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ABSTRACT

The purpose of this thesis is to prove by direct methods existence
theorems for optimal solutions in problems of optimal control and the
calculus of variations. Indeed in each existence theorem we prove the
existence of at least one element, in any given nonempty complete class

Q of admissible elements, which minimizes a given cost functional

t

fx,ul = [ 216 x(0), u®)d

Y

An admissible element is here a pair x(t), u(t), t, <t < tz, of

1>
vector valued functions x(t) = (xl, con, Xn), u(t) = (ul, ceo un), x(t) a
trajectory and u(t) a control function, or strategy, for which the follow-
ing requirements are made: (a) x(t) is absolutely continuous in

[tl,tz]; (b) u(t) is measurable in[tl,tz]; (c) the pair x,u satisfies
a given system of ordinary differential equations

dx'/dt = £t x(t),u(t), i=l,...,n, or

dx/dt = f(t, x(t),u(t), t; <t<t,,

in the sense of Carathéodory, f(t,x,u) = (fl, oo ,fn) being a given
vector function; (d) x(t) satisfies a constraint on the time and space
variables t and x of the form (t,x(t)) ¢ A forallte [tl, tz], where A

is a given fixed subset of the tx-space E1 X En; (e) u(t) satisfies a

iii






As Cesari proved his Theorem I in 1966 by finally extending to
Lagrange problems a Tonelli-Nagumo Theorem (1915-29) for free
problems and n=1 together with Filippov's statement (1959) for
Pontryagin problems, so our Theorems II, III and IV extend to La-
grange problems analogous theorems of Tonelli for free problems
and n=1,

In Chapter IIl we deduce from Theorems I, IIl and IV as
corollaries analogous existence theorems for problems with f linear

in u.
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INTRODUCTION

The purpose of this thesis is to prove by direct methods
existence theorems for optimal solutions in problems of optimal
control and the calculus of variations, Indeed in each existence
theorem we prove the existence of at least one element, in any
given nonempty complete class Q of admissible elements, which

minimizes a given cost functional

t

Ix,u] = 21 (tx(), ub)d.

Y

An admissible element is here a pair x(t), u(t), t1 <t< t2,
of vector valued functions x(t) = ((xl, o 9xn’)9 u(t) = (ul, see un),
x(t) a trajectory and u(t) a control function, or strategy, for which
the following requirements are made: (a) x(t) is absolutely con-
tinuous in [tl, tz]; (b) u(t) is measurable in [tl, tz]; (c) the pair

x,u satisfies a given system of ordinary differential equations

dx*/dt

i

fi(t, x(t), u(t)), i=1,...,n, or

dx/dt

1

f(tx(t), u(t), ¢ <t<ty,

in the sense of Carathéodory, f(t,x,u) = (000, :fn) being a given
vector function;] (d) x(t) satisfies a constraint on the time and space

variables t and x of the form (t,x(t)) ¢ A forallte [tl, tz], where A

is a given fixed subset of the tx-space E, En; (e) uft) satisfies

1
1



a constraint of the form u(t) ¢ U(t, x(t)) for almost all t e [tl, tz],
where U(t,x) is a given subset of the u-space Em9 and where
U(t, x) may depend on both t and x3 (f) the pair x,u is such that

f (t,x(t), u(t)) is L-integrable in [tl, tz]o Usually, complete classes
Q of admissible pairs are obtained by considering all admissible
pairs x(t), u(t), t1 <t< tz, whose trajectories x(t) satisfy given
boundary conditions of a rather general type. The boundary condi-
tions can be written in the McShane's form ((tl, x(tl), tz, x(tz)) ¢ B,
where B is a given closed subset of the tlxltzxz-space E2n+2o

In Chapter I, for the convenience of the reader and for the
necessary references, we repeat with variants an Existence Theo-
rem I due to Cesari (1966), where a growth condition with respect
to u on the scalar function fo is assumed,

Our results are contained in Chapters Il and III. In Chapter II
we first prove an Existence Theorem II which is equivalent to Theo-
rem I and in which the growth condition is expressed in terms of a
uniform limit fo/ Iul = 4+ o as Iul = 4+ ., By means of counter-
examples we show the need of the uniformity in our statement IL
In the same Chapter II we prove then Existence Theorems III and IV,
where we show that the growth condition can be relaxed in a closed
exceptional subset E of A provided either an additional condition is
satisfied at every point of E (Theorem III), or no additional condition

is satisfied but E is slender according to a suitable definition



(Theorem IV).

As Cesari [4a] proved his Theorem I in 1966 by finally extend-
ing to Lagrange problems a Tonelli-Nagumo Theorem (1915-29)
[17, 23a] for free problems and n=1 together with Filippov's state-
ment (1959) for Pontryagin problems [8], so our Theorems II, III
and IV extend to Lagrange problems analogous theorems of Tonelli
for free problems and n=1. Theorems II and IV which had been
proved by Tonelli for free problems, n=1, and fo of class Cl, had
been extended by L. Turner [24] to free problems, any n> 1, and
fo of class CO,, Our extensions to Lagrange problems are also of
class Co., We owe to L. Turner the concept of slenderness we use
in Theorem IV. In Chapter III we deduce from Theorems II, III
and IV as corollaries analogous existence theorems for problems
with f linear in u,

As in Cesari's work we assume A to be closed, and U(t, x)
also closed for every (t,x) ¢ A (though not necessarily compact)
and satisfying Kuratowski's condition of upper semicontinuity (prop-
erty (U)). Analogously, for the sets Q(t, x) and E)(t, X), which are
the images of U(t, x) under f and f = (fo, f), and for the derived
sets Q (t,x), we assume with Cesari that the modified Kuratowski
upper semicontinuity condition for convex sets is satisfied (proper-
ty (Q)). As in Tonelli's and Cesari's works we first prove the ex-

istence theorems for A compact, and then we extend them to the



case of A closed under usual additional assumptions,

Our proof of Theorem II in Chapter II is given by means of
five lemmas. By these lemmas we prove first the equivalence of
the conditions in Theorems I and II, and then the statement that the
uniformity requested in our Theorem II need not be explicitly veri-
fied for free problems, since for these problems the uniformity is
a consequence of the remaining hypotheses. This last statement
is relevant since in the corresponding Tonelli's Theorem II such a
uniformity was not requested. In such a way we can conclude that
our Theorem II contains as a particular case the corresponding
Tonelli statement for free problems and n=1, as well as Turner's
statement for free problems and any n > 1.

In order to describe our proofs of Theorems IIl and IV we
must first summarize Cesari's scheme for the proof of Theorem L
This proof of Cesari is a modification of the usual direct method in
the calculus of variations for free problems, in the sense that an
application of Helly's Theorem and suitable modifications of a clo-
sure theorem due to A. F. Filippov replace Tonelli's lower semi-
continuity argument. We describe Cesari's proof only for the case A
compact.

The first step is to show that the infinium i of Ix,u] is finite,
where the infimum is taken over all pairs x,u of the given complete

class Qof admissible pairs. Thus, there exists a minimizing



sequence xk(t)y uk(t), tlk <t< t2k9 of pairs in Q, that is, a se-
quence such that I[x Xy k] -1 as k= + o. The second step consists
in showing that the trajectories xk(t), tlk <t< tZk’ k=1,2,..., of
such a minimizing sequence are equiabsolutely continuous and also
equibounded. Then, Ascoli's Theorem guarantees the existence of
some subsequence of integers k and of some continuous vector func-
tion x(t), tl <t< tz,

an obvious modification of the uniform topology as k = +« along the

such that tl.k ~ tl, toy = tz and xk(t) = x(t) in

extracted subsequence, The equiabsolute continuity of the trajec-

tories x (t) t <t <t k=1,2,..., and the uniform conver-
1k =

2K’
gence X, <X guarantee then that x(t) is also absolutely continuous

in [tl, tz].
The third step concerns the sequence xi(t) 1k <t< t2

k=1,2,..., with

0 oy

X ) = Il v (tdt = ft £(r, % (1), w (7)d7

1k 1k

for which no equicontinuity can be proved at this point, neither un-
der the conditions of Theorem I, nor under the conditions of Theo-

rems II, IIl and IV. Instead of the functions xl(i((t), the two functions

t

t
- - Fon +
Y () = - Il v (Bdt, Y (1) = Il vlthat, t <t <ty

bk bk

are taken into consideration, where as usuval



and hence

viovo >0, v o= v - v lv]::v + Vv,

k’ -7 'k k k’ k k k
and

Xt = Yo(£) + YO0, t.. <t<t,, k=1,2

k g Yt Sty koL 2,

Now the functions Y{{(t) are monotone nonincreasing and uniformly
Lipschitzian, and the functions Yﬁ(t)} are nonnegative, monotone non-
decreasing and uniformly bounded. By applying Helly's Theorem to
the sequence Yi(t) and then Ascoli's Theorem to Y];(t), further suc-
cessive extractions are obtzined such that x;z((t) = Yﬁ(t) + YO (),

k

ty, <t<t k=1,2,..., converges for each t, t1 <t < tz, toward

1k = = 2k’
xo(t) = Y(t) + Z(t), where Y(t) is a (scalar) absolutely continuous func-
tion, and Z(t) is a nonnegative monotone nondecreasing function with

Z'(t) = 0 almost everywhere in {tptz] , and Y(t,) = Z(t,) = 0. Since

4 - L0 _ - -
Yty ) + Yty ) = k(tZk) ul[xk,ukl i ask =+ o,

then by taking the limit along the last extracted subsequence one ob-
tains Y(tz) + Z((tz) =1 where Z((tz) > 0, and hence Y(t,z) <1i

The fourth step consists in applying a closure theorem which
is a generalization by Cesari of one due to A, F. Filippov, This
guarantees the existence of a measurable control u(t), t1 <t< tz,

such that x(t), u(t), t, <t< ty, s an admissible pair for the prob-

1
lem, and I[x,u] = Yity) < i



The fifth and final step consists in a simple application of the
completeness property of Qin order to conclude that the pair x,u
belong to the class Qand hence i < I[x,ul. Therefore, I[x,u] = i,
and the proof is complete, in the case A is compact,

The proof of Existence Theorem III in Chapter II repeats es-
sentially the same steps, but the proof that the trajectories xk(t),
e S by

more complicated based as it is on the growth property at the points

k=1,2,..., are equigbsolutely continuous is much

not on the exceptional set E and on the assumed additional property
at the points of E. This part of the proof is inspired by the corres-
nonding part of the analogous theorem of Tonelli for free problems.
The proof of Existence Theorem IV in Chapter II also differs
from Cesari's proof in step two. First the trajectories xk(t),
tlk <t< tZk’ k=1,2,..., are proved to be equicontinuous and of
uniform bounded variation, Thus the limit vector function given by
Ascoli‘s Theorem is continuous and of bounded variation, Finally
a proof by contradiction shows that x(t) is alsc an absolutely con-
tinuous vector function, The other steps in the proof are essen-
tially the same as in Cesari's proof. The long and difficult argu-
ment replacing step two again is modeled on the corresponding part
of the anzalogous argument of L, Turner for free problems.

Theorems I to IV extend the analogous theorems of Tonelli

for free problems with the exception of Theorem IV where an



additional hypothesis is being made.

Although the present work concerns only usual solutions, we
can say that existence theorems for generalized solutions can easi-
ly be derived from Theorems Ito IV. Indeed, as pointed out by
R. V. Gamkrelidze [9], the generalized solutions of a given prob-
lem can be thought of as usual solutions of an analogous problem
obtained by a suitable relaxation of the given problem and with an
enlarged set of control variables. Thus, as shown by Cesari [4b]
for Theorem I, also Theorems II, Ill and IV yield analogous exis-
tence theorems for weak solutions. Generalized solutions, which
had been introduced for free problems by L. C. Young [27], have
been studied extensively for free and for Lagrange problems by
E. J. McShane [16], J. Warga [25], A. Plis [19], R. V. Gamkre-
lidze [9], and Cesari [4b].

There are various other approaches for obtaining existence
theorems for problems of optimal control and the calculus of vari-
ations. A few of these are briefly described below. Nonlinear ex-
istence theorems have been proven by E. O. Roxin [22] who em-
ployed the concept of the attainable set and also by E. Lee and L.
Markus [14]. L. Neustadt [18] has proven an existence theorem for
the Pontryagin problem, where the functions f and fo are assumed
to be linear in the state x and U is a fixed compact subset of the u-

space Em. In an existance theorem due to L. W. Neustadt no convexity



condition is required. For the proof he employs a theorem by A.
Lyapunov on the convexity of the range of a vector measure, which
was previously used by H. Halkin [10] to derive necessary condi-
tions for optimal control problems, and the concept of the attaina-
ble set, which was previocusly used by E. O. Roxin [22]. D. Black-
well [2], H., Chernoff 5], H. Hermes [12] and P, R, Halmos [11]
have given alternate proofs or extensions of the theorem due to
A, Lyapunov on the convexity of the range of a vector measure,
A. V. Balakrishnan [1] has treated optimal control problems in
abstract function spaces. E. H. Rothe {21] has proven an existence
theorem for multidimensional free problems of the calculus of
variation by utilizing Sobolev's imbedding theorems.

For problems of optimal control with U(t) depending on t only,
L. S. Pontryagin [20] gave his now famous principle of maximum
as a wide ranging necessary condition. This principle has been
extended in many ways by R. V. Gamkrelidze, H. Halkin, L.

Neustadt, and others,



Chapter I
Statement of the Optimal Control Problem,

Closure Theorems, and Existence Theorem I

1. Usual solutions.

Let A be a closed subset of the tx-space E. X En’ te E

1 1’

1 n) ¢ E , and for each (t,x) ¢ A, let U(t,x) be a closed

X=(x",...,X

m).

subset of the u-space Em, uz(ul, sea, U We do not exclude that A

coincides with the whole tx-space and that U coincides with the whole
u-space. Let M denote the set of all (t,x,u) with (t,x) € A,

ue U(t,x). Let f(t,x,u) = (fo, f) = (fo, fl, cees fn) be a continuous vec-

tor function from M into En+1° Let B be a closed subset of points

1 n 1
(tl’xl’tZ’XZ) of E2n+2, X; = (xl,° .o ,xl), Xy = (xz,., . ,x2). We

shall consider the class of all pairs x(t),u(t), t, s t=s t2’ of vector

1
functions x(t), u(t) satisfying the following conditions:

(a) x(t) is absolutely continuous (AC) in [tl’t2]°’

(b) u(t) is measurable in [tl’ tz];

() (t,x(t)) e A for everyt e [tl’t2]°’

(d) u(t) e U(t, x(t)) almost everywhere (a. e.) in [tl,tz]-,

(e) fo(t,x(t), u(t)) is L-integrable in [tl,tz];

(f) dx/dt = f(t,x(t), u(t)) a. e, in [tl, tz];

(g) (t,x(t)), ty,x(ty)) € B.

10
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By (f) we mean that the n ordinary differential equations
i .
dx'/dt = f£(t,x(t),u(t), i=1,2,...,n, (1)

are satisfied a. e, in [tl, tz]. Since x(t) is AC, that is, each com-
ponent x(t) of x(t) is AC, we conclude that all £,(t, %), u(t),
i=1,2,...,n, are L-integrable in [tl,tz] as f .

A pair x(t), u(t) satisfying (abcdefg) is said to be admissible
and for such a pair x(t) is called a trajectory and u(t), a strategy,

control, or steering function. As usual, U(t,x) is said to be the con-

trol space at the time t and space point X, The functional

t

[xu] = [2 £ (tx(t),u)dt @)

Y

is called the cost functional, and we seek the minimum of I[x,u] in
the total class Q of admissible pairs x(t), u(t), or in some well de-
fined subclass of

In the particular case where U(t, x) is a compact subset of Em
for every (t,x) ¢ A, the problem of the minimum of I[x,u] is calleda

Pontryagin problem of optimal control theory. The general case

above, where U(t, x) is a closed but not necessarily compact subset

of Em for every (t,x) ¢ A will be denoted as a Lagrange problem with

unilateral constraints or as the optimal control problem. The classi-

cal Lagrange problem corresponds essentially to the case where
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U=E_ is the whole u-space, with the side conditions being here
differential equations in normal form.

In the particular case in which { =1, then I[x,u] = ty = t,
and the problem of minimization under consideration is then called

a problem of minimum transfer time (from the state x(tl) to the

state x(tz))°

There is another particular case of the Lagrange problem
which shall be taken into consideration, namely m=n, UzEmg and the
vector function f(t,x,u) given by £(t,x,u) = u, or fi(t, X,u) = ui,
i=1,...,m=n, and hence :f((t,x, u) = (fo, u). Then the differential
system (1) reduces to dxi/dt = ui, i=1,...,n, and the cost func-

tional becomes
I[x] = [ £ (tx(t),x"(t)dt. (3)

This problem is called a free problem.

2. Generalized solutions.

Often a given problem has no optimal solution, but the mathe-
matical problem and the corresponding concept of solution can be
modified in such a way that an optimal solution exists and yet neither
the system of trajectories, nor the corresponding values of the cost

functional are essentially modified. The modified (or generalized)
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problem and its solutions are of interest in themselves, and have
relevant physical interpretations. Essentially, we consider a finite
system of distinct strategies which are thought of as being used at
the same time according to some probability distribution,

Instead of considering the usual cost functional, differential

equations and constraints

t
2
Ix,u] = [ 1 (tx(t),u(t)dt,
Y
dx/dt = f(t, x(t), ult)),  f=(,...,1), (4)

(t,x(t) e A, ult) ¢ Ult, x(t)),

we consider a new cost functional, differential equations and con-

straints

Jx,p,v) = [ g lt,x(t), plt), vit)et,

dx/dt = git,x(t), p{t), v(t)), g={g;;...,g)) (5)
(t,x(t) ¢ A, v(t) e Vit,x{t)), plt)eT.

Precisely, v(t) = (u(m, oo u(w) represents a finite system of

(1)

°

» (
y > n+l ordinary strategies u(ms oo 9uW), each u*’ having its values

in U(t, x(t)) C Em. Thus, we think of v = (u(l), cee ,u(w) as a vector
I

variable whose y components u*"™’,.. , are themselves vectors
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u with values in U(t, x). In other words
v= @) e, ey,

or

ve V(t,x) = [U{t, %]’ = Ux...xUC Emy, (6)

where the last term is the product space of U by itself taken y times,
and thus V is a subset of the Euclidean space Em,}/u In (5)

p= (pl, ey py) represents a probability distribution. Hence, p is
an element of the simplex I" of the Euclidean space Ey defined by

pj >0, Py+eee p}/ = 1. Finally, in (5) the new control variable

In (5)

g = (gl,. .o ,gn) , andall g, g,,...,g, are defined by

is (p, v), with values (p,v) ¢ T' X V(t,x) CEy+my°

Y
gtxpv = > phitxul), =010 (7)
j=1
As usual we shall require that the functions p(t), v(t), t <t< ty)

are measurable and that x(t), t. <t < t29 is absolutely continuous.

1

As in No. 1, we shall require as usual that x(t) satisfies boundary

conditions of the type (tl, x(tl),tz,x(tz)) ¢ B C E2n«+2 where B is

a given closed subset of E As in No. 1, we require

2n42°
gt x(t), p(t), v(t)) to be L-integrable in [tl, tz],,

We shall say that [p(t), v(t)] is a generalized strategy, that

p(t) = (pl, oo pﬂy) is a probability distribution, and that
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[ o |
v(t) = (um, 0o ,u(/ ) ) is a finite system of (ordinary) strategies., We

shall say that x(t) is a generalized trajectory.

It is important to note that any (ordinary) strategy u(t) and
corresponding (ordinary) trajectory x(t) (thus, satisfying (1)) can be
interpreted as a generalized strategy and generalized trajectory, by
taking v(t) = ((um(t), j=1,...,v) and p(t) = (pj(t), j=1,...,y) defined
by u.('j)<(t) = uft), pj(t) =1/, j=1,...,v. Then relations (5) reduce to
relations (1).

Instead of the usual set M we shall now consider the set
N C Elwwmy of all (t,x,p,v) with (t,x) ¢ A, pe I, ve V(t,x). As
usual, we shall assume that A is a closed subset of E X En, and
that f = ((foﬁ f‘l’ ceos fn) is a continuous vector function from M into
En.+1°

Under hypotheses which are often satisfied, any generalized
trajectory can be approached as closely as we wish by means of
usual solutions, and correspondingly the value of the cost J[x, p, v]
can be approached as closely as we wish by the value of the usual
cost I[x,ul. In this sense we shall understand that the usual solu-
tions and the corresponding values of the cost functional are not es-
sentially modified by the introduction of gereralized solutions., The
existence theorems of the present thesis apply to generalized as

well as to usual solutions, provided g, and g are replaced for fo

and f. More details concerning the application of Cesari's Existence
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Theorem I to generalized solutions are given in [4b].

3. The distance function p.

If we denote by X the space of all continuous vector functions
x(t) = (x19 ...,X), asts b, from arbitrary finite intervals [a,b]
to Enﬁ it is convenient to define a distance function p(x,y) for ele-
ments x(t), a=t= b, andy(t), c = t=d, of X, soas to make X a
metric space. For this purpose we extend x(t) in all (-o, +wo) by

defining it equal to x(a) for t = a and equal to x(b) for t = b, and,

analogously, for y(t). We then define
plx,y) = ]a-c ] + ]bmd] + max lx((t)—y((t) ﬁ,

where the maximum is taken for allt, - <t <+w. Thenp isa
distance function and X is a metric space.

Given functions xk(t), g <t< bk’ k=1,2,..., and x(t),

a <t<b, we shall say therefore that X, "Xxas k = o0 in the p-met-
ric if p(x),x) =0 as k ~ oo, If the interval [a,b] is fixed, then this
reduces to the usual uniform convergence,

For any admissible pair [x(t), u(t)] the trajectory x(t) is an
element of X, but of course an element of X may not be the trajec-
tory of an admissible pair,

A class Q of admissible pairs is said to be complete provided
it satisfies the following property: If Xk(t), uk(t), tlk sts tZk’
k=1,2,..., and x(t), u(t), tl sts tz, are all admissible pairs, if
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xk(t) - x(t) as k = 0 in the p-metric, and if all pairs xk(t), uk(t),
k=1,2,..., belong to Q then x(t), u(t) also belongs to & The
classes usually taken into consideration in applications are com-
plete, The class of all admissible pairs (satisfying (abcdefg)) is

certainly complete,

4, Upper semicontinuity of variable sets,

Using the same notations of No. 1 we shall denote by Q(t, x)

the set

Qlt,x) = flt,x, U(t,x))

[ze E |z = f(t,x,u), ue U(t,x)] C E .

Here Q(t, x) is the image in E of the set U(t, x) in the mapping
U(t,x) - E defined by z = f(t,x,u), ue U(t,x). If fis continuous,
as assumed in No, 1 and if U(t,x) is compact for every (t,x) € A,
then also Q(t, x) is compact.

