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THE PHASE EQUILIBRIA OF SOME COMPOUND
SEMICONDUCTORS BY DTA CALORIMETRY

Bernard Michael Kulwicki
ABSTRACT

This work may be divided into three parts: 1) a theoretical
study of heat transfer in the differential thermal analysis (DTA) equipment
with subsequent development of two methods for the measurement of latent
heats of fusion and transition; 2) the determination of the heats of fusion
and transition of twenty compound semiconductors and the study of the
nature of these transformations; and 3) the study of solid-liquid
equilibria in the systems cadmium-tellurium, zinc-tellurium and indium-
selenium.

The theoretical analysis showed that the thermal conductance of
the system could be well approximated by its steady state value, and a
theoretical expression for the time constant for exponential decay of the
DTA curve was derived. The first method for the determination of the
thermal conductance of the system is based on its theoretical calcula-
tion from the steady state formulae. Two variations of this method for
indirectly measuring the thickness of the gas film between the silica
sample tube and the nickel sample holder (a quantity which can be directly
measured only imprecisely) are presented. The first is based on a com-
parison of the theoretically calculated time constant with its experimen-
tal counterpart. This method was tested with data on a number of
standards, and good agreement was found between theory and experiment.
The second variation, which could not be adequately evaluated, is based
on the calculation of the film thickness from two measurements of the area
under the DTA curve when gases of widely different thermal conductivity
fill the system.

The second method for finding the thermal conductance depends
on its calculation from the experimentally measured time constant and
the estimated thermal capacity of the system. This method requires cali-
bration of the equipment.
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These methods are employed to measure the heats of fusion and
transition of the following compounds whose melting points range from
o o . .
800 to 1560 K: AgZInSSel3, AgZSe, AgZTe, BlZSe3, B12Te3, CdSe, CdTe,

GaAs, GaSb, InAs, InSb, InZSe3, InTe, InZTe3, PbSe, PbTe, SbZSe3,

SbZTe3, SnTe and ZnTe. The entropies of fusion plus transition are

found to vary from 2. 2 cal/g atom °K for Ag21r188€e13 to 9.6 cal/g atom %k
for GaAs. The experimental precision is about + 15% on the average.
Finally, phase equilibria in the systems Cd-Te, Zn-Te and
In-Se were studied. Thermodynamic calculations suggest that CdTe and
ZnTe molecules are stable in the melt, and it was established that the
systems Cd-CdTe and Zn-ZnTe exhibit positive deviations from Raoult's
law whereas the systems CdTe-Te and ZnTe-Te exhibit negative deviations.
A two parameter correlation of the liquidus curves of these two systems is
postulated.
The In-Se system contains five compounds two of which melt
congruently, InSe (614°C) and InZSe3 (885°C) and three of which decom-
(553°C), In, Se,, (660°C) and In, Se_ (?)

; 54544 > 20780 _
(745°C). Two monotectic reactions, at 520 C (indium-rich) and at 760 C

pose peritectically, In

(selenium-rich), were observed, as well as polymorphic transformations

(201°C) and In. Se_ . (?) (650°C).

in InZSe3 20°€30
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CHAPTER 1
INTRODUCTION

Differential thermal analysis (DTA) is one method of recording
time-temperature informaticn for the purpose of studying thermal trans-
formations, and consists in measuring the temperature difference between
a sample and a reference as a function of time and/or temperature. Other
methods have been described as well (3), but DTA remains as one of the
oldest (50, 51) and most useful. DTA has met with widespread acceptance
in many areas wherein a change in the rate of heat transfer to a sample
generates a temperature difference. Many examples may be cited.,*

The principle objective here is to determine the latent heats of
fusion and transition of some twenty semiconducting compounds whose
melting points range from SQOOK to 156OOK by means of DTA calorimetry.
The compounds are: AgZIn Se AgZSe, AgZTe, BiZSe3, BiZTe3, CdSe,

8 13’
CdTe, GaAs, GaSb, InAs, InSb, In_Se_, InTe, InZTe3, PbSe, PbTe, SbZSe3,

2773

SbZTe3, SnTe, and ZnTe. A second objective is the investigation of solid-

liquid equilibria in the systems Cd-Te, Zn-Te, and In-Se.

State of the Art

DTA has long been recognized as being a powerful tool in the
investigation of phase equilibria. Transition temperatures may be accurate-
ly pinpointed. Furthermore, the technique is amenable to the use of very
small samples, making possible the study of rare materials. A typical
example of this type of study is the work of O'Kane (66) who investigated
solid-liquid equilibria in pseudobinary systems such as CdSe—InZSe3,

ZnTe—InzTe3, etc. Solid-vapor equilibria may also be readily investigated

as has been done by Markowitz and Boryta (56) who studied the behavior

of NH4Cl in a controlled pressure DTA unit.

" The purpose here is to cite illustrative references, rather than to compile
a bibliography, which has been done by Smothers and Chiang (78). Over
1500 references are given.



DTA has also been used to investigate reactions in the solid
state (26, 38, 78) thereby making possible the accurate definition of
reaction temperatures and relative speed under a variety of experimental
conditions. The study of thermal transitions in clays by DTA was first
undertaken by Norton (64), and similar studies have been carried out by
numerous workers. * Locke and Rase (53) have indicated the utility
of a controlled pressure unit in the screening of catalysts so as to provide
rapid, qualitative information on the chemical and physical changes which
affect catalytic activity. Even such small heat effects as those due to
specific heat changes accompanying the glass transition temperature of
polymers may be readily investigated by DTA (41) and Steiner and Johnston
(80) have discussed the application of DTA to the gquantitative determination
of specific heats.

In principle, DTA is also a calorimetric technique in which the
heat absorbed or evolved during a thermal transition or chemical reaction
may be determined by comparing the area under the DTA curve with that
produced by a standard whose latent heat or heat of reaction is well known.
In practice, however, its usefulness has been limited because of diffi-
culties associated with accurately predicting the appropriate thermal
conductance or apparatus constant of the system, particularly where a
wide range of temperature is of interest.

Among the first to recognize the possibility of obtaining a quanti-
tative measure of changes in heat content from cooling curves was Plato
(69) who estimated the heats of fusion of a number of inorganic salts from
the time of freezing on the cooling curves. His formulae as well as those
of other investigators up to about 1925 were strictly empirical in nature
and are thus of little interest here. Among the first to derive the relation-
ship of proportionality between the heat of reaction and the area under |
the DTA curve were Steiner and Johnston (80) whose thorough article
provides an excellent review of the art through 1928 as well as a compre-

hensive discussion of the merits and limitations of the technique as a

o,
b

" Cf. reference (78) for bibliography.



quantative tocol. This relationship has been derived by many other authors
including Berg and Anosov (6) who measured the heats of dissociation

of dolomite and related substances; Speil (79) who studied the thermal
transitions in clays and related minerals; Vold (87) who measured the
heats of fusion of stearic and benzoic acids, and Borchardt and Daniels
(12) who were interested in determining the kinetic parameters of homo-
geneous, liquid phase chemical reactions.

At this point, the quantitative theory of DTA will be reviewed
briefly. The equations presented first are essentially the same as those
given by Vold (87), but using different symbols. The model for the DTA
system comprises a sample and a reference material having substantially
identical properties and physical geometries. They are placed inside a
furnace and heated together under essentially identical conditions. Assum-
ing that the sample temperature is uniform and that heat losses are negligible,

a differential energy balance may be written for the sample as follows:
CdT = dE + K(TS-T)dt 1.1

where C is the total heat capacity (cal/OK). E is the energy evolved
during thermal transition (cal), and K is the thermal conductance

(cal/OK-—sec. ). Similarly for the reference

CdT = K(T -T)dt 1.2
ror r'’s r

where no energy is evolved and hence the dE term does not appear. .

In the above equations, the subscript s referrs to the surrcundings and
the subscript r to the reference. Defining 8 as the temperature
difference between sample and reference (T - Tr) , and vy as the constant

heating rate (d Tr = ydt), the following relation is obtained:

Cdg = dE + Cyl(p -1)dt - K8 dt 1.3

where ¢ = KCr/KrC and is dimensionless. Choosing the initial condition



8=0 at t=0, Equation 1.3 may be integrated for the condition dE = 0
to yield:

-Kt/C

8 = y(@ -1)(C/RQ -e ) 1.4

whence the steady state value of 8 is obtained:

ess = y(p -1)C/K 1.5

Thus Equation 1.3 becomes:

dE = K(e-ess)dt + Cdoe 1.6

or

Equation 1.7 is strictly valid only if QSS does not vary during the transi-
tion, i.e., the baseline remains constant. Even if the baseline does

shift due to a change in the specific heat of the sample as a result of
phase transformation, however, Steiner and Johnston (80) have shown that
Equation 1.7 may still be used provided that the area is measured with
respect to the extension of the final baseline.

Boersma (7) as well as Kronig and Snoodijk (46) have obtained this
relation in a somewhat more elegant manner, and have shown that the
assumption of uniform sample temperature is unnecessary provided that 6
is the temperature difference between the center of the sample and the
center of a matched reference. In addition, both authors have derived
expressions for the thermal conductance in terms of thermal conductivity
of the sample, that of the holder, and the geometry. Boersma has also
derived correction terms which take into account the transfer of heat along

the thermocouple wires.



In addition to the possibility of computing K from the geometry
and thermal properties of the system, several other techniques are available.
The first, due to Berg and Anosov (6) and also applied by Kornilov and
Matveeva (45), consists in the admixture of a standard, whose transition
heat is known, with the sample. The second possibility, proposed by
Vold (87) consists in calculating K from the exponential decay of 6
after the transition has been completed. A third method, recently proposed
by Sturm (82) consists in computing the effective conductance from data
taken by controlling the heating rates so as to obtain a constant thermal
gradient. A fourth possibility consists in measuring the area under the
curve produced by standards whose transition heats are known. This method
is perhaps the least satisfactory particularly where a wide range of tempera-
ture is of interest, since at high temperatures radiation is an important
contributor to the heat transfer mechanism. This method is quite useful,
however, over short temperature intervals particularly where a large thermal
resistance intervenes between the heat source and the: sample. This fact
has been pointed out by Boersma (7) as well as by Smith (76).

Further ingen ious variations have been proposed by Eyraud (23),
Wittig (91) and Lueck, Beste and Hall (55). The first two authors proposed
methods in which the need to determine a numerical value for K is eliminated.
Eyraud proposed using a temperature controller to regulate the temperature
difference between the heat source and the sample while measuring the
power input to the furnace as a function of time, with the area under the
power-time curve being equal to the heat of transformation. Wittig sug-
gested using an auxiliary heater within the sample. When varying
quantities of electrical energy were injected via this heater, differing
values of the area under the DTA curve were obtained, extrapolation to
zero area yielding the heat of transformation. Lueck et al., who were
interested in studying the kinetics of liquid phase chemical reactions, have
developed a technique whereby nearly isothermal conditions may be main-
tained in the reaction cell, sensitive thermistors being used to measure the

differential temperature (0. IOK at most). The thermal conductance was



determined from the exponential decay of the DTA curve to baseline after

a drop of warm water was added to the reaction solution.

Statement of the Problem

The particular properties of the compounds studied in this work
required modifications and refinements to the existing techniques.

The volatility and reactivity of our samples required their being
sealed under vacuum in silica glass tubes. * Because of the fact that the
dimensions of the silica tubing, and therefore the thermal conductance,
varied from sample to sample, a simple calibration of the apparatus would
not suffice. The method of Berg and Anosov could not be used because of
the unavailability of suitable standards. In Sturm's method, as he himself
admits, the heating rates resulting in a constant thermal gradient may bé
found only with difficulty. And the methods of Eyraud and Wittig not only
do not appear to be any more direct or reliable than the two remaining
methods which were used in this work; viz. direct calculation of the
thermal conductance and measurement of the time constant, but also would

require extensive modification of our equipment. The application of these

two methods to our particular system is now considered.

Direct Calculation of the Thermal Conductance

Instead of using the aforementioned definition of the thermal

conductance, viz.

heat flux across system X area
temperature difference

cal/secoK 1.8

a slightly different definition will be used

c = X _ heat flux across system x area 1.9
L temperature difference x sample height )

elo

" Cf. Appendix III for description of the samples and their preparation.



and 3) an experimental measurement of the area under the DTA curve.

The DTA system consists in samples which are sealed under vacuum
in silica sample tubes, each of which contains a concentric thermocouple
well in the bottom. The samples are placed in a nickel block in which
holes have been drilled in order to accommodate them. A gas film thus
separates the silica tube from the wall of the nickel block.

The primary contributions to the overall conductance come from
the gas film and the sample tube. Secondary contributions are due to the
sample itself and, at high temperatures, thermal radiation. It is clear
then, that a precise measurement of the physical dimensions of the gas
film is required. This measurement is difficult to achieve directly because
the gas film is very thin, so that its thickness is a small difference of
large numbers. This complication may be resolved, however, if an inde-
pendent method of evaluating the thickness of the gas film is available.

Two such methods are proposed in the following. In the first
method, two measurements of the area under the DTA curve are cbtained
using different gaseous atmospheres having widely different thermal con-
ductances, such as nitrogen and helium. The thickness of the gas film
can then be computed from the two areas and the known thermal conducti-
vities of nitrogen and helium respectively. In the second method, the
thickness of the gas film can be found by comparing the experimental time

constant for exponential decay (see Equation 1.4).

[dlnle-e
SS

dt

-1
|

T = i.14

exp
of the DTA curve after completion of melting with the theoretical value
found from a consideration of the differential equations governing heat
conduction in the system. The precise formulation of these methods will

be given in Chapters II and III.

The Calculation of the Thermal Conductance
from the Time Constant

Inspection of Equations 1.4 and 1. 14 leads to the following

expression for the thermal conductance:



K = C/Texp 1.15
where C 1is the thermal capacity of the system. A number of authors have
used this formula including Vold (87) and Lueck, et al. (55). It is

evident that the thermal conductance can be estimated provided that the
thermal capacity of the system can be estimated.

In this regard several questions arise: Exactly what constitutes
the thermal capacity of the system? Should C include the heat capacity
of the sample plus that of the container, or that of the sample alone? If
the container is included, should the entire container, or just that portion
of it which is in thermal contact with the sample be included? V.old, who
studied fusions or organic materials in a nickel sample container, found
that her data were best explained by including the heat capacities of the
sample and the entire container in the estimation of C. In the particular
equipment used in this work, the heat flux is, for all practical purposes,
radial, and the container is constructed from fused silica, a material of
relatively low thermal conductivity. It is therefore unlikely that changes
in the temperature of the container a few centimeters away from the sample
would appreciably affect the heat flux to the sample. This would seem to
imply that only a portion of the heat capacity of the container would, in
this case, contribute to the thermal capacity of the system.

In succeeding chapters the theory of heat conduction and radiation
in this system will be examined, the methods sketched here will be more
fully developed and subsequently applied to experimental data, and the
results will be critically examined in the light of present knowledge and

theory.



CHAPTER 1II

HEAT TRANSFER IN THE DTA SYSTEM

In this section, the differential equations governing the flow of
heat in the DTA system are considered together with appropriate boundary
conditions which approximate the experimental system. Three regimes
may be discerned: A) heat conduction in the system immediately prior to
melting (or transformation); B) during melting; and C) immediately following
melting of the sample. The equations describing the first regime are amens
able to direct analytical solution in cylindrical coordinates. Those
describing the second regime cannot be readily solved in oylindrical
coordinates but the analogous problem in cartesian coordinates may be
solved. The long time approximation in the cylindrical case may then be
deduced by analogy. In the third regime, owing to the tediousness of
the mathematical manipulations which are required, an expression for the
temperature profile as a function of space and time cannot be easily
obtained, but a great deal of useful information including a theoretical
expression for the time constant of exponential decay can nevertheless be
extracted. With these solutions, procedures for measuring latent heat

effects can be formulated.

Heat Conduction Model

The model used in attacking this problem is depicted in Figure 2.1.
The figure shows the DTA tube inside the nickel block as a series of
c;oncentric annular volumes. The central core is reserved for the thermo-
couple and hence is vacant free space. The first concentric annular
volume (region 5) is the inner wall of the thermocouple well, the next
(region 4) is the sample material, the next (region 3) is the outer wall
of the sample tube, the next (region: 2) is the gas film between the sample
tube and the nickel block, (region 1}.

During the operation of the DTA equipment, three different sets
of boundary conditions may exist, establishing three distinct regimes

of operation.
10
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Regime A defines the system under constant heating conditions
wherein the temperatures at all points in the system are increasing
linearly with time. Regime B defines the system during the time that
the sample is melting, and Regime C defines the system as it is return-
ing to the constant heating condition (regime A) after the sample has
melted. In all three regimes of operation it is assumed that, owing to
its massiveness, the nickel block acts as a source for heat, and owing
its high thermal conductivity, its temperature is uniform, and also in-
creases linearly with time, i.e.,

TZ(R,t) =y(t+to) 2.1

1
o) L
where vy = heating rate, “K/unit time.

The differential equation governing the flow of heat in each

contiguous region may be written in cylindrical coordinates as follows:

2
sr . 18T _ P% a1 -
2 r é&r k &t )
Sr
where T = temperature
r = radius
p = density
Cp = gpecific heat
k = thermal conductivity
t = time

Internal sources and sinks are assumed to be absent. In terms
of the normalized variables and parameters for region 4, Equation 2.2

becomes

-, = T T 2.3

where v(,t) = T (r,t) - T
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¢ = r/R4
. = R%pc),/k
4 p4 4
TO = reference temperature

For region (3)

2
Sy 1 Sy Sy
/ , = 7T 2.4
64.2 t 8¢ 5t
where ~ , y(t',t) = T3(r, t) - T
¢ = r/R3
T = R.Z(pc) /k
3 P33
For region (2)
2
65 2z 1 6z [ 4
oo, ZE = 22 2.5
6@..2 £" 8¢ 5t
where z(L",t) = Tz(r, t) - To
¢ = 1r/R.2
" = Rz(pc) /k
2 \WPC 1%,

After determining the boundary conditions which satisfactorily
approximate the physical system, a solution of the simultaneous differen-
tial equations, Equations 2.3 through 2.5 may be sought. This problem

will be considered next, for regimes A, B, and C, each in turn.

