NONLINEAR ANALYSIS OF REINFORCED CONCRETE FRAIE-SHFEARWALL STRUCTUJRES SUBJECT 'r) FALRTHQIJAKE MITION (UJSER'S GUIDE ') DRAIN-2D: EL7 FOR RC SHEARWAIJS) by Anil pnar Scientist, Cenent Research Institute of India New Delhi-INDIA Presently Visiting Scholar at the University of Michigan J. K. Wight Associate Professor of Civil Engineering A Report on Research Sponsored bv National Science Foundation Grant No. CEE-81-21843 Report UJMEE 83R4 Deparerntm of Civil Engineering U1niversity of michigan Ann Arbor, MI 48109 October 1983

t.:, b - I PI; A~-.1

TABLE OF TrfENTSi ABSRSTRACT.. ACKNOWLEDGEMENTS... LIST OF TABLES LIST OF FIGS...... CHAPTER 1. INTRODUCTION. 2. SiEARWALL ELF3T4C E STRUCTURAL IDEALIZA EL,E MENT DEFORMATION ELEMENT STIFFNESS. HYSTERESIS UDDELS. 0 9 0 0 0 0 0 0 0 0 0 0 0 0 4 * a 0 0 0 * 0 0 0 0 0 0 0 0 0 Page.....(i).... (ii).....(iii).. (iv) ~L7. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 LTION OF THE ELF4ENT.4 ~S ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 AL ELEMENT FORCES........ ON...............11 FIXED FND AN\TD INITI OUTPUT RESULTS.. INPUT DATA PREPARAT 3. IBNPUT DATA AND SAMPLE RESULTS FOR A SEVEN STORY STRUCT[JRE.................... 15 REFERENCES....................... - 32 APPENDIX A-1 FORTRAN LISTING OF TIE SHEARWALL ELEMENT EL7...................* 39 APPENDIX A-2 TANGENT STIFFNESS MATRIX OF 'ITIE SHEARWAI L EFIET..........54

ABSTRACT Element EL7 is a general purpose elemnent for reinforced concrete shearwalls under reversed cyclic loading. The element is developed -for tuse in the TDRAIN-2D computer program for calculating the nonlinear response of multistory structures subject to earthquake motion. This report describoes the essential features of the element and includes the FORTRAN listing of the subroutines. Input data and sample computer output for a seven story reinforced concrete frame-wall structure are presented to illustrate trle data preparation procedure and output for-mat for the shearwall element. A discussion on the computer results will be reported separately. Stiffness and hysteresis modelling for the shearwall element are taken from available literature, with a few modifications. (i)

-ACKNOJWLLEA Fr-ETcS L'his report results fron the investigation carried out by Dr. Anil Kimar during his stay at the University of Mlichigan on the scholarsl:lip granted by the Govermnent of India. The investigation was a part of the research project directed by Prof. J.K(. Wight and sponsored by the National Science Foundation through grant No. CEE-81-21843. The conclusions anvd opinions expressed in this report are solely those of the authors andl do not necessarily represent the views of the sponsors. The authors are thankful to Prof. Robert D. Hanson and Prof. Subhash C. (oel for making the earthquake records and the DRAIN-2D program available for the investigation. Dr. Anil Kumar wishes to express his gratitude to Prof. J.K. Wight for his invaluable guidance, supervision and timely encourage-nent during the course of investigation. He also takes the opportunity of thanking Dr. H. C. Visvesvaraya, Director General, Cement Research Institute of India for his support and encouragenent to conduct research at the University of Michigan. Thanks are also due to graduate students Vahid Sattary and Medhat Boutros for the useful discussions during the stage of writing programs. The authors gratefully acknowledge the assistance of Mrs. Genny Singleton in typing the report and Eugene Leppanen in making the drawings. (ii)

LIST OF TABLES Page Table 1: Data For a Seven Story Structure..........17 Table 2: Sanple Results......................... 20 -iii

LIST OF FIGUJRES Page Fig. 1 Idealized Model of a Shearwall...........34 Fig. 2 Element Forces and Deformations..........35 Fig. 3 Axial Stiffness Hysteresis tbdel..........36 Fig. 4 Origin Oriented Hysteresis V'bdel...........37 Fig. 5 Idealized Seven Story Frame-Wall Structure.....38 -iv

INTRODUCTILON Reinforced concrete walls are often introduced into!multist-ory structures to resist lateral loads, especially when the frame alone is insufficient for lateral resistance. Such a case occurs -normally in tall structures when a frame alone does not provide an economical a;nd structurally efficient systen. The sheanralls, acting as predomlninant lateral resisting units, are assumed to behave linearly elastic in earthquake resistant design of frame-wall structures. This is because, until quite recently, reinforced concrete shearwalls have been thought to be brittle or semi-brittle elements. However, analytical and experimnental investigations on shearwall systems (Refs. 8,10,12) and their satisfactory performance dluring several earthlquakes hZave shown that rwalls are capable of showing ductile behavior, provided adequate care is taken in design and detailing. A review of the available analytical investigations (Refs. 1,2,3,4) on the nonlinear seismic behavior of frame-wall structures shows t-hat a shearwall is normally idealized as an equivalent column taking into account flexural deformation and sometimes shear deformation also. Anr extension of the equivalent column idealization is done by dividing the interstory shearwall element into a finite number of snall segments (Ref. 2) to take into account a Irore general distribution of moments in shearwalls than in the case of beans and columns. The segSnent nodal points are condensed out of the element stiffness matrix before it is used in the analysis of tne comrplete structure. -1 -

-2 - VExpe-rimnental Linvestigations on reinforced concrete wralls (Refs. 5,8,12) Lhaave shown thlat bending deformation of a wall was caused primarily by the extension of the tension side boundary column. Also, a full. scale test on a seven story framne-wall struncture hias indicated the possibility of shear yielding at the base of the wall under certain types of earthquake mnotions (Ref. 9). Kabeyasawa et.al.(Ref. 6) have proposed a sirniplified model for a reinforced concrete rall taking into accotunt the above features. The model was used (Ref. 6) for tlhe psuedo-dynanic analysis of a seven story frane-wall structure. The writers of this report have developed the required subroutines for the above model to be used with the DRAIN-2D programn for the nonlinear time history analysis of multistory frane-wvall stnructures. Some additions and simplifictions have been introduced by the writers in the model proposed by Kabeyasawa (Ref. 6). A general description of the shearwall model and user's guide for the preparation of data for the shearcwall element are given in this report. DRAIN - 2D COCIPIJTER PROGRAM Drain-2D is a general purpose computer program for the nonlinear response of plane structures subjected to earthquake motion, and was developed by Kanaan and Powell (Ref. 7). The program concepts and features are described in Reference 7. The user's guide (Ref. 11) describes the extensions mnade to the original program (Ref. 7) and presents input data procedures. This report supplements References 7 and 11 and has to be used in conjunction with them. The data preparation procedure presented in this report is kept the same as in References 7 and 11 in order to provide continuity. The procedure followed for adding the new shearwall element, hereafter referred to as EL7, to the DRAIN-2D conforms to Chapter 4 of Reference 7. The four main subroutines developed

-3 - for tnie element TEL7 are as follows. The nmnber at the end of tile subrotltine names corresponds to the element type which is 7 in the oresent case. The other subroutinles make a part of these four main slJlroutines. 1. INEL7: Input and initialization of element data. 2. STIF7: Calculation of element tangent stiffness mnatrix at different time steps. 3. RESP7: Determination of increments of element deformatioans Snqd forces in each conponent, determination of yield status of each cotnponent, and output of tnime history results. This is also referred to as "state determination phase". 4. OUT7: Output of final envelop values for element deformations aornd forces. The arrangement described above is used in the DRAIN-2D progrmn and is adopted as such. The FORTRAN listing for the element F,7 is given in Appendix A-1. COMMXENT statenents are introduced at suitable places in the subroutines for mderstanding the underlying logic. The subroutine programns are developed for AMDAHL 470V/6 Computer at the University of Michigan using MTS. It is believed that these prograns can easily be used on other systems.

-4 - GHAPTER 2 SHFARWALL ELEMENT ELi,7 STRUCTURPAL IDEAILIZATION OF THE ELFISMET The shearwall member is idealized as three vertical line elenents with infinitely rigid beams connecting the elements at the top and bottom floor levels (Fig. 1). The two outside truss elements represent the axial stiffness of the boundary columns. The axial stiffness varies with the sign and level of axial stress, and degraded with tensile history. The central vertical element which rigidly connects to the top rigid beam, is a one component model in which vertical, horizontal and rotational springs are concentrated at the base. The resistance of the wall section is lumped at the locations of the outer truss elements and the central vertical spring. The effect of strain gradient across the interior portion of the wall section is represented by the rotational spring in the central element, and the shear deformation is expressed by the deformation of the horizontal spring. Each of these components can have independent stiffness and hysteretic characteristics. ELFMENT DEFORMATION The shearwall element has six degress of freedom with reference to thie global coordinate system. There are five deformations to be considered, i.e. axial extensions in the two truss members and the vertical spring, rotation of the rotational spring and extension in the horizontal spring (Fig. 2). The three deformations in the springs are sufficient to find the deformation pattern in the member. The five deformations are considered here for the sake of generality and could be useful for any future modifications.

-5 - The displacenent trarlsformnation matrix relating increments of elemnent deformation to the degrees of freedom in global coordinates, is as follows: dv1 0 -1 B 0 1 -Bj dr1 dv2 0 -1 -B 0 1 3 dr2 dv3 = 0 -1 0 0 1 0 dr3 (2.1) dv4 0 0 1 0 0 1 dr4 dv5 -1 0 0 1 0 H dr5 or {dv} = [a] fdr) (2.2) The effect of large deformations is not taken into account in the,bove frornulation. The parxnameters B and H, therefore, remain constanrt. TELTJENT STIFFNESS The tangent stiffness matrix element forces is as follows: EA dS1 (H) L 0 ds2 0 (EA) H R ds3 = 0 0 ds4 0 0 ds5 0 0 or {ds} = [kT] {dv} relating the element deformations and 0 0 K V 0 0 o 0 o 0 o 0 K 0 R 0 K H dv1 dv2 dv3 dv4 dv5 (2.3) I (2.4) EA EA where (H )L and (H)R represent the current axial stiffness of the left and the right hand columns respectively. KV represents the current axial stiffness of the vertical spring KR represents the current rotational stiffness of the rotational spring, and KH represents the current stiffness of the horizontal spring.

-6 - The tangent stiffness in terms of nodal displacenents is [KT1 = [a]T[kT][al (2.5) where [a] is given by equations 2.1 and 2.2. The Tmatrix [-KT1 for the proposed shearwall element is given in Appendix A-2. HYSTERESIS IS -J'DELS Two types of hysteresis models are used in the formulation of the computer progran. One is the axial-stiffness hysteresis model (FiR. 3) used for the axially loaded components of the shearwall element, such as the boundary columnns and vertical spring. The other is the origin oriented hysteresis model (Fig. 4) used for the rotational and horizontal springs. The two models are described in the following. The boundary columns are assumed to have the same properties, that is, initial stiffness, yield load, yield displacement and strain hardening, and therefore have the same hysteretic properties. The other components possess individual hysteretic properties. Axial Stiffness Hysteresis Model Assuming that the member is initially loaded in comnpression, it follows segment ABO (computer print out code for this segmnent is 0) elastically as shown in Fig. 3(a). When the net axial load in the mnember changes sign from compression to tension, it follows segment OC (code=1) under increasing tensile load up to point C. The member yields at C and follows sepgnent CM4 (code=2). If the displacement changes direction from a response point D on slope OC (code=1) the member unloads elastically along segment DE (code=3) parallel to the initial slope ABO (code=O). The memnber then follows a regular bilinear hysteresis rule between point n and point B. Point B is defined on the elastic slope in compression at a force equal to the tensile yield strength Fy. Point E is, therefore, determined with the condition that segment BE (code=4) is parallel to OC (code=O). If the

-7 - response point reaches the previouls tensile response point D, the response point nmoves further on slope OC (code=l) renewing, the coordinates of T and E. If the response point reaches point B along the slopes DE and EB, munder continued compression, it moves on slope BA (code=O), the elastic slope in compression. Coordinates of D and E are updated when there is a change in the direction of displacement for the response point on slope BE (code=4) or OC (code=l). After the tensile yielding occurs along segnent (Ni (code=2), the response point moves in accordance with the regular bilinear hysteresis rule between point B and previous maximtum tensile response point M (Fig. 3b). The slope of segnent TI (code=9) is the same as the slope of the line joining M and 0. The sengent BF (code=6) has the same slotpe as (code=9). The slope of parallel seFnents T4F (code=5) and BG (code=8) is obtained from the following relationship: Slope of segmnent MF (or BG) Initial slope in compression (slope of ABO) x Slope of segment MG(2.6) = Initial slope in tension (slope of OC) Based on the information obtained for these slopes, the coordinates of points G and F are computed and stored. Ighen the response point reaches the previous maximuzn tensile response point M, the response point further moves on slope CGI (code=2) under increasing displacement renewing the maximumn response point M, point F and point G. If, under continued compression, the response point reaches point B along the slopes MF and FB, it moves on slope BA (code=7), i.e. the elastic slope in compression. A separate code number is assigned to slope BA because two slopes are originating from point B after tensile yielding has taken place. In case there is a change in the direction of

-8 - displacEne-nt from slope BF, the response point follows a slope parallel to P1 (code=5) nmtil it strikes slope GI (code=9) an-d then i-t frthler rnoves )on slope GM,. Similarly, the response point moved along a slope parallel to 1'! (code=5) after it unloads from slope GI until it strikes F13 (code=6). Thereafter, the response point shall mnove on slope FB (code=6) It may be noted that the codes for slopes DE and OBA are kept different even though they are parallel to each other. The same is true for slopes BE and GC, BG and MF, and GM and MF. This lhas been done for the sake of simplicity in thae development of the algorithm for the computer program. Origin Oriented Hysteresis Mbdel The origin oriented hysteresis;nodel (Fig. 4), which dissipates a s;nall amount of hysteretic energy, is utsed for the rotational anrd horizontal springs at the base of the shearwall elenent. The response print.moves along a line connecting the origin and the previous maximtnn resrponse point (Fig. 4). Thus it wsill Tmove either on slope AB (code=O) or CT) (code=3). Initially, the point moves on slope AB (code=O) and then the slope BC (code=l) or slope AD (code=2) depending upon the direction of loading. When there is a change in the direction of displacenent of the response point on slope AD or BC it will move elastically on CD (code=3). Once the response point reaches the previous maximun point it will follow slope BC or AD renewing the Inaximum response point, i.e. coordinates of points C and T). No hysteretic energy is dissipated when thle response point oscillates withlin a region defined by the positive and negative maxiinun response p;ints. FIXED ENID AND INITIAL ETEJaTT FORCES The effects of static loads applied along the length of thqe elenent rath'ner thlan those applied directly at nodes can be taken illto account by

-9 - specifying fixed end force patterns. Such a loading contiion does not nonnally occur in shearwalls. However, this provision has also been incorporated for shearwalls for thle sake of consistency with other available DRAIN-2D elements. Elements may be stressed under static load, but sometimes it may be incorrect or inconvenient to determine the element forces by applying static loads to the structure. To allow for such cases, provision is made for intial forces to be specified in the element. These forces will typically be the forces in the elements under static loading as calculated by a separate analysis. The gravity loads, transferred by the transverse beans directly to the boundary columns of the shearwall, can be covered by this provision. For consistency, these forces should be in equilibrium with the static load producing them, although this is not essential. The computer program, however, does not make any corrections for any equilibrium unbalance resulting from the specification of initial forces. To satisfy the requirement stipulated in DRAIN-2D program (7) that the structure remains elastic under static loading, the initial element forces should be less than the yield strength of the element. If desired, additional static loads can be applied together with initial forces. The element forces will then be the sum of initial forces aind those due to additional static loads. OUTPUT RESULrS The following results are printed for the static loading conditions (t=O) and at each output time if a time history is asked for. 1. Yield Code: 0 to 9 for boundary columns and central vertical spring as explained in Fig. 3.

-10-: 0 to 3 for rotational;and horizontal spritngs as explaired in Fig. 4. 2. (a) Axial force in boundary col-uns and central vertical sprilng (tension positive). (b) Moment in rotational spring (anticlockwise anoment positive). (c) Force in horizontal spring (tension positive). 3. (a) Axial extension in boundary columnns and central vertical spring,. (b) Rotation in rotational spring (anticlockwise rotation positive) (c) Extension in horizontal spring. The anlximun Trx)sitive ald negative values of axial forces arnd extensions in boundary columns and the central vertical spring, moment and rotation in the rotational spring, and force and extension in horizontal spring are printed at Cthe specified time intervals.

