the two products probabilistic, rather than deterministic. As mentioned by Anderson et al. (1992), it is common to model choice probabilities as coming from a multinomial logit distribution.

We consider a generalization of the Hotelling duopoly model that allows for heterogeneous preferences over unmodeled attributes in this manner. For clarity, we refer to a consumer’s preferences over location in the unit interval as “product attribute preferences”, and to her preferences over unmodeled attributes as “idiosyncratic preferences.” By varying parameter values in the model, we vary the importance of product attribute preferences and idiosyncratic preferences in the consumer’s purchase decision.

The multinomial logit model does not admit closed-form solutions for prices or locations. In fact, even the deterministic choice version of the Hotelling model with prices may be intractable rendering a numerical analysis necessary (Eaton and Lipsey 1976, Prescott and Visscher 1977). Nevertheless, we show analytically that, in equilibrium, the firm that is closer to the market center has a higher price, greater expected demand, and a higher profit than its competitor. To analyze equilibrium locations, we then turn to a computational analysis of the model.

As a benchmark, we first consider simultaneous location choice by the two firms, followed by simultaneous determination of prices. We find that when product attribute preferences and idiosyncratic preferences are both weak, the firms locate in the interior of the location space, symmetrically around the market center. If product attribute preferences are strong while idiosyncratic preferences remain weak, the intensified price competition drives both firms to differentiate maximally from each other (so they locate at opposite extremes of the location space). As idiosyncratic preferences become dominant, price competition is mitigated leading to both firms locating at the market center.

We then focus on sequential location choice: the leader firm picks a location, the follower firm observes this choice and picks a location, and then both firms simultaneously choose prices. Numerically, we show that the interplay between product attribute preferences and idiosyncratic preferences critically affects whether there is a first-mover advantage:

- When product attribute preferences are strong, but idiosyncratic preferences are weak, a follower’s desire to avoid price competition creates a distinct advantage for the
first firm to enter the market. However, the leader also prefers to mitigate price competition, and typically does not locate at the market center.

- With strong product attribute preferences, as idiosyncratic preferences become more important, the onus gradually shifts on to the leader to mitigate price competition by ceding locations close to the market center. Equilibrium is characterized first by symmetric interior locations, so neither firm has an advantage, and then by a first-mover disadvantage. That is, the follower is closer to the market center than the leader, and has a higher profit.

- With weak product attribute preferences and strong idiosyncratic preferences, price competition is relatively weak, and both firms locate at the market center.

- Finally, weak product attribute preferences and weak idiosyncratic preferences are characterized by maximal differentiation, with firms locating at opposite ends of the unit interval.

In the Hotelling model without prices, of course, both firms locate at the market center. d’Aspremont et al. (1979) show that, when prices are introduced and transportation costs are quadratic in distance, maximal differentiation in product position results. Maximal differentiation also occurs under sequential entry if firms are restricted to locating in the unit interval, as shown by Tabuchi and Thisse (1995).

There nevertheless appears to be a popular belief that symmetric location models displays a first-mover advantage, and that the leader will inevitably occupy the market center. For example, Golder and Tellis (1993) suggest that firms which enter early and position near the center of the market can receive higher profits. Similar suggestions about the benefit (in terms of profit, market share, or both) of entering first and locating near the center appear in Lieberman and Montgomery (1988), Lilien et al. (1992), and Bohlmann et al. (2002). Theoretically, Tabuchi and Thisse (1995) show that if product positions are unrestricted relative to the demand distribution (i.e., firms can locate anywhere on the real line), a large first-mover advantage exists, with the leader occupying the market center. On the practical side, Song et al. (1999) find that managers to a significant extent believe in a first-mover advantage.

Some recent work, however, has found instances of a first-mover disadvantage, even in games with symmetric payoffs. In pure location games without pricing, the first mover
may experience a disadvantage when the product attribute space has two or more dimensions (Chawla et al. (2006) and Wagener (2006)). The paper closest to ours in spirit is Rhee (2006), which computationally demonstrates a first-mover disadvantage for a range of parameter values in a Hotelling model with quadratic transportation costs and random utility.

Our contribution to this literature is to highlight the relative importance of product attribute preferences and idiosyncratic preferences in generating a first-mover advantage or disadvantage in the Hotelling setting. When distance costs are large, product attribute preferences are strong. In such a setting, weak idiosyncratic preferences (i.e., a low variance for the random utility term) generate a first-mover advantage. However, as idiosyncratic preferences become more important (i.e., the variance of the random term increases), a first-mover disadvantage occurs. Conversely, with weak product attribute preferences, equilibrium is symmetric, with firms locating either at the market center or at opposite ends of the unit interval.

The rest of this paper is organized as follows. We present the model in detail in Section 2. In Section 3, we provide some analytic results for the pricing subgame at stage 2. The computational analysis of location equilibria and their features is provided in Section 4. Section 5 contains some concluding remarks.

2 Model

We consider a generalization of the Hotelling location model. There are two firms, a pioneer firm that is referred to as Leader (L) and an entrant called the Follower (F), competing in a market. There is a continuum of consumers distributed uniformly over $[0, 1]$. A point in $[0, 1]$ denotes a level of a product attribute, and the location of a consumer reflects her ideal level. At stage 1 of the game, the two firms each position their product in the attribute space, by choosing a location in $[0, 1]$. We consider both simultaneous and sequential location in the first stage. In the sequential move game, firm L chooses its location first, and firm F chooses its location after observing L’s location choice. At stage 2, after observing each other’s locations, the firms simultaneously choose prices. At stage 3, each consumer buys one unit of the product from either L or F.

1Some of the previous literature allows firms to locate outside the consumer space $[0, 1]$. See, for example, d’Aspremont et al. (1979) and the references in Anderson et al. (1992), Chapter 8.
Both firms are assumed to have zero marginal costs, allowing us to focus on the mechanics of the location and pricing game. In addition, we assume there are no fixed costs. These assumptions simplify the analysis, but do not affect our results in any qualitative manner. As described below, given the prices and locations of both firms, each consumer’s decision is probabilistic. Both firms maximize expected profit, which is the product of their price and overall expected demand.

Suppose a consumer located at y purchases the good at price p_j from firm j located at x_j. The consumer suffers a disutility from purchasing a product that does not possess her ideal attributes. This disutility is modeled as a distance cost $|y - x_j|^\alpha$, where $|y - x_j|$ is the distance between x_j and y and $\alpha \geq 1$ is a parameter that affects the relative importance of distance compared to price. For example, if $\alpha = 1$, the distance cost is linear in distance, whereas it is quadratic if $\alpha = 2$. The restriction of α to be at least 1 ensures convexity of the distance cost. The quantity $p_j + |y - x_j|^\alpha$ may be interpreted as the full price paid by the consumer at y. The consumption value of the good, assumed to be the same across the two firms, is denoted by $v_0 > 0$. Then, the consumer’s deterministic utility in this scenario is

$$u(y, x_j, p_j) = v_0 - |y - x_j|^\alpha - p_j.$$ \hspace{1cm} (1)

In addition, the utility of the consumer from good j is affected by unmodeled factors. These unmodeled factors could include other attributes of the good, marketing considerations such as branding, and purely idiosyncratic reactions of the consumer to the good. Formally, the consumer at y obtains a random utility ϵ_{yj} from the good of each firm j, which we refer to as the consumer’s "idiosyncratic preference." Thus, overall utility of the consumer located at y, if he buys good j at price p_j, is

$$\tilde{u}(y, x_j, p_j) = v_0 - |y - x_j|^\alpha - p_j + \epsilon_{yj}.$$ \hspace{1cm} (2)

Each consumer purchases one unit of the good from the firm that provides him the highest overall utility. We assume the consumer does not have an outside option, and must purchase one of the two goods.\footnote{It is straightforward to extend both the model and our numerical results to the case of an outside option, which may be thought of as a third good that provides the consumer with a deterministic reservation utility.} Since v_0 is common across the two goods, it does not affect the relative choice between the goods. Hence, for the rest of the paper, we assume $v_0 = 0$.