Heat Conduction Prior to Melting - Regime A

o)
Assuming that the heating rate is constant and equal to y K/unit

time, Equations 2.3 through 2.5 become:
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dv , ldv _ .
dgz £ dt
d2 1 d
dy 1 dy _ .
2 + £ oat vT 2.6
d{t
a’z ; L dz 4
dgllz g dg

It has been assumed that the rate of accumulation of heat in the
gas film is negligible compared to the rate at which heat is transferred
across the film, or, in other words that the thermal diffusivity of the gas
film is very large. For the particular system being considered here this
approximation seems to be exceldent although in general it may not be a

valid assumption.

Since the thermocouple well acts as a sink for heat:

6T 6T

2 2 1 2 2
(p0p)5Tr(R4 -R5) 5T = kg2mR
r=R
4
or
Sv
Yty = é——ﬁg
t =1 2.7
where t_ = (pc)) (RZ—RZ)/Zk
5 p'5 4 5 4

Continuity of the temperature profile and heat flux at the inner boundaries

lead to the relations:

vin,t) = y(1,t) 2.8

yin',t) = z(1,t) 2.9
Sv oy

ne ——- = , 2.10
8Ll o 8L




where
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5
n'g' é—%l = f—z—.. 2.11
L=’ lgn =1
n = R3/R4 p = k4/k3
n' = RZ/R3 ' = k3/k2
n" = Rl/R2

Finally, at the outer boundary, the temperature rises linearly with time

z(n",t) = y(t+to) 2.12

The reference temperature, vy to , has been taken to be the temperature of

the thermocouple well at zero time, TS(O)'

These equations can be integrated directly to yield:

yrt%/4 + Alnt + B

v:

2
y = yrt' /4 + Cln¢' + D 2.13
z = Plnl" + Q

where A, B, C, D, P and Q are independent of r and may be evaluated

from Equations 2.7 through 2.12 to obtain

v, = yi+t) - @i -h Yo
+ %(21:5—7) ln"%]_ - %[2¢t5+¢r(n2-1)—r'] Inn'

_3’2-[2¢t5+<p‘r(n2-1)+‘r'(n'2-1)] ¢'lnn" 2.

14



z(L", 1) = ﬂt+ﬂj+xfi[z¢t5+¢rm2-1)+T%n2-lﬂ In

n
2.16
Lastly, the overall temperature lag across the system may be computed.
— 1" X7 ﬂ 2 lI_l_ IZ
vto= z(n",t) -v(,t) = n™-1)+ (n'" -1)
o) 4 4
Y Y 2 . .
+ - + + - -
S (2t - 7 Inm Sl2gt,+9r(n"-1) -] In m
X 2 1 I2 ] "
+Z[2q>t5+¢~r(n -1+ (T -1)] ¢'1In 2.17

For a typical set of parameters:

n = 1.56 T = 1.83 sec ¢ = 3.13
n' = 1.30 T' = 26.6 sec ¢' = 35.7
n" = 1.0384 t5 = 1.06 sec vy = 0.05°K/sec

a value of 1.30°K was found for yto , of which 1. 08°K was contributed
by a gas film (NZ)’ 0.17°K by the silica tube, and 0. 05°K by the sample
(InSb).

The thermal conductance, defined in Equation 1.9 as the heat
flowing across the system per unit height per unit temperature difference,

may also be computed. Using the results in Equations 2.14 through 2.16:
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§v
Zwk4§ 5t .
G = 2" ) v D = Z'rrk4t5/to 2.18

For the above set of parameters, G is found to be 0.0161 cal/sec—cm-—OC.

Heat Conduction During Melting -~ Regime B

In this case it is assumed that the sample is melting as the
temperature of the nickel block increases linearly with time. The heat
conduction in the sample is ignored as its temperature is assumed to remain
. Taking TO =T

uniformly at the melting point T the differential equations

f f’
which must be solved are:
62 1 & )
v, Loyl oy 2.19
&t
2
§ z 1 5z
oo T = 0 2.20
6 g " 2 g 6 é
At the inner boundary,
y(,t) = 0 2.21
Initially, let us take the condition:
y({',0 = 0 2.22(a)
z(¢",00 = 0 2. 22(b)

The remaining three boundary conditions are given by Equations 2.9, 2.11,
and 2.12, respectively with yto in Equation 2. 12 being replaced by Tf .
The solution to Equation 2. 20 is:

z(¢",t) = Alt) In £" + B(t) 2.23
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Taking the Laplace transform of Equation 2. 23 with respect to time:

z(t",s) = A(s) Int" + B(s) 2.24

Equation 2.19 may be likewise transformed:
Y +Z.§' = T'sy 2.25
Equation 2. 25 is the modified Bessel equation, whose solution is:
s = Gl L' V78 + DY (L' vee) 2.2

The nomenclature used for the Bessel functions is that used by Mickley,

Sherwood, and Reed (59 ). The transformed boundary conditions are:

n'¢'y(n',s) = z'(1,s)

z(n",s) = \(/s2 2. 27
Combining Equations 2. 27, 2.24 and 2. 26, four equations in K, E, C and
D may be obtained:

CIO ) + DYO(B) = 0

CIo(n [3)+DYO(11 B) = B

GBI, (n'g) + DY, (n'B) = A/n'gp’

- - 2

Alnm" + B + y/s 2.28

where f
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Solving Equations 2. 28 for K, E, C_J and 5, the transformed variables

;r and z become:

y(',p) =

L o? T @)Y ('B) - Y ()], (¢ )

§ IO(‘B‘),YO(n'B) - Yo(ﬁ)Io(n 'B) - m'¢' Inn"| BIO(B)Yl(ﬁ 'B) - BY_(B)T;(n '8)1

2.29
z(L",B) =

a2 TLEY (8 -Y @ (1°8) -1’ 1n L [B]_(BIY, (n'B)-pY, ()] (n'P)]
6t T @Y (1'B)-Y_®)]_(n'®) - n's" In 0" [B]_(B)Y,(n'B) -BY ()], (n'p)]

2.30

Equations 2.29 and 2. 30 cannot be easily inverted because they contain

terms of the form Yo(ﬁ) and Yl(n ') . The series expansion of each of
these Bessel functions contains a term in lni Vs, and therefore y(¢',s)

and z(¢ ",s) have a branch cut along the negative real axis. In order to

perform the inversion

M+ioo

vyt = T — v (', s) exp (st) ds
M- S

A contour in in the s-plane must be chosen which excludes the negative
real axis. This is a very difficult problem, and efforts to achieve a
solution were finally abandoned.

Instead the analogous problem of linear heat flow between infinite

parallel planes was considered. The differential equations simplify to:



20

2
)

T3 ) (pcp)3 EST3 -
6x2 k3 5t

2
) T2

> = 0 2,32
6x

2
o = —2—% 2.33
6¢
2
5 ZZ = 0 2.34
6;"

where (' = x/R3, g = X/RZ’ etc.

Although the parameters n',.7', etc. are defined unambiguously in the
cylindrical case, since the region is fixed by the axis of the cylinder, the
same is not true in the case of infinite parallel planes. It is convenient,
however, to retain this notation in order to preserve the analogy, realizing
that the choice of the origin is not arbitrary but fixed. That is, the origin

is chosen such that

r = R (cylindrical)

corresponds exactly to

x = R (parallel planes)

The boundary conditions are then unchanged and are given by
Equations 2.9, 2.11, 2.12, 2.21 and 2.22, with yto in 2.12 being
replaced by Tf . Equations 2.33 and 2. 34 may be written in operational

form as before and solved to give
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y(t',s) = C (s) sinh ¢ ' V*'s + D(s) cosh¢' \/*'s 2.35
z(t",s) = Als) " + B(s) 2.36

The coefficients K, E, C and D are found by using the boundary

conditions, with the final expressions being given by:

y(t',s) =
v sinh (1 - ¢") V='s 2 37
s’ sinh (1 -n") Vr's + 19" (1 - n") Vr's cosh (1 - n') V7's
z(t's) =
y  sinh(-7n)9Yr's + m'e'(0-¢")VTscosh(l -n)yr 2.38

s2 sinh (1 -n)V*'s + n'¢ (1 -n") V1's cosh (1 - 1) Vr's

Equations 2.37 and 2. 38 are well behaved; that is, they do not have any
branch cuts. The inversion integral may thus be evaluated by the method

of residues (18 ). Complete inversion yields:

2

—d

a0 ot
. \ , £'-1 ..
vyt = ao(t_, )+a1(§ Yt+ = bn Sm(n'—l)an exp |- : 2|
n=1 (n'-1)"~ j
2.39
and
z(g"1) = c (&) + L")t +
oo - a 2t
Z b sina + L,—_l n'¢'a cos «a exp - —T"H——— 2,40
. n n n'-1 n n T 2,
n=1 (n'-1)"r

where o are the positive roots (all real and simple) of:
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n'-1 _ 0

TR CESY 2. 41
and where
! = Yig'—l)
al(é) - 1+n''(n"-1)
" = Y ( + 0 ¢ (é 1 1)%_’
Cl(g ) "'1 = 1 + M ¢ (n""l)
a (t) = Y& (€ -1)7 (£ '-1)% = (n'-1)2 7
© 6 n'-1 +n'¢'(nu_1)
_oXT ﬂ"}l"(é'-l)(ﬁ'-l)z(n.._l)
> :;;’fl'-l+n'¢-(n.._l)}2
3
" — 'YT' (g "w_ ,,)( 1
co(t; ) =
{ﬂ -14+n (P (nu_l)}
and
2yr'(n'-1)° o >
b = 1
n (e n_ ' —— o
' o Slna -Cos o - . cos o
n -1 n n n " 1 .

The general solution of Equations 2.31 and 2. 32 with the time
derivative included in Equation 2. 32 is discussed in Appendix V, and it
is concluded that the error introduced by neglecting the time derivative
is small.

For large values of the time Equations 2.39 and 2.40 become:

{

_ AL ’
Y —z ,r]l -1+ n|¢|(nu_1)w" Yt 2.42

[n-1+ e =
z —[ﬂ"1+ﬂ'¢'(ﬂ"‘l)J Yt 2.43
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The corresponding approximations for the cylindrical case may be found by
replacing ' -1 by Int¢', etc. Moreover, because of the curvature of
the bounding surfaces, the factors m'¢' become simply ¢'. This

analogy yields:

_ vtiln '
Inn'+¢'lnn"

t large 2.44

_yt({nmn'+¢'Int")
z Inn'+¢'lndr o t large 2.45

Equations 2.44 and 2.45 are in agreement with all of the boundary

conditions. Furthermore, the conductance for heat transfer is defined by

6T3
Z“krér r =R3 _ c’éé' 1L '=1 2.46
- t
T, R;) T,[R,) Y
Using 2. 44, it is evident that:
21rk3
G = Inn +¢ Inn" t large
1n 7 " -1
{217 k 2 k4 2. 41

That is, as time becomes large, the conductance for heat transfer during
melting approaches its steady state value, as would be expected. For
the set of parameters used in the preceding section a value of 0.0225 cal/

sec-cm—oK is found for the steady state value of G during melting.

Heat Conduction Following Melting - Regime (C)

In this regime, it is assumed that melting is completed, and the
sample temperature is rising more rapidly than the nickel block temperature
towards its constantly rising value. The differential equations whose

solutions are examined in this section are:
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6 v 1 Sv dv
+ o T, = T 2.3
6(_,2 ¢ 6¢ 5t
6zy 1 &y Sy
+ , = T 2.4
6@'2 ¢ 6¢ 5t
2
5 =z 1 5z
+ = —/ = 0 2. 20
2 " 1}
6Cll g 6(9

The initial temperature profile may be found from the large time approxi-

mation in regime (B).

v(ig,0 =0

| 3 | lngl
Y(C :0) - th Lln’ﬂ""?)' lnnuJ

where tf is the time interval over which melting takes place.

As in Regime (4), the thermocouple well is assumed to behave as a sink for

heat:

Yet

- ;
v(l,t) = P C6—§— £ =1 dt 2.48

where v = T/’t5,

The remaining boundary oconditions are given by Equations 2.8 through 2.12,

with t, replacing to in Equation 2.12.

f
Equation 2.3 becomes, after taking Laplace transforms with

respect to time:

V' = Tsv 2.49

which has the solution:
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vit,s) = K(s)yo (it /7s) + E(S)YO (it V75 2.50

Similarly, Equation 2.4 may be transformed to give

- 1 - - B lng' ~
||+ -— % I ' + ] .
Yy C.Y— T'sy Tytf{lnn'+¢'lnn“ 2:51

whence

y(t's) = Cls)]_ (1L’ ¥7's) + D(s)Y_ (it V7s)

A n_& 2.52
S Inn'+¢'lnn" )

Finally,

z({L",t) = P@) In¢" + Qft) 2.53
or z({L",s) = P(s) Int" + Q(s) 2.54
The transformed boundary conditions are:

- _ v, bV

vils) = 75 b5y |ga

vin,s) = y(l,s)

nev(t,s) = y'(,s)

~ SR

y(n'ys) = z(1,s)

1 I.;.‘l ] ‘-ll! \

n'e'y'(n';s) = z'{,8)

"t
- 11 — __f_ _1_
z(n",s) = Y[s + SZJ 2.55

The boundary conditions, Equation 2. 55 together with Equations 2.50, 2.52
and 2.54 yield six equations in the coefficients 1—\., E, (_J, I_), ,_1;, and C_Q s

ViZ, :
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AT (B +BY (B) = — [-K 57,0 - EBYI(B)J

CJ, (¢B) + BYO (eB)

A (np) + BY_(np)

_ v | y

CJ_(en'B) + DY_(en'p) in 1.

Inm'+¢'lnn" } = Q

|
42}
—

BT, (np) + BRY, (np) =

1| = = Y 1
n e Ceﬁ]l(e[?)) + DGBYl(eﬁ) + snm+¢ Inn"

_ _ vt 5
Cepl(en'®) + DeBY,n'®) + Ty o Iy * gt = O
T & S
Plnn" + Q = vy S + 2 2.56
: s

where B = iVTs and e = Vr/T.

The simultaneous solution of six linear equations, Equations 2. 56,
for the coefficients —A—., E, 5, ]5, E’_ and (_D, subsequent determination of
the transformed variables \_/, 3_7, and E, and inversion are not practically
feasible. Furthermore, even if the above operations were carried out, the
result would be of questionable value since it would be very complex
indeed. On the other hand, past experience gives a clue as to the general
form of the expected solution. It would be expected that the solution
would contain a term dependent on the geometry and thermal properties
of the system alone, a term linear in the time, and a term of the form

2

> C e—ﬁn t/
n
n

2.57

where the Cn are complex functions of the geometry and thermal properties
of the system, and the summation is taken over all the eigenvalues of the

system.
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Furthermore, the Bn are found from the roots of the principal

determinant, D _, formed from the Equations 2. 56; that is:

p
2
- € _Be Inn"

+ F4(ﬁ){eﬁ Inn" By (0) - i 'Fé(p)} 2.58

where

Pl(ﬁ) = Al(B)YO(Bn) - AZ(B) Io(ﬁn)

F () = T (B)Y, (en'®) - Y (B)]_(en'B)

s
w
P
e
N
!

Il(eﬁ)Yl(en'ﬁ) - Yl(eﬁ) Il(en'ﬁ)

F,(8) = 4, (B)Y,(nB) = &, (BT (np)

s
(&)
P
>
~
Il

Io(eﬁ)Yl(en'B) - Yo(eB)Il(en'B)

F () = T_(B)Y_(cn'®) - Y_(eB)T_(en'p)

A () = BI_(® - vI®)

5,6 = BY_® - vy ()

(pc) R
v=1'/’c5=2(p4 ;

pc) R* 2 52
p b5 Y R5
Now it is experimentally known that after melting, the DTA curve decays
back to the baseline in an exponential fashion, which means that only
|
the leading term of the sum, Equation 2.57, need be considered. In other
words the theoretical expression for the time constant of exponential decay

becomes:

2
Texp 'r/[3l 2.59
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where ﬁl is the smallest root of the principal determinant, Equation 2. 58.
Equation 2. 59 does in fact predict the correct order or magnitude of the
time constant of exponential decay. For example, using the following

typical set of parameters:

n = 1.56 T = 1.83 sec ¢ = 3.13
n' = 1.30 T' = 26.6 sec ¢' = 35.7
n" = 1.0384 t5 = 1.06 sec

61’ ~was, foundite be :0. 2707 which leads.to.a valuerof ”rex px:l 1ai834(0. 270) 2

= 25.1 sec, which is the correct order of magnitude.

The Thermal Conductance

It is now possible to examine the behavior of the thermal conductance
during the course of a DTA experiment. Consider Figure 2. 2 which depicts
the variation of the thermal conductance side by side with the DTA curve.
Just prior to melting and a few minutes after melting the value of the
thermal conductance will be well below its steady state value.* Upon the
initiation of melting the conductance will immediately rise to its steady
state value with a time constant of about one second. o It will remain
at this value throughout melting which may take about ten minutes.
Immediately following the completion of melting the conductance will revert
to the value it had before melting with a decay constant of about 25 seconds.

Based on these considerations it is evident that the steady state

approximation will be quite valid because

t

2
/Gdt

-°
/.tz Ss
dt
o)
Cf. Equations 1.10 through 1.13 as well as the discussion following
Equations 2.17 and 2. 45.

in
0!

ale
S

an oo
@ %

Cif. Appendix V.
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Figure 2. 2. Relationship between the Differential Temperature, 6,

and the Thermal Conductance, G, during DTA
(Not to Scale).
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as can be seen from Figure 2. 2.

In the foregoing, it was tacitly assumed that thermal conduction
was the only mechanism by which heat could be transferred across the
DTA system. At high temperatures, however, it would appear that thermal
radiation would also contribute even though the temperature gradient is
small (AT across thegas film is only about IOK before melting and may
increase to about 3OOK during melting). These matters will be examined

next.