-11 - INTPUT DATA PREPARATITON E7. SItEARWAIL T, EIEIfNT'S E7(a) CONTROL IFFOtMATI(N FOR GROUP (1015)-ONTE CARD Coltrnns 5 Punch 7 (to indicate that group consists of shearwall elements) 6-10 Jtnmber of elements in group 11-15 Number of different axial stiffness types for boundary columns and vertical spring 16-20 Number of different rotational- stiffness types for rotational spring 21-25 Number of different horizontal sti horizontal springs 26-30 Number of different yield patterns coluins and vertical spring 31-35 Number of different yield patterns spring 36-40 Number of different yield patterns spring 41-45 Number of different fixed end forc, 46-50 Number of different initial elemen patterns ffness types for for boundary for rotational for horizontal e patterns t force E7 (b) AXIAL STIFFNESS Columns 1-5 6-15 16-25 26-35 'IYPES (I5,3F10.0)-ONE CARD FOR EACH STIFNFESS TYPE Axial stiffness type number, in sequence beginning with 1 Initial stiffness in compression Initial stiffness in tension Strain hardening in tension, as a proportion of the initial stiffness in tension

-12 - E7 (c) STIFRINESS 'YP E.S FOR ROTATI()NAL SPRLFI7S (I5, E1 5.6, FlO.0) -ObN (AR.D F)OR EACH STIFFNESS TYPE ColunIns 1-5 Rotational stiffness type unumber, in sequence beginning with 1 6-20 Initial stiffness 21-20 Strain hardening stiffness, as a proportion of the initial stiffness E7(d) STIFFNESS TYPES FOR HORIZONTAL SPRINGS (I5,2F10.0)-ONE CARD FOR EACH STIFFNESS IYPE Columns 1-5 Horizontal stiffness type number, in sequence beginning with 1 6-15 Initial stiffness 16-25 Strain hardening stiffness, as a ratio of t1he initial stiffness E77(e) YIELD DATA FOR AXIAI, CMPO)NTS (I5,3F10.0)-ONE CARD FOR FACH TYPE Columns 1-5 Yield data number, in sequence beginning with 1 6-15 Tensile yield load 16-25 Tensile yield displacerient 26-35 Compression displacement corresponding to tensile yield load E7(f) YIELD DATA FOR ROTATIONAL SPRINGS (15,2F10.0)-ONE CARD FOPR EACH TYPE Columns 1-5 Yield data number, in sequence beginning with 1. 6-15 Mnment in the spring at yield 16-25 Rotation in the spring at yield E7(g) YIELD DATA FOR IORIZONTAL SPRIING (I5,2F10.O)-ONE CARD FOR EACH TYPE Columns 1-5 Yield data number, in sequence beginning with 1 6-15 Force at yield 16-25 Displacement at yield

-13 - E7(h3) FIXED ME D FORCE PArI:rERNSS (I5,5F1 0. ) -ONE CARD F)R EACHI PArIT'R1L4 Omit if there are no fixed end forces Columns 1-5 Pattern number, in sequlence beginning with 1 6-15 Axial force in left boundary colmnn 16-25 Axial force in right boundary column 26-35 Axial force in vertical spring 36-45 M..xoment in rotational spring 46-55 Force in horizontal spring E7(i) INITIAL ELMICNT FORCE PATTERNS (15,5F10.0)-ONE CARD FOR EACH INITIAL FORCE PA'fTFERN Omit if there are no initial forces Columns 1-5 Pattern number, in sequence beginning with 1 6-15 Axial force in left boundarv column 16-25 Axial force in right boundary column 26-35 Axial force in vertical spring 36-45 Moment in rotational spring 46-55 Force in horizontal spring E7(j) ELEMENT GENERATION C(MMANDS (4I4,.F6., 11 I3,2 15,F5.015,())-ONE CARD FOR EACH GENERATION YOMAND Elements must be specified in increasing numerical order. Cards for the first and last elements must be included. Columns 1-4 Element number, or number of first element in a sequentially, numbered series of elements to be generated by this command 5-8 Node number at element end i 9-12 Node number at element end j 13-16 Node number increment for element generation. If zero or blank, assumed to be equal to 1

-14 - 17-22 Width of the shearwall 23-25 Stiffness type number for boundary colulmns 26-28 Stiff:ness type nLrber for vertical spring 29-31 Stiffness type number for rotational spring 32-34 Stiffness type lanber for horizontal spring 35-37 Yield data number for boundary columns 38-40 Yield data number for vertical spring 41-43 Yield data number for rotational spring 44-46 Yield data number for horizontal spring 47-49 Tiine history output Code. If a tlme history of element results is not required for the elanent covered by the -comnand, punch zero or leave blank. If a time history print out at the interval specified earlier (Ref. 11) is required, punch 1. 50-52 Fixed end force pattern ntumber for static dead loads on element. Leave blank or punch zero if there are no dead loads. 53-5.5 Fixed end force pattern number for static live loads on the element. Leave blank or punch zero if there are no live loads. 55-60 Scale Factor to be applied to fixed end forces due to static dead loads. 61-65 Scale factor to be applied to fixed end forces due to static live loads. 66-70 Initial force pattern number. Leave blank or punch zero if there are no initial forces. 71-75 Scale factor to be applied to initial element forces.

-15 - CfHAlPTER 'TREE INP UT D4ATA AND SAMPLE RESU.ILTS FOR A SEVEN SITORY,'STRIJCTfJPRJ, FThe two diinensional frame wall struccture shlown in Fig. 5 is used to demonstrate the inclusion of shearwall element EL7 in the DRAIN-2D program. The data given in Table 1 is prepared for the time history response analysis of thle structure for the first ten seconds of EL CEN[RO( 1940 N-S with maximun acceleration magnified to 0.42g. The sample results (Table 2) from the computer output give the yield code, force and deformation in each comlponent of the shnearwall irl each story at the end of 10.08 seconds. The envelopes of deformations and forces in all the elements of the structulre, at the end of 10.1 seconds of the chose-n.-earthquake motion, are also given. A detailed analysis and discussion of the computer results will be reported separately. The structure shown in Fig. 5 represents a seven story frame waTll structure analyzed in References 1 and 6. The gravity load, nodal masses, danping coefficients, stiffness and yield properties of columns and beanms are taken as such from Reference 1. The properties of the shearwall. element are calculated separately according to the requirements of the proposed model of the shearwall. The material and cross-sectional properties (dimensions and area of reinforcemnent) are taken from References 6 and 13. The horizontal members indicated by dashed lines (Fig. 5) are the pin-ended link beams (i.e. beams having zero bending stiffness) transferring horizontal forces, but no moments. A zero value of bending stiffness indicates error in the execution of beam column element (EL2) subroutines. Therefore, the moment of inertia for these beams have been assigned a value of 0.25 which is negligible as compared to the stiffness of other members.

-16 - The input cards for the structure shown in Fig. 5 are listed in Table 1 and are identified by the correspondinrg sections in the iJser's Guide (Ref. 11). Both columns and beams are represented by elenent EL,2 in group 1 ain the shearwall elements are represented by elenent TL7 in group 2. Node -nunbers are shown neair thze nodes and the element nlmbers are slhown inl circles near the middle of the inembers. The iraits of force (load) and le-pgth are taken as kilogriins and centimeters respectively for athe preparation of data.

-1 7 - TABLE 1 DATA FOR A SEVEN STORY STRUCTURE START RESPONSE OF SEVEN STORY G56 21. 7 1 7 12 0.0 0.0 2 OO.0 O.0 3 1100.0 0.0 4 1700.0 0.0 5 2300.0 0.0 6 3 t50.0 0.0 7 4000.0 0. 8 0.0 375.0 9 600.0 375.0 10 1 100.0 375.0 11 1700.0 375.0 12 2300.0 37 5.0 13 3150.0 375.0 14 4000. 0 375.0 50 0.0 2175.0 51 600.0 2175.0 52 iloo.o 2175.0 53 1700.0 2 175.0 54 2300.0 2175.0 55 3150.0 2175.0 6; r n 1 17!- n FRAME-WALL STRUCTURE. 2 0.A. 131 -- --- - -- 132 ZJ VJ. v. 4....~ v 8 50 5 7 9 51 5 7 10 52 5 7 33 11 53 5 7 12 54 5 7 13 55 5 7 14 5 5 7 $ ' 1 1 7 1 134 1.1 8 9 10 11 12 13 14 1 7 15 16 17 18 19 20 21 1 7.22 23 2.4 25 26 27 28 1 7 29 30 31 32 33 34 35 1 7 3G 37 38 39 40 41 42 1 7 43 44 45 46 47 48 49 1 1 50 5 t 52 53 54 55 56 1 0.0 0.0 0.0 7 1 981.( 8 14490.0 14490.0 0o0 43 7 981.0 9 265G5.0 26565.0 0.0 44 7 91.(0 10 26565.0 26565.0 0.0 45 7 981.( 11 14490.0 14490.0 0.0 46 7 981.0 12 144190.0 14490.0 0.0 47 7 981i. 13 53130.0 53130.0 0.0 48 7 98.0 14 14490.0 14490.0 0.0 49 7 981.0 50 14250.0 14250.0 0.0 53 3 981.0 51 26125.0 26125.0 0.0 52 t 981.0 54 141250.0 14250.0 0.0 56 2 981.( 55 52250.0 52250.0 0.0 8i0 1 7.505 0.02 1300.0 1.0 1.0.0 2%000 8 010 -8728. 0.0 50 7 11 0.0 -8728.G 0.0 53 7 9 0.0 -15984.0 0.0 51 7 1O 0.0 -15984.0 0.0 52 7 C2 12 0.0 -4849.2 0.0 54 7 14 0.0 -4849.2 0.0 56 7 13 0.0 -8078.4 0.0 55 7 185 0 1 1 ELCENTRO 1940 FIRST TEN SECONDS MtAX ACC=0.429 0.0 0.0 0.01 0.011 0.04 0.001 0. 10 0.016 0. 1G-0.000 0.22 0.019

-18 - 0.26 0.000 0. 58 0.043 0.79-0.057 1.07 -0. OG7 1.4 1-0.083 1.70. 236 2.27 0. 263 2.65 0.208 3. 13-0. 155 3.60-0.036 4.06-0.0 44 4,62 0.257 5.11 0.218 5.45,0.172 5.8 1-0.023 6.09-0. 067 6.28 0.021 6.48-0.003 6.64 0.037 6.81 0.01 7. I 4-0. 02G53 7. t 0.011 7. 6 4-0. 028 7.88-0.072 8. 13-0.034 8.46-0.037 8.86 0.023 9. 12 0.09G 9.51 0.042 a Acb n nqo 0,29 0.006 0.62 0. 00 0. 87-0. 023 1. 07-0.038 1.44-0. 095 1.80 0.143 2.32-0.298 2,71 0.109 3.2 0.007 3.67 0.037 4.11 0.022 4.67-0.205 5.20 0.027 5.5t-01 t02 5.87-0.057 6. 13 0.001 6. 33 -0.006 6.52 0.004 6. G69 0.046 6.85 0.002 7. 15 0.003 7.43 0.019 7.67-0.020 7.9G-0.014 8.20-0.013 8.53-0 034 8.88-0,026 9.15 0. 125 9. G3-0.094; i n') - I'7 4 0. 33-0.001 0.66 0.014 0. 87-0 034 1.09-0.043 1. 48-0. C89 1.85 0. 178 2.39 0.005 2.77-0.033 3.25-0.206 3.74-0.074 4.22-0. 197 4.76 0.061 5.23 0. 125 5.61 0.014 5. 88-0.033 6. 17 0.049 6. 37-0.0 GO 6. 53-0.004 6.71 0.039 G.91 0.009 7. 17 0.027 7.46-0.025 7.69 0.007 7.99-0.006 8.22 O.OG6 8.60-0.010 8.9 1-0.002 9.25-0.033 9.70 0.082 In nc;-n n^f 0.37 0.020 0.72-0.009 0.94-0.040 O 1. 17 0.090 1.5 1-0. 108 1.92-0.26 2.45 0.287 2.89 0. 103 3.39 0.193 3.83 0.031 4.31-0. 17G 4.83-0, 273 5.30 0. 129 5.69-0. 195 5,92 0.022 6.19 0.015 6.38-0.0 16 6.56-0.010 6.73 0.001 6.99-0. 100 7.23 0.058 7.53-0.035 7 '75-0.005 8.00 0.022 8.28 0.031 8.64-0.026 8.96-0. 185 9. 29 -0. 04 't 9,81-0.088 in q-nc n99 0.43-0.024 0. 72-0.02 o 0.94-0.060 1,32-0, 170 ~.54 0 C 3. 128 2.01-0.319 2.52-0.047 2,98-0.030 3.42-0.094 3.90-0. 183 4,42 0. 146 4.97 0.178 5.33 0.109 5i 77- 0.02 5.98 0.011 G. 19-0.020 G. 41 0.020 G6. 58-0. 002 Go 77O0.029 7.07 0.03G 7. 30-0.049 7.57 0.004 7. 79-0.060 8.07 0.047 8.33 0.025 8.73o 0.153 9. 05 (0.126 9.43 0. 130 9.90 O0.OOS l( Ii A An 0.47 0.008 0.79-0.039 1. 3 -0798 3 1.63 0. i4 2,21 0.295 2.57 0.152 3.0-7 0.052 3.53 0.171 4.01 0.023 5 o.34 0.024 5.80-0. 005 6.01 0.024 C.23-0.038 i.46-0.018 6.60-0.017 6.77 0.002 7.12 C).008 7.37 0.0 o 0C) 7 ~60-0.0G3 7.84-0.036 8.13 0,026 8.40 0.035 8.82-0.003 9.09 0.032 9.44-0. 166 9.94-0.001 C3 a') 1 — u. 0 0 9 v.4 V I. 49 0.00094 4 4 50 7 8 15 22 29 2 84 '5 3 1 245625.0 ( 2 245625.0 3 245625.0 4 245625.0 5 245625.0 t 0.0 2 0.0 -: 3 250.0 1 1 2318327.3 2 1 1159163.6 3 3 4475018.2 4 3 2237509.1 1 t 0.0 2 1 0.0 3 1 0 4 1 0.0 5 t 0o0 6 1 0.0 7 1 0.0 I 1 8 7 8 2 9 7 15 3 10 7 22 4 11 7 29 5 12 7 36 7 14 7 43 8 9 7 0 0 36 43 4 7 0.900 5C O 900 2 -3.627 3C 03.627 E 0.G27 4C 0oO 250.0 0.0 4.73 1327.3 2365663.6 4475018 o 2 2237509,1 0.0 8378.0 6980.0 1344.0 1120.0 5456.0 846.0 1 1 2 1 2 1 3 1 C4 50 D 0 300. 0 iO0.0 )00.0 500.0 )00.0 0.0 0.0 0.0 285035.0 142517.5 225680.7 112840.3 0.25 0.0 0.0 0.0 4.0 4.0 4.0 4.0 o 4.0 4.0 4.0 4.0 4.0 2.0 2.0 2.0 2.0 1183636.4 591818.2 0.0 1032800.0 71GOO0.0 164400.0 114200.0 740100.0 114600.0 3 3 3 3 3 3 3 3 4 4 4 4 i 1 2618 18.2 130909. 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I 1 I I 1 2.4 0.37 2.4 0.37 2.4 0.37 2.4 0.37 0.0 0.0 8378.0-1032800.0 6980.0 -716000.0 1344.0 -164400.0 O 1120.0 -114200.0 5456.0 -740100.0 846.0 -1 14600.0 I I t10 1.0O I 1 1.0 1.0 I 1 1.0 1.0 $ I 1.0 1.0 I 1 1.0 1.0 I2 1.0 1.0 2 4 1.051.275 1.0 1.0 1.0 1.0 1.0 1.0 1.0 E2

-19 - 50 9 10 57 t0 1i 64 11 12 7; 12 13 78 13 14 84 5'5. 5, 7 7 4 I 1637500.0 io 2 204687'5.0 1t 3 5895000.0 5; 4 7368750.0 G3 1 0! 25i450E 2 0. 1509001 3 0. 144800E 4 O. 138600E 5 0. 132290E 0. 125870E 7 0. 119340E 1 80()000.0 2 0000000 o I 12GG66.8 2 12G676.8 3 t 144845.0 4 144845.0 139000000.0 236 10000.0 333200000.0 4 3300000. 0 527400000.0 6246 0000.0 ( 72 16 00000.0 1 333424.() 2 333424o.0 I -5 7 10.0 2 -49380.0 '3 -4 11500 -4 -32920. () 5 — 24690.0 6 - 16460.0 7 -8230.0 I 6 13 2 13 20 3 20 27 4 27 34! 5 34 41 (3 t1 4I 8 7,48 55 STOP 7 3 1 7 3 1 7 5 1 7 4 2 7 4 3 7 4 3 7 2 4 47375().0 842187.5 305500.0 331875.o0O t1 0.02 gIt 0.02 11 0.02 1t 0.02 11 0.02 11 0.02 O. 02 0.02 0.0859 0 0.0688 0 0.0273 0 0.02 18 0. 00237 O 0() 01 7 O. 18O I 48 O. 0() 178 0.00 175 0.0O0172 0. 4 1('7 0. 333 4 -57(; 10.0 -49380).0 -41150.() -32920.0 -o24690. 0 - 16460.() -8230.0 50(). 0 1 3 500.0 2 4 500.0 2 4 ' 50(0.0 2 4, 500.0 2 4 500. 0 92 1 500.0 2 4' 1 1 2 2 7 0.02 0.02 0.02 0.02 t I 2 2 2 2 '1 I I I 0 0 7 3 5 1.051.275 2 4 1.051.275 1 ' 1.0 1.0 G I7 1.051.275 6 7 1.051.275 G '7 1.051. 275.0773.06 '19.0246.019G E7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I 1 2 2 3 2 4 2 5 2 2 7 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 3 1 1 2 4 2 2 2 4 3 2 2 4 4 2 2 4 5 2 2 4 7 2 2 4 7 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O 0 0 1 0 0 1 0 0 1 0 0 1 O O0 1 O 0 1 O 0 1.0 1.0 1.0oO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.O 1.0 I 1.08 2 1.08 3 1.08 4 1.08 5 1,08 G 1.08 7 1.08 ____ G