Following Anderson et al. (1992) (see Chapter 2 in particular), we consider a multinomial logit model of random utility. That is, we assume that for each consumer location $y \in [0, 1]$
and each firm j, the random utility term ϵ_{yj} is independent and identically distributed with distribution $F(x) = e^{-x/\mu + \gamma}$, where $\mu > 0$ is a parameter of the distribution and $\gamma \approx 0.5772$ is Euler’s constant. The distribution has mean zero and variance $\mu^2 \pi^2 / 6$, so that μ is proportional to the standard deviation of the random utility terms.

For each consumer y and each firm j, let $u_j(y) = u(y, x_j, p_j)$ denote the deterministic utility to the consumer from purchasing and consuming the good of firm j. Then, the consumer buys the good from L if $u_L(y) + \epsilon_L > u_F(y) + \epsilon_F$, or $\epsilon_L - \epsilon_F > u_F(y) - u_L(y)$.

Thus, the probability that the consumer at y buys from L is given by $q_L(y, x_L, x_F, p_L, p_F) = \text{Prob}(\epsilon_L - \epsilon_F > u_F(y) - u_L(y))$, and the probability he buys from F is $q_F(y, x_L, x_F, p_L, p_F) = 1 - q_L(y, x_L, x_F, p_L, p_F)$. Going forward, for brevity we often write these probabilities as $q_L(y)$ and $q_F(y)$, suppressing the locations and prices. Since $q_L(y) + q_F(y) = 1$ by definition, $q_j(y)$ may be interpreted as the market share of firm j from location y. We also refer to $q_L(y)$ as the expected demand of the consumer at y for firm L.

The overall expected demand of each firm j is then given by $d_j = \int_0^1 q_j(y) dy$, since the consumer density is uniform over $[0, 1]$. Note that $d_L + d_F = 1$, so that d_j may be interpreted as the overall market share of firm j. The expected profit of firm j is $\Pi_j = p_j d_j$.

The first step to using the multinomial logit model in our analysis is determining the expected demand of the consumer at y for each firm, given firm locations and prices. As shown in Proposition 2.2 from Anderson et al. (1992) (on page 39; attributed to an unpublished document by Holman and Marley) the expected demands at location y for L and F are obtainable in closed form as follows:

$$q_L(y) = \frac{e^{(v_0 - |y-x_L|\alpha - \rho_L)/\mu}}{e^{(v_0 - |y-x_L|\alpha - \rho_L)/\mu} + e^{(v_0 - |y-x_F|\alpha - \rho_F)/\mu}}$$

$$q_F(y) = \frac{e^{(v_0 - |y-x_F|\alpha - \rho_F)/\mu}}{e^{(v_0 - |y-x_L|\alpha - \rho_L)/\mu} + e^{(v_0 - |y-x_F|\alpha - \rho_F)/\mu}}$$ (4)

Thus, in our model, α captures the importance of the modeled product attribute on consumer choice, and μ the importance of idiosyncratic preferences. We first consider the separate effects of each of these parameters on consumer behavior.

2.1 Effect of μ: Variation in idiosyncratic preferences

Recall that the standard deviation of the random utility term is $\mu \sqrt{\pi/6}$. Thus, as μ increases, idiosyncratic preferences become more important, or stronger. When $\mu = 0$, this standard deviation is zero, so the model reduces to a deterministic choice model in which consumers’
utilities are dictated entirely by locations and prices. Conversely, as $\mu \to \infty$, the random utility term dominates (in magnitude) the effect of location and price. As can be seen from equations (3) and (4), at each consumer location y, $q_L(y)$ and $q_F(y)$ each approach $\frac{1}{2}$ as $\mu \to \infty$. For intermediate values of μ, the relative magnitude of idiosyncratic tastes in overall utility depends on the locations of consumer and firm, and on the price offered by the firm.

As an illustration, suppose $\alpha = 1$ (the linear distance cost model), firm L is located at 0.4 with a price of 1, and firm F is located at 0.9, with a price of 0.8. The deterministic utility of a consumer at y for firm j’s product is $u_j(y) = -|y - x_j| - p_j$, so that the expected demand for L and F of consumer y are

$$q_L(y) = \frac{e^{-|y-x_L|-p_L}/\mu}{e^{-|y-x_L|-p_L}/\mu + e^{-|y-x_F|-p_F}/\mu}; \quad q_F(y) = \frac{e^{-|y-x_F|-p_F}/\mu}{e^{-|y-x_L|-p_L}/\mu + e^{-|y-x_F|-p_F}/\mu}$$

Figure 1: Expected demands for firm L from consumers at different locations, with $\alpha = 1$, $p_F = 1$, and $p_L = 0.8$. Figure 1 shows the expected demands of consumers at different locations for firm L for some different values of μ. The solid line shows the expected demand when $\mu = 0.001$. The expected demand at each location for such a low value of μ is close to the demand in a
deterministic choice model. Suppose \(\mu \) were zero, so there were no random term. While the equations (3)–(4) cannot be used to determine the expected demand at each location, it is straightforward to directly compute the demand. A consumer at \(y \) buys from firm \(L \) if
\[
\delta_j^\alpha - p_j > -|y - 0.4| - 1 > -|y - 0.9| - 0.8.
\]
Thus, all consumers located at \(y < 0.55 \) have a demand of 1 for firm \(L \), and all consumers at \(y > 0.55 \) have a demand of zero for firm \(L \). The consumer at \(y = 0.55 \) is exactly indifferent between the two firms.

The dashed line corresponds to \(\mu = 0.2 \), an intermediate value for the idiosyncratic preferences. For this value of \(\mu \), all consumers located to the left of firm \(L \) buy from \(L \) with probability approximately 0.82, so that with probability 0.18 they buy the good of firm \(F \). Conversely, all consumers located to the left of \(F \) buy from \(L \) with probability 0.03, and from \(F \) with probability 0.97.

Finally, the dotted line indicates the expected demands for a high level of idiosyncratic preferences, \(\mu = 1 \). For each consumer location \(y \), the expected demand for \(L \) is closer to 0.5, varying from 0.57 at locations to the left of \(L \) to 0.33 at locations to the right of \(F \). In general, as \(\mu \) increases, at a given location \(y \), the expected demands for each of leader and follower \(q_L(y), q_F(y) \) approach 0.5.

2.2 Effect of \(\alpha \): Variation in product attribute preferences

For a fixed consumer at \(y \) and firm \(j \) at \(x_j \), let \(\delta_j = |y - x_j| \) denote the distance between them. Then, the deterministic utility of consumer \(y \) for the good of firm \(j \) is
\[
\delta_j^\alpha - p_j.
\]
Thus, the parameter \(\alpha \) affects only the impact of distance (along the product attribute) on consumer utility, and changing \(\alpha \) results in a change in the relative importance of product attribute and price on consumer utility. Since \(\delta_j \) is typically strictly less than 1, increasing \(\alpha \) results in a weakening of the importance of distance; i.e., a weakening of product attribute preferences.

The sensitivity of the deterministic utility of consumer \(y \) with respect to distance is determined as follows:
\[
\frac{\partial u_j(y)}{\partial \delta_j} = -\alpha \delta_j^{\alpha-1}.
\]
Thus, as distance \((\delta_j) \) increase, the utility of the consumer at \(y \) decreases.

