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We report on a 26-month-old boy with developmental delay
and multiple congenital anomalies, including many features
suggestive of either branchiootorenal syndrome (BOR) or
oculoauriculovertebral spectrum (OAVS). Chromosomal
microarray analysis (CMA) initially revealed a copy-number
gain with a single BAC clone (RP11-79M1) mapping to
14q23.1. FISH analysis showed that the third copy of this
genomic region was inserted into the long arm of one
chromosome 13. The same pattern was also seen in the
chromosomes of the father, who has mental retardation,
short stature, hypernasal speech, and minor craniofacial
anomalies, including tall forehead, and crowded dentition.
Subsequent whole genome oligonucleotide microarray
analysis revealed an ~11.79 Mb duplication of chromosome
14q22.3—q23.3 and a loss of an ~4.38 Mb sequence in

13q21.31-q21.32 in both the propositus and his father and
FISH supported the apparent association of the two events.
Chromosome 14q22.3—q23.3 contains 51 genes, including
SIX1, SIX6, and OTX2. A locus for branchiootic syndrome
(BOS) has been mapped to 14q21.3—q24.3, and designated
as branchiootic syndrome 3 (BOS3). Interestingly, mutations
in SIX1 have been reported in patients with BOR/BOS3. We
propose that the increased dosage of SIX1, SIXG, or OTX2
may be responsible for the BOR and OAVS-like features in
this family. © 2008 Wiley-Liss, Inc.
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INTRODUCTION

Branchiootorenal syndrome (BOR; OMIM 113650)
is an autosomal dominant disorder caused by
mutations in the EYA1 gene (OMIM 601653) [Abdel-
hak etal., 1997], a human homolog of the Drosophila
eyes absent gene (Eya) [Bonini et al., 1993]. BOR is
characterized by hearing loss, branchial cleft fistulas
or cysts, ear pits, renal dysplasia, and otologic
manifestations ranging from mild hypoplasia to
complete absence with reduced penetrance and
variable expressivity [Melnick et al., 1975; Fraser
etal., 1978]. Clinical diagnosis of BOR is based on the
presence of (1) at least three major criteria including
branchial anomalies, deafness, preauricular pits, and
renal abnormalities, (2) two major criteria, and at
least two minor criteria including external ear

anomalies, middle ear anomalies, inner ear anoma-
lies, preauricular tags, facial asymmetry, and palate
abnormalities, or (3) one major criterion and an
affected first-degree relative who meets the criteria
for BOR syndrome [Chang et al., 2004]. Branchiootic
syndrome (BOS; OMIM 602588), a related disorder
but without the renal anomalies, can also be caused
by allelic defects in EYAI [Vincent et al., 1997].
A second locus for BOS was localized to chromo-
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some 1g31 (OMIM 120502) [Kumar et al., 2000].
Recently, Ruf et al. [2003] mapped a third gene locus
for BOR/BOS to 14q21.3—q24.3 by linkage study and
designated it as branchiootic syndrome 3 (BOS3;
OMIM 608389). This chromosomal region contains
the SIX1, SIX4, SIX6 (OMIM 601205, OMIM 606342,
OMIM 606326, respectively) gene cluster, the prod-
ucts of which are known to act in a developmental
pathway of the EYA genes [Xu et al., 1999], and OTX2
(OMIM 600037). Mutations in SIX7 have been
reported in patients with BOR/BOS, thus identifying
SIX1 as a gene causing BOR and BOS [Ruf et al.,
2004].