Given any point (tO,XO) ¢ Aand 6 > 0, we denote by

)

and denote by N%((to, XO) those points of A at a distance < 6 from

T Y :
N(5 (to, xo) the set of all (t,x) ¢ A at a distance < from (to,xO

(to, xo)° The set U(t, x) is said to be an upper semicontinuous func-
tion of (t,x) ir A provided for every ((to,xo) ¢ Athereisad >0

such that

Ult, % < [Ult, %)),
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for every (t,x) ¢ N(5 (to9 xO); where UE denotes the closed ¢ -neigh-
borhood of U in E_,
m
If U(t,x) is compact for every (t,x) ¢ A and an upper semi-
continuous function of (t,x) in the closed set A, then Cesari [4a]

has proven that Q(t,x) is also compact for every (t,x) ¢ A and an

upper semicontinuous function of (t,x) in A.

5. Properties (U) and (Q) of variable sets.

If E denotes any subset of En we shall denote by cl E the
closure of E and by co E the convex hull of E. Thus cl co E de-
notes the closure of the convex hull of E, or briefly, the closed con-
vex hull of E.

Let U(t, x),(t,x) € A, be a variable subset of Em" For every
6 >0, let U(t,x,8) = JU(t', x'), where the union is taken for all

(t',x') € N5 (t,x). We shall say that U(t,x) has property (U) at

(t,x) e A if

U(t,x) = M clU(t,x,6) = N ¢ U U(,x).
6 >0 6>0(t,x)eN6(t,x)

We shall say that U(t, x), (t,x) ¢ A, has property (U) in A if U(t, x)
has property (U) at every point (t,x) ¢ A. If a set U(t,x) has prop-
erty (U), say at (t,x), then obviously U(f, x) is closed for it is the
intersection of closed sets.

Let Q(t,x),(t,x) ¢ A, be a variable subset of En" For every
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(t,x) e Aand 6 >0, let Q(t,x,86) = UQ(t',x') where the union is
taken for all (t',x") ¢ N; (t,x). We shall say that Q(t, x) has prop-

erty (Q) at (t,x) ¢ A if

Qf,x) =M clcoQ(f,x,8)= M clco U Qlt,x).
5 >0 5>0 (t,x)(eNé(t,X)

We shall say that Q(t, x) has property (Q) in A if Q(t, x) has proper-
ty (Q) at every point (t,x) ¢ A. If a set Q(t,x) has property (Q),
say at (f,x), then obviously Q(i,x) is closed and convex, as the in-
tersection of closed and convex sets.

Property (U) is Kuratowski's concept of upper semicontinuity
[13] used also by Choquet [6] and Michael [15].

The following statements (i) - (viii) and their proofs are given
in [4a].

(i) ¥ A is closed and U(t,x) is any variable set which is a
function of (t,x) in A and has property (U) in A, then the set M of
all (t,x,u) ¢ A X Em with u € U(t,x), (t,x) ¢ A is closed.

(ii) If the set U(t,x) is closed for each (t,x) ¢ A and is an
upper semicontinuous function of (t,x) in A, then U(t,x) has prop-
erty (U) in A.

Thus, for closed sets the upper semicontinuity property im-
plies property (U) but the converse is not true, that is, the upper
semicontinuity property for closed sets in more restrictive than

property (U). This is shown by an example in [ 4a].
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(iii) If A is compact, if U(t,x) is compact for every (t,x) ¢ A
and is an upper semicontinuous function of (t,x) in A, then M is com-
pact.

(iv) Property (Q) at some (t,x) implies property (U) at the

same (t,x), and

U(t,x) = M cleoU(,x,6) = M clU(®E,x,5)
5 >0 5>0
= M U(f,x,6).
5 >0

Analogously, if U(t,x) has property (U) at (t,x), then

Ut,x) = N clUf,x,6) = M U(t,x,56).
5§ >0 5 <0

(v) If for each (t,x) ¢ A the set U(t, x) is closed and convex,
and U(t,x) is an upper semicontinuous function of (t,x) in A, then
U(t, x) has property (Q) in A.

Let us now consider the sets Q(t, x) = f(t, x, U(t, x)), (t,x) ¢ A,
Q(t,x) En’ which are the images of sets U(t,x) C Em, for each
(t,x) € A.

The hypothesis that A is compact, that f is continuous on M,
that U(t, x) has property (Q) [or (U)] in A, and that Q(t,x) is con-
vex for each (t,x) ¢ A does not imply that Q(t, x) has property (Q)
[or (U)] in A. Even the stronger hypothesis that A is compact, that
f is continuous on M, that U(t, x) has property (Q) in A, and that

Q(t, x) is compact and convex for each (t,x) ¢ A, does not imply
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that Q(t, x) has property (Q) in A. These statements are shown by
two examples in [4a]. However, the following statement is valid.

(vi) If A is closed and f is continuous on M, if U(t,x) is
compact for each (t,x) ¢ A and U(t, x) is an upper semicontinuous
function of (t,x) in A, then Q(t,x) possesses the same property,
and also has property (U) in A. If we know that Q(t, x) is convex,
then Q(t, x) also Las property (U) in A. If we know that Q(t, x) is
convex, then Q(t,x) also has property (Q) in A.

REMARK: The statements above show that properties (U)
and (Q) are generalizations of the concept of upper semicontinuity
for closed, or closed and convex sets, respectively.

(vii) If A is a closed subset of the tx-space E, X En’ if
U(t,x), (t,x) € A, U(t,x) C E isa variable subset of E  satis-
fying property (U) in A, if M denotes the set of all (t, x,u) with
(t,x) € A, ue U(t,x), if fo(t,x, u) is a continuous scalar function
from M into the reals, if ET(t, x) denotes the variable subset of
o

E ., definedby U = [u=(u

then ﬁ(t, x) satisfies property (U) in A.

,u) € E .1 ] u® > fo(t,x, u), ue U(t,x)],

An example is given in [4a] which shows that U(t, x) of state-
ment (vii) does not necessarily have property (Q) in A even if we
assume that U(t, x) has property (Q) in A and fo(t,x,u) is convex in

u for each (t,x) € A,
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However a slightly stronger statement does hold. It is neces-
sary to introduce a new property for this statement.

A scalar function fo(t,x, u), (t,x,u) ¢ M is said to be quasi-

normally convex in u at (to, xo,uo‘) ¢ M provided, given ¢ > 0, there

are a number & =90 (to,xo, u, €) > 0 and a linear scalar function
zlu=r+bu b= (bl,. oo ,bm), r, bl" oo ,bm, real such that
(a) fo(t,x, u) > z(u) forall (t,x) ¢ N5 (to, xo),
u e U(t,x)
(b) fo(t,x, u) <z(u) + ¢ forall (t,x) ¢ NO (to, xo),

ue Ult,x), |u - uo,! < 0.

The scalar function fo(t, X, u) is said to be quasi-normally con-

vex in u, if it has this property at each (t09X uo) € M.

o’
(viii) If A is a closed subset of the tx-space E/ XE, if
U(t,x), (t,x) ¢ A, U(t,x) C E ., isavariable subset of E_ satis-
fying property (Q) in A, if M denotes the set of all (t, x,u) with
(t,x) € A, ue U(t,x), if { is a continuous scalar function on M,
“which is convex in u for each (t,x) ¢ A, if either (@) the sets
U(t,x) are all contained in a fixed solid sphere S of Em, or (B) the

)

function'fo(t, X,u) is quasi-normally convex in u at every (to, X U

€ M, then the set 6(t,x) of statement (vii) has property (Q) in A.

A function fo(t,x, u) is said to be normally convex in u at

(to,xo, uo) e M, if for each (to’xo’uo) ¢ M and for every ¢ > 0 there

are constants 6 =6 (to, X ;U ) >0, v= u(toy X ;U ) >0 anda

096 0’ €
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function z(u) = ¢ + d- u such that
(a) fo(t,x, u) > z(u) + vl u-u ],4 for each (t,x) € N; (to,xo),
ue Ut,x)
and (b) fo(t,x, u) < z(u) + € for each (t,x) ¢ N6 (to, xo),

u e U(t, x), ]uu | < 0.

The scalar function fo(t, X, u) is said to be normally convex in u, if

it has this property for each (t09 X s uo) € M.

We shall need the following statement due to Tonelli [23a] and
L. Turner [24].

(viii) fo(t,x, u) is normally convex in A X Em if and only if
fo(t,x, u) is a convex function of u for each (t,x) ¢ A, and for no

points (t ,x ) ¢ A, u ,u; ¢ E_ with [ul | # 0 itis true that

for all real A

u). (8)

1
E{f(txu+)xu ,u

R IPL N 1)+f(t X ,u 'Ml)}zfo(to’x

(ix) If fo(t, X,u) is a convex function of u for each (t,x) € A
and £ (t,x,u) |u lnl ~+® as |u| =+wo for each (t,x) € A, then
fo(t, X,u) is normally convex in A x Em

PROOF: By statement (ix), it suffices to prove that there

exists no points ((to X ) €A, u u, € E_ with ]u

- # 0, for which

|
relation (8) holds. Suppose such points exist. Then,
%{fo(t09x09 u+ Aul) - f (t X Uy = Ay ) ]u + Aul ]

. -1
= fo((to, X uo) { u M’l ]
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-1

when u, + Auy #0. Now fo(t ' X uo) ]uo + Ay l 0 as A~ + .
As f(t,x,u) |u l-l ~+0 as |u| =+o for each (t,x) € A, this state-

1. 1
ment implies that fo(to, XUyt Aul) ‘uo + Aul r +00 aAS A = 40,

-1
Thus, fo(to,xo,uO - Aul) luo + Au1| = fo(to,xo,uO - Aul)o
-1 -1 -

. [uo - Ay I (IuO - My l luo+ )\ull ) ~+0 as X —~+w. Thisisa
contradiction and the statement is proven,

(x) If fo(t, X,u) is a convex function of u for each (t,x) € A,

and there exists a function ®z), 0 <z < +o, such that
fo(t,x, u) > ]u ]) for each (t,x,u) ¢ A X Ern

and <I>(z)z_1 = +00 S Z — 400, then fo(t,x, u) is normally convex in
AXE_.

m

PROOF: One has

fo(t,x,u)lu‘l_1 > & |u]) ]ul-l for |u| #0

and (t,x,u) € A X E . As &(z) 21~ +o0 and z = +0, therefore
£ (t,%,u) [ul 1.0 as |u| = +0. Statement (ix) applies and this

statement is proven,

6. Closure Theorem I

(Cesari[4a]). Let A be a closed subset of E;XE, let
U(t, x) be a closed subset of E for every (t,x) € A, let f(t, x,u)

= (f ) fn) be a continuous vector function on the set

e
M= {(t,x,u) | (t,x) € A, ue Ut,x)} into E_, and let
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Qt, x) = f(t, x, U(t, x)) be a convex subset of ]:'In for every (t,x) € A.
Assume that U(t, x) has property (U) in A, and that Q(t, x) has prop-

erty (Q) in A. Letx \( t), t,, <t<t,., k=1,2,..., be a sequence

1k =" =2k’
of trajectories, which is convergent in the metric p toward an ab-
solutely continuous function x(t), t1 <t< tzo Then x(t) is a tra-
jectory.

REMARK: If we assume that U(t, x) is compact for every
(t,x) ¢ A, and that U(t,x) is an upper semicontinuous function of
(t,x) in A, then the set Q(t, x) has the same property, U(t,x) has
property (U), Q(t, x) has property (Q), and Closure Theorem I re-
duces to one of A. F., Flipppov [8] (not explicitly stated in [8] but
contained in the proof of his existence theorem for the Pontryagin
problem with U(t, x) always compact).

PROOF: The vector functions

oft) = x'(t) t; <t <ty
qbk(t) = x”k(t) = f(t, xk(t), uk((t))), tlk {t< t2k’
k=1,2,..., (9)

are defined almost everywhere and are L-integrable, We have to

prove that (t,x(t)) ¢ A for every tl <t <t,, and that there is a

29
measurable control function u(t), tl <t < tz, such that
o(t) = x'(t) = £{t,x(t) u(t)), ult) ¢ Ult,x(t) (10)

for almost a1l t ¢ [tl, tzl,
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ty., If

First, p(xk, Xx) =0 as k ~ o, hence tlk - tl’ t2k =t

2) ort1<t<t2, 9k
large and (t, xk(t)) € A. Since xk(t) - x(t) as k = and A is closed,

te (tl,t then t1k <t<t,, for all k sufficiently

we conclude that (t,x(t)) ¢ A for every t1 <t<t,. Since x(t) is

20
continuous, and hence continuous at t1 and tz, we conclude that

(t,x(t)) € A for every t1 <t< t2.

For almost all t ¢ [tl, tz] the derivative x'(t) exists and is

finite, Let tO be such a point with t, < tO <t,. Then there isa

1 2
o > 0 with t1 < tO -o< tO +0< t2, and, for some k0 and all

kzko, also t1k<to-o<to+o<t Let xo=x(t0).,

2K’
We have x, (t) = x(t) uniformly in [t0 -0, ty+ o] andall func-
tions x(t),xk(t) are continuous in the same interval. Thus, they are

equicontinuous in [to -0, t + o]. Given ¢ > 0, thereisad >0

such that t, t'e [t - o, t_ +dl, [t-t'] <6, k> k , imply
lx(t) - x(t") I < €/2, lxk(t) - k(t') ] < €/2.

We can assume 0<6 <o, 6 < €. Foranyh, 0<h<§5, letus

consider the averages

e -1
m = h— f ¢(t0 + S)dS = h [X(t0+h) - X(to)],
0]

h

(11)
h

My, = h! fo ¢y (t +s)ds = h'l[xk(to+h) - xk(to)]o
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Given n > 0 arbitrary, we can fixh, 0 <h <4 < 0, so small that
|my - 9t | < (12)

Having so fixed h, let us take k, > kO so large that

1
mp - my | < [x ) - xt) | < ez (13)
for all k > k. This is possible since xk(t) - x(t) as k = o both
att=t andt=t +h. Finally, for 0<s <h, k>k,
| (6+9) - xtt ) | < [xle +9) - x () | + [x () - x(t) |
< €/2+€/2 = ¢,
[k, +8) -t | <h <d <,
and

f(t0 + 8, xk(to + 8), uk(to + 8)) e Q(to + 8, xk(t0 + 8)).
Hence, by the definition of Q(to, X 2¢), also
¢k(to +8) = f(to + 8, Xk(to + 8), uk(t0 +8))€ Q(to,xo, 2e).
The second integral relation (11) shows that we have also
my, € cl coQft,, X, 2€e),

since the latter is a closed convex set. Finally by relations (12)

and (13), we deduce

|o(ty) - mp | < fott) - my |+ [mp -mp | < 2,

and hence
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¢lt) € [clco Qlt,, X, 2€ )]277°

Here nn > 0 is an arbitrary number, and the set in brackets is

closed. Hence,

qb(to) e cl co Q(to, X 2€),

and this relation holds for every ¢ > 0. By property (Q) we have

qs(to) e M clco Q(to, xo',’xZE) = Q(to, xo),
e >0

where X = x(to), and Q(to, xo) = f(to,xo, U(to, xo))o This relation

implies that there are points u = u(t o) € Ult, %)) such that

alt) = f(t,,x(t ), alt ). (19

This holds for almost all tO € [tl, tz], that is, for all t of a measura-

ble set I C [tl,tz] with meas I=t, - t,. If we takeI = [tl,tz] -1,

then meas I_ = 0. Hence, there is at least one function u(t), defined
almost everywhere in [tl, tz], for which relation (14) holds a. e, in
[ty t).

which is measurable. For every te I, let P(t) denote the set

We have to prove that there is at least one such function

P(t) = [u|ue U x(t), o(t) = f(t,x(t),w)] c UEx(W) CE

We have proved that P(t) is not empty.
For every integer A =1,2,..., there is a closed subset CA of
I C, cIc [tl,tz], with meas C, > max [O,tz-tl - 1/x], such that

¢(t) is continuous on C>\° Let W)\ be the set
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- I 1
w, = [(t,u)ite C,, ue P(t)] c E,XE_.
Let us prove that the set W, is closed. Indeed, if (t,u) is a

point of accumulation of WA’ then there is a sequence (ts, us),

s=1,2,..., with <(ts’u‘s) € W;‘y tS =t u, < Then, ts € C)\ and

te C, since C, is closed. Also x(t) - x(t), oit) = ¢(f), and since
(t,, x(t ) e A, olt ) = flt, x(t),ult)), (t,,x(t ), ult,) e M, we have
also (t,x(f)) ¢ A, (t,x(f),u) € M, because A and M are closed, and
o(t) = f(f,x(t), u) because f is continuous. Thus, ue P(f), and
(t,x)e W,. This proves that W, is a closed set.

For every integer { let WMg Pﬂ(t) be the sets

W, o= [t ) [(tu) e W

A0 hﬂiQ]CWACE

XE_,
m

iy 1

P,(t) - [ulve P(t), ful < €] cP(t) c UL, x(t) E

= [t! e
CM = [ti(t,u) e WT)UZ for some u] C C)\ cIc [tls tz].

Obviously, WA is compact, and so is C)& as its projection on the

{
t-axis. Also UQC}\

{

=C,, and W, is the set of all (t, u) with

{ ¢
te C)\N U e Pﬁ(y)). Thus, for te CM’ Pﬁ(t)) is a compact subset of

U(t, x(t)).

Forte¢ C., and { large enough, the set Pf (t) is a nonempty

Al
compact subset of all u = (uls voes um)) ¢ U(t, x(t)) with

f(t, x(t),u) = 9(t) and lul <g. Let P, be the subset of P, with ol

., be the subset of P, with uZ minimum, ..., let

minimum, let P&

1

P_ be the subset of P . withu'" minimum. Then P_ is a single
m m-1 m
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point u = u(t) ¢ U(t,x(t)) with u(t) = (ul, cooy um), te CM’

lu(t)| < ¢, and f(t, x(t), u(t)) = ¢(t). Let us prove that u(t), te Cyp’

is measurable, We shall prove this by induction on the coordinates.

s-1
u

Let us assume that u1 ®,..., (t) have been proved to be measu-

rable on CM and let us prove that us(t) is measurable, For s=1
nothing is assumed, and the argument below proves that u1 (t) is

measurable. For every integer j there are closed subsets C)\!Zj of

It [, jozr Meas CMJ’ > max [0, meas CM—I/J],

such thatul'(t), e usnl(t) are continuous on C,

C., with CA

Y < Cy

It The function ¢(t)

is already continuous on C A and hence ¢(t) is continuous on every

set CA and CA Let us prove that us(t) is measurable on C)\

£ L3

We have only to prove that, for every real a, the set of all

2

te C,,; with u®(t) <a is closed. Suppose that this is not the case.

£
: : 0y S
Then there is a sequence of points tk € C?xﬁj with u (tk) <a,
~F S/r A a —u?(f
tk te CMZj’ u (t) >a. Then ¢(tk) #(t), u (tk) u (t) as
k—-w, a =1,...,s-1. Since iuB(tk) l <( for all k and B=s, s+1,. ..
.., m, we can select a subsequence, say still [tk], such that

uB(tk) -u"~ as k -ow, B=s,s+l,...,m, for some real numbers u”.

Then t, -, x(tk) ~x(f), u(tk) —~u, where
o= (0D),...,u
Then, given any number 7 > 0, we have

u(ty) € Ul x(t) © ol UE,x(E),n)
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for all k sufficiently large, and, as k -0, also
ue cl U(E,x(E),n).
By property (U) we have

ue N el U, x®,n = UE, x@E)).
n>0

On the other hand ¢(t,) = f(t,, x(t,), u(t,)), us(tk) < a,
yield as k - o,

~S

of) = #f,x(f),u), v° < a (15)
while t € C,, implies
o) = £(E, x(f),u®), ) > a (16)

Relations (15) and (16) are contradictory, because of the
minimum property with which us(f ) has been chosen. Thus, us(t)
0 for every j, and then u°(f) is also measu- .
rable on C Nt By induction, all components ul(t) yeeas um(t) of

is measurable on CA

u(t) are measurable on C hence, u(t) is measurable on CA

AL’ £
Since UQC s = Cy measC, > meas I - 1/, we conclude that u(t))

is measurable on every set CA and hence on I, with meas

I=t2-t1.

and f(t, x(t), u(t)) = ¢(t) a.e. on[t,, tz]. Closure Theorem I is

Thus u(t) is defined a. e. on [tl,tz], u(t) e U(t, x(t)

thereby proved.

REMARK: The last part of the proof of Closure Theorem I
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concerning the existence of at least one measurable function u(t) is a
modification, for U(t, x) closed and satisfying property (U), of the
analogous argument of A, F. Filippov [8] for the case where U(t, x)
is an upper semicontinuous compact subset of the Euclidean space
Em‘ A different argument - again concerning only the last part of
the proof - has been devised by C. Castaing [3]. His result concerns
a multi-valued map I'! t - It), with It) depending on t only. If

It) = U(t, x(t)) and U(t) = U(t, x(t)) is an upper semicontinuous func-
tion of the time t, then Castaing's result provides a different argu-

ment for the second part of the closure theorem.

7. Another closure theorem

Let us denote by y = (x'l, coos xS) the s-vector made up of cer-

tain components, say xl, ceoy SS, 0<s<mn ofx= (xl, cooy xn), and

s+1 n)

by z the complementary (n-s)-vector z = (X~ *,...,X ) of X, so that

X = (y,z). Letusassume that f(t, y, u) depends only on the coordi-
nates xl, coos x° ofx. I x(t), t1 <t< t2, is any vector function, we
shall denote by x(t) = [y(t), z(t)] the corresponding decomposition of
x(t) in its coordinates y(t) = (xl, coos xs) and z(t) = (xs+1, oo xn).,
We shall denote by AO a closed subset of points (t, xl, coes xs),

that is, a closed subset of the ty-space E, X ES, and let

1
A= AO X En_so Thus, A is a closed subset of the tx-space

E1 X Enc
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Closure Theorem II, (Cesari[4a],) Let Ao be a closed subset

of the ty-space E1 X Es’ and then A = Ao X En-s is a closed subset of

the tx-space E, X En‘ Let U(t, y) denote a closed subset of Em for

1

every (t,y) € Ao’ let Mo be the set of all (t,y,u) € E1+s+m with

(t,y) € Ao’ ue U(t,y), and let f(t, y, u) = (f f ) be a continuous

1, CECICRE ] n

vector function from M into E . Let Q(t, y) = 1(t, y, U(t, y)) be a closed
convex subset of En for every (t,y) € AO. Assume that U(t, y) has
property (U) in A0 and that Q(t, y) has property (Q) in A o° Let

xk(t), tlk <t<t k=1,2,..., be a sequence of trajectories,

2K’
xk(t) = (yk(t)y zk(t)), for which we assume that the s-vector yk(t)
converges in the p-metric toward an AC vector function y(t),
t1 <t< t2, and that the (n-k)-vector zk(t) converges (pointwise) for
almost all tl <t< t29 toward a vector z(t) which admits of a decom-
position z(t) = Z(t) + S(t) where Z(t) is an AC vector function in
[tl’ tz], and S'(t) = 0 a.e. in [tl’ tz] (that is, S(t) is a singular func-
tmmoTmthA0vmmrmﬁ:wm,mm,ﬁgtgb,ma
trajectory.