In the linear distance model, with \(\alpha = 1 \), \(\frac{\partial u_j(y)}{\partial \delta_j} = -1 \), a constant, for all \(y \in [0, 1] \). As \(\alpha \) increases, \(\frac{\partial u_j(y)}{\partial \delta_j} \) increases (i.e., becomes closer to zero) for low values of \(\delta_j \), but decreases (i.e., becomes more negative) for high values of \(\delta_j \). That is, as product attribute preferences...
become weaker, consumers close to firm j become less sensitive to the effects of distance, whereas consumers far from firm j become more sensitive to the effects of distance. In the limit, as $\alpha \to \infty$, $\frac{\partial u_j(y)}{\partial \delta_j} \to 0$ as long as $\delta_j < 1$, and product attribute preferences are irrelevant to a consumer’s purchase decision.

2.3 Solving the Game

We solve the game by backward induction. Consumer demands at each location at stage 3 are given by equations (3) and (4). Consider stage 2, where firms choose their prices, having chosen locations at stage 1. Given locations x_L, x_F and prices p_L, p_F, the expected profit of firm j, for $j = l, f$, is

$$\Pi_j(x_L, x_F, p_L, p_F) = p_j \int_0^1 q_j(y) \, dy,$$

where $q_j(y)$, given in equation (5), is a function of x_L, x_F, p_L, p_F, which are suppressed for brevity.

The prices are chosen in a Nash equilibrium of the game at this stage. Each firm chooses its price to maximize its expected profit, holding fixed the price of the other firm. The best response function of firm j is given by the first-order condition $\frac{\partial \Pi_j}{\partial p_j} = 0$, or

$$\int_0^1 q_j(y) \left[1 - \frac{p_j}{\mu} \left(1 - q_j(y) \right) \right] dy = 0. \tag{8}$$

For now, we assume that the second-order condition $\frac{\partial^2 \Pi_j}{\partial p_j^2} < 0$ is satisfied. We show this analytically when locations are symmetric about the market center in Proposition 2 below, and confirm it computationally in our numeric analysis.

Noting that $q_F(y) + q_L(y) = 1$, the best response conditions can be equivalently written as:

$$\int_0^1 q_j(y) \, dy - \frac{p_j}{\mu} \int_0^1 q_L(y)q_F(y) \, dy = 0, \quad \text{for } j = l, f. \tag{9}$$

The Nash equilibrium prices at stage 2, p^*_L, p^*_F, simultaneously satisfy equations (9). Considering the expressions for $q_L(y)$ and $q_F(y)$ in equations (3)–(4), and noting that $u_L(y) = -|y - x_L|^{\alpha} - p_L$ and $u_F(y) = -|y - x_F|^{\alpha} - p_F$, it is immediate to see that, in general, the best response conditions that determine prices at stage 2 do not admit a closed-form solution.
However, in the special case that firms co-locate (i.e., $x_L = x_F$), equilibrium prices are straightforwardly determined. In this case, the choice probability of any consumer depends only on prices:

$$q_L(y, x, x, p_L, p_F) = \frac{e^{-|y-x|^\alpha - p_L}/\mu}{e^{-|y-x|^\alpha - p_L}/\mu + e^{-|y-x|^\alpha - p_F}/\mu} = \frac{e^{-p_L/\mu}}{e^{-p_L/\mu} + e^{-p_F/\mu}}.$$

Further, since firms have co-located, it must be that $p_L = p_F$, so that $\frac{e^{-p_L/\mu}}{e^{-p_L/\mu} + e^{-p_F/\mu}} = \frac{1}{2}$. Thus, the equilibrium prices are determined to be $p_L^* = p_F^* = 2\mu$.

Given equilibrium prices p_L^*, p_F^*, at stage 2, we work back to stage 1. Let $\hat{\Pi}_L(x_L, x_F) = \Pi_L(x_L, x_F, p_L^*(x_L, x_F), p_F^*(x_L, x_F))$. That is, $\hat{\Pi}_L(x_L, x_F)$ is the profit accruing to L if the two firms locate at x_L and x_F respectively, and choose equilibrium prices as described above. Let $\hat{\Pi}_F(x_L, x_F)$ be similarly defined.

2.3.1 Simultaneous move game

In the simultaneous move game, both firms simultaneously choose locations to maximize their own profit. Again, the optimum for each player is described by a first-order condition. In a pure strategy equilibrium, the equilibrium locations x_L^* and x_F^* simultaneously satisfy the following equations:

$$\frac{\partial}{\partial x_L} \hat{\Pi}_L(x_L^*, x_F^*) = 0; \quad \frac{\partial}{\partial x_F} \hat{\Pi}_F(x_L^*, x_F^*) = 0 \quad (10)$$

For the simultaneous move game, we restrict attention to pure-strategy equilibria that are symmetric (that is, $x_L^* + x_F^* = 1$). Based on our numeric findings, we conjecture that the only pure-strategy equilibria in the simultaneous move game are indeed symmetric.

2.3.2 Sequential move game

In the sequential move game, given a location x_L selected by L, firm F chooses a location x_L which maximizes its profit once both firms set their equilibrium prices:

$$x_F^*(x_L) = \operatorname{arg \ max}_{x_F \in [0,1]} \hat{\Pi}_F(x_L, x_F) \quad (11)$$

The corresponding first-order condition for F’s maximization problem is $\frac{\partial \hat{\Pi}_F(x_L, x_F)}{\partial x_F} = 0$.

Continuing backwards, L’s problem is to select a location x_L^* that maximizes profit Π_L assuming that F will respond with the optimal location choice $x_F^* = x_F^*(x_L^*)$, with both firms choosing equilibrium prices, $p_L^* = p_L^*(x_L^*, x_F^*)$ and $p_F^* = p_F^*(x_L^*, x_F^*)$, at stage
2. Define $\Pi_L(x_L) = \Pi_L(x_L, x_L^*(x_L), p_L(x_L, x_L^*(x_L)), p_F(x_L, x_F^*(x_L)))$. Since the consumer distribution is uniform, and hence symmetric about the market center at 0.5, we can without loss of generality restrict L to locating in the sub-interval $[0, 0.5]$. Then, L’s optimal location satisfies:

$$x_L^* = \arg \max_{x_L \leq 0.5} \Pi_L(x_L),$$

or alternatively, satisfies the first-order condition $\frac{\partial \Pi_L(x_L)}{\partial x_L} = 0$.

Since we do not have a closed-form expression for equilibrium prices at stage 2, we cannot analytically solve for equilibrium locations in either the simultaneous or the sequential move game. Instead, we numerically solve for equilibria. The results are presented in Section 4. First, to obtain some insight into the tradeoffs faced by the firms, we consider a few special cases of the pricing subgame at stage 2.

3 Analytic Results in the Pricing Subgame

Consider the pricing subgame at stage 2. Suppose each firm $j = L, F$ has chosen its location, x_j. Assume that, for any pair of locations (x_L, x_F) chosen at stage 1, there exists a pure-strategy pricing equilibrium at stage 2. This assumption is borne out in our numeric calculations. Through much of this section, we also assume that the solution to the first-order conditions (9) does indeed constitute a pair of optimal prices for F and L. In Proposition 2, we prove this when firms have symmetric locations. More broadly, we confirm in our numeric solution that prices are optimal for each set of parameter values and firm locations. That is, we verify numerically that prices found by solving equations (9) do indeed maximize profits.

Location is critical to relative outcomes in the game. First, we consider asymmetric locations, with one firm (say firm i) being closer to the market center than its rival (firm j). We show that the firm that locates closest to the center will, in equilibrium, have a higher price, market share, and profit than the other firm. The proof of this proposition, and all other analytic results, is in the Appendix, Section 6.

Recall that the overall expected demand for firm i is $d_i = \int_0^1 q_i(y)dy$, which is also the market share of firm i in our model.

Proposition 1 In an equilibrium of the pricing subgame at stage 2, the firm closer to the center has a higher price, a higher overall expected demand, and a higher profit than its
rival. That is, if $|x_i - 0.5| < |x_j - 0.5|$, then $p^*_i > p^*_j$, $d^*_i > d^*_j$, and $\Pi^*_i > \Pi^*_j$.