TABLE 2 SAMPLE RESULTS yrSULT FO CGOCUP 2 SXEAR WALL ELE~ENTS, TInE = 10.080 LEZ. O'W SODZ Is1 3 IsV 2LD CODE TOTAL FORCE/,OMENT TOTAL DEFORXTION. 2 13 20 Y IELD CODE TOTAL FORCE/nOMENT TOTAL DEFORMATION 3 20 27. Y IELD CODE TOTAL FOhCE/MOMENT TOTAL DEFORMATION 4 27 34 YIELD CODE TOTAL }ORCE/ZOMENT TOTAL D@EFOZATiO, 5 34 41 "ELD CODE TOTAL TCc/nOo T TOTAL VEYOMAT:.O4N 6 41 48 Y IEL CODE 10TAL FOhCE;/MO.IST 'EFT AXIAL XCHXT AXIAL IE'llh EE hE CENTHAL AXTIAL lOTATIONAL 110HOIZON'AL SP ' NG SPRI NG SPRING 5 -0.5h40.'04 0.51 58E-01 -0.6471 t+05 -0 3375E-01 3 -0. 4 536E05 -0.2039E-01 -0.3768E+05 -0-. 359 -01 -0,0111320s -04,1747-02 5 0 -0.4344E+o05 -0.18333 L06 -0.3901 -0.1136~E00 -0.3110E-01 -0,3307E -0.5509E+0 5 0.6375E-03 3 -0;3057E+05 -0. 139be-01 3 -0.2047E+ 05 0 -0.1220E 06 -0.1656E-01 0 -0.31 0 -0.5927E 3 3 E+07 0.b6I7TE04.-03 0.3723E-01 3 3 E.+*07 O.1413EZ05 r-03 O iSOU:E-O 1 3 3 E,+'07 0.3771E.*0,-03 O. fl4 2 E-02 -0.1266E+06 -0. 171 9E-01 0 -0.9291E+05 -0.2266 -O.51 1 E 3 -0.1 906E07 -0.49q4qE-o3 -O. i i 6 3E-O -0.1261E-01O 3 0 3 0.2553E4 05 0.29717j-O1 -0. 1 4 70;-O 5 O -0. 6bZ O5 -f.59 E.A0 -0-12-7118-01~ - -I ' ", LE aMv ",A -AVl~ we-05S~ 1i 0.0.2363~,40S -.a22 10)*0.5 -0. 3417:;.05 -O. 41C:40? -0. IO. O $ ';;"0

TOTA L oo;i Yo ChAI.,0 -0.59io, -02 -0.331 0E-02 -0.4S37 -2 -05 '19F.-03 -. o0 '-01 7 4 6 51S." I ELD CODE 3 3 0 3 0 TOTAL FO RCE/rO,", f NT -0.1475E+05 -0.1 22tiL+O 5 -0.%280~+05 -0.1421L.07 -0.6(~32}:, OU TOTAL DfIrOR~ATIOl~ -0.2368E-02 -0.1%06E-02 -0.1767E-02 -0.~%411-03 -0,6032E-02 ~,~ODAL OI2PLAC)~E~T ENVELOPES, TI~E = %0.100 X-D] 5?LACEM, E I~T ~-D! 5P LACE~ EN'; IiOTA'i] 01~;,ODE;~05171VE TiI~E NEGATIVg TII~E POSITIVE Tlnl[ };ZGATiVS Ti~?: POSiTiVZ TII~ i; 14F. GA:] VE llr, E 0,0 0.0 0.0 0.0 0.0.0 0,0 0,0 0,0 0,0 0,0 0,0 2 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 ~.0 3 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0.0 0.0 0.0 0.0 0.0 0,0 0.0 5 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0,0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 2.952 5.92 -3.03:~ 2.76 0-0.0 -0.055 2,6q 0.00671 2.7~{ -0.00807 5.92 9 2,,952 5.92 -3.03t; 2.76 0.0.0 -0.050 2.62 0.00567 2.?q -0.00556 5.92 10 2.952 5.92 -3.03~; 2.76 0.0.0 -0.0[~0 2.20 0.00537 2.7q -0.00583 5.92 11 2.952 5.92 -3.034 2.76 0.0.0 -0.057 2.20 0.00708 2.7q -0.00692 5.92 12 2.952 5.92 -3.03~ 2.76 0.0.0 -0.069 2.64 0.00664 2.7q -0.00817 5.92 13 2.952 5.92 -3.03Q 2.76 0.0.0 -0.056 2.]0 0.00209 2,66 -0.00331 2.22 1~ 2.952 5.92 -3.03q 2 76 0.0.0 -0.071 2.20 0.00805 2.7q -0.00675 5.92 15 5.082 5.92 -ti.924 2.74 0.0.0 -0.093 2.6q 0.0046q 2.70 -0.00599 2.2q 16 5.082 5.92 -4.92~ 2.74 0.0.0 -0.13U 2.62 0.00{{33 2.70 -0.00452 2.2Q 17 5.082 5.92 -ti.92ti 2.74 0.0.0 -0.135 2,20 0.00'{]0 2.70 -0.0047~ 2.2ti 18 5.082 5.92 -t~.92ti 2.7q 0.0.0 -0.096 2.2~0 0.0054t~ 2.70 -0.00520 2.24 19 5.082 5.92 -ti.92q 2.74 0.0.0 -0.115 2.~'q O.00q3t{ 2.70 -0,00597 2.2z~ 20 5.082 5.92 -U.92u 2.7~ 0.0.0 -0.076 2..:i 0 0.00304 2.68 -0.00372 2.22 21 5.082 5.92 -~.924 2.7ti 0.0.0 -0.120 2.20 0.00539 2.70 -0.00492 2.2it 22 6.859 5.92 -6.405 2.72 0.0.0 -0.124 2.6q 0.00361 2.64 -0.00525 2.2ti 23 6.859 5.92 -6.~05 2.72 0.0.0 -0.]79 2,62 0.003113 2.6q -0.00361 2.2~ 2ii 6.859 5.92 -6.'{05 2.72 0.0.0 -0.180 2.20 0,00318 2,6q -0.001105 2.2q 25 6.859 5.92 -6.405 2.72 0.0.0 -0.127 2,20 O.00a50 2.6tl -0.00q35 2.2[1 26 6.859 5.92 -6.ti05 2.72 0.0.0 -0.15ix 2.62 0.00323 2.6q -0.00513 2.2~4 27 6.859 5.92 -6.t405 2.72 0.0.0 -0.0~1 2.12 0.00323 2.66 -0.00405 2.22 28 6.859 5.92 -6.~05 2.72 0.0.0 -0.161 2.20 0.00q39 2.6q -0.00396 2.2~ 29 8.302 5.92 -7.ti~q 2.70 0.0.0 -0.1q8 2.6tl 0.00320 2.6u -0.00~97 2.22 30 fi.302 5.92 -7.4t~q 2.70 0.0.0 -0.215 2.62 0.00311 2.6q -0.00360 2.22 31 8.302 5.92 -7.t~iq 2.70 0.0.0 -0.217 2.20 0.00209 2.64 -0,003~2 2.22 32 8.302 5.92 -7.4t14 2.70 0.0.0 -0.152 2.20 0.00'{06 2,6it -0,00~110 2.22 33 8 302 5.92 -7.~q~ 2.70 0.0.0 -0.1u6 2.62 0.00278 2.61i -0.00q80 2.22 3q 8.302 5.92 -7.tit~q 2.70 0.0.0 -0.103 2.12 0.003q1 2.64 -0.00t125 2.22 35 8.302 5.92 -7.tl~q 2.70 0.0.0 -0.193 2.20 0.00390 2.6~1 -0.00365 2.22 36 9.628 5.92 -~.~al 2.68 0.0.0 -0.11,6 2.64 0.00332 2.6{4 -0.00t~66 2.20 37 9.628 5.92 -8.qtil 2.68 0.0.0 -0.2t~2 2.62 0.00321 2.6~1 -0.00330 2.20 38 9.628 5.92 -Ij. ~itil 2.68 0.0.0 -0.2qq 2.20 0.00296 2.6,4 -0.00355 2.20 39 9.628 5.92 -8. t;{~l 2.bB 0,0,0 -0.171 2.20 O. 00'{ 2(, 2.6q -0.00371 2.20 t~O 9.626 5.92 -8.~1 2.o8 0.0.0 -0.209 2.62 O. 002i~1~ 2.6q -0.00t~5 2.20 ql 9.~,2e 5.92 -B.~I 2.t, 8 0 0.0 -0.111 2.12 0.0035q 2.6~ -U.00~2] 2.22 42 9.628 5.92 -P.qal 2.68 0.0.0 -0.217 2.20 0.00t~09 2.6{{ -0.00322 2.20 ~3 10.81%~ 2.22 -9.5~q 2.66 O.O.0 -0.17~ 2.Iq 0.0032it 2.6~ -O.00a~3 2.20 a4 10.88q 2.22 -9.51~{ 2,b6 0.0.0 -0.200 2.62 0.00306 2.l'~z -0.0033q 2.20 ~5 10.~6q 2.22 -9.5~ 2.(6 C,.O.0 -0,2t, 2 2.20 0.00293 2.6~$ -0.003~7 2.~0 I l' I

46 10. 614 2.22 2 -9.54 47 1C.U84 2.22 -9.524 4;e o10.68 2.22 -9.54 49 10 64, 2.22 -9.54 4 50 12.152 2.20 -10.625 51 12.152 2.20 -10. 62 52' 1.1 52 2.20 -10.625 53 12.152 2.20 -10.625 54 12.1.52 2.20 -lC.625 55 12.1 52 2.20 -10.625 56 12.152 2.20 -10.625 IRESUL'S FNVELOPES, EL ENTT GRCU 1 BEA. COLUMN ELEr.ENTS (TYPE 2) 2.06 e. t.( 2 * 6It 2. (66 2.60 2. t L 2.66 T!r.; = 0. C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.O.0 O.0 0.0 0.0 0.0 0.0 O, 0.0 0.0 0.C 0.0 -0. 103 -C.22t. - 0 11 7 -0. 233 -0. 1 b04 -0. 26, -0. 271 -0. 1 U9 -0.232 -0.2141 2.20 2.62 2.12 2.20 2.64 2.62 2.20 2.20 2.62 2.12 2.20 0. 00393 0.0 C2T 9 0. 0 C 5 8 C. 00384.001 70 0.0CC210 C0.001 b 0 0 U 3 7 1 0.00070 0.00357 G.0031 1 2.64 2.64 2 * 6 2 2 * 62 2.t, 2 2.b2 2 * 0 2 2. 62 -0. 00378 -U. u0 1 2 -0. 001 t 7 -0. 024 5 -0.00212 -0.00342 -0.00410 -0.00099 2.20 2.20. 20 2.20 2. 2 0 2.18 2.10 2.10 2,18 2. l 3 ELEM NODE NO. NO. 1 1 POSITIVE NEGATIVE 8 POSITiYV H GATI Y E BE 1DI NG nO5rE NT 5791036.C00 -6635738.C0 2706110.00 -4208790.60 2 8 POSITIVE 561257.81 NEGATIVE -1936843.00 15 POSITIVE 1250675.00 NEGATIVE -2435536.00 3 15 POSITIVE NEGATIVE 22 POSITIVE lEGATIYE 899546.38 -1908390.00 1263618.00 -2325099.00 4 22 POSITIVE 590757.38 NEGATIVE -1 4 3 7764. 00 29 POSITIVE 696180.90!;[GATIVE -1454689.00 TIME 5.920 5.920 2.2 6 0 2.260 1.940 2.200 2.260 2.60C 2.260 2.700 2.220 1.900 1,920 2,1 6 4 0 2.240 2.660 2. 200 2. 60 2.180 2 620 5H1EAN FOUCE 22872.43 -28918.70 28910 70 -22b72,43 5635.31 -14 574 49 lq457u 4 9 -5635.31 7210.60 13_, 90.00 -7210, 4 0209.92 -963B 27 9 630 27 -4 29 9 2 39 1, 36 -1 1 450 9 11450.09 -391 0, 3 6 3[177 39 -1007. 604 1 00 7, 8 4 -3u77.39 -13629. 7 13629.76 - 20ri5( '10q TIM E 5.920 2.760 5.920 2.200 1.9 10 1.91 0 2.200 2.200 2.7C0 2.7'00 2.260 2.220 1.900 1.900 2.22 0.2 2 4 2 660 2, (6 C 2. 2 1i 2.200 2. 0 2.6 0 2.200 2.180 2'.620 2.62 2.100 AXIAL 181307.69 0.0 0.0 -181307.69 153129.31 0.0 1 00 -1 531 29 ~ 31 126302.69 0.0 0,0 -: 26302.9 100210,94 0.0 0,0 -10021 0. 9 74 7 1 4.81 0.0 0.0 -7471 4. 1 0094 7. 5 0.0 -48947656 23309.20 0.0 0.0 -23309.26 TIn E 2.640 0.0 0.0 2.640 2.640 0.0 0.0 2.640 2.640 0.0 0.0 2.0640 2.640 0.0 0.0 2.640 2.6440 0o0 0.0 2.640 2.6 40 0.0 0.0 2.640 2.640 0.0 O.0 2.6(,40 0.0001 3 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 PL BINGE HOTATION T 1nE ACCU0. hOTATIONS 5.920 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.0 0.0 0.0 5 29 POSITIVE NFGAT1V FE 36 FOSITIVE NICATI VYE 6 36 POSITIVE N}G ATIVE 413 SIT I VE N E GAT IV E 7 4 3 POSITIVE N EGATIVlE 50 PoSITIV E I [LGAT1V F 571 39 4.63 -1733150.00 645759.13 -1 722449.00 466442.75 -1 505192.00 576758. 50 -1521 10. 00 300053.50 -16863(0. 00 432601. 50 -2002657.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.G0 0.0 0.0 0.0 0.0 0.0 0.00013 0,0 0,0 0,0 0,0 0,0 0,0 0.0 0.0 0.0 0.0 0,0 0.0 0,0 0,0 0,0 0.0 0.0 0.0 0.0 0,0 0.0 OC 0.0 0.0 0.0 0.0 O.0 0.0 O 0 a 2 POSITIVE 6739060.00 5,920.NGATIVl -7011049.00 2.760 9 FOI1TIVY 4662323.00 5.920 300',. 77 5.920 -31q21.,5 2.7',0 J1921.25 2.760 260591.50 L,620 0.0 0.0 0.0 0,0 0,0 0.0 00.0 0.0 0.0 0.0

NEGATIVE -4959413.00 9 9 POSITIVE N GA TIV E Itb POSITIVE NEGATIVE 10 16 POSITIVE NEGATIV E 23 po SITI VE NFGATIVE 11 23 POSITrVE NEGATIVE 30 PCSTTIYE NEGATIVE 33001 02.00 -2464765.00 3632522.00 -2886841.00 2952296.00 -2193005.00 3291444.00 -2604802,00 2565044.00 -1393828.00 2642853.00 -1 546828.00 2.7u0 2.220 2.600 2.2 (J0 2.680 2.260 2.640 2.260 2.700 2.220 2.640 2.220 2.620 -30405.77 5.920 -260591,50 23038.12 2.200C 222740.06 -17t3l o.71 2. J0a0 0,0 17830.71 2.600 0.0 -230 38.1 2 2.200 -222740.06 20812.47 -1 5715.70 15715.78 -20812*47 17359.66 -9782, 81 9782 81 -i7359.66 2.260 2.700 2.700 2.260 2,220 2.620 2.620 2,220 1 85032.b9 0.0 O.0 -185032.69 1l47708. 4q 0.0 0.0 -147708.44 2.,620 2.620 0.0 0.0 2.620 2.620 0.0 0,O 2.620 2.620 0.0 0.0 2.620 0.0 0.0 0,0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 30 POSITIVE 2369537.00 NEGATIVE -1859532.00 37 POSITIVE 2U94268.00 NEGATIVE -1825317.00 13 37 POSITIVE NEGATIVE 44 POSITIVE NEGATIVE 14 4 4 POSITIVE NEGATIVE 51 POSITIVE NEGATIVE 15 3 POSITIVE NEGATIVE 10 POSITIVE l EGATIVE 16 10 POSITIVE NEGATIVE 17 POSITIVE N EGATIVE 2241189.00 -1708038.00 22241 27.00 -1778539.00 2360943.00 -1671170.00 3040481.00 -2073201.00 664221 6,00 -7126182,00.4467039, CO -5109670.00 2063214.00 -2898602*00 3257471o00 -3261562 00 2.180 2.640 2.240 2.660 2.200 2.640 2.200 2.640 2.180 2.620 2.180 2.620 5,920 2 760 5,920 2.760 2.220 2.680 2.200 2.680 16203.11 -1 2246.1 5 12246.15 -16203.1 1 14884.41 -11621.93 11621.93 -14 f84 *. 41 18004.66 -12081.20 12U81.20 -10004.66 29624. 65 -32fl42. G 32842.26 -29624.65 20338.54 -20533. 88 20533.80 -20330,54 2.240 2 *., 640 2. 611 0 2.240 2.200 2.640 2.200 2.18 0 2.620 2.180 5.920 2.760 2.760 5 920 2.200 2.680 2.680 2.200 110570.06 0.0 0.0 -1 10570.06 73446.25 0.0 0.0 - 73 46.25 36378.52 0.0 0.0 -36378.52 2624uq4.56 0.0 0.0 -262444. 56 224369.06 0.0 0.0 -2214369.06 2.620 0.0 0.0 2.620 2.620 0.0 0.0 2.620 2.620 0.0 0.0 2.620 2.200 0.0 0.0 2.200 2.200 0.0 0.0 2.200 0.0 0.0 0.0 0.0 0,0 0.0 0,.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0O0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O. 0 0.0 0.0 O.0 0.0 0.0 0.0 0.0 0.0 o.0 o.0 o.o 0.o 0.0 n, I K) LA.) 17 17 POSITIVE NEGATIVE 24 POSITIVE NE GATI YE 18 24 POSITIVE NE'GATIVE 31 POSITIVE NEGATIVE 19 31 POSITIVE NEGATIVE 38 rOSITIVE NEGAT IV E 2626601.00 -2518229.00 2956479.00 -2941054.00 2230791,00 -1727955.00 2319058.00 -1070577.00 2045060.00 -2184121.00 21584 6100 -2161141,00 2 260 2.640 2.260 2.700 2.220 2.640 2.220 2.620 2.180 2.640 2.240 2,600 18610,96 -17934.59 1 7934. 59 -18610.96 15166.20 -11 975.68 11975, 68 -1 5 1 6,20 I 001 87 -144l7.49 1u047.u9 -14001. 07 2.260 2.700 2,700 2.260 2.220 2.520 2.620 2.220 2.240 2.64C 2 * 6 4 0 ' 2tJll 1 06238.75 0.0 0.0 -186238.7$ 148658088 0.0 0.0 -148658.88 111,200.94 0.0 0.0 -1 11200.90 2.200 0.0 0.0 2.200 2.200 0.0 0.0 2.200 2.200 0.0 0.0 2.200 0.0 0.0 0.0 0.0 0.0 0.0 0.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,.0 0.0 20 30 PoSjI.TVY 1949850.O0.200 13127.0 2,200 73807.13 2.200 0.0 UO 0.0

