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ABSTRACT
One of the most life-threatening complications of prostate cancer is skeletal metastasis. In order to develop treatment for metastasis, it is

important to understand its molecular mechanisms. Our work in this field has drawn parallels between hematopoietic stem cell and prostate

cancer homing to the marrow. Our recent work demonstrated that annexin II expressed by osteoblasts and endothelial cells plays a critical role

in niche selection. In this study, we demonstrate that annexin II and its receptor play a crucial role in establishing metastasis of prostate cancer.

Prostate cancer cell lines migrate toward annexin II and the adhesion of prostate cancer to osteoblasts and endothelial cells was inhibited by

annexin II. By blocking annexin II or its receptor in animal models, short-term and long-term localization of prostate cancers are limited.

Annexin II may also facilitate the growth of prostate cancer in vitro and in vivo by the MAPK pathway. These data strongly suggest that

annexin II and its receptor axis plays a central role in prostate cancer metastasis, and that prostate cancer utilize the hematopoietic stem cell

homing mechanisms to gain access to the niche. J. Cell. Biochem. 105: 370–380, 2008. � 2008 Wiley-Liss, Inc.
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C ancer of the prostate gland (PCa), as well as those arising

in many other tissues, displays a remarkable propensity to

invade and survive in bone. Nearly 10% of patients present with

bone metastasis, and almost all patients who die of PCa have skeletal

involvement [Coleman, 2006]. Therefore, identifying the molecular

mechanisms that regulate osseous metastasis is of clinical

importance so as to determine those individuals at greatest risk

for the development of metastasis. This research may also help

design therapeutics aimed at decreasing metastatic risk or their

complications.

The metastatic process is functionally similar to the migrational

or ‘‘homing’’ behavior of hematopoietic stem cells (HSC) to the bone

marrow. Numerous molecules have been implicated in regulating

HSC homing, participating as both chemoattractants and regulators

of cell growth. Our previous work has drawn heavily on the parallels
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between HSC homing and the homing of PCa cells to the marrow. As

a result, we identified that PCa cells use the CXC chemokine CXCL12

or SDF-1 and its receptors CXCR4 [Taichman et al., 2002; Sun et al.,

2003, 2005; Wang et al., 2005] and CXCR7/RDC1 [Wang et al., 2008]

as key elements in metastasis and growth in bone.

Identification of the HSC niche in the marrow is an active area of

investigation [Calvi et al., 2003; Zhang et al., 2003; Arai et al., 2004;

Kiel et al., 2005; Taichman, 2005]. One protein in high abundance in

the marrow is annexin II (Anxa2) (or p36, calpactin I heavy chain,

and lipocortin II [Raynal and Pollard, 1994]). Anxa2 is a 36 kDa

peripheral membrane protein expressed by endothelial cells, early

myeloid cells, some tumor cells [Menell et al., 1999; Brownstein

et al., 2001; Falcone et al., 2001], and osteoblasts [Takahashi et al.,

1994; Wang and Kirsch, 2002; Jung et al., 2007]. Anxa2 exists as a

monomer, a heterodimer, or a heterotetramer [Gerke and Weber,
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1984; Glenney, 1986]. Anxa2 tetramer is composed of two copies of

a 36 kDa heavy chain (Anxa2 or p36), and two 11 kDa light chains

(p11) [Gerke and Weber, 1984]. The protein itself has two structural

domains; an amino-terminal domain, which includes the first

30 amino acids of the p36 heavy chain, the serine and tyrosine

phosphorylation sites and sites for binding the p11 light chain

[Glenney, 1986]. The formation of the heterotetramer permits

binding to the plasma membrane [Thiel et al., 1992]. The expression

of Anxa2 is known to be regulated by insulin, fibroblast growth

factor (FGF), and epidermal growth factor (EGF) [Zhao et al., 2003].

Enhanced Anxa2 expression has also been reported in human

hepatocellular carcinoma, pancreatic adenocarcinoma, high-grade

glioma, gastric carcinoma, and acute promyelocytic leukemia [Diaz

et al., 2004]. Anxa2 is known to interact with a number of

extracellular matrix molecules such as tenascin-C and proteolytic

enzymes including tissue plasminogen activator (t-PA) and

cathepsin B [Chung and Erickson, 1994; Fitzpatrick et al., 2000;

Mai et al., 2000]. Accordingly, Anxa2 may participate in

plasminogen activation, cell adhesion, and tumor metastasis and

invasion.

Based upon its distribution in marrow, Anxa2 is likely to play

several roles in regulating hematopoiesis. On endothelium, Anxa2

regulates the plasmin/plasminogen activator system and may play a

role in fibrinolytic surveillance by anchoring key components of the

fibrinolytic cascade [Brownstein et al., 2001; Falcone et al., 2001].

Anxa2 is known to serve as a binding site for beta 2-glycoprotein I,

a phospholipid-binding protein from plasma [Baran et al., 2000].

Other ligands include a vitamin D analog that is inhibited in rat

osteoblasts by Ca2þ [Baran et al., 2000]. In bone, Anxa2 has been

demonstrated to play a role in osteoclastic activation and osteoblast

mineralization, although the mechanisms for these actions remain

unclear [Takahashi et al., 1994; Wang and Kirsch, 2002]. One

scenario is that extracellular Anxa2 levels are regulated by 1,25-

dihydroxyvitamin D3 that stimulates the proliferation of osteo-

clastic precursors possibly through T-cell intermediaries to secrete

granulocyte-macrophage colony stimulating factor (GM-CSF)

[Menaa et al., 1999].