In the next section, we show numerically that for a large region of parameter values, equilibria in the simultaneous-move game are characterized by one firm being closer to the market center than its rival. Given Proposition 1, in such equilibria, a first-mover advantage will exist if and only if firm L is closer to the market center (i.e., the point 0.5) than firm F. Equilibria with F closer to the market center will necessarily involve a first-mover disadvantage.

Next, consider the special case in which firms have located symmetrically around the market center (the point 0.5), i.e., when $x_L + x_F = 1$. We first show that in this case, the equilibrium prices and profits of the two firms are equal. Further, it is reasonable to conjecture that, as the distance between the firms increases in the location stage, the equilibrium prices will increase in the pricing subgame. The absence of an outside option then implies that overall profits will also go up. While this is hard to prove for the general case (i.e., keeping one player’s location fixed while moving the other player further away), we are able to prove this for the symmetric locations case. Finally, we show that, when locations are symmetric about the market center, the solution to the best response equations (9) indeed determines optimal prices; that is, a second-order condition for profit maximization is satisfied.

Proposition 2 Suppose firms’ locations are symmetric about the market center (i.e., $x_i + x_j = 1$). Then, in the pricing subgame at stage 2,

(i) equilibrium prices, market shares, and profits of the firms are equal. That is, $p^*_i = p^*_j$, $d^*_i = d^*_j$, and $\Pi^*_i = \Pi^*_j$;

(ii) equilibrium prices increase as firms’ locations become more distant from the center, and

(iii) the solution to the first-order conditions (9) maximizes the profit of each firm j, keeping fixed the price of the other firm, and therefore characterizes an equilibrium of the pricing subgame.

Thus for any fixed μ, the firms would like to increase the distance from each other in order to sustain higher prices and consequently higher profits. This impulse to move away from each other provides a repulsive force. On the other hand, for any pair of firm locations, if one firm moves closer, its expected demand increases if prices stay unchanged. This provides an attractive force. In general, of course, the prices will change, and the
interplay between the two forces will determine the outcomes. The equilibrium locations are the points where the attractive and repulsive forces are in balance. Our numerical results suggest that, in the simultaneous move game, this balance is only attained when locations are symmetric around the market center, while in the sequential move game, locations need not be symmetric.

4 Numerical analysis of location equilibria

We numerically determine equilibrium locations and prices for a range of \((\alpha, \mu)\) parameters. Determining the optimal location essentially requires determining the equilibrium prices for each pair of feasible locations. However, as mentioned above, the equilibrium prices, which satisfy equations (9) do not admit a closed-form solution in general. To determine the equilibria of the overall game numerically, we trace the following steps:

1. Fix a finite location grid on \([0, 1]\) for consumers. Let \([0, \frac{1}{m}, \frac{2}{m}, \cdots, 1]\) represent this grid. The mass at each point on this grid is \(\frac{1}{m+1}\).

2. Fix finite location grids on \([0, 1]\) for \(L\) and \(F\). Let \([0, \frac{1}{2n}, \frac{2}{2n}, \cdots, \frac{1}{2}]\) represent the location grid for \(L\), and let \([\frac{1}{2}, \frac{n+1}{2n}, \frac{n+2}{2n}, \cdots, 1]\) represent the grid for \(F\).

 Notice that we restrict \(L\) to locating in \([0, 0.5]\). As mentioned earlier, given the symmetry of the consumer distribution about the market center 0.5, this is without loss of generality. We also restrict \(F\) to locating in \([0.5, 1]\). While it is intuitive that \(F\) will want to locate on the other side of the market center as \(L\), we first verified numerically that this property holds. That is, for each pair \((\alpha, \mu)\) of parameter values, we allowed \(F\) to locate on a grid that spanned \([0, 1]\), and found that in each case \(F\) preferred to locate in the sub-interval \([0.5, 1]\).

3. For each point on the location grid of \(L\), determine \(F\)'s best response. This is done as follows:

 (a) For each point on \(F\)'s location grid, given \(L\)'s location, determine equilibrium prices by finding a solution to equations (9). Verify that the second-order condition for optimal prices holds.

 (b) Determine \(F\)'s profit at that point.
(c) F’s best response to L’s location is the point at which F attains maximum profit.\(^3\)

4. Determine equilibrium in the simultaneous move game as follows. We search for all symmetric equilibria of this game (since the simultaneous-move game is symmetric by construction).

In any symmetric equilibrium, L is as far from the market center (at 0.5) as F. Thus, \(0.5 - x_L^* = x_F^* - 0.5\), or \(x_L^* + x_F^* = 1\). Any point on F’s best response function at which \(x_F = 1 - x_L\) thus provides equilibrium locations in the simultaneous-move game. Notice that our numerical procedure finds only pure strategy equilibria.

5. Determine equilibrium in the sequential move game as follows. For each point in L’s location grid, determine the best response of F. Compute L’s profit at this location. L’s optimal action is given by the location that maximizes its profit. Again, we find pure strategy equilibria of the game.

In our numerical analysis, we set \(m = 400\). That is, consumers are located at a set of 401 equidistant points in the interval \([0, 1]\), with a mass equal to 1/401 at each point. Further, we set \(n = 200\), so that the feasible location grid for L consists of 201 equidistant points in \([0, 0.5]\), and that for F consists of 201 equidistant points in \([0.5, 1]\).

Finally, we consider values of \(\mu\) in the range 0.2 to 2.0, with steps of 0.1, and values of \(\alpha\) in the range 0.125 to 3.0, with steps of 0.125. We explored larger values of \(\mu\) and \(\alpha\), and found qualitatively similar equilibrium patterns. Our results extrapolate to \((\alpha, \mu)\) values not explicitly displayed.

4.1 Linear distances model: Follower’s best response

Before we turn to equilibria, we first consider the best response of F for each location L may choose. In the simultaneous-move game, L’s best response is exactly symmetric. In the sequential move game, L takes F’s best response into account in choosing its optimal location.

In Figure 2, we exhibit F’s best response for each location of L, in the linear distance model (i.e., fixing \(\alpha = 1\)). The best responses are shown for three different levels of \(\mu\).

Recall that the consumer distribution is symmetric around the market center at 0.5. Thus, in the absence of price competition, firms would wish to be at the center, to minimize

\(^3\)In the numerical computations, the best response of F was unique for each set of parameters and fixed L location.
their distance to the average consumer. However, price competition is at its most intense when the firms co-locate, and provides a motive for a firm to locate far from its competitor. Since demand at each consumer location is nonlinear in prices and in the idiosyncratic preferences (i.e., μ), the tradeoff between these two effects is also nonlinear.

For low values of μ (in the figure, $\mu = 0.2$), F’s best response is mostly upward-sloping as L approaches the center, starting with a location of 0. That is, the closer L is to the market center, the further away from the center F wishes to be. This is because low values of μ correspond to relatively unimportant idiosyncratic preferences, so the price competition effect dominates. Thus, firms have a natural desire to separate out in location.

As μ increases from 0.2, idiosyncratic preferences become more important, mitigating the effects of price competition. Though not shown in the figure, the nonlinear tradeoff between the distance and price competition effects leads to F being further away from the center if L locates at 0 (the left extreme of its location space), and closer to L if L locates at 0.5, the market center.

Further increases in μ are characterized by further mitigation of price competition, so that at $\mu = 0.95$, F’s best response is downward-sloping, and for yet higher values of μ, F
comes in even closer to the market center at each L location. That is, as μ increases in this range, F’s entire best response curve falls toward 0.5. Notice also that F’s best response is most sensitive to changes in μ when L locates at the market center, and least sensitive when L locates at 0.