.N E A 7I V F: NEGATIVE ' GA T7I V E 52 'S I TI V E ELGATI V. 22 4 POSITIVE N S CAT I V Y NEGATIVE 11 POSITIVY: NEGATIVE 23 11 POSITIVE NEGATIVE 18 POSITIVE N. GATIVE 24 186 POSITIVE JEGATIVYE 25 POS1TI VE HEGATI VE 25 25 POSITIVE NEGATIVE 32 POSITIVE N IGATI V E 26 32 POSITIVE NEGATIVE 39 POSITIVE NEGATIVE 27 39 POSITIVE NEGATIVE 46 POSITIVE NEGATIV E 28 46 POSITIVE NI.GATIVE 53 POSITIVE N ATIVE 29 5 POSITIVE N G T AIV E 12 POSITIVE NEGATIVE -1999379.00 l 9L479. CC -2014185.00 1 969559. 00 -206251 3. CO 2437700. GO -2675953.00 -6271622.00 -616679.00 3668E09. GO -3326552.00 2001456.00 -495282. 13 2529996.00 -1156056.00 2062369.00 -7145619 25 2470857.00 -1117609.00 1830595.00 -197763.69 1924106.00 -226710.38 182491 3.00 -479576.75 1936855.00 - 4 31342.38 1653349.00 -31 272.50 1621927.00 -475992.56 18111710.00 -14b722.00 26014555.00 -230933. 30 2604207.00 -332760B.00 1359740.00 -2124001. C 237684o94 -111 740, GO 633093.80 -1373937.00 472455.38 -1150q085. 00 67557. 1 9 -14041 O,,00 2.20i 2.~ 0 2.180 2.620 2.'1 bO0 2.t20 5.920 2.760 5.920 2.760 2.260 1.40 2.200 1.940 -1 337.5' 3 -;3127. 0 1 690.957 -i 79q ~ 79 % 57; 4 79 -14h<0. 95 26505.5 S -25320.1 25 320. { 1 -26505.85 1 4 7 00. 0 -SSC4.60 5 504.60 -14700. 0 2. 6 4 0 2.200 4.. 180 2.6.0 2.7 6 0 5.920 2.760. 760 5.920 2.200 1. 9'0 1.940 2.200 0.U 0.0 0.0 0.0 -73007.13 2.200 36479.90 2.200 0.C 0.0 0.0 0.0 -3647'J.90 2.200 0.0 G. 0.0 0.0 0.0 0.0 00 0.0 -0.00052 0.0 0.0 0.0 0.0 0.0 0.0 187459.01 0.0 0.0 -187459.81 157396.69 U.0 0.0 -157396.69 2.200 0.0 0.0 2.200 2.200 0.0 0.0 2.200 0,0 2.760 0.0 0.0 0,0 0.0 0.0 0.0 O. o 0.0 0.0 0.0 0.0 O.o 2.260 2.640 2.260 2. 2 t, 0 2.700 2.220 1.900 2.220 1.920 2.10C 2.640 20240 2.660 2,200 2.640 2.200 2.6140 2.180 2 * 620 5.920 2.760 2.760 2.260 1.t3 9 0 2.200 1.940 2. 2 6 0 2.6O10 2.260 2.700 15110.66 -$690.99 5690.99 12515.57 -1411.67 1411.67 -12515.57 12398. 2 4 -2968. 96 2968.96 -12398,24 10917.52 -2647.65 2647.65 -109 1 7.52 14820.52 -1 265. b5 1 2 1 5. i2 5 -1110720.52 11 317.25 -14537,7] -11317.25 2738. 6b -83,4. 4 b 6 3 04 4 6 -27 38.6t, 3 8 26. b -p 35O. 39 32',0. 3 1 -3e,.'). b 2.260 2.700 2. 7 00 2.2b0 2.220 1.900 1.900 2.220 2.240 2.660 2 e 260 2.0 0 2. 6 4 0 2 64 0 2.200 2.1 b0 2.620 2.620 2. 11 0 6. 92 G 2.710 2.760 5.920 1 29371.19 0.0 0.0 -1 29371.1 9 102724.94 0.0 0.0;-1 02724.94 76468.50 0.0 0.0 -76468.50 50237.088 0.0 0.0 -50237.08 23910,18 0.0 0.0 -23910.18 1121 85.38 0.0 0.0 -112185. 3 96022.06 0.0 0.0 -96022.06 79980.63 0.0 0.0 -799 0 b. b J 2.200 0.0 0.0 2.200 2.200 0.0 0.0 2.200 2.180 0.0 0.0 2.100 2.180 0.0 0.0 2.180 2o180 0.0 o.0 2.180 2.640 0.0 0.0 2.640 2.620 0.0 0.0 2.620 2.620 0.0 0.0 2. 20 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0o0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.1 0 0.0O 0.0 0. 0.0 G,O 0,0 0,0 0.0 0.0 0,002 0.0 0,0 0,0 0,0 0.0 0,0 0.0 0,0 0,0 0,0 0,0 0.0 0.0 0,0 0,0 0.0 0.0 0,0 0,0 0.0 0,0 0,0 O 0 0,0 0.0 0.0 0.0 0,0 0,0 0.0 0.0 0.0 0.0 O.0 0.0 0.0 0.0 30 12 POSITIVE N):GATI V E 19 POSITIVE HEGATI YVE 31 19 POSITIVE NhIGA 1 v E 26 POSIT1VE N F} ATI V E 2.200 1,914 1, 94 0 2.200 2.2 2,0 2.700 2.700 2.260

32 26 POSITIVE N LGATIV 33 POSITIVE F GATIV YE 33 33 POSITIVE N GA T IV 'E '40 POSITlYV NEGATIVE 3 4 4 O POSITIVE NF'CATIVE 147 POSITIVE N EiGATIVE 35 47 POSITIVE NEGATIVE 54 POSITIVE NF GATIV E 36 7 POSITIVE NEGATIVE 14 POSITIVE NEGATIVE 37 1 4 POSITIVE NH}GAT IVE 21 POSITIVE NEGATIVE 38 21 POSITIVE NEGATIVE 28 POSITIVE liEGATIV E 39 28 POSITIVE NEGATIVE 35 POSITIVE NEGATIVE 40 35 POSITIVE NEGATIVE 42 POSITIVE NEGATIVE 400538.911 -939776 * 9 459137 50 -980292.81 1 3 4 0 7.00 -116484 1.00 46062,42 4 -1160532.00 352670.56 -1026460.41; 377806.75 -1001277.38 354096.75 -1211507.00 563891.69 -1735760.00 3155786.00 -3059350.00 1892679.00 -1597519.00 1170002.00 -159909,38 1474652,00 -52801 8.69 1236610.00 -4 297 34. 25 1 46001 4.00 -618060.25 1233180.00 -153945.44 1260237.00 - 1 8 6 14 * 1 9 1225219.00 -358202.00 1291377.00 -333082.50 2.220 1.900 2.220 2.620 2.180 2.640 2.6 60 2.200 2.200 2.180 2.620 2.180 2,620 5,920 2.760 5.920 2.7 60 2,260 1.94O 2.200 1.9uO 2.260 2,640 2.260 2.700 1.900 2.220 2.620 2.180 2.610 2 ~ 2L 0 2.660 2865,65 -6277,1 4 6277.1 4 -21465.62 2035, 12 -7706,1 6 7706 1 6 -2835. 1 2 24 34.96 -6 7 59.0 C9 6759.0 -2 4 34.96 3060 02 -982,4 08 9824. ()08 -3060 02 1 3462, 5 -1 2 4 1 8.31 1 2 4 18 31 -134 (2, 54 8717 54 -2293. 1 2 2293.12 -8717. 54 9015.38 -32C0.65 3201.65 -9015.38 8370.03 -1 075. 1 1075.1 -83711. 03 8336.39 -2256.20 2256.20 -8336. 39 2,220 1.900 1,900 2.220 2. 24 0 2. G60 2.660 2.240 2,200 2.64:0 2.64 0 2.200 2.180 2.620 2.620 2.180 5.920 2,760 2,760 5.,920 2.100 1.940 1.940 2.1 0 2.260 2.700 2.700 2.260 63895.56 0.0 0.0 -63895b56 47792, 19 0.0 0.0 -477792,19 31 590.09 0.0 0,0 -31 590.09 15240.84 0.0 0.0 -1 524 0. 84 1 16728.75 0.0 0.0 -116728.75 99838. 31 0.0 0.0 -9983.31 83089.75 0,0 0.0 -83009.75 2.620 0.0 0.0 2.620 2.620 0.0 0.0 2.620 2.620 0.0 0.0 2.620 2.620 0.0 0.0 2.620 2,200 0,0 0.0 2,200 2,200 0.0 0.0 2.200 2.200,0C 0,0.200 0,0 0.0 0.0 0.0 0.0 0,0 0 0 0.0 G.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0,0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0,0 0,0 0.0 0,0 0,0 0,0 0.0 0,0 0.0 -0. 0001 8 2,760 0,0 0.0 0,0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0,0 0,0 00 0,0 00 0,0 0,0 0,0 0,0 0.0 0.0 0.0 0,0 0.0 0.0 0,0 0,0 -0.00018 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I Ux1 I 2.220 1.900 1.900 2.220 2.240 2,, 660 2.660 2. 2t 0 66399 38 0.0 0.0 -66399.38 49618 66 0.0 0.0 -49618.66 2.200 0.0 0.0 2.200 2.200 0 0 0.0 2.200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 '.0 0.0 0.0 0.0 0.0 0.0 0,0 0,0 0.0 0.0 0.0 0.0 0.0 141 42 POSITIVE NEGATIVE 49 POSITIVE NEGATIVE 42 49 POSITIVE NE GATIVE 56 POSITIVE N}.GATI YVE 1130864,.00 -261346. 25 107286(u 00 -320738.19 1 325412.00 -216'893. 56 1902575.00 -400707.19 2.200 2.6(40 2.200 2.640 2.1 80 2.620 2,200.620 73:45.74 -1 9140.3 191 0. 32 -7345.74 10749.03 -21 59.02 21 59.02 -10 7119 03 21918. 88 -161 3 25 2,200 2.611 0 2.6440 2.200 2.1380 2.620 2.620 2.180 2.7140 5.920 32806.83 2.200 0.0 0.0 0.0 0.0 -32806.03 2.200 15816.00 2.200 0.0 0.0 0.0 0.0 -1581b.00 2*200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00031 0,0 0.0 0.0 2. 740 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.00O127 43 8 POSITIVE 4802300.00 2.740 IEGATIVE -2541438.00 5.920 -0.00096 5.920

9 POSITIVE 204246. C00 2.740 NI:GATIVl -4732507.00 5.:!2 ' 22t,33.3u 5.920 -6 08.3; 2.74; 44 15 POSITIVE hI C ATI' V 16 ()01TIEI NE GATIV Z 385C005.00 -1664791.00 120q4926.00 -3999999.00 45 22 POSITIVE N EGAT IV 23 POSITIVE:NEGAT' VE 46 29 POSITIVE N 'ECAT IV E 30 POSITIVE NEGA YTIVE 47 36 POSITIVE NEGATIVE 37 POSITIVE NEGATIVE 48 43 POSITIVE NEGATIVE 44 POSITIVE: GATI YVE 49 50 POSITIVE NEGATIVE 51 POSITIVE NEGATIVE 50 9 POSITIVE NEGATIVE 10 POSITIVE NEG ATIVE 51 16 POSITIVE NEGATIVE 17 POSITIVE Nt:G ATIVE 3312407.00 - 254 1 77. 00 9C8 70.63 -3575961.30 311 1903.00 -1094801.00 506777.; -3429487.00 3182333.00 -911991.44 5746875.94 -3248698000 3147233.00 -822169.69 51 21.1 3 -3209489. 00 2402756.00 -432547.50 0.0 O. O -2603655. 00 4568877.00 -2651884.00 2577103.00 -471 3545.00 3712096.00 -2130734.00 18662087.00 -3903373.00 2.700 2.2 C 2, 700 2.240 2.640 2.2 40 2.64 2.40 2.640 2.220 2. 4 0 2 220 2.640 2.200 2 6 640 2 * 200 2.640 2,200 2.640 2.200 2.620 2 6 2 0 2.1 a 0 0.0 2.180 2.740 5.920 2.7114 0 5.920 2.700 2.240 2.700 2,240 1e835. 31 0.0 199(1. 91 0.0 2.7(00 0.,0 2. 2;i 0.0 0.0.O0 0.0 0.0 0.0 0.0 0.0 C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.0 0.0 0.0 0.0 0.0 t17182.S 0.0 0.c 16 5; *,76 0.0 18050.7 0.0 16772. 32 0.0 174q45.08 0.0 16619. 3 0.0 17229. 70 0.0 1 4 37.9 4 0.0 15570.60 0.0 23048 92 -S974.1 b 23487.34 -55)3:,.* 3 19913.55 -34 7.40 21001.00 -21100. 00 2. 6'. O 0.0 2 * 240 0.0 2.640 0 0 2.220 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.O0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0.0 0.0 ( 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2. 61 0 0.0 2.200 0.0 I 2.640 0.0 2.200 0.0 2.620 0.C0 2.180 0.0 2.74 0 5,920 5 e 92 0 5.q)20 2.740 2.700 2 27 4 0 2,21140 2.24 0 2 e 7C 0 0.0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.0 0.0 0.0 0.0 O 0 0.0 0.0 0.0 0 0 0.0 -0.00164 0.00115 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 9 20 2,740 0.0 0,0 0,0 0,0 0,0 0.0 0.0 0.0 0.0 0.0 -0. 001 64 0,00115 -0.0;026 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 52 23 POSITIVE 3099904 o00 NEGATIVE -1664632.00 24 POSITIVE 1250t31.00 NEGATIVE -35141 42.00 2. 640 2. 240 2.640 2.2ao 1 7 5 7. 89 -1 601.11 1911o.71 0.0 O e O 2. 640 2,240 0.0 0,0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (0.0 00 0.0.O0 0,0 0.0 0 0 53 30 POSITIVE NEGATIYVE 31 PCOSITIVE N}:GATI VYE 22891547.00 -1516137.00 1 0t7 202. 4 -3360496G00 2.640 2.220 2.640 O.. 1663'.32 -996.4 42 18510.0 0.0 2. 61 0 2.220 2.220 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0.0 0,0 0.0 0.0 O.^ 0.0 54 37 POSITIVE N C A TI V E 38 IC.(:5 ITIVE N GATIVE 2947763.C0 -13203 1.00 1098090.00 -3170405.00 2.6 4 0 2.200 2.6Q0 1 6840. S I 1 7 7 37. 5 ( 0.0 2.640 2.2 00 2. 2(0 0.0 0.0 0.0 0.0 0.0.O0 0.0 0.0 0.0 0C.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 OUC'