Oculoauriculovertebral spectrum (OAVS; OMIM
164210) is a common birth defect pattern (1 in 5,600
live births) involving first and second branchial arch
derivatives [Gorlin et al., 1990, 2001]. The phenotype
of OAVS is extremely variable, with no generally
accepted minimal diagnostic criteria [Regenbogen
et al., 1982; Kaye et al., 1992]. The disorder includes
the Goldenhar syndrome, which is defined as the
combination of microtia, hemifacial microsomia,
dermoids, and vertebral anomalies. The features of
OAVS include unilateral malformation of the external
ear and asymmetric facial hypoplasia with epibulbar
dermoid and vertebral anomalies. Coloboma of the
upper eyelid is frequent. The ear defects include
preauricular tags of cartilagenous masses, atresia of
the external auditory canal, anomalies in the size and
shape of the external auricle, and anotia [Gorlin et al.,
2001]. Cardiac, vertebral, and central nervous system
defects have also been described [Rollnick et al.,
1987]. The etiology of OAVS is unclear; autosomal
dominant, autosomal recessive and multifactorial
inheritance have been described [Rollnick and Kaye,
1983; Kelberman et al., 2001]. Chromosomal abnor-
malities described in patients with OAVS include
trisomies 18 [Verloes et al., 1991] and 22 [Kobrynski
et al., 1993], mosaic trisomies 9 [Wilson and Barr,
1983]and 17 [Hodes et al., 1981], duplication of 8pter
[Josifova et al., 2004], deletions of 5pl4 to Spter
[Choong et al., 2003] and 22qter [Herman et al., 1988],
pericentric inversions of chromosome 1 with break-
points at p13 and q21 [Stahl-Maugé et al., 1982] and
chromosome 9 with breakpoints at p11 and ql3
[Stanojevicetal., 2000], and the recurrent unbalanced
translocation der(11)t(11;22)(q23;q112) [Balci et al.,
2006]. Furthermore, data from a family with features
of hemifacial microsomia suggest linkage to a region
of approximately 10.7 ¢M on chromosome 14q32
[Kelberman et al., 2001].

We describe a patient with features of BOR and
OAVS in whom a chromosome segment from
14q22.3—q23.3 is duplicated and directly inserted
into chromosome 13q21, resulting in a ~11.79 Mb
trisomy of chromosome 14q22.3—-23.3 that includes
SIX1, SIX6, OTX2, and an associated deletion of an
~4.38 Mb gene-poor region on chromosome
13q21.31-q21.32. Interestingly, the patient’s father

and two other paternal relatives have the same
unbalanced aberration and learning disability, sig-
nificant developmental delays, and subtle dysmor-
phic features. We propose that increased dosage of
SIX1, SIX6, or OTX2 may be responsible for BOR-
and OAVS-like phenotypes in this family.

CLINICAL REPORT

The propositus (Fig. 1A—C) is a 26-month-old male
born to a primiparous 21-year-old woman at
39 weeks by cesarean section. Ultrasound studies at
21 weeks gestation suggested an occipital encepha-
locele or meningocele. Amniocentesis performed at
11 weeks showed a normal male karyotype. His birth
weight was 1,997 g (1st centile) and head circum-
ference was 31 cm (2nd centile). Initial evaluation
at 6 weeks of age indicated a weight of 3.04 kg
(<3rd centile), length of 48.1 cm (<3rd centile) and
head circumference of 34.7 cm (Ist centile). At
8 months weight was 5.49 kg (<3rd centile), length
61.7 cm (<3rd centile) and head circumference
41.1 cm (<3rd centile); he could smile and babble,
reach for objects, and transfer objects from hand to
hand. He was turning to voices, but was not yet
sitting. Re-evaluation at 26 months showed persistent
growth delays and microcephaly, with weight
7.65 kg (<3rd centile), length 76.3 cm (<3rd centile)
and head circumference 43.5 cm (<3rd centile). He
was walking with some assistance and using several
single words to communicate.

Physical findings first noted in the newborn period
included large fontanels and a tall prominent fore-
head. The right occiput appeared more prominent
than the left occiput. Torticollis to the left was noted.
He had a recessed jaw with a highly arched palate
and possible short tongue. He had multiple skin
tags in the preauricular and cheek regions as well as
pits on the right cheek. Other dysmorphic features
included short nose with broad nasal bridge, short
palpebral fissures with copious tearing suggesting
lacrimal duct stenosis (he underwent subsequent
lacrimal duct stent placement bilaterally), low set
ears with abnormal antihelix and ear lobe, prom-
inence of the maxilla, severe hypoplasia of the
mandible with broadening of the oral region, and
macrostomia with bilateral Tessier number 7 clefts
(with subsequent surgical reconstruction at 8 months
of age) and micrognathia. His neck appeared short
and abnormally shaped but with no webbing.