4.1.1 Equilibria in the simultaneous-move game for $\alpha = 1$

Now, consider equilibria of the simultaneous-move game. As mentioned earlier, in a symmetric equilibrium, $x_F = 1 - x_L$. This line is shown as the dashed “Symmetry line” in Figure 2. All points where the best response functions intersect with this line represent symmetric equilibria in the simultaneous move game (these points are the solid circles in the figure). As may be seen, for low values of μ, the equilibrium is unique (in the class of symmetric pure-strategy equilibria), and is characterized by both firms being in the interior of their respective location spaces.

Initially, as μ increases, firms move further away from the center (not shown in the figure), and then move back in toward the center once idiosyncratic preferences are sufficiently important. At $\mu = 0.95$, there are two pure-strategy equilibria in the simultaneous-move game: one with locations of L and F at $(0.32,0.68)$, and the other with both firms at the market center, $(0.5, 0.5)$. When idiosyncratic preferences are even more important (in the figure, at $\mu = 2$), price competition is relatively weak, and the distance effect dominates. As a result, both firms locate at the market center in equilibrium.

4.1.2 Equilibria in the sequential-move game for $\alpha = 1$

Figure 2 also shows the location equilibria of the sequential-move game (the equilibrium points are shown as solid diamonds). Low levels of idiosyncratic preferences (i.e., low values of μ) are characterized by a first-mover advantage. That is, L is closer to the market center than F (since the equilibrium point is above the symmetry line when $\mu = 0.2$), and hence by Proposition 1, has a higher profit. Conversely, high levels of idiosyncratic preferences are characterized by a first-mover disadvantage: F is closer to the center than L.

Compare the sequential-move game equilibrium locations with those in the simultaneous-move game. At low values of μ (e.g., $\mu = 0.2$), F’s best response function is upward-sloping at the simultaneous-move game equilibrium. That is, by moving in closer to the market center than in the simultaneous-move equilibrium, L can drive F further away from
the center. This results in L being closer to the market center in the equilibrium of the sequential-move game.

Conversely, at higher values of μ ($\mu = 0.95$ and 2), F’s best response function is downward-sloping at the simultaneous-move game equilibrium locations. In this case, if L were to come in closer to the center, F would respond by moving in as well, which would exacerbate price competition between the firms. Thus, L chooses to move away from the center, conceding a location advantage to F.

Therefore, as compared to the simultaneous-move game equilibrium locations, L’s choice in the sequential-move game appears to be dominated by the price competition effect. When L can come in towards the market center while still maintaining a distance between the firms (which happens for low values of μ), it does so. When moving towards the center would increase price competition, it moves further away from the center.

4.1.3 Complete equilibria for linear distances

Figure 3 shows all equilibrium locations for different values of μ for $\alpha = 1$. Consider the simultaneous move game first. As discussed above, for extremely low values of μ, the unique pure-strategy equilibria are characterized by players maintaining a sufficient distance between them. As μ increases, not only do the players’ locations get closer to the market.
center, but both players locating at the center can also be sustained in equilibrium. For some values of μ, the figure shows more than one non-central equilibrium pair. This is due to the imprecision introduced by taking a finite location grid in the numerical analysis. As the follower's best response curve in Figure 2 becomes tangential to the symmetry line, the numerical computation reports multiple equilibria in the region where the two curves are close to coinciding.

As μ increases further, idiosyncratic factors dominate, mitigating price competition to the extent that players are no longer reluctant to locate close to each other. Thus, the only equilibrium sustained in the simultaneous move game is the one where both players locate at the center.

Figure 3 also shows the equilibrium locations in the sequential move game. The overall pattern is the same: initially, both players maintain some amount of distance between each other; the distance initially increases with increasing μ, and then decreases as both players move towards the market center. The reason for this overall pattern is the same as in the simultaneous move game: increasing importance of the idiosyncratic factors (increasing μ) reduces the benefits of maintaining inter-firm distance.

It is also straightforward from the figure to identify regions under which one of the players dominates the other in terms of profit and market share. From Proposition 1, the firm closer to the market center has a higher price, market share, and profit. Therefore, we find that for low values of μ (approximately in the range $[0.2,0.8]$), the first mover maintains an advantage, while for intermediate values of μ (in the approximate range $[0.8, 2.2]$), the follower has the advantage. As in the simultaneous move game, once μ is sufficiently high only the central equilibrium is obtained.

For μ in the range $[1.8, 2.2]$, separation is maintained in the sequential move game, even though the simultaneous move game has both players locating at the center. For an even larger range of μ values, in equilibrium the distance between the firms in the sequential move game is significantly greater than the distance in the simultaneous move game. Since prices increase when the firms are further apart, in this range of μ the sequential move game results in higher prices faced by consumers, and overall higher profits for the two firms.

A brief explanation of this phenomenon is as follows. For these values of μ, the idiosyncratic factors matter somewhat, but there is still room for differentiation between firms. Re-examining Figure 2, it may be noted that, at $\mu = 2$, the best-response curve of Follower
is downward-sloping at the point of intersection with the symmetry line. In the simultaneous move game, the strength of the idiosyncratic factors allows the two players to move in closer to each other. However, in the sequential game, the downward-sloping best response curve of F indicates that there are higher profits to be made if both players move away from each other. Since the slope of the line is less than 45 degrees, the movement by F away from the market center is slower than the movement of L. That is, in equilibrium F is closer to the market center than L, and as a result earns a higher profit than L. However, since L is maximizing her own profit rather than minimizing her relative disadvantage, it is still in L’s best interest to sustain this asymmetric equilibrium.

4.2 Equilibria as α and μ vary

We now consider equilibria in the game for different values of α and μ. Thus, we allow the attribute preferences to vary (by varying α), along with variation in the idiosyncratic preferences. This allows us to study the relative impact of the attribute and idiosyncratic preferences, and their impact on equilibrium locations and firm advantages.

4.2.1 Simultaneous-move game

The equilibria for the simultaneous move game are shown in Figure 4. We identify three classes of equilibria in the simultaneous move game. All the equilibria we found are symmetric in location (so $x^*_L + x^*_F = 1$). Thus, by Proposition 2, the two firms have equal prices and profits in each of these equilibria. As already seen in the case of $\alpha = 1$, multiple equilibria may exist in the simultaneous move game.

1. Maximal differentiation: The firms are at the extremes of the location space, with $x^*_L = 0$ and $x^*_F = 1$. These equilibria are observed for $\alpha \geq 1.7$, with small values of μ.

2. Central location: Both firms are at the market center, with $x^*_L = x^*_F = 0.5$. For each value of α, these equilibria are observed when μ is sufficiently high, with the threshold value of μ falling as α increases.

3. Symmetric interior location: Firms are strictly in the interior of the location space, with $x^*_L \in (0, 0.5)$, $x^*_F \in (0.5, 1)$, and $x^*_F = 1 - x^*_L$. These equilibria are observed for all values of α, with a range of μ that declines as α increases.
4.2.2 Elasticities of profit

To explain these equilibria, we consider the sensitivity of profit with respect to price and distance. Since the level of profit changes with α and μ, we use elasticity as a scale-free measure of sensitivity. Formally, the elasticity of the profit of firm i with respect to its own price is defined as $\eta^\Pi_P = \frac{\partial \Pi_i(x_L, x_F, p^*_L, p^*_F)}{\partial p_i} \cdot \frac{p_i}{\Pi_i(x_L, x_F, p^*_L, p^*_F)}$. Thus, the elasticity varies with the locations and prices of both firms. Further, although α and μ are suppressed as arguments of the profit function, both profit and elasticity vary with α and μ as well.