Radiation in the DTA System

In this section the equations governing the transfer of heat by
means of thermal radiation are considered and expressions are derived
for this contribution to the thermal conductance. Consider Figure 2.1
where radiation is emanating from the "gray" oxidized nickel surface and
reflects diffusely from the surfaces of regions (4) and (1). It is assumed
that radiation which is absorbed is absorbed at the surface of each region,
that the reflectivity of the silica tube is zero (p3 = 0), that the trans-

missivity of the sample is zero (t, = 0), and that only wavelengths less

4
than 3.7 microns pass through the silica tube, so that multiple reflections
of wavelengths greater than 3.7 microns need not be considered; that is
to say none of the radiation which reflects from region (4) will be absorbed
by region (3). With these assumptions, together with Planck's distri-
bution function for black body radiaion, it is possible to estimate an
effective emissivity for fused silica as a function of temperature.

Keeping this in mind, denoting crAiTi4 by Xi , and noting
that f43 = f31 =1, where f,

ik
which is "seen" by k , the following relations are readily found:

is the fraction of the radiation from j

Radiation emitted by 1, 3, and 4 respectively:

X1
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Radiation reflected by 1:

Xe (1-¢) + X e, (1-e)(1-¢.) +

3°3 1 4 4 3 1
(l-el)(l—e3)(l—e4) f14 (Xlel + X3e3 (1-63) + X4e4
e (1-e)(1-¢. )(1-¢ )2 f 2 Xe, + X e (1-¢.)

1 1 3 4 14 171 3°3 3

Radiation absorbed by 1:

Xe e + Xe (l-e)e, +

(1-¢))) +

1

+ X4€4 (l—el))

3371 4 4 3771
€ (1—63)(1—€4) \f14 (Xlel + X3 (l—el) €5 + X4 (1—61)64) +
e (e )(1-e )(1-¢ )% f. % e + X (l-e)e. + X (1-€.) ¢ )
1 1 3 4 14 171 3 1" 3 4 1 4
N
Radiation transmitted by 3:
xlel (1—e3) f13 + X3e3 (l—el)(l-e3) f13 + X4e4 (1—e3)
Radiation absorbed by 3:
Xeef + Xel(l-e)f + Xe.e
113713 33 1" 713 4 43
Radiation reflected by 4:
(1—64)(1—63) fl4 (Xlel + X3 (l-el) 53) +
X4 (1"64) €4 (1-63)(1—61) f14 +
(-e )i-¢ )(1-€ )5 £ % (Xe. + X (l-e) c. + X. (1-¢) ¢ )
1 3 4 14 11 3 1" '3 4 1" 4

° s 0 o
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Radiation absorbed by 4:

2
€4 (1—63) f14 (Xlel + X3€3 (l—e’)) + X4e4 (1-63)(1—61) fl4 +

2
€4 (l—el)(l-e3)(l—e4) f14 (Xlel + X3 (l—el) €5 + X4 (l—el) e4) +

3 Ke + X (l-¢)e. + X (1-¢) ¢

2
ey (le)) " (1-e 4 M 3 \m€)) €, g 1€ ey)

2
1 )(1-64) £,

3

The net radiation transferred to 3 is:

Q
i

Radiation absorbed by 3 - Radiation emitted by 3

2 .
= Xpegeafyy + Xpeg (e £+ Xpeen - Xoeg

But Q‘5 = 0 when T, =T_. =T, so that:

1 3 4
a-Dbe
4
f = 2.60
13 € + ae, (l—el)
where a=A3/Al= 2m RZL/Z'rr RlL = RZ/Rl = DZ/Dl and
b = A4/Al = R3/Rl = D‘3/Dl' 2.61

Substituting the value of £ back into the expression for Q’5 and

13
assuming that T, = T, it is readily found that:
o - oa €1¢5 (a-be)) @t o orh
5 1 el+ae3(1-el) 1 3
— 4 4
Q5 = 0‘A1F5 (Tl T3 )

where

F = ) 2.62
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The thermal conductance for radiation to 3 may be defined as:

G, = Qé/L(Tl -T,)

5 3

12

and if T T, :

3
G'v5 = 81r0‘R1T F5 2.63
The analogous procedure when applied to the net radiation transferred
to region 4 is somewhat more complex because an infinite series results.
The situation is rapidly solved, however, since the series obtained is

of the form:

2
1 + z + 2z + z +. ...

= - - < .
where z (1 el)(l e4) f14 1, so that:

1
1 -2

2 _
l+ z+ z +... =

Rather than going through the complete derivation, however, as it is

lengthy, only the results will be stated. They are:

b

£, =—— — - — 2. 64
14 (1—e3)(€l+a (1—el)t3 + b(1 el)f4) + b1 el)(l 64)
o 4 4
Qf» = (rAlFé(Tl T4)
be. e
1 4
FZ) B el+a(1—el)e3 + b(l—el)e4 2.65
G, = '—_—Q’é—‘ = 8 R T3F 2. 66
6~ L(r-T) TR T ‘

All these factors are combined in the following chapter to formulate

procedures for measuring latent heats of transformation and fusion.



CHAPTER 1II

AFPLICATION OF THE THEORY

In this chapter the equations which were derived in Chapters I
and II will be applied to the determination of latent heats in the DTA
calorimeter. It may be recalled that two methods of obtaining the thermal
conductance were proposed: 1) theoretical calculation from the properties
and geometry of the system; and 2) calculation from the experimental time
constant of exponential decay of the DTA curve plus the thermal capacity
of the system.

Furthermore, in the first method, it was noted that direct measure-
ments of the dimensions of the gas film thickness were imprecise, neces-
sitating the use of an indirect method. Two such methods were proposed:

1) calculation of the film thickness by comparison of the experimental

time constant of exponential decay of the DTA curve with its theoretical
counterpart; and 2) calculation from two different measurements of the area
underneath the DTA curve using two different gaseous atmospheres of widely
different thermal conductivity, such as nitrogen and helium, in the system.

These methods will now be developed in more detail.

Calculaticn of the Thermal Conductance using the Theoretical
Expression for the Time Constant to find the Gas Film Resistance

In this method the gas film thickness is found by a trial and

ale
5

error calculation wherein n" = RI/RZ is varied until the time constant
of exponential decay as computed from Equation 2. 59 agrees with the
experimentally measured value given by Equation 1. 14 to within one percent.
With this information it is then possible to compute the thermal conductance
as follows.

It may be recalled that the individual conductance, Gi’ is

defined by the relation:

of,

" See Figure 2.1.

n" = n,.
2 34
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G, = Tm g7 = K/L (3.1)

where Qil is the net rate of heat flow across the conductance, L is the
height of the sample which is a measure of the effective heat transfer
area, T. . 1is the temperature at the outside radius and Ti

i0
ture at the inside radius.

1 is the tempera-
For thermal conduction across the gas film and the silica tube'the
value of the individual conductance may be obtained from the steady state

Jo
<

formula:

Gi = 27 ki/ln n, (3.2)

where ni represents the radius ratio, R,

1-l/Ri . For the sample one

obtains:

After integration and inversion the result is

Z’srk4

@
|

™

=

)
where the average is taken because the solid-liquid interface traverses
the sample, starting at the outside diameter and ending at the inside
diameter.

The overall conductance is obtained by combining the individual

conductances according to the steady state formula:
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1 1 1
- + - + =
GZ G3 G4

_1(_; (3.5)
and the computation of the heat of fusion according to Equation 1.7
becomes a simple matter.

In order to perform the above computations, a computer program
was devised for use with the IBM-7090 Data Processing System. The
program (Number DTA-19) was written in the MAD* language and is
reproduced in Appendix VI together with all of the data used in the
computations. The estimation of the physical properties for use in these
calculations and others to be soon described is discussed in Appendix IV.
In order to test this method of computation, the DTA data for a number of
standards whose latent heats of fusion are well known were processed.
The results of this calculation are presented in Table 3.1. The values of

n" computed here agree quite well with the directly measured values
(1.04 to 1.07), and the calculated heats of fusion agree with the values
reported in the literature.

It may be noted that the contribution of thermal radiation was
neglected in this analysis. Its effect, however, does not appear to
influence the computation of the thermal conductance. Furthermore, the
calculation of the thermal conductance by this method does not require
precise values for the thermal properties of the various components of the
system. Reasonable estimates are usually sufficient.

The uncertainties which result from the neglect of thermal radiation
in the model and from the use of approximate values for thermal properties
show up in the calculation of a radius ratio for the gas film which is some-
what different from its true value without greatly affecting the computation
of the thermal conductance or the heat of fusion. In this respect this
method is self-compensating and relatively insensitive to experimental

errors and to estimations of the parameters which appear in the calculation.

als
b

Michigan Algorithm Decoder, 1963 Version, University of Michigan
Computing Center, Ann Arbor, Michigan.
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Table 3.1

Results of Computer Program Number DTA-19 for Standards

T % Run L L, lit

Material f Number Cycle n" cal/fg cal/g

Ag 1234 C-4 1C-N2 1.066 19. 4 24. 9
2H-N2 1.055 22.8
C-5 1C-N2 1.065 21.4
2H-N2 1.060 22.3
C-13 2H-N2 1.037 21.8

In 430 C-12 2C-N2 1.049 6.6 6.8
3H-N2 1.047 6.8

Pb 600 C-3 1C-N2 1.080 4,8 5.9
2H-N2 1.071 5.8
4H-N2 1.072 5.3

Sb 904 C-2 2C-N2 1.059 33.3 39.0
3H-N2 1.057 34.4

Te 723 C-1 2ZH-N2 1.076 33.6 32.7
2C-N2 1.084 33.9

o,
b

" Kubaschewski and Evans (47 ).
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Calculation of the Thermal Conductance using Two Measurements
of the Area under the DTA Curve to find the Gas Film Resistance

In this method the gas film thickness is found by means of a double
trial and error calculation wherein the two unknowns, m" and G, are
evaluated from two pieces of experimental data: 1) the area under the
DTA curve when a gas of known thermal conductivity (e.g. nitrogen) fills
the system; and 2) the change in the area under the DTA curve when a
second gas of different thermal conductivity (e.g. helium) replaces the
first. A double trial and error calculation is necessary because an estimate
of G is required in order to calculate n".

Figure 2.1 schematically depicts the physical system under con-
sideration and also illustrates the nomenclature to be used in the following
discussion. It is assumed that the nickel block due to its high thermal
conductivity has a uniform temperature and due to its high total heat
capacity (about 240 cal/OC) acts as a source for heat while the melting
interface acts as a sink.

It is assumed that two parallel mechanisms contribute to the over-
all thermal conductance of this system: conduction of heat from the nickel
block through a series of intervening media to the solid-liquid interface,
and exchange of radiation between the oxidized nickel surface and the
silica tube and sample. Note that subscripts 2, 3, and 4 refer to the
conductances of the gas film, the silica tube, and the sample, respectively,
whereas the subscripts 5 and 6 refer to equivalent conductances for radiation.

The individual conductances for thermal conduction of heat across
the system are given by Equations 3.2 and 3.4. It may be recalled that

the parallel conductances for thermal radiation are given by:

G, = 87RF, oT° i = 5,6 (2.63: 2. 66)

. 6163 (RZ - R3 64) 2. 62)
5 Rlel+ R2 63(1-61)
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I G o]

Figure 3.1. Analogous Electrical Circuit for Calculation of the
Overall Thermal Conductance.
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F = %39 (2. 65)
6 Rlel+Rze3(l-el)+R3e4(l—el)

where ¢ is the Stefan-Boltzmann constant and F5 and F6 represent the
fractions of the total radiation emitted from the oxidized nickel surface
which are absorbed by the silica tube and sample, respectively.

In order to combine the individual conductances into a working
formula for the overall conductance, it is useful to consider the analogous
electrical circuit depicted in Figure 3.1. Combining the individual con-
ductances in the usual fashion, the final equation which represents the

overall thermal conductance is readily obtained, viz:

G, * (G2 + G5) (1+ G6/G3)

G = G (3.6)

" 1 1 6
1+ (G +G | = + <+ )
2 5((33 G4 G3G4

The radius ratio of the gas film may be found from two different

measurements of the area under the DTA curve as follows:

\ S R - Rz\
Inn" = 1n {1+ R
\ >
2 R
-2m B k,k , w0 w
1n nn — - 2 2 - (G 'VG*») ; (3. 7)
k2 —kz (G-4 (G -a

where @ and f include the effect of radiation, and are defined by the

relationships:

PTG, G,+G, GG, (3.8)
1+ + +
G3 G4 G3G4
a = B(G, + G+ G.G,/G)) (3.9)
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For G5 = G6 =0, then =1 and a=0. Inthe above equations the
starred and unstarred values refer to helium and nitrogen gases, respectively,
and G =K/L is obtained from Equation 1.7. It may be noted that at

sufficiently low temperatures Equation 3.7 reduces, as it should, to:

lim Inn" = 2n i%%%é (3.10)
GS’G -0

6
Thus the increase in complexity introduced by the radiation terms is evident.

In order to solve Equations 1.7, 2.63, 3.2, 3.4, 3.6, and 3.7
simultaneously a computer program (Number DTA-16) in the MAD language
was devised. The program listing is presented in Appendix VI'.

Unfortunately, it was not possible to check this method as thoroughly
as the previous method because much of the data was unsuitable. Nearly all of
‘the_’data was taken by alternating the flows of nitrogen and helium into
the system. It was found, however, that in replacing the nitrogen with
helium, not all of the nitrogen could be removed in this manner. Thus the
data with helium as the gas atmosphere really represent data with a mixture
of helium and nitrogen of uncertain composition. Furthermore, the calculation
which has been described requires that the exact thermal conductivity of
the gas be known, since otherwise quité erroneous values for the film |
thickness were obtained.

It was decided, therefore, to reconstruct the DTA furnace so that
it could be evacuated and backfilled with the desired gas. The system has
not as yet been fully perfected, but some data has been obtained (DTA run
number C-32 with sample number 152, indium) which substantiates the
above conclusions. In this DTA run it was estimated that about 90% of the
nitrogen was removed and replaced by helium. Brokaw's rule (770°.) was
used to estimate the thermal conductivity of the mixture. It was found that
at 43OOK, the melting point of indium, the thermal conductivity of helium |
was reduced by 20% if 10% nitrogen was present as an impurity. Using

this correction, the calculation of mn" and the heat of fusion by this method
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(Program DTA-16) agreed quite well with the values obtained by the previously
described method (Program DTA-19).

Calculation of the Thermal Conductance from the Time Constant
and the Thermal Capacity

It was pointed out in Chapter I that the application of Equations 1.4
and 1. 14 to the calculation of the thermal conductance depends on the estima-
tion of the thermal capacity, C, and that some questions arise in regard to
the constitution of C. These questions may now be examined. In consider-
ing the DTA data on standards whose latent heats of fusion are known, a

value of the thermal capacity may be computed as follows:

AE
c = —=XB (3.11)

rex
[oar

and a value may also be estimated by summing the heat capacities of the
sample and the silica in contact with the sample:

Cc' = (3.12)

Msp, s T "%, Q
Let Z denote the ratio C/C' which may be computed for each standard.
If the theory and experiment were completely matched then Z would be
equal to unity. The results of such a calculatiorﬁd are given in Table 3. 2.
It is evident that, within the precision of the data, Z may be considered
to be a constant dependent only on the geometry of the system, and then
used to compute the heats of fusion of other materials. For the Series B
runs ZB =1.30 £ 0.274, and for the Series C runs ZC =1,115% 0.187.

Of course, it may be argued that this approach is naive, and so
it is. In the first place, the system is one containing distributed parameters,
that is distributed thermal resistance and distributed thermal capacitance,
so that the model through which Equation 1.4 was derived is in fact over-

simplified. In the second place, it is known that after melting the

o,
3

" See Appendix VI: MAD program Number DTA-17.
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Table 3.2

The Correlation Factor Z =C/C!

Series B DTA Runs

Number Ditjir;if;i
of Cycles Mean Value
Material ‘ N Z %7
Ag 6 1.310 0.132
Cu 14 1.345 0.202
In 20 1.240 0.256
Pb 8 1.425 0.306
Sb 6 1.285 0.140
Te 8 1.235 0.244
Overall 62 1.300 0.274
Series C DTA Runs
N z 'z
Ag 10 1.085 0.071
In 4 1.090 0.145
Pb 5 1,195 0.191
Sb 4 1.232 0.080
Te 4 1.005 0.113

Overall 27 1.115 0.187
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conductance is not constant and is not identical to the conductance during

melting. ¥
Notwithstanding these objections, however, within the precision

of the data, this method of finding the thermal conductance is satisfactory.

The pragmatic viewpoint is taken that the use of this method does provide

useful and realistic estimates of the latent heats and is therefore justified.
These two methods for measuring the latent heats of fusion are

used in the following chapter to analyze the data on about 20 semiconducting

compounds and to determine their latent heats of fusion and latent heats of

transformation.

afs
B

See Figure 2. 2.



CHAPTER IV
HEATS OF FUSION AND TRANSFORMATION BY DTA CALORIMETRY

In this chapter the methods described in the preceding chapter
are applied to the determination of the latent heats of fusion and transi-
ZTe,
BiZSe3, BiZTe3, CdSe, CdTe, GaAs, GaSb, InAs, InSb, InZSe3, InTe,

InZTe3, PbSe, PbTe, SbZSe3, SbZTe3, SnTe and ZnTe.

tion of twenty compound semiconductors: AgZInSSeB, AgZSe, Ag

Experimental Data

The experimental data consists in the tracings from a recording
potentiometer which portray the difference in temperature between the
DTA sample and reference as the amplified millivoltage output of a
differential thermocouple versus time. A few typical DTA curves are
shown in Figure 4.1 with the shaded region representing the area under
the DTA curve. The melting point was chosen as the temperature of the
sample over the time interval that the DTA curve was linear.

Three basic types of DTA curves have been observed: 1) those
for very pure materials, such as silver, which have a very sharp melting
point, and the decay of the differential temperature after melting is truly
exponential for both heating and cooling curves; 2) those for impure |
materials or compounds which contain an excess of one of the constituents,
such as CdTe, wherein melting occurs gradually at first and then more
rapidly; although the decay of the heating curve may yield the true time
constant, the cooling curve generally will not because of the continued
evolution of latent heat; and 3) those for materials which undergo a large
volume decrease on melting, such as the III-V compounds, Ge, and Bi.
The latter curves often contain "wiggles", and may or may not be useful
for finding the time constant for exponential decay.