REMARK: For s=n, this theorem reduces toClosure Theorem I

PROOF: The vector functions

B = X0 = (0, 2'0), t; <t<ty,

B0 = X0 = G0, 2 0) = HEy O, u ), ty <t<ty

k=1,2,..., (17)
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are defined almost everywhere and are L-integrable. We have to

prove that [t, y(t), Z(t)] € A for every t; <t<ty, and that there is

a measurable control function u(t), t1 <t< t2, such that

o(t) = X'(t) = (v'(t), 2'(t)) = £(t, y(t), u(t)), (18)
u(t) e U, y(t),
for almost all t e [tl’ tz].

First, p(yk, y) ~0as k—0; hence tlk - t1, t2k - tzo If
te (tl, tz), or t1 <t<t,, then t1k <t< tZk for all k sufficiently
large, and (t, yk(t) €A o° Since yk(t) - y(t) as k = 0 and AO is
closed, we conclude that (t, y(t)) ¢ A0 for every t1 <t< t2’ and

finally (t, y(t), Z(t)) € Ao X En—s’ or (t,X(t)) € A, t1 <t< ty.
t

For almost all t ¢ [tl’ the derivative X'(t) = [y'(t), Z'(t)]

2
exists and is finite, S'(t) exists and S'(t) = 0, and zk(t) - z(t). Let
to be such a point with t1 < t0 < tzo Then there is a ¢ > 0 with
t1 < t0 -0< to +0< t2’ and, for some k0 and all k > ko’ also

t1k < tO -0< to +o0<t Let X, = X(to) = (yo, ZO), or

2k’
Vo = y(to), Z, = Z(to). Let z, = z(to), S, = S(to)., We have
S'(to) = 0, hence z'(to) exists and z'(to) = Z'(to)., Also, we have
zk(to) - z(to).,

We have y, (t) = y(t) uniformly in [t0 -0yt + c|, and all
functions y(t), yk(t) are continuous in the same interval. Thus,

they are equicontinuous in [to, - 0, to +0]. Given € > 0, there is

ad > 0 such that
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ttelt -0, t +al lt-t'] <6, k> k, implies

ly(t) - y(t) Le/2, Iy (0 - 5 ()] < e/2.
We can assume 0 < ¢ <o, § <¢. Foranyh, 0<h<¥0, letus
consider the averages

h
my = 1 fo ¢(to+s)ds = h-l[X(tO +h) -X(to))],

(19)
h

-1 -1
m ., =h fo plt, +s)ds = h™ [x (t +h) - x(t )],
where X = (y, Z), X, = (yk, zk)o
Givenn > 0 arbitrary, we canfix h, 0<h < <o,
so small that
Imh = ‘d’(tO)I S s

fS((tQ +h) - S(to)l < nh/4 .
L : . -1 h
This is possible since h f q»((to +8s)ds ¢(t0) and
o
[S(to +h) - S(tg)}hm1 -0 ash—-0+ . Also, we can choose h, in
such a way that zk(to +h) - z(to +h) as k = + o, This is possible
since zk(t) - z(t) for almost all tl <t< t2°

Having so fixed h, let us take k > k0 so large that

1
v, (t) - vt )b Iyt +h) -yt + Wl < minfnh/4, /2],

lzk(to) - z,(to)ﬁ , izk(to +h) - z((to +h)l < n b/8,
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This is possible since yk(t) - y(t), zk(t) = z(t) both at t=t0 and

t=t0 +h. Then we have
0™y lty + 1) -y t)] - 07 Ywte, + b - y(e )]l
< I iyl + 1) -yt + W+ 7Yy ) - v )l
< g/ en g /e = o,

Analogously, since z = Z + S, we have

Ih'l[zk(to +h) -z (t )] - h'l[Z(tO +h) - Z(to)]l

0™ Yzt + 1) - 2t )] - b7 at, +b) - (t)]

i

+h7S(t +h) - s(t )]
< Izt + ) - ot + W]+ 07 Yz (- 2t )]
+ I Ystt, + b - see !
< h g n/8) + i b/8) 07l b/ = n/e,
Finally, we have
myy - my = 07+ h) - x (¢ )]
- 7R (E, + 1) - X(t )l

< Iyt + ) -y )] - BTy, +b) -yt )]l



37

e Izt +h) - 2 )] - h Tzt +h) - 2t )]

< /2 +9/2 = 7.

We conclude that for the chosen value ofh, 0 < h< § <o,

and every k > k1 we have

Imh - ¢(t0)! §n9 !mhk - mh' _<__77’

ly (t) -yl < e/2.
For 0 g s<h we have now

ly (ty +8) - vt )l < lyplty +8) -yt ) + yt) - yie )l
< €/2 +e/2 = ¢,

lit,+s) -t ] <h <6 <e

f(tO + S, yk(to +8), uk(to +8)) € Q(t0 + S, yk(tO + 8)).

Hence, by definition of Q(t09 Yy 2¢), also

¢k((t0 +8) = f((to + 8, yk((to + 8), uk(to +8)) € Q(to, Vo 2¢).

The second integral relation (19) shows that we have also

m,, ¢ cl co Q(ta" Yo 2¢),

(20)

since the latter is a closed convex set, Finally, by relation (20),

we deduce
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|¢(t0) - mhkl < l¢(to) - mhi + lmh - mhkl < 27,

and hence
#lt,) € el co Qlty, v, 2 )]y .

Here n > 0 is an arbitrary number, and the set in brackets is

closed. Hence
$(t,) € clcoQlt, v, 2€),

and this relation holds for every € > 0, By property (Q) we have

ot)e M cleoQlt,y,2) = Qlt,v,)
e >0

where Y, = y(to), and Q(to, yo) = f(to, Yy U(to, yo))u This relation

implies that there are points u = ﬁ(to) e Ut yo) such that
$(t) = f(t,, y(t,); u(t,)).

This holds for almost all to € [tb tz], Hence, there is at least one
function u(t), defined a.e. in [tl, tz] for which relation (18) holds
a.e, in [tl’ tz]. We have to prove that there is at least one such
function which is measurable, The proof is exactly as the one for
Closure Theorem I, where we write y, Vi instead of x, Xpo and
will not be repeated here. Closure Theorem II is thereby proved.
REMARK: The proof of Closure Theorem I is a modification
due to Cesari [4a] of the proof of an analogous statement by A, F.
Filippov [8] for compact instead of closed sets. Both the state-

ment and proof of Closure Theorem II bearing on singular functions
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are due to Cesari [4a].

8. Notations for the optimal control problem. .

We shall again use the notations of No. 1. It will be con-
venient to write the problem in a slightly different form. First
we introduce the auxiliary variable x° satisfying the differential

equation and initital value

dx° /dt = £ (t (1), u(t), xo(tl) =0, x°(t) AC in [ty

Then

x(ty) = [ £ (6x(t),ut)dt = Ix, ], (21)
1

If we now denote by X the (n+1)-vector X = (xo, xl, caay xn),

and by ;(t, X, u) the (n+1)-vector function f(t, X,u) = (fo, f P fn),

then the problem of minimum discussed in No., 1 reduces to the

determination of a pair [x(t), u(t)], t, <t <ty satisfying the

1

differential system

dx /dt = f(t,x(t), u(t)) a.e. in [ty t ], (22)

the boundary conditions
0
(tl’ X(t]_): t29 (tz)) € B, x (tl) = 0, (23)
and the constraints

(tx(t) € A, u(t) e UL x(M), te [ty ty)]
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for which xo(tz) has its minimum value., Here x(t) = (Xl, ceas xn‘)

1

b

§(t) = (xo, X yeees xn), and the present formulation corresponds
to a transformation of the Lagrange type problem of No, 1 intoa
problem of the Mayer type.

We shall now consider for each (t,x) ¢ A, the sets

Q(t, x), Q(t,x), G(t,x) defined as follows:s

Qt,x) = f(t,x,Ut,x) = [zlz =1t xu), ue U, x)] < E,

é(ty X) = f(t: X, U(t9 X)) = [; = (ZO7 Z) I; = f(t; X, ll), u e U(t, X)]
= [; = (zo, z)] z° = fo(t, x,u), z = f(t,x,u), ue Ut x)]
= En%l
§itx) = [z=(%2)|2° > 1 (txu), z=1txw), ue Ut x)]
- En+1°

The main hypothesis of the existence theorems which we sha__
state and prove below is that the set (5 (t, x) is convex for each
(t,x) € A,

For free problems the sets Q, 6, 6 — thought of as sub-

sets of the zOu—space are

Q(t’ X) = E

n

~

Qlt, x)

, 0 0 ’ ,
[z =(z,ulz" = fo(t, X, ), UE En] C En+1’

Q(t,x) = [z = (zo, wl z° > fo(t, X,u), ue En] CE
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Thus, the convexity of 5 reduces to the usual convexity condition
of fo(t, X, u) as a function of u in En — a condition which is familiar
in the calculus of variation for free problems. The proof of this
equivalence is to be found in [7].

We mention here that a function ¢(u), ue En, is said to be
convex in u, provided u, ve En’ 0<a <1, implies

dlau + (1 - a)v) < a ¢(u) + (1 - a) ¢(v).

9, Statement of existence theorem I

Existence Theorem I (Cesari [4a])

Let A be any compact subset of the tx-space E, X En’ and

1
for every (t,x) € A let U(t, x) be a closed subset of the u-space
Em° Let M be the set of all (t, x, u) with (t,x) € A, ue U(t,x), and

let f(t, X, u) = (fo, f) = (f09 fl, ceos fn) be a continuous vector func-

tion on M. Assume that for every (t,x) ¢ A the set

6“9}() = {; = (Zos Z)IZO Z fo(t)x’ u),

A f((‘ts X, U=)9 ue U(t,X}} = EH+1

is convex. Assume that U(t, x) satisfies property (U) in A, and
that S(t, x) satisfies property (Q) in A. Assume that there is a
continuous scalar function &, 0< ¢ < + o0, with &9/ ~ +
as =+, such that f_(t,x,u) > &(|ul) for all (t,x,u) € M, and

that there are constants C, D > 0 such that
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| £(t, x, u) | < C+D lul for all (t,x,u) € M. Then the cost func-
§ t,
tional Ix,u] = ftz fo(t, X, u)dt has an absolute minimum in any

nonempty complete class Q of admissible pairs x(t), u(t).
If A is not compact, but closed and contained in a slab
[to <t<T, xe En], t,, T finite, then Existence Theorem I still

holds under the additional hypotheses that

@ x.f = xt +... +x% < N(x)?

1 n -
for all (t,x,u) € M and some constant N > 0, and

Fooo +(xn)2 +1]

(b) each trajectory x(t) of the class  contains at least
one point (t*, x(t*)) on a given compact subset P of A (for instance,
the initial point (t*, x(t*)) is fixed, or the end point is fixed).

If A ié not compact, nor contained in a slab as above, but A
is closed, then Theorem I still holds if the hypotheses (a), (b)and
(c) are satisfied. :

(c) fo(t, x,u) > u > 0 forall(t,x,u) e M with
[ ] > R and some constants 4 > 0, R > 0.

Finally, condition (a) can be replaced in any case by condi-
tion (d).

(d) fo(t, x,u) > E |£(t, x, u)| forall (t,x,u) e M
with | x| > F and for some constants E > 0 and F > 0.

Furthermore, when A is compact but closed, the conditions

f, > &|ul), |f5!,§_ C +D |ul above can be replaced by the
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following condition (g):

(g) for every compact subset AO of A there are functions
d)o as above and constants C o > 0, DO > 0 (all may depend
on A ) such that £ > & (lul), Il < Co + D, lul for all

(t,x,u) e M with (t,x) ¢ Aoa.

PROOF: We have & > - M, for some number M >0,
hence ¢ + M, > 0 forall £ > 0, and fo(t, X, u) + M, >0 for all
(t,x,u) ¢ M. Let D be the diameter of A. Then for every pair
x(t), u(t), t1 <t < t2, of © we have

t t
I[x,u] = f2 £ odt > fz Hlul)at > -DM, > - (25)

t1 t1
Let i = inf I[x, ul, where inf is taken over all pairs (x,u) € .
Then i if finite,

Let xk(t k(t < t <t,,, bea sequence of admissible

2K’

pairs, all in @, such that l[xk, uk] ~iask—~+w, We may assume
ok -1

i < Ix, u,kj ft £t x (0, wit)dt < i+k
1k

<i+l, k=1,2,...

Let us prove that the AC vector functions xk(t),

1k < tZk’ k=1,2,... are equiabsolutely continuous, Lete > 0

be any given number, and let o = 571, (DM + lil +1)°
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Let N > 0 be a number such that &¢)/¢> 0_1 for {> N,

Let E be any measurable subset of [tlk’ t2k]
1.-1

N . Let E, be the subset of all t ¢ E where u,(t) is finite

and luk(t)l <N, and let E

with meas E < 7
=€ 2

=E - E,. Then luk(t)l < NinE, and

2 1 1
| uk(t)i) |y () ],-I‘ZU—I,f‘ or |yl <od(lyl), a.e. in Eo. Hence

® [lu®ld = € +Ey) [lu®)]a
< N meas E, + o(Ez) f@(luk(t)l)dt
< N meas E + o(E,) f[rb(luk(t)l) + M Jat (26)
t
<Nn+o fzk [<I>(|uk(t)|) +M0]dt
t
1k
as &9 +M > 0for 0 < E<+w. As fo ?_tb(lul) for each

(t,x,u) € M, one has that

t
2k
® [ lu®ld < Np+o ft [£ (6 %, (B), w (B) +M_Jat
1k
< Np+o(DM_ + il +1)
S €/2 +€/2 = €.,
This proves that the vector functions uk(t), tlk <t< tZk’

k=1,2,,.. are equiabsolutely integrable. From here we deduce
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E) [ lxpid = () [ [ £(t, %, (1), w (£} at

< () [[C +Dlu (0] Tt

< CmeasE +D (E) | Iuk(t)idt
as |f(t,x,u)] < C+ Dlul for each {t,x,u}) ¢ M and this inequal-
ity and the equiabsolute integrability of the vector functions uk(t),
t1 <t< t2, prove the equiabsolute continuity of the vector func-
tions xk(t), tl <t < t2°

Now let us consider the sequence of AC scalar functions xﬁ(t)

defined by
t

(0]

x, 1) = f £ x (), w i ty <t<ty. (27)
t
1k

Then

0, 0, \ _ Ny o
xk(tlk) = 0, xk(t2k) = I[xk, uk] iask =+

) <14k <iel, kel2.... K

o) .
vk(t) = fO(t, xk(t), uk(t)% 1k <t< t2k9 then we define the

and i < xk(t2

functions v;‘(t)9 vﬁ(t) as follows:
- + 0
vk(t) MO, Vk(t) vy + Mo fo\tg xk(t), uk(@)) + Mo > 0.

Then v (t) < 0, ) > 0 a.e, in[t, .t 1, and we define

k( 1k’ 2k*
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t t
i - +r +
yk(t) = ft k( )dtﬂ yk(t) = ft k\t)d
1k ik
=1.2
tye <t < by k=1,2,... .
Since v;{(t) = - Mg, wehavey,(t) = - M_(t-t,,} < 0, and the func-

tions yl—{(t) are monotone nonincreasing and unifermly Lipschitzian
with constant M o On the other hand, the functions y;(t) are non-

negative, monotone nondecreasing, and uniformly bounded since

+ + - - 7 o, -

< i1+ Mty -t;,) < DM+ il +1

By Ascoli's Theorem we first extract a sequence for which

(xk(t), yk( )}, Ik <t<t g0 Converges in the p-metric toward a
continuous vector function (x(t), Y (t)), t <t< ty. Here x(t) is
AC because of the equiabsolute continuity of the vector functions

xk(t < t< t and Y (t) = - Mo(t—tl), Y (t,) = 0. Then we

1
! + -

apply Helly's Theorem to the sequence yk(t), t’lk <t< tzk’

k=1,2,..., and we perform a successive extraction so that the

corresponding sequence of yii(t) converges for every t] <t < tz

toward a function Yg(t) t < t<t,, which is nonnegative, mono-

2
tone nondecreasing, but necessarily continuous, We define
o

o . *t ) = 0. and : ity at
Yo t) at t1 by taking Yo(tl) 0, and at t2 hy cortinuity t2,
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because of its monotoneity, Thus

“nﬂ"’ . [s]
0 < Y(t) < DM_+lil +1, t <t<t,

Finally, Yz’(t) admits of a unique decomposition Y‘;(t) -

=Y () + 2(t), t; <t<t, with Y*"(tl) = 0, where both
+

Y (t), Z(t) are nonnegative monotone nondecreasing, where

Y*(t) is AC and Z'(t) = O a. e, in [t o) V() = Y7() + Y,

2

<t<t k=1,2,..., converges for

e Stsbp
all t1 <t < t23 toward xo(t) = Y(t) + Z(t), where Y(t) is a (scalar)

we see that yﬁ(t),

AC function, - DM_ < Y(t) <DM_ + lil +1, Y(t;) = 0. Let us
prove that Y(t,) <i For the subsequence [k] we have extrac-

ted last, we have

_ 0 . .0 - *
bk "ty Fltoy) = Xty = yilty)) + vlte )

If t, is any point t, < t‘2 <t,, 52 as close as we wish to t,, then

2
t 9 < t2k for all k sufficiently large (of the extracted sequence),

since t,, =t ,. We canassume k so large thatf, < t

2k 2 2 2K’

ltzu tZki < 20E, - tyl.

Then
) - ity ) = My -t | < 2M 1y - ol
. A= . . A - o
Since yk(t) is nondecreasing, we have yk(tz) < yk(t2k), and

finally
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Vilfy) + vlfy) < yilfy) + vpltyy)

< ypltyy) +vplty) + 1y (Ey) - vty )

0 - .
< yplty) +2M05t2 - tol,

where yl(i(tzk) ~ias k~+o and yg(tZk) <i+kl, Hence

-(F + : T -1
ye(fy) +y(fy) < i+2M IEy - t] +k7,

As k = + o (along the extracted sequence), we have

- - +_ . -
Y7(Ey) + Y (Ey) < i+2 Mty -t

2 zi’ or

Y (E,) +Y+(€2) +2ty) < i+2M T, - tol,

where the third term in the first member is }_ 0. Thus

Y(f,) = Y'(€2)+Y+(t'2) < i+2MlE - tyl.

Ast, =ty - 0, we obtain Y(t,) < i, sinceY is continuous at t,.

We shall apply below Closure Theorem II to an auxiliary

problem, which we shall now define. Let a= (uo, u) = (uo, ul, coas um),

let U(t, x) be the set of allu ¢ E__, withus= @, ..., d™ € U, x),

+1

o 1 n)

uo?_fo(t,x,u), let;i:(xo,x)z(x ' X yeeesX ), let T :7(t,xgu)

v ~ . ~ . o .
= (£, f) = (fo, fireees fn) with f =u". Thus, T depends only on
(t, X,G (instead of (t, ;(, E), and U depends only on t, x (instead of
(t, ;c’)° Finally, we consider the differential system

dx /dt f (t, x, u)

il

i

or dxo/dt uo(t), dxl/dt = fi(t, X, U),

i::].,z,ooo’n,
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with the constraints
u(t) e U(t, x(t)),
or

a®(t) > £ (6, x(t), u(t), u(t) e UL, x(1),

a.e. in [tl, tz], with moreover Xo(tl) =0, (t,x(t)) € A, and
(x,u) € . We have here the situation discussed in Closure
Theorem II, Where;replaces X, X replaces Y, x° replaces
Z, n+l replaces n, n replaces s, hence (n+l) - n =1 replaces

n-s. For the new auxiliary problem the cost functional is

t2 ~ t2 0 0
dx,ul = [ f dt = [% uw(tat = x (ty).
Y 4

Note that the set 6(t, X) = %(t, X, ﬁ(t, x)) of the new problem is the

set of all z = (zo, z) € En+ such that z° = uo, since fmo = uo,

1

z = f(t, x, u), u° > fo(t, X,u), ue U(t,x). Thus, the sets 6,6

for this auxiliary problem are the sets 6,6 considered before,

We consider now the sequence of trajectories

~ o ~

x, (t) = [xk(t), xk(t)], ty <t<ty,, for the problem Jx, u]

corresponding to the control function uk(t) = [ulz(t), uk(t)], with
o)

uk(t) = fo(t, xk(t), uk(t)), uk(t) e U(t, xk(t)), and hence

w () e Ult, %, (1), t;, <t<t,, k=1,2,.... The sequence

b Sty

[xk((t)] converges in the metric p toward the AC vector function

x(t), while xg(t) - xo(t) ask—+ow forallte (tl, tz), and
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x°(t) = Y(t) + Z(t), where Y(t) is AC in [t
[tl, tz]g

By Closure Theorem II we conclude that X(t) = [Y(t), x(t)] is a

1,t2] and Z'(t) =0 a.e, in

trajectory for the problem. In other words, there is a control func-

tion u(t), t; <t <ty, u(t) = (1), u(t), with

dy /at = u’(t) > £_(t, x(t), u(t),  uft) e UL, x(t)),

(28)
dx/dt = f£(t, x(t), u(t)),
a.e, in [tlgtz], and
Y
i > Y(t,) = Ix o = [ u’(tat. (29)
t
1

First of all [x(t), u(t)] is admissible for the original problem and
hence belongs to © since by hypothesis is complete. From this
remark, and relations (28) and (29) we deduce

t2 t2 )
i<1x,u]= [ £ (t, x(t), u(t))dt < [ uwtdt < i

t t

1 1

Hence all < signs can be replaced by = signs,
o) = (L, x(t), u(t)) a.e. in [t,,t,), and I[x,u] = i This proves
that i is attained in § Thus, Existence Theorem I is proved in

the case that A is compact.
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Let us assume now that A is not compact but closed, that A is
contained ina slab[t <t<T, xe E ], t , T, finite, and that con-
ditions (a) and (b) hold. If Z(t) denotes the scalar function
Z(t) = lx(t)£2 +1, then the condition x f < N(lxl2 +1) implies

Z' < 2NZ and hence, by integration from t* to t, also
1< Z(t) < Z(t*) exp {2N|t* - t|},

Since [t*, x(t*)] ¢ P where P is a compact subset of A, there is a

constant NO such that |x| < NO for every x ¢ P, hence

1< Z(t*) < N'i +1, and 1 < Z(t) < (N% +1) exp {2NT - to)}o

Thus, for tO <t < T, Z(t) remains bounded, and hence I x(t) ] <D

for some constant D. We can now restrict ourselves to the consider-

ation of the compact part A0 of all points (t, x) ¢ A with

t, <t<T, |x| <D. Thus, Theorem I is proved for A closed and

contained in a slab as above, and under the hypothesis (a) and (b).
Let us assume that A is not compact, nor contained in a slab

as above, but closed, and that hypothesis (a), (b) and (c) hold.