55 4. POSITIVE,E.CGATIVE 45 POSITIVE NEGATIVE 56 51 POSITIVE NEGATIVE 52 POSI TIVE N FGA IV F 57 10 POSITIVE NEGA TIVE 11 POSITIVE NEGATIVE 58 17 POSITIVE NEGATIVE 18 POSITIVE NEGATIVE 59 24 POSITIVE N GATIVE 25 POSITIVE N EGA TI VE 60 31 POSITIVE NEGATIVE 32 POSITIVE N LGATIV E 61 38 POSITIVE NEGATIVE 39 POSITIVE NEGATIVE 62 45 POSITIVE NEGATIVE 46 POSITIVE NEGATIVE 63 52 POSITIVE NE GATI VYE 53 POSITIVE NEG ATIVE 64 11 POSITIVE NEGATIVE 12 POSITIVE NEIGATIVE 2872054.00 -13161 3. 00 1 0;e8833 00 -3139429.00 2173556.00 -436491.0C6 249901.75 -2360174.00 4646611.00 -2118704. 00 247551S5.00 -4868201.00 3747863.00 -1 455257.00 1407535.00 -41 26766.00 3209063.00 -1057772.00 865458.56 -3701159.00 3001395.00 -936836,81 630564.94 -35761 73,00 3051620,00 -772126.50 704427.19 -3389928.00 2968326.00 -759349,31 564566.06 -3404876.00 2426122.00 -77330.19 230999.44 -2604321.CO 4,62 -4 53 4,37 -1294049.00 3. 18 -3, 40 2.9S -1294049.00 2.60 -2.89 2. 34 2.6 40 2.200 2.b 40 2,200 2.62G 2.180 2.620 2. 80 O 2 7; 0 5.920 2,740 5.920 2.700 2.240 2.700 2.240 2.640 2 2.210 2.640 2,2 40 2.640 2,220 2.640 2.220 2.640 2.200 2.640 2.200 2,640 2.200 2.6 40 2.200 2.620 2.1 80 2.620 2.1800 2.740 5.920 2.740 O.0 2.700.2. 0 2.700 0.0 2,6O40 2.240 2.64u0 16 598.57, -1 51.40 17 67, 99 0.0 13603.71 0.0 1 4 350.1 0.0 22380.52 -1134.70 22154. 3 -1 359.96 19102.63 0.0 19813.63 0.0 17301.18 0,0 18441.80 0.0 2.640 2.200 2.200 0.0 2.620 0.0 2.180 0,0 2.74 0 5.920 5.920 2.740 2.700 0,0 2.240 0.0 2. 640 0.0 2,.240 0.0 16563.56 0.0 18031.95 0.0 16770 38 0.0 17447.01 0.0 1639,8 45 0.0 17450.64 0.0 1 938. 8 1 0.0 14979.70 0.0 0.01 -0.02 0,02 -0.01 0.01 -0.01 0.01 -0 01 2. 64 0 0.0 2.220 0.0 2.640 0.0 L2.200 0.0 2, 6t 0 0.0 2.200 0,0 2.620 0.0 2.180 0.0 2.74u0 5. 920 5,920 2.740 2.700 2.240 2.240 2.700 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 U.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ":0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0o0 0.0 0.0 0o0 0.0 0o0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00068 2.740 -0.00059 5.920 0.0 0.0 0,0 0.0 0,0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0O0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.00068 -0001 27 0.0 0,0 0,0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0 o0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.C0 65 18 19 POSITIVE N GATIVE POS T I YE NEGATIVE 66 25 POSITIVE N:GATIV 26 POSITIVE 0.01 2,64 0 -0.01 2.240 0,01 2,240 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.0 0.0 0.0 0.0

ItL^AT AYE -1294049. 0C 0.0 0-0.0 1 2.6;0 0.0 0.0 0.O 0.0 67 32 POSITIVE:.; CA T V E 33 POSITIVE N' GATIVE 68 39 POSITIVE.N EATIV E 4{0 POSITIVE NEGATIVE 69 46 POSITIVE N:G AT!VE 47 PCSITIVE N:FGATIVE 70 53 POSITIVE }FGATIVE 54 POSITIVE NEGATIVE 71 12 POSITIVE NEGATIV YE 13 POSITIVE NEGATIVE 72 19 POSITIVE NLGATIVE 20 PSITI VE NEGATIVE 73 26 POSITIVE NEGATIVE 27 POSITIVE N EGATIVE 74 33 POSITiVE N E GAT IVE' 34 P(OSITIVE N FGATIVE 75 40 P()SITIVE NFGATIVE 41 POSITIVE NGA T 1 V 76 47 POSITIVE NFGATI 'YE 48 PTSITIVE N. G, TVE 77 54 POSITIYVE NYGATAIVE 55 POS I T I V N' G AT IVE 2.35 -2. 74 2.08 -1294049S. CO 2.46 -2.53 2.18 -1 294104'2. 00 -1 29404L9.00 1 909.80 -1.67 1.18 -1 294 049. 00 2526301 00 -1199091.00 427213.44 -2513790800 2324022.00 -859700.88 409352.75 -2485159.00 218321 21.00 -800621,31 380585.19 -2511271.00 2139563.00 -78 7506.81 401774. 50 -2532642.00 2167610.00 -715175.38 422498.63 -2500646.00 2190312.00 -7010(,6.69 437847.19 -289566. 00 1735701. CO -531 64. 00 100853. 50 -2437771,00 2.t 0 2.2 2 C 2. 6 0 0., 0.01 0(. O1 -0.01 2. (.,;0 2.2 '20 2.6 6. 0 0.0 0,0 0. 0 0.0 0.0 G.0 0.0 0.0 2.640 2,200 2.640 0.0 2. 6 0 2.200 2.640 0.0 2.620 2.100 2.620 0.0 2.740 5,920 2.700 5.920 2.680 2.240 2.680 2. 220 0.01 -0. 01 0.01 -0. 01 0.01 -0.01 0.01 -0. 01 0. C0 0. 01 -0.00 11697.54 0.0 12995.03 11362. 86 0.0 12375. 6 0.0 2.6 4 2.200 2.20C 2.6 40 2. 6; 0 2.200 2.200 2. 640 2.620 2.100 2. t80 2.620 2.720 0.0 5.920 0.0 2.680 0..0 2.220 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0,0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 C.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.00201 0.0 0.0 -0. 00148 0.00016 0.0 0.0 -0.00103 2.740 0.0 0.0 5.920 2.680 0.0 0.0 2.220 0.00201 -0. 00161 0.0 -0.00148 0.00016 0.0 0.0 -0.00103 ciO I 2.640 2.220 2.640 2.220 2.6 4 0 2.220 2.6 4 40 2.220 2,.640 2.200 2.640 2,220 2.640 2.200 2. 6 4 0 2.200 2. 6 20 2.6l4 0 2.200 11082,09 0.0 12327.04 *-. 0 0.0 11042.84 0.0 1 23 0.79 0.0 1 2.l 1 0.0 12160.93.0 11187.52 0.0 1215.1 1 0,0 10000.97 O.t 2.640 0.0 2.220 0.0 0.0 2.220 0.0 2.640 0.0 2.200 0.0 2 e 0 2. 200 0. 0 2, 6 4 0 0.0 2.180 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0,0 0.0 0.0 0.0 0.0 0,0 0.0 -0.00126 0.0 0.0 0.0 -0 001 4 O.0O 0.0 0.0 - 0.0011 0.0 -0. 0011 72 0.0 O, -0. O o2 0.0 0.0 0.0 2.220 0.0 2.220 0.0 0.0 0.0 2.220 0,0 0.0 0.0 0,0 0.0 0.0 2,200 0.0 0.0 0.0 -0.00125 0.0 0.0 0.0 -0, 00144 0,0 0.0 -0.00117 0.0 0.0 0.O -0.0011 I 0.O O. C -O. OO:2 0. ' CO ) 4 0,0 0,0 0.0 0.0 0.0 0.0 0.0 C. 0 0.0 0 0,0 0.0 0.0 C.O LI.0 0.0 7 3 PO$ITIVF 2391543.00 2.700 1259.6, 55 2.720 0.0 0.0 0. O00;94 2.b60

NIGATIVE -591832.56 14 POSITIV E 1 01332.00 NIGATIVE -264281 1.00 79 20 POSITIVE NEGATIVE 21 POSITIVE NEGATIV E 60 27 POSITIVE NEGATIVE 28 POSITIVE N G A TVE 81 34 POSITIVE NEGATIVE 35 POSITIVE NE GATIVE 82 41 POSITIVE NEGATIVE 42 POSITIVE NEGATIVE 83 48 POSITIVE NEGAT IVE 49 POSITIVE NEGATIVE 84 55 POSITIVE NEGATIVE 56 POSITIVE NEGATIVE 2345583.00 -567903.25 746805.44 -2467993.00 2314692,00 -599705,25 590675.06 -2(413001, 0 2326054.00 -630772.31 53731 8. 88 -2408982.00 2368184,00 -578466.56 573643,31 -23333374.00 2362357.00 -598487,13 542439.00 -2374565.00 5.920 2.740 5 9 20 2.680 2. 220 2,680 2.220 2,640 2,220 2.640 2.220 2.640 2.220 2.640 2.220 2.6 40 2.220 2.6 4 0 2.200 2.6 40 2.200 2.640 2.200.O 0.0 12193.Ob 5.920 0.0 0.0 0.0 0.0 0.0 C.0 0.0 0.0 0.0 0.0 0.0 0,0 -0.00286 5.920 0.0 0.000088 -0.00374 11961.23 0.0 11 067.09 0,0 11649 85 0.0 0.0 11579,52 2 0.0 11873 52 2 -. 0 11710.29 0.0 11654.u 45 0.0 116 48.57 0,0 11 762,3 4 0.0. 2.680 0,0 2.220 0.0 2.640 0.0 2.220 0.0 2.640 0.0 2.220 0.0 2.640 0.0 2.200 0.0 2.640 0.0 2.200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,.0 0.0 0.0 0.0 0.0 O.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0o0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00027 0.0 0,0 -0.00088 0.0 00 0.0 -0.0004 1 0,0 0,0 0,0 -0,00037 0.000002 0.0 0.0 0.0 0.00001 0.0 0.0 -0.00008 2.680 0.0 0.0 2,220 0.0 0.0 0.0 2.220 0.0 0.0 0.0 2,220 2,6 40 0,0 0.0 0,0 2.6 40 0.0 0,0 2.200 0,00027 0,0 0,0 -0.00088 O.0 0O0 0.0 -0.00041 0.0 0.0 0.0 -0.00037 0.00002 0.0 0,0 0.0 I tlO I 0 0001 0.0 0,0 -0.00008 0.0 0.0 0.0 0,0 22881 20,00 -357829.31 1400817.81 -19021434.00 2.6140 2.200 2.620 2.200 11 282.145 0.0 10574.35 0.0 2,6140 0.0 2.200 0,0 0.0 0.0 040 0.0 0.0 0.0 0.0 0*0 1RESULTS ENVELCOPES, ELEMENT GROUP 2 TIME = 10.100 SHEARIALL ELEMENTS (TYPE 7)/// ELEi NODE NODE NO I J 1 6 13 POSITIVE FORCE NEGATIVE FORCE "A I.Ii LEFT AXIAL RIGHT AXIAL CENTRAL AXIl E.: ER m E. E SPE A PNG AL ROTATIONAL HORIZONTAL SPRING SPRING 0,3172E*08 O. 3405E*06 2.6600 2.2000 0.1471 E 6 0. 1 4 36E+06 2.2200 2.6600 0.0 0.0 -0.3886E~06 -0.3567E+O6 -0.3279E.06 -0*3905E+08 -0.3620E+06 1.9000 1.5000 2.1000 2.2200 2.7600 POSITIVE DISP TI M E 0.7803E+00 0.6604E0+0 0.0 2.2200 2.6600 0,2689E-02 0.1785E*01 2,6600 5.9200 0.0 NEGATIVE DISP 7I~FE -0.68140E+00 -0.8749E'00 -0.5562E-01 -0.3310E-02 -0,2203E+01 2.16600 2.2200 2,1000 2.2200 2.7600 2 13 20 POSITIVE FORCE TI 'E 091276E'06 0.1271:*'06 0.0 2,2600 2.6200 O 3673Y+000 8 0.3417E06 0.0 1.9000 212400

N,>;Cls;lTv t)TYCE PCSTI: VE D:ISP NEGA IE T.IrF -C0.2195:,0 -0. 25 iO't06 -0.11332 06 -0.3750E6b -0, 49E50b 1.600 2.240 2C00 2. oo 2.2200 2.7200 O.c.472-0)1 0.,120E-01 0.0 0.572EL-02 0.1104E+01 2. 2600 2.6200 0. 2. 6600 5. 9200 -0.1247F.00 -0.1226}:00,0.24b6E-01 -0.7033t-02 -0.1135EO01 2.6000 2.2400 2.500 2. 2200 2.7200 3 20 27 4 27 34 POSITIVE FORCE NEGATIVE FORCE TIMrE POSITIVE DISP T I r,.: NEGATIVE DISP Tlr.E POSITIVE FOfCE NEGATIVE FORCE TI E POSITIVE DISP TIlE NEGATIVE DiS? 0.102 2 E 06 3.9827E05 0.0 2.26CV 2.62C0,C -0.1733E#06 -0.1999E'06 -0.1369Eg06 2.6200 2.2200 2.5600 0.6956E-0i 0.5333E-01 0.0 2,2400 2.6200 0.0 -0.8465E-01 -0.9770E-01 -0.1857E-01 2.6200 2.2200 2.Sb00 0,7060E+05 0.6550E#05 0.0 2. 5 200 2.6400 0.0 -0.1464E1+06 -0. 1407E061-0.1 060E*06 2.0000 2. 500W 2.6600 0.4736E-01 0.4090E-01 0.0 2.500C 2.0000 0.0 -0.617tE-01 -0.6877E-01 -0.1438E-01 2.6400 2.5000 2.6600 0.3397>'408 1.900 -0.3479E~08 2.220 0 0,6269E-02 2.66b00 -0.7777E-02 2.2200 0,3112E+08 1.9000 -0.31991+08 2.2200 0.6632E-02 2,. 6 00 -0 8 300 E-02 2. 2200 0. 34281E06 2. 2600 -0 3338 E*06 i.9400 0.8038E-00 2,2600 -0.7370E~OQ 2.7000 0,.334 5E06 2.2200 -0,21740 E~06 1,9200 0.38931E00 2.2200 -0.2769E 00 2.6200 C) I 5 3U 41 POSITIVE FORCE Ti.F. NEGATiVE FORCE TI F. POSITIVE DISP Tlr, 1 NEGATIVE DiSP. 1 " EF C -0 0.677 ':* 05 O. 05092 E05 0.0 2.74 00 2. 4 200 0.0 -0.114OE*06 -0.1269F*06 -0.7500 E405 24 u 2;1. 27200 2 9200 ).4703E-01 0.37308E-Ol 0.0 27200( 2.4 000 0.0 ),5426f:-01 -0.6203F,-01 -0,1018E-01 2 4000 2.7200 2.9200 C 0.2822E*00 0.3057E'06 1.9000 2.2U0 0 -0 2909E 00 -0.210 E'06 2.2200 2.6600 ).6951L-02 0.3057E>00 2,6u00 2.2u00 -0.68457L-02 2.2200 -0.2810E400 2. 6600 6 41 448 POSITIVE FORiCE TI. NEGATIVE FORICE T IME 0.6261+056 0.5760E405 0.0 0*.224J6E,0e 0.2152E*06 2,7400 2.4000 0.0 1.8800 2.2000 -0.lOt,:0, 6 -0.1100t1.06 -0.4603 E*05 -0,232iJ,08 -0,23901~06 2.* 000 2.7400 2. 3000 22000 2.64 00

rGSI'TVi.' D$SP ': 2. l1 NEGATIVE DISP C. 4 2C 7; -0 1 2.74 00 0. 51 00t-01 2.4000 O.3995F-01 0.0 0 71.1 21-02 2.1;000 0.0 2.0b00 -0.5283E-01 -0,6247E-02 -0,8373E-02 2,7400 2.3000 2.2000 0.21 b;2t+00 2.2000 -0.239'0f00 2. 000 7 4i8 55 POSI"TIVE FrORC NEGATI V FORCE POSITIVE DISP TI MIE NEGATIVE DISP TIRE 0,2890~E0s5 0*i4785LO 50 0.0 O.2237tE08 0. 1'77E+06 2.7400 2,;000 0.0 1.0800 2.1800 -0.77 42*05 -0.5692.+05 -0.1 889E-05 -0,2317ET08 -0.1199E+06 2.4000 2.7400 2.3000 2.2000 2.6200 0.2003F-01 0.3032E-01 0.0 0.7153E-02 0.1177E400 2.77400 2.4 000 0.0 2.64 00 2. 1800 -0.3516E-01 -0.2404JE-01 -0.2564E-02 -0.8382E-02 -0.1199E*00 2.4000 2.7400 2.3000 2,2000 2.6200 I I

-32 - REFERINCES 1. Charney, F.A. and Bertero, V.V,, "An Evaluation of the Design and Analytical Seismic Response of a Seven Story Reinforced Concrete Frane-Wall Structure," Report No.IJCB/EERC-82/08, Ulniversity of California, Berkeley, August, 1982. 2. Ehnori, K. and Schnobrich, W., "Dynamic Analysis of Reinforced Concrete Frame-Wall Structures," Engineering Structure, Vol. 2, April, 1980, pp. 103-112. 3. Fintel, M. and Ghosh, S.K., "Design of Walled Structulres for Earthquake Loading" CSCE-ASCE-ACI-CEB International Svm siM on Nonlinear Design of Concrete Structures, UJniversity of Wateroo, ti, Canada August, 1979. 4. Fintel, M. and Ghosh, S.K., "Application of Inelastic Response 'History Analysis in the Aseismic Design of 31-story Frane-Wall Building," Earthquake Engineering and Structural Dyanmics, Vol. 9, Issue No. 16, Nov-Dec., 1981, p.543. 5. Hiraishi, H., Yoshimura, M., Isoish, H. and Nakata, S., "Planar Tests on Reinforced Concrete Shearwall Assemblies" Report Submitted to Joint Technical Coordinating Comrnittee, UIS-Japan Cooperative Research ProFgrmn, Building Research Institute, Tsukuba Japan, January 1 981. 6. Kasbeyasawa, T., Shiohara, H., Otani, S. and Aoyama, H., "Analysis of the Full Scale Seven Story Reinforced Concrete Test Structure-Test PSD3", Report for the Third Joint Technical Comrittee Meeting, IJS-Japan Cooperative esarh Program, BuildinResearch Institute, Tsuku-ba, Japan, I-uly, 1982. 7. Kanaan, A.E. and Powell, G.H., "General Purpose Computer Programn for Inelastic Dynanic Response of Plane Structures," Report No. EER(' 73-6, University of California, Berkeley, April, 1973. 8. Oesterele, R.G., Fiorato, A.E., Johal, L.S., Carpenter, JI.E., Russel, H.G. and Corley, W.G., "Earthquake Resistant Structural Walls - Tests of Isolated Walls" Report to NSF, Portland Cement Association, Skokie, Illinois, November, 1976. 9. Okomoto, S., Nakata, S., Kitagawa, Y., Yoshirmura, M. and Kaminosono, T., "A Progress Report on the Full Scale Seismic Fxperirnent of a Seven Story Reinforced Concrete Building-Part of the ITS-Japan Cooperative Research Program," BRI Research Pper No. 94, Building Research Institute, Tsukuba, Japan, March, 1982. 10. Park, R. and Paulay, T., "Reinforced Concrete Struct-ures," John Wiley and Sons, Inc., New York, 1975. 11. Powell, G.H., "DRAIN-2D User's Guide" Report No. EERC 73-22, University of California, Berkeley, October 1973.