The time constant may be found from a plot of log | 0 - gss l
versus time. A few such typical plots are shown in Figure 4. 2. The
experimental time constant, ‘Texp , may be found from the slope of such

graphs via Equation 1. 14.
45
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o N

I©-6¢gl, arbitrary units
@)
)

'}

-4

O

Figure 4. 2.

o4 08 12 16 20 24
1, min
Some Typical Semilogarithmic Plots for Finding the Time

Constant for Exponential Decay of the DTA Curve. The
Legends Correspond to the DTA Curves of Figure 4.1.
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The remainder of the experimental data consists in the measure-
ment of the dimensions of the silica sample tubes by means of a
micrometer and calipers during their fabrication. The estimation of the
physical properties of the components of the system is discussed in
Appendix IV, and all the numerical values used in the calculations are

listed side by side with the computer programs in Appendix VI.

Experimental Results

The heats of fusion calculated from the DTA data via computer
programs DTA-17 (using Z values of 1.300 and 1.115 for the series
B and C DTA runs, respectively) and DTA-19 appear in Table 4.1 where
they are compared with the values reported in the literature and with
the values computed from the heats of fusion of the elements according

to the method of Kubaschewski and Evans (47):

Ni Lf i
L = T,88 = Tf[<r+ = . ] 4.1
i f, 1
c = =R X Ni In Ni 4,2
i
where Tf = melting point of compound, OK
Tf i = melting point of element. i, OK
Lf = heat of fusion of compound, cal/mean gram atom
Lf i = heat of fusion of element i, cal/g-atom
A Sf = entropy of fusion of compound, cal/m.g.a. -k
Ni = atom fraction of element i in the compound
R = gas constant = 1.987 cal/g'—atom—oK

The heats of transition are summarized in Table 4. 2. The con-
fidence intervals given in columns IV and V of Table 4.1 and in columns

IIT and IV of Table 4. 2 are simply the standard deviations from the mean
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Table 4.1

Heats of Fusion of Compound Semiconductors

Material Latent Heat of Fusion - Calories/gram
I IT III IV \Y VI

AgZIn8Se13 - - 49. 8 20.2+3.3 19.1+ 2.8 20%3
Ag,Se - - 44.4  9.3%1.1 7.9+0.8 82
AgZTe - - 50.1 8.9+£3.0 7.0+£1.3 8+2
BiZSe3 - - 37.9 39.2%+3.0 32.2%£3.1 366
BizTes 36.2 (8) 35.8 31.6t4.4 31.412.7 3314
CdSe - - 71.5 56.5+15.0 53.5%+14.2 55%15
CdTe - - 63.3 (62.2) 46.3+5.8 50+8
GaAs ;- - - - 192, 199 £ 23 20025
GaSb 62.6 (73) 63.7 ' .90.8+3.5 75.8+15.3 85x12
InAs - - - 98.0+15.6 95.5+£09.7 96+12

InSb 47.3;51.5 (62,73) 33.4  46.31%1.0 51.7%6.0 505
In,Se, - - 48.2 30.0+1.8  35.0+7.1 3014
InTe - - 41.2 (36.7) 24.7+2.6  28%+8
In,Te, - - 42,5 19.7+£5.1 18.4+4.3 1915
PbSe - - 36.7 64.6+23.0 32.2+5.8 38112
PbTe - - 37.3  37.4%12.6 25.0+£3.2  28%9
Sb,Se, - - 48.5 36.6+£3.5 31.8+4.8 35%5
Sb,Te, - - 42,1 45.1£8.5 33.414.1 3716
SnTe - - 40.2 31.3£0.1 33.2+£1.5 3243
ZnTe - - 89.7 - 80.7+11.0 81+11
Code: 1.-Heat of Fusion from Literature

IT - Literature reference

III -~ Value calculated from Heats of Fusion of Elements; after
Kubaschewski and Evans (47).
IV - Program DTA-19; L, + o
f Lf
V - Program DTA-17; L.t ¢
f Lf

VI - Recommended Value.
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for the number of heating and cooling cycles used in computing the mean,
and represent the scatter of the data. The confidence intervals quoted
in column VI of Table 4.1 and column V of Table 4. 2 represent, in this
writer's judgment, the probable error associated with the recommended
values cited.

An examination of Table 4.1 reveals that in most instances the
method of Kubaschewski and Evans yields a high estimate of the heat
of fusion, though in the case of the III-V compounds the estimate is low.
Of course, some of the materials undergo crystalline transformation before
they melt in which case the sum of the entropies of transition and melt-
ing must be compared with the value predicted from Equation 4.1. Such
a comparison is provided in Table 4.3 wherein it is evident that the
prediction of Equation 4.1 is still high. It is of interest to examine each
transformation in more detail in order to learn as much as possible from
the phenomena which occur.

AgZInBSe13

O'Kane (66) has investigated the thermal transformations in this
compound and reported the melting point to be 815°C with a thermal
transformation occurring at 753°C on heating and 745°C on cooling. In
this work, DTA measurements were obtained on samples of high resistivity

(> 105 ohm-cm), zone refined AgZInSSe Initial melting was somewhat

3
gradual, but the constant melting point} 81200, was quickly attained
about one to two minutes after the first deflection from the baseline. The
thermal transition was moderately sharp and occurred at 74800 on heating
but supercooled to 743°C on cooling. These figures are in general agree-
ment with the findings of O'Kane.

The heats of fusion calculated by both of the methods described
agreed with one another quite well, and the recommended value is
43.5 + 6.5 kcal/g mol. The heats of transition by the two methods

disagreed somewhat, and the average value of 11 * 4 kcal/g mol is

recommended.
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Table 4.3
Comparison of the Sum of the Entropies of Transition

and Fusion with the Theoretical Prediction

Melting or AS. or AS Z AS,>'< z A Sj ¢ s
Transition f t j ) Theoretical
Temperature cal cal cal
_ o o) o o
Material K g- K g-_K g-_K
Ag21n88e13 1022 0.0049 .
1088 0.0184 0.023 0.0409
AgZSe 406 0.0197
1170 0.0068 0.027 0.0380
AgZTe 420 0.0167
1072 0.0009
1232 0. 0065 0.024 0.0406
InZSe3 474 0.0053
1158 0.0259 0.031 0.0417
InZTe3 (893) (0.0009)
940 0.0203 0.021 0.0453

sk

j refers to the number of transformations, including melting.

)
AR

After Kubashewski and Evans (47).
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Ag_ S
gZ e

Walsh, Art and White (89) who have measured its heat capacity
from 16—3000K have reported the true composition of this compound to
be Agl. 998e. These authors report no anomalies in the specific heat
in this temperature range. The crystalline transformation at 133OC
and the melting point of 89°C have been well established (31, 39, 47, 58)
and the heat of transition has been reported to be 1.6 + 0.4 kcal/mole
(47).

These figures have been confirmed by our measurements which
indicate that the transition occurs sharply at 133—1360C on heating
at 2. 5OC/min and supercools to 122°C on cooling at a rate of 0. SOC/min,
and that the melting point, also quite sharp, occurs at 89400. The
heat of transition measured here, however, is somewhat higher than that

reported in the literature, being 2. 36 + 0.5, kcal/g mol where the average

of the two measurements has been chosen. 9The heats of fusion found by
the two methods agree within experimental precision, and the recommended
value is 2. 36 + 0. 59 kcal/g mol. It is probably fortuitous that the heat
of transition is substantially equal to the latent heat of fusion.

AgZTe

The investigations of Miyatani (60) indicate that two compounds
of nearly identical composition, Agz. OOTe and Agl. 93Te exist in the
silver-tellurium system at room temperature. Walsh, Art, and White (89)
report that the composition of the latter phase is actually Agl. 88Te
and have measured its heat capacity from 16—3000K finding no anomalies.
The existence of a thermal transition in AgZTe at 147OC has been
established (31) and its melting point has been reported to be 959OC
(31, 39).

In this work it was found that the low temperature transition occurs
very sharply at 147—149OC on heating at 2. SOC/min, but supercools to
14300 on cooling at 0. 7OC/min. A second, previously unreported,

thermal transition has also been observed which occurs very sharply
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on both heating and cooling at 799OC. Melting was somewhat gradual,
beginning at about 951°C with a constant melting point of 960°C being
established within a few minutes. The heats of fusion computed by the
two methods described agree within experimental precision and a value

4
147OC found by the two methods disagree somewhat and a larger value

of 2.7, £ 0. 69 kcal/g mol is recommended. The heats of transition at

of 2. 40 + 0. 35 kcal/g mol is preferred because the experimental scatter

is much lower. The heat of transition at 799°C is equal to 0.34 kcal/g mol.

B128e3, B12Te3, Sb28e3 and SbZTe‘3

These four compounds melt congruently and no crystalline
transformations have been reported for them. Hansen (31) gives their
melting points as 706OC, 58500, 622°C and 61700, respectively. Offergeld
and Cakenberghe (65) have investigated the stoichiometry of three of
the compounds and list the true compositions as Bi

Segq. g9g a4 by 4oTesq. 40

40.0651°59. 935’
Biso. 02

Except for the sample of BiZTe which was zone refined, the

materials measured here exhibited son?ewhat gradual initial melting.

Our melting points for BiZSe3, BiZTe3, SbZSe3 and SbZTe3 are 70000,
586OC, 613°C and 61700, respectively. Bolling (8) has measured

the heat of fusion of BiZTe3 and found a value of 29.0 + 3. 2 kcal/g mol
which compares favorably with the value of 26.4 * 3. 2 kcal/g mol found

in this work. The values found by the two methods for the remaining

three materials differ somewhat. Where the standard deviations were equal
the recommended value was found by simply averaging the two measure-
ments, but if the standard deviations were unequal, the preferred value
was found by adjusting to a point where the standard deviations overlap.

In this manner the heats of fusion for BiZSe3,
found to be 23.6 + 3.9, 16.8 £ 2.4, and 23.5 * 3.8 kcal/g mol, respec-

SbZSe3 and SbZTe3 are

tively.
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GaAs, GaSb, InAs and InSb

Hansen (31) gives the melting points of these compounds, each
of which melts congruently and undergoes no crystalline transformations,
as 1238OC, 706OC, 943°C and 525OC, respectively. Nachtrieb and
Clement (62) have measured the heat of fusion of InSb which they report
as 11.2 + 0.4 kcal/g mol; and Schottky and Bever (73) report the heats
of fusion of InSb and GaSb to be 12.2 + 0.7 and 12.0 + 0.7 kcal/g mol,
respectively.

In this work, the melting points of GaAs, GaSb, InAs, and InSb'
were found to be 123600, 71 ZOC, 94200 and 524OC with all occurring
sharply except GaSb which was somewhat gradual.>=< Our heat of fusion
for InSb, 11.7 + 1.2 kcal/g mel, is in good agreement with the previous
measurements, but our value for GaSb, 16.3 + 2.3 kcal/g mol is
substantially higher. Furthermore, the two measurements for GaSb
disagree substantially, the higher value being preferred because of less
scatter. The two measurements of the heat of fusion of InAs and GaAs
are in good agreement with one another with the preferred values being

18.2 + 2.3 and 28.9 + 3.6 kcal/g mol, respectively.

CdSe, CdTe and ZnTe

These compounds melt congruently and do not undergo crystalline
transformation on heating. The melting points of CdSe and ZnTe have
been reported by Mason and O'Kane (58) to be 1258° and 130000,
respectively, whereas that of CdTe has been variously reported as
1090°C (63), 1092°C (54), 1098°C (57, 58) and 1106°C (49).

In this work all three materials were observed to melt gradually
at first with a constant melting point being achieved a few minutes

after melting was initiated. The corresponding melting points and

heats of fusion of CdSe, CdTe, and ZnTe were found to be 1250°C and

o,
3

" Cf. Figure 4.1.
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10.5 + 2.9 kcal/g mol; 109100 and 12.0 £ 1.9 kcal/g mol; and 129000
and 15.6 + 2.1 kcal/g mel. The heats of fusion of CdTe and ZnTe
represent primarily the results of the calculation from the time constant
for exponential decay plus an estimate of the thermal capacity via
Program DIA-17, as only one data point, that being for CdTe, was
available for processing by the second method. The two methods
yielded values in good agreement with one another for CdSe, although

the standard deviation was high.

InZSe3
Miyazawa and Sugaike (61) have investigated the crystal

structure of InZSe at room temperature and the thermal properties by

3
DTA., and found that o - In_Se the stable phase at room temperature,

is hexagonal and undergoeszsha3rp heat absorption at ZOOOC on heating
but below 100°C on cooling. Semiletov (74) has extended the crystallo-
graphic investigation to higher temperatures and reports four crystalline
modifications of InZSe3: 1) an @, graphite-like, hexagonal phase which
is stable below ZOOOC; 2) a B, hexagonal phase which is stable above
200°C; 3) a y , cubic modification which exists above 500-600°C;

and 4) a pessible §, monoclinic phase whose region of stability is
uncertain. He further reports that the o =+ B transformation is sluggish,
requiring a seven to eight hour anneal at 35000 for completing the trans-
formation of a thin film 400-600 A thick. O'Kane (66) has observed a
thermal transformation 210°C and also reports a small transition at 740°C.
The melting point of InZSe3 has been well established (58, 66) and has
been reported to be 888QC. Yoshioka (94) has studied the thermal

properties of InZSe in the range ZO—?:OOOC and has estimated the heat of

the = transfofmation from heat capacity measurements and found it

to be 0.34 kcal/g mol. 7
In this work, the lcw temperature phase change was observed to

occur very abruptly on heating at ZQI-ZOZOC, and superccoled to below

IOOOC on cooling. Melting began gradually about SOC below the melting
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point which was 88500, and as soon as the melting point was achieved,
proceeded at constant temperature. Our value for the latent heat of
transition at ZOZOC is 1.17 + 0.23 kcal/g mol which is larger than that
reported by Yoshioka by a factor of three. There is good agreement
between the two methods of calculating the heat of transition from our
data.

The alleged phase transformation at 74OOC, although it was
observed, is thought not to belong to the compound, which is believed
to be non-stoichiometric and deficient in selenium. The basis for this
judgment is the phase diagram study of the InSe system which is reported
in Chapter V, and which exhibits a peritectic reaction at 74500 which

extends from nearly pure selenium to InZSe This explanation would

also account for the anamalous &-phase pcjstulated by Semiletov. Finally,

the o = B reaction did not seem to be as sluggish as Semiletov has

suggested. It is condeded, however, that the value of the heat of transi-

tion reported here would be too low if all of the latent heat were not

absorbed during the five to ten minutes required to traverse the transition

peak in our DTA experiments. This probability, however, appears slim.
The two methods of calculation yield values for the latent heat

of fusicon which are in good agreement with one another. The preferred

value is 14.0 + 1.9 kcal/g mol.

InTe and InzTe3

Hansen (31) gives the melting peints of these compounds as
696°C and 66700, respectively. Zaslavskii and Sergeyeva (95) have

investigated polymorphism in InZTe and report that two phases exist:

3
an a-phase which is stable at low temperatures and decomposes between

500O and 60000 intc a P-phase. The In-Te phase diagram has been
recently investigated by Grochowski and Mason (29) who give the exact

49, 27850, g and Inyq Te g o

Unlike InZSe3, the « — B transformation in InZTe3 is an order-

disorder transition, not accompanied by a large change in the crystal

compositions of these compounds as In
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structure (95) and has been almost too elusive to detect in our equipment.
Minute deflections in the neighborhood of 58000 have been observed,
however, and they may or may not be associated with this transformation.
A more substantial heat absorption of about 0.5 kcal/mole has, however,
been detected at about 62000 on heating. This is presently believed to
be associated with the peritectic decomposition of the compound In_Te

375
which decomposes at 62500. Both InTe and In_ Te. have been observed

2773
to melt gradually with their respective melting points being 693O and
667°C.
The two methods for finding the heat of fusion yield results for

InZTe which are in good agreement with one another, but only one data

3
point, that for InTe, was available for processing by the second method
(Program DTA-19). The recommended heats of fusion are 6.9 + 1.9

kcal/g mol InTe and 11.6 + 3.1 kcal/g mol InZTe In the case of InTe,

3
it was impossible to obtain time constants from the cooling curves because
of continued evolution of heat as freezing continued. This was due to the
deviation of the composition from the In-deficient compound. Similar

troublesome behavior was encountered with SnTe.

PbSe, PbTe and SnTe

These three compounds all melt congruently and do not undergo
any other phase transformations above room temperature. Hansen (31)
has listed their melting pcoints as 10880, 9170, and 79OOC. In this work,
PbSe has been observed to mel: sharply at 108300 while PbTe and SnTe
melted gradually at 923° and 804°C, respectively.

Umeda, Jeong and Okada (85) have found the true composition of

SnTe to be SnTe A large number of tin vacancies have also been

.038°
inferred from the}el a%omalous thermal conductivity data of Damon (19).
The heat of fusion of SnTe has been determined from heating data
to be 7.9 + 0.8 kcal/g mol. The cboling curves could not be used because
the discrepancy cf the composition of our material from the tin-deficient

compeund resulted in continued evolution of latent heat during the
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the decay portion of the DTA curve, and thus the true time constant could
not be extracted.. The two measurements for PbSe and PbTe did not
agree with one another very well., The lower values were favored
because the scatter was less, so that the recommended values are

10.9 £ 3.4 kcal/g mel PbSe and 9.4 + 3.0 kcal/g mol PbTe.

Experimental Precision

The melting points and transition temperatures reported here are
considered to be accurate, for the materials measured, to within + ZOC.
The largest sources of variability are changes in thermocouple cali-
bration and the melting of samples over a range of temperature which is
occasioned by a deviation frem the congruent composition.

The precision in the measurement of quantities of heat is not
particularly high, perhaps + 15% on the average. Numerous sources for
this variability may be cited: error in the measurements of the dimensions
of the system or of the area under the DTA curve, error in the values of
the physical property estimates, error in the measurement of the time
constant, improper choice of a physical model on which to base the
calculations, etc., but it is not apparent that one of these choices
should be preferred over the others. It is presumably a combination of
all of them which leads to the observed variability.