First, let us take an arbitrary element (x(t), u(t)) ¢ Qand let

j =I[x,u]l. Then we consider a bounded interval [a, b] of the t-axis

containing the entire projection Po of P on the t-axis, as well as the

interval [-R, +R]. Intheslabla <t<b, x¢ En] conditions (a) and

(b) hold and hence by the previous argument there is a D (constant)

such that |x(t)] < Dand we can confine our attention from
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A nfa<t<h x¢ En] to some compact part of fhis set, say A .
For A0 there is a function &, 0 < { < + 0, and constants C,

DO > 0 such that fo(t, X, u) > &|ul) anda |l < CO + Dolui for each
(t,x,u) ¢ M with (t,x) € AO . Therefore by previous reasoning,
there is an Mo (this argument still holds even if ¢, C, D,and
M, depend on A ) such that f (t, x,u) > & ul) > - M and

1l < C, + DOiui for each (t, x,u) ¢ M with (t,x) ¢ A, Condition
(c) guarantegs that for each (t,x,u) ¢ M with (t,x) § A n
[a<t<b, x¢ En] and hence for each (t, x,u) ¢ M with (t, x) {A
there is a y > 0 such that fo(t, x,u) > > 0. Now let

(= ;u_l[lj! +1 + (b-a)MO], let [a ', b'] denote the interval [a-£, b+£].
Then for any admissible pair (if any) (x(t), u(t)), t <t< tz, of the
class ©, whose interval [tl, t2] is not contained in [a', b'], there
1,t2] with (t*, x(t*¥)) ¢ P, a < t* < b,
and a point { ¢ [t19 tz] outside [a',b']. Hence [t

is at'least one point t* ¢ [t
T tz] contains at
least one subinterval, say E, outside [a,b], of measure > {. Then
Ix,u] > fu - (b-a)M = |jl +1>1i+1, Obviously, we may disre-
gard any pairs x(t), u(t) t, <t<t,, whose interval [tl, t2] is not
contained in [a',b’]. In other words we can limit ouselves to the
closed part A’ of all (t,x) ¢ A witha'<t< b'o We are in the pre-
vious situation, and Theorem I is proved for any closed set A under

the hypothesis (a), (b) and (c). Finally, we have to show that condi-

tion (a) can be replaced by condition (d) in any case. It is enough



to prove Theorem I under the hypothesis that A is closed and con-
tained in a slab to < t< T, to’ T finite as above, and hypothesis
(b) and (d).

First let us take F so large that the projection P* of P on the
x-space is completely in the interior of the solid sphere | x| <F,

and also so large that F > T -t . Let x(t), u(t), t'l <t<t, be

2
any arbitrary pair contained in © and let j denote the correspond-
ing value of the cost functional, Let L = E‘l[FM0 +1jl +1], and
let us take FO = F + L. If any admissible pair x(t), u(t),

tl <t< t2, of Q possesses a point ((to, x(to)) with lx(to)! > FO,

then x(t) possesses also a point (t*, x(t*)) ¢ P with |x(t+)! <F.
Thus, there is at least a subarc I'? x =x(t), t' <t <t", of x(t)
along which |x(t)] > F and x(t) passes from the value F to the value
F = F+L Such an arc I'has a length > L. If G = [tl’ tz] -
[t',t7], then for t e G, |x| > F, (t,%) ¢ A, f_(t,x,u) > 0 and letting
Ao be the compact part of A with t ¢ G, |x| < F we have, as be-
fore, an MO > 0 such that fo + Mo > 0 for each (i, x,u) ¢ M,

(t,x) e Aoo Thus, one has f0 >- M0 for each (t,x,u) ¢ M with

te G. Then
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t

t"
I[x,u] = f2 tdt = (G) ffodt+ft' £ dt

Y

tH
> - (T - to)M, + ft Elfldt

t"
>-FM _+E | |fldd > -FM_+EL
- o) . - 0

> il +1 > i+1.
As before we can restrict ourselves to the compact part A'O of all
points (t,x) ¢ A with t <t <T, |x| <F. The case where A is
closed, A is not contained in any slab as above, but conditions (b),
(c) and (d) hold can be treated as before. The case where A is not

compact and condition (g) holds, also can be treated as before,

Theorem I is thereby completely proved.

10. A few corollaries,

Corollary 1 (A. F. Filippov's existence theorem for
Pontryagin's problems). As in Theorem I, if A = E1 X En,
fm(t, X, 1) = (io9 f) = (fo, fl’ ceos fn) is continuous on M, U(t, x) is
compact for every (t,x) in A, U(t, x) is an upper semicontinuous
function of (t,x) in A, (S(t, X) = fN(t, x, U(t, x)) is a convex subset of
E for every (t, x) in A, conditions (a) and (c) are satisfied, and

n+1
the class @ of all admissible pairs for which x(tl) = X5 x(tz) = Xy
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t;» X;» Xy fixed, t, undetermined, is not empty, then I[x,u] has
an absolute minimum in Q.

PROOF: This statement is a corollary of Theorem I. Indeed,
under hypothesis (c) we can restrict A to the closed part A0 of all
(t,x) e A witha' <t <b', and | x| < N for some large N. If M is
the part of all (t,x,u) of M with (t,x) ¢ Ao’ then the hypothesis that
U(t, x) is compact and an upper semicontinuous function of (t, x) in
A0 certainly implies that U(t, x) satisfies property (U) in Ao and that
M, is compact (No. 5, (ii) and (iii)). Also, since QN(t, X) is convex
for every (t, x) by hypothesis, we deduce that Q(t, x) is an upper
semicontinuous function of (t, x) and satisfies property (Q) (No. 5,
(v) and (vi)). Also, §(t, x) is closed, convex, and satisfies prop-
erty (Q) by force of Lemmas (viii) and (x) of No. 4.

Finally, since M0 is compact, the growth condition fo > &
and the remaining condition | £] <C + Dlu| are trivially satisfied,
Thus, all conditions of Theorem I are satisfied, and Filippov's
theorem is proved to be a particular case of Theorem L
Corollary 2 (the Nagumo-Tonelli existence theorem for free prob-

lems). If A is a compact subset of the tx-space E, X E,

1
fo(t, X, u) is a continuous scalar function on the set M = A X En’
for every (t,x) ¢ A, fo(t, X, u) is convex as a function of u in A and

there is a continuous scalar function (), 0 < ¢+ o, with

B(C) /¢ ~ + o as {= + o such that £ (t,x,u) > &ul) for all
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(t,x,u) € M, then the cost functional

t

i[x] = [?2 £ (t x(), x'(t)at

Y

has an absolute minimum in any nonempty complete class Q of

absolutely continuous vector functions x(t), t. <t <t,, for

1 -2

which £ _(t,x(t), x'(t)) is L-integrable in [tl, tz].

If A is not compact, but closed and contined in a slab
[to <t<T, xe¢ En], to, T finite, then the statement still holds
under the additional hypotheses (rl)fo >C lul for all (t,x,u) e M
with |x] > D and convenient constants C > 0, D > 05 (72) every
trajectory x(t) of Q possesses at least one point (t*, x(t*)) on a
given compact subset P of A, If A is not compact, nor contained
in a slab as above, but A is closed, then the statement still holds
under the additional hypotheses (Tl), (72), and (73) fo(t, X,u) >
> 0 for all (t,x,u) ¢ M with [t| > R, and convenient constants
pu>0and R > 0.

PROOF: The free problem under consideration can be
written as an optimal control problem with m = n, fi = Uy i=1,.0., 0,
U(t, x) = Em = Em, so that the differential system reduces to

dx/dt = u, and the cost functional is
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t t
2 2
I[x,u] = [ f(tx(t),ut)at = [ £t x(),x'b)dt
t t
1 1

First assume A to be compact. Then the set 6(t, X) reduces

here to the set of all z = (zo, Z) € En+ with z° > fo(t, X,2), Z € En’

1

where fo is convex in z, and satisfies the growth condition
f, > &|ul) with ®)/C~+w0 as =+ .

By lemma (x) of No. 5, fo is normally convex in u, hence
quasi-normally convex, and by lemma (viii), part (8) of No. 5, 6
satisfies property (Q) in A. Thus, all hypotheses of Theorem I
of No. 9 are satisfied. If A is closed but contained in a slab as a-
bove then condition (a) of Theorem I reduces to u-x < c( x!z +1)
which cannot be satisfied since we have no bound on u. On the
other hand, the condition (d) fo > Elf| for some E > 0 reduces here
to requirement (Tl) and condition (b) to requirement (7'2)., Finally,
if A is not compact, nor contained in a slab as above, but A is
closed, then requirement (c) of Theorem I reduces to requirement
(7’3)9 All conditions of Theorem I are satisfied, and the cost func-

tional I[x,u] = I[x,x'] has an absolute minrimum in Q.



Chapter II

Further Existence Theorems

11. An existence theorem with uniform growth of foo

Let us assume for the moment that A is compact. The condi-

tion of Theorem 1

(a) fo(t, X, u) > ®|ul) for each (t,x,u) ¢ M where &¢),
0<¢< +mw, is a continuous scalar function satisfying
HE)/E ~+w as & = +o0; |f(t,%,u)l <C+ D|u| for all

(t,x,u) € M and some constants C, D > 0;

is usually called a '"growth condition." This condition (@) obviously
implies

B f(txu) ot =+ as [u] - + 0, ue U(t,x) for each

(t,x) e A; |1(t, %, u)l <C + Dlul forall (t,x,u) € M and some

constants C,D > 0.

This condition (8) is also a "growth condition", and examples show
that—in general—(g8) is a weaker condition than (¢). An example

of this is given below. Nevertheless, there are situations where (a)
and (8) (for A compact) are equivalent. One of these situations
concerns free problems, that is, m=n, f=u, U=En. For these prob-
lems, with fo convex in u for every (t, x) in A, conditions (a) and

(B) are equivalent (Tonelli [23a] for f, of class Cl;' L.Turner [24]

58
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for fo only continuous as assumed here). This case of equivalence,
together with another relevant case of equivalence will be obtained
below as a consequence of a number of lemmas.

Example: Letm=n=1, A=[(t,x)[0<t<1, 0<x<1],

il

U(t, x) E, for each (t,x) ¢ A, f(t,x,u) = u and

1
f(txu) = o for 0<u<2 -7t 0< 1<
= u-t@-t) P foru>27  ta-n7, 0 <t<
2
= u for 0 <u<+o, t=1
fo(t,x,u) = fo(t,x, -u) for -0 <u< +w, 0<t<1.
fo(tgx, u) 0<t<1
N
_ B \‘ , /
T Lo *
o) R ) 3 ([T =

Figure 1 An example where folul—l ~+was lul ~+w, ue E,

pointwise in A, but not uniformly.



60

Hence

fo(t, X, t(1-t)'1) = 0

2728312 for0<t<1, 0<x<1,

fo(t, X, 0)
_1)

t

i

£ (t,%, 27 t(1-1)
and fo is a continuous function of (t, x, u) in A X El' The second
part of both conditions (a) and (B) is satisfied by C = 0, D =1

Fort =1, we have fo = u2 and for

1
0<t<1, wehave fo =(u - t(l-t)-l)2 for |u| sufficiently large.

as iff = lul in Ax E

Hence fo/lul =+ o as |u| =+, for every (t,x) ¢ A, and condition
(B) is satisfied. On the other hand, for every lul, there are
(t,x) ¢ A with f_= 0, namely all (t,x) with lu| = t(l—t)_l, or
t=lul(lul + 1)—1° Hence, a relation f (t,x,u) > & |ul) can be
satisfied for all (t,x,u) € A X El’ only with & < 0, and condition
() is not satisfied. In this example f  is not convex in u, and
U(t, x) = E1°
An analogous example with fO convex in u can be obtained by
taking A, f as above, by taking U(t, x) = [ult(1-t) "} <u < + ]
for 0<t<1, U(1,x) = [ul 0 < u < + w] and by defining f, as above.
Then, for every (t,x) ¢ A, fo is convex in u for u ¢ U(t,x), condi-
tion (B) is satisfied and condition (@) is not.

A condition slightly stronger than (8) has been taken into con-

sideration, say (y), and we state it here again for A compact.
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() fo(t, x,u) |ul 1w uniformly for (t,x) € A as |ul| = + o,
ue Ut,x); |t x,u)l <C+ D|ul for each (t,x,u) ¢ M and some
constants C, D 2 0.
Obviously, condition (a) implies condition (). The following
three lemmas show that (a) is equivalent to (y) when A iscompact.
Lemma 1: Let A be a fixed compact subset of the tx-space

E, X En’ and for every (t,x) € A let U(t, x) be any subset of the

1
u-space Em" Let fo(t, X, u) be a continuous scalar function on the
set M of all (t, x, u) with (t,x) € A, u e U(t,x), and let Z be the
subset of all nonnegative z with z = |u| for some (t,x,u) ¢ M. Then
| ul _lfo(t, x,u) ~+owas |ul =+ o, ue Ut x), uniformly on A, if
and only if there is a scalar function &z), z ¢ Z, bounded below,
with ®(z)|z =+ o asz—+ow, z € Z, and £ (t, %, u) > &(|ul) for
each (t,x,u) ¢ M,

PROOF: Suppose such a &z) exists with the above proper-
ties.  Then for u # 0, folul -1 > &/ ul)|ul 1 and hence
f0|u| 1. +oas [ul =+ o, u € U(t, x), uniformly on A, Suppose
folu[ 1. +oas [ul =+, ue Ut,x) uniformly on A, For each
fixed z € Z, let &z) = inf fo(t, x,u) for all (t,x) € A, lu| = z,
ue U(t,x). If &z)/z does not approach +w as z =~ +w, z € Z,
then there exists an N > 0 and a sequence (tv’ X uu) ¢ M such

that

-1
fo(tV,xV,uV)luVI < N, |uV| +00 as V= + o,
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As folul 1, +o0 as jul =+, ue U(t, x), uniformly on A, then
for N* = N + 1 there exists a constant A > 0 such that

folul'1 > N*=N+1forallue U(t,x), lul > A and this last
inequality holds for any (t,x) e A. Therefore, N +1 = N* <

) luV -1 < Nfor v large enough so that

fo(tV, xV, uV

luv f > A. This is a contradiction and thus, &z)/z = + ©
asz~—+w, z€ Z. Clearly fo(t, X, u) > &l ul) for each (t,x,u)
¢ M by the definition of &z), z e Z.
Since &z)/z =+ asz —+w, z ¢ Z, we also conclude that
Hz) -+ as z =+, z € Z and hence there is some z, such that
&z) > 0 forallz > zZ, Z€ Z. Now the set S' of all points (t, x, u)
€ M where u belongs to a sphere S = [ul lul < zo] is a compact
set, as the intersection of the closed set M with the compact set
A X S. Thus, fo is continuous on S', hence bounded there, say
lfol < M, and thus &z) > - M for eachz ¢ Z N [o, zo].
This proves that $z) is bounded below in Z, Lemma 1 is proven,
Lemma 2: cbl(z) is a scalar function of z on a subset Z of
[o, + ), if ®1(z) is bounded below, and if él(z)/z -4+ as
z—+wo, Z€ Z, there is also a scalar function &z), continuous on

[0, + ) such that <I>1(z) > &z) for each z € Z and &(z)/z ~ + « as

Z =™+ 0.
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PROOF: Let AO be a bound below for <I>1(z), z € Z, Now for
each n=1, 2,... there exists a A(n) > 0 such that ¢l(z)l z > n
when z > A(n), z ¢ Z and we can assume that A(n) < A(n+l1),
n=1,2,... . Let <I>2(z), -1 <z < +w, be the function defined by

®y(z) = A Whenze [-1, A1)

il

®,(2) nz when z e [ A(n), A(n+l))

for n=1,2,...

Clearly <I>1(z) > @2(z) for z ¢ Z and @2(z)/z -~ +owas z = +w, and
<I>2(z) is monotone nondecreasing in[-1, + ©). For any compact sub-

set K of [-1, + o), ®,(z) is Lebesque integrable.
Let &z), 0 <z <+, be the function defined by
z

Hz) = [ d(z)dz, 0
z-1

Zz < +o©

(A

As[z-1, z] is a compact subset of [-1, + «) for each

z € [0, +w), ®z) exists for each z ¢ [0, +®).  On the other hand,

z)/z = 71 f:l y(z')dz' > (z—l)z_l(z—l)_1¢2(z-l)

n forall z > 2

DIf =

2

with z € [A(n) + 1, A(n+l) + 1) Thus &(z)/z = +0 as z = +©.

Finally, by the monotoneity of <I>2 we have
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VA

®z) = fz_l <I>2(z')dz' < <I>2(z) < <I>1(z)
for all z ¢ Z.

Since @2(z) is L-integrable in any finite interval of [-1, + ),
we conclude that &z) is a continuous function in [0, + o).

Lemma 3: Let A be a fixed compact subset of the tx-space

E; XE. If fo(t, X, u) is a continuous scalar function on M, the set

1
of all (t, x,u) with (t,x) € A, u ¢ U(t, x), then folu! -1. +0o as

lul = + oo, ue Ult,x), uniformly on A, if and only if there exists

a continuous scalar function &z) on[0, + «) such that &z)/z ~ +
as z = +o and fo(t, X, u) Zcb(lul) for each (t,x,u) e M.

PROOF: The sufficiency is obvious. The necessity is an
immediage consequence of lemmas 1 and 2.

Having proved that properties (@) and (y) are equivalent for
the general optimal control problem formulated as a Lagrange
problem, we proceed now to the consideration of two special cases,
where it is possible to replace property (a) by the weaker property
(B) in the statement of Existence Theorem II. These two cases will
be the object of lemmas 4 and 5 below.

In both lemmas 4 and 5 we shall assume that the control

space is a fixed closed subset of the u-space Em, and therefore

that M has the form M = A X U where A is a given compact subset
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of the tx-space E, X Eno Let fo(t, X,u), (t,x,u) e A X U be a given

1

scalar function. We shall say that fo(t, x,u), (t,x,u)e AxUisa

uniformly continuous function of (t,x) in A with respect to u, if for

each ¢ > 0 and (to, xo) € A thereisa 6 =90 (t09 X €) > 0 such
that

[0t %W - £t ,wl < e

0
for all (t,x) e A, ue U, (t,x) ¢ N(3 (to, XO)., (30)
Lemma 4: Let A be a compact subset of the tx-space
E1 X Em’ let U be a fixed closed subset of the u-space Em, and
let fo(t, x,u), (t,x,u) ¢ A x U, be a continuous scalar function,
continuous on M and a uniformly continuous function of (t,x) in
A with respect to u. Then fo(t, X, u)/iui - +o as |ul =+ o,
ue¢ U, for every (t,x) ¢ A, if and only if fo(t, X, u)/lul = 4+ o0 as
lul = + o, ue U, uniformly on A,

PROOF: The sufficiency is obvious,

Suppose fo/l u| does not tend to + o as |ul =+ o, ue U,
uniformly on A. Then there is a sequence (ty, X s uV) eM=
A X U with luVI ~+masv=roandf(t,x, uy)luyl_l <N
for some constant N. The sequence (tV, Xu)’ v=1,2, . .. hasa
convergent subsequence, as A is compact. Let (to, XO) € A be the
limit of this convergent subsequence.

As fo(t9 X, u) is a continuous function on M and a uniformly

continuous function of (t, x) in A with respect to u, for ¢ =1, there
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isad =0 (to, X 1) > 0 such that
lfo(t, X, u) - fo(to, X u)| <1

when (t,x,u) ¢ M with (t,x) € N(3 (to, xo)o Given any constant
L > 1, then |u| > L implies that [ul > L >1 and

-1

< hlt<rt<r e

-1 ,
| fo(t, X, 1) lu| ™" - fo(to, X u)l u

when (t, x,u) ¢ M with (t,x) € N6 (to, XO)‘.

Since (tv’ Xv) - (to, XO) asv =+ then (ty, xV) e N, (to, Xo)
for all v sufficiently large, and fo(tV, X s uV) /| uVI < N together
with (31) implies that £ (t ,x ,u )lu | 1 < N+t forany
sufficiently large, and as luvl T+0asV T +®, U € U, this con-
tradicts the hypothesis £ (t_,x , u)|ul 1 Lo as lul =+,
ue U. Lemma 4 is proven.

We have already shown by one of the examples in No, 11 that
there are functions fo(t, X, u), (t,x,u) ¢ A X U, for which
fo(t,x,u)lul_1 ~+w as |ul =+w, ue U, for every (t,x) € A
(compact), but for which the same limit does not occur uniformly
in A. Obviously, in the example given in No. 11 ‘fo is continuous
on M, but is not a uniformly continuous function of (t, x) in A with
respect to u. On the other hand, lemma 4 concerns a class of func-
tions which is not empty. Below we give a class of functions f0

satisfying all conditions of lemma 4,
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Example: Let A be a fixed, arbitrary, compact subset of the tx-
space E; X E_~and let U(t, x) = U be some fixed, closed (but not
necessarily bounded) subset of Em° Define fo(t, X, u) = g(t, x)h(u)

+ k(u) where g(t, x) is a continuous function on A, h(u) is a bounded,
continuous function on U, and k(u) is a continuous function on U
such that k(u)luﬂ 1. +was lul =+, ue U. Thus, fo(t, X,u) is a
uniformly continuous function of (t,x) in A with respect to u and

fol W=t aslul -+ 0, ue U pointwise, and therefore by
force of lemma 4, uniformly in A.

Lemma 5 will allow us to replace property (o) in Existence
Theorem I by the weaker property (g) instead of property (y) in the
special case of the free problems of the calculus of variations.
Actually, lemma 5 is slightly more general than needed for free
problems. Its proof is due to L. Turner [24].

Lemma 5: Let A be a fixed compact subset of the tx-space

E, XE, and let U(t, x) = Em for each (t,x) ¢ A. Let fo(t, X, u)

1
be a continuous Scalar function on A X Em and a convex function of
u for each (t,x) ¢ A, Then, f0|u| 1o oas lul = +w, ue E.

pointwise in A if and only if the same limit holds uniformly in A.