Cranial ultrasound showed normal sulcal pattern
with no ventriculomegaly. MRI of the brain on day of
life 4 showed no evidence of hydrocephalus or Chiari
malformation. A 5 cm meningocele was noted with
fibrous band tissue and dura but no brain paren-
chyma. Corpus callosum was thin.

Because of a deep sacral dimple, neonatal ultra-
sound of the spinal cord was performed and showed
conus tip slightly low at L4 with normal filum
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Fic. 1. Photographs of the propositus 26 months (A—C) and his father (D-F). [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

terminali. Spine MRI at 6 months of age showed
conus tip at approximately the L2—L3 level with no
evidence of tethered cord, diastematomyelia, or a
hydrosyringomyelia cavity. A repeat spine MRI at
10 months of age demonstrated conus tip at L3 with
mild thickening and fatty infiltration of the filum
terminale.

Renal usonogram showed small kidneys, the right
kidney was three standard deviations below normal,
and the left kidney was two standard deviations
below normal with no hydronephrosis or cysts, and
normal echogenicity. Genitalia were notable for a
small, uncircumcised penis with absence of testes in
the scrotum. He also had an anterior ventricular
septal defect not requiring surgical repair.

Skeletal survey at day 7 showed poorly ossified and
irregular skull shape, protuberance of the maxilla,
and hypoplasia of the mandibles. Spine MRI at 6 and
10 months of age and cervical spine X-ray series at
26 months of age showed fusion of the pedicles and
laminae on the left at C2—4. This produced a mild
dextroconvex curve of the cervical spine with
occipital tilt left side down, noted clinically as left
torticollis (Fig. 1). There was no evidence of
polydactyly or syndactyly.

Ophthalmology evaluation was significant for
right-sided optic nerve hypoplasia that was not

confirmed on re-evaluation. He passed his newborn
hearing screen bilaterally but an auditory brainstem
response evaluation at 2 years of age showed
moderate to moderately severe hearing loss with a
large conductive component; left ear was noted to
have Eustachian tube dysfunction and the right ear
had adhesive otitis media components. He was
referred for fitting with hearing aids.

His father (Fig. 1D-F) is 29 years old and his
mother is 21 years old. Both parents were reported
with learning disabilities and significant develop-
mental delay. The propositus’ father has never been
hospitalized or had any surgeries or chronic illnesses
except asthma. He graduated from an Intermediate
School District with special education services, but is
unable to read or perform addition or subtraction. He
has no hearing problems. On examination he
demonstrated a height of 160 ¢cm, weight of 58 kg
and head circumference of 54 cm. His speech was
hypernasal; hair was dark brown with coarse texture
and normal distribution. Minor craniofacial anoma-
lies included tall forehead, with level palpebral
fissures. There were no ocular abnormalities and
his gaze was conjugate. Dentition was crowded with
slight decay with a normally arched palate. Uvula
was single and midline. The neck was supple with no
shortening, masses, or webbing; there were no
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apparent digital or creasing pattern abnormalities.
Neurologic, cardiac and pulmonary examinations
revealed no abnormalities. By report from the father,
the propositus’ paternal aunt has a chromosome 13
abnormality and her 5-year-old daughter has agen-
esis of the corpus callosum and developmental
delay. There is no evidence of consanguinity in the
family.

SUBJECTS AND METHODS

We obtained DNA samples from the proband and
his family members after acquiring informed con-
sents approved by the Institutional Review Board for
Human Subject Research at Baylor College of
Medicine.

Cytogenetic and FISH Analyses

Chromosome analysis was performed using stand-
ard protocols for the GTG-banding technique. FISH
was performed as previously described [Shaffer et al.,
1997]. BAC clones for FISH analysis were chosen
using the UCSC genome browser (http://genome.
ucsc.eduw).