The questiorn: arises as to which cf the two methods for finding
latent heats is tc be preferred. In this writer's judgment, it is the first,
that is direct calculation cof the thermal conductance from a knowledge
of the geometry and physical groperties of the system with calculation
of the dimensions of the gas film by matching the time constant for
exponential decay of the DTA curve with its theoretical counterpart. This
statement nevertheless must be qualified because, although the method
is moderately insensitive to the estimate of the thermal conductivity of
the sample, the latter may not be chosen indiscriminately, particularly
when it is low. This fact is kborne out by the results on PbSe and PbTe

where large discrepancies between the two methods appear. The method
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of direct calculation is also preferred because it is constructed on a
much firmer theoretical foundation and does not depend on any calibration

of the equipment.

Discussion
A comparison of the entropies of fusion plus transition of these
twenty compounds in Table 4, 4 reveals that they can be grouped as follows:

AS = 2-3 AgZInSSe AgZSe, AgZTe, InZSe3, InZTe3

13°
AS = 3-5 CdSe, CdTe, ZnTe, InTe, PbSe, PbTe, SnTe

AS = 4-7 512863, B12Te3, SbZSe3, SbZTe3

AS = 7-10 GahBs, GaSb, InAs, InSb.

These entropy changes represent changes in the state of order
of the compound in transforming from the crystalline state at room
temperature to the liquid state. The compounds having low values of
A S undergo less pronounced configurational changes than those having
high values of A S. 1t is known, for example, that the coordination |
number of the III-V compounds in the crystalline state is 4 whereas
in the liquid the cocrdination number is about 6 (25). Furthermore, the
change in density for these materials on melting is large, being about
11.6% for InSb and 7.3% for InAs (37). Thus the change in the state of
order on melting is large for these materials, and the entropy of fusion is
correspondingly large. Finally, it may be pointed out that the variations

exhibited in Table 4.4 are great -- from 2. 2 for AgZInSSe 3 to 9.6 for

1
GaAs. 1t is clear that no simple correlation can be found for predicting

heats of fusion from entropies of fusion which sould be analogous to
Trouton's rule for heats of vapcrization. This conclusion has been reached

<o
S

on numerous occasions befcre and is confirmed by our data.

ala
P

E.g. see Kubaschewski and Evans (47).
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Table 4.4

Entropies of Transition and Fusion of Semiconducting Compounds

rit a5 . gf & 8¢ i=zt,f
Compound K cal/g-at- K K cal/g-at-°K
AgZInsSe13 1020 0.47 1085 1.74 2.2
AgZSe 408 1.93 1169 0.68 2.6
Ange 420 1.91 1233 0.74 2.7

1072 0. 10
BiaSe3 973 4, 85 4.9
BizTe3 859 6. 15 6.2
SbZSe3 886 3.80 3.8
SbZTe3 890 5. 28 5.3
GaAs 1508 9. 60 9.6
GaSb 985 8. 25 8.3
InAs 1216 7. 50 7.5
InSb 797 7.34 7.3
CdTe 1364 4.40 4.4
CdSe 1523 3.45 3.5
ZnTe 1563 4, 99 5.0
InZSe3 474 0. 5O 1158 2.42 2.9
InZTe3 940 2.47 2.5
InTe 966 4, 10 4.1
PbSe 1356 4. 02 4.0
PbTe 1196 3.93 3.9
SnTe 1077 3. 67 3.7
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Finally it is of interest to compare the entropies of fusion of these
compounds with values for other materials. The entropies of fusion of
metals are about 2.2 cal/g at—OK whereas those of ordered and disordered
alloy phases are about 3.5 and 2.2 cal/g at-OK, respectively (47).
Dworkin and Bredig (21) have measured the heats of fusion of the alkali
halides and have found that the corresponding entropy changes average
2.9 cal/mean gram atom —OK. The entropies of fusion of Ge and Se are
6.7 (28,71) and 7.2 (67) cal/g at—OK, respectively, which are about the

same order of magnitude as the III-V compounds.



CHAPTER V
SOLID-LIQUID EQUILIBRIUM STUDIES

In this chapter the results of studies on the systems cadmium-
tellurium, zinc-tellurium, and indium-selenium are presented and

discussed.

The System Cadmium-Tellurium

This system was first studied by Kobayashi (42) who
reported that the system contained one compound, CdTe, which was
congruently melting at N105OOC and the two eutectics between the
pure elements and CdTe which occur very close to the Cd and Te ends
of the diagram at 322° and 437OC, respectively. He was unable to
measure the liquidus curve for compositions wherein the mole percent
of cadmium was greater than 50% because of the high vapor pressure
and evaporation of his samples.

The discrepancies in the melting point of CdTe* and the unavail-
ability of liquidus data and vapor pressure data especially for high
percentages of cadmium in solution prompted several reinvestigations
of this phase diagram (54, 57, 58, 63). Our work (57, 58) has not been
formally published in detail as yet because it was desired to determine
the heat of fusion of CdTe so as to be able to make thermodynamic
calculations from the liquidus data. Estimates of the heat of fusion by
two different methods, calculation from the liquidus data and calcula-
tion from the entropies of fusion of the elements (47) did not agree with
one another and necessitated an experimental determination.

Our experimental data* *for the cadmium-tellurium phase diagram

are presented in Table 5.1 and are plotted in Figure 5.1 together with

ate
A

Cf. Chapter IV.
" See Appendix I for discussion of the interpretation of the DTA curves.

63
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Table 5.1

Experimental Data for the Cd-Te Phase Diagram

Maximum
Sample Composition Fusion Eutectic Liquidus
Number Atom % Te Temperature Temperature Temperature
°c °c °c
-——- 0 -——- - 321
376 1.0 980 (333) 730
380 3.0 970 (340) 808
379 10.0 975 322 895
384 25.0 1050 o323 963
385 40.0 1100 325 1035
402 45.0 1150 325 1067
104-F 50.0 1200 -—- 1091
520 50.0 1200 - 1091
389 54.0 1100 450 1075
383 62.5 1100 450 1000
375 75.0 1000 450 885
382 85.0 900 449 755
381 95.0 750 450 602
388 98.2 850 448 480
396 98.7 800 450 480
92-F 100 -——— - 449

151-F 100 --—- - 449
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the data of other workers. In the regions of high cadmium and high
tellurium concentrations, the agreement is quite good, but in the
neighborhood of 40-50% Te our liquidus temperatures are substantially
higher than those reported by de Nobel, (63) and in the neighborhood
of 60-70%' Te they are substantially higher than the results of Lorenz
(54). The cadmium-rich eutectic temperature was 324 * ZOC and the
eutectic composition was practically pure cadmium. The tellurium-rich
eutectic was found to be 449 t ZOC and 98.7 atom percent tellurium.
Knowing the liquidus curves and the thermodynamic properties
of the constituents it is possible to make some thermodynamic calcula-
tions in order to gain some insight into the nature of the system. For
example, Wagner (88) has derived equations for computing the excess
free energy of a liquid phase from the liquidus of a compound. If a term
associated with the excess molar entropy of the liquid is neglected, his

Equation 61 for the case of an equimolar compound becomes

NB 1
1
1_,E = - 5 NA Il (NB) dN_ + NB Il (NB)dNB
o) NB
5.1
where NA = atom fraction of element A in solution
NB =1- NA = atom fraction of B
F~ = excess molor free energy of the solution, kcal/mean gram
atom
and the integrand Il (NB) is defined by
AS [T -¢ (N)T]
L(N) = i 1 B 5.2
1B N - L2
B 2

where A Sf is the entropy of fusion of the compound in cal/mean gram
] o)
atom - OK, Tf the melting point of the compound in K, T the liquidus

temperature and ¢ (NB) is defined as:



In ——/——— 5.3

where R is the gas constant.
Equation 5.3 also represents the liquidus curve of a hypothetical ideal

liquid, that is

T4 (NB) = Tf/¢> (NB) 5.4

where the standard state is chosen as the pure, completely dissociated,
equimolar solution.

The function Il(NB) is plotted in Figure 5.2 wherein it is apparent
that the excess free energy exhibits a steep minimum at the compound CdTe.
This would infer that CdTe molecules are very stable in solution, which is
remarkable in view of the fact that the compound dissociates completely in
the gas phase (44, 63) as do the rest of the II-VI compounds (44, 92, 93).
Further support to this argument is given by the fact that the two liquidus
lines intersect at 50% Te rather than joining in a single smooth curve. This
behavior is also characteristic of a compaund which exists as such in
solution,*

Integration of Equation 5.1 for NB = % gives the excess free
energy of liquid CdTe at the melting point to be -16.0 kcal/g mol
which, when used with Wagner's Equation 34, results in a value for
the standard free energy of formation of the compound from the pure solid
elements at the melting point of CdTe of -24.4 kcal/g mole. Using the
thermodynamic properties listed in the Handbook of Chemistry and Physics
(30) a corresponding figure of - 26.5 kcal/g mole is obtained. The agree-
ment is good in view of the high probable error associated with drawing
the curve Il(NB) in the neighborhood of the compound.

It should be noted that a value of 11.2 kcal/g mol for the heat of
fusion of CdTe has been used in these calculations. Although this

figure is slightly lower than the value recommended in the preceding

chapter (12.0 £ 1.9 kcal/g mol), it is within the probable error cited,

" See Lewis and Randall (52) p. 220: for a more quantitative discussion
of the effect of interactions in solution on the curvature of the liquidus,
see also Bonnier and Desre (10).
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and the use of the slightly higher value:would not substantively alter the
conclusions.

Bonnier and Desre (11) have derived an expression for computing
the heat of mixing at infinite dilution from liquidus data in binary
systems containing a compound and a eutectic close to the pure element.
Their expression for the case where the compound is equimolar is:

din N. N

N _ o _ _ _p_—__AB
A HA(B) = A HAB Lf, B Lfg A R a0/T) 5.5
@ B
where
A HA(B) = partial molar enthalpy of mixing of 1 mole of A and
an extremely large quantity of B.
A HZB = standard enthalpy of formation of compound AB
Lf A = latent heat of fusion of A
Lf B = latent heat of fusion of B

and the last term represents the gas constant times the slope of the
liquidus curve in the region of dilute A when plotted as 1In NA NB
versus reciprocal temperature. Such a plot for the cadmium-tellurium
system appears in Figure 5.3 where the straight, dashed line represents
the liquidus of a hypothetical ideal solution based on Equation 5.4. A

o
CdTe = = 24,52 kcal/g mol, Lf’ cqd =

= 4.18 kcal/g atom (47), yields

brief calculation using A H

1.53 kcal/g atom and Lf, Te

?DHCd(Te) = -19.0 kcal/g atom and iOHTe(Cd)

= +4.4 kcal/g atom
These figures indicate that dissolution of Te in Cd requires the expendi-
ture of energy whereas the dissolution of Cd in Te releases energy, or in
other words the liquidus for the system CdTe-Te exhibits negative
deviations from Raoult's law while the system Cd-CdTe exhibits positive
deviations.

Finally it might be noted that correlation of the liquidus data

by means of the sub-regular solution theory of Thurmond and Kowalchik



+
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Figure 5. 3.

The Liquidus Curves tor the Cadmium-Tellurium System

Plotted as log 4 N . N, versus Reciprocal Reduced
Cd Te

Temperature.

O Data of Kobayashi; ¢ de Nobel; A Lorenz;

O This Work. For Open Symbols N, < 1/2 and for

Closed Symbols NTe> 1/2. The DasTr(]eed Line Represents
Equation 5. 4.
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(83) was tried. These authors found that the solubility of many elements in
silicon and germanium could be explained by such a correlation. This
method requires that a plot of the quantity RT ln y/(1 - x)2 be a

linear function of T, where x is the mole fraction of the compound in

solution and

L
f
— )

1 _ 1
T, T

Iny = -lnx +

These equations are based on a standard state of pure undissociated,
supercooled liquid compound, so that the activity coefficient v
represents the deviation of the liquidus from that given by Van't Hoff's

equation

|—

f

)
d

In x = iJi"(
R

1
T,
i

H

rather than from Equation 5.4. When these plots were prepared for the

systems Cd-CdTe and CdTe-Te, however, they were highly non-linear.

The System Zinc-Tellurium

The only previous study of this system is due to Kobayashi
(43) who found that one congruently melting compound, ZnTe, exists as
do two eutectics whose compositions are very close to the pure elements.
His measurements were performed in an open system, however, so that
evaporation of the alloys at high temperatures was a problem, and
therefore he was unable to measure liquidus temperatures of mixtures
containing less than 50 atom percent tellurium.

In this work eighteen DTA runs were performed on alloys contain-
ing from 3.0 to 100 atom percent tellurium, and the results are presented
in Table 5.2 and Figure 5.4. On the high-tellurium side of the phase
diagram, the liquidus temperatures were found to occur from 300—7000
higher than the values found by Kobayashi. They are higher partly
because our measurements were taken at constant volume while his were

taken at constant pressure, but more probably because our elements



Sample
Number

407
447
461
475
466
476
125
432
531
477
436
457
478
404
484
401
92-F
151-F
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Table 5.2

Experimental Data for the Zn-Te Phase Diagram

Maximum
Composition Fusion Eutectic
Atom % Te Temperature Temperature
°c o
0 —— _—
3.0 1175-1200 424
10.0 1130 423
20.0 13‘10 420
30.0 1280 420
40.0 1300 421
45.0 1310 420
50.0 i -—-
50.0 1350 -—-
50.0 1356 -——
55.0 1310 449
60.0 1250 445
70.0 1250 448
78.0 1100 449
85.0 1100 446
92.5 980 449
95.0 1025 448
100 -——- ---
100 -——— ---

Liquidus
Temperature

°c

419.5
1190 £ 10
1208 + 5
1215+ 5
1223 £ 5
1250 + 5
1270 £ 5
1290 + 3
1290 + 3
1290 + 2
1260 + 5
1205 + 5
1100 + 15
996 + 5
915 £ 5
790 + 15
740 + 20
449 + 2
449 + 2



73

00l

IOM STYL O -‘1ysedeqoy jo eieq ©
‘WalsAg WNIIN[[SI-OUlZ 9y} J0] weiberq aseyd ayl ‘¥ °g 2inb1g

ANIYNTI31 NOILOVYHd WOLV

060 080 040 090 090

ov0

00 020 oro 0o

hl

_ _ il

—00¢

0S8t 00t

o F 6V

oC T LbV

<o
O

<

o2 ¥ 062!

_

o ¥ 22V

000l

002clI

Jo JUNLVH3IdN3L



74

were much purer and less likely to become contaminated by oxidation.

The tellurium-rich eutectic was observed to occur at 447 * 2°c
and greater than 99 atom percent Te. The decomposition of the liquid
phase at the solidus was observed to occur by peritectic reaction as
the arrest temperatures were 422 + ZOC - higher than the melting point
of pure zinc (419. BOC) - with the composition at the peritectic point
being indistinguishable from pure zinc.

The liquidus curve for alloys containing less than 50 atom percent
Te was very flat, but it is felt that the possibility of the presence of a
monotectic is remote, since no range of constant arrest temperatures
was observed. The liquidus temperature also increases continuously
from the pure Zn to the ZnTe compound. It should be pointed out that the
exact composition of the samples containing 30-45% Te was somewhat
di fferent from the nominal composition reported here, because of the
difficulty in recovering a substantial portion of the sample which stuck
to the quartz tube on fusion. This error is tolerable, however, because
of the relative flatness of the liquidus curve in this region.

One additional point should be mentioned. It may be noted that
the liquidus curve shows a point of inflection. That this is the case is
supported by the fact that the DTA curves for the 40 and 45% Te samples
show double peaks in the neighborhood of the liquidus. The lever rule
demands that, at equilibrium, in a two phase region, the two phases
are present in a given mass ratio which is determined in part by the
position of the liquidus curve. The shape of the DTA curve will depend
on how this mass ratio varies with time. When the liquidus curve is
very flat and contains a point of inflection, as is the case here, the
ratio of solid/liquid will change as follows. On heating a sample whose
composition lies to the right of the inflection point but to the left of ZnTe,
the above ratio will be approximately constant from 4230 to about 12000;
as the bend of the liqudus curve is passed, this ratio will decrease very
rapidly; as the inflection point is passed the decrease will become less

rapid; finally, on approaching the liquidus the decrease will become
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more and more rapid until no more solidr is left at the liquidus point.

Granted that this analysis is> mérely a qualitative one as other
factors also influence the shape of the DTA curve (e.g., the rate of
energy input to the sample, and the variation of the heat of dissolution
with temperature and composition), it is nonetheless evident that such
a double peak should not be entirely unexpected. In this case the
above explanation appears to be the most plausible one.

As regards the thermodynamics of Zn-Te solutions, it may be
stated that, as with Cd-Te solutions, the excess free energy of the
solution exhibits a sharp minimum at the 50% composition which fact
indicates that ZnTe molecules are stable in the liquid phase. The heats

of mixing at infinite dilution may also be computed as described in

the previous section (See Figure 5.5). We find %DHZn(Te) =-21.7
kcal/g atomand AH =+ 300. kcal/g atom. It is evident that

0 Te(Zn)
the positive deviation from ideality in the Zn-ZnTe system is exceedingly

strong indeed, which fact is also indicated by the extreme flatness of
the liquidus in this region. Finally, it may be noted that as with the
previous systems, the liquidus temperature data for the systems Zn-ZnTe
and ZnTe-Te could not be explained by sub-regular solution theory based
on the non-dissociative solubility of ZnTe in atomic zinc and atomic or

diatomic tellurium.