PROOF: The sufficiency of the condition is trivial.
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Let us prove its necessity. Suppose fol ot v o as
lul = + o pointwise in A, but not uniformly. Then, there exists
some N > 0 and a sequence (tv, X, uV) € AX Em, v=1,2,...
-1

such that fo(ty, X, uV)|uVl <N, v=12,... and IuVI + 00
as v— +o. Without loss of generality, suppose (tv’ X uvluvl —1),
v=1,2,..., is convergent to (to, X s uo) € AX Em with iuo] =1.
Now £ (t , X, u) | ul 1o i was lul - +o, ue U, Since A is com-
pact, fo(t, X, 0) is bounded in A, say |fo(t, X, 0)| < C, there isa

constant Ay such that
-1
) fo(to, X )\uo) > N +C whena > AO

(one can clearly assume that Ao > 1). By continuity, there is a

a > 0 such that 7\;1 fo(t, X, Aou) >N +C if
(t, x) € Nﬁ(to’xo)’ u,u € Em, |u—u0| < 6.

-1
Let v be large enough so that (t ,x ) e Ny (t, % ), luo-uVl uVI | <6

and luyl > 7\0 for each v > x Then
S T R R W T e R W P e
is a convex combination for v > A and
fo(tv’ X Aol u | _luu) < (l-hol u l)fo(tu’ X 0) + >\0| uVI -lfo(tzi X ul)

-1, ,
< C+ Aoluyl fo(tV, X ul) for v> x

Therefore
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£, (tv’xu"uv)luvi -1 > A;Ifo(ty,xu, Aoluuf _lul) - CA(;I
> x;1f0<(ty, X, ;\Oiuyl_lul/) -C
as ) can be assumed to be > 1, Thus, fo(tu, X, ) | uyl Y
which is a contradiction and lemma 5 is proven.

Lemmas 3, 4 and 5 have immediate consequences when com-
bined with Existence Theorem L. We give below Existence Theorem
II, which is an equivalent form of Existence Theorem I, together
with a few corollaries to Existence Theorem II.

When A is not compact but closed, condition (y) needs to be

slightly altered to the new condition (y)m defined by

(), |ul —lfO(ts X,0) =+ as |ul =+, ue Ult,x),

|
m
uniformly for (t,x) in any compact part A0 of A. For every com-
pact part Ao of A there are constants Coﬁ Do > 0 such that

| £(t, %, u) | < C,+ DOE ul for each (t,x,u) ¢ M with (t, %) ¢ AOo

Existence Theorem II {Equivalent form of Existence Theorem

I). Theorem II is the same &s Existence Theorem I where the
growth condition () is replaced by (y) if A is compact.
If A is not compact but closed and contained in a slab
[t0 <t<T, x¢ En]? t,» T finite, then Existence Theorem II
still holds if (a), (b) hold, and («) is replaced by (y)mo If A is not

compact nor contained in a slab as above, but A is closed, then
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Theorem II still holds if (a), (b), (c) hold and (@) is replaced by
(y) " Finally, condition (a) can be replaced in any case by condi-
tion (d).

This theorem is a consequence of Existence Theorem I and

lemma 3,

Corollary 1: This is the same as Existence Theorem II where for each
(t,x) e A U(t,x) = U is a fixed, closed subset of the u-space E_
condition (y) and (y)m are replaced by the assumptions that (i)
fo(t, X, u) is a uniformly continuous function of (t,x) in A with res-
pect to u, and (ii) foluE 1w oaslu =+, ueU pointwise in A.

It is clear that if U is a fixed, closed subset of Em’ then
U satisfies property (U) in A,

PROOF: This corollary follows from Existence Theorem II
and lemma 4.
Corollary 2: This is the same as Theorem II where for each {t,x) ¢ A
U(t, x) = Em is the whole u-space E condition (y) and (:,v)m are re-
placed by the assumptions (i) fo(t, X, u) is a convex function of u for
each (t,x) ¢ A, and (ii) foiui 1o iwas lul - +w, ue E_ point-
wise in A, (It is clear that U = Ey satisfies property (U) in A.)

In addition, if m = n and £(t, x, u) = u, i=1,2,...,n, then the
condition that 6(t, x) satisfies property (Q) in A can be relaxed in

the above case,
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PROOF: The first statement follows from Theorem II and
lemma 5. The last statement follows from lemma 5 of Chapter II
and lemma 7 of Chapter III

Theorem II extends to Lagrange problems and problems of
optimal control the analogous Existence Theorem II for free prob-
lemas proved by Tonelli in [23a] for n=1 and f, of class Cl, and
proved by L. Turner in [24] for any n > 1 and f, of class c® Al-
though condition () appears stronger than that given by Tonelli or
L. Turner, lemma 5 shows that it is not stronger in the case of
free problems.

Let us give an example of an optimal control problem to
which Existence Theorems I and II apply.

Example 1: Letm=n=1, A =[0, 1]2, for each (t,x) € A let

U(t,x) = E,, let f(t, x,u) = u, fo(t, X, ) = uz and boundary condi-

1’
tions x(0) = x(1) = 0. Then U(t, x) satisfies property (U) in A and

6(t, X) = 5 = {(zo, z)| Z, > zz, Z € El} is a fixed closed, convex

subset of E1 X E1 and obviously satisfies property (Q) in A. Now

fo/!u| zuz/!ul = jul~+was |ul =+, ue E and the limit is

uniform in A. It is clear that Existence Theorem II applies, If

one chooses, #z) = z2 for each z ¢ [0, + ), then fo(t, X, ) = u.z >
lal? = & |u|) for each (t,x,u) € [0, 1]2 X E; and®(z)/z =+ as

Z =~ +0w, ZE El’ z > (. Thus, Existence Theorem I also applies to

this example as the equivalence of Existence Theorems I and II imply.
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However, Existence Theorems I and II do not apply to the
following example.
Example 2: Letm=n=1, A =[0, 1]2, for each (t,x) ¢ A let
U(t, x) = El’ let f(t, x,u) = u, fo(t, X, U) = tu2 and let the boundary
conditions be x(0) = x(1) = 0. Then U(t, x) satisfies property (U)

for each (t,x) ¢ A and §(t, x) = {(zo, z)| z, > tzz, Z € El}. Now,

6(09X’5) = {(ZO’ Z)|ZOEO’ Ze€ El} = 6(09X)°

~
~

Hence, Q(0,x) = f; cl co 6(0, X, ) for eachx e [0,1]. Therefore
Q (o, x) satisfies property (Q) for each (t, x) ¢ {0} x[0,1]. Since
Q(t, x) obviously satisfies property (Q) for each (t, x) ¢ (0, 1] x [0, 1],
we conclude that S(t, x) satisfies property (Q)in A. Although

fo/l ul ~+was |ul =+ ©, u e E, uniformly on each compact sub-

1
set of (0,1] x[0,1], £ (6%, u) | ul 1 does not approach +w as
lul = + o for any (t,x) ¢ A with t = 0. Hence f0/| ul does not tend

to + 0 as ‘I ul =+ o, ue E, uniformly on A and neither Existence

1
Theorem I nor II applies to this example.

Nevertheless this example possesses an obvious optimal
solution given by x(t) = 0, u(t) =0, 0 <t <1. Let us consider the
same example with slightly modified boundary condition
x(0) = 1, x(1) = 0. Theorems I and II still do not apply and the new

problem is known to have no optimal solution., Indeed let

i = inf I[X, u], where the infimum is taken over the class § of all
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admissible pairs, that is the class of all pairs x(t), u(t) such that
x(t), 0 <t<1 isanAC scalar function with x(0) = 1, x(1) = 0, with
tx2 L-integrable in [0, 1] and u(t) = x'(t) almost everywhere, Then
1x, u] > 0 in & and therefore i > 0. If we consider the sequence
xk(t), uk(t), 0 <t <1, defined by Xk(t) =1, uk(t) = 0 for

0<t< k_ls x, (t) = - (log t)(log k)'l, u (8) = - t'l(log k) " for

k“1 <t<1, andk=2,3,..., we have I[xk, uk] = (log k)_1 and there-
fore I[x,, u.k] -0 as k =+, Thus, i=0, But I[x,u] = 0 implies
that tu& = 0 almost everywhere, and hence u(t) = 0 almost every-
where and x(t) = constant on [0,1]. This is impossible as x(0) = 1,
x(1) = 0. Thus, the problem above with boundary condition

x(0) = 1, x(1) = 0 has no optimal solution and Theorems I and II do

not apply to either of these examples.

12. An existence theorem with exceptional points.

For free problems it was shown by Tonelli [23a] that the
growth condition (@) can be dispensed with at the peints (t,x) of
an exceptional subset E of A provided some additional mild hypo-
thesis is satisfied at the points of E, or E is a suitable "slender"
set, This sitvation recurs for Lagrange problems as we shall
state in Theorems III and IV below.

Let us consider again general Lagrange problems (optimal

control problems) as stated inNo. 1, and let E be a given subset
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of A. We shall need a new condition, say (y*), another modification

of condition (y) of no. 11.
(y*) lul_lfo(t, x,u) =+ as |ul =+, u e U, x)

uniformly for (t, x) in any compact part AO of A-E; for every com-
pact part A0 of A-E there are constants Co’ Do > 0 such that
| 1(t, x, u)| < C,+ Doiu,l for all (t, %) ¢ AO, u e E(t, x).

We shall need also a local property concerning the relative

behavior of f,and f in the neighborhood of given points (tog X )eA,

o
We shall denote it property (T), since it is modeled on an analogous
condition used by Tonelli [23a] for free problems, n=1 and fo of
class Clo

We shall denote by N% (t, x) the open neighborhood of radius
d of (t,x) in A, that is, the set of all points (t', x') ¢ A at a distance
<& from (t,x). A point (to, xo) ¢ A is said to possess property (T)

provided there is a neighborhood Ng (to, xo) in A, two functions

¢(&), 0 < &<1, Y, 0 < <+

and five constants ¢ > 0, o > 0, u real, C0 > 0, with ¢(£) non-
negative, ¢(0 +) = + w0, ¢ integrable in (0, £), ¥(¢) nonnegative,
nondecreasing such that £ ¢(&)W¢( £))= + 0 as & =0 + and such that

(t,x) ¢ Ng (to9 XO), u ¢ U(t, x) implies that
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lia @
) > lee (@l ¥ deh

(32)

, )
L1(t, x, u)] < C,+ DOIuI for each (t, x) ¢ Né(to’ XO), ue Ut, x)

For instance condition (T) is certainly satisfied at the point
(tof’ xo) ¢ A if there is a neighborhood Ng ((1:09 XO) in A, and con-

stants k > 0, ¢ > 0, 0> 0, u real, CO > 0, D0 > 0, such that

£ (tx,0) > k!t—toia jujlte,

(33)
. . )
Lf(t, x,u)| < C, Dol ul for each (t, x) « Ny ((t09 X0)9 ue Ut x).

Indeed we have only to take ¢ =1, choose a number 38 such that

ala +a)-1 < B < 1, and select
o) - £F, 0< <,
wWe) = kK2 0 <k < ha

Here ¢ is nonnegative, ¢(0 +) = + 0 since g8 is greater than zero,
¢ is integrable in (0, 1) since g is between zero and one, ¥ is

nonnegative, nondecreasing since ¢ > 0, and

Eold) wole) - & ¢ Pt/ Rye
kl/agi-ﬁ-ﬁ o/a

. l/a gl—ﬁ(a +0)/a

and £ ¢(£)¥(d(£)) -+ as £~ 0+ since 1-8la +dfa < 0

On the other hand
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f

t,x,u) Zkltmto Ealu|1+a+ 74

o
lt"’to“!a lu I 1+a(k1/alu |07/a) Ol+

“:

et 1 hu 1 4 ]y 4

In the Existence Theorems III and IV below concerning
Lagrange problems, viewed as optimal control problems, E is a
closed subset of E1>< En' Although this condition was not explicitly
stated in Tonelli's papers [ 23] concerning free problems, we shall
show that E can always be assumed to be a closed set for free prob-
lems in each of the cases corresponding tc Existence Theorems III
and IV, and, therefore, Tonelli's Theorems satisfy this hypothesis

in Theorems III and IV below. We shall prove this property of the

set E after each of the theorems.

Existence Theorem III,

Theorem III is the same as Existence Theorem I, where a
closed exceptional subset Eof A is given, condition (T) holds at

every point of E and condition (@) is replaced by (y*) if A is compact.

If A is not compact, but closed and contained in a slab
[t, <t<Txe En] , to, T finite, then Theorem III still holds if
(a) and (b) hold (and (a) is replaced by (y*) and condition (T)
holds on the exceptional set E).

If A is not compact, nor contained in a slab as above, but A
is closed, then Theorem III still holds if (a), (b) and (c) hold (and
(@) is replaced by (y*) and condition ( T) holds on the exceptional set

E). Finally, condition (a) can be replaced in any case by condition (d).
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PROOF: Let us prove the result for the case when A is com-
pact. If A is compact, then E CA is compact. Because of prop-
erty (T), to each point (t,x) ¢ E there is an open neighborhood
Ng (t, x) with the properties described in property (T). Therefore,
by the compactness of E, a finite number of the neighborhoods
Ng (t,x), say Ai = Ng i(ti, Xi)’ i=1,2,... ,Qﬂ, and (ti, Xi) ¢ E for each
i, cover E. Consider the set Ao =A - 'El Ai which is clearly a
compact subset of A - E, By property zT) in each Ng .(ti’ xi), and

i

by the uniform growth condition in the compact set Ao’ there

exists real numbers s i=0,1,..., { such that

fo(t, x,u) > By for each (t, x,u) ¢ M with (t, x) € Ai’

izo,lyzyoooyﬁo

We shall denote by ""'sub i'"" any of the elements defined by property
(T) relative to (t, x,), i=1,2,...,. Letting = max(lp|,..., iuﬁl),

one has £ (t, x,u) > - . for each (t,x,u) € M, Therefore,
tZ )
I[x,u] = [ t (t,x,u)dt > - Dy,

Y

where D is the diameter of A and hence the infinum i of I[x, u] in
Q is finite,
Let xk(t), uk(t), tlk <t < t2k be a sequence of admissible

pairs such that I[x - ias k=~ +w. We may well assume that

k? uk]
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i SI[xk,uk] < i+k—1§ i+1, k=1,2,.... Let us prove that

X (t), tlk <t < t2k’ k=1,2,..., are equiabsolutely continuous

vector functions. For each k,denote by T, the set {tl(t,xk(t)) €

ik
€ Ay, by <t <t b, i=0,...,0; k=1,2,... . On A the
usual growth condition ( ) holds, and therefore, ‘by the same

argument used in Theorems I and II, the vector functions

x’k(t) are equiabsolutely integrable on T .; in other words, given

ok’
e >0 there is a & o= €, Ao) >0 such that for any subset H of

TOk of measure <6 o we have

(H,) I Ix’k(t)ldt < € 4! (Q+1)’1,k=1,2,,., :

Now, if H is an given subset of ] with meas H<50,

[ 40 o

then the subset H0 =HMN T0 also has measure <60 and we have

k k

EOT ) [lx @ ld <e 4™ (1) (34)

Let C = max [*, Cf, ..., C ], D =max [1, I

My = min (1, o, .o, uﬁ]a For eachi=1,2, ..., let us

J

determine a number Bi’ 0< Bi <61, small enough so that

B,

i
fo ¢, (z) dz < ¢ 8_11_)-1(£+1)_

1 (35)

and so that
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TS P - -1
z ¢, (2)¥ (¢,(z)) > 8pDe (36)

for all z with 0 <z < ,8i° Also, again for each i=1, 2,... , £, let us

choose a number % ¢i (Bi)° Then

g. a. a

i i i - - -1 .
B iy.]‘Ifi (v) > 8u,De, i=1,2,..., L (37)

i
Lety = max|[1, 7/19,.,,7/ﬁ], For each i=1,2,..., 4, and

k=1,2,..., letus divide the set Ti into four disjoint subsets

k

Eikj’ j=1, 2,3, 4, as follows, Let ti(ﬁi) = [ti—ﬁiy t; +Bi]9 and

let
Epq = 1tite Ty tetis), lu )l < o flt-tD},
Eqo = {tlte Ty, tet(s), t & Egqh
ElkB = {tlt € Tiks tétl(ﬁl)) luk(t)l i 7’1},
|
Eqg = {tlte T, téts), te E L.
InE,, wehave iuk(t)l < ¢i(lt—til) and hence, by force of (35),
0 ¢
®OUEL) [lu®ld < Z (Egy) [ lu i)t

i=1

i
< Z (eyg) J otlt-tihat <
i-1
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2 B.
1
< Z 2 | ¢,(z)dz < 20-€ 8“115'1@ +1)“1.,
i=1 °

In Ey o we have Iuk(t)l > qbi(lt-til), hence

-1
lw 1o "(It-t]) > 1.
Now, W(lu (1)) > ¥(@,(lt-t,[) , and then

ai ai Q’i -ai

l+a. a

Q. . Q.
= -t ] Ho 0w, Me @)

T i T T I RTINS 3

where 0 < lt—til < Bi since te Ei and tzti is obviously in

k2

Eikl" By (36) we have

et ] T (It 1) You(lt-t])) > 8 gD et
4o ¢ UL Relit-tih)) 2 S uwDe

and (39) yields

l+a

a.
eyt | Huml

. Q.
w0 < 87 'y, Yl 0)).
By (32) we have then

o 1 < @7 1D e (4 % (1), u (D) - ]
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for every te Eik29 and hencg also

! < 670t Bl e) [t x (0, w () + . (40)

InE, , we have |uk(t)| < v, and hence since

ik3
y = max|[1, 7/1;.”97/!2] we have also
[

luk(t)l <y forte U E
i=1

ik3 (41)

In Eik4 we have

o 1 > vy, It > 8, e ®D) > v,

1“‘“0‘1 a; !
£ (%, (1), u () -, > [t-til Iuk(t! ¥ (lu (t))

and hence

O] < Tt %0, 0) - ) Te-t] ol g ugol)

_ -OZi -Q. -Cli
< Uyl x 0o ) + W8y oy Yy )

and by force of (37) also for te Eik49

O] < 870y D7 el (b % (1), u ()« . (42)

For every measurable set H C [tlky tZk] with meas H< § o

we have now
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i
H) [ Ix' ¢ ldt = (BENU T, f]xk(t
i=0
[}
<ENT,) [ x| ®ld+ @BNUT,) [x, ¢ ldt
i= 1
and by force of (34), also
! b
) [ lx ' @) ldt Se 4 @) s @n Ule ) J = 0 lat.
i1

We have now, almost everywhere in Tik’

[ @] = [£6,x, 0),,0) | <C,+D, lu ®)] <C+Dlu @)1,

and hence
g
H) [lx', @)ldt <e e s@n Uy €+ Dlu o
i=1
{
<€ 4"’1(ﬁ+1)"1 + C meas H + D(HmUle)flu tydt
i=1

) (£+1)_1+ C meas H +

4 0 |
+D (Z HNU B ? Il lu, (&) ldt |
j=1 i=1
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By force of (38), (40), (41) and (42) we have now

-1= -1 1

(H) | fka(t) |at<e 471 (ﬁ+1)'1 +C meas H+Df ¢ 4 (0+1)"

2
- -1 -1=-1 -
+D(@E " u, D €) @D iLilEikz) |/ (£, %, (), 0y @)+p]at

2

+D(Hmikleik3) fy dt

0
- -1 -1--1 .
+D(B "y, D e)(Hr\.LiilEikﬁ I [, (t,%, (), 0, () + i ]dt.

Since f + u > Ofor all te [tlk,tZk], we have

@ [,x 0ldt<ea™ (64 €Dy measH e 471 o117

-1

= _1 - 1 t2k =
+2D 8™ ux DT ¢) ft [£,(t, %, (8)) + 1 ]t
1k

P

3431 € + (E+D7/) meas H + 4'1;1,*‘1 e (1] + 1+J)

-1

27" ¢ +(C +D 7 )meas H.

If we take 6 = min [50, (C + ]3?;-})“1 2’1 ¢ ], then for every measu-

rable set H C[t with meas H < 6 we have

10> Fagc)
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(H) [ Ix'k(t)idt < o le vale = e

The vector functions xk(t), t1k <t< tZk’ k=1,2,... are equi-
absolutely continuous.

If one recalls that for this case there is a constant . > 0
such that fo(t, x,u) > - o for each (t,x,u) ¢ M and the fact that
xk(t), tlk <t< tZk’ k=1,2,... are equiabsolutely continuous,
then one may consider the function xﬁ(t) as in Existence Theorem
I and the proof proceeds just as before. The proof is complete
for the case that A is compact.

If A is not compact, let us consider an arbitrary compact
subset A0 C A, and its respective parts A0 n E and
A - AO n E. The set A0 n E is a compact part of AO on which
condition (T) holds. Therefore, by the same reasoning as in the
beginning of the proof of this theorem there is a [Lo > 0 such
that £ (t,x,u) > - [LO forall (t,x)e A, ue U(t,x) (where [1,0
may depend on A o)" This fact, the assumptions given for the
compact case of A, and the reasoning given for the case of A not
compact in Theorem I reduces these cases to the compact case.
The theorem is completely proven.

REMARKS: 1. There exists a function fo(t, X, u) satisfying
all conditions of Tonelli's Theorem III, but, for which the sets

Q do not satisfy everywhere property (Q).
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Takem=n-=1, A=[0<t<1, -1<x<1], f=u,
U=[-0<u<+w|and fo(t,x, u) = ﬁtu3l +max [0, 1 - xul.
Then, f (t,x,u) > tu®] >0 forall {t,x,u)e Ax U, Fort 0,
fo satisfies the growth condition, The set
E= {(t,x)/t=0, -1 <x<+1} is the exceptional set, and condi-
tion (T) is satistied at every point of E since £ > ] Euﬁ39 and
condition (24) (Tonelli, Opere Scelte, p. 216) is satisfied with
o=l Tl

is obviously convex in u for each t, and the function foz =

t~0k 1, a =1, 0=1, u=0, The function £

max [0, 1-xu] is also convex in u for each x, Hence fO(t, X,u) =

f01 + f02 is certainly convex in u for each (t,x) ¢ A, Now we have
A, {(z u) | z° > f(txu), -0 <u < + 00},
and hence

~
~

Q(0,0) = {(zo,u)izo > 1, - <u< +o0f,
On the other hand, for 0<% < 1,

Q(0,6) = {(zosu)izo > max [0,1 -8ul, ~0 <u< +of

0]

A0, -8) = {(z°, > max [0,1 +6u], -0 <u< +o0f,

u)lz
Hence (0, & ) 3( 5), (0, -6_1)@ S(o, -6), and finally

(0,0 -1), (0, -6 _1) € 6(0, 0;6). As a consequence

(0, 0) ¢ coQ(0,0:5), {0,0)& M ¢l co Q0,05)
5

while (0, 0) ¢ Q(0, 0). We have here
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§(0,0) £ M clcoQ0,0; 65).
5

2. In the proof of Theorems I - IV we may disregard proper-
ty (Q) at the points (t, x) of a subset of A of the form
{(t, )| (t,x) € A, te {t}}, where {t} is a given set of linear mea-
sure zero,

The proof is the same. A set of points t of linear measure
zero is always disregarded in the proof.