Array CGH

The chromosomal microarray analysis (CMA) was
conducted on a clinically available microarray con-
taining 853 BAC and PAC clones designed to cover
genomic regions of 75 known genomic disorders, all
41 subtelomeric regions, and 43 pericentromeric
regions [Cheung et al., 2005; Baylor College of
Medicine, Chromosome Microarray Analysis, V.5,
http://www.bcm.edu/cma/assets/abnormalities. pdf].
Procedures for DNA labeling and comparative
genomic hybridization were described previously
[Yu et al., 2003]. The fluorescent signals on the slides
were scanned into image files using an Axon micro-
array scanner and ScanArray software (GenePix
4000B from Axon Instruments, Union City, CA). For
each sample, two experiments were performed with
reversal of the dye labels for the control and test
samples, and the data from both dye-reversed hybrid-
izations were integrated to determine inferences for
each case. Microarray image files were quantified
using GenePix Pro 4.0 software. The quantitation data
were subjected to normalization and integration for all
clones analyzed form a single patient sample as
described [Shaw et al., 2004]. In addition, a single
clone T-statistic and permutation based P-value
were also computed, providing further criteria to
determine whether a clone deviates significantly from
the mean [Lu et al., 2007].

Whole Human Genome Oligo Microarray Kits
244K and 44K (Agilent Technologies, Inc., Santa
Clara, CA) were used to analyze DNA from the
proband and his father to further refine the identified

genomic gains and losses. The procedures for DNA
digestion, labeling, and hybridization were per-
formed according to the manufacturer’s instructions
with some modifications [Probst et al., 2007].

RESULTS

Karyotype analysis of the proband at 500-band
resolution showed extra material inserted into
chromosome 1321 (Fig. 2A). Analysis of parental
chromosomes revealed that the father had the same
abnormal karyotype, whereas the mother had a
normal karyotype.

CMA in the propositus showed a gain of copy
number with BAC clone RP11-79M1 on chromosome
14q23.1 (Fig. 2B). FISH analysis of the patient’s father
with RP11-79M1 showed the same aberration with
the third copy inserted into 13q (Fig. 2C). Whole
genome oligonucleotide microarray analysis using
Agilent 244K (propositus), and 44K (father, data not
shown) demonstrated that the proximal breakpoint
of the duplication mapping to 14q22.3 at ~55.774 Mb
and the distal breakpoint mapping to 14q23.3 at
~67.571 Mb (hgl8 assembly), spanning an
~11.79 Mb genomic region (Fig. 3C,D). Surprisingly,
the whole genome oligoarray also revealed a
~4.38 Mb deletion at 13g21.31-q21.32 with the
proximal breakpoint mapping at ~62.339 Mb and
the distal breakpoint mapping at ~66.718 Mb
(Fig. 3A,B).

Using FISH with the clones flanking the break-
points on chromosomes 13q and 14q, we confirmed
that the insertion mapped within the deletion
breakpoint positions, suggesting a single step event.
To determine the orientation of the inserted frag-
ment, the 13g21 specific BAC clones RP11-79D3
(centromeric and adjacent to the proximal deletion
breakpoint), RP11-326B4 (telomeric and adjacent to
the distal deletion breakpoint), and 14q22-q23
specific BAC clones RP11-10P7 (proximal end of
the insertion), and RP11-305124 (distal end of the
insertion) were co-hybridized in metaphase FISH
experiments in different combinations (Fig. 4). The
results showed that the 14q22.3—q23.3 fragment was
inserted in direct orientation into 13q21, with a loss
of the 13q21.31-q21.32 segment. The propositus’
karyotype was designated as 46,XY,der(13)del(13)
(g21.31—-g21.32)dir ins(13;14)(q21.32;q22.3q23.3).