The Indium-Selenium Phase Diagram

The only data reported on this system as yet have been a few
selected studies on isolated compositions (31, 61, 74, 94) within the
system, and no liquidus temperatures, other than the melting points of
InSe, 660 % 10° and InZSe3, 890 £ 10°C (31) have been reported. In this
work sixteen thermograms have been obtained on compositions from 10,0
to 90.0 atom percent selenium. The DTA results are summarized in T_able.
5.3, and the proposed phase diagram is depicted in Figure 5.6. Five
compounds are believed to exist -- two which melt congruently, and

three which decompose pertectically. The congruently melting compounds,
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Table 5.3

Experimental Data for the In-Se Phase Diagram

Maximum
Sample Atom % Fusion Liquidus
Number Se Temperature Transition Temperature Temperature
oC ' OC oC
--- 0 -—-- ——-- 157
493 10.0 950 158, 521 521
494 20.0 950 157, 518 518
495 30.0 950 157, 520 520
496 40.0 950 159, 520, 554 (560)
844 45,0 950 521, 553 598
497 50.0 950 Melts gradually, 613
beginning at 605°
509 54.0 1000 663 686
510 56.0 950 659 765
846 58.0 1000 (195), 660 850
676 60.0 950 201, 745 885
294 62.0 1000 201, 220, 640, 744 865
533 64. 0 1000 220, 742 -
275 66.0 975 201, 270, 650, 744, 795
(760)
499 70.0 900 214-220, 745, 759 759
500 80.0 625 201, 220, 650, 745, 759 759
501 90.0 625 220, 658, 743 822
-—-- 100 --- -—— 217

All samples were water quenched.
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InSe (M. P. = 614OC) and InZSe3 (88500), both appear to be deficient inr
selenium. The first peritectic compound contains about 46 atom percent
selenium and decomposes at 553°C. The second contains about 53% Se
and decomposes at 66000, the previously reported melting point of

InSe. The location of the third compound which decomposes at 74500

is uncertain, but it probably contains about 80% Se. There appears to be
crystalline transformations associated with InZSe at ZOIOC, and InSe4

(2), at 650°C.

3,

The indium-rich eutectic (?) occurs at 158°C and is thought to
have a composition of nearly pure indium. The selenium~-rich liquid
decomposes by a peritectic reaction at ZZOOC (vs 2.17o for the melting
point of pure Se) and contains nearly pure selenium. The anomalous
variations in the low temperature transition* for alloys containing
60-100% Se is ascribed to non-equilibrium, local variations in the
composition of the ingots, since they were prepared by quenching in
water from the two-liquid region, and were not annealed prior to DTA.

Two monotectic (S + Ll~> Ll + L2 on heating) transformations
were observed. In the first, two liquid phases of nominally 5% and
35% selenium form at 52000, and in the second, two liquid phases of
nominally 68% and 95% Se form at 760°C.

Clearly, more work is indicated in order to completely characterize
the nature of this system as there are many uncertainties which still
must be resolved. Yet, with relatively few thermograms it has been

possible to formulate a fairly complete, qualitative picture of the phase

diagram.

Discussion
In attempting to correlate the liquidus data for the Cd-Te and
Zn-Te systems it has been observed that sub-regular solution theory

based on the non-dissociative dissolution of the compound in either

of,

* See Table 5. 3.
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element does not suffice. Furthermore, regular solution theory based
on the complete dissociation of the compound is also insufficient, for

o,

it requires that the integrand I, be constant, " and this is obviously

untrue. The phase diagrams arle, however, of a simple type which
would infer that their theoretical explanation would also be reasonably
uncomplicated. In this regard the following scheme was tried.

Consider the following model: the compound AB dissolves as
the molecular species in element B which exists in the form of a cluster
of n atoms on the average, Bn , thereby forming an ideal solution of
the Van't Hoff type.

AS Tf
1 -? 5.6

In x =

where A Sf is the entropy of fusion of the compound, Tf

point, R is the gas constant, and x the mole fraction of AB in a

is its melting

solution containing AB and Bn. Equation 5.6 may also be written as
follows:
AS T
f

_f
R L -7

X = exp 5.7

Now x may also be found by material balance as follows. Let

NB denote the atom fraction of B in solution, whence
n(l - NB)

x = n—l—(n—Z)NB 5.8

Solving Equation 5.8 for n, Equation 5.9 is obtained:

n = X ’ZNB_I 5.9
x -1 l—NB

Thus for each liquidus point, X may be found from Equation 5.7 and n

from Equation 5. 9.

o,

" See Wagner (88); also Equation 5.1 ff. and Figure 5. 2.
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Applying this calculation to the liquidus curves of the systems

Cd-Te and Zn-Te using A S, = 8.8 and 10.0 cal/g mol OK for CdTe and

f
ZnTe respectively, the results which appear in Figure 5.7 are readily

obtained. The indicated correlations may also be stated as follows:

System
CdTe-Te n = constant = 1.53
ZnTe-Te n = constant = 1.35
Cd-CdTe n = 1.62 exp 8.38[ (Tf/T) -1]
Zn-ZnTe  n = 0.30 exp 75. [ (T,/T) - 1]

Hence this model does provide a simple, two parameter, correlation

for the liquidus curves of these two systems. In fact, for the systems
CdTe-Te and ZnTe-Te only one paraméter is needed, for n is constant.
Admittedly the theoretical basis for these results is shaky, but on the
other hand the idea of atoms clustering is comprehensible. Perhaps the
theory presented is a simplification of a more general hypothesis. It
cannot be said at this time. The results are only presented here as being

interesting.
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CHAPTER VI
CONCLUSION

In this final chapter, the results of the work are summarized and

evaluated, and recommendations are made for possible future work.

Summary

In Chapter I several methods for determining the thermal conductance
for the transfer of heat to the DTA sample were discussed. Of these, two--
direct calculation from the geometry and physical properties of the systerri
and calculation from the time constant plus the thermal capacity-- appeared
to be well suited to our system, but the first method was imperiled be-
cause direct observation of the dimensions of the gas film yielded im-
precise values for its thickness. Subsequently, two indirect methods for
calculating the thickness were proposed, viz. comparison of the theorétical
time constant for the exponential decay of the DTA curve and comparison
of the areas under the DTA Curve when two gases of widely different
thermal conductivity filled the system.

Next, in Chapter II the problems of heat conduction in the system
prior to melting, during melting, and immediately following the completion
of melting were considered. From these studies two significant facts
emerged. The first important result was that the steady state formulae
for the conductances could indeed be used to predict the thermal conduc-
tance of the system. The second result of significance was the extraction
of expressions which would allow a theoretical computation of the time
constant for exponential decay of the DTA curve, and thereby afford a
method for evaluating the thickness of the gas film.

In Chapter III the methods proposed were further developed and
applied to data on standards whose latent heats of fusion were well
known. The agreement between the calculated heats of fusion and those
taken from the literature was good, but it was learned that a calibration

of the apparatus was necessary in order to apply the second method --

83
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calculation of the thermal conductance from the observed time constant
plus the thermal capacity.

The two methods via computer programs DTA-19 and DTA-17 were
applied to the measurement of latent heats of fusion and transition of
twenty compounds in Chapter IV. The entropies of fusion plus transition
were found to vary from 2.2 cal/g atom °K for Ag21n88e3 to 9.6 cal/g
atom OK for GaAs. It was further found that the compounds could be
grouped. into broad categories on the basis of their entropies of fusion
and that similar compounds could be placed in the same category.

In Chapter V the phase diagrams for the systems Cd-Te, Zn-Te,
and In-Se were presented and discussed, and the measured values of
the heats of fusion of cadmium telluride and zinc telluride were used in
performing thermodynamic calculations with the liquidus data for these
systems. It was concluded that cadmium telluride and zinc telluride
exist as the molecular species in solution although some dissociation
is probable. A speculative model which correlates the liquidus data of
these two systems was also proposed. This model was based on the
formation of an ideal solution of the Van't Hoff type between undissoci-
ated compound AB and clusters of atoms of type B, Brl , Where n
represents the average number of B atoms in a cluster and is a function

of temperature.

Advantages and Disadvantages of the Methods
Used to Measure Latent Heats

It is clear that a principal advantage of both methods for measuring
latent heats is that they permit the measurement over a very wide tempera-
ture range, from 3000 to 156OOK. Secondly, the large thermal resistances
of the gas film and the silica sample tube minimize uncertainties due to
the properties of the sample which may not be well known.

As to the two methods proposed, the first, direct calculation of
the thermal conductance from the geometry and thermal properties of

the system, is clearly preferred because no calibration of the apparatus
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is required. It does require an estimate of the thermal conductivity of
the sample, however, and the estimate must be reasonably precise if the
thermal conductivity of the sample is low. With regard to experimental
precision, both methods leave a great deal to be desired since the

probable error in the measured heats if 15% or more.

Recommendaticns

Three avenues for further work along these lines are open. In
the first place, efforts would have to be made to determine the major
sources of variability which contribute to the probable error associated
with the latent heats measured. This would have to be accomplished ]5y
a process of elimination and would entail considerable effort.

Secondly, the method for evaluating the gas film dimensions by
alternating the gas atmospheres in the system should be examined more
closely. At the same time the contribution of thermal radiation to the
heat transfer mechanism could be studied. In order to carry out these
studies the DTA furnace would have to be modified so that it could be
evacuated and backfilled with the desired gas. This appears to be the
only way in which one can be sure that one gas is completely replaced
by another.

Finally, the methods could be adapted to the study of other types
of heat effects such as heats of reaction and heats of solution. These
areas provide a fertile field for future research activity. It is felt that
DTA will perform a useful role in the field of calorimetry in the future
because it is rapid, the measurements are performed with ease, and the
equipment required is simple, easily constructed, and relatively inex-

pensive.



APPENDIX 1
DTA EQUIPMENT AND PROCEDURE

Two different sample arrangements were used: A) Crushed samples
were sealed under vacuum below 0.1 micron in specially cleaned, clear
fused silica tubes which were 1l mm in inside diameter by about 10 cm
long. The sample tubes contained concentric thermocouple wells 6 mm
in outside diameter by about 2.5 cm deep. The tubes were placed in
holes drilled in the nickel holder, with a concentric graphite spacer
being inserted between the sample tube and the nickel block. The
weight of each sample was adjusted in accordance with its density so
as to maintain about the same sample volume from one run to the next, a
volume of about three cubic centimeters being chosen as the norm. This
volume corresponds to a sample weight of from 15 to 35 grams. Chromel-P
versus alumel thermocouples were used. B) The second sample arrange-
ment utilized is depicted in Figure A-I-1. In this arrangement 10 mm
(rather than 11 mm) tubes were used in which the thermocouple well was
6 cm (rather than 2.5 cm) deep. The graphite spacer was eliminated; and
the nickel block was oxidized by heating in air at llOOoC. Platinum-
platinum + 10% rhodium thermocouples were used. Sample arrangement A
corresponds to the series B DTA runs, whereas sample arrangement B
corresponds to the series C DTA runs.

The DTA furnace was designed around a 3" diameter, 2.5 kva Kanthal
furnace winding which was installed in a vertical position, surrounded
with bubble alumina insulation, a_nd contained inside a 12" diameter
stainless steel shell. Copper cooling coils were soft-soldered to the
shell in order to control the cooling rate at lower temperatures. With
this arrangement it is possible to maintain a heating rate of 2. SOC/min.
from room temperature to llOOoC and a cooling rate of 2. SOC/min. from
1300-500°C. Above 1100°C and below 500°C the maximum heating and
cooling rates, respectively are limited by the time constant of the
system, the latter being about 200 min. at room temperature and decreas-

ing to about 120 min. at 130000.
86
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A 2-1/2" diameter by 21" long alumina (McDanel AV-30) tube
which is sealed at the top is mounted inside the winding. The sample
holder consists of a nickel block, 2" in diameter by 6" long, which
contained two or three symmetrically located sample wells. The
nickel block is supported inside the furnace by an alumina tube
(McDanel AV-30) which is 2" in diameter by 12" long and flanged at
the bottom to accommodate an arrangement for holding the assembly
in the furnace. This tube also serves as a holder for the thermo-
couples and contains a port for introducing the helium or nitrogen
purge gases. It too is filled with bubble alumina for insulation.

A block diagram showing the salient features of the temperature
control and measurement circuit is shown in Figure A-I-2. All the
operations in the system are actuated by a pulse generator. A short
110 volt, 60 cycle, AC pulse, about 1/4 to 1/3 second in duration is
generated each 20 seconds by the microswitch which rides against a
cam on a clock motor, which makes one revolution every 20 seconds.

The pulses are used to control a motor-driven autotransformer
which feeds power to the Kanthal furnace so as to generate a substan-
tially linear heating or cooling rate. The pulse length is adjusted
so that each pulse can drive the autotransformer through abcut 1/200
of its full range. (It requires 64 seconds for the motor to drive the
autotransformer motor, the heating rate might be too rapid, and hence
it was necessary to devise a Pulse Selector Circuit. With such a cir-
cuit it is possible to vary the time between the successive pulses which
drive the autotransformer and thus to establish a heating rate of from
loC/min to 6OC/mi'n. The pulse selector circuit uses a Guardian step-
ping relay, Model MER-115, which comprises a 21-point stepping cir-
cuit and a reset circuit. As the stepping coil is triggered by the pulse
generator the contact arm advances along the various contacts from
number 1 to number 21. Whenever the reset coil is triggered, the
contact arm is returned by a detent spring to contact number 1. The

short AC pulses are used not only to trigger the stepping coil but are
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also fed through the contacts of the stepping switch. Each of the con-
tacts on the stepping switch from contact number 2 to contact number
21 is connected on one terminal (A) on each of the 20 outlets on the
panel. Hence, by connecting the autotransformer motor to the appro-
priate outlet the motor is activated only when the stepping switch has
advanced sufficiently to feed the pulse to the outlet, and the time
interval between each selected pulse can be varied in 20-second

steps from 60 seconds to 420 seconds. A control switch is mounted

in parallel with a pulsing switch so that the initial or final position

of the autotransformer can be set as desired.

The second terminal (B) on each outlet is connected to the
subsequent contact on the stepping switch, and leads to the reset
coil. The next pulse then triggers the reset coil and returns the
contact arm to contact number 1 for another cycle. For example, in
order to select a pulse once every 60 seconds, the plug would be
inserted into the second outlet. As the contact arm advances to
contact number 3, the pulse is fed through terminal (A) of outlet
number 2 and activates the autotransformer motor. The next pulse
advances the contact arm to contact number 4 which feeds the pulse
to terminal (B) of the second outlet. At this point the reset coil is
triggered and the contact arm is returned to contact number 1 to
start the cycle over again. An ordinary power control relay was
required in the circuit as shown in order to open the stepping circuit
for the duration of the resetting pulse, in order to allow the stepping
contact to return all the way to contact number 1.

The measuring and recording circuits use a Leeds and Northrup
Model G Speedomax strip chart recorder to read the differential emf.
The differential thermocouple is connected through a Leeds and North-
rup DC amplifier to the x~-axis of the recorder and the differential emf
was shifted to read zero at mid-scale, by providing a 0-10 mv auxi-
liary variable emf in series with the output from the DC amplifier.

The thermocouple used to measure the sample temperature (with
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respect to the reference junction temperature) was monitored by means
of a portable precision potentiometer.

By using a 10 mv x 10 mv x-y recorder (not shown) a plot of
differential emf versus sample temperature can be obtained directly,
by introducing the sample thermocouple directly to the y-axis of the
x-y recorder. The portable potentiometer is ret ained in the circuit.
At low temperatures corresponding to less than 10 mv output from
the sample thermocouple, the potentiometer output is set at zero.
Above 10 mv output, the x-y recorder was reset onto the next 10"
of chart, and the first 10 mv of thermocouple emf is balanced out
with the auxiliary precision potentiometer. In this way the record
of sample thermocouple emf is plotted on a scale of 1.0 mv per inch,
which permits good separation of the transitions and careful indica-
tion of the transitions points, using either chromel-alumel or platinum-
platinum rhodium thermocouples. In studying phase equilibria the
x-y recorder was found to be considerably more convenient and records
the data in a form which permits ready interpretation.

The following procedure was carried out for each heat of
fusion run. First, both samples were melted so that each would
present substantially the same effective heat transfer area. Then
each sample in turn was frozen and re-melted with a nitrogen purge
atmosphere in the DTA furnace and the procedure was repeated with
a helium purge atmosphere in place of nitrogen. In each case the
melting point and the heating rate were noted. The differential emf
versus time curves were then graphically integrated so as to obtain
the area under the curve. Upon removal of the samples from the DTA
furnace the height of the sample material in each tube was noted.
During each run, the furnace chamber was purged with an inert gas,
the flow rate being maintained at about 2 cc/sec (at STP)..

The liquidus temperatures of the binary alloys were estimated
from both the heating and cooling curves. In the former case the
temperature at which the last deflection returned to baseline was

noted, and in the latter, the first deflection on cooling was used.
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In most cases these temperatures agreed with one another to within less
than SOC. Difficulty in establishing the liquidus temperature was
encountered in two instances: 1) for very high concentrations of
tellurium, nucleation of the solid phase on cooling was sometimes
suppressed to below the eutectic temperature; and 2) in regions where
the liquidus curve was very steep, nucleation of the solid phase at
the liquidus produced only a small deflection which sometimes could
not be detected precisely. The latter behavior is a consequence of
the lever rule, since in such a region the amount of solid which
nucleates at the liquidus will be very small and thus the heat evolved

will also be very small.



APPENDIX 1I
DYNAMICS OF THE DTA FURNACE

Determination of the Time Constant

The dynamics of the furnace can be determined by placing a
thermocouple into the thermocouple well of a sample which is con-
tained in the nickel block and establishing a constant temperature
in the furnace. When the power input to the furnace is changed
abruptly to a new constant value, it is assumed that a new source
temperature is established instantaneously and the sample thermo-
couple temperature is measured as a function of time.

The differential equation describing a single time constant

system which is absorbing heat by both conduction and radiation is

VE CV dT/dt = UA(Too -T)+eco A(Too4 - T4) (A-2.1)
where
= volume of the system, cm3
e = density, gm/cm3
CV = specific heat, cal/gmoC
U = heat transfer coefficient c:al/cm2 °K min
A = area of heat transfer, cm2
€ = emissivity of receiver
o = Stefan-Boltzmann constant
TOD = heater (source) temperature
T = thermocouple temperature.