Corollary 1: This is the same as Existence Theorem III where for

éach (t,x) ¢ A U(t,x) = U is a fixed, closed subset of the u=space Em’
and the part of condition (y *) where f0| a7l ~rwas lul -+ 0,
ue U(t, x) uniformly on a compact subset A0 of A - E is replaced
by the conditions (i) fo(t, X, u) is a uniformly continuous function of
(t,x) in A _ and (ii) folul‘1 ~+o as |ul =+w, ue U pointwise in
A -E.

PROOF: This statement is a consequence of Theorem III
and lemma 4,

Corollary 2: This is the same as Existence Theorem III where for

each (t,x) e A U(t,x) = E is the whole u-space Em, the function
fo(t, X, u) is convex in u for each (t,x) ¢ A - E, fol ul 1. +0 as

lul =+, ue Em pointwise in A - E, and the uniform growth con-
dition of fo(t, X, u) on each compact part Ao of A - E, given in (y*)

is omitted.
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In addition, if m = n, f{t,x,u) = u, fo(t, X, 1) is a convex func-
tion of u for each (t,x) ¢ E, and hence for each (t,x) ¢ A, then the
conditions that 6(@ x) satisfies property (Q) in A and E is a closed
set can be omitted if the exceptional set E is chosen to be the sub-
set of A at which condition (T) holds and condition (@) does not hold.

PROOF: The control set U(t, x) = E_ for each (t, x) € A ob-
viously satisfies property (U) in A. On each compact subset AO of
A - E, the convexity of :fO in u for each (t, x) ¢ Aog the pointwise
growth of f@ﬂ w7 to vwas lul -+ o, and lemma 5, guarantee
the uniform growth of fgf ul L to +was |ul =+ o and hence that
the condition (v *) is satisfied. Theorem III applies and the first
part of the statement is proven.

We shall first show that under the assumptions of the second
part of the statement E is a closed subset of the tx-space E1 XEHO

If (t,x) € E 1- A, then (t,X) has a finite distance to the closed

+1
set A, Thus, there is an open neighborhood of (t, x} which lies
entirely in the set E - A and hence in E -E. If(t,x)e

n4l n+l
A-E, then f_is aconvex function of u and foé w7l - o as
lul =+ at (t,x). Lemma 5 implies, under the assumption of the
second part of the statement, that in some neighborhood of (t, x)
¢A-E, f il -t was lul =+ uniformly. Thus for each

point in this neighborhood of uniform growth one has ﬁol ul 1. + 0

as |u| =+ o pointwise and therefore this neighborhood of uniform
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growth lies entirely in En+ - E as at points of E condition (a) is

1

not satisfied. One has that En+ - E is an open set and that E is

1

closed in EMIQ
We shall now show that under the assumptions in the second
statement the hypothesis that 6(@ x) satisfies property (Q) in A can
be omitted from the first part of the statement. We note that the
proof of Theoren: III for A not compact is reduced by additional as-
sumptions to the proof for the compact A case applied to some
fixed compact subset AO of A. In order to omit the condition that
6(t, x) satisfies property (Q) in A under the assumptions of the
second part of the statement, this latter fact and remark 2 to Theo-
rem III imply that it suffices to prove that, under the conditions of
the second part of this statement, é(t, x) satisfies property (Q) on
any fixed compact subset AQ of A except for a set A’O of the form
{(t, x)i(t, %) ¢ A te {t}} where {t} is a given set of linear mea-
sure zero., We shall show that under the assumptions of the second
part of this statement that the set {t} can be taken to be finite,
Consider a fixed compact subset AO of A, Then
folulf 1% as|ul =+ at each point of the set
B = AO " (A-E) and i@ is a convex function of u for each (t,x) ¢ B.
As each point (t,x) « B has a finite distance from the set AO T O

lemmas 5 and 7 imply that E)U x) satisfies property (Q) at each

point of the set B. Condition (T) holds at each point (t, x) € AO n E,
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The neighborhoods given by condition (T) cover the compact set
AO n E. Consider a finite subcover of Ao n E. Then there are a

finite number of ti’ i=1,2,...,¢ such that

1

2 |1 ai,
fo((t,x,u) > !t—til lul ¥, Uuﬁ)+u1

for each (t,x,u) ¢ N 5 i(ti, xi) X Em where @y and ¥, are given in
condition (T). As \Iri(z)) is a nondecreasing functionon 0 <z < +
and ¢, > 0, i=1,2,...,(, the function foﬁui L iwas lu| = + o
at each point (t, x) ¢ AO N E except whent = ti for some i,
i=1,2,...,4. Each point (t,x)¢ A_n E witht 8 t, for any
i=1,2,...,4, has a finite distance from the closed set
{(t, %) {t, %) ¢ AO neE,ts= 1:i for some i=1,2,...,4}. Therefore
lemmas 5 and 7 guarantee that'a(t, x) satisfies property (Q) at
each point (t,x) ¢ A_ N E with t k t; for any i=1,2,...,¢. Thus,
under the assumptions of the second part of the statement, é(t, X)
satisfies property (Q) on AO except for the set
{(t, %) (t, x) e A, t=t, for somei, i=1,2,..., ¢} and the set
{t! tst, i=1,2,..., ¢} 1is a finite set and clearly has linear mea-
sufe zero, The second part of the statement is entirely proven,
Example 3: Theorem III applies to the following example to
which neither Existence Theorem I nor II applies.

Letm=n=1, A =|0, 1]29 for each (t,x) ¢ A, let U(t, x) = E;

let f(t, x, u) = u, fo(t, X, U) = tzu4 and boundary conditions x(0) = a,
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x(1) = b where a, b are fixed real numbers. Then U(t, x) satisfies

property (U) for each (t, x) € [0, 1]2,

Q(t, x)

4

2 4
{(zo,z)lzo > tuS, z=u, ue El}

2
- {zo,z)lzo > t7z, ze€ El} and

Q(0,x,8) = {(zo, z)| z, > 0, z¢E } Q (0, x) which is a closed,
convex set. Hence, Q(0,x) = M ¢l co Q(0,x,5) for each

4]
e [0,1]. Therefore, Q(0, x) satisfies property (Q) for each

(t,x) e {0} x[0,1]. The set Q(t,x,6) = {(z ) Z |z > (t- 6)2 4

Z € El} ift£0 and0< 6 < |tl. The latter set is a closed,
convex set in E2° Hence, CzQ(t, x,0) =clco (3(t, x,6) ift + 0and
0<6 < |t|. Therefore, (3(t, X) =M E)(t?x,é) = () clco 63(t, X,0)
and Q(t, x) satisfies property (Q) for6 each (t,x) e (0, i] x[0,1] and
also for each (t,x) € A.

Although fo/l ul ~+owas lul ~+w, ue E, uniformly on
each compact subset (0,1] x [0, 1], fo(t, x,u)/lul does not tend
to+was |ul =+, ue E, for (t,x) ¢ {0} x[0,1]. As a result
fo/i u| does not tend to + w as lu|l = +ow, ue E, uniformly in A
and both Existence Theorems Iand II fail to apply. Yet Existence
Theorem III applies. Let E = {0} x [0, 1] which is a closed sub-
set of E,. Then fo/l ul ~ +owas |ul =+, ue E, uniformly on

any compact subset of A - E. Also, condition (T) is satisfied at

each point of E. Let (0, xo) be an arbitrary point in E. Thus,
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fO(t,xgu) B t2u4 - tzu1+2+1 > [¢]@ ﬁui1+afuﬁ

where ¢ = 2, Consider an arbitrary neighborhood of (0, XO), say

0,
NG(Q7 XO)° Let

-3/4 1/2

(=1, a=2, ¢(z) =z for 0<z<1, ¥z) =z for

0 < z < + 0 in this neighborhood. Then ¢(z) is a nonnegative
integrable function on (0, 1] with ¢{0+) = + o0 and ¥z} is a non-
negative, nondecreasing function on (0, + o) such that z ¢{z) ¥¢(z))

-3/4 -3/8  -1/8
z .2 = 7

= Zo = 4+oasz=—=0+ Itisalsoclear that

t(txu) = 12y > It 9]l T e )

for each (t, x) ¢ N% (0, xo), ue E. where {,;a, u, ¢(z) and ¥(z) have

1
been chosen as indicated. Indeed, |f| = |u] < CO + Doﬁui for

each (t, x) ¢ NO (0, x0)5 ue E

5 where CO = 0, D0 =1, This analy-

1
sis shows that condition (T) is satisfied at (0, xo) ¢ E. As (0, x0>
is an arbitrary point of E, condition (T) is satisfied at each point
of E. Finally, Existence Theorem III applies to this example,
Note that the present example verifies (33) at the points
(0, x) withk =1, a =2, 0=1, u=0, CQ = 0, Do = 1.
Note that Theorems I, IIand III do not apply to the examples

1 and 2.
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13. An existence theorem with a ''slender" exceptional set.

If the exceptional set E is suitably ''slender', then property

(T) at the points (t ,X ) ¢ E is not needed. Let E be any subset
of A. Then for any subset H of the t-axis we shall denote by
El(H) the set of points ¢ of the xl-axis, i=1,2,,..,n, defined as fol-

lows

E'(H) = {¢|there exists a point (t, xl, cesX) € E,

withte H, x = £},

We shall denote by u* [E'i(H)] the one dimensional outer measure
of Ei(H), and we shall require below that u*[Ei(H)] =0, i=1,2,...,n,
for every subset H of the t-axis of measure zero,

For instance, any set E contained in countably many straight
lines parallel to the t-axis, and to finitely many (nonparametric)
curves X - ¢i(t), i=1,...,0, t' <t <t <;bi(t) AC in[t', t""], cer-
tainly possesses the property above. The property above was pro-
posed and used by L. Turner to extend to free problems in En re-
sults of Tonelli for free problems in El’

Existence Theorem IV:

If A is compact, Theorem IV is the same as Existence Theo-
rem I where a closed exceptional set E is given, condition (o) is
replaced by (v*), and (Ll): u*[El(H)] = 0, i=1, 2,...,n, for every

subset of the t-axis of measure zero;
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(Lg): for every (to, xo) ¢ A there are numbers
6 = 6 (to, XO) >0, y= y(to, xo) >0, r= r(t09 XO) real,

b. = bl(t X ) real, i=1,2,...,n,

i 0’0
such that
n
fo(t9 X,u) > r+ Z bifi(t’ x,u) +y|1(t, %, u)]
i-1

for each (t,x) ¢ No (tos x ), ue Ut x);

b

(L3)Z for each compact subset A0 of A there is a constant

o

MO > 0 such that
fo(t, X, u) > - M, for each (t,x) ¢ A09 u e U(t, x).

If A is not compact, but closed and contained in a slab
[to <t<T, x¢ En]y to, T, finite, then Theorem IV still holds if
(a), (b) hold [and () is replaced by (y*), provided (Ll), (LZ) and
(L3)) hold],

If A is not compact, nor contained in a slab as above, but A
is closed, then Theorem IV still holds if (a), (b) and (c) hold [and
(a) is replaced by (*) provided (Ly), (Ly), and ((L3) hold]. Finally,
condition (a) can be replaced in any case by condition (d).

PROOF: Let us consider an arbitrary admissible pair x(t),
uft), t. <t <t, from the complete, nonempty admissible class

and its restriction to a subinterval of [t19 t2]9 i. e, x(t), ult),
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1 <t< t' where t1 < t' < t'2 < t2 Denote by Q' the set of all

such possible restrictions of admissible pairs from Q. Then Qis
contained in Q ',

Let us assume that A is compact, We shall first prove that
nfo, Ix, u] is finite, Thus, inf,) Ix,u] is finite as the inequality

infy), Ix,u] < mfnl[x, u] follows from Q@ C ©'. As the set A is

compact by (L3) there is a constant M > 0 such that fo(t9 X, u) > -M,

for each (t,x) ¢ A, u e U(t,x). Therefore,
t

I[x,u] = f2 £ (t, (1), u(t)dt > - Moﬁ for each (x,u) ¢ Q' where
A z

D = diamefer of the set A. Thus inf I x, u] is finite and so is
inf QI[X, ul.
Fix a real number M > 0, consider the set {(x, wl(x,u) e &,

I[x,u] <M} and denote it by {(x, u) Then, we shall prove that

by
the vector functions x(t) from {(x, u)}M have uniformly bounded
variation when A is compact. This last statement will be shown by
finding two constants a real, b real and b > 0 such that

M > I[x,u] > a+ bBV|x(t)| for each (x,u) € @ with I[x,u] <M.

The last inequality is proven after a special partition of the tx-
space is constructed and the trajectory x(t), t'l_g t< t'2 is

divided in a special way into subtrajectories xpk(t), t'lpk <t< t'Zpk‘
We shall now obtain this special partition,

Condition (Lg) guarantees that to each point (t,x) ¢ A there is

a linear scalar function z(v) = r + b- v where v = (vl, ooy vn),
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n
b:(bl“"”bn) or z(v) = r+z bivi(r’bl“"”bmau real), a

i=1
number v> 0, and a constant & > 0 such that

fo(t, x,u) > z(f(t, x, u)) + v (t, x, w),
(43)

or f > z(f) + v(f)

for each (t,x) ¢ 3 ST 6 (t xo), u ¢ U(t,x), and hence for each
=0

(t,x) & N3 6_(t09 XO), u ¢ U(t, x) where
N, sltox) = {txl, [t-t [ <86, [x' -x [ <36 foris1,2,...,n}.
A finite number of the above open cubes, I\_Ig 5 (ti, xi)s, i=1,2, ..., 10,
cover A, because A is compact. Divide E into cubes EP4

n+l
whose sides have length § > 0 by taking

EP - {it, %) (p-1)0 <t < pb, (q-1)0 <x <ap, i1,2,...,n}

where p, q19 coesy qIIL are integers, qz(qu ooy qll% 0 3 min(gly

51 ) and where 6 is chosen so small that each cube EPY which has
0

a nonempty intersection with the set A, and its 3™l g adjacent

cubes, are completely contained within one I\-Ig

(This can be done as A is a compact set and is covered by the

6-1(1:19 Xl)a lﬁls ceoy 100

36(t x) j,:lgwwio,)

Hence, one can associate to each cube qug which has a non-

empty intersection with A, a linear scalar function
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n
z(v) = r + Z bivi’ V = (Vl’ coes vn) and number v> 0, such that
i=1

fo(t, x,u) > z(f(t,x, u)) + W 1(t, %, u)]

for each (t, x,u) ¢ M with (t, x) eEP or any of the 3n+1 - 1 cubes
which are adjacent to EPY  The t-coordinates of the vertices of
these cubes define a partition of the t-axis.

Thus, there are two integers Py 9, such that each vertex of
the previously mentioned cube has t-coordinates of the form pb
with p. <p<q,. Foreacht e [poé , qOG] the set E({to}),
i=1,...,n, has measure zero, Given g such that 0 <75 <4/2 for
each i=1,2,...,n the set Ei({to}) can be covered by an open set F!
of linear measure less thann. The cartesian product FO = {to} X
F1 X F2 Xeoo X Fn of the set {to} and these open sets are open in
the hyperplane H(t ) = {(t, %) I (t, %) € E 4 t= tf. Now,

(H(to) - Fo) n A is a compact subset of A since it is the intersection
of the closed set H(to) - F_ and the compact set A,

As E is a closed subset of the compact set A thereisap >0
such that the set N (H(t ) - F.) = {(t, x)| dist ((t, x), H(t)-F )
< pYnil} where dist (b, B) is the distance between a point
be En+ anda set Bin E

1 n+1’

closed set E, This last statement follows by the argument below.

has an empty intersection with the

Indeed, F is an open covering of the intersection E(to) =E n H(to).
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Thus, H(to) - F0 is a closed set, and must have a positive distance
from the compact set E, since in the opposite case, the set
H(tJO)—FO and hence (H(to) - FO) N A would contain points of accumu-
lation of E, and thus would contain points of E since E is closed,
but this is impossible because F0 is an open cover of all points
E(to)? that is of all points of E which are on the hyperplane H(to)o

Thus, for each point (to, XO) € (H((to) - FO) N A thereisa
cube N (t ,x ) ={(t,x)| |t-t | < p Eximxiﬁ <p for i=1 n}

0 o’ <o ’ o' - M o' = 9ok
and the open cubes 1\-12@0ﬁ XO) cover the compact set (H(to) - FO) n A,
There exists a finite subcover ﬁz(to? xi))g i=1,2,...,7 for
(H(to) - FO)) n A. We note that the compact set

j=
covers (H(to) - FQ) N A and has an empty intersection with E as
it is contained in the closed set N — (H(t ) - F ) which has an
pv n+l 0 0

empty intersection with the set E.

Perad

AsB = U

o Np(toy Xi) is a compact subset of En\ - E and

i-1 1+1

hence B/; = BO (1 A is a compact subset of A - E as both Bo and A
are compact sets of Em;l? now fofuﬁ 1. +e0as jul =+, ue Ult,x)
uniformly on B‘g and there exists constants C(to) >0, D(to)) >0

such that [f(t,x,u)| < Clt ) + D(towui for each (t,x,u) ¢ M with

(t,x) e B‘z by condition (;*). If S is an open n-dimensional cube
such that for each (t,x) ¢ A, x ¢ S, then the complement I,O of the
compact set B_ in [(toqo, t0+p)XS] is not only a bounded open set,

but it is the union of a firite number of disjoint open intervals.
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Also, the sets IO and Ii: = I0 n A have the property that each of
their projections on the xi—axis, i=l,...,n has linear measure less
than 7, as the following argument shows. Indeed, if (t,x) ¢ I
then lt-tol < p and (to, x) ¢ H(to) -F, since (t, x) would then be-
long to Bo and not to I0 as above, Thus, for any (t,x) ¢ I, we have
(to, X) € F and the projections on each of the xi;axis have linear
measure less than 7.

In this manner we have associated an open interval (to—p,
t,+p) with each t e [ PO, qyd ]. By taking a finite subcovering,
and then a suitable contraction of the corresponding intervals we de-

fine a partition

P: poﬁ =t < t1< <tR: q,0

of [p05 » 90 | and it may be assumed without loss of generality

that the points pd for P, <p< q,are all used in this partition. Re-
fine the previous partition of En+1 into intervals Qaq by means of
the hyperplanes t = tj’ j=1,..., R. Thus, the new intervals are

of the form
QM - [0t <t<t, (q-16<x<qd, i<l,...,n}
’ a-1>" 2% ql ;O _’ql ’ IERNERUE

a=1,...,R, q= (ql, coes qn) and ta - ta-l <&. Let zaq(v) be the
linear scalar function and A a > 0, the real number associated with
the cube of the former partition which contains Qaq,

Summarizing we have the two following partitions:
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1. A subdivision of the slab [poé <t<qpb, xe En] into

), q.

hypercubes qu, P=Dpy b, +1,,°°9qo -1, q= (ql,“n,q i

n
integers, of side length &, with corresponding linear functions
z _(v) and real numbers v__ > 0,
pq pq
2. Givenn > 0, there is a linear subdivision of the same
slab into intervals Q% = [t, 1 <t <t (g-106 < x' < a6 ],

e=1,2,..., R, whose edges along the xl-axis, i=1,2,...,n, still

have length § , independent of i, such that

Bl x0) >z, (% 0) +y 1%, u)

for each (t, x, u) ¢ M with (t, x) ¢ Qaq n A and for each a,
a=1,2,...,R. Inaddition each slab [t , <t<t, xe¢E|n 8§

is divided into two disjoint sets Ba and Ia’ each made up of finitely
many intervals whose edge along the t-axis of total length <.
There exist constants Ca >0, Da > 0 such that

[ 1(t, x, u)| < C, + Da|ui for each (t,x,u) ¢ M with (t,x) ¢ B,

and fOlul-l -+ as |ul =+, ue Ut x) uniformly on B, N A,

Thus, the set

] ) LA
A, = {(t, x)|(t, %) € A, ta-1§t§ta} = B B

a

where

BAzB ﬂAglAz;:I ﬂA,BAﬂIA:zB NI NA=¢nNA=¢
a a a a a a o] a

C i, .
and Iﬁ‘ has projections on each of the x -axis of linear measure
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less than 7. Also the exceptional set E is contained in

R

U IA Moreover, the constants v , b , C , and D_ are inde-
iy @ aq’ aq’ "a a

pendent of 7. IfCo = max (Cl,”.SC and D = max(Dl,,,,,D

" "
then | £(t, %, u)| < C,+ Dolul for each (t,x,u) ¢ M with

(t,x) € 5 B‘z . We may clearly assume that D, > 0 without loss
of gene(f':}ity°

Let r = max |r l,bzmaxib i, v=min p
aq aq aq

where the maximum and minimum are taken over all (a, q) for which
QOZOl has a nonempty intersection with A, Also, take a real number
N >2b(1 + 4\/T1T1)DO . Now, suppose x(t), t; <t<ty, is the AC
trajectory from some admissible pair (x,u) € Q. Let X, = x(t),

t . <t< ta’ be the part of x(t), t'. < t < t' (if any) defined on

a-1 - 1
[ta-l’ ta]. Divide X, into more subtrajectories X1 e Xy

a
as follows:

. . . C :
The first end point of X, 18 x(ta_l) (or x(t 1) if toz-l <t i

< ta); the second end point is either the x-component of the first

point where (t, xa(t)) leaves one of the BM1 - 1 intervals in the sec-

tionA = {(t,x)(t,x) € A, t,; <t< ta} adjacent to any one of

n+l . .. .
the at most 2 intervals containing (ta-l’ x(ta_l)), or x(ta) if

n+l

(t, xa(t)) does not leave these 3 - 1 intervals (or x(t'z) if

t,1 <ty < ta)o The first point of x , is the end point of x , and

the end point of x

a2
(t, Xa)) which leaves the 3”’“""1 - 1 intervals adjacent to the at most

is either the x-component of first point of
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2™*1 intervals containing the end point of (t, x (1) or x(t ) if

(t, xa(t)) does not leave these 3n+1 - 1 intervals (or X(t’z) if ta—l
< t'2 < ta)n Continuing in this manner, X, = x(t), toz—l <t< taﬂ

is broken up into subtrajectories X, k=1,..., Tao This process

k9

must terminate after a finite number of steps since each subtra-

jectory X, except the last has length >4 . ~ Thus, the domain of

k

X . is an interval, say Aa

ak Kk’