DISCUSSION

Chromosomal insertions are rare structural chro-
mosomal aberrations with an estimated frequency of
1 in 5,000 to 1 in 80,000 live births [Chudley et al.,
1974; Van Hemel and Eussen, 2000]. Chromosomal
insertions with associated deletion near or at the
insertion breakpoint have been reported very rarely
[Lukusa et al., 1999; Van Hemel and Eussen, 2000].
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The propositus presented with a severe phenotype,
including ear tags, renal dysplasia, lop-ear defect,
and lacrimal duct stenosis, suggesting BOR. In
addition to the features typical for BOR, he had
some traits for OAVS, including prominent forehead,
meningocele, protuberance of the maxilla, severe
hypoplasia of the mandible, macrostomia, short
palpebral fissures, micrognathia, heart defect, and
vertebral anomalies (Table I). Combined with other
typical dysmorphic features, CNS defects such as
hydrocephalus, occipital encephalocele, cerebellar
hemisphere/vermis hypoplasia, and lipoma of the
corpus callosum may be clues to the prenatal
diagnosis of OAVS [Castori et al., 2000].

As reported previously, a number of patients with
BOR have characteristics overlapping with OAVS
[Cohen et al., 1989]. Both syndromes are associated
with malformations of the external ears, preauricular
tags, pits, or sinuses, and conductive or mixed
hearing loss [Rollnick and Kaye, 1985]. Hearing loss
isa major clinical finding which has been observed in
93% of BOR patients [Hone and Smith, 2001]. The
overlapping clinical features suggest that OAVS may
constitute the severe end of the spectrum of BOR in
some families [Rollnick and Kaye, 1985; Sensi et al.,
19961.

The phenotypes of patients with the 13q deletions
proximal to 1332 are mild [Ballarati et al., 2007].

Fic. 2. A:Partial G-banded karyotype of the patient, with an arrow indicating the extra material on chromosome 13q. Chromosomes 14 are normal. B: CMA profile of
patient. One clone on 14q23 showed displacement to the right (circled), indicating a gain of 14q23 material in the patient versus the reference DNA. C: FISH analysis of
patient’s father with probe RP11-79M1 specific for chromosome region 14q23 (red) demonstrating the presence of 1423 material on der(13q21; shown by arrow).

Fic. 4. The location and orientation of the insertion fragment 14q22-q23 in the 1321 region are illustrated by FISH analysis. A: A diagram depicting the derivative
chromosome 13 with the insertion of chromosome 14q22.3—q23.3 into chromosome 13q21, resulting in the deletion of chromosome 13q21.31-q21.32. The position of
the four BACs used for the combination FISH are shown on the right in panel A. B: BACs RP11-79D3 (green signal) from chromosome 13 hybridized to both the normal
chromosomes 13 and the der(13), while BAC RP11-10P7 from chromosome 14 (red signal) hybridized on both chromosomes 14 and der(13). The overlapping green
and red signals on der(13; indicated by the white arrow) demonstrate one end of the insertion. C: RP11- 10P7 from chromosome 14 (green signal) was hybridized to both
chromosomes 14 and der(13), while RP11-326B4 (red signal) hybridized to normal chromosomes 13 and der(13). Both red and green signals on the der(13) showed two
separate distinct signals (white arrow), revealing the distal end of the insertion. D: RP11-10P7 labeled in red and RP11-305124 labeled in green both hybridized on
chromosomes 14 and der(13) in the same direction with respect to the centromere of both chromosomes 14 and der(13); the same red—green orientation are shown
indicating the direct insertion of 14q22—q23 fragment into 13q21.



American Journal of Medical Genetics Part A

2486 OU ET AL.

TABLE 1. Phenotypic Features of BOS3 and OAVS Compared to
Those Found in the Presented Patient

Clinical features BOR OAVS  Our patient

Branchial cleft fistulas
Renal anomalies
Lacrimal duct stenosis
Hearing impairment

Ear defect

Preauricular pits
Preauricular tag

Facial asymmetry
Development delay
Microsomia

Impaired speech

Cleft lip/palate
Tracheoesophageal fistula
Heart defect
Genito-urinary anomalies
Irregular skull shape
Mandibular hypoplasia
Micrognathia

Recessed jaw

Facial nerve paralysis
Microphthalmia
Coloboma

Epibulbar dermoid
Vertebrae abnormality
Central nervous system defects
Limb anomalies

Attt

l+4+++++ 1 0+ +++ 1 +++ 4+

B i o i e e i i S

I+ + 1

“Noted at 26 months of age.