To standardize our elasticity computation, we fix firm locations at $x_F = 0.25$ and $x_L = 0.75$. We choose these locations because they are the center of the respective location spaces for the two firms, and provide a notion of average elasticity (average taken over all firm locations). Given these locations, we determine equilibrium prices $p^*_L(x_L, x_F)$ and $p^*_F(x_L, x_F)$ for each (α, μ) pair (since the locations are symmetric, the equilibrium prices are equal across the firms). Defining a change in price for L of $\Delta_p = 0.0025$, we then compute the elasticity of profit of L with respect to its price for a given (α, μ) pair as follows:

$$\eta^P_P = \frac{(\Pi_L(x_L, x_F, p^*(x_L, x_F)) + \Delta_p, p^*(x_L, x_F)) - \Pi_L(x_L, x_F, p^*(x_L, x_F), p^*(x_L, x_F))) / \Delta_p}{\Pi_L(x_L, x_F, p^*(x_L, x_F), p^*(x_L, x_F))/p^*(x_L, x_F)}$$

In computing the elasticity of firm i’s profit with respect to its own location, we are careful to ensure that firms choose optimal prices given the new location. As before, we define $x_L = 0.25$ and $x_F = 0.25$. Define a change of location for L of $\Delta_x = 0.0025$. For a
given \((\alpha, \mu)\) pair, we compute the elasticity of \(L\)'s profit with respect to its own location as follows:

\[
\eta L = \frac{\Pi L(x_L + \Delta x, x_F, p^*(x_L + \Delta x, x_F)) - \Pi L(x_L, x_F, p^*(x_L, x_F))}{\Pi L(x_L, x_F, p^*(x_L, x_F)) / x_L}
\]

Figure 5: Elasticities of \(L\)'s profit with respect to (a) price, and (b) location.

Figure 5 displays the elasticities of \(L\)'s profit with respect to location and price \((\eta_L^\Pi\text{ and } \eta_p^\Pi)\), as \(\alpha\) and \(\mu\) vary. Consider first the elasticity of profit with respect to price (shown in the left of Figure 5). Note that the elasticity is consistently negative; since the initial price is optimal given the firm locations, any change in price leads to a smaller profit. For small \(\mu\), the elasticity increases in magnitude as \(\alpha\) increases. As \(\alpha\) becomes high, distance cost becomes less relevant (since the distance from any consumer to either firm is less than 1, increasing \(\alpha\) reduces the importance of distance in consumer utility). Thus, consumers are more sensitive to price, resulting in an increased profit elasticity. For large \(\mu\), the elasticity is more or less flat in \(\alpha\), and relatively small in magnitude: as idiosyncratic preferences become more important, consumers are less sensitive to price.

Next, consider the elasticity with respect to location, \(\eta_L^\Pi\) (shown on the right in Figure 5). When \(\mu\) is small, \(\eta_L^\Pi\) is negative, with a large magnitude for \(\alpha\) close to 1 (i.e., when distance cost is more relevant to the consumer). At these values of \((\alpha, \mu)\), there is a strong repellant force on the firm. That is, fixing \(F\) at \(x_F = 0.75\), firm \(L\) would like to move further away than 0.25, to locations closer to zero. For large \(\mu\), the elasticity \(\eta_L^\Pi\) is positive, but small in magnitude. Idiosyncratic preferences are more important when \(\mu\) is large, so the impact of location is small and firms are willing to locate closer together. Hence the positive \(\eta_L^\Pi\),
pointing to an attractive force between firms.

It is important to note that we measure elasticities at the fixed locations of $x_L = 0.25$ and $x_F = 0.75$. These elasticities vary across locations, especially when μ is small. Although equilibrium locations themselves change as α and μ change, nevertheless the elasticities we construct at fixed locations provide insight into the outcomes of the overall game.

First, consider the region with (approximately) $\mu \geq 0.4$ and $\alpha \geq 3 - \mu$. For these parameter values, idiosyncratic preferences are important (μ is large) and distance costs relatively unimportant (α is also large). In this region, the location elasticity of profit, η^Π_x, is positive, so L would like to come in closer toward the center, when F is fixed at $x_F = 0.75$. Further, the price elasticity of profit, η^Π_p, is small in magnitude, so profit is relatively invariant to price. Thus, there is an attractive force between the firms, driving them to locate towards each other. The most that they can get towards each other is the center, resulting in the central equilibrium.

Next, consider the region with $\mu \leq 0.4$ and $\alpha \geq 1.5$. Here, idiosyncratic preferences are relatively unimportant, as are distance costs. Thus, consumers are highly sensitive to price. As a result, the price elasticity η^Π_p is negative and has large magnitude. The desire to avoid price competition results in the location elasticity, η^Π_x, also being negative. There is a strong repulsive force causing firms to differentiate in order to raise prices. Hence, the equilibrium is characterized by maximal differentiation.

Finally, consider the remaining region: small-to-moderate values of both μ and α. Here, distance costs are important, resulting in a negative location elasticity, η^Π_x. Idiosyncratic preferences are only moderately important, so η^Π_p is small in magnitude. The negative location elasticity points to gains from differentiation, whereas the small price elasticity suggests the gains are limited. As a result, the equilibrium is characterized by symmetric interior locations.

4.2.3 Sequential-move game

We now turn to the sequential game. The equilibria are depicted in Figure 6.

We find that there are five classes of equilibria. The first three of these correspond to similar equilibria in the simultaneous move game, with firms having equal prices and profits. The last two exhibit either a first-mover advantage or a first-mover disadvantage.

1. Maximal differentiation: The firms are at the extremes of the location space, with
Figure 6: Regions of different equilibria in sequential move game

$x^*_L = 0$ and $x^*_F = 1$. The parameter region for which these equilibria are found roughly corresponds to the maximal differentiation region of the simultaneous move game.

2. Central equilibrium: Both firms are at the market center, with $x^*_L = x^*_F = 0.5$. Again, the parameter region corresponds roughly to the central equilibrium region in the simultaneous move game.

3. Symmetric interior equilibrium: Firms are strictly in the interior of the location space, with $x^*_L \in (0, 0.5)$, $x^*_F \in (0.5, 1)$, and $x^*_F = 1 - x^*_L$. Observe that the parameter region in which these equilibria hold is a small subset of the symmetric interior region of the simultaneous move game. In other areas where the simultaneous move game has a symmetric interior equilibrium, we find that one of the two firms has a profit advantage in the sequential game.

4. Leader advantage: Firm L is closer to the center than the follower, with $0.5 - x^*_L < x^*_F - 0.5$. Proposition 1 implies that L has a profit advantage in these equilibria, which is confirmed in our numerical results. The parameter region in which these equilibria obtain is roughly the triangle bounded by $(\mu = 0.2, \alpha = 1.8)$ and $(\mu = 0.45, \alpha = 1)$.

23
The maximum Leader advantage we observe is when $\alpha = 1.5$ and $\mu = 0.2$. At these values, we find $x^*_L = 0.2525$, $x^*_F = 0.9775$, $p^*_L = 0.9382$ and $p^*_F = 0.8098$. Thus, L is approximately halfway between one end of the market and the market center, while F is almost at the other end of the market. This locational advantage of L is reflected in the higher profit observed: $\Pi^*_L = 0.5036$, with $\Pi^*_F = 0.3751$, so that the leader has a profit advantage of 34.24%.

5. Follower advantage: Firm F is closer to the center ($0.5 - x^*_L > x^*_F - 0.5$), so, by Proposition 1, has a profit advantage. As shown in Figure 6, the parameter region in which these equilibria obtain consists of intermediate values of μ, for α ranging from 1 to approximately 2.5.

The maximum follower advantage is when $\alpha = 2.5$ and $\mu = 0.6$. At these values, L locates at $x^*_L = 0$ and F locates at $x^*_F = 0.7425$, with prices $p^*_L = 1.2648$ and $p^*_F = 1.3846$. The resultant profits are $\Pi^*_L = 0.6038$ and $\Pi^*_F = 0.7236$ respectively, translating to a 16.56% profit disadvantage for L.

In comparing the equilibria of the simultaneous and sequential move games, a striking feature is the close overlap of the regions with central equilibrium and maximal differentiation. This is no coincidence: we prove below that if the sequential-move game leads to a symmetric equilibrium, then the same symmetric equilibrium must also be an outcome of the simultaneous move game.