Let Aa be the set of all t in Aa where (t, x(t)) ¢ Ioz and let

k k

A ok be the complement of Aak in Aak" Thus, Aozk

Consider any (x,u) ¢ {(x, u.)}Mo Then
t‘i
I[x,u] = [ 2 £t x(t), u(that >

t”l

=A_ UA
a a

k k’

R "« n
> 5 D (g S lrgg + ), Bt x(0),u(t)

a=1 k=1 i=1

ey L x(), ut) Tdt + (A ) [ £ (6 x(), u(t)dt} > (44)
T
a

R
> 1D + z {-bl(A_ ) [ f(t x(t), u(t))dt]
-1 k-1

s (A ) [T (), u(t) [ dt + (AL [1t x(8), ult)dt

where D denotes the diameter of A,
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As folul-l -~ + was Jul = +wo, ue Ut x) uniformly on

each Bﬁ, a=1,..., R, folul_l ~ 4+, as |ul =+, ue U(t,x)
R

uniformly on U Bﬁ . We also note that there exists constants
a=1

C >0, D >0 suchthat |[f{t,x,u)] < C_+D lu| for each

o = o= R = Yo To
(t,x,u) e M, (t,x) e U Bs . Then, for the N> 0 given pre-
a=1
viously there exists a Y > 0 such that fol ul -1 > N for |u| >,
R
u ¢ U(t,x) and each (t,x) ¢ U Bﬁ‘. Let

a=1
B = {supNlul-f (t,x w}l(t,x,u) ¢ M, |ul <Y}. Since Niu| -t
§_I§ for te A'ak’ u € U(t, x), [ul Y, we conclude that fo +D
N

lu| for allt e A',, ueU(t,x). We have

ak’
I[x,u] < - (r+ID)D+

—

R "a
P DS bl Jithx(e), et +v(ag,) [ 1 x(0,u(e) at
a=1 k=1

+ (A'ak)ﬂfo(t, x(t), u(t)) + DJdt} > - (r + [DI)D +

RTa

+ z Z {-p(a_) [t %(t), u(t))ldt + (45)
a=1 k=1

+ (A ) [ !f(t,x(t),u(t)){dt+N(A"ak) [ lu(p)|dt}

. Ay . .
Since | £l §C0 +D0|u| forallte AakW1th DO > 0, we have

lul > (1l - ¢ )p;! . (46

o for all (t,x,u) ¢ M with t ¢ A’a
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The relations (45) and (46) yield

I{x,u] > -(r+ 1D | +CoD;1 D+

-]

R "a
+ Z Z {- b(A, ) [t x(t), u(t) | dt + V(A ) [ 11(t, x(t), u(t)lat +
a=1 k=1

+ND(_)1(A"ak) [ 11(t, x(t), u(t)) | dt}. (47)
Now i(Aak UAT L) [ f(t, x(t), u(t))dt| =
I(Aak) [ 1, x(t), u(t)dti = I(Aak) [ x'(t)ydtl < 2 8vn+d

and therefore
A ) [ it x(), )l - [, ) [t x(0), ui)ael <

(A, U A [1(t, x(t), u(t)dt] < 28 Vn+l.

ak
We have
(A ) JHt x(t), u(t))dt| g) 26 Vol + (8 ) [ At x(t), u(t))dt|
<26Vl + (A7) [ 14(t, x(t), u(t)) | dt (48)

foreacha =1,2,..., R; k:192,”.,,Tao

Relations (47) and (48) yield
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1.~

I[x,u] > -(r+ |D| +COD; )D +
R Ta
; Z Z {-b@ovad + (A" ) [ 14t x(0), u(t) | at) +
a=1 k=1

1

+ (A J 1t x(0), u(t)) | dt + ND_ (A
[ 11t x t), u@)) | dt}. (49)
If we let Mok = (A0 [ | £(t, x(t), u(t))| dt,
Mo = W) [ G x(), ue)dt,
R T R Toz
X = z Z A And A’ = Z o
a=1 k=1 a=1 k=1

we have

I[x,u] > -(r+ | D +COD;1)I_) + VA +ND(_)1 A+

o (50)
R Tal
- b( z 26V +2' ) - b(20VneT +)\'aTL.
a=1 k=1
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But

M= (A ) [ 1t x(t), u(t) [ at > (A, f |fi(t,x(t), u(t)ldt >

> @) J 1t x(®), ut)dt} >

> 6-n>06-0/2=0/2

for eacha =1,2,..., R; k=1,,..,Ta-1 and for i=1,2,...,n. Also,

N > 2b(1 + 4V m-l)Doo Therefore

I[x,u] > -(r+ fﬁl + COD;I)ﬁ + VA +ND;1A'

r T3

- 1o Z Z (4n' IR+ ')
a=1 k=1

R
—b[Z (26 Vn+l A

a::l

2>
a

1 1

> - (r+ D +CD_")D - 26 bRVD+T + 1 + ND_")!

RTaz
- b(1 + 4V n+l ZZ?\' >

> - (r + | D +COD;1)]3 - 20 bRVn+l  + A +

+ [ND(;I - b(1 + 4Vn+D) A’

1

> - (r+ | DI +C0D; )D - 26 bRV n+1

+ VA +Db(1 + 4/n+l) A, (51)
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If we let v = min(y, b(1 + 4/n+1 ), we have from (51)

1

I{x,u] > - (r+|Dl +C_D_")D - 26 bRVn+1 + v (BVIx(t)i).

Hence,
BVIx(t)l < [I[x,u] +(r + Dl + COD;I)IS + 26 bRV n+1] ;1

But (x,u) € {(x, u)}M and so I[x,u] <M. Therefore the vector
functions x(t) from {(x, u)}M have uniform bounded variation. The
same holds when Qreplaces Q' as & C Q.

Let us prove that the vector functions x(t), t'. <t < t'z,

1
of the family {x(t), u(t)}M are equicontinuous, Suppose they are

not equicontinuous. Then, there is an ¢ > 0 such that for each

nonnegative integer j there is a trajectory x = x.(t), t.<t<t

1] = 2y’
1] 1J§t'3§t2’ xjisa

trajectory from {x, u}M, Ixj(t'j1 X, (t' )l >¢€, and

and two points t']J ) t such that t, . <t

0< t'j2 - t'jl < j_lg letting u denote the control corresponding
to X, I[xj, uj] < M. Without loss of generality we can assume

that t'jl -'to, t'jz - o’ xJ(t' ) -~ Xy xj(t'jz) -X, asj =~ + o, and

2
then necessarily [Xz - l > €. As the trajectories xj(t),

13 <t<t, . of the family {x(t),u(t)}M have uniformly bounded

variation by what was proven before, let us denote one such bound

by UM"

The sets El({to}) have measure zero. Hence, as before,
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they can be covered by open sets of measure < 7 for arbitrary

n > 0. If n is not less than € /2, choose i so that it is less than

o

€/2. LetF_ = {to}x, F

Xyooes xFon; then FO is an open set in
the hyperplane H(to).

By the same analysis we used in forming the partition of
En+1 into intervals Qaq’ there is a real number p > 0, two sets
B0 and IO such that the set I0 is the complement of Bo in
(t0 -ps t+ p) X S where S is an n-dimensional open sphere such
that for each (t,x) ¢ A, x € S, (to-p, t0+p) XS = BO U IO n S, the
set IO is a finite union of disjoint open intervals, the sets IO and
IA(‘) = Io N A have the property that each of its projections on the
xi-axis, i=1,...,n, has linear measure less than 7, there are con-
stants C(t) > 0, D(t ) >0 such that | i(t,x, w| <C(t ) + Dt )lul
for each (t,x,u) € M with (t,x) € B‘% = B0 n A, folul 1. + o0
as |ul =+, ue U(t, x) uniformly on B‘i‘) and E(t ) =E n {to}
X En is contained in I'I:;g

Let N> D(t ) 4e—l[M +1+12Z - r - bUMH where r,6 ,b are
the constants defined above and Z = ian, I[x,u]. Then, there is
a Y > 0 such that fol ul -1 > N when (t,x,u) € M, (t,%) ¢ Bﬁ,

. : Co1
| ul > Y. Divide the set [t“jl’ tjz] into three subsets Ajl’ Ajz

and A,, in the following manner. Let

j3
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Ajl = {tlte [t!jl 2 ] (t, x. (t)) %, uj(t) exists and

luJ(t)! zY}s
Mgy = ftlte [y, vyl (6 x0) ¢ B t ¢}
j2 1’ o’ jl

and Aj 3

i

{tite Lt ,t'5.], t ¢ A, UAJ.Z}.; Then the set

i1’ 2] i1

[t J.lgt j2] = Ajl u Ajz j3,
Clearly there exists a real number jo >0 such that for
j>j, eachte [t it J.2] satisfies the inequality it-tol <p. We

now have, for j > JO

t' t!
I[X.,uj] = f f(tx(t) J dt+f 12 O(t,xj(t),uj(t))dt

)
tjl 31

j2
R ft,jz £ft, %,(0), wy ()t

t,
j2

> 2Z + | f(t, xj(t),uj(t))dt
t,
jl

3
>27 + (Ajl) f t(t, xj(t), uj(t)dt + (kiz Ajk) f £ (t, xj(t), uj(t))dt

3
> 2Z + N(A, ) [lu (t*du U Ay f(rb!f(tx(t) (l)t
k=2

by the growth condition of fo and the inequality fo > -r-blf| for
3
each (t,x,u) ¢ M as proven above, As U A'k is contained in
k=2
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Ajk = [tjl’ tjz], we obtain for j > j .

I[Xj, uj] > 22 - x(t'y, - bU +N(Aj1)f luj(t)ldt

thy) - by

-1
> 27Z -rj * - bUy + N(Ajl)f luj(t)ldti

> 2Z -1 - bUy + N(Ajl)f luj(t)lcu;°

Now (A, ) [ Iu(t ldt < Y(t's, §Yj'1., Also, letting

")
C, = C(t O), 0= D(to) and assuming that D_ > 0 (there is no

loss in generality), we have luj(t)l > lf(t,xj(t),uj(t))lD;l _ COD(;]’

for each (t,x) € B‘z, u e U(t,x). Inaddition

2 2
l(u A flf(tx(t 0, () Nlidt > (v L flf(tx(t )» us(t) )| dt
k=2 k=1
2
2100 Ay J 16 %4(0), uy0)at]

= |( u L ) J tx;(t), wy(t)dt - (Ag5) ) [ £t x.(t), u.(t))dt]
Kol 1l AR R

3

> I(k.:1A3k) f £(t, %;(t), 0;(1) Ndtl - [ (A, i3) J 1t x,(t), u t))dt|

> IXJ.(t'jz) —xj(t”jl)l -n>€e-n>€-¢€/2 = ¢/2

as n < €/2, for each i=1,2,...,n. Thus,
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. 2 . ,
(A;) / u(t)ldt - (kil Ajk)f luj(t)fdt— (Asp) f!uj(t)ldt

2
D(’)l( u
k=1

1 -1

+Y)j

v

f y \1\ ’ _ -
Ajk) | lf(t9xj((t),uj(ty);dt (c,D,

-1 -1 |
> D, e/Z-D0 ¢/4 = D, - €/4

by the above inequalities and for each j > j = max (j, D04«=:_1 .

1

o &’C‘OD0 +Y)).

But this last inequality implies that

I[Xj,uj] > 2Z -1 - bUy + N(Ajl) | Iuj(t)ldt

> 2Z -r -bU

-1 s
> MTND0 c/4 f0rJZJm.

I[x;,w] > 2Z - r-bUy + (M+1) + |22 - r - bU |

> M+1 > M forjzjm as

-1 |
N > D_ 4 [M+1+izz-r-bUMH.

This is a contradiction. Therefore, the vector functions x(t),
t'y <t<t'y of the family {(x, u)}M are equicontinuous when A
is compact. Hence, these same vector functions are equicontinuous

when A is compact if Q replaces Q.
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Now, let xk(t), uk(t), tlk <t< t2k’ be a sequence of ad-
missible pairs, each from & such that I[xk, uk] ~ias k= +w.
We may assume that

t
2k
i_<_I[xk,uk] = [ £t x (t), w (t)dt < i+1/k kel,2,...

Yk
Therefore, the previous result implies that {xk(t)} are equi-
continuous as I[Xk’ uk]
xk(t), uk(t), tlk <t< t2k’ is an admissible pair from © and A

<i+1/k<i+1lfork=1,2,.... As

is a compact subset of En+1’ There exists a constant A such

that lxk(t)l < A forte| and k=1,2,... . Thus,

Lty ],

there is a continuous function xo(t), t, <t<t, such that

1 2
p(xk, xo) -0 ask = +w. xo(t), t1 <t< t2 is not only a con-
tinuous vector function but is also a BV .vector function,

For each ¢ > 0 there exists an { and a partition

t, =t <t, <... < t'ﬁ = t, such that either

1 1 - "2 = 2
£-1
O Ixgley,) - x> BYIx ® - e
i=1
or
{

O Ittty ) -l > el
i1
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accordingly as BV Ixo(t)l is finite or not. If we choose k_ so
large that k > k  implies that p(xky xo) < &, we have that either
-1
BYIx (] - ¢ < > xRt ) - K]« 2(0-1)e
i=1
< BVIx(t)] +2(¢-1)e fork > k_

or

[
Y IR ) - B!+ 200-1)e
i=1

< BV lxk(t)! +2(0-1)e fork > k_

where fik(t) is xk(t), t; <t <ty extended to (-o, +o) by con-
stancy. Since BV lxk(t)! < Ui+1 < + o the second alternative
is contradictory for e sufficiently small. As a result

BV xo(t)i < + o and xo(t) is 2 measure induced on [tlg tz]

We shall now show that xo(t), t1 <t< t2 is not only a con-
tinuous BV vector function but that it is also an AC vector function.
Suppose it is not an AC vector function, then, there exists a Borel
measurable set B C [tl’ t A] which has zero Lebesque measure, but
positive X  measure, i. e, XO(B) > 0. Now, every set Ei(B),
i=1,2,...,n, has zero Lebesque measure, Thus if
E, = {it,x)ite B, x=x ot ty <t <t } the set

E " [B = E (B) x E (B) X ... x E'(B)] has projections of zero
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i, .
measure on each x"-axis, i=1,2,...,n. Then, there is 3 closed
set B'C B such that x@((BY)) > 3L/4 where L = XO(B)) and

n

t,x (1) § [Bx E'(8) x ... xE"(B]] for cach t ¢ B,

Now P' = {(t,x)lte B, x= XO(t):“r is 2 comuact subset of
A-E, and hence the set P' N E is emroty, Thus, there are two dus-
joint open sets O1 and O2 such that P' C O1 and E C 040 Con-
sequently A n (Em‘:ul

tains P'. Indeed, there is a Py > 0 such that the set

- OA) is a compact subset of A-E and con-

N, (P = {{t,x)ldist {(t,x), P} < po} is contained in
(0]

. - -1
An( ,-0,). ForN> 4DO[ il +2 + D + bUi+1]L where

n+1

i=info I[x,ul, there isa Y > 0 such that £ (tx,0) > Niu| for

each (t,x) ¢ A n (EM - Oz), ue Ut,x} and hence for each

1

(t,x) ¢ Np (P, ue Ult,x). Let Co’ D0 > 0 denote the constants
0

(and D, can clearly be assumed to be greater than 0} such that

.15| ¢ { e 3 : - )

| £] < C,+ DOH,I for each {t,x,u) ¢ M with (t,x) ¢ AN (Eml 02)

and hence focr each (t,x) ¢ Np (P*), ue Ult,x). We may assume
0

without loss of generality that Y > C o Since B' is compact, there

are infinitely many open disjoint intervals (ajg ﬁ;j)’ j=1,...,r, such

r r
that B' is containedin U (a.,8.), x (U {a.,B.)) <x (B") =+
j:“.’l “] J 0 J:,:l J J o
r
-1 -1 -1 \ \
L3 IY ID “oand (t.x {t)) maps U {a. 8. intoN (P7). We can
© ¢ j=1 ] JOO

clearly assume without less of generality that
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r

Z (BJ. - aj) < min (L8_1Y'
j=1

1.-1

D" p,/2)

The following argument shows this,
Now B' is a compact set with u*(B') = 0. For eache¢ > 0

there exists a bounded open set O'e which contains B' and such

1.,-1._-1 -1

Py
0]

O'E is a bounded open set it consists of a finite or denumerable
0
number of open subintervals, say Oj’ i=1,2,... . These sub-

that u*(O'E) <e. Choosee < max(L8 Y D; As

intervals Oj cover the compact set B' and hence a finite number of
them also cover B'. Denote this finite subcover by Oj’

=1,2,...,] .

or Form the open intervals (al, [31) N0 eees (a " Br) n

lo
the required properties if the original intervals (al, Bl), vous

01,...,(011,;81) N Ojo”""(ar’ Br) N O, . These intervals have

(a " ﬁr) do not,
Then, we choose ko so large that

r

Z((aj’ﬁj) 0 [ty to D S x (0, w ()t > L/2
j=1

r
and (t, xk(t)) € NpO(P "N forte [j :1 (aj, 33)] n [tlk, t Zk] and all

k> ko" Thus



115

r
> a8 0 [ty D) [ lu®lat >
j=1

r
[ (g 8) 0 Tty t) 16t % 00), w6 aty]p !
j=1

r
-C() B -e Dyt >
j=1

-1_-1 -1 -1 1_-1 -1_-1
L2°D-C L8 Y D >L2 D -L8§ D =

1..-1

= 3L8 D .
(6]

r
Let B, = { t: tejgl[aj,ﬁj], iuk(t)l <Y} and
r
Bk = j:1 (ozj, 5J.) - Bk’ Then

(B) J lui(t)ldt <YL/8YD = L/8D .
Hence
(B’k)f !uk(t)ldt >3L/8D, - L/8D, = L/4D, > O,

Therefore
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I[x,,u

o) > -rD-bU, L+ (B [ £t x (1), u ()t >

> -rD - bU, | + N(B') f luk(t)idt

D i 22 21D+
> -rD - bU, , - [4D (il +2 + 1D+ bU, ,)/LIL/4D_

1 4

> lil +2 > lil +1 > i+1

and hence I[Xk’ uk] > i + 1 which is a contradiction. Therefore
xo(t), t. <t<t,,is an AC vector function,

If we utilize the fact that (i) xk(t)) - xo(t) which is an AC
vector function in the p-metric and (ii) property (LS) holds,
(L3) fo(t, X, u) > - M for each (t, x,u) ¢ M for some M0 >0
when A is compact, and if we apply the reasoning given in
Existence Theorem I after the equi-AC of the sequence {xk(t)}
is proven, then we obtain the result that there is a measurable
control function such that XO((t), uo(t), tl <t <t P is an admissible
pair from @ and I[xos uo] < i Asi< I[x09 u,o] , one has that
the absolute minimum if I[x, u] exists and is takenr on in Q.
Thus, the theorem is proven in the case that A is compact.

When A is not compact, the reasoning given in Existence
Theorem I can be applied with the various conditions stated in
this theorem and utilizing property (LS) to reduce these cases

to the case where A is compact., The theorem is completely

proven,
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Corollary 1: This is the same as Existence Theorem IV

where for each (t,x) ¢ A U(t, x)= U is a fixed, closed subset of
the u-space Em, and the part of condition (*) where
fol ul 1. +oas ful =+, ue U(t, x) uniformly on any compact
subset A0 of A-E is replaced by the conditions {i) and (ii) of
Corollary 1 to Theorem IIL

PROOF: This statement is a consequence of Theorem IV
and lemma 4.

Corollary 2: This is the same as Theorem IV where for

each (t,x) ¢ A U(t,x) = Em is the whole u-space E_, the func-

1

%U.é -+

m
tion fo(t, X, u) is convex in u for each (t,x) ¢ A-E, fo
as lul ~+w, us Em pointwise in A-E, and the uniform growth
condition of fo(t, X, u) oneach compact part A0 of A-E, given in
(v*) is omitted.

In addition for free problems, that is, when m = n,
fi(t, X, u) = ui’, i=1,2,...,n, fo(t, X, u) is a convex function of u
for each (t,x) ¢ E, then the condition that S(t, x) satisfy property
(Q) in A and that E is a closed set can be omitted if E is assumed
to be the minimal exceptional set (f o luj” 1does not approach + o
as (u| =+ o at points of E) and fo is a normally convex function
of u in A,

PROOF: The first part of the statement follows by the same

argument of the first part of the statement of corollary 4 to
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Theorem III.
The statement that E is a closed set in the second part of the

statement above follows by the reasoning used to prove the same

~
~

property in corollary 2 to Theorem III. Q (t,x) satisfies property
Q) in A as fo is normally convex in u (and hence quasi-normally

convex), f=u, m=n and statement (viii) in Chapter I applies.
2

Example 4: Letm=n=1, A= [0,1], for each {t,x) ¢ Alet

U(t,x) = EP let £(t,x,u) =u,

2 2 .
fo(t,xsu):x U =u foru 20, ue E;

- x%u? foru >0, ue E,

and boundary condifionsx(0) = x(1) =0. Then, U(t,x) satisfies

z2)lz_ >

property (U) foreach / ,x) ¢ Aand Q (t,x) = {(z o0~

09
x%2% + zfor 2 >0, 2z szzz for z< 0}. Now, Q(t,0,8)=

i~
~

\

{(zo,z} | z, ~z for z -0, and z, >+ 0 for z:;@} = Q (t,0).

Hence E} (t,o0) = @ clcoQ (t,0,6) for each te [0,1]. Therefore

~
~

Q (¢, 0) satisties property (Q) for each (t,%) ¢ [0,1]x {0}. AsQ
(t,x) also satisfies property (Qj for each (t,x) ¢ [0,1] x{0,1], we
conclude thata (t,x) satisfies property (Q) in A. Although f0|u|'1
~+ o as |ul =+, ue E, uniformly on each compact subset of
[0,1]* {0,1], fo(t,x,u)lu]'1 does not approach + oo as [u| = +

-1
for any (;,%) ¢ A withx=0, Hence, f_ la]” “does not tend to +

as |ht -~ 4+ 00, UE E1 uniformly on A and both Existence Theorem I
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and II do not apply to this example, Irndeed, even Existence
Theorem III does not apply to this problem. Clearly, the closed
exceptional set E for Theorem III must contain the set [0,1] x {0}
where the growth condition fails, but condition {T) is obviously
not satisfied on this set. Therefore, Theorem III does not apply.
However, Theorem IV applies, Let E =[0,1] x {0}. Then
uq E(H)] = 0 for every subset of the t-axis of measure zero (in
fact for any subset H ¢ [0,1]) and (L;) holds. If r=0, b

21
1727
y «% > 0, then

fo(t,x,u) xX2u2+u}_0+2_1 »11-5»2_1 - |ul

> uforu>0, (t,x)c A
- x%0? >0+ oLy 2l ul =0
foru<o, (t,x)e A
and (Lz) holds. Also, f@(tg x,u) > 0 and ((Lg) holds. Now the
growth condition on fo(t, X, u) of property (y*) was shown to be
valid on any compact part AO of A-E. Letting C=0, D=1,
HE(t, %, u)] = |ul < 0+1- lul for each (t,x,u) ¢ A X E1 and
(y*) is valid. Therefore Theorem IV applies, but Theorems I,
IT and III do not,
REMARK: Theorem IV is similar to a theorem of Tonelli

[23a] for free problems, n=1, and fo continuously differentiable.