PCDHO9, the only gene in the 13g21 deleted interval
in the proband, encodes for a protocadherin, a
member of the subfamily of calcium-dependent
cell-cell adhesion and recognition proteins of the
cadherin superfamily [Strehl et al., 1998]. Like other
protocadherins, PCDH9 is predominantly expressed
in brain, but PCDH?9 is also expressed in a broader
variety of tissues, and the expression patterns appear
to be developmentally regulated [Strehl et al., 1998].
To date, no clinical anomalies have been attributed to
this gene and the 13q21-q22 deletions have been
reported to be compatible with normal phenotypes
[Couturier et al., 1985; Knegt et al., 2003]. Epigenetic
silencing by hypermethylation of the CpG-rich
promoter region of protocadherin 20 (PCDH20,
13q21.2, GenelD 64881) has been demonstrated
[Imoto et al., 2006]. Whether this region upstream
(i.e., more centromeric) of the 13q21.31-q21.32
deletion is involved in genomic imprinting and
exerts an epigenetic effect on the inserted 14q22.3—
q23.3 fragment in der(13) resulting in the variable
phenotype between the proband and his father is
unknown. It is possible that the dysmorphic features
and multiple congenital anomalies in our patient
result from an epigenetic effect on region(s) near the
14q insertion in der(13), with subsequent dosage
effects from genes in 14q insertion, but this remains
to be determined.

In the duplicated 14q22—q23 segment, there are 51
annotated genes, including SIX7, SIX6, and OTX2. Of

these 51 genes, 26 with known gene functions are
listed in Table II.

SIX1 haploinsufficiency has been proposed in
patients with BOR/BOS3 [Ruf et al., 2004]. Interest-
ingly, in mice, Six7 is required for development of
the kidney, muscle, and inner ear, and exhibits
synergistic genetic interactions with Eya factors.
Eyal”’~ Six1"~ double heterozygous mice have a
defect in kidney development that is not observed in
the single heterozygotes, suggesting that Six7 and
Eyal act in the same genetic pathway; interactions
between Six1 and Eyal are essential for specific
Six1-DNA binding [Li et al., 2003; Xu et al., 2003;
Zheng et al., 2003]. Since SIX7 mutations play a major
role in BOR/BOS3, we suggest that duplication of
SIX1 may contribute to the patient’s phenotype.

SIX6 is approximately 140 kb proximal to SIX7.
SIX6 is expressed in the retina, optic nerve,
hypothalamic and pituitary regions, and has been
postulated as a candidate gene for anophthalmia
[Gallardo et al., 1999]. Six6 was shown in mice to
regulate early progenitor cell proliferation during
mammalian retinogenesis and pituitary develop-
ment [Li et al., 2002]. Interestingly, disruption of the
Six6 gene in mice results in a hypoplastic pituitary
gland and variable degrees of retinal hypoplasia,
often with absence of optic chiasm and optic nerve
[Li et al., 2002]. Similar to SIX7, SIX6 has been
proposed to be haploinsufficient [Gallardo et al.,
1999, 2004].

OTX2, a homeobox family gene, encodes a DNA
binding protein that regulates transcription in the
neural and ocular development [Hever et al., 20006]
and is required for anterior brain, eye, and antenna
formation [Finkelstein and Boncinelli, 1994]. OTX2
loss-of-function mutations have been associated
with a broad spectrum of ocular and neurological
phenotypes, ranging from bilateral anophthalmia to
mild microphthalmia and from severe developmen-
tal delay to normal cognitive development [Ragge
etal., 2005]. We suggest that duplications of SIX6 and
OTX2 may contribute to optic nerve hypoplasia and
developmental delay of the proband.