Proposition 3 Suppose that, for some (α, μ), the sequential location game has a symmetric equilibrium. Then, the same set of locations and prices constitute an equilibrium of the corresponding simultaneous move game.

Note that the converse is not true; in fact, if it were, there would be no asymmetry in profits in the sequential move game. However, Proposition 3 indicates the following: if (α, μ) are such that we are in the region of Maximal differentiation or Central equilibrium, then entry order does not matter because whether the game is played with sequential entry or simultaneous entry, the same equilibria will arise.

4.2.4 Asymmetric equilibria in sequential move game

Let us now examine the asymmetric equilibria, where one or the other firm has an advantage. If we examine the elasticities of profit in Figure 5, we see that the asymmetric equilibria
occur approximately in the regions where $\eta_\Pi x$ is negative. At these values of μ and α, firms prefer to be differentiated: if locations are fixed at 0.25 for L and 0.75 for F, firm L would rather be further from the market center.

Consider first the case when $\eta_\Pi x$ is negative, and large in magnitude. This means that once L has chosen its location, F has a strong incentive to locate far away from the center (and also far away from L) in order to try and maintain a sufficient distance to keep prices high. An example of this is when $\alpha = 1$ and $\mu = 0.2$. This strong repellent force on F is reflected in the best-response curve: an examination of Figure 2 shows that F’s best-response is upward-sloping in L’s location for small values of μ, meaning that a move close to the market center by L results in F moving away from the market center. Note that there is a limit to this effect as well; the slope of F’s best-response is less than 45 degrees, so that F’s response to a move by L is relatively small in magnitude. Thus L does not find it optimal to go to the extreme of locating at the market center. Indeed, equilibrium locations are $(x^* _L = 0.2225, \ x^*_F = 0.8275)$.

In general, if the repellent force is strong enough, F will move farther from the market center as L moves a little closer, resulting in a profit advantage for L. This occurs when product attribute preferences are strong (i.e., α is low, so price competition is a potential issue) and idiosyncratic preferences are weak (i.e., μ is too low to mitigate price competition).

In contrast, consider the case when $\eta_\Pi x$ is negative but small in magnitude, such as when $\alpha = 1$ and $\mu = 0.95$. For a fixed location of L, the repellent force on F is no longer as strong, due to the importance of idiosyncratic preferences in consumer choice. However, the fact that $\eta_\Pi x$ is negative means that there are still gains to be made by differentiation. How is L to realize this gain? Since price competition is weaker than when μ is low, L rationally anticipates that F will not differentiate enough, and thus takes the initiative of differentiation by locating further away from the market center. This phenomenon is reflected in the best-response curve: Figure 2 shows that F’s best response is now downward-sloping with L’s location, but at an angle less than 45 degrees. In fact, this shows that movement away from the market center by L results in F also moving away from the center, but not by as much as L. Therefore, even if F ends up closer to the market center than L (resulting in a profit advantage for F), L is still better off compared to the simultaneous move equilibrium.
In effect, the first-mover disadvantage occurs when L takes action to “expand the pie,” so that both firms earn a higher profit than in the simultaneous move equilibrium. That is, even though L has conceded a profit advantage to F, it does increase its own profit (compared to the equilibrium profit in the simultaneous-move game) in the process.

4.3 Implications on firm entry order

Whenever the sequential-move game results in a symmetric equilibrium, the same equilibrium holds in the simultaneous-move game. In such an event, entry order clearly does not matter.

However, when asymmetric equilibria appear in the sequential-move game, the order of entry matters. If product attribute preferences are strong and idiosyncratic preferences are weak, we are in a region of first-mover advantage. There will therefore be a “rush to market” to realize this advantage. Conversely, with strong product attribute preferences and strong idiosyncratic preferences, we are in a region of first-mover disadvantage. Thus, both firms would prefer that the other firm move first.

In reality, of course, several other factors may also affect the timing of entry timing, including technology, entry barriers, evolving customer demand, and incomplete information. These, in conjunction with the impact of location and pricing, will then determine the optimal time to enter.

5 Conclusion

In this paper, we consider a duopoly location model with an allowance for idiosyncratic preferences that may affect a consumer’s choice over the two products. We find that the interplay between product attribute preferences and idiosyncratic preferences is critical in determining whether there is a first-mover advantage or disadvantage in the model. Strong product attribute preferences are associated with strong price competition, and lead to a first-mover advantage. Idiosyncratic preferences mitigate price competition, and, in conjunction with strong product attribute preferences, imply a first-mover disadvantage.

Importantly, the first-mover disadvantage exists even though, other than entry order, firms are symmetric in our setting: the follower firm has neither a cost advantage nor any extra information about demand over the leader. Despite this, we show that the leader will concede the market center to mitigate price competition with the follower. Of course,
our analysis leaves many open questions. Important extensions include consideration of multiple product attributes and a larger number of firms.

While we explicitly consider a Hotelling setting in this paper, we have confirmed that our insights into first-mover advantage do carry over more broadly to location models. Two other popular location models are those of Lane (1980), and the Defender model of Hauser and Shugan (1983). In Lane’s model, the leader again captures the market center and commands a profit which is more than twice that of the follower. We performed a numerical analysis similar to that in Section 4 in the Lane model (after adding the random utility term), and obtained qualitatively similar results about the existence of a first-mover advantage or disadvantage, depending on the strength of product attribute preferences and idiosyncratic preferences. We are not aware of a sequential location analysis of the Defender model.

6 Appendix: Proofs

Proof of Proposition 1

Suppose \(|x_i - 0.5| < |x_j - 0.5| \). If \(x_j < x_i < 0.5 \), the result is immediate. Hence, assume that \(x_i < 0.5 < x_j \). Then, we have \(0.5 - x_i < x_j - 0.5 \), or \(x_i + x_j > 1 \).

Let \((p^*_i, p^*_j)\) denote the price equilibrium for these locations. Then, rewriting equations (9) slightly, for each firm \(l, f \), the following best response condition for optimal price must be satisfied:

\[
\int_0^1 q_j(y)dy = \frac{p_j}{\mu} \int_0^1 q_L(y)q_F(y)dy. \tag{13}
\]

Suppose that \(p^*_i \leq p^*_j \). Then, it follows from (13) that \(\int_0^1 q^*_i(y)dy \leq \int_0^1 q^*_j(y)dy \). We will show instead that \(\int_0^1 q^*_i(y)dy > \int_0^1 q^*_j(y)dy \), which provides a contradiction.

Let \(y_0 = x_i + x_j - 1 \), and \(y_1 = \frac{x_i + x_j}{2} = \frac{y_0 + 1}{2} \). That is, the point \(y_1 \) is the midpoint of the interval \([x_i, x_j]\), and also the midpoint of the interval \([y_0, 1]\). Since \(x_i + x_j > 1 \), it follows that \(y_0 > 0 \).

Let \(z \) be any point in the interval \([y_0, 1]\). The symmetric image of \(z \) about the point \(y_1 \) is given by \(\bar{z} = 1 + y_0 - z \). Therefore, we have \(x_i - z = \bar{z} - x_j \), for any \(z \in [y_0, 1] \). Since \(p^*_i \leq p^*_j \) by assumption, it must be that \(q_i(z) \geq q_j(\bar{z}) \) for any \(z \in [y_0, 1] \). Therefore, the expected demands of firm \(i \) over the interval \([y_0, 1]\) must be greater. That is,

\[
\int_{y_0}^1 q^*_i(y)dy \geq \int_{y_0}^1 q^*_j(y)dy. \tag{14}
\]
Now, consider the interval \([0,y_0]\). By construction, for any point \(z \in [0,y_0]\), we have \(|x_i-z|<|x_j-z|\). Further, we have assumed \(p_i^*\leq p_j^*\). Therefore, it follows that \(q_i^*(z) > q_j^*(z)\), so that
\[
\int_0^{y_0} q_i^*(y)dy > \int_0^{y_0} q_j^*(y)dy.
\]
Now, for each firm \(k\), the overall expected demand is
\[
\int_0^1 q_k^*(y)dy = \int_0^{y_0} q_k^*(y)dy + \int_{y_0}^1 q_k^*(y)dy.
\]
Thus, it follows that \(p_i^* < p_j^* \implies \int_0^1 q_i^*(y)dy > \int_0^1 q_j^*(y)dy\). However, by inspection of the best-response condition (13), it must be that \(\int_0^1 q_i^*(y)dy > \int_0^1 q_j^*(y)dy \implies p_i^* > p_j^*\), which is a contradiction.