-33 -1? a.\an, T.Y.,..ert-ro,.. Yand PoovH,. P.,...vs.tr i.lti-r oL *ejfore& Conte F,:_re.:1 lL's" Repxrt No, EE{C 75-23, Unirsi Ca..Libfmrn ia, Ber-ckeley, Decenber, 1975. 13. Wighlt, l.T (, " I!.S.-Japan C,ooperative Resea-r h ProL r.n: Go'ns-. ruCtL,fl L t~ e.'ul1.: tcale Reinforced Concrete Test Structulre," Rep)rt No. Th',fiD, 83TR2, University of MlMichigan, Auglust, 1983.

-34 - 28 dr5 d r6 dr4 j (EA)L H (EA)R ij L Kv dr2. Cod r3 dry Fig. 1 Idealized Model of a Shearwall

-35 - ds1,dv1 n ds2,dV2 I ~J! n q ds3, dv3 t % 0 J ds4,dv4 i~/ ds5,dV54 A) we~~~~~C 7,v 4 k u ( I a Fig. 2 Element Forces and Deformations

-36 - TENSION 1 F 0 M C e,, l K Tensile Yielding E EXTENSION B COMPRESSION (a) Hysteresis Rule before Tensile Yielding (Bilinear Relation) TENSION Fy M C // EXTENSION COM PRESSION B (b) Hysteresis Rule after Tensile Yielding (Degrading Bilinear Relation) Fig. 3 Axial Stiffness Hysteresis Model

-37 - FORCE (MOMENT) B C C - - - - - Yield Force (Moment) 0 DEFORMATION (ROTATION) A Yield Force (Moment) -L - - - - -~001 0 D Fig. 4 Origin Oriented Hysteresis Model

51 52 43 44 45 4 46 2 9.30 ) 31 3-2 22 23 ( 24 3.Om 3.Omn 3.0m 3.0m t 3.75m 1_ 2 1.75 m ~ ~I i5 46 (3 \T (i 7 ~ 9 10o I I Co3 0o I X 2 3 L i7 77I7 rT/ 7, 7I /7 K- 6.0m -- 5.0 m 5|O 6.0m.... 6.0 m -I.4 6.0 m -I- 5.0 m m| 6.0 m Fig. 5 Idealized Seven Story Frame-Wall Structure

-39 - APPENDIX A-1 FORTRAlN -LISTING OF THE SHEARWALL ELEMENT EL7 SUeROUTrINE LtEIL7(/KCONT/./FCONf/./NDOF/./NINFC/./IO/. / X/./Y/./ 1Nr/) COIt.tOCN/I NF E L/ IMfE(, KST, LM( ). NOD I.NOOJ, KOll 'rf, F L, WI D, S '0( 3 ), Sl' 1 (3 ) IST2(3). STSO(2). TS 1 (2), PY(S).DELY(5) DE, C(3),KODY(5),KODYX(5). 2ST5(3), STG(3),5TS3(2),PI (3).01(3).P2(3), D2(3),P34(3),D34(3), 3PSG(3) D5(3),,P89(3),D09(3),P9(3).09(3) PS1(2).DSI(2) SOFO(5). 4FTOT(5).VTOT(5).SENtP(5), SENN(5),VENP(5),VENN(5).TSENP(5), STSENN(5).T ENP ()V ENNN ( 5), REST( 48) COMt.iON/WORK/KSHE,NMEM,NAXT,NROT,NHST,NYAXNYRO.NYHS. NFEF NINT, IFATYP(30.3), FRTYP(30,2)FHTYP(302)FHTYP02) YAX(30,3),YRO(30.2). 2YFIS(30. 2), FEF(30,5), F INIT( 30,5), INEL, INODIl, 1ND0J, INC. IINC, 3IAXEB,IAXB.D IEAXC, IAXCT, IHS, IHSTIRO IROT, IK)TFITT.FFINIT, 4t I YAX3, IYAX, I YAX C, I YAXC T,I YRO, I YROT. I YHS, I YHST, KFDL. 5 IKFDLK K FL IKF. FDL, FFOL, FLLM, FFLL, FLLF, INIT, I INI T GSFF(G), SSFF(6), DD(G),FFEF(5).W(12i2) DIP.ENSION KCONT(1),ID(NN. 1),X(1),Y(1), )COM( ),YESNO(2),AST(2) EQUIVALENCE ( ItE, CO( 1 ) ) DATA AST/211,21I *+/ DArA YESNO0/41! YES,41-4 NO / C DA TA INPUT SHEAR WALL ELEMENT NDOF=G i, IJ C 152 KSt {It- KCONT ( ) Nt. EM- xCON r ( 2 ) NAXT=KCON r (3) NRO rO KCONT (4) NtS c —<CCO;r ( 5 ) IY AX-KCN ( G ) NYRO=KCONT (7) NYIS-KC1ON (8) NFEF=KC0NT(3) NEr EF=KCoNr(9); I N tr = KCONI- ( 10) PRh0ir t O. (ECONJr( ), I-2,/10) 10 FORtlAT(29H SHEAR WALL ELEMENTS (TYPE 7)//// 1 40t1 NO. OF EL.EMENTS =14/ 2 40H NO. OF AXIAL STIFF TYPES I14/ 3 40t1 NO. OF: ROT SPRING STIFF TYPES =14/ 41 401-1 NO. OF FOR SPRING STIFF TYPES =14/ 5 40t- NO. OF AXIAL YIELD PATTERNS — 14/ 6 40t1 NO. OF ROT SPRING YIELD PATTERNS =14/ '1 401- NO. OF iHOR SPRING YIELD PATTERNS =I4/ 8 4011 NO. 01: FIXED END FORCE PATTERNS =14/ 9 401- NVO. OF INI'rAt. FORCE PATTERNS =14) INPUT STIFFNESS PROPERTIES PRIt [N 20 20 FORMAr(/////18t1 AXIAL STIFF TYPES// 12X,5H1 TYPE, IS1 COMP MOOJLUS.15H TENS MODULUS. 2 1711 TENS HARDS ENING) o0 30 N-I.NAX'T REALD 0. [,.(FATYP(NJ,),J=1,3) 30 PIfZHr 50.H (FATYP(N,J),d=1.3) 40) FORMAT ( 5. 3F 10.0) 50 FORMAT(2X, 14,3X, 12.,.,3XE122.4.7XF6.3) PRIN T' 22

-40 - 22 FORt'AT(//23H ROT SPRING STIFF TYPES// 12X.S5H TYPE. 15SH INIT MODULUS.17H STRN HARDENING) DO 32 N-,NROT READ 42. I(FRrYP(N,) =),J 1,2) 32 PRINT 51.N, (FRT'YP(N,J),-=1.2) 42 FORlAT(I5.E156,.F 0o0) 51 FORtiAT(2X. I.3XE 12.4,7XFGF6.3) PRINf 21 21 FORfMIAT(//23H HOR SPRING STIFF TYPES// 12X,51t TYPE. 15H INIT MODULUS,17H STRN HARDENING) DO 31 N=1,NHST READ 41. I (FHTYP(NJ),J=1,2) 31 PRINT 51.N, (FlITYP(N,J.),d=1,2) 4 1 FORMAT ( I5. 2F 10.0) C YIELD PROPERTIES C PRINd 1 10 110 FOPt.AT(////4111 YIELD PROPERTIES OF THE AXIAL COMPONENTS// 12X. 5H TYPE.2211 TFENS YIELD LOAD(PY). 2t18H TENS YIELID STRN, 18H COMP STRN AT PY) 0(3 200 N= 1, NYAX READ 120. I,(YAX(N,),d= 1,3) 200 PRINT 130.N, (YAX(N,), J=1,3) 120 FORM.AT( 15.3F 10.0) 130 tFORfIAT(2X, I4,GX.F122,4X.,E3.4,4X.E13.4) [PRINr 1 1 DO 202 N=1.NYRO READ 122.I,.(YR0(N1,), d=1,2) 202 PRt INT 131.N, (YRO)(N, J), J= 1,2) 131 FORMAT ( 2X. 14.4X, E 13.4,4X, E 13.4) 122 FORTAT(I5,2F 1o0) I t FOtr1AT(////31t YIELD PROPERTIES OF ROT SPRING// 12X3.S5 TYPE. 1711 LOAD AT YIELD, 2171t STR- AT YIELD) PRINT 112 00 201 N= 1,N YilS READ 121., (YHS(N1,),d=1,2) 201 PRINT 131.N, (YtS(N,J),J=1,2) 112 FORMAT(////311I YIELD PROPERTIES OF HOR SPRING// 12X. 51 TYPE, 1711 LOAD AT YIELD,17H STRN AT YIELD) 121 FORMNAT(IS.2F 1.0) 00 140 N=-.NYAX YAX(N. 1)=A8S(YAX(N, 1)) YAX, 2 ) =A8S(YAX(,2) ) YAX ( N. 3) =-A( YA< (N, 3 ) ) 1,10 CONTINUE 00 150 N=NYI4S YHS(N, 1)=ABS(YI1S(N, 1)) YHS(N.2)=A:3$(YHS( EN, 2)) i50 CONTINUE DO 160 N=.NYRO YRO(N. I )=ABS(YRO(N, I ) ) YRO(N, 2 )=ABS(YRO(N, 2) ) 160 CONTINUE C C FIXED END FORCE PATTERNS C IF(NFEF.E~rJ.)GO TO 250

PRINT 210 210 FOR.r1Ar(////2sH1 FIXED END FORCE PATTERNS// 12X,81- PATTERN, 15~1 AXL FORCE LFT. 15H AXL FORCE RHT, 2191t AXL FORCE CENTRAL,22H MOMENT IN ROT SPRING. 3211H FORCE IN HOR SPRING5X, 1OHLL RED FAC/) DO 220 N =I,NFEF REAO 230, [(FEF(N,J)od=,5) 22() PRINr 240,N. (FEF(N,J),d= 1,5) 230 FORMNAT( I5,5F 10.0) 2410 FORt4AT(2X, IG G3X,F 12.2,3X, F 12.2,5X. F 12.28X,F 12.2e7X,F12e2) C, NITIAL FORCE PATTERNS 250 IF(NrINT.EQ.O)GO T() 300 PR [NT 260 260 FORtfAT(////28H INITIAL END FORCE PATTERNS// 12X,8ti PATTERN, 15H AXL FORCE LFT,15H AXL FORCE RHT. 219t1 AXL FORCE CENTRAL,22H MOMENT IN ROT SPRING, 3211]t FORCE IN HOR SPRING) 00 270 N=,NINT READ 280 I. (F [Nl r(TN, ), =1, 5) 270 PR INT 240,N. (F[N (N, d),J= 1,5) 280 FORMIAT ( I5,5F 10 0) (~ C EL-EMENr SPECIFICATION C 30() PRINT 310 *310 FORMATr(/////2211 ELEM~,ENT SPECIFICATION// 13JX,4HELEt1. 2X, '4HNODE,51-l NODE.SH NODE,GH WIDTH, 5H BAXS,S51 CAXS, 25H ROTS,511t -iORS,5 31 BAXY,5H CAXY,SH ROTY,SH HORY,GH TIME. 313tiFEF PATTERNS, 18FHFEF SCALE FACTORS. 14HINITIAL FORCES/ ~14 X. 2-2NO GI6t (, F J, GH DIFF,7X,5HTYPE,5HTYPE,SHTYPE 55HtFYPE.51-HrYPE,5HTYPE,SHTYPE,5tITYPE.5HHIST, 12H DL LL i18t.I OID IL, 171t NO. SCALE FAC./) (]) 319,J=1.5 KODY(J)=O0 KODYX(,J) =O 3 19 (CONr [ NUE KST:0 00 320,J=98. 152 320() COt'4(J) =0. [tE'.'I= 1 330 READ 340, INEt., INODI, INODJ,IINC,DSW, IAXBT, IAXCT, IROT, IHST, 1 AX r I YAXC.I ' RO, IYHST,IKDT, I KFDL,IKFLL,FFDLFFLL, 2[INIT.FFiN[ r 340 FORt.IAT (414, FG.0, [3,2F5.0., IS,F5.0) [F(INElI.G A..MI#EiM)GO TO 380 350 NOOI= NOOi[ NO0J - =INODJ [NC - I I NC IF([NC.EO.O)JNC; IAXt$= [AXBT IAX(= IAXCT KOIJ D IIKODI' W, 11 =OSW/2. I RO = I RO I YAXBf3 YAX r I YAXC I YAXC(

-42 - I YH-S- I YHST IYRO-IYROT YNT=YESNO(2) IF(KOUTDT.NE.O)YNT-YESNO( 1) KFD= IKFOL KFLL= IKFLL FDL=FFOL FLi M= FFLL FLLF= t o IF(KFLt. EQ.0)GO TO 360 FLLF=FEF(IKFLLeG) [F(FLLF.E(0.)FIl F- 1.E-6 360 INIT=I INIr F INtI=FF IN T ASTT=AST( 1) IF( INEL-NMEM)330,380,330 C 370 NOD I =NOD I INC NODJ =NODJ "- NC AS-T=AST(2) C 380 PRINT 390.AST-r. [MEM,NODI,NODJ.INC.DSW,IAXB. IAXC.IRO,IHS, IIYAXB. IYAX(C. [YRO[YTiS,YNT.KFDL,KFLL,FDL,FLLMoINITFINT 390) FORt.1AT(A2, I4, 6, 2 5. F5. 1. I4,715.3XA3 IG. I53X F8.2, F9. 2,. 17,F I 1.2) C lOCA r L ION MATRIX 01) 400 1=1.3 tLrIa( ) = [o(NOD[. ) 400 M( I 3) - lO(NOD. ) (CALL. BAND <C ELEMENt PROPE'IFS FI- =APS( Y(NO003)-Y((NOi I)) s rO( ) =FA rYP( AX, )I) Sr t (1 )-FATYP( [AX[3 2) ST2 ( 1 ) = FATYP ( I [AX.3 ) ST(1 ) sro(2)-srTO() srt(2)-sr( t) ST2(2)-sT2( ) Tro(3) =FA'rYP( [X(:. 1 ) S r 1(3) —FATYP( [AXC, 2) Sr2(3)=FATYP ([AXC,3) ST1(3) s-rSO( 1 )-FRTYP( IR)1. ) rs 1( ) -FRTYYP( [R), 2) 'STSO( 1) rSo(2)-FFiT'YP( iS. I) srs1(2)=FtI'[YP( tHS,2)*STS0(2) PY( 1)=YAX(IAX, I) PY(2) =PY ( I) DELY( t)=YAX([AXt3,2) DELY(2)=DELY(1) DELC( 1 )= -ABS(YAX( (AXB. 3)) DELC(2)=DELC('( I ) PY(3)=YAX( [AXC. I) DEY (3) =YAX( IAXC,2) OEIC(3) - ABS(YAX ( IYAXC, 3) ) PY(4 )-=YRO( IYRO, I ) DELY(4 ) =YR( IYR0, 2)

-43 - PY(5)=YHS(IYiiS,. ) DELY(5)=YHS( IYHS.2) C LOADS DUE TO FIXED END FORCES 00 480 I=1.6 480 SFF()-=0.O F(KFDLKFL L. EO.0)GO TO 610 IF(KFDL.EQ.O0)GO TO 530 00 500 1=1,5 500 FFEF ( )=FEF (KFDI. [I )*FDL CALL FRANS(SFF.FFEF) 530 IF(KFLL.EQ.O )GO TO 570 00 529 1=1,5 523) FFEF([)=FEF(KFLlI,L) CALL TRANS(SSFF..FFEF) 00 540 1=1.G FLL=FLLF tFLL.1 [F( I.EQ.3.OR..EEO..6)FLL=FLL4 540 SSFF([)=SSFF( I )*FL. 570 ( 0 580 1=I.G 58) Oo( r )=SF()ssFF ( )SFF ( ) CALL SFORCE(DO) c.^,MfODIFY TO GEt INITIAL FORCES IF(KFOL.EQ. 0)GO TO 531 00 501 [=1,5 501 SFF( I )-:FEF(KFOL,II) )FDL 5:31 LF(KFLL..EQ.O)GO TO 610 O0 583 1=1,. SSFF( ): FEF(KFFLt_,I) FLLM 5833 SFF(3)=SFF([)FF(i:(I) C I JI r AL FJRCFS C (10 )IF( [NT.E)()O)GO TO 630 DO (320:=1t.,5 G20 SFF( I)=SFF() -FINT(T( INIT. I )*FINT (c IIFE. lrALISE ELEMENT FORCES 6330 0o 631 f: 1.5 6:31 FTOr(I)= SF F( 00 G5(0 1=1.5 SS=FTOT( ) [F(SS.IT.T. )GO TI) 640 SENP( )=SS GO TO 650 3(40 SENN( [ )=SS 650 CON r [NIJE CALL FINIStC GENERATE -MISSING ELEMENTS [F ( IMEM. EO. tNMEM)R E' URN fMEM= IMEMt1- I IF( IMEtl..EEO. INEL)GO TO 350 GO TO 370 END SUBROU fINE S I F7(/MSTEP/, /NDOF/./NINFC/./COMS/,/FK/,/DFAC/) COt40MN/INFEL/It.iEMJ IST, LM( 6).NOD. tODJ. KOUTDT. FL. WID. STO(3),ST (3),