Over small temperature ranges the radiation term can be factored and
an average temperature defined such that

T 4—T4=T3(T -7 (A-2.2)
QO m QO

1 3 2 2, . 31/3,,1
whereTm—l..59 (TOO +TOO T+T00T + T7) 2(

T + 7).
(e 0]

Substitution and rearrangement of the differential equation gives
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th- + T = TCO (A-2.3)

where K = a/(Tm3 + b) = effective time constant of the system. This

has the solution

= Z=1-expt/K (A-2.4)
@ o)

Therefore plots of log (1 - Z) vs. t should give a straight line of

slope -1/K. 1If there is an initial lag, then this must be subtracted

from the time. Alternately the point where 63. 2% of the change is

complete also can be used as a time constant. Actually all three

methods were used in this work. By carrying out several step function

experiments over the temperature range, K can be evaluated as a

function of Tm. In the furnace described, different results were

obtained from heating and cooling experiments. For heating

3
K, = 667/[(Tm/1000) +3.60 | (A-2.5)

and for cooling
K_ = 667/ (T_/1000)° + 2.94 ] (A-2. 6)

When steady state operating conditions were established for each
setting of the autotransformer, then the furnace temperature was found

as a function of autotransformer setting. This relationship is
T =20+ 0.8 (g (A-2.7)

where

Y = autotransformer position, % of full scale.

Thésé results now can be used to determine the operating condi-

tions which are required for the DTA runs.

Operating Conditions and Procedures

In DTA measurements it is usually desirable to maintain a

uniform heating or cooling rate, m. That is
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Yo "]
T[h] T, i( )(t-t) ” (t-tb) (A-2.8)
c [ }3
where
dT/dt = m = constant, oC’a/min
tb = time at beginning of DTA run, min
Tb = temperature at beginning of DTA run, OC.

The upper sign (+) is chosen for heating and the lower value (-)
for cooling. When the expressions for Too and K are combined,

then the final expression is

T[21=Tbim(t—tb)= (A-2.9)
i
20+0.8Y5/3 F m 667 3|
3. 60 566+T|'h1 +0. 8Y f
294 * 2000 j

This equation is unique for the particular furnace and sample arrange-
ment, and must be solved by trial and error. For heating and cooling
rates of 2. SOC/min, the solutions are plotted in Figure A-II-1 along
with the correlation for TOO as a function of Y.

It is apparent then that for heating, the original setting of
the autotransformer must be almost at midscale, but the rate of motion
of the autotransformer (dY/dt) is less than that required to maintain
Too . The slope of the Y vs. t curve then defines the rate of motion
for the autotransformer, which must be established by the Pulse

selector circuit.

Discussion

The time constant and equilibrium temperature correlations are
functions of the furnace and sample designs, and must be determined
experimentally for any particular system. Although similar sample

geometries should be used for any consistent series of runs, there is
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no need to retain a particular sample holder if it is found to be unsatis-
factory for any reason. A new calibration can be obtained, and in
general will be found not to vary significantly for a particular furnace.
Although the apparatus requires careful attention at each
change point on the y-scale, it represents a good compromise between
reliability, accuracy, cost and ease of operation. No temperature
controller or precision program circuit is required, and the only
expensive items in the system are the recorder, the DC amplifier, the
motor-driven autotransformer, and the precision potentiometer. The
rest of the system, being. build from small, standard components, is

relatively inexpensive.
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APPENDIX III
SAMPLE PREPARATION

Materials

The materials used in this work originated from three sources.
Samples of the III-V compounds, GaAs, GaSb, InAs, and InSb were
donated by Texas Instruments, Inc. These samples were either portions
of Czochralski grown single crystals, or portions of zone refined ingots.
One sample of GaSb was received in the form of a "button" formed by
direct fusion from the elements. Specimens of a number of compounds,
including AgZSe, AgZTe, PbTe, PbSe, and SnTe, were donated by Dr.
Alan J. Strauss of Lincoln Laboratories. Exact sample histories for
the preparation of the samples mentioned above are largely unavailable.
A qualitative measure of their purity, however, may be ascertained from
their respective melting points and their thermal behavior (sharp versus
gradual) during melting. The remainder of the samples were prepared in
our laboratory by direct fusion from the elements. Table A-III-1 contains
a summary of all of the elements, whether used as standards or used in
the preparation of compounds, together with their respective sources and
purities. And Table A-III-2 contains a list of all the DTA samples used
for the measurement of heats of transformation.

Specimens of Bi_ Te_, Bi Se_, CsSe, CdTe, In,Se., InTe, In Te

2773 T2y ’ S R A

PbSe, PbTe, SnTe, ZnTe, and AgZInSSe were prepared from the elements

13
in our laboratory. First, the elements were wherever possible etched
with nitric acid or aqua regia in order to remove any surface oxide, and
then weighed out to £0.25 mg (total weight of sample = 25 to 70 g) by
means of an analytical balance using standardized weights. In each

case the stoichiometric composition was assumed. Thus in the following,

: : ok
A = . N
Te Agz 00 l 00°* In Te I.Z.OOTe3.OO’ etc. . That is, the compounds

* Hodgkinson (32) has pointed out, however, that the maximum melting
point does not in general correspond to the stoichiometric composition.
This behavior is borne out experimentally. Thus, InTe In, Te Ag Se,

Bi_ Te,, Bi_Se Sb Te, and SnTe are really In 2In3

(2§ ig 2 3e (%9) Bi 48, 2! 50 8 T 40. éb 59.7°

33.44 40.06 9.935° ~'40. 02. ®59. 98’ 40. 40
59 60 &3? C%'S%\ 06 50, 94 ?85§°



TABLE "A-TII-1

ELEMENTS USED AS STANDARDS IN THE PREPARATION OF COMPOUNDS

Element Source Purity
Ag Cominco Products, Inc. 5N, deoxidized
Bi American Smelting and Refining Co. 5N
Cd American Smelting and Refining Co. 4N
Cu American Smelting and Refining Co. 5N
Ce Zone-levelled single crystal 2-4 ohm-cm.
In Indium Corp. of America 5N
Pb Cominco Products, Inc. High Purity
Sb Johnson, Matthey and Co., Ltd. High Purity
Se American Smelting and Refining Co. 5N
Sb Johnson, Matthey and Co., Ltd. High Purity
Sn Johnson, Matthey and Co., Ltd. High Purity
Te American Smelting and Refining Co. 5N
Zn American Smelting and Refining Co. 4N
5N = 99.999%
4N = 99.99%

99
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prepared here did not necessarily correspond precisely to the composition
at the maximum melting point. An exception was AgZInSSeB*, which was
purified by zone refining.

The elements were then placed in specially cleaned, clear,
fused silica tubes, subsequently evacuated to below 0.1 micron and
sealed. The encapsuled sample was next reacted by controlled heating
to well above the melting point or liquidus temperature. For most samples,
the heating and cooling cycles were accomplished in a digitally programmed
resistance furnace. The latter equipment has been described by Hozak,
Cook, and Mason (33). For cadmium and zinc telluride, however, it was
found more convenient to use a much more rapid reaction cycle than could
be achieved with the resistance furnace. For these compounds, the
encapsuled elements were placed in a graphite susceptor and heated by
radio frequency induction to a temperature about SO—IOOOC above the
melting point of the compound. The entire heating cycle could be con-
summated within 3-5 minutes, thus suppressing any reaction with or
wetting of the silica sample tube. The compound AgZInSSeB, the existence
of which has been reported by O'Kane ( 63), was prepared as follows.
70 grams of Ag, In, and Se, in the proper stoichiometric ratios, were
placed in a 10 mm 1. D. silica tube. The Ag was placed in the bottom of
the tube and the In and Se were cut into small pieces, mixed together and
placed on top of the Ag. After seal-off the overall sample length was about
30 cm. The sample was reacted by carefully heating it in a rotating,
rocking, resistance furnace. Extreme caution was taken as the tempera-
ture approached 24500, since the In and Se react violently with one
another at this point. o Following the exothermic reaction at 24500,

heating was continued until the sample was completely molten (MP. =

81400). The molten sample was then transferred to a preheated zone

* In this case the composition Ag, In_Se, is approximate, since the
exact influence of the zone refining process on the composition is as yet
undetermined.

%% This fact was confirmed by DTA experiments on a sampleoof 2In + 3Se.
Secondary reaction peaks were observed at 610" and 835 C.
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refiner and subjected to threec or more passes, using a zone length of

about 3.8 cm and a zone travel rate of about 1.9 cm/hr. Upon comple-
5

tion of zone refining, portions of high resistivity (> 10~ ohm-cm)

material were removed for further processing.

Preparation of Alloys

Alloys of Cd-Te and Zn-Te for the phase diagram determinations
were prepared in much the same manner as the intermetallic com-
pounds. In the case of Cd-Te alloys, the elements in the desired
ratio were weighed into fused silica tubes and sealed under vacuum
as described above. They were reacted by heating to temperatures well
above the liquidus in a rotating, rocking resistance furnace, and were
rapidly cooled or air-quenched to room temperature to obtain a homogen-
ecous sample. In many instances the samples wet the fused silica tube
and induced cracks and fractures in the containers during cooling. Only
samples which remained bright, shiny and unoxidized after fusion were
processed further.

In the case of the Zn-Te alloys, the R-F induction method described
above was found to be much more satisfactory. Reaction with and wetting
of the silica tube were completely suppressed. Although water-quenching
of some samples proved satisfactory, a few materials, notably 30-50 a/o
Te in Zn, were found to explode when rapidly plunged into cold water. As
a result, most of the samples were rapidly cooled in air by turning off the

power to the R-F unit.

Preparation of DTA Samples

Samples for the heat of transformation determinations were pro-
cessed as described in Appendix I. For the phase diagram studies, the
alloys were completely crushed and 15 grams of material were sealed
under vacuum below 0.1 micron, in clear, specially cleaned, fused silica
tubes which were 10 mm in I. D. and each of which contained a concentric

thermocouple well about 2.5 cm deep. Exceptions were samples containing
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more than 80 a/o Cd or Zn, in which case crushing was impossible. These
materials were recovered in the form of a solid ingot which was rebottled
in its entirety and rested on top of the thermocouple well until melting

was initiated.
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APPENDIX IV
PHYSICAL PROPERTIES AND THEIR ESTIMATION

In order to perform heat transfer calculations, values are needed
for the heat capacities, thermal conductivities and so forth of the
various components of the system. Furthermore, values are needed for
the latent heats of fusion of the "standards" so as to have a basis for
comparison of the results. For many of the components these properties
are well known, but for most of the intermetallic compounds they have
to be estimated. In this section, the values used will be summarized

and the references given. Methods of estimation will also be discussed

Heats of Fusion and Transformation

The heats of fusion for all of the standards, except Ge, were
taken from Kubaschewski and Evans (47). More recent values for Ge
have been reported by Greiner and Breidt (28) as well as by de Roche
(71). Among the intermetallic compounds, values are available only
for BiZTe3 (8), InSb (62, 73) and GaSb (73). Heats of transition have
been reported for InZSe3 (94) and AgZSe (47).
Two methods are available for the estimation of heats of fusion.
The first is based on a correlation between the entropy of fusion and
the melting temperature by Turkdogan and Pearson (84). The data
scatter considerably so that the probable error is high, perhaps t 25%
or more, but the correlation does point up a trend of increasing entropy
of fusion with increasing melting temperature. Certain classes of
compounds, such as those of zincblende structure, however, do not
fit into this correlation. The second method, which is due to Kubaschewski
and Evans (47), consists in additively combining the entropies of fusion
of the elements to obtain the entropy of fusion of the compound. For
disordered alloys, this method provides an excellent estimate. For ordered
alloys and compounds it has been found that a better estimate is obtained

if a factor

110
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¢ = -R[N.InN +N21nN

1 1 2']

is added to the sum of entropies of fusion of the elements. Here Nl and

N2 re the respective atom fractions of each element in a binary compound,
R is the gas constant (1.987 cal/g atom OK), and the units of ¢ are
cal/mean gram atom oK. If transitions occur below the melting point
of the compound the above calculation would give an estimate of the

sum of the entropies of transition and the entropy of fusion.

Densities

The densities are perhaps the best known of all the physical
properties needed. The densities of nearly all of the materials of interest
here are given in the standard handbook references (27, 30, 35, 48, 77).
The density of ¢ and B - InZTe3 at room temperature was measured
by Zaslavskii and Sergeyeva (95), and those of the III-V compounds at
high temperature were reported by Joffe and Regel (37). Although the
values at high temperature are desired, corresponding measurements at
room temperature usually provide a sufficiently precise estimate. If the
density is unknown, it can be estimated from the crystal structure.

The density of silica is practically independent of temperature
from 3000K to 16000K and has a value of 2.20 grams per cubic centimeter.

For the purge gases, the perfect gas law provides a good estimate:

P(g/cm3) = 0.0122 M/T (°Kx)

where M is the molecular weight of the gas and the pressure is taken

to be one atmosphere.

Heat Capacities

The specific heat of silica glass (77) in cal/g %k is given as

follows:
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C . s _ Iy _ L
p,810, = 0.223 + 0.0613 (1000) 0.00575 (1000)

A summary of the specific heats of a number of elements and compounds

at their respective melting points appears in Table A-TV-1. Kubaschewski
and Evans (47) have pointed out that the specific heat of many compounds

is around 7.25 cal/mean gram atom OK at the melting point. The data
reproduced here is in general agreement with this figure, so it was used

to predict specific heat when they were unknown. The specific heats of
some compounds at the transition temperature are reproduced in Table A-TV-2.
These figures were used as a guide in estimating heat capacities of similar

materials at the transition temperature.

Thermal Conductivity

The thermal conductivity of fused silica is a nearly linear function
of temperature and may be represented by the following equation (27):
k. . (cal/mincm %K) = 0.155+0.190 (——) T > 300°K
SiO2 1000
The thermal conductivities of nitrogen (22) and helium (22, 90) are well

approximated by the relations:

. O _ T _T 2
kN2 (cal/min cm K) = 0.00060 + 0.01085 (1000) 0.00180 (IOOO)
T > 300°K
k (cal/min cm oK) = 0.01163 + 0.03625 (—T—‘) - 0.00278 (—FI‘-52
He ' ’ 1000 ’ 1000

T > 300°K
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Table A-IV-1

Specific Heats of Elements and Compounds at the Melting Point

S 1
T c c
f b _b
Material OC cal/m.g.a. - oC Reference

Ag 961 7.63 7.3 (77)

Bi 271 7.43 7.29 (77)

Cu 1083 7.31 7.5 (77)

Ge 937 7.27 (47)

In 157 6. 88 7.10 (77)

Pb 327 7.03 7.55 (77)

Sb 631 7.14 7.5 (77)

Te 450 8.40 9.0 (77
AgBr 430 9.35 7.45 47)
AgCl 455 7.50 8.00 (47)
B1283 777 7.05 (47)
BlZTe3 586 7.58 (9)

CdS: (1750) (7.35) (47)
InSb 525 6.55 7.4 (62, 72)
SbZS3 547 6.98 ‘ (47)
SnS: 881 7.05 (77)

ZnS (1650) 7.26 (47)
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Table A-IV-2

Specific Heats of Compounds at the Transition Point

ca c‘3 T P Y

Tap p P B>y °p “p
Material °c cal/m.g. a’c °c cal/m.g.a. °C  Reference
Ag,S 179 7.36  7.21 (47)
AgZSe 133 7.23 6. 80 (47)
AgZTe 147 7.70 7.36 799 (47
CuZS 103 6.50 7.75 350 7.75  6.77 (47)
CuZSe 110. 7.07 6.73 (47)
In25e3 200 9.35 9.35 725 (94)
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The thermal conductivities of the standards near their melting
points are well known and are summarized in Table A-IV-3. Those of
the intermetallic compounds, on the other hand, are in general unknown.
Moreover, due to the large number of processes which influence the
thermal conductivity at high temperatures, their prediction is extremely
difficult without detailed information about the electrical properties of
each sample. The latter information was not available for our samples.
As a result, a reasonable estimate of the thermal conductivity at the
melting point could be made only in the case of the III-V compounds for
which experimental data were available. For the remainder of the com-
pounds, values of the thermal conductivity were selected in a somewhat
arbitrary fashion and represent orders of magnitude only. Some of the

estimates used in ourrcalculations are given in Table A:-IV-3,

Emissivities

Even though no calculations in which the equivalent conductances
for radiation appear were performed in this work, the values of the
emissivities and other methods available for their estimation are of
interest because knowledge of them will be useful in future work where
it may be desired to perform such calculations. The emissivity of
oxidized nickel (30) may be expressed as follows

€ = 0.143 + 0.48 =) > 300°K
NiO '1000
An effective emissivity for fused silica was found by assuming that
all wavelengths less than 3.7 microns are totally transmitted through

the quartz while all wavelengths greater than 3.7 microns are completely

ofa
R

absorbed, and that this distribution is independent of temperature.

oo
&

In truth the absorption spectrum is a complicated function of both wave-
length and temperature. See, for example, ref. (27). It is a fact,
however, that some radiation will penetrate the tube and impinge on

the sample. As a zeroth approximation this factor may thus be taken
into consideration.
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Table A-IV-3

Thermal Conductivities of the Solid Near the Melting Point

Material or Value Used Temperature Method of
Property cal/ sec—cm—oK C Estimation References
In 0.053 156 A (77)
Pb 0.070 327 E, A (77)
Bi 0.018 270 E, A (77)
Sb 0.052 630 E (77)
Ag 0. 65 960 E (27)
Ge 0. 042 937 E (1, 5,36, 75)
Te 0.009 450 E (2, 20)
InAs 0.020 942 E (13,14)
InSb 0.018 525 E (13,15, 40, 81)
GaSb 0.013 706 E (86)
GaAs 0.018 1237 - --
Code:

E -- Extrapolated from experimental data.

A -- From the temperature coefficient of electrical resistance, a.

T 300

=T/300 (1 + «(T - 300)).

L-- From the extrapolation of the lattice component of thermal

+ Lo .

conductivity to the melting point and the Wiedemann-Franz law:

ph
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ale Y
EA

Secondly, it is assumed that the reflectivity of the quartz is zero.

Kirchoff's law then takes the form

The transmissivity as a function of temperature may then be found from
the first assumption and the black-body radiation distribution function.