Therefore, it cannot be that \(p_i^* < p_j^*\), so that we have \(p_i^* > p_j^*\). Now, from equation (13), it follows immediately that \(p_i^* > p_j^* \implies d_i^* = \int_0^1 q_i^*(y)dy > d_j^* = \int_0^1 q_j^*(y)dy\). Since firm \(i\) has a higher price and a higher market share than firm \(j\), its profit is also higher.

Proof of Proposition 2

(i) Suppose \(x_i + x_j = 1\). Then, the point \(z = \frac{1}{2}\) lies midway between \(x_i\) and \(x_j\). Suppose that \(p_i^* < p_j^*\). Now, for every \(z \in [0,\frac{1}{2}]\), consider the point \(z = 1 - z \in [\frac{1}{2},1]\). Since \(p_i^* < p_j^*\), it follows that \(q_i^*(z) > q_j^*(\bar{z})\). Hence, \(q_i^*(z) = 1 - q_i^*(z) < q_i^*(\bar{z}) = 1 - q_j^*(\bar{z})\). Therefore, it follows that
\[
\int_0^1 q_i^*(y)dy > \int_0^1 q_j^*(y)dy,
\]
or \(d_i^* > d_j^*\). But, from the proof of Proposition 1, if \(p_i^* < p_j^*\), it must be that \(d_i^* < d_j^*\). Therefore, it cannot be that \(p_i^* < p_j^*\).

By the same argument, we can rule out the case that \(p_i^* > p_j^*\). Hence, it must be that \(p_i^* = p_j^*\). Now, since locations are symmetric about the market center, and the prices are equal, it must be that \(d_i^* = d_j^*\), and hence \(\Pi_i^* = \Pi_j^*\).

(ii) Because symmetric locations imply equal prices (as shown in part (i)), the market share of each firm must be exactly 1/2. Using this, the best response condition for each firm \(j\) (13) reduces to:
\[
\frac{p_j}{\mu} \int_0^1 q_L(y)q_F(y)dy = \frac{1}{2}.
\]

Now consider two sets of locations, with \((x_L, x_F)\) given by \((0.5 - h_1, 0.5 + h_1)\) and \((0.5 - h_2, 0.5 + h_2)\) respectively, where \(h_2 > h_1 > 0\). Since the firms’ locations are symmetric,
the equilibrium prices must be equal. Let \(p_1 \) denote the equilibrium price of each firm when the firms locate at \((0.5 - h_1, 0.5 + h_1)\). Then, \(p_1 \) satisfies equation (17).

Consider what happens when firms locate at \((0.5 - h_2, 0.5 + h_2)\). Both firms must still price equally; let \(p_2 \) denote this price. Fix a consumer \(y < 1/2 \), and let \(\delta(y, x_i^j) \) be defined as \(|y - x_i^j|\), where \(i \in \{l, f\} \), and \(j \in \{1, 2\} \) represents the first and second set of locations respectively. Symmetric locations, equal prices, and \(h_2 > h_1 \) imply that for any \(y < 1/2 \), we have \(\delta(y, x_L^2) - \delta(y, x_L^1) \leq \delta(y, x_F^2) - \delta(y, x_F^1) \). That is, any consumer at \(y < 1/2 \) sees their nominal distance \(\delta(y, x) \) from \(L \) increase by an amount that is no more than the increase in distance from \(F \). Now recall that \(\alpha \geq 1 \), which ensures that the deterministic consumer utility \(-|y - x|^\alpha - p\) is convex in distance. Resultantly, we have \(q_L(y, 0.5 - h_2, 0.5 + h_2, p_2, p_2) > q_L(y, 0.5 - h_1, 0.5 + h_1, p_1, p_1) \). The product \(q_L(y)q_F(y) \) is therefore smaller for every \(y \neq 1/2 \) under the second set of locations compared to the first. For (17) to be satisfied, we therefore must have \(p_2 > p_1 \).

(iii) Consider the left-hand side of equation (9), which represents \(\frac{\partial \Pi_L}{\partial p_L} \) for firm \(j \). For convenience, let \(j = l \) in what follows. Differentiating once again with respect to \(p_L \) and collecting terms, we have

\[
\frac{\partial^2 \Pi_L}{\partial p_L^2} = -\frac{1}{\mu} \left[2 \int_0^1 q_L(y)(1 - q_L(y))dy - \frac{p_L}{\mu} \int_0^1 q_L(y)(1 - q_L(y))dy + \frac{2p_L}{\mu} q_L^2(y)(1 - q_L(y))dy \right].
\]

Now, using the fact that \(q_F(y) = 1 - q_L(y) \), so that \(q_L(y) + q_F(y) = 1 \), we can write the last two terms in the parentheses as

\[
-\frac{p_L}{\mu} \int_0^1 q_L(y)q_F(y)(q_L(y) + q_F(y))dy + \frac{2p_L}{\mu} \int_0^1 q_L^2(y)q_F(y)dy
= \frac{p_L}{\mu} \int_0^1 q_L(y)q_F(y)(q_L(y) - q_F(y))dy.
\]

Define \(\hat{q}(y) = q_L(y)q_F(y) \). Now, from part (i), symmetry implies that the solution to the best response conditions (9) satisfies \(p_L^* = p_F^* \). Since locations are symmetric about the market center, and prices are equal, at any points \(y \in [0, 1] \) and \(z = 1 - y \), it follows that \(\hat{q}(y)q_L(y) = \hat{q}(z)q_F(z) \). Therefore, \(\int_0^1 \hat{q}(y)q_L(y) = \int_0^1 \hat{q}(y)q_F(y) \), so that

\[
\frac{p_L}{\mu} \int_0^1 q_L(y)q_F(y)(q_L(y) - q_F(y))dy = 0.
\]

Therefore, when locations are symmetric, evaluating the second partial derivative of
profit with respect to price at the prices that satisfy the first-order conditions (9), we have
\[\frac{\partial^2 \Pi_L}{\partial p_L^2} = -\frac{1}{\mu} \left[2 \int_0^1 q_L(y)(1 - q_L(y)) dy \right] < 0. \]
Hence, the second-order condition for profit maximization is satisfied for \(L \). A similar analysis shows that the condition is satisfied for \(F \).

Proof of Proposition 3

Since symmetric locations imply equal prices by Proposition 2 part (i), let \((x^*_L, 1 - x^*_L, p^*, p^*)\) denote the equilibrium locations and prices in the sequential game. Suppose for contradiction that these locations and prices do not constitute an equilibrium in the simultaneous game. Then, given that firm \(L \) is located at \(x^*_L \), the best response of \(F \) in the simultaneous move game must be given by some \(x' \neq x^*_F \). That is, \(\Pi_F(x^*_L, x'_F, p^*_L(x^*_L, x'_F), p^*_F(x^*_L, x'_F)) > \Pi_F(x^*_L, x^*_F, p^*, p^*) \). But then, in the sequential game as well, when \(L \) locates at \(x^*_L \), firm \(F \) should locate at \(x_Fx' \) rather than at \(x^*_L \), contradicting the assumption that \((x^*_L, 1 - x^*_L, p^*, p^*)\) constitutes an equilibrium outcome of the sequential game.

References