Our recent work in this field has demonstrated that Anxa2

expressed by osteoblasts and endothelial cells plays a critical role in

niche selection [Jung et al., 2007]. We have demonstrated that the

engraftment of HSCs and survival of lethally irradiated animals

during experimental bone marrow transplantation are sharply

curtailed in the presence of neutralizing Anxa2 antibodies, and N-

terminal Anxa2 peptides [Jung et al., 2007]. Moreover, fewer HSCs

are found in the marrows of Anxa2-deficient animals. Among the

most compelling mechanisms to account for these observations is

that Anxa2 acts as an adhesion ligand for HSCs homing [Jung et al.,

2007].

In this study, we draw parallels between PCa metastasis and

HSC homing to the niche. Anxa2 itself is associated with

proliferating and invasive cancers, possibly as a marker of

malignancy [Reeves et al., 1992] including lung, pancreatic, brain,

colon, and gastric carcinomas, and is correlated with poor prognosis

[Cole et al., 1992; Vishwanatha et al., 1993; Roseman et al., 1994;

Emoto et al., 2001; Diaz et al., 2004]. Yet, the loss of Anxa2

expression appears to be specific for PCa disease [Chetcuti et al.,
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2001; Banerjee et al., 2003; Kirshner et al., 2003; Liu et al., 2003;

Smitherman et al., 2004; Semov et al., 2005]. Our finding indicates

that Anxa2 serves as an adhesion molecule for PCa, and blocking

Anxa2 or its receptor limits metastasis in animal models. Anxa2 may

also facilitate the growth of PCa in vitro and in vivo via partially

through activation of the MAPK pathway. Taken together, these data

strongly suggest that annexin II plays a central role in PCa

metastasis, and that PCa utilize HSC homing mechanisms to gain

access to the niche.
MATERIALS AND METHODS

CELL CULTURE

PC-3 (CRL-1435), DU145 (HTB-81), and LNCaP (CRL-1740) prostate

cancer cell lines were obtained from the American Type Culture

Collection (Rockville, MD). The metastatic subline LNCaP C4-2B

were originally isolated from a lymph node of a patient with

disseminated bony and lymph node involvement [Wu et al., 1998].

PC-3Luc cells were constructed by stably transfecting PC-3 cells with

luciferase construct, as previously described [Loberg et al., 2006].

The human bone marrow endothelial cells (HBMECs) were isolated

from a normal Caucasian male and immortalized with SV40 large

T-antigen [Lehr and Pienta, 1998]. Cells were cultured in RPMI 1640

(Invitrogen, Carlsbad, CA) and were supplemented with 10% fetal

bovine serum (FBS; Invitrogen) and 1% penicillin-streptomycin

(Invitrogen), and maintained at 378C, 5% CO2, and 100% humidity.

Anxa2 RECEPTOR (Anxa2r) SILENCING

A 60-bp oligonucleotide, containing 19-nucleotides to a portion of

the human Anxa2r and its reverse complement sequences separated

by a 9-nucleotide spacer sequence, were subcloned into the

BglII and HindIII restriction sites of the 3.2-kb plasmid pSUPER

containing the H1-RNA promoter (Oligoengine, Seattle, WA). PC-

3Luc cells were transfected with siRNA Anxa2r vectors (PC-3siAnxa2r

cells) and a scrambled control (PC-3siControl cells) using Superfect

(QIAGEN, Valencia, CA) as described previously [Jung et al., 2007].

siRNA knock down was monitored by real-time reverse transcrip-

tion-polymerase chain reaction (QPCR).

HUMAN OSTEOBLASTS

Human osteoblasts were established by explant culture from

normal human trabecular bone obtained from patients undergoing

orthopedic surgery in accordance with the University of Michigan’s

Investigational Review Board, as previously described [Taichman

and Emerson, 1994].

ISOLATION OF PRIMARY MURINE CALVARIAL CELLS

Primary calvarial cells were isolated, as previously described

[Koh et al., 2005]. Briefly, calvariae of mice (1- to 4-day-old) were

dissected, isolated from periosteum, and subjected to sequential

digestions of 20, 40, and 90 min in collagenase A (2 mg/ml; Roche

Molecular Biochemicals, Indianapolis, IN) with 0.25% trypsin

(Invitrogen). Cells from the third digestion were plated in a-MEM

(Invitrogen) with 10% FBS and 1% penicillin and streptomycin.
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MURINE MODELS

All experimental procedures were approved by the University of

Michigan Committee for the Use and Care of Animals (UCUCA).

C57BL6 mice, male severe combined immune deficient (SCID) mice

(5–6 weeks of age), and male athymic (nude) mice (4–6 weeks of age)

were purchased from Harlan Bioscience (Indianapolis, IN). The

laboratory of Dr K.A. Hajjar (Weill Medical College of Cornell

University, New York, NY) generated the Anxa2-deficient (Anxa2�/�)

animals used in our study and graciously provided our laboratory

with a pair of the homozygous Anxa2�/� mice for breeding.