Tonelli's statement has been extended to free problems with n > 1
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and f_ not necessarily differentiable by L. Turner [24]. The
present theorem differs from that given by Tonelli and L.
Turner in two ways. Condition (L3) was not required, but nor-
mal convexity of fo(t, X, u) was required in place of condition
(Lz); hence one condition was added and one condition greatly
weakened from the case of the free problems. Examples 1 and

2 are due to Tonelli,



Chapter III

Optimzal Control Problems where f is Linear

14, A few lemmas.

We shall now consider the case where all functions fi(t, X, u),
i=1,2,...,n,are linear in u, and the control space is a fixed closed
convex subset of Em for each {t,x) of A. Precisely, we shall con-

sider the optimal control problem

t,

Ix,u] = fz fo(t, X, udt = minimum, (52)
Y
m

dx'/dt = 2 gt X' ¢ g.(tx), i=1,2,...,0, (53)
j=1

where x = (xl, oo xn) € Ens and fo(t, X, u) is a convex function of u,
ue U, for each fixed (t,x) ¢ A, If H(t, x) denotes the n X m matrix
(gij(t, X)), and h(t, x) the n-vector (gi(t, x)), then the differential sys-

tem (53) becomes
dx/dt = Ht,x)u + hit, x),

We shall, henceforth, assume that gi;j(t" X}, gi(ty x), #=1,2,...,03

j=1,2,..., m are continuous bounded functions on A,

The sets Q(t, x), 6(&, x) relative to the above problem are

121
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Q(t,x) = [z]z = H(t, x)u + h(t,x), ue U] C E, (54)
Qtx) = [z = (2°,2)l2° > £ (t,x0),

z = H(t, x)u + h(t,x), ue U] C En+1

We shall need a few lemmas concerning the sets Q(t, x) and é(t, X).

The proofs of the next two lemmas are due to Cesari[4a].

Lemma 6: Let the set A be a fixed closed subset of the tx-

space E, X En’ U(t,x) = U be a fixed, closed, convex subset of Em

1
for each (t,x) € A, fo(t, X, u), (t,x,u) ¢ A x U, bea continuous sca-
lar function on M = A X U which is also a convex function of u for
each (t,x) ¢ A, and the differential system be given by (53). Then,
both sets Q(t, x) and 6(t, X), which are defined by (54), are convex
for each (t, x) € A.

PROOF : The set Q(t, x) is obviously convex for each
(t,x) e A. Let us now give the proof for the set (S(t, x). Let
S = (po, p), a = (qo, q) be any two points of CS(t, x), let 0 <a <1,

and z = (z°, z) = ag +(l-a)g. Then for some vectors u,ve U we

have

po > fo(t,x,u), p=Hu+h

q0 > fo(t,x,v), q = Hv +h,
z=ap+(1 -a)a, z° = ozpo + (1 —a)qo, z =ap + (1-a)q.

Now the vector w = aqu + {1-a)v ¢ Uas U is a convex subset of Em"
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We have
z=ap +(1-a)q = a(Hu + h}) + (1-a)(Hv + b} =

= H{ou + (1-a)v) +h = Hw & h,

ZO = apo + \(1 -a)qO > o fg(ta X, LI)” + (1 -a)fo(t’ X, V) 2

> f0<(t, X, ou + (1-a)v) = fo(t, X, W),

Thus, z = (zo, AR 6(t, x) and 6(t, X) is a convex set for each (t, x)

¢ A
“ o

Lemma 7: Let the set A be a fixed closed subset of the
tx-space E1 X En’ U(t, x) = U be a fixed, closed, convex subset of
Em for each (t,x) ¢ A, fo(t, X, u), (t,x,u) ¢ A X U, be a continuous
scalar function in M = A X U which is also a convex function of u
for each (t,x} ¢ A, and for each compact part AO of A let <I>O(z) be
a continuous scalar function in the set Z = [z] z = |u| for some u e
U] such that £_(t,x, u) > & (| ul) for each (t,x, u) ¢ A_xUand
@O(z) -+ as z ~ + o, and let the differential system be given by
(53). Then, the set 6(t, x}, which is defined by (54), satisfies prop-
erty (Q) in A,

PROOF: We have to prove that Q(F, %) = nel co QF,x,6).
It is enough to prove that n cl co Qi x,8) C 6&9 x) as the

opposite inclusior is trivial. Let us assume that a given point

~ _O - ey \

z=1{z,2) ¢ gu cl co Q{t,x,5 ) and let us prove that
~ 439 20 oy . N -
z=(z ,z)¢ Q(t,x). For every & >0 we have
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- -

= (z ,2z) ¢ clco E)(f,i,ﬁ ), and thus, for every § > 0, there are

N7

. ~ 0 T - - )
points z = {(z ,z) ¢ co Q(t,x,0 ) at as small a distance as we want

~ =0 = . :
from z = (z ,2z). Thus, there is a sequence of points

~

0 2= -
2 (2" zk)J ¢ co Q(t,x,8 k‘} and a sequence of numbers 6, > 0

such that 6, = 0, Zk ~7 ask =+ . Inother words, for every in-

k

teger k, there are some pairs (t'k, x'k), (t”k, X”k)9 corresponding

i mq . ;,0' 1 s N{ ? ? ) va — Y " 2 g 4] 1"
pOM’LtS Z k‘ (Z kﬂzk) & Q(t k9xk>9 Z k“"’ (Z k9Z k> c Q(t k9X k)?

peints u', u”k ¢ U, and numbers Qs 0<a, < 1, such that

k > >
2 = 02+ (1 -ak)z &
,0 = ,Ov 2 (1 -0 ) o" o o _ "
2y =y (1 0%y 2, = Q2" (1 ak)z 1
0 . ,
>y i ' ' ¢ HI(tS ? ¢ L hite [}
Z, 2 fo(t e X' Wi z' H“tk9 xk)uk ¢+ hit', xk)
ZO” > f (t" x'" u' ) VA
J 9 s S AN AATT LANTY 1
k = oV KTK Tk K~ H(t ’Xk>uk - h(t ,xk) (55)
and such that
' o " o f Moo o o C_:-0 -
tk t, X 7% tk t, Xp 7% Zyp T2y Zy Z, 2y, "z

as k =+, Because of these limit properties, there is some closed

ball BC En.+ such that «\t'kyx'k) ¢ B, (t" ) ¢ B and (t,x) € B.

1 KXk
Let AO = B N A andconsider <I>O on this set,

!

The second relation (55) shows that of the two numbers zl(i ,

0
ust be g_ V4 It is not restrictive to assume that

K
for all k., Then the fourth relation (55) together with the

ore m
.0
< Z

k



125

lower bound for fo yields

o) 0N
~ - 1 7 LR T '
2y 2 2 £t k¥l < q’o(luk{)s

0_ =0
where z,_ =z, and hence [z

d)o(ﬁu‘kl) < z”

0
k.j

and the boundedness of the sequence [zo

is a bounded sequence.: Thus,

K k] together

with this previous inequality and the limit property and continuity of
¢ (z) implies that [@3\(! u'k! )] is also a bounded sequence. Finally,

[u' ] is also a bounded sequence because of this last result and the

k

growth property of @d We can select a subsequence, say still

[u'. ], which is convergent, say ' = u'c¢ Uas k= +w. The se-

k]’

quence [ak] is also bounded; hence we can select a further subse-

quence, which also we shall call [a, |, for which oy~ a ask =+

i)
with 0 < a < 1. Let u, ¢ U be the point u_ =@ u'y +(1- )u"
(this can clearly be done as U is a convex set in E ). Then,
Zy T 02k (1 —ak)z”k =
= ak[H(t'ks ' Ju'y +hit', ka)] + (1 -ak)[H(t”w X"
+hit, x"k)]
= H«(t”k, x”k) [aku. " F (1 —ak)u"k) + h(t”k, X"k) +
roy {[H(t'k’ X?k) - H({t"ks x"k)].u’k +
+ [h(t?kg ka) - h{t",, x’k)]}
S HIE X

R h’(t"w X"+ A (56)

k> K’
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o] o' o"
2y = 0%+ (1 —ozk)zk >
> akfo(t 10 X'k, u k) +(1 -ak)fo(t"k, x”k, u"k)

> akfo(t”k, x"k, u'k) + (1 -ak)fo(t”k, x”k, u"k) +

[f ol ¥ ') - £ (" X" u'k)]

> fo(t”k, X", U+ (1 —ak)u"k)+
ak[fo(t'k, X'} u'k) - fo(t"k, X" u'lz]
" 1 O
> fo(t o X'} uk) + Ak

where Ak and AE have the property Ak -0, A, -0 and

0
k
h(t 1 x”k) - h(t,x) as k = + o since t'k -t, x'k - X, t'k

X" x and w = u' as k~+o. Again we can conclude that

[&(] ukl ) is a bounded sequence, and so is [u,].

further select a convergent subsequence, say still [ uk] , with

"t_,

Hence, we can

u ue U. Relations (56) now imply as k = +

z = H(t,x)u +h(t, x)

Thus, z = (z°,2) ¢ Q(f, %), and lemma 7 is proven.

The following example shows that (5 (t, x) does not necessarily
satisfy property (Q) for each possible optimal control problem,
Lemma 7 does not apply to this case as fo(t, X, u) fails to satisfy the

"uniform growth' property implied by the function &z) such that
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$(z) ~+0asz=+cw, z>0and fo(tﬂ X, u) > & | ul) for each

(t,x,u) ¢ A ¥ U, This example was given by Cesari [4al.

Example 5; Letm =n=1, U= E 29 fO\(tﬁ X, u) = t3u2

vt ol I
and f(t,x, u) = tu, Then,

A -[0,1]

o~

Qit,x) = Qt) =[z = (z°,2)]2° > t3u29 z=tu ue E ],
= 1

Thus, 5(09 X) = 6’(0) [((zo, z)ﬁzo >0, z=0} andfort L0,

Qb = [(2°, 21 2° > tzzy Z € El] and cl co Q(0,6) is the entire
half plane [(zog 2)!2° >0, ze¢ El],, Therefore Q (t, x) = Q(t)
does not satisfy property (Q) at t = 0.

However, there are optimal control problems for which the
"uniform growth condition on fo/(t9 X, u) can be relaxed and the set
(5(t, x) still satisfies property (Q). The following lemma states such

a case. But before we proceed we shall define a new property,

called (SB), for the control set U,

{SB): A fixed control set U in E_is said to satisfy property (SB)

if for each i, i=1, 2,,.., m, there is a real number a, such that

either t < a, for eachue Uor u, > a, for each u ¢ U,
Examplesofsuch control sets are the sets

U = [{ug uz;u’; u > 0, u, > 1] where a, =0, ay =1and

Q)Mul > 1, U, < -1} where a

U = [d\u ﬁu a = '1o

=1, 2y

1 1
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Lemma 8: Let the set A be a fixed closed subset of the tx-
space E1 e En’ U(t,x) = U be a fixed, closed, convex subject of -
the u-space E for each (t, x) ¢ A which also satisfies property
(SB), 1 Qt %, u) be a continuous scalar function ‘on
M = A X U which is also a convex function of u for each (t,x) ¢ A,
m = n and f(t, X, u) = u. Then, the set 6(t, x), which is defined by

(54), satisfies property (Q) in A,

PROOF: Proceed as in lemma 7 until relations (55) are

reached, The new relations (55) are as follows:

2y = ak K +(1-a )z"k,
09 o” "
2y Azt ((l—ak)zk , Zy =0T k +(1-0 ) K’
o’ , y '
7 2 L X uy) 2 < U
ZO" > f (t" <" " ) AR (57)
k =~ o K"Kk’ k k

! - f ! ey "o Moa S o 0_:-0
an.dsuchthattk t,xk x,tk t,xk X, Zy "% Zy "L,

- - ; - ' - 1
K " Z as k =~ +o, As U is a convex set, Zy akuk+(1 ak)uk

¢ U AlsczeUasz -~ z as k= + o and U is a closed set, I

Z

we write the third relation of (57) in component form with the help
of relations five and seven of (57), we have

VI v() 1-a

(i (3
1‘{ k K -\-k)u"f{“) for i=1,2,...,m,
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But zf{l) - 2(1)0 Now either there are only a firite number of

ay = 0 or 1 or there are not. Suppose there are only a finite num-

ber of ay = Oor1l., Then u“él) and u”éi) are both bounded or both

unbounded as 0 < a, <1 for eachk, ay > 0, l—ak > 0 for each k
(1) _ (9 (i)

and their convex sum Zk Z as k = + o where z is some

lii) and u"l;(:i) are both unbounded, they

are unbounded with opposite signs., As u’

finite number. In fact, if u'

K’ u”k ¢ U, and U satis-

fies property (SB), this cannot happen. Therefore, both u"él)
(i)

and u”k , i=1,2,..., m, are both bounded and so are u'k and u"k

bounded m-vectors. Suppose there are an infinite number of

k-values for which ¢, = 0 or ay = 1. Consider g, =0 an infinite

k k

number of times. Ther, z, = u", and z, = z implies that

u"k -z ¢ U for these values of k, Re -label this new subsequence

with the same index k and we obtain new relations (57) with

u'y = ze U, For g, =1 an infinite number of times, the same

k

logic yields new relations (57) for which u', =z ¢ U. Now,

k
z) = U+ (1-apjuy

= n  whereu =o.u' + (l—ak)u"ks (58)
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1"

0 o' 0
_ —g )
Z T A%y + (1 @%y 2
? 9 1 _ 1" 1" 1
2 aka((t ' k) +(1 ‘Zk)fo(t kX! k)
2 akfo(t"k’ X u'vk) + (l—ak)fo(t"k’ X u"k)

' ' ' _ 1 1" 1"
+ ak[fo(t K X K’ u k) fo(t K’ X K u k)]

1 1t O
2 L X w) + Ay

0 1 ' vy 1 1" ;
where A = ak[fo(t o X' k) £ (t o X u'k)]. In the first

and third cases (58) is valid and u'k approaches a finite limit, say

u', ask =+ w, Thusastk-'t, tk-'t9 X' "X xk-xanda

is bounded between 0 and 1, AE

k

~0ask =+ o, Hence, the rela-

tions (58) now imply as k = + w0,
z = u
20 > 1 (F,%, 1)
Thus, z = (z°,2) ¢ Q(f,x), and lemma (8) is proven for the first
and third cases.

Consider the second case where (57) is valid and u"k and Uy

approach a finite limit in U as k = + . Again,
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N
1

g 5 Wy (Lmauty

= uk’
O OY O”
K 7 QpZ F (l-ak)zk >

> a (t 1 X' e k) +{1- ) (t'k, X“k, u"k)
+ (l-ak)[fo(t"k, X”k’ u"k) - fo(t'k’ X'k: u"k)]
40 . -0
7 2 Lt X ud + Ay

where A = (1-a ))[ ot X ) - £t X, u k)]o Thus, in
the secona case, with t', = f, x| - X, t = t, X"~ X ask—-+o
and 0 <1 - o) <1 for eachk, 512 ~0as k-~ +wo, Hence the last
relations imply that

7Z =

o

2° > £ ([,% ).

Therefore z = (zo, Z) € Qz(t_, x) as before and lemma 8 is completely
proven,

Example 5, which precedes this lemma, shows that property

(SB) cannot be relaxed in lemma 8.
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15, Existence theorems where { is linear in u

It is now possible to state several existence theorems for opti-
mal contrel problems in which the differential equation is linear in

the control variable,

Existence Theorem V: Let us consider the optimal control problem

described in relations (52) and (53), Let the set A be a fixed com-

pact subset of the tx-space E; XE , let U(t, x) = U be a fixed, closed,

1
convex subset of the u-space E_ for each (t,x) ¢ A, let fo(tg X, u),
(t,x,u) ¢ A X U, be a continruous scalar function on M = A X U,
which is also a convex function of u for each (t,x) ¢ A. Let

Y, 0< < + m, bea given continuous function of {such that
&)/ ~+was {~+wand fo(t9x9 u > & |ul) for each (t,x,u) ¢
A x U, Let Q be the class of all pairs x(t), u(t), t1 <t< t2, x(t)
absolutely continuous, u(t) measurable satisfying (58) a.e.. Then,
the optimal control problem has an optimal soluticn,

If A is not compact, but closed and contained in a slab
[t,<t< T, xsE | t, T finite, then the result still holds if
condition (b) holds,

If A is closed, but not contained in a slab as above, then
Theorem I still holds if conditions (b) and (¢} hold .

(Cy\‘t f /\H

) 1%, u) > > 0for each {t,;x,u) ¢ A X U where y is a posi-

tive constant,
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Finally, for A not compact, the condition :f0 > &|ul) can
be replaced by conditions {d) and (e) :
(e) for every compact subset AO of A there is a function ¢, asa-

bove such that fo > <I>O(| ul) for each (t,x,u) ¢ A0 X U

PROOF: By lemmas 6 and 7 of this chapter, the set 6(t, X)
is convex for each (t,X) ¢ A and satisfies property (Q) in A, where
A is a fixed closed subset of E1 X Emo The set U is a fixed, closed,
convex subset of Em for each (t,x) ¢ A and obviously satisfies prop-
erty (U) in A for each case,

Now g.. and g; are bounded, continuous functions of (t,x) on A

J
and hence there is a C | > 0 such that lgijl <Co lgil <C, for

each (t,x) ¢ A and
1l < IHu+nl < l8| [ui + [0l < n°C_lul +nC,

for each (t,x,1) ¢ A X U for each case (A compact or A not compact),
The case for A compact is now just a specizal case of Theorem I
from Chapter IL

The case for A not compact, but contained in a slab is also
proven if condition (d) is satisfied, i e., if f_{t,x,u) > E|f(t, x, u)|
for all (t,x, u) ¢ A X U with |x] > F and for some constants E > 0,
F >> 0. Let us prove that condition {d) is satisfied, Indeed,
e/ > 1 forall | > D for some constant D > 0. Then, for

|l > D we have B < &(|ul) and herce |ul <D + ®|ul) for each
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ue¢ U, Now for each (t,x,u) ¢ A X U we have
£l = |Hu + bl < [H| |u| + 0} < {BI(D + &{ul)) + |nl

< =l elul) + (DIEI + |n])

WA

[H| +@lEl + h) a7 e ) as@(|ul)> >0,

< [l=l + (plH| + lh!)u']’]fo .

Thus f_ >[IH| +(DiH| + khhfl] || > E|f| for some constant
E > 0 and for each (t,x,u) ¢ A x U as |H| and |h| are bounded on
A since gij’ g; are continuous bounded functions on A, Thus, the
case where A is not compact, but contained in a slab is proven,
Suppose A is closed, not compact, nor contained in a slab as
before. Then, the conditions of Theorem I in Chapter II are veri-
fied, This case is also proven.
The last statement follows as Theorem I from Chapter II
only required this to hold, and neither lemma % nor lemma 7 re-

quire more than condition {e), The theorem is proven,

Existence Theorem VI: Let us consider the optimal control prob-
lem described in relations (52) and (53). Let the set A be a fixed

compact subset of the tx-space E, X Ep9 let U(t,x) = U be a fixed,

1

closed, convex subset of the u-space Em for each (t,x) ¢ A, let
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fo(m x,u), (t,x,u) ¢ AU, bea continuous scalar function on
M = A X U which is & convex function of u for each (t,x) ¢ A and
is such that |u] -1 £t %, u) = + o0 as jul =+, u ¢ U uniformly
in A, Let Qbe the class of all pairs x(t), uft), t; <t <ty x(t)
absolutely continuous, u(t) measurable satisfying (53) a.e.. Then
the optimal control problem has an optimal solution,

If A is not compact, but closed and contained in a slab
[to <t<T, x¢ En] t09 T, finite, then the result still holds if
condition (b) holds.

If A is closed, but not compact, nor contained in a slab as
above, then Theorem VI still holds if (b) and (c) hold.

1

Finally, for A not compact, the condition f oﬁ ul =+

as jul ~+ 0, u¢ U uniformly on A can be replaced by conditions
\,{ \
¥}, and (d).

PROOF: The proof follows as a result of the reasoning

given in Theorem I of Chapter III and lemmas 3 and 7 in Chapters

II and III, respectively.

Existence Theorem VII: This theorem is the same as theorem V,
where a closed exceptional subset E of A is given, condition (T)
holds at each point of E, and condition (@) is replaced by (y*) if

A is compact (the inequality on f in condition (*) is obviously

satisfied in this case),
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If A is not compact, but closed and contaired in a slab
[to <t < T, x¢ EnL ty, T, finite, then theorem VII still holds
if conditions (b} and (d) hold (and (@) is replaced by (y*) and con-
dition {T) holds on the exceptional set E).

If A is not compact, nor contained in a slab as above, but A
is closed, then theorem VII still holds if conditions (b), (c) and

{(d) hold.

PROOF: This theorem follows from Theorem III by the
reasoning contained in the proofs of Theorem V and corollary 2 of

Theorem III.

Existence Theorem VIII: This theorem is the same as Thecrem V,
where a closed exceptional set E is given, condition {(a) is replaced
by {+*), conditions (Ll), (Lz), and (L3) hold, and E is a set on
which condition (@) is not satisfied (the inequality on f in condition
(- *) is obviously satisfied in this case). We shall also assume that
é(t, x) satisfies property (Q) on the set E,

If A is not compact, but closed and contained in a slab
[tQ <t<T, xe¢ En]9 to, T, finite, then Theorem VIII still holds
if conditions (b) and {d) hold {(and (@) is replaced by {y*), pro-

vided (Ll), (Lz) and (L3) hold).
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If A is not compact, nor contained in a slab as above, but
A is cylosed, then theorem VIII still holds if condition (b), (c')
and (d) hold (and (o) is replaced by {(y*), provided (Ll), (LQ)’
and (L3) hold).

In addition, if m=n, f(t, X, u) = u and the set U satisfies prop-
erty (SB) then the condition that a(t, x) satisfies property (Q) on
E can be omitted in each of the above cases.

PROOF: The first statements of this theorem follow from
Theorem IV and the reasonings contained in Theorem V and cor-
ollary 2 to Theorem IV. An application of lemma 8 proves the

last statement,
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