The following empirical expression was obtained for the emissivity

_ / T 0.93T _ o)
GSiOZ = exp{ 1000 000 0.398» T > 420K

Emissivities of the various intermetallic compounds are largely
unknown. The reflectivity of GaAs has been measured (4) but data on
the other compounds is nonexistent. Where sample emissivity data were
not available, they were estimated, from the index of refraction according

to the formula:

2
e = 4n/(n+1)

Use of this formula implies that the transmittance is effectivély zero and
that the extinction coefficient is small compared to n. It méy be noted

that this equation appears to work quite well for Ge and GaAs at room
temperature, so that it might at least be expected to provide a reasonable
estimate. Some values of the emissivity for standards as well as compounds

are summarized in Table A-1IV-4.

oo

" In reality the reflectivityoof fused silica varies from 17% at room
temperature to 3% at 800 C (68).
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Table A-IV-4

Emissivities of Elements and Compounds

Material or Method of
Property Value Used Estimation Reference
In 0.10 A --
Pb 0.10 E (77)
Ag 0.03 E (77)
Bi 0.08 E (77)
Te 0.45 E (77)
Sb 0.35 E (77)
Ge 0.52 E (27)
GaSb 0. 66 N (16, 24, 34)
InSb 0. 64 N (16, 24, 34)
GaAs 0.70 E,N (4, 16, 24, 34)
InAs 0.70 N (24, 34)

Code: E - Experimental;
N - From index of refraction

A - Arbitrarily assumed.
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APPENDIX V
CONDUCTION OF HEAT IN THE SYSTEM DURING MELTING*

In this Appendix, the complete temperature problem encountered
during melting of a DTA sample [ Regime (B)] is considered and the
solution established for the case of semi-infinite planar bounding
surfaces. A continuous solution of the following boundary value problem
is to be found. The differential equation governing the temperature in

regions (2) and (3)  is:

< x<
X3xXl

where k, p, and bp are functions of x only and are defined in the

region X3 < x < Xl such that

< <
k, for X3 X X2

k(x) = 3
< x<
k2 for X2 X Xl
< x<
Py for X3 X X2
p(x) =
< x<
P, for XZ X Xl
c for X, < x< X
cp(x) _ p, 3 3 2
< x<
cp,2 for X2 X Xl

where k3, kz, P3s Py etc. are constants, so that k, p, and cp

have a discontinuity of the first kind at x = XZ'

" The author is deeply indebted to Mr. A. N. Currim for his assistance in
solving this problem.
sk sk
Cf. Figure 2.1, where x is written in place of r and X, in place
of Ri , Since in this problem the bounding surfaces are planar.
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The initial condition and the boundary conditions are:

As -t = 0+, T(x,t) = 0; X3<x<

As x -*X3+,T(x,t) - 0; t>0

As x - Xl—,T(x,t) - yt; t>0

The temperature is continuous at x = XZ:

lim T(x,t) = lim T(x,t); t>0

- - - +
X X2 X X2

The flux is continuous across x = XZ:

lim k. —m— = lim k, —:

6T )
3 6x 2 60x

- -— - +
X X2 X X2

Xl A-5,2,

A-5.3

A-5.4

(A-5.5,

‘A-5.6

The differential equation A-5.1 takes the following form in region (3) and

region (2), respectively:

2
5 T 1 65T
= - — < < -
> > 51 X3 X X2 A-5.7
6 x h
3
62T 1 6T
= — < < -
5 > 51 X2 x,.,_X1 A-5.8
6x h
2
where
k.
he = L =23 A-5.9
i p.C_ .
ip,i

is the thermal diffusivity.
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x—X3
Let g = A-5.10a
Xl X3
and XZ—X3
d = —}'{"'“:-}'(— A-5,10Db
1 3
and write:
T(x,t) = T(qt) = vigt) + yaqt A-5.11

Substituting Equations A-5.10 and A-5.11 into Equations A-5.7, A-5.8,
and A-5. 2 through A-5. 6 transforms the inhomogeneous boundary problem

for T(x,t) into the following homogeneous boundary value problem for

v (g, t):
62v 2 6V 2
_..._._2 — H3 _—Gt + YH3Q7 0< g<d A-5.12
6 q
62 2 6 2
2 - pgf2X 4+ yHqg; d<qg<1 A-5.13
2 2 & 2
6q
As t = 0+, v(g,t) = 0;for 0< g<1 : A-5.14
As g - 0+, v(g,t) = 0; for t>0 A:-5,15
As g - 1-, v(g,t) = 0; for t>0 A-5.16
lim v(g,t) = lim v{qg,t) A-5.17
q~>d- q > d+
. v _ Y dv _
lim <k3 6q>+ (k3 kZ-) yt = lim <k2; éqy A-5,18
q —»d- q > d+
where , (Xl _ X3)2
H1 = > , 1= 2,3 A-5.19
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The solution of the boundary value problem given by Equations

A-5,12 and A-5.18 is obtained by using the Laplace transform.
o ~Q0
Let Lt {v (a, t)% = v/ e_St v(g,t)dt = V(q,s) A-5.20
| o)

Then Equations A-5.12 to A-5.18 become:

5 2y YHaszq
——— = H_V + ,. 0< g<d A-5.21
2 S
e
2 vyH. ¢
SV _ glsva+ —E—  dg<qg<1  A-5.22
2 2 S
6q
As q - 0+, V(g,s) - 0 A-5.23
As g - 1-, V(g,s) = 0 A-5, 24
lim V(g,s) = lim V(q,s) A-5.25
q - d- q - d+
(k, -k,)vy ,/
6V 3 2 5V
. —t— + — : — - .
lim (k3 6q> ""'———SZ lim (kz 6q) A-5. 26
q_)d- q—>d+

Equations A-5. 21 and A-5. 22 are elementary and have the respective

general solutions:

V(g,s) = - lzq‘ + A(s) sinh (H3q V¥s) + B(s) cosh (H3q Vs),
s
0<g<d "~ A-5, 27
V(gs) = - 5 + C(s) sinh{H,q V) + Dis) cosh(H,q V3)
s
A-5. 28

Using Equations A-5.23 to A-5.26 in A-5. 27 and A-5. 28 there

results a set of four simultaneous equations for A(s), B(s), C(s) and
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D(s). Solving these for A(s), B(s), C(s) and D(s), substituting
these results in to Equations A-5. 27 and A-5. 28 and simplifying, the

following expressions for the Laplace transform, V(q, s) , of v(q,t)

result:

V(q’ S) = - _X_gi
S

. xe sinh (H3 qls)

s2 [ cosh(Had Vs) sinh (H‘2 (1-d) VJs) + ¢ sinh(H3d Vs) cosh (Hz(l-d) Js)]

valid in 0 < g< d A-5., 29

V(q,S) = - _YJ;_

S

[ cosh(H3d Vs) sinh (Hz(q—d) Vs) + c sinh (H3d VS) cosh (Hz(q—d) -5} ]

+
s2 [cosh(H3dV§) sinh (Hz(l—d) vs) + c sinh(H3dw}§) cosh (Hz(l—d) vs)]
validin d < g< 1 A-5.30
where kz Hz
c =755 A-5.31
373

These transform functions may be inverted and will give the solu-
tion for the boundary value problem. The inverse transform is given by

the inversion integral:

M+ip
vig,t) = lim V(q, s) L A-5.32

Siages)
M-iB

o,

N Cf. Churchill (18) p. 176 ff. In particular all the conditions of
theorem 5, p. 178, are satisfied.
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which satisfies the condition v(g,t) = 0 for t< 0. Here M is a
real number so large that all the singularities of the complex function
V(qg, s) of the complex variable s lie in the left half plane Re(s) < M.
By expanding the hyperbolic functions, appearing in V(q, s),
in Maclaurin series in the complex s plane, it is easy to see that
V(g, s) has no branch cuts in the s-plane. Hence we may evaluate
the integral A-5.32 by closing the contour in the left half plane Re(s)
< M, as in Figure A-V-1. The curve BB'CA'A is an arc of a parabola
with focus at the origin and so chosen that it passes through no

singularities of V(q, s). By Cauchy's theorem, it then follows that

ﬁ_i V(q, s) %' ds = sum of the residues of V(qg, s) inside

i A-5,33
&

where (f is the contour ABCB'A'A of Figure A-V-1. By arguments similar
to those in Churchill (18) p. 204 ff, it is easily seen that the integral
of V(q, s) eSt over the arc of the parabola BB'CA'A vanishes as 'B*oo .

Hence it follows that the inverse transform v(qg,t) of V(q, s) is given by:

v(g,t) = sum of the residues of V(qg, s)eSJE in the left half
plane Re(s) < M A-5,34

The function V(g, s) defined by Equations A-5.27 and A-5.28
has a double pole at s = 0 and it also has singularities at the roots

of the transcendental equation:

cosh H3d ys sinh Hz(l -d) Js + ¢ sinh H3d\)'§ cosh Hz(l’" -d)¥s =0

A-5.35

which may be written as

sin Hz(l-d)ﬁ cos H3dﬁ + ¢ cos Hz(l—d)ﬁ sin H3dﬁ = 0 A-5,36
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A Im(s)

M+ig

I
Re(s)

M-ig

Figure A-V-1. Contour in the Complex Plane for Inversion of the
Laplace Transforms, Equations A-5.29 and A-5. 30.



126

with

B = i Vs A-5.37

2
<

It has been shown that all the roots, [Sn of Equation A-5. 36
are real and simple, so that it follows that V(q, s)eSt has only simple
poles at the non-zero roots of A-5. 35.

The residue po(t) at the double pole s =0 is:

po(t) = Al + At A-5.38
where
H; q3 I—I3q
A = yc -
1 6{H,(1-d) + cH,d} {Hz(l-d) +CH, d7§2
2 2
1% d¢® H.(1-d) 13(1-q)3 CH. H. d(1-d)
) 3 2 L 2 R I I 372
2 6 6 2
valid for 0< g< d A-5.39
H, q
Al = yc . - vq
2 YO I H (1-d) + cH. d
2 3
valid for 0 < g< d A-5.40
H3 cH3d3
H2 H. d(g-d) + = (q-d)° + —— + € 5.1 (g-d)°
3 720 6 6 2 372
Al = vy
Hz(l—d) + cH3d
H,(q-d) - cH,d H32 H, d%(1-d) H23(1—d)3 cH33 4>
' Y 2 L ">
{Hz(l—d) +CH, d}
cH, HZZ d(1-a)°
+ 5 validin d < g< 1 A-5,41

o
b7

" Cf. Carslaw and Jaeger (17), p. 324 ff.
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Hz(q—d) -c H3 d

- - id i < g«
AZ Y Hz(l-d) A cH3d Ya validin d< g<1
A-5.,42
The non-vanishing roots of Equation A-5.35 are designated {Sn s
n=1, 2, 3,... and order so that [Sl< ﬁ2< <[3n<.... .
Putting
Bn = i \)"s"n A-5.43a

one sees that the non-vanishing roots of Equation A-5.35 in the complex

s-plane are all negative:

s = -8 A-5.43b

so that we need only take ﬁn to be the positive roots of A-5.36. The

t
residue pn(t) of V(q, s)eis_ at Bn is:

Bn(q) exp( -an t)

p t) = -2v E c_ A-5.44
n
where
Bn(q) = csinH3Bnq 0< g<d
and

Bn(q) = cos (H3d6n)sin(H2(q—d)[3n) + csin(H3dﬁn)cos(H2(q-d)[3n)

for d< g<1 A-5.45

and

c - [{Hz(l_d) + cHyad cos (8,48 )oos(H, (1-0)p )

+ -{CHZ(l-d) + H3d} sin(H3d[3n) sin(Hz(l—d)ﬁn)J

0<g< A-5.46
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So it follows that

@ B (9 5
vig,t) = A/+At-2y T ——— ‘exp (=B t)
1 2 3 n
n=l B~ C
n n
0< g< 1 A-5.47

where ﬁn are the positive roots of Equation A-5.36, and Al’ AZ’ Bn(q)
and Cn are defined above. It is now easily verified that Equation
A-5,47 satisfies all the boundary conditions A-5.15 to A-5.18 and the
differential equations A-5.12 and A-5.13 of the boundary value problem
for v(g,t). It has already been shown in Equation A-5. 32 that v(q, t)
satisfies the initial condition A-5.14. Hence Equation A-5.47 is com-
pletely established as the solution of the boundary value problem defined
by the expressions A-5.12 to A-5.18.

It then follows, via Equation A-5.11, that the solution of the
boundary value problem defined by the expressions A-5.2 to A-5.8 is

given by:

T(x,t) = v(g,t) + yaqt A-5.48

where q,d are defined by Equation A-5.10.

It is of interest to know the behavior of Equation A-5.48 as
H2 -+ 0. This represents the situation of the gas film corresponding to
a negligibly small heat sink. If one takes the limit of Equation A-5. 47
as H‘2 - 0, one finds after a slightly tedious (but straightforward)

calculation:



1

29

2 3
yqt YH; g
imT (q,t) = + +
H._ O ks K,
2 d + — (1-4d) ‘ 6 [d + — (1-d)
k k
2 2
2
yH3 d2 q yk3 H32 dz(l—d)
- - +
k3 J K 2
6[d +y -d 3k [d v =2 (1—d)J
2 2 k
- 2
sin[anqj exp —(E‘)Z t-
2yHLd (;:O ‘ ek
B n=1 30 ¥ (g Ky (1-d)
o — cosa +cosag +——+a sina
n k d n n k.d n ns
2 2
validin 0 < g< d A-5.49
where @ = H3d pn .
and also
k3
2 3, vt [d+— (q-d)]
im T (q,t) vky Hy d” (q-)) k,

ks

H, = O k, 2 ¥
3k2 [d+——(1—d)] [d + --—(1—d)]

k2

sina +
QO n

5
k2 d

k2

_2ydfH? =

3 pal ar? %3 (1-q)
K,

d

cosa + cosa -
n n

validin d< g<1
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are the positive roots of

A-5.51

The parameters and variables ¢', £ ", n', n", ¢', v' of Chapter II

are related to the variables above as follows:

X -X,)
t'-1) = S—%{;—B—
n' o= X, /X,
e . q(xl—x3)X— x, - X)
2
nt o= X/X,
¢ = k/k,
o= X32/h32

A-5.55

A"S.’ 56’

The region 0 < g< d corresponds to the region 1< {¢'< n°

and the region

one designates

as z(¢",t) in

d< g< 1 corresponds to theregion 1 < ¢" < n". If
lim T(q,t) as vy(',t) in 0< g< d and lim T(q,t)
H2—>O H2->O

d < g< 1, then Equations A-5.49 and A-5.50 become

identically Equations 2. 39 and 2. 40.

Thus Equations 2.39 and 2. 40 result if the approximation can be

made that

R

A-5,58
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In our problem typical values of the parameters are Xl - X3 = 0.175 cm,
X2 - X3 = 0.150 cm, H2 = 0.127 secl/2 and H3 = 1.81 secl/2
so that Hz(l-d)/H3d = 0.0117. Therefore the approximation A-5. 58 is
valid for
0.1
< = i
a 0. 01 10 radians

Now the roots of Equation A-5. 51 are tabulated by Carslaw and Jaeger (17).
In particular, for k3./k2 = 35,7 the roots of

a cot a + 0.168 = 0

are
@ = 1.65
aZ = 4,75
013 = 7,87
014 = 11.0

so that it may be concluded that the approximate solution given in Chapter II
is sufficiently precise.
Finally it is of interest to investigate the value for the time
constant for damping out of the transient portion of the solution. It is
clear from Equations A-5.49 and A-5.50 that this time constant may be

written as follows:

T, = H32 dz/afl2 A-5,59

whence

1.812x0.8572
1'1 = 5 = (.89 sec.
1.65

e

For the cylindrical problem it is expected that this time constant would be
given by

oy
T = TR A-5.60

o

“ Cf. Chapter II, Equations 2. 30.



132

where [31 is the first positive root of

] (B)Yo (n'g) - Y (B) Io(n'ﬁ) - n'¢'Blnn" T (B) Y, (n'B) -YO(B)Il(n'ﬁ)

O (@)

A-5.61

For the typical values of the parameters given on page 16, which correspond
to the values used above, it may be found that the values of Bn computed

from Equation A-5. 61 are:

ﬁl = 5,34
52 = 15.74
[33 = 26.20
etc., whence
T = T'/ﬁi2 = 26.6/(5.34)2 = (.94 sec.

Thus the agreement between Equations A-5.59 and A-5. 60 is excellent.
It is thus concluded that as melting of the DTA sample is initiated the
thermal conductance will increase from its value prior to melting to the
steady state value within one or two seconds as shown schematically in

Figure 2. 2.



APPENDIX VI
COMPUTER PROGRAMS AND EXPERIMENTAL DATA
In this appendix the computer programs used in evaluating the

experimental data are described, and the numerical values of the

necessary parameters are reported.

Program Number DTA-19 for Direct
Calculation of the Thermal Conductance

This calculation consists in finding the gas film thickness by a trial
and error comparison of the theoretical and experimental time constants
for exponential decay of the DTA curve until agreement within a specified
error (one percent) is achieved. The conductance and latent heat are
then found in a straightforward manner via Equations 3.2 through 3.5 and
Equation 1.7 respectively. The variables used are defined below, and

the MAD#* listing of the program together with the data processed

follow.
MAD Variable Variable in Text Explanation
AREA f le-6 | at Area under DTA curve, °C min
A Lower value of B in interval
to be scanned
B Upper value of B in interval
to be scanned
CYCLE Cycle of DTA run
D3 ZR3 Outside diameter of silica
tube, cm
D4 2R4 Outside diameter of sample, cm
D5 2R5 Outside diameter of thermo-

couple well, cm

%
Michigan Algorithm Decoder, University of Michigan Computing
Center, Ann Arbor, Michigan.
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Variable Listing for Program DTA-19 (Cont'd)

MAD Variable Variable in Text Explanation
DELTA Increment function for changing
no
DELX Increment for changing B in
scanning the interval, Ato B
DP Dp Cf. Equation 2.58
EPS € Cf. Equation 2. 56
ERROR Percent disagreement between
TAUX and TAUC
ETAPP1 Initial estimate of "
ETAPP n" R /R,
ETAP n' RZ/ R3
ETA R,/R,
G3 ' G3 Thermal Conduc.ta%ce of the silica
tube, cal/cm min “K
G4 G4 . Thermal Conductance of sample
GS2 Gv2 Thermal Conductance of gas film
GS G* Overall Thermal Conductance
I Subscript of DELTA
JOX, etc. Io(ﬁ), etc. Bessel function of first kind
K3 k3 Thermal ch%uctivity of silica tube,
cal/cm min YK
K4 k 4 Thermal conductivity of sa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>