-44 - 1ST2(3).STSO(2).STS 1(2),PY(5).DELY(5),DELC(3)KODY(5).KODYX(3)., 2ST5(3). ST6(3).STS3(2) P1I(3).0"1(3).P2(3).02(3).P34(3).D034(3), 3P5G(3).056(3). P89(3),D89(3),P9(3).D9(3),PSI(2) DSI(2).SFO(5) 41FTOT(5).vrorT(5).SENP(5) SENN(5).VENP(5) VENN(5) TSENP(5), sTSENN(5). TVENP(5)TVP( TVENN(5)REST(48) COMMON/WORK/ST (5) STT(5) C DIMENSION COM( I),COMS( ),FK(G.6) EQU VALENCE( IMEMCOM( 1 ) ) C C STIFFNESS FORMULATION 00 10.J=3,57 10 CM(d ) =COS (j) C C CURRENT STIFFNESS OF EACH COMPONENT CALL FS'rF7( ST KODY ) C PREVIOUS STIFFNESS IF(MSTEP.Lf.2)GO TO 30 CALl, FSTF7( STT. KODYX ) C STIFFNESS DIFFERNCE 00 20 11-.5 20 ST(I):ST(i)-STT([) 30 DO 31:=l.$, 00 31 d=t.G 31 FK( [.d)=O.o PARS-Wl*Wi0*(ST( 1 )+ST(2) ) FK(1,1)=S'1(5) FK( 1.4) —ST(5) FK(.,G) —FI_'ST(5) FK(2.2)=ST( 1) ST(2)+ST(3) FK(2.3) =WI"(ST('2)-ST( 1)) FK(2,5)=-FK(2.2) FK(2.G)-FK(2.,:3) FK(3.3 ) =PARS' ST (4) FK(3.5)=FK(2.G) FK(3.G) 6-PARS +ST(4) FK( 4. ) s —r(:) FK(4.G)=-FK(1.6) FK(5 5)=FK(2e2) FK(5.G)=FK(2 3) FK(43,G)=PARS-.FL*i:-L*ST(5)+ST(4) 00 GO [=1.G Do GO.J=1. 60 FK(J, I )=FK(,.,J) IF(e4STEP.Gf. 1)GO TO 80 C INI t IAl Sr'IF-FNESS FOR STEPO.BETA_0 CORRECTION FOR STEP 1 C -. 0 IF(MSTEP EO.o )CC=DFAC 00 40 I 1.3; tO FK(. )-FK(I. 1 )CC 80 RE TURN END SUBROUrINE TRANS(/SF/,/FE/) COMMON/INFEL/IMEM,KSI', L,((G ) NODI,NODJKOUTDT.FL.WID STO(3) ST t(3). 1ST2(3). STSO(2),srs (2).PY(5).OELY(5).DELC(3).KODY(5) KODYX(5).

-t 5 - 2ST5(3).STG(3).STS3(2),P 1(3).D(3) P2(3)D2(3),P34(3), D34(3) 3PG(3).56( 3 )P89(3),89(3) P9( 3 )D9(3 ) PS 1 (2), S 1(2) SDO( 5 ). 4FTOT(5 ).VTO ( 5 ) SENP( 5 ). SENN(5), VENP(5). VENN(5),. TSENP(5), 5TSENN(5). TVENP(5 ), TVENN(5), REST (48) DIt~-ENSION SF(G).FE(5) SF( 1 )=-FE(5) SF(2)=-FE(1)-FE(2)-FE(3) SF(3)-WID*(FE(1) —FE(2))+FE(4) SF(4)=FE(S) SF(5)=-SF(2) SF(G)=WID0(FE(2)-FE(1))+FL+FE(5)+FE(4) RE TURtJ ENO SUBROUTINE FSTF7(/STIF/,/KOD/) COMMON/INFE-/IMEMt, KST, LM(6 ), NODI, NODJ. KOUTDT, FL, WID, STO( 3 ), S 1 ( 3), 1ST2(3).STSo(2),.STS I(2),PY(5)DELY(5).DELC(3),KODY(5),KODYX(5). 2ST5(3).sTG(3)ST() S3(2),PI (3) D(3)P2(3).D2(3).P34(3),D34(3), 3P5G(3).05G(3).P89(3),D89(3),P9(3 ).D9(3).PSI(2),DS1(2) SDFO(5). 4FTOT(S).VTOf(5),SENP(5), SENN(5). VENP(5).VENN(5).TSENP(5). STSENN(5) TVENP(5),TVENN(5),REST(48) DIM-ENSION STIF(5),KOD(5) DO 25 1=1.3 KYY=KOD( I) - 1 GO TO (30.35.40,30,35,5.560. 30,55,60),KYY 30 rTIF(I )=sro(f) GO TO 25 35 STIF( )-ST( 1) GO TO 25 40 STIF( )=ST2( I ) GO TO 25 55 STIf ( I )=$S( 1 ) GO rTo0 25 6O S1 IF( )=STG([) 2t5 CONT INUE DO 8) I=1.2 N- I 4-3 KYY=KOO(N) -1 GO TO (85,30.9)0.95),KYY 8 STIF(N)=STSO( ) GO TO 80 9( S'rIF(N)=SrSl(() GO TO 80 95 SrrT IF(N) =sTS3( ) 80 CONT I NUE:2 E TIJ RN ENO) SUBROUT INE RESP (/NDOF//NINFC/./KBAL/./KPR/,/COMS/,/DD ISM/, /O/,/./f [Ml1E/, /VE l?,I/, /OFAC//O,/ELTA/) C STATE OETER.^MI[NArTON,SHEAR WALL ELEMENTS COf.MO,0N/INFEL/IMllEM,ST, LM(G ), NODI,NOJ.KOUTDTFL,WID,STO(3),ST 1(3) 15f2(3),STSO(2). STS I(2),PY(5),DELY(5),DELC(3),KODY(5),KODYX(5), 251-5(3).STG(3).S1-S3(2),PI(3), 01(3), P2(3),02(3),P34(3),D34(3), 3P5,( 3).05G(3).,P89(3),D89(3).P9(3),09(3).PSI(2),DSI(2) SDFO(5). 4FTOT().Vro f(),SENP(5).SENN(5).VENP(5) VENN(5).TSENP(5), 5 rSENN( ). TVENP(5), TVENN(5). REST( 48 ) COtV,MON/WRK/OV(5),DF(5). FLIN(5).,STRS(5). FDUM(5).DSUB(5)DELV(5). IFACAC,F.FC.AC-FOR,DELI,DTOT,STOT. OSO.DS.DS2,DS3,0S4.DS4 SDSG, 20S7,OS8,DS9.KOO0,REM( 1148) 0IMENSION COM(I).COMS(1),DDISM(1) )DD(1),VELM()

EQUIVALENCE( i.IEN I.COM( 1 ) ) C DO 10 J1.NINFC 10 coi(dJ) COaMS(d) 00 11 J=-1,,j 11 KODYX(J)=KODY(J) I F ( IMt1Et-o EQ. I ) 1tED=O C C LDEFORMATION INCREMENTS C DV( 1 )-oDDISJI(2)+WID*ODISM(3)+DDISM(5)-WID*DDISM(G) ov(2)=-DDIoSt1(2)-W[D*DDIStM(3)+DDISM(5)+WID*DDISM(6) ov(3): -DooIS( 2) +oDSM(5) DV(4 ):DDIS.1(3 ) DooISM(6) DV('5)-oIS-0 M( 1)+0ooSM(4)+FL*DDISM(6) C C FORCE INCREMENTS IN VARIOUS COMPONENTS C CALL FS-TF7( STRS, KOOY ) DO 12 [=1 o5 OF( )=SrRS(f)*oV( () vro-()=vror([) +ov(i) 12 FLIN( I )=FTOr ( I ) f-OF( I) CALL RSPAX( ) CALL RSPAX(2) CALL RSPAX(3) CALL RSPSP( ) CALL RSPSP(2) C NEW FORCE,UNBALANCED) FORCE DUE TO CHANGE OF SLOPE C 00 790 1-1.5 FOUMr( )=Fff( ) DSUB([)-FLlr( l)-FTOT(l) F ( AS(DSU( I ) ). r. I. E -8)KBAL= 79( COJr INUE C OEFORMA' ION RATE FOR DAMPING [F(OFAC.EQ OO.AiANO.DELTA.EQ.O.O)GO TO 800 [F(TIME.EQO..)GO( TO 737 KEAt. = I OELV( I ) — — VElt.( 2)4-WIOVELt,( 3)+VELM(5)-WID*VELt(G) OEI.V(2) ----VE.Lt1(2.) —WIOV/ELM(3)+VELN(5)+WID+VELt(G) OELV( 3) -VE t-.1( 2 ) +VEL( 5 ) DELV(4)=VEloM(3) 4-VELM(G) DEL V(5): — VEL M( )+VELI(4 )FL*VELM4(G) C B3ETA-0 DA4MPING FORCE [F(OFAC.EO.O.)GO TO 830 00 835 [=1,5 IF([.Gr.3)Gf T() 840 oSU( ) =DSUB( [) -OFAC*STO( I ) DELV( I) GO TO 835 840O N- a -3 DSUB( I )=oSUB( [ )+OFAC'*STS0(N)*DELV( I ) 835 CONf I NUE C C STRUCIURAL DAMPING FORCE C

- ZF7- - 830 IF(DELTA.EO.O.)GO TO 800 DO 865 1 = 1. 5 SI=oELTA S IGN(ABS(FDUM( I ).DELV( ) ) DSUB( I ) =DSUB ( I )-DSlSDFO( I ) SOFO( [)=DSL 865 CONTINUE C C UNBALANCED LOAD VECTORS C 800 IF(KB3AL.EQO.)GO TO 737 CALL TRANS( 00.., DSUB ) C C EXTRACT ENVELOPES 737 o0 74t3 [.; 1.5 IF(SENP(I).GEoFoDuM(l))GO TO 738 SENP( I)-FDUM( ) TSENP( I )= IME GO TO 741 738 IF(SENN(1).LE.FDUM(I))GO TO 741 SENN( I ) =FOUM( ) TSENN( [ )- f IME 741 IF(VENP([ ).GE.VTOf(I)) GO TO 742 VENP( I ) -for( I ) TVE3JP( I )=T ME GO TO 7,13 742 IF(VENN(I).IE.VIOT(I))GO TO 743 VENN( I )-VTO r( TVENN( )=fIfME 74,3 CON I INUE C. (C PRINT TIMtE HISTORY C [F(KPR.Ij.o)T. )G TO 200 [F(KPR.EQ.O.OR.KOTor.EQ..O) GO TO 2,10 200 IF(lEEOD.NE.O)Gl) TO 220 KKPR=- IABS(KPR) PRINT 210.KKPR,TIME 210 FORMrAT(///1813 RESUL.TS FOR GROUP,13, 128tt SHEAR WALI. EI.EMENTS, TIME =F8.3// 25X.51t ELEM4.2X,4lttNODE,2X,4HNOOE.22X, 1OHLEFT AXIAL. 32X. 1 1t4R[GI AXIAl.,2X(, 13FHCENTRAL AXIAL,2X, 10HROTATIONAL, 42 (. IOIHOR I ZONTAL/7X, 2H-NO, 5H I, 6H, 26X, HMEMBER, 5GX. GHMEMER. 9X. GHSPR ING, 9X, 6HSPRING, 6X, GHSPRING) IHED= 1 220 PRINT 230. IfAEMIN3OI,NODJ,(KODY(I),I = 15),(FTOT(I), I 1,5), 1 (vror( I). -1.5) 230 FORt4AT(I9.2IG/23X, IIH YIELD CODE, 1OX.I6,6X, IG,9X,IG6,7X,IG.GX.I6// 123X. 18ifTrorAl_ FO.RCE/MOMENT.5E 13.4//23X, 17tTOTAL DEFORMATION, 21E 1:3.4) C SET INDICATOR FOR STATUS CHANGE 2,10 KS '-( =O 00 245 [-1t.5 [F(KODYX( ).NE.'OOfY(I ) )KST=1 245 CONTINUE C (UPDATE INFORMATIONH IN COMS ARRAY 00 250.J=40. 152 250 CtOMSS(.J)=COt4(.J)

-48 - COMS( 2) =-co1( 2) RETURN END SUBROUTINE OUT7(/COMS/./NINFC/) COMMON/ I NFEL/IMEM,KST ( 6 ) NOD I, NODJ, KOUTDT. FL. W I D, TO( 3 ) ST 1( 3 ), 1ST2(23). SS T S0(2SS1),PY(5).DELY(5).DELC(3) KODY(5),KODYX(5), 2sr5( 3 ),Sr6(3)S, TS3(2), P 1(3).D 1(3) P2(3),02(3),P34(3) D34(3), 3P56(3). G(3),3) P89(3),.089(3),P9(3).09(3) PS1(2) DS1(2),SDFO(5), 4F OT(5),VTOT (5), SENP(5), SENN(5). VENP(5) VENN(5)o TSENP(5 ), 5SENN( 5).TVENP( ),TVENN( 5), REST ( 48 ) oDIMENSION COM(1) COMS( I) EQU VALENCE( IMEM,. COM( 1)) C EiNV'ELOPE OUTPUT.SHEARWALL ELEMENTS DO 10 J= I N[NFC' 10 COM(d)=COMS(,J) IF(IMEMo.EQ). )PRINT 20 20 FORMAT( 32f SHEARWALL. ELEMENTS (TYPE 7)//// 15<X.5-1 ELE- 2X,4HNODE, 2X,4HNODE. 22X 1OHLEFT AXIAL, 22X. I IHRIGHT AXIA..2X. 13HCENTRAL AXIAL,2X, 1OHROTATIONAL, 32X, IOHHOR ZONTrAL/7X, 2HNO, 5H I.6H d, 2GX. GHMEMBER,,tGX, GHtM Et.R ER. 9X.GHSPR \ING, 9X GHSPR I G.6X, GHSPRING) PRINr 30. IMEM,ND[,NODJ. (SENP( I)I= I=1,5),(TSENP( I),I=1,5), I (SENN( I). [=1,5),(TSENN(I), I=1.i) —(VENP(I), I=1,5), 2( rVENP(I ), t=,5).(VNN(I),I=1,5), (TVENN(1).I= 1,5) 30 FORtMA I ( 19.2[G/233X, 14HPOSITIVE FORCE. GX.5E12.,1/23X, I 1,4l TItME.GX,'F12.4//23X, 14HNEGATIVE FORCE,GX, 2Sft 12.,t/23X. 1.'14 TIME,GX.5F12.4//23X. 13HPOSITIVE DISP:3.GX. 5E 12.4/23Xo 3 13H 'IME.GX,5F12.4// 423X,13HNEGATIVE D[SP,.GX,EE124/23X, 13H TIME. 5Gx, SF t2 o /// ) RTE (JRaN ENDo CI S rA rE D 'ERM.INAf [0I OF AXIAL COMPONENTS SUeROUTINE RSPAX( ) CO4M iON/ INFEL/ IfME,.KST, l M( 6 G). NODI, NODJ. KOUTODT FL, WIO, STO( 3 ) ST 1 ( 3 ) 1Sr2 (3)STo( 2). S (2),. PY( 5) OE Y(5). DELC ( 3 ) KODY( 5) KODYX( 5). 2 r( 3) TG(3) S r3(2 ),( 3 ). 1 ( 3 ), P2( 3),02( 3), P34( 3 ).03 4 ( 3 ) 3Ps5s(3) 5 G (3) P9 ( 3 ) 089 3),P9 (3) D9(3) PS(2),OS (2) SF 0 (5), 4F ror ( 5 ), VTO(( 5 ).SENP(S),SENN(5) V ENP (5) VENN(5) TSENP (5) 5 rSENN( 5 ). TVENP(). TVENN( 5). REST( 4 8) COMMtON/WORK/)V(5).OF(5), FL IN( 5) ST RS(5) FODUM(5) DSUB (5), DELV(S) IFACAC,FAC. FACTOR,DE. [, TOT, STOT, DSO DS,DS2, DS3. S4,S5,S6, 2DS7. DS8. DS9. KODO. REM( I 1,18) KOO-=KOY ( ) OELL=0V(I) ro-r=F ror( I) OrOr=vTOr( I) FACAC =O. 20 F ACroR - I. - F ACAC KOD Y I =KOD0 - 1 GO TO(7 01.702.703.300,705,500.707.7088,709710) KODYI,C ON SLOPE 0 <GET FACTOR FOR STATUS CHANGE 701 oso=s'ro(I)'oELl