Interstitial duplication of 14q22—q23 has not been
reported previously, although several interstitial
deletions involving the 14q22—q23 region have been
described [Bennett et al., 1991; Elliott et al., 1993;
Lemyre et al., 1998; Ahmad et al., 2003; Nolen et al.,
2000). Interestingly, the common features of patients
with these deletions are bilateral anophthalmia,
ear anomalies, microretrognathia, arched palate,
facial asymmetry, and microcephaly. Some rarely
observed anomalies include absent pituitary, hypo-
plastic adrenal glands and kidneys, undescended
testes with a micropenis, and preaxial polydactyly.
Nolen et al. [2000] reported an individual with a
9.66 Mb deletion in 14q22—q23, who had bilateral
anophthalmia, high forehead, ear anomalies, limb
anomalies, and central nervous system anomalies.
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TABLE II. Genes and Related Disorders Contained in Duplication Region of 14q22.3—q23.3

Gene MIM no. Name Disorder

or1Xx2 600037 Orthodenticle, Drosophila, homolog of, 2 Microphthalmia, syndromic 5
PSMA3 176843 Proteasome (prosome, macropain) subunit, alpha type, 3

DAAM1 606626 Dishevelled-associated activator of morphogenesis 1

RIN1 600865 Reticulon 1 (neuroendocrine-specific protein)

SIX6 606326 Sine oculis homeo box, Drosophila, homolog of, 6 Microphthalmia, isolated, with cataract 2
SIX1 601205 Sine oculis homeo box, Drosophila, homolog of, 1 Brachiootic syndrome 3, deafness
SIX4 606342 Sine oculis homeo box, Drosophila, homolog of, 4

MNATI 602659 Menage a trois 1

PRKCH 602659 Menage a trois 1

HIF1A 603348 Hypoxia-inductible factor 1, alpha subunit

KCNHS5 605716 Potassium voltage-gated channel, subfamily H, member 5

PPP2RSE 601647 Protein phosphatase-2, regulatory subunit B (B56)

SYNE2 608442 Synaptic nuclear envelope protein 2

ESR2 601663 Estrogen receptor-2 (ER beta)

ZNF46 194541 Zinc finger protein-46 (KUP)

HSPA2 140560 Heat-shock 70kD protein-2

SPTB 182870 Spectrin, beta, erythrocytic Elliptocytosis-3; spherocytosis-1
GPX2 138319 Glutathione peroxidase-2, gastrointestinal

ENTB 134636 Farnesyltransferase, CAAX box, beta

MAX 154950 MAX protein

FUTS 602589 Fucosyltransferase 8

MPP5 606958 Membrane protein, palmitoylated 5

PIGH 600154 Phosphatidylinositol glycan, class H

ARG2 107830 Arginase II

RDH11 607849 Retinol dehydrogenase 11

RDH12 608830 Retinol dehydrogenase 12 Leber congenital amaurosis, type III

This deletion had about 5 Mb overlap with the
present 14q duplication, and included the OTX2,
SIX1, and SIX6 genes. The authors proposed that
monosomy of OTX2, SIX0, as well as BMP4 which is
not duplicated in our patient, contributed to the
ocular phenotype and abnormal pituitary develop-
ment, while monosomy SIX7 was responsible for the
ear and other craniofacial features.

Although the propositus’ father has the same
chromosome aberration as the child, his phenotype
is less severe, with learning disability, significant
developmental delay, hypernasal speech and minor
craniofacial dysmorphisms including tall forehead.
Two other paternal relatives with mild phenotypes,
also reported have the same karyotypes. Our
findings confirm previous observations about the
intrafamilial variability of BOR and OAVS [Melnick
et al., 1975; Fraser et al., 1978; Heimler and Lieber,
1986].

In summary, we have characterized a familial
insertion—deletion in detail. The relation between
phenotype and genotype of the 11.79 Mb duplication
region at 14q22.3—g23.3 in the present patient and
his family members is very complex and could be
affected by other genes, or environmental or
epigenetic factors. Genes located in the 14q22.3—
q23.3 duplication region are affected by dosage
alterations which may explain some of the symptoms
found in our patients. Previous studies of SIX7
mutations suggested that the increased dosage of
SIX1 may contribute the most to the abnormal

phenotypes in the family presented here. Other
genes in this region, such as OTX2 and SIX6, with
expression patterns and murine mutant phenotypes
involving eye development and neurological phe-
notypes may contribute to optic nerve hypoplasia,
and/or development delay of the propositus.
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