ANTIBODIES AND REAGENTS

The anti-Anxa2 antibody (Clone 5; mouse IgG1) was purchased from

BD Pharmingen (San Diego, CA). Antibodies targeting Anxa2r were

generated in the laboratory of Dr. G.D. Roodman (University of

Pittsburgh, Pittsburgh, PA) and were described in detail previously

[Lu et al., 2006]. The antibodies to phosphorylated Akt (Ser473),

total Akt, phosphorylated p44/42 MAP kinase (Thr202/Tyr204),

total p44/42 MAP kinase, and horseradish peroxidase (HRP)-labeled

goat anti-rabbit IgG (Hþ L) were obtained from Cell Signaling

Technology (Danvers, MA). The control antibodies for these

investigations included immonoglobulin Ig G1k (clone MOPC

31C; Sigma–Aldrich, St. Louis, MO), IgG1 (clone X40; Becton-

Dickinson, San Jose, CA), IgG2a (clone 20102; R&D Systems,

Minneapolis, MN). Purified bovine lung Anxa2 was purchased from

Biodesign International (Saco, ME). Anxa2 N-terminal peptide

corresponding to the 1–12 amino acids and a random peptide

(TVLLHEICKSSL) were synthesized, as previously detailed [Jung

et al., 2007]. Recombinant human CXCL12 was purchased from R&D

Systems.

IMMUNOHISTOCHEMISTRY

Murine bones were harvested and fixed in 10% buffered formalin

and decalcified in EDTA, and 2–3 mM paraffin-embedded slides

were prepared and stained with antibody to Anxa2 or an IgG

matched isotype control in conjunction with a HRP-AEC staining

system kit using anti-mouse biotinylated antibodies following the

manufactures protocols (R&D Systems).

Human osteoblasts were cultured in Lab-Tek II 4-chamber slides

(Nalge Nunc International, Naperville, IL) at 5� 104 cells/chamber.

After 24 h, fixed in 4% paraformaldehyde for 25 min at room

temperature, washed and endogenous peroxidase activity quenched

with 75 mM NH4Cl and 20 mM Glycine in PBS at room temperature

for 10 min. Thereafter, primary antibody incubations at a 1:200

dilution in PBS using the anti-Anxa2 or an IgG matched isotype

control for 1 h at room temperature. Antibody detection was

performed using an HRP-AEC staining kit (R&D Systems), and

counter stained with hematoxylin (Sigma–Aldrich).

BINDING ASSAYS

Anxa2 binding assays were performed with purified bovine lung

Anxa2 or Bovine Serum Albumin (BSA; Sigma–Aldrich) plated into

96-well plates for 24 h at 48C, washed, and then blocked with 0.1%

BSA for 2 h.

For cell-to-cell binding assays, the human osteoblasts, murine

calvarial cells, and HBMECs were plated onto 96-well plates at a
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concentration of 10,000 cells per well (100 ml per well) in growth

mediums, and the cultures were incubated for 2 days.

PC-3, PC-3siAnxa2r, or PC-3siControl cells were labeled with 2.5 mg/

ml of the lipophilic dye carboxyfluorescein diacetate (CFDA;

Molecular Probes, Eugene, OR) in RPMI for 30 min at 378C, and

washed in PBS. Thereafter, the cells were left for 30 min to reduce

nonspecific background, and subsequently resuspended in PBS to

deliver 105 cells/well in the adhesion assay. Adhesion assays were

performed in PBS containing Caþ2/Mgþ2 where the cells were added

to a final reaction volume of 100 ml at 48C. After washing

fluorescence was quantified. In some cases, the cells were incubated

in 5 mg/ml of an anti-Anxa2 or IgG matched isotype control

antibody, or 1 mg/ml of an Anxa2 N-terminal peptide or a random

peptide control to block adhesion for 15 min on ice prior to seeding

onto the monolayers.

TRANSWELL CHEMOTAXIS ASSAYS

Cell invasion into a reconstituted extracellular matrices coating of

MatrigelTM overlaid on 8 mM pore sized in polyethylene terephtha-

late membranes was performed in dual chambered invasion plates

(BD Biosciences, San Jose, CA) as previously described [Sun et al.,

2007; Wang et al., 2008]. Spontaneous invasion was compared to

invasion supported by Anxa2. For blocking studies, rhCXCL12 at a

final concentration of 200 ng/ml was added to the lower chamber,

and Anxa2 N-terminal peptide or a random peptide control at a final

concentration of 1 mg/ml was added to the upper chamber along

with the cells.

REVERSE TRANSCRIPTION-PCR (RT-PCR) AND QPCR

RT-PCR and QPCR was carried out using standard techniques.

Briefly, total RNA was isolated using RNeasy Mini Kit (QIAGEN), and

first-strand cDNA was synthesized in a 20 ml reaction volume using

0.4 mg of total RNA. The sequences of the forward and reverse

primers of Anxa2r were 50-CGGAGTCTACTGGCAAAACG-30 and 50-

GCCTTCTGCTGCTATCTAAG-30. The reaction profile was 948C for

1 min, 608C for 1 min, and 728C for 2 min for 35 cycles, followed

by a 10-min extension at 728C. PCR products were separated by

electrophoresis in 1.2% agarose gels and visualized by ethidium

bromide staining.

RT products were analyzed by QPCR in TaqMan1 Gene Expres-

sion Assays of several target genes: Anxa2r (Hs01588662_s1) and

b-actin (Hs99999903_m1) (Applied Biosystems, Foster City, CA).

QPCR analysis was performed using 15.0 ml of TaqMan1 Universal

PCR Master Mix (Applied Biosystems), 1.5 ml of TaqMan1 Gene

Expression Assay (forward and reverse primers at 18 mM and

Taqman probe at 5 mM), 1 ml of the RT product, and 12.5 ml

of RNAse/DNAse-free water in a total volume of 30 ml. Reactions

without template and/or enzyme were used as negative controls. The

2nd step PCR reaction (958C for 30 s, 608C) was run for 40 cycles

after an initial single cycle of 958C for 15 min to activate the Taq

polymerase. The PCR product was detected as an increase in fluore-

scence using an ABI PRISM 7700 instrument (Applied Biosystems).

RNA quantity (CR) was normalized to the housekeeping gene b-Actin

control by using the formula CR¼ 2(40-Ct of sample)-(40-Ct of control). The

threshold cycle (Ct) is the cycle at which a significant increase in

fluorescence occurs.
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TISSUE MICROARRAY AND IMMUNOSTAINING

Human prostate adenocarcinoma tissue microarray was purchased

from US Biomax, Inc. (Rockville, MD). Tumors were graded using the

Gleason grading system and examined to identify areas of benign

prostate, prostate cancer and bone metastasis. The formalin-fixed,

paraffin-embedded tissues were deparaffinized and placed in a

pressure cooker containing 0.01 M buffered sodium citrate solution

(pH 6.0), boiled and chilled to room temp for antigen retrieval. The

slides were incubated overnight at room temperature with anti-

Anxa2r antibody diluted 1:100. A blinded pathologist analyzed

arrays and staining intensity was ranked on a scale from 0 to 3 (0,

negative; 1, weak; 2, moderate; and 3, strong intensity staining).

Anxa2 TREATMENTS

PC-3 cells (1� 106) were cultured in six-well plates in RPMI medium

(1 ml) without FBS for 5 h. After serum starvation, the cells were

treated with 1,000 ng/ml Anxa2 for 5, 15, 30, 45, and 60 min. The

cells were extracted for protein and analyzed for phosphorylated

p44/42 MAP kinase (Thr202/Tyr204) and for phosphorylated Akt by

Western blotting analysis. Total p44/42 MAP kinase and Akt were

used as an internal control for loading.

PROLIFERATION ASSAYS

The murine calvarial cells from Anxa2þ/þ or Anxa2�/� mice were

plated into triplicate 96-well plates at a concentration of 10,000 cells

per well (100 ml per well) in growth medium with 0.1% FBS. The

next day, PC-3Luc cells were added to the wells at a concentration of

5,000 cells per well. Thereafter, the cultures were incubated in an

atmosphere of 5% CO2 and 95% O2 at 378C for 3 days. Proliferation

was determined by using a CCD IVIS system with a 50-mm lens

(Xenogen Corp., Alameda, CA) and the results were analyzed using

LivingImage software (Xenogen Corp.).

IN VIVO METASTASIS ASSAYS

PC-3Luc cells were introduced into male SCID mice by intracardiac

(i.c.) injections. Immediately prior, the recipient mice were

inoculated by intraperitoneal (i.p.) injections with (i) anti-Anxa2

antibody, (ii) the Anxa2 N-terminal peptide, or (iii) a mixed IgG

matched isotype control antibodies/random peptide control each at

10 mg/kg. Short-term engraftment was assessed at 12 h by QPCR

using for luciferase 2CP gene [luc2CP, CGGCTGGCAGAAGCTAT-

GAA (forward), TCGCTGCACACCACGAT (reverse), and 50-FAM-

CTATGGGCTGAATACAAACC (TaqMan probe; Applied Biosystems)].

Data were normalized to mouse tissue b-actin (mm00607939-s1).

PC-3siAnxa2r or PC-3siControl cells were used to assess the role of

Anxa2 in long-term PCa homing.

BIOLUMINESCENT IMAGING (BLI)

BLI was done as previously described through The University of

Michigan Small Animal Imaging Resource facility [Loberg et al.,

2007]. Briefly, cells were introduced into male SCID mice by i.c.

injections. Mice were imaged at 30 days by BLI. Mice were injected

with luciferin (40 mg/ml) by i.p. injections and ventral images

were acquired 15 min postinjection under 1.75% isofluorane/air

anesthesia. Total tumor burden of each animal was calculated using

regions of interest (ROI) that encompassed the entire animal.
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Lumbar vertebrae were isolated from Anxa2þ/þ or Anxa2�/� mice

7 days after birth. The vertebrae were sectioned into single vertebral

bodies (vossicles). Athymic (nude) mice were used as transplant

recipients. Four vossicles per mouse were implanted into sub-

cutaneous (s.c.) pouches. Before implantations, PC-3Luc cells were

introduced into both vossicles (10,000 cells/10 ml of PBS). Mice were

imaged at 30 days by BLI.

STATISTICAL ANALYSES

All in vitro experiments were performed at least three times with

similar results and representative assay are shown. Numerical data

are expressed as mean� standard error. Statistical analysis was

performed by ANOVA or Student’s t-test using the GraphPad Instat

statistical program (GraphPad Software, San Diego, CA) with

significance at P< 0.05. For the QPCR assays, a Kruskal–Wallis test

and Dunn’s multiple comparisons tests were utilized with the level of

significance set at P< 0.05.

RESULTS

Anxa2 IS EXPRESSED ON OSTEOBLASTS SURFACE IN BONE

MARROW

To determine whether Anxa2 is expressed at the sites relevant to the

localization of PCa to the bone marrow endosteal and endothelial

niches, immunohistochemistry for Anxa2 was performed. As

demonstrated in Figure 1A, Anxa2 immunoreactivity was most

intense at the endosteal osteoblastic surfaces of the marrow closest

the growth plate (Fig. 1A-1,2). In some cases, bone marrow

endothelial cells also displayed immunoreactivity towards Anxa2

(Fig. 1A-1,3). No signal was observed in the absence of the specific

anti-Anxa2 antibody (Fig. 1A-4) and the bone marrow from

Anxa2�/� mice (Fig. 1A-5). Human primary osteoblasts also

demonstrated perinuclear and cytoplasmic expression of Anxa2

in nearly all of the cells under basal conditions (Fig. 1B). These

findings suggest that Anxa2 is expressed on osteoblasts in the bone

marrow.

PCa BINDS AND MIGRATES TOWARDS Anxa2

Our recent studies demonstrate that HSCs use Anxa2 to bind to

endothelial cells and osteoblasts [Jung et al., 2007]. Studies were

therefore undertaken to determine if Anxa2 serves as an adhesive

molecule for PCa. PC-3 cells bind to Anxa2 in a dose dependent

manner (Fig. 2A-1), and other PCa cell lines not shown). Cell-to-cell

adhesion assays were next performed using a bone marrow

endothelial cells and osteoblasts that express abundant Anxa2.

Here, the PCa cells bound rapidly to the HBMEC cells and the Anxa2

N-terminal competing peptide significantly reduced PC-3 cells

binding to HBMECs compared to a scrambled control peptide

(Fig. 2A-2). Next, we performed the binding assays between PC-3

cells and human or murine osteoblasts. The data demonstrate that

the binding of PC-3 cells to human osteoblasts was significantly

inhibited using antibody to Anxa2 (Fig. 2B-1). When the binding of

PC-3 cells to osteoblasts derived from Anxa2þ/þ or Anxa2�/� mice

was evaluated, it was noted that significantly more PC-3 cells bound
ANNEXIN I I REGULATES METASTASIS 373



Fig. 1. Anxa2 protein is expressed in bone. A: Expression of Anxa2 protein in

murine long bones. Mouse tibias were fixed in 10% formalin at 48C before

being decalcified in 10% EDTA (pH 7.4) and embedded in paraffin wax.

Immunolocalization of Anxa2 protein was visualized using a monoclonal

antibody (mAb) to Anxa2 or an IgG isotype matched control antibody. A-1:

Anxa2-immunostained tibias (20� magnification). A-2: Higher magnification

of (A-1) at 40� magnification and Anxa2 expression at the epiphyseal growth

plates. A-3: Higher magnification of (A-1) at 40� magnification and Anxa2

expression at the bone marrow endothelial cells. A-4: IgG control (20�
magnification). A-5: No Anxa2 expression in the tibia of Anxa2�/� animals

(20� magnification). B: Expression of Anxa2 protein by primary human

osteoblasts stained with anti-Anxa2 mAb or an IgG isotype matched control

(20� magnification). B-1: IgG control immunoactivity on the human osteo-

blasts. B-2: Anxa2 expression on the human osteoblasts. Scale bars¼ 100 mm.
to the Anxa2þ/þ osteoblasts than to the Anxa2�/� osteoblasts

(Fig. 2B-2).

Once tumor cells have adhered to and moved through the

endothelium, they must invade through the extracellular matrix.

The ability of Anxa2 to influence PCa invasion was studied using a

reconstituted extracellular matrix in porous chambers. PC-3 cells

were placed in the upper chamber in serum free medium, whereas

Anxa2 at increasing doses was placed in the lower chamber to

establish a chemoattractive gradient. After 8 h, quantification of the

cells migrating into the reconstituted matrix in triplicate assays was

performed. Anxa2 supported the invasion of PC-3 cells into the

reconstituted matrix (Fig. 2C). To further determine if Anxa2 is used

to localize PCa cells to tissue spaces, CXCL12 was employed to

establish a chemoattractive gradient [Taichman et al., 2002]. When

rhCXCL12 was placed in the bottom chamber, PC-3 cells migrated

towards the chemokine (Fig. 2D). When Anxa2 was added to the
374 ANNEXIN II REGULATES METASTASIS
upper chamber of the culture dish with rhCXCL12 present in the

bottom, fewer PC-3 cells migrated towards the chemokine CXCL12.

Similar results were observed when an N-terminal competing Anxa2

peptide was included in the assay (Fig. 2D). These data support the

notion that PCa binds to, and moves toward Anxa2, and further

suggests that Anxa2 participates in tissue localization of PCa.

Anxa2 IS INVOLVED IN PCa METASTASIS

In order to test our hypothesis that Anxa2 is critical for the

development of metastases in vivo, we established three experi-

mental groups. In each case, the animals were inoculated with

PC-3Luc cells by i.c. injection. Immediately prior to the i.c. injection,

the animals were injected i.p. with (i) an antibody to Anxa2, (ii) the

N-terminal competing Anxa2 peptide, or (iii) an isotype matched,

nonspecific antibody combined with a scrambled the amino acid

sequence of the N-terminal competing peptide. The animals were

subsequently sacrificed at 12 h and tissues were harvested. QPCR

was utilized as our primary outcome to detect the tagged human

cells. As shown in Figure 3, all of the animals in injected with PC-3

cells alone demonstrated significant homing/lodging of the cancer

cells in a number of tissues. Animals injected with antibody to

Anxa2 and the Anxa2 N-terminal competing peptide significantly

reduced the total metastatic load of the animals compared to the

IgG/peptide treated control group. Animals not injected with human

cells did not demonstrate any signal for luciferase (data not shown).

These data suggested that Anxa2 plays an important role in short-

term homing of PCa and regulates PCa metastasis.

Anxa2r EXPRESSED ON PCa

A single pass Anxa2r membrane receptor was cloned and identified

to bind the p11 fraction of Anxa2 (Anxa2r) [Lu et al., 2006]. To

determine if PCa cells express the Anxa2r, RT-PCR and QPCR for the

Anxa2r was performed. As demonstrated in Figure 4A, PC-3 cells

expressed mRNA for the Anxa2r. We also performed QPCR for 4

different human PCa cell lines to compare their expression levels.

The Anxa2r mRNA was most strongly expressed by the DU145 cell

line (Fig. 4B). Modest expression was seen in the PC-3, LNCaP, and

C4-2B cell lines (Fig. 4B). Next, to evaluate the widest range of

Anxa2r expression, PCa tissue microarrays were examined. Tumors

were graded using the Gleason grading system and examined to

identify areas of benign prostate and PCa. Staining of microarrays

with antibody to Anxa2r revealed moderate-to-strong Anxa2r

protein expression in clinically localized PCa samples with

cytoplasmic and nuclear localization (Fig. 4C-1–6). Anxa2r protein

expression was enhanced with increasing tumor grade, although

statistically there were no significant differences in localized tumor

and metastatic lesions (Fig. 4C-1–6, and data not presented).

Anxa2r INVOLVED IN PCa METASTASIS

To test whether Anxa2r is also critical for the development of

metastases, siRNAs were employed to alter the expression of Anxa2r

on PCa cells. PC-3Luc cells were transfected with siRNAs targeting

the Anxa2r. Our best siRNA was able to decrease Anxa2r mRNA

expression by � 60% by 48h (Fig. 5A). By knocking down the

Anxa2r, PCa cells bind less vigorously to HBMECs compared with
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Fig. 2. Anxa2 regulates the adhesion of prostate cancer and prostate cancer invasion. A-1: Fluorescently labeled PC-3 cells were deposited directly into wells containing

different concentrations (0–1,000 ng/ml) of purified bovine lung Anxa2 peptide and adhesion determined. A-2: PC-3 cells were layered on human bone marrow endothelial cells

(HBMECs) in the presence of N-terminal Anxa2 peptide or a scramble control peptide. B-1: PC-3 cells were layered on human osteoblasts in the absence or presence of an anti-

Anxa2 antibody or an isotype matched IgG control antibody (5 mg/ml). B-2: PC-3 cells were layered on wild-type murine osteoblasts (Anxa2þ/þ OBs) or Anxa2�/� murine

osteoblasts (Anxa2�/� OBs). After 15 min incubation at 48C, the non-adherent cells were removed. The number of adherent cells was quantified using a fluorescence plate reader.

Data are presented as the mean� standard error percentage of adherent cells from three independent experiments.
	
P< 0.05 and #P< 0.01 versus control by ANOVA. Invasion of

PC3 cells into matrigel was used to evaluate the effects of Anxa2 on invasion. C: Matrigel invasion assays were performed with different concentrations of purified bovine lung

Anxa2 peptide on PC-3 cell invasion. In (D), Matrigel invasion assays were used to evaluate the effect of neutralizing Anxa2 on the invasion of PC-3 cells in response to a

chemotactic gradient established by CXCL12. Purified bovine lung Anxa2 or N-terminal Anxa2 or control peptides were seeded on the upper well of a Transwell chamber. The

rhCXCL12 was added in the lower well (200 ng/ml). The results of at least three independent replicates are shown. #P< 0.01 versus control by ANOVA.
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Fig. 3. Anxa2 regulates short term homing of prostate cancer in vivo to bone.

PC-3Luc cells were administered by intracadiac injection into SCID mice in

the presence of antibody to Anxa2, an N-terminal Anxa2 peptide, or mixed

IgG matched isotype control antibodies and random peptide controls each at

10 mg/kg. The short-term homing capabilities of the prostate cancer were

evaluated at 12 h. The level of engraftment was assessed by QPCR for luciferase

and data were normalized to total mouse b-actin. Data are presented as the

mean� standard error (n¼ 5) where significance was determined using a

Kruskal-Wallis test and Dunn’s multiple comparisons with the level of sig-

nificance set at 	P< 0.05.
Fig. 4. Prostate cancer expresses Anxa2r. A: Representative conventional

RT-PCR analysis of Anxa2r expression in PC-3 cell line. KG1a cells (acute

myeloid leukemia cell line) served as positive controls for Anxa2r and

H2O served as negative controls. B: Representative QPCR analysis of Anxa2r

in prostate cancer cell lines. Data are presented as the mean� standard error

from three independent PCR reactions. C: Representative elements of a tissue

microarray in PCa stained with anti-Anxa2r antibody. C-1: Gleason grading 0.

C-2: Gleason grading 6. C-3: Gleason grading 7. C-4: Gleason grading 8.

C-5: Gleason grading 9. C-6: Gleason grading 10. Original magnification 20�.

Scale bars¼ 100 mm.
cells transfected with a scrambled siRNA (Fig. 5B). Similar results

were seen using the C4-2B and LNCaP cell lines (not presented).

Next, to explore the in vivo role of Anxa2r in PCa metastases,

PC-3siAnxa2r or PC-3siControl cells were injected i.c. into SCID mice.

At 1 month, significantly fewer lesions were identified in the

PC-3siAnxa2r cells injected group compared to those animals that

received the cells expressing the scrambled controls (Fig. 5C). These

data support the hypothesis that Anxa2r plays a critical role in PCa

metastasis.

Anxa2 REGULATES PCa PROLIFERATION AND SURVIVAL VIA

MAPK SIGNALING PATHWAY

To determine whether Anxa2 supports PCa survival or proliferation,

we examined the viability of PC-3Luc cells that were plated on

osteoblasts derived from Anxa2þ/þ or Anxa2�/� mice. Significantly

more PC-3Luc cells grew on the Anxa2þ/þ osteoblasts than on the

Anxa2�/� osteoblasts (Fig. 6A-1,2). To further explore whether

Anxa2 supports PCa growth in vivo, PC-3Luc cells were injected

directly into vertebral bodies (vossicles) derived from Anxa2þ/þ or

Anxa2�/� animals, and transplanted into immunodeficient hosts.

Bioluminescent imaging was performed at one month to evaluate

luciferase activity in the implanted vossicles. The data demonstrated

that the growth of the PCa was greater in the vossicles derived from

Anxa2þ/þ animals (Fig. 6B-1,2). To explore how Anxa2 regulates

survival/growth, we next examined the effects of Anxa2 on Erk1/2

or Akt activation in PCa cells. PCa cells were treated with Anxa2,

and Akt and Erk1/2 phosphorylation were evaluated by western

blotting. The data demonstrated that Anxa2 rapidly induces Erk1/2

phosphorylation in PC-3 cells within 5 min, whereas Anxa2 did not
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activate the Akt pathway (Fig. 6C). These data suggested that once

PCa has metastasized to the bone, Anxa2 then facilitates the PCa

growth via the MAPK pathway.

DISCUSSION

In this paper, we demonstrate that the Anxa2/Anxa2r axis plays a

crucial role in establishing metastasis of PCa by regulating the

adhesion and migration of PCa to osteobalsts and endothelial cells.

PCa cells migrate toward Anxa2 and the adhesion of PCa to

osteoblasts and endothelial cells was inhibited by an Anxa2 peptide,

and an anti-Anxa2 antibody and by siRNA knockdown of Anxa2r.

In in vivo studies, the short-term localization of PCa cells to a

number of tissues was substantially inhibited by Anxa2 peptides or

anti-Anxa2 antibodies. The long-term localization of PCa cells to a

number of tissues was also inhibited by siRNA knockdown of

Anxa2r. Moreover, Anxa2 is involved in the regulation of PCa

growth in vitro and in vivo by activating the MAPK signaling

pathway. Together, these data strongly suggested that Anxa2/

Anxa2r axis plays an important role in regulating the metastasis of

PCa to the marrow.
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Fig. 5. Anxa2r-targeting siRNAs specifically inhibit adhesion of prostate

cancer to endothelial cells in vitro, and tumor growth in vivo. PC-3Luc cells

were transfected with Anxa2r-targeting siRNAs (PC-3siAnxa2r cells) or scramble

control vector (PC-3siControl cells). A: The expression of Anxa2r was evaluated by

QPCR at 48 h after transfection. b-actin was included as a loading control. B:

Attachment of fluorescently labeled PC-3siAnxa2r or PC-3siControl cells to human

bone marrow endothelial cells (HBMECs) at 48C for 15 min. C: PC-3siAnxa2r or

PC-3siControl cells were injected systemically by intracardiac injection into SCID

mice. After a month, tumor growth was measured by a bioluminescent imaging.

Bioluminescence images are presented as the relative photon counts of each

individual (n¼ 10). Data are presented as the mean� standard error. 	P< 0.05

and #P< 0.01 versus control.
It is well known that HSCs localize to bone during fetal life and

during marrow transplantation. In the bone marrow, HSCs are

known to associate with at least 2 separate niches, the endosteal

niche (osteoblasts) and the vascular niche (endothelial cells). We

have recently demonstrated that osteoblasts and marrow endothelial

cells express Anxa2 which functions as a molecule that regulates

hematopoietic stem engraftment [Jung et al., 2007]. We have

hypothesized based upon the hematopoietic model that metastatic
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PCa use a similar pathway to localize to the bone marrow [Taichman

et al., 2002]. Although both hematopoietic cells and PCa cells home

to the bone marrow, we are not aware of any investigation that

addresses whether Anxa2 operates in the pathogenesis of PCa

metastasis as an adhesion ligand. Our functional studies demon-

strate that Anxa2 alters the adherence, migration, and invasion of

human PCa cell lines. For example, it was observed that PCa cells

adhere to Anxa2 and that the N-terminal Anxa2 peptide

dramatically inhibited PCa binding to bone marrow-derived

endothelial cells. Moreover, it was demonstrated that Anxa2

supported the invasion of PCa cell lines into reconstituted

extracellular matrices, and that invasion stimulated by CXCL12

could be blocked by with Anxa2 itself or the N-terminal Anxa2

peptide. In fact, recently we observed that CXCL12 binds to Anxa2,

which could account for the loss of growth of PCa in Anxa2�/�

vossicles and why the addition of Anxa2 to the migration chambers

prevented chemotaxis to CXCL12 (Russell S. Taichman, unpublished

work). While specific transendothelial migration assays were not

performed, the initial binding of PCa cells to the endothelium is a

necessary prerequesite for egress of tumors out of the vascular

system. It was also demonstrated Anxa2 plays an important role in

regulating the binding between PCa and osteoblasts. To further

confirm the involvement of Anxa2 in the PCa metastasis, it was

found that blocking Anxa2 with a monoclonal antibody or N-

terminal peptide prevented PCa homing to the marrow and other

sites of PCa metastasis. Collectively, our results suggest that PCa

cells use Anxa2 as they spread to bone and other tissues.

Our data also suggest that Anxa2 may also regulate the

proliferation of PCa cells at metastatic sites. Moreover, ligand

binding of PCa cells to Anxa2 resulted in activation of Erk1/2

signaling. In bone, Anxa2 has been demonstrated to play a role in

osteoclastic activation and osteoblast mineralization, although the

mechanism for these actions remains unclear [Takahashi et al.,

1994; Wang and Kirsch, 2002]. One scenario is that extracellular

Anxa2 levels are regulated by 1,25-dihydroxyvitamin D3 that

stimulates the proliferation of osteoclastic precursors possibly

through T-cell intermediaries through the secretion of GM-CSF

[Menaa et al., 1999]. Osteoclastic activity is critical for PCa growth in

bone [Zhang et al., 2001]. Alternatively, Anxa2 may regulate

vascular in growth that is critical for tumor proliferation. Although

the detailed mechanisms for this remain unclear, Anxa2 may be

involved in the survival or growth of PCa either in a direct or

indirect way.

Work by our group and others have defined the role that CXCL12

and its receptors (CXCR4 and RDC1/CXCR7) play in the metastatic

process of PCa [Taichman et al., 2002; Sun et al., 2003, 2005, 2007;

Cooper et al., 2004; Wang et al., 2005, 2008; Havens et al., 2006]. In

PCa, we observed that CXCR4 expression relates to increasing tumor

grade [Sun et al., 2003] and that CXCL12 signaling through CXCR4

triggers the adhesion of PCa to bone marrow endothelial cells, by

activating CD164 [Havens et al., 2006] and avb3integrins [Sun et al.,

2007]. Moreover, a positive correlation exists between tissue levels

of CXCL12 and sites where metastatic PCa lesions are observed

suggesting a selective effect (pelvis, tibia, femur, liver, and adrenals)

[Sun et al., 2005]. Interestingly we found a significant number of

PCa cells in the prostate 24 h after i.c. injection. Previously we noted
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Fig. 6. Anxa2 facilitates the growth of prostate cancer in vitro and in vivo. A-1: The wild-type (Anxa2þ/þ OBs) or Anxa2�/� mouse osteoblasts (Anxa2�/� OBs) (10,000 cells/

well) were plated onto 96-well plates with 0.1% FBS. The next day, PC-3Luc cells (5,000 cells/well) were added on monolayers. At 72 h incubation at 378C, luciferase activity was

measured by a bioleuminescent imaging. A-2: The graph shows the percent change of luciferase activity shown in (A-1) (n¼ 6). Data are presented as the mean� standard error.
#P< 0.01 versus control. B-1: Growth of PC3 cells in an Anxa2 deficient osseous environment. PC-3Luc cells were injected into Anxa2þ/þ and Anxa2�/� mice vossicles and

transplanted into SCID mice (n¼ 12). At a month, the animals were imaged by a bioluminescent imaging. Data are presented as the relative photon counts of each individual.
	P< 0.05 versus control. B-2: Representative mice shown in (B-1). Individual animals were implanted with vossicles derived from either wild-type (Anxa2þ/þ) or Anxa2 deficient

animals. In some cases, these were seeded with PC3luc cells as shown in animal map. C: PC-3 cells were cultured in medium without FBS for 5 h. After serum starvation, the cells

were treated with 1,000 ng/ml Anxa2 peptide for 5, 15, 30, 45, and 60 min. Total protein was extracted and analyzed by Western blot for phosphorylated-Erk1/2 and Akt. Total

Erk1/2 and Akt were used as an internal control for loading.
that PCa cells do disseminate back to the prostate from a s.c. tumor

[Havens et al., 2008]. The basis for these observations however

remains unclear. One of the mechanisms for this could be that

prostate tissue expresses CXCL12 [Berquin et al., 2005]. Another

could be that PCa cells are attracted to the primary site possibly due

to other homing mechanisms or because of its ‘‘fertile soil.’’ Further

studies will be needed to sort out these possibilities.

While CXCL12 and its receptors participate in the homing of PCa

to the niche, the events activated by PCa to co-opt the niche remain

unclear. It is tantalizing to hypothesize that one of the potential

reasons why metastatic PCa induce the expression of an osteoblastic

phenotype is to establish a paracrine loop to further support their

expansion/growth through enhanced production of CXCL12 and

Anxa2. For example, Anxa2 itself is associated with proliferating

and invasive cancers, possibly as a marker of malignancy [Reeves

et al., 1992] including lung, pancreatic, brain, colon, and gastric

carcinomas, and is correlated with poor prognosis [Cole et al., 1992;
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Vishwanatha et al., 1993; Roseman et al., 1994; Emoto et al., 2001;

Diaz et al., 2004]. Yet, the loss of Anxa2 expression appears to be

specific for PCa disease [Chetcuti et al., 2001; Banerjee et al., 2003;

Kirshner et al., 2003; Liu et al., 2003; Smitherman et al., 2004;

Semov et al., 2005]. Therefore, it is possible that the absence of

Anxa2 places selective pressures on PCa tumors to metastasize to

bone, a rich source of Anxa2.

It is also possible that Anxa2 serves as an adhesion molecule for

PCa such that blocking Anxa2 or its receptor limits metastasis and

subsequent tumor growth. Part of the mechanism may be that

engagement of Anxa2 receptors on PCa stimulates the expression of

a number of other receptors on PCa, many of which may be activated

by proliferative signals including CXCR4. Thus, a ‘‘vicious cycle’’

would be established by PCa in which increases in osteoblast

numbers expand niche size by increasing the availability of Anxa2

and CXCL12. As a result, tumor expansion in the marrow may result

by providing a docking signal that is normally absent (i.e., Anxa2)
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and promotion of proliferation (i.e., CXCL12), which may explain

why bone metastases are so difficult to treat clinically. While further

studies are clearly needed, these data suggest that Anxa2/Anxa2r

plays a significant role in the metastatic cascades of PCa and thereby

suggest novel targets for therapeutic intervention to prevent PCa

metastasis.
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