-49 - IF(DSO)32. 101,31 3 I FAC —STOT/OSO IF(FAC.GE.FACTOR) GO TO 32 FACTOR=FAC STOT=O.O KODDO -- GO TO 1 10 32 STOT =STOT+FACTOR*DSO GO TO 1 10 C C ON SLOPE I,GET FACTOR FOR STATUS CHANGE C 702 DS =STI( )*DELI IF(DS )33. 10.35 33 KOOD - 3 GO TO) 300 35 FAC -(PY (I )-STOT)/IS IF'(FACoGE.FACTO.2,)GO TO 38 FACTOR=FAC STOT=PY( ) KODD-=2 GO TO 110 38 STOT=STOT+FACTOR*DS GO ro 1 tO C C ONf SLOPE 2.GET FACTOR FOR STATUS CHANGE 703 DS2=DE1I ST2([) IF ( S2) )0. 11)0.45 40 KODO=5 GO TO 500) 15 S rOT-=STO r t DS *FACTOR KOOOD =2 GO TO 1) C C ON,1 SLOPE 3<GET FACTOR FOR STATUS CHANGE 300 OS3-STO( [ ) *.;[ t (F (05S3 )50, i 1)0.55 50 F AC:- (P34 ( i ) —o r )/S3 (F(FAC.GE.FAC~OR)GO TO 60 FAC' OR =FAC STOr=P3,1 ( I) KOOI>4) -4 GO T'(I 1 10 55 FAC=(PI( )-sorfT)/DS3 tF(FAC.GE.FACTOR)GO TO 60 FAC fOR=FAI_ STO-r=Pl (I) K]0D = (30 TO 110O 60 STO r =STO r FAC fOR 1 I)S3 GO TO 110tO C C ON S.LOPE 4.GE(l FACTOR FOR STATUS CHANGE 705 )S4 =STr ( [ )*+EL1 IF (DS4)G!. 1 10.7() 65 FAC —( -PY( r )-sror )/os4 [F(FAC.GGE.FACTOR)GO TO 75

-50 - FACTOR=FAC STOT=-PY( f) KODD=O GO TO 110 70 KOD-o3 GO TO 300 75 STOl-or s ro'r FACTOR +OS4 GO TO 1 0 C ON SLOPE 5.GET FAC'rOR FOR 500 DS5=OEL *ST5( ) IF(DSS)80, 1 10.8: $ 80 FAC=(PSG( [)-TOT)/osS IF(FACcGEoFACTOR)GO TO 90 FACTOR=FAC STOT=P5G( I) KODD -G GO TO 1 t 85 FAC=(P9( I )-srTOT)/DS5 IF(FAC.GEoFACTOR)GO TO 90 FACTOR=F AC T'OT=P9( ) KOD00=9 GO TO 1 10 90 sro' r = S TOTr-FACTOR OS5 GO TO 10 I C C ON StLOPE 6.GET FACTOR FOR 707 DSG=-DEL t -STG(( ) [F(DSG) 120. 110. 125 120 F\(,=( -PY( I ) -STrI)r)/OS S [F(FAC.GEoFACTOR)GO TO 130 FACTOR=FAt KODO=7 GO 'ro I I0 125 KODO= —' GO ro 50() 13o0 r o - S'O-STOT TFACTOR*OSf; GO 'ro I 10 C ONl SLOPE 7.GET FACTOR FOR 708 S=D —OEL Lk S f0( ) IF (OS'/) 110. I 10. 1,15 1 40 KOOo - I GO ro 150 145 FA(-PY ( f ) -STOT)/0S7 LF(FAC.GE.FACTOR)GO TO 150 FACTOR=FAC S roTr =-PY ( i) KODO=8 GO 'O I 10 150 STO T=S or t) FACTOR tUS7 GO rO 1 10 C OrN SLOPE 3.GET FACTOR FOR 709 DSt=ST5( ) "DE_ [ IF(OS8) 160. 10 IG65 160 FAC=(-PY ( I )-STT)/S8 STATUS CHANGE STATUS CHANGE STATUS CHANGE STATUS CHANGE [F(FACXGE.FACTOR)GO TO 170

-51 - FAC TOR- F AC STO r=-PY( ) KOOD=7 GO TO 110 165 FAC (P89( I)- STOT) /D S8.F(FAC.GE.FACTOR)GO TO 170 FACTOR=FAC STOT=P89( ) KOOD=9 GO TO 1 10 170 STOT STOT4-FACTOR ODS8 GO TO II0 C C C ON SLOPE 9,GE-r FACTOR FOR STATUS CHANGE 710 DS9=STG(I ) OEL IF(DS9) 175. 110. 180 175 KOOD=5 GO TO 500 180 FAC= (P2( I ) -STO r)/S9 IF(FAC.GE.FACTORZ)GO TO 185 FACTOR =FAC STOT=P2( I ) KODD=2 GO TO 1 10 185 STOT=SoT + FACTR *DS9 C C CHtECK COMtPLETION OF CYCLE I tO FACAC AFCACC+ FACTOR F ( FACAC.I.0.99999,99 )GO -O 20 [F(KO0D.EO.!)CALl. VRTXI( I) fF(KODO.EQ).2)CAI.I. VRI1X2(f) I[F(KODO. EQ.4)CAl.. VRTX ( I) fF( KODI). EO. )CAI.. R rxG ( I ) IF(KODD.E.O.9)CALL VR1<X9(I) KOO Y( I )=KODO FI- TOT( I ) =STO VTOT( I )=DTOT RfE TURt ENO SUI3ROUJTINE VR'X 1([) COr4MtON/i [tFEI /I ME I, KS f, L )(, ) NOD I, NODJ, KOtUTDT, FL.WID, STO(3), ST 1(3). t.SF2(3).STSO(2),sr s 1( 2)), PY(5),DELY(5), DELC(3),KODY(5),KODYX(5), 25sT5(3).ST6(3).STS3(2) P I(3).O1(3),P2(3).D2(3),P34(3).034(3), 3PsG(3),o.5G(3),P89(3),D89(3),P9(3),D9(3),PSI(2),DS1(2),SDFO(5), 4Ft[:T(5).VTof(5) Sf:NP(5) SENN(S) VENP(5) VENN(5),TSENP(5), 5'rSENN(5), TVENP(5), TVENN(5), REST(48) Cor,'t0o/woJWORK/DV(5), D)f: (5), FLIN(5),STRS(5), FDUM(5). DSU(5). DELV(5), IFACA(C, FAC.FAC fOR,I)E. I,DTOI. STOT,DSO,DS. DS2. DS3. DS4, DS5,DSG, 20DS'I.DSS.DS9, KoI), ).REMt ( 1148) P ( [)=sror l(1 )-oroTr 034( I )-( -PY( I) -STO r-S''TO( I ) *DTOT-ST 1( I )*DELC( I ) )/(STO( I )-ST 1( I) ) P34( )-( -STO( )*PY( ) —ST 1( I )* STOT+STO( I )*ST ( I )* (OTOT-DELC( I ) ) ) i/(sro( l)-srT1( l)) RE T'URf SUeROUrIJE VRTX2( I) COf.FMON/INFEL//ItEM,KST, lIM(G), NODI.,NODJ,KOUTT.FL,WI, STO(3).ST 1 (3), IST2(3).sTSO(2), rs 1(2), PY(5),DELY(5).DELC(3),KODY(5),KODYX(5),

2ST5( 3 ) ST( 3 )ST3(2)P 1(3),O 1(3),P2(3 )2( 3 ),P34(3),D34(3), 3P5G(3 ),056(3).P89(3).089(3).P9(3).09(3), PS1(2),DS (2). SOF(5), 4FTOT(5). VTOr(5)) SENP(5),SENN(5) VENP(5).VENN(5),TSENP(5). 5TSENN( 5). TVENP(5). TVENN(5). REST(48) COMMON/WORK/V(5),F (5), FLIN( 5 ), STRS(5). FDUM(5).DSU(5), DELV(5). 1FACACFAC.FACTOR.OEL,DTOT.STOT,DSSOS,DS2.DS3,OS4,DS5,OSG. 2DS7 OS8.DS9.KODDo REM4( 1148) P2(I)=STOT P9( )=s'rOT 02(I)=orOT 09( ) -TOr s-rG( )=-sroTr/oToT ST5( I )=STG( I) *STO( I )/ST 1( I) P5G( )=(STS( 1 )*ST6( 1 ) '(DTOT-DELC( I ) )-ST( I ) PY( I )-ST6( I ) *STOT) 1/(S'r5( I )-srG()) 05G( I ) —(-PY( I )-STOT+S F5( I) -S6T( )TT-ST( I )ELC( I))/ (srs5( f )-S-rG( )) P89( I )(ST( I )*ST6( )*(DE LC( I )-DTOT))+ST5( I )*STOT+ s r6( ~ ) *PY( ) )/(ST( )-STG( I ) ). D389( I ) =( STOF+PY( [ )+ST5( I ) *-ELC( I ) -ST6( I ) *DTOT)/ 1(STS( [ )-ST6( [)) R E TURN ENO) SUBROUT, IE VRTX( 1[) COr.MON/ [NFEL/IEM, tKST. LM(G).NODI,NODJ, KOUTDT FL, WID STO(3 ), ST 1 (3), 1ST2(3),srSO(2),ST(2),STS (2),PY(5).DELY.5),DELC(3).,KODY(5),KODYX(5), 2s (3). STG(3)-. srs3 (2),P ( 3).1(3). P2(3) D2( 3).P34(3),D34(3), 3P56( 3),056(3),P89(3),D89(3),P9( 3),D9(3).P-S( 2),DS ( 2), SDFO( 5), 4FrO rr(5 ),VTO r(5),SENP(5), SENN(). VENP (5). VENN(5) TSENP (5), 5'rs ENN( 5 ). rVENP(5), TVENN(5 ) REST(48) COMMON/WtORK/OV(5).OF(5), FL IN(5). STRS(5), FDUM(5), DSUB (5),EL V(5 ) 1FACAC.FAC.FACTOI.DEl. IOTOT.STOT.OSO.DS,S2,DS3.DS4.DSS,DSGDS6 2DS7,DS8.0DS,9.KD.REM( 148) SUDFF=P3,t( 1 )-SrTO VOD FF =3 ( I ) -DTO P3 ( ) S[fIr 0:34 ( I ) =D-ror; t ( )=I( )-sDo FF I( Ir ) = I ( I ) -VO FF RE FURN END SUBROUT tNE VRTXG([) COMMON/ NF E t./[ Mlt.l KS', LM ( G ) NOD I, N00Od, KOUTOT, FL, WID, STO( 3 ), ST 1 (3) 1 sr2 (3), S SO(2). STS I( 2), PY (5),DELY( 5), DELC(3),KOOY (5), KODYX( 5 ), 2S T5(3) S'TG(3), S'[S3(2),P 1 (3). D1 (3),P2(3) D02(3),P34(3),D34(3), 3P56(3).056(3),P89(3),089(3),P9(3).D9(3),PS 1(2).DS1(2). SDFO(5), roF r(5 ). VTOT), EN'(5), SENN(5).VENP(5).VENN(5),TSENP(5). 5r SENN( s ), rVFNP ( ), TVENN( 5 ), REST( 48 ) COMtMON/WORK/oV(5) ),F (5). FLIN(5),STRS(5), FDUM(5). DsuB(5) DELV(5), IFACAC,FAC,FACORODEL(, DTOT, STOT, DSO,DS,DS2,DS3,DS4.DS5,DSG, 2D0S7.DS.D59.KODD.REtM( I 1,18) SDoFF:P56( ) -s rf VOIFF —0D6( I )-DFOT P5G( I ) =S'[O r 056( ) =ODO P9(1)=P9(I ) —SDIFF 09( I )(D9( I )-VD[FF RE IURN END

-53 - SUE-;ROUTINE VR rs( I ) COMMON/ I JF FEl /IE Ml., KST, LM( G ), N N OJa.,KOUTD T FL. W I O, S' 0( 3 ), ST I ( 3 ). ST2( 3), STSO( 2 ).STS 1(2),PY(5 ).DELY(5),OELC( 3).KODY(5),KODYX(5), 2ST5(3 ).STG(3).STS3(2),P1(3),DI(3) P2(3).D2(3),P34(3).D34(3), 3P5G(3), DG(3). P89(3),D89(3),P9(3),D9(3), PSI(2), DS 1(2), S)FO( 4 FTO1 (5),VTO-f (5),SENP(5), SENN(5), VENP(5),VENN(5), TSENP(5) TSENN(5 ), TVENP(5), TVENN(5), REST (48) Co.4t-ON/wORK/OV(5),DF (5), FLIN(5), STRS(5),FDUM(5).DSUB(5),O ELV(5). IFACACFACFFACACTOR, DELI,TT,0TOTSTOT,OSO, S, DS2,.S3,DS4,DS5, S 2057,S3,OS9,KOD, REM( 1148) SOIFF=P9( [)-STOf VO FF=D9( ) -OTOr P9( )=STOr 09( I)=orr PSG( [ )-P56( I )-SDIFF 056(1 ) DSG( I )-VOIFF RETURN END C= STATE DETERMINATION OF SPRING COMPONENTS SUi3ROIJTlINE RSPSP( ) COMMON/INFEL/ItIEM. KSTLM(G).NODI. NOD,KOUTTFL,WID, STO(3),ST (3), ST2( 3).STr( 2).STS (2),PY( 5), DELY(),DELC( 3)KODY(5),KODYX(5), 25T5(3), STG(3). STS3( 2),P1(3).01(3),P2(3),D2(3).P34(3),034(3). 3PG5(3),D5G(3).P09(35),(3)3) P9(3),D89(3)09(3),PSI(2),DSi(2) SFO(5), ~IFTOr (5).VTOT('S), SENP( 5), SENNN(5), VENP(5), VENN(5).TSENP(5), 5TSENN(5),TVENP(5),I'VENN(5),REST(48)' COMMON/WORK/DV(5),F (5), FLIN(5 ), STRS(5s), FOUr.1(5), SUB(5), [)ELV(5), 1FACAC.FAC.FACO, I)E L, OTOT,STOT,DSO. DS, DS2, DS3,DS1,DS, )S6, 2DS7.DS,. DS. KODD.REM( 1148) N-l m-:3 KoDO =KODY( N) OFI I =DV(N) Tror=VTor (n) F ACAC =0.O 171t r ACTOR- 1 -F ACAC KODY I t-=KODO'f C 0O1N SLOPE O,GEr FACTOR FOR STATUS CHANGE GO TO r( 113, 11t, 115,303),KODY I 113 OS)=S rso( [ )*OELI F (OSO):31. 1,t. 5 1 31 FA( - ( -PY (N)-ST r )/OS [F(FAC.GE.FAC'TOR)GO TO 61 FACTOR=F AC KODO=2 s rr -=-Py(N) GO 'fO 41 51 F AC- (PY (N) -STOT )/OSO [F(FA(C.>GE.FACTOR)GO TO 61 FAC [OR-=FAC KO)D0= 1 STOT =PY(N) GO Ir) 4 1 G t S rO =S TO rof -FACTOR "DSO GO Fo 41 C ON SLOPE t GET FACTOR FOR STATUS CHANGE 11.1 OS -STS1( ) *D 11I [F(DS )';.41,81 7 I KOO00)=3

-54 - GO TO 303 8 1 STOT=STOT+FACTOR*DS GO TO 41 C ON SLOPE 2.GET FACTOR FOR STATUS CHANGE 115 DS2=STS I( [)*DELI. IF (DS2)91.4 1, 101 91 Sfr0OT=S rOT+FACTOR *DS2 GO TO 41 101 KOD-D=3 GO TO 303 C C C( O'N SLOPE 3.GET FACTOR FOR STATUS CHANGE 303 0S3=STS3( )*OELI IF(DS3) 1t 1.41, 121 I1 FA-C=(-PS 1 ( I )-STO)/DS3 IF(FAC.GE.FACTOR)GO TO 131 FACTOR=FAtC KODO:2 sror=-P.sl([ GO TO 41 121 FAC=(PS1( )-STOT)/DS3 1F(FAC.GEI. FA(COZ)GO TO 131 FACTOR=FAC KOOO= 1 STOT=PS 1( [) GO rTO 4 131 STOT=STOT+FACTOR OS3 4 1 FACAC= F ACAC( FACTO!R [ F ( FACAC. I.r 0(.9099999)GO TO 177 IF(KODO.E.1)3GO rO 750 IF(KODD.E0.2)Gl) TO 760 GO TO 770 75( Psl( l)=sror oS1( t)=oror STS3( I )-sror/oDfO l] -r o 7 7-0 760 PS 1( I) —srTO'r osl( ):-oruor STS3( I ):STOT/) i"OT 7-10 KOO Y ( N ) - OD F roT(N) =stor ror(N)=orof RE TURNJ END

-55 - APPENDIX A-2 TANGENT STIFFNESS MATRIX OF THE SHEARTWAALL ELEMENT! C KH IO I O ---- T - -B - - I ( AI )L+K + I -B( HE)L I 0 I' -KH I 0 - HKH -I.i.. 1 (EA _ *_ EA _. t ( H 0 T )L I (A)R I H R I B EA -B( )L+ I\ HL U EA EA B( H )R H)R 2 EA EA I ( +K B2 (EAK ( )LEA I +B2(H)R 0 KH 0 B( )R -B2 EA I -B (-i-,-,,+KR 1 i B(EA)R 0 _ o _ _ O I '-t -B2()EA B. H )R -KHi -L - - + -~ ~.I.......I -- ~ -- -I..... (A) -K B(EA HL V L v L+Kv t ' () E I I I EA I TH R B(H R g I I 1 1 EA -B2EA +KB (EA)+ KH I B I H KH I-B( + [K 1H L LR H L I HK v " rl - I IIK I-B (A) I EA R I B2 EA 2 I +K +B 2(EA) I I 3 ( H ) R I I B H )R I I B( H)R I

UNIVERSITY OF MICHIGAN 3 9015 02